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2 LARS GR�UNEIn this paper we introduce a spectral concept that lies somewhat in between these ap-proaches. By its very de�nition the uniform exponential spectrum assigns a collection ofexponential growth rates to any compact connected invariant set for the projected ow:We consider the set of all possible exponential growth rates in some �nite time T > 0 withinitial values in this set and de�ne the spectrum to consist of all accumulation points asT !1.The motivation for this spectral concept is to describe the possible exponential behaviorof long term trajectories of a ow: Whenever exponential growth rates are obtained bylong term observation or (numerical) simulation of trajectories, the observed values lieclose to the uniform exponential spectrum, cp. Proposition 3.2. Conversely, for any valuein this spectrum and any (arbitrary large) time t > 0 there exists an initial value suchthat this exponential growth rate is attained by the corresponding trajectory at the timet, cp. Remark 3.4. Therefore the knowledge of this spectrum helps the interpretation ofexperimental or simulation results and the derivation of convergence results as describedin [6].One of the main results in this paper concerns the relation between the uniform exponentialspectrum spectrum and the Lyapunov spectrum (see e.g. [4]). Certain extremal values inthis spectrum have recently turned out to characterize null controllability and stabilizabilityof certain control systems (cp. e.g. [3], [4], [9] and [10]), which can be embedded intothe linear ow context using the results from [2]. Although in general the Lyapunovspectrum is smaller that the corresponding uniform exponential spectrum (cp. Remark 4.5),it turns out that the boundary points of the uniform exponential spectrum are containedin the Lyapunov spectrum. Hence a strong relation between these spectral concepts canbe established using the results in this paper.As already mentioned the uniform exponential spectrum is de�ned for arbitrary compactinvariant sets. Hence in order to obtain a meaningful spectrum for the ow on the wholestate space we have to choose sets with certain topological properties. By a suitable choicewe obtain equivalence to the spectral concept de�ned by Colonius and Kliemann in [5].There the connected components of the chain recurrent set of the projected ow over someconnected chain recurrent set in the base space are used in order to de�ne a spectrum via thegrowth rates of (�nite time) chains that lie in these components. Since these componentscorrespond to a Morse decomposition | and therefore are Morse sets | this spectrum isnamed Morse spectrum. Two essential properties of the Morse spectrum are proved in [5],i.e. that its boundary points are actually Lyapunov exponents and that it consists of �nitelymany bounded intervals. However, the proofs given there could only be achieved by a heavymathematical machinery, namely by the analysis of the Morse spectrum under cohomologyand by results from ergodic theory. Although these techniques provide interesting resultsin itself (e.g. the integral expression of the growth rates and the relation to the Oseledetsspectrum for which ergodic theory is of course essential) they admit only an indirect proof;a direct (or even constructive) proof of the properties of the Morse spectrum seemed to bemissing up to now.The closure of this gap gives another motivation for our analysis. For the uniform exponen-tial spectrum the properties mentioned can be shown by direct analytic arguments. Hencethis admits a new | and considerably shorter | approach for the proof of the properties



