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Abstract: For linear flows on vector bundles we define a uniform exponential spectrum. For a
compact invariant set for the projected flow we obtain this spectrum by taking all accumulation
points for the time tending to infinity of the union over the finite time exponential growth rates
for all initial values in this set. Using direct arguments we show that for a connected compact
invariant set this spectrum is a closed interval whose boundary points are Lyapunov exponents.
For a compact invariant set on which the flow is chain transitive we show that this spectrum
coincides with the Morse spectrum. In particular this approach admits a straightforward analytic
proof for the regularity and continuity properties of the Morse spectrum without using cohomology

or ergodicity results.
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1 Introduction

For linear flows @ : R x ¥ — F on vector bundles 7 : ¥ — S with compact base space S
several spectral concepts have been developed during the last decades. These can roughly
be divided into two classes: One using exponential growth rates and the other using topo-
logical characterizations of the flow projected onto the projective bundle.

The growth rate approach forms the basis of the exponential dichotomy theory (see for
instance Daleckii and Krein [8], Coppel [7], Sacker and Sell [14] and Sell [17]) and the
Oseledets spectrum [13], whereas the topological approach has been used e.g. by Selgrade
[16], Salamon and Zehnder [15].
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In this paper we introduce a spectral concept that lies somewhat in between these ap-
proaches. By its very definition the uniform exponential spectrum assigns a collection of
exponential growth rates to any compact connected invariant set for the projected flow:
We consider the set of all possible exponential growth rates in some finite time T' > 0 with
initial values in this set and define the spectrum to consist of all accumulation points as
T — oc.

The motivation for this spectral concept is to describe the possible exponential behavior
of long term trajectories of a flow: Whenever exponential growth rates are obtained by
long term observation or (numerical) simulation of trajectories, the observed values lie
close to the uniform exponential spectrum, cp. Proposition 3.2. Conversely, for any value
in this spectrum and any (arbitrary large) time ¢ > 0 there exists an initial value such
that this exponential growth rate is attained by the corresponding trajectory at the time
t, cp. Remark 3.4. Therefore the knowledge of this spectrum helps the interpretation of
experimental or simulation results and the derivation of convergence results as described

in [6].

One of the main results in this paper concerns the relation between the uniform exponential
spectrum spectrum and the Lyapunov spectrum (see e.g. [4]). Certain extremal values in
this spectrum have recently turned out to characterize null controllability and stabilizability
of certain control systems (cp. e.g. [3], [4], [9] and [10]), which can be embedded into
the linear flow context using the results from [2]. Although in general the Lyapunov
spectrum is smaller that the corresponding uniform exponential spectrum (cp. Remark 4.5),
it turns out that the boundary points of the uniform exponential spectrum are contained
in the Lyapunov spectrum. Hence a strong relation between these spectral concepts can
be established using the results in this paper.

As already mentioned the uniform exponential spectrum is defined for arbitrary compact
invariant sets. Hence in order to obtain a meaningful spectrum for the flow on the whole
state space we have to choose sets with certain topological properties. By a suitable choice
we obtain equivalence to the spectral concept defined by Colonius and Kliemann in [5].

There the connected components of the chain recurrent set of the projected flow over some
connected chain recurrent set in the base space are used in order to define a spectrum via the
growth rates of (finite time) chains that lie in these components. Since these components
correspond to a Morse decomposition — and therefore are Morse sets — this spectrum is
named Morse spectrum. Two essential properties of the Morse spectrum are proved in [5],
i.e. that its boundary points are actually Lyapunov exponents and that it consists of finitely
many bounded intervals. However, the proofs given there could only be achieved by a heavy
mathematical machinery, namely by the analysis of the Morse spectrum under cohomology
and by results from ergodic theory. Although these techniques provide interesting results
in itself (e.g. the integral expression of the growth rates and the relation to the Oseledets
spectrum for which ergodic theory is of course essential) they admit only an indirect proof;
a direct (or even constructive) proof of the properties of the Morse spectrum seemed to be
missing up to now.