A UNIFORM EXPONENTIAL SPECTRUM 3of the Morse spectrum. In this context the proof rather than the �nal theorem can beregarded as the main contribution of the present paper.The property of the boundary points in fact carries over to the dynamical spectrum asde�ned by Sacker and Sell (see e.g. [14]). Since the boundary points of the dynamicalspectrum form a subset of the boundary points of the Morse spectrum (cp. Remark 4.8)the present result also gives a direct analytic proof for the fact that the boundary pointsof the dynamical spectrum are indeed Lyapunov exponents which has �rst been shown byJohnson, Palmer and Sell [11] using ergodic theory.We will analyze the uniform exponential spectrum in three steps. We start with the de�-nition of �nite time exponential growth rates and prove some estimates along trajectoriesin Section 2. The main results about the uniform exponential spectrum are contained inSection 3, where we turn to the projected ow and use the projection in order to de�ne thisspectrum over connected compact invariant sets of the projected ow. Using the estimatesfrom Section 2 we then prove the regularity properties for this spectrum and an estimateabout its parameter dependence. In Section 4 we will then use these results in order toestablish the relation of this spectrum to the Lyapunov and Morse spectrum.2 Finite time exponential growth ratesWe will briey describe our setup that coincides with the one in [5].We consider a linear ow � on a vector bundle � : E ! S with base space S, which is acompact, connected metric space. Here we use the de�nition of (real) vector bundles from[12, Chapter I], i.e. � is a continuous surjective mapping such that the �bers Ep := ��1(p),p 2 S are d-dimensional real vector spaces and E is locally isomorphic to S�Rd. We �x a(Riemannian) metric on E and on any �ber we denote the norm by j � j. The zero sectionZ in E is given by a continuous map Z : S ! E de�ned by Z(p) = 0 2 Ep, i.e. jej = 0 i�e 2 Z.A linear ow � on � : E ! S is a ow on E preserving �bers such that the induced ow�(t; �)p : Ep ! E�(�(t;e)) is linear, i.e.�(t; e1 + e2) = �(t; e1) + �(t; e2); t 2 R; e1; e2 2 Ep; and�(t; �e) = ��(t; e); t 2 R; � 2 R; e 2 EpWe will now de�ne exponential growth rates in �nite time and in the rest of this sectionprove some estimates for these quantities.De�nition 2.1 For any e 2 E and any time t > 0 we de�ne the �nite time exponentialgrowth rate by �t(e) := 1t ln j�(t; e)jjejRemark 2.2 By the compactness of the base space S and the continuity and linearity of� there exists a constantM such that for all e 2 E nZ the growth rates j�t(e)j are boundedby M for all t � 1 and the fractions j ln j�(t;e)jjej j are bounded by M for all t < 1.



4 LARS GR�UNEThe following lemmas show some useful properties of the �nite time exponential growthrates.Lemma 2.3 Let t1; t2 > 0 and t := t1 + t2 � 2. Let e1; e2 2 E be arbitrary points. Thenthe following estimates hold����1t �ln j�(t1; e1)jje1j + ln j�(t2; e2)jje2j �� �t1(e1)���� � 2M t2tand ����1t �ln j�(t1; e1)jje1j + ln j�(t2; e2)jje2j �� �t2(e2)���� � 2M t1tIn particular for e1 = e and e2 = �(t1; e) this impliesj�t(e)� �t1(e)j � 2M t2t and j�t(e)� �t2(�(t1; e))j � 2M t1tProof: For t1 � 1 and t2 � 1 the estimates follow from the equality1t �ln j�(t1; e1)jje1j + ln j�(t2; e2)jje2j � = t1t �t1(e1) + t2t �t2(e2)and the boundedness of �t1 and �t2 .For t1 < 1 we obtain1t �ln j�(t1; e1)jje1j + ln j�(t2; e2)jje2j � = 1t ln j�(t1; e1)jje1j + t2t �t2(e2)and since t2 � 1 the estimates follow from the boundedness of �t2 and ln j�(t1;e1)jje1j .The case t2 < 1 follows analogously.Lemma 2.4 Let e 2 E, t > 2 and � := �t(e)Then for any " > 0 there exists a time t� � (2M�")t2M such that�s(�(t�; e)) � � + "for all s 2 (0; t� t�]. Here t� t� � "t2M !1 as t!1.Proof: Let � := sups2(0;t]�s(e)and �x " > 0. If � � � + " the assertion follows with t� = 0.Otherwise let t� := sup fs 2 (0; t] j�s(e) � � + "g



A UNIFORM EXPONENTIAL SPECTRUM 5By the continuity of �s(e) in s the equality�t�(e) = � + "is implied. By Lemma 2.3 it follows from �t(e) = � that t � t� = t2 � "t2M and hencet� � (2M�")t2M . We claim that t� satis�es the desired property:From the de�nition of t� and �s it follows that1t� ln j�(t�; e)jjej = � + " and 1s ln j�(s; e)jjej < � + "for all s 2 (t�; t]. Hence alsoln j�(t�; e)jjej � t�(� + ") = 0 and ln j�(s; e)jjej � s(� + ") < 0holds. Sinceln j�(s; e)jjej � s(� + ") = ln j�(t�; e)jjej � t�(� + ") + ln j�(�(t�; e); s)jj�(t�; e)j � (s� t�)(� + ")the inequality ln j�(�(t�; e); s)jj�(t�; e)j � (s� t�)(� + ") < 0follows for all s 2 (t�; t] which yields the assertion.3 Analysis of the spectrumFor the de�nition and the analysis of a spectrum based on the �nite time exponentialgrowth rates we use the following projection, cp. [15, Appendix]:We project � to the projective bundle PE. This is given by PE = (E n Z)=� where � isthe equivalence relation de�ned by e � e0 i� �(e) = �(e0) and there exists � 2 Rn f0g suchthat e = �e0. The canonical projection map will be denoted by P and the linearity of theow � implies that its projection P� is well de�ned.The de�nition of �t implies that this growth rate is well de�ned for values Pe2 PE. Hencefor e 2 E n Z we can write �t(Pe) instead of �t(e). As a convention subsets of PE will beindicated by P.For compact invariant subsets of PE we can now de�ne a spectrum via the the �nite timeexponential growth rates.De�nition 3.1 Let PK � PE be a compact invariant set for P�. We de�ne the uniformexponential spectrum over PK by�UE(PK) := (� 2 R ����� there exist tk !1 and points Pek 2PKsuch that limk!1 �tk(ek) = � )



6 LARS GR�UNEIf we de�ne the limes superior of a family of sets (Bt)t2Rin the usual way (cp. [1, p. 21])by lim supt!1 Bt := \T�0 cl [t�T Bt (3.1)then the equality�UE(PK) = lim supt!1 �t(PK) with �t(PK) := f�t(Pe) jPe 2PKgis obvious. Hence the uniform exponential spectrum can be interpreted as a set valuedextension of the Lyapunov exponent.The following proposition states that the �nite time exponential growth rates for some�xed time T uniformly converge to �UE(PK). This shows that this spectrum \uniformly"describes the possible behavior of long term trajectories meaning that long term evaluationor simulation of trajectories of a ow will indeed yield a value close to this spectrumindependent from the initial value. In fact, this is the property which motivated the nameof this spectrum.Proposition 3.2 Let PK �PE be a compact invariant set for the ow P�. Then for any" > 0 there exists a time T > 0 such thatd(�t(Pe);�UE(PK)) < "for all Pe 2PK and all t � T .Proof: Fix " > 0 and assume the opposite: for any T > 0 there exists t > T andPet 2PK such that d(�t(Pet);�UE(PK)) � ". Since �t is bounded for all t > 1 there existsa sequence tk ! 1 such that �tk(Petk) ! � 62 �UE(PK) which contradicts the de�nitionof �UE(PK).We will now turn to the analysis of �UE(PK). On any connected compact invariant setPK �PE we can describe the structure of �UE(PK) by the following theorem. In contrastto the proof of these properties for the Morse spectrum in [5] here we use straightforwardanalytic arguments based on the estimates from the Lemmas 2.3 and 2.4.Theorem 3.3 Let PK �PE be a connected compact invariant set for the ow P�. Thenthere exist values �,  2 R such that�UE(PK) = [�; ]Furthermore there exist points Pe�;Pe 2PK such that�t(Pe�) � �; �t(Pe)�  for all t > 0 and limt!1�t(Pe�) = �; limt!1�t(Pe) = Proof: The closedness of �UE(PK) follows from its de�nition via limits. De�ne � :=min�UE(PK) and  := max�UE(PK). We �rst show the existence of Pe� and Pe. Theproof is carried out for Pe�, the existence of Pe is proved with the same arguments.