The closure of this gap gives another motivation for our analysis. For the uniform exponen-
tial spectrum the properties mentioned can be shown by direct analytic arguments. Hence
this admits a new — and considerably shorter — approach for the proof of the properties
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of the Morse spectrum. In this context the proof rather than the final theorem can be
regarded as the main contribution of the present paper.

The property of the boundary points in fact carries over to the dynamical spectrum as
defined by Sacker and Sell (see e.g. [14]). Since the boundary points of the dynamical
spectrum form a subset of the boundary points of the Morse spectrum (cp. Remark 4.8)
the present result also gives a direct analytic proof for the fact that the boundary points
of the dynamical spectrum are indeed Lyapunov exponents which has first been shown by
Johnson, Palmer and Sell [11] using ergodic theory.

We will analyze the uniform exponential spectrum in three steps. We start with the defi-
nition of finite time exponential growth rates and prove some estimates along trajectories
in Section 2. The main results about the uniform exponential spectrum are contained in
Section 3, where we turn to the projected flow and use the projection in order to define this
spectrum over connected compact invariant sets of the projected flow. Using the estimates
from Section 2 we then prove the regularity properties for this spectrum and an estimate
about its parameter dependence. In Section 4 we will then use these results in order to
establish the relation of this spectrum to the Lyapunov and Morse spectrum.

2 Finite time exponential growth rates

We will briefly describe our setup that coincides with the one in [5].

We consider a linear flow ® on a vector bundle 7 : ¥ — S with base space S, which is a
compact, connected metric space. Here we use the definition of (real) vector bundles from
[12, Chapter ], i.e. 7 is a continuous surjective mapping such that the fibers F, := 771 (p),
p € S are d-dimensional real vector spaces and E is locally isomorphic to S x R?. We fix a
(Riemannian) metric on £ and on any fiber we denote the norm by |- |. The zero section
Z in F is given by a continuous map Z : S — I defined by Z(p) =0 € E,, i.e. |e]| =0 iff
e € 7.

A linear flow ® on 7 : I/ — S is a flow on IV preserving fibers such that the induced flow
(I)(t7 ')p : Ep — E7r(<I>(t,e)) is linear, i.e.

O(t,eg+ex) = P(t,e) +D(t,e2), tER, ey, e €F,, and
O(t,ae) = ad(te), teR, acR,eck,

We will now define exponential growth rates in finite time and in the rest of this section
prove some estimates for these quantities.

Definition 2.1 For any e € F and any time ¢ > 0 we define the finite time exponential

growth rate by

/\t(e) = %ln M

le]

Remark 2.2 By the compactness of the base space S and the continuity and linearity of
® there exists a constant M such that for all e € '\ Z the growth rates |\’(e)| are bounded
by M for all t > 1 and the fractions |In %| are bounded by M for all t < 1.
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The following lemmas show some useful properties of the finite time exponential growth
rates.

Lemma 2.3 Let ty, 3 > 0 and t :=t; +t3 > 2. Let ey, ea € F be arbitrary points. Then
the following estimates hold

1 Dt Dt t

‘_ (ln| (1761)|_|_1n| (2762)|)_/\t1(61) < oM

t |€1| |€2| t
and . o o

‘_ (ln | (t1761)| +1n | (t2762)|) — A\ (62) < QMt_l

t |€1| |€2| t

In particular for e; = € and e; = ®(t1, €) this implies

t t
X (e) — Al (e)] < sz and |[M(e) = A2 (D(ty,€))| < 2M71

Proof: For t; > 1 and t5 > 1 the estimates follow from the equality

1 (ln |P(t1,e1) i |P(t2, €2)|

t le1] €]

4 4
t ) = I er) + 2N (e2)

and the boundedness of A1 and A\%2.