A UNIFORM EXPONENTIAL SPECTRUM 7By the de�nition of �UE(PK) we �nd a sequence of points Pek 2PK and times tk !1 ask !1 such that �tk(Pek) < �(PK)+"k where "k ! 0 for k !1. De�ning ~"k := 1ptk ! 0for k! 1 we apply Lemma 2.4 to ek and tk with " = ~"k for each k 2 N and obtain timest�k such that �s(P�(t�k; ek)) � �(PK) + "k + ~"kfor all s 2 (0; tk � t�k ] where tk � t�k � ptk2M . De�ning points P~ek := P�(t�k; ek) and times~tk := tk � t�k !1 as k !1 we obtain�s(P~ek) � �(PK) + "k + ~"kfor all s 2 (0; ~tk].SincePK is compact we may assume w.l.o.g. that the points P~ek converge to some P~e 2PK.Now �x arbitrary t > 0 and " > 0 and consider �t(P~e). Since �t is continuous we �nd k0 2 Nsuch that j�t(P~e)� �t(P~ek)j < " for all k � k0. Hence�t(P~e) < � + "k + ~"k + "follows for all k � k0. Since " > 0 was arbitrary and "k + ~"k ! 0 for k ! 1 we canconclude �t(P~e) � �which in particular implies lim supt!1 �t(P~e) � �.Now assume lim inf t!1 �t(P~e) < �. This implies the existence of a sequence tk such thatlimk!1 �tk(P~e) < � which contradicts the de�nition of �. Hence Pe� = P~e has the desiredproperties.It remains to show that �UE(PK) is an interval. For this purpose we will show that foreach � 2 [�; ] and each t > 0 there exists P~et 2PK such that �t(~et) = �:Fix � 2 [�; ] and t > 0. Then �t(Pe�) � � and �t(Pe) � �. Now since PK is connectedthere exists a continuous path P� : [0; 1] ! PK such that P�(0) = Pe� and P�(1) = Pe,thus �t(P�(0))� � and �t(P�(1))� �. Since �t is continuous for each t > 0 also �t(P�(�))is continuous and by the intermediate value theorem there exists an st 2 [0; 1] such that�t(P�(st)) = �. Hence the assertion follows for P~et = P�(st).Remark 3.4 Note that this proof also shows that for any t > 0 the inclusion�UE(PK) � f�t(Pe) jPe 2PKgholds.Remark 3.5 As already mentioned before for the Morse{ as well as for the dynamicalspectrum it is a well known fact that the boundary points are indeed Lyapunov exponents,cf. [5] and [11], respectively. These results can be reproduced using Theorem 3.3 as shownin Theorem 4.6 and Remark 4.8 in the following section. The proofs in [5] and [11],however, make use of arguments from ergodic theory which is avoided here. Furthermore,the possibility of chosing arbitrary invariant sets for the projected ow in our setup impliesthat the number of boundary points that can be obtained here is considerably larger thanin the other spectral concepts. Therefore our result can be considered as an extension ofthis previously known property.



8 LARS GR�UNEIn the rest of this section we will discuss the parameter dependence of the uniform expo-nential spectrum. For this purpose we introduce a family of ows parameterized by some� 2 A by a continuous mapping � : A� R�E ! E such that��(�; �) := �(�; �; �) : R� E ! E (3.2)is a linear ow for each � 2 A where A is a compact metric space. Analogously we denoteby ��;t and ��UE the corresponding exponential growth rates in �nite time and the uniformexponential spectra, respectively.Using this terminology the following theorem holds.Theorem 3.6 Consider a family (3.2) of linear ows ��. Let (�k)k2Nbe a sequence inA satisfying �k ! �0 for k ! 1 and some �0 2 A and assume that there exist compactconnected invariant sets PKk � PE for the ows P��k satisfying lim supk!1PKk � PK0Then lim supk!1 ��kUE(PKk) � ��0UE(PK0)i.e. the uniform exponential spectrum is upper semicontinuous. Here the limsup of sets isde�ned by (3.1).Proof: Choose �k; k, �0 and 0 such that��kUE(PKk) = [�k ; k] for all k 2 N and ��0UE(PK0) =: [�0 ; 0]Then by Theorem 3.3 there exist points Pe�k and Pek such that ��k;t(Pe�k) � �k and��k;t(Pek) � k for all t > 0. We may choose a subsequence kj !1 such that limj!1 �kj =lim infk!1 �k , limj!1 kj = lim infk!1 k, Pe�kj ! P~e�0 2 PK0 and Pekj ! P~e0 2 PK0.Continuous dependence for each �xed t > 0 yields��0;t(P~e�0) � lim infj!1 ��kj ;t(Pe�kj) � limj!1 �kjand ��0;t(P~e0) � lim supj!1 ��kj ;t(Pekj) � limj!1 kjimplying �0 � limj!1 �kj and 0 � limj!1 kjHence lim supk!1 ��kUE(PKki ) = [ limj!1 �kj ; limj!1 kj ] � [�0 ; 0] = ��0UE(PK0)which implies the assertion.4 Relation to other spectral conceptsHere we will describe the relation of �UE to the Lyapunov- and the Morse spectrum of�, see [5], and conclude some results about the relation to other spectral concepts. Forthe convenience of the reader we recall the de�nitions of the Lyapunov- and the Morsespectrum.



A UNIFORM EXPONENTIAL SPECTRUM 9De�nition 4.1 For any point e 2 E the Lyapunov exponent is de�ned by�(e) = �(Pe) := lim supt!1 �t(Pe)LetPK � PE be a compact invariant set for the projected ow P�. The Lyapunov spectrumoverPK is de�ned by �Ly(PK) := f�(Pe) jPe 2PKgDe�nition 4.2 For positive parameters "; T > 0 an ("; T )-chain � is given by a numbern 2 N, times T0; : : : ; Tn�1 � T and points Pe0; : : : ;Pen such thatd(P�(Ti;Pei);Pei+1) < " for all i = 0; : : : ; n� 1The (�nite time) exponential growth rate of a chain � is given by�(�) :=  n�1Xi=0 Ti!�1 n�1Xi=0 Ti�Ti(Pei)LetPK � PE be a compact invariant set for the projected ow P� such that P�jPK is chaintransitive. The Morse spectrum over PK is de�ned by�Mo(PK) := (� 2 R ����� there exist Tk ! 1; "k ! 0 and("k; Tk)-chains �k in PK such that limk!1 �(�k) = � )Remark 4.3 From the de�nition of �(�) for a chain � it immediately follows that thegrowth rate of a chain � cannot be smaller (or larger) that the minimum (or maximum)over the growth rates of the trajectory pieces in �.A reinterpretation of Theorem 3.3 shows the following relation between the Lyapunovspectrum and the uniform exponential spectrum.Theorem 4.4 Let PK � PE be a connected compact invariant set for the projected owP�. Then �Ly(PK) � �UE(PK)and there exist points Pe� and Pe 2PK such that�(Pe�) = min �UE(PK) and �(Pe) = max�UE(PK)For these points the Lyapunov exponents are actually limits.Proof: The inclusion follows immediately from the de�nition of the spectra. The existenceof Pe� and Pe has been proved in Theorem 3.3.