For t; < 1 we obtain

1 <1n [ (t1, 1) i |‘I’(t27€2)|) _ Ly (et e 4 t_2/\t2(62)
4 |€1| |€2| 4 |€1| 4
and since 5 > 1 the estimates follow from the boundedness of A2 and In %
The case t; < 1 follows analogously. i

Lemma 2.4 Let e € F/,t > 2 and

o= \{(e)
Then for any € > 0 there exists a time t* < % such that

N(®(t"e)) <o+e¢

for all s € (0,t — t*]. Here t — t* > 57 — 00 as t — o0,

Proof: Let

g := sup A(e)
s€(0,1]

and fix € > 0. If § < o + ¢ the assertion follows with t* = 0.

Otherwise let
t" :=sup{s € (0,t] | A°(e) > o +¢c}
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By the continuity of A*(e) in s the equality
AN(e)=0+¢

is implied. By Lemma 2.3 it follows from A(e) = o that ¢t — t* = t, > 557 and hence

tr < (2]\24]\26)t. We claim that t* satisfies the desired property:

From the definition of ¢* and A® it follows that

1 P(t* 1 P
—IHM:O‘—I—eS and —1n| (S’e)|<a—|—€
t el s el
for all s € (¢*,t]. Hence also
P(t* P
ln%—t*(a—l—e)zo and ln%—s(a—l—e)<0
€ €
holds. Since
[@(s, )| [D(¢%, €)] [D(D(t",€), 9)|
In —s(lc4+e)=In—Z — " (c+e)+In —(s=t"(c+¢
A T I A T R
the inequality
|(D(t", ), )|
In——5+>-—(s—t")(oc+e) <0
LI
follows for all s € (¢*,¢] which yields the assertion. a

3 Analysis of the spectrum

For the definition and the analysis of a spectrum based on the finite time exponential
growth rates we use the following projection, cp. [15, Appendix]:

We project ® to the projective bundle PE. This is given by PE = (E'\ Z)/~ where ~ is
the equivalence relation defined by e ~ ¢’ iff w(e) = n(€’) and there exists a € R\ {0} such
that e = a¢’. The canonical projection map will be denoted by P and the linearity of the
flow ® implies that its projection P® is well defined.

The definition of A! implies that this growth rate is well defined for values Pe € PE. Hence
for e € E'\ Z we can write \'(Pe) instead of A'(e). As a convention subsets of PFE will be
indicated by p.

For compact invariant subsets of PE we can now define a spectrum via the the finite time
exponential growth rates.

Definition 3.1 Let p K C PF be a compact invariant set for P®. We define the uniform
exponential spectrum over pK by

Sup(pK) = {,u cR such that limg_yoo A5 (eg) = p

there exist t; — oo and points Peg € pIK }
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If we define the limes superior of a family of sets (B;);er in the usual way (cp. [1, p. 21])
by
limsup By := ﬂ cl U By (3.1)
f=oo T>0 >T

then the equality

Yup(EK) =limsup NX'(pK)  with A (pK) := {\'(Pe) |Pe € p K}
t—o00
is obvious. Hence the uniform exponential spectrum can be interpreted as a set valued
extension of the Lyapunov exponent.

The following proposition states that the finite time exponential growth rates for some
fixed time 7" uniformly converge to Xy g (pK). This shows that this spectrum “uniformly”
describes the possible behavior of long term trajectories meaning that long term evaluation
or simulation of trajectories of a flow will indeed yield a value close to this spectrum
independent from the initial value. In fact, this is the property which motivated the name
of this spectrum.

Proposition 3.2 Let p K C pF be a compact invariant set for the flow P®. Then for any
€ > 0 there exists a time T > 0 such that

d(/\t(]P)e)7 EUE(IPI()) <e

for all Pe € pK and all t > T.