10 LARS GR�UNERemark 4.5 Note that it is easily seen that the strict inclusion �Ly(PK) � �UE(PK)may occur. A simple example for this case is given by a ow induced by a linear ordinarydi�erential equation _x = Ax on Rd with k � 2 di�erent Lyapunov exponents �1 < : : : < �k(which here coincide with the real parts of the eigenvalues of A). ChoosingPK = Pd�1, i.e.the whole real projective space, we obtain that�Ly(Pd�1) = f�1; : : : ; �kg 6= [�1; �k] = �UE(Pd�1):Next we show the relation to the Morse spectrum. Clearly, the value of �UE(PK) dependsin a strong way on the choice ofPK � PE. By choosing subsets on which the ow is chaintransitive we can show equivalence of the Morse spectrum and the uniform exponentialspectrum.Theorem 4.6 Let PK � PE be a compact invariant set for the projected ow P� suchthat P�jPK is chain transitive. Then�Mo(PK) = �UE(PK)Proof: Note that any �nite time trajectory is also a (trivial) chain with zero jumps, hence�UE(PK) � �Mo(PK) is immediately implied. Furthermore the closedness of �Mo(PK)follows from the de�nition via limits. Since �UE(PK) is an interval (note that the chaintransitivity implies the connectedness of PK), it remains to show that min �UE(PK) �min�Mo(PK) and max�UE(PK) � max�Mo(PK). We show the property for the mini-mum; the corresponding inequality for the maximum follows by the same arguments.Denote �� := min �Mo(PK) and Let �k be a sequence of ("k; Tk)-chains inPK with "k ! 0,Tk ! 1 and �(�k) ! �� as k ! 1. From the de�nition of �(�k) (cp. Remark 4.3)it follows that in each chain �k there exist a trajectory piece starting in Pek with timetk � Tk such that �tk(Pek) � �(�k). Hence there exists a subsequence tkn , ekn such thatlimn!1 �tkn (Pekn) � �� which yields the desired property.In particular this theorem states that the jumps in the chains do not contribute to thevalues in the Morse spectrum. However, in order to de�ne the Morse sets topologicallythey are nevertheless necessary. Using the equality from this theorem we are now able totransfer our results from the last section to the Morse spectrum.Corollary 4.7 Let PK � PE be a compact invariant set for the projected ow P� suchthat P� is chain transitive on PK.Then the Morse spectrum �Mo(PK) is a closed interval whose extremal points are actuallyLyapunov exponents for some points Pe� and Pe 2 PE. For these points the Lyapunovexponents are actually limits.



A UNIFORM EXPONENTIAL SPECTRUM 11Proof: Follows immediately from the theorems in this section.Apart from the fact that this yields an alternative proof for the properties of the Morsespectrum one can use this equality in order to de�ne a spectrum for � via the �nite timeexponential growth rates. By de�ning�UE(�) :=[(�UE(PK) ����� PK is a connected componentof the chain recurrent set of P� ) (4.1)we obtain a spectrum that is equivalent to the Morse spectrum but is de�ned using trajec-tory pieces instead of chains.Remark 4.8 By de�ning a spectrum this way the relation to the Oseledets, topologicaland dynamical (or dichotomy) spectrum as stated in [5] do hold as well for the uniformexponential spectrum.In particular [5, Inclusion (5.17)] implies that the boundary points of the dynamical spec-trum form a subset of the boundary points of the uniform exponential spectrum. Thisenables us to reproduce a result from [11] | namely that the boundary points of the dy-namical spectrum are Lyapunov exponents for the ow | by the direct analytic argumentsof Theorem 3.3.Acknowledgment: I would like to thank Fritz Colonius for many encouraging discussionswhich formed the foundation for the development of these results. Also, I would like tothank the anonymous referee who mentioned the relation to the paper of Johnson, Palmerand Sell [11].References[1] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkh�auser, Boston, 1990.[2] F. Colonius and W. Kliemann, Some aspects of control systems as dynamicalsystems, J. Dyn. Di�er. Equ., 5 (1993).[3] , Asymptotic null controllability of bilinear systems, in "Geometry in NonlinearControl and Di�erential Inclusions", B. Jakubczyk and W. Respondek, eds., BanachCenter Publications Vol. 32, Warsaw, 1995, pp. 139{148.[4] , The Lyapunov spectrum of families of time varying matrices, Trans. Amer.Math. Soc., 348 (1996), pp. 4389{4408.[5] , The Morse spectrum of linear ows on vector bundles, Trans. Amer. Math. Soc.,348 (1996), pp. 4355{4388.[6] , The Dynamics of Control, Birkh�auser, to appear.[7] W. Coppel, Dichotomies in Stability Theory, vol. 629 of Lecture Notes in Mathe-matics, Springer-Verlag, 1978.
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