Proof: Fix ¢ > 0 and assume the opposite: for any 7" > 0 there exists ¢t > T and
Pe; € pK such that d(A'(Pey), Spg(pK)) > €. Since A’ is bounded for all ¢ > 1 there exists
a sequence {; — oo such that A (Pe;,) — p € Ypg(pK) which contradicts the definition
of EUE(IPI()- D

We will now turn to the analysis of Xyg(pK). On any connected compact invariant set
pK C pF we can describe the structure of Xy g (pK) by the following theorem. In contrast
to the proof of these properties for the Morse spectrum in [5] here we use straightforward
analytic arguments based on the estimates from the Lemmas 2.3 and 2.4.

Theorem 3.3 Let s K C pF be a connected compact invariant set for the flow p®. Then
there exist values v*, v € R such that

Yue(EK) =[v7,7]
Furthermore there exist points Pe*, Pe € K such that

M(Pe*) < 4*, X(Pe) >~ for all ¢t >0 and 75li>m M(Pe*) =+, lim A (Pe) =y

t—00

Proof: The closedness of Yy (pK) follows from its definition via limits. Define v* :=
min Xy g(pK) and v := maxXpg(pK). We first show the existence of Pe* and Pe. The
proof is carried out for Pe*, the existence of Pe is proved with the same arguments.
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By the definition of Y5 (pK) we find a sequence of points Pey € pK and times ¢ — oo as
k — oo such that A (Pey) < v*(pK)+ex where e — 0 for k — oco. Defining & := \/Lt_k —0
for k — oo we apply Lemma 2.4 to e; and ¢ with ¢ = £ for each & € N and obtain times
t3 such that

A (PO(ths ex)) <77 (pK) + ek + &5

f~0r all s € (0, — t7] where t, — t7 > 2—\/]@ Defining points Péy, := P®(t}, ex) and times
ty ==t — 1} — 00 as k — oo we obtain

A (Peg) <77 (pK) + ek + €k
for all s € (0,1).

Since pK is compact we may assume w.l.o.g. that the points Pé; converge to some Pé € pK.
Now fix arbitrary ¢ > 0 and € > 0 and consider A'(Pé). Since A’ is continuous we find ko € N
such that [A*(Pe) — A'(Péy)| < ¢ for all k > ko. Hence

A (Pé) < v 4 e, +Ek+¢

follows for all & > kg. Since ¢ > 0 was arbitrary and e, + € — 0 for ¥ — oo we can
conclude

N(pé) < v
which in particular implies lim sup,_, ., A'(Pé) < v*.

Now assume lim inf;_, ., A'(P€) < v*. This implies the existence of a sequence ¢} such that
limg— oo A (P€) < v* which contradicts the definition of v*. Hence Pe* = Pé has the desired
properties.

It remains to show that Yy g(pK) is an interval. For this purpose we will show that for
each p € [v*,7] and each ¢ > 0 there exists Pé; € pK such that A'(é;) = w:

Fix p € [y*,7] and ¢ > 0. Then X (Pe*) < p and A'(Pe) > u. Now since pK is connected
there exists a continuous path Py : [0,1] — p/ such that Pn(0) = Pe* and Py(1l) = Pe,
thus A'(Pn(0)) < p and AY(Pn(1)) > p. Since X' is continuous for each ¢ > 0 also A*(Pn(-))
is continuous and by the intermediate value theorem there exists an s; € [0, 1] such that
A(Pn(s;)) = p. Hence the assertion follows for Pé; = Pn(sy). [

Remark 3.4 Note that this proof also shows that for any ¢ > 0 the inclusion
Sue(pK) C {N(Pe) |Pe € pK}

holds.

Remark 3.5 As already mentioned before for the Morse— as well as for the dynamical
spectrum it is a well known fact that the boundary points are indeed Lyapunov exponents,
cf. [5] and [11], respectively. These results can be reproduced using Theorem 3.3 as shown
in Theorem 4.6 and Remark 4.8 in the following section. The proofs in [5] and [11],
however, make use of arguments from ergodic theory which is avoided here. Furthermore,
the possibility of chosing arbitrary invariant sets for the projected flow in our setup implies
that the number of boundary points that can be obtained here is considerably larger than
in the other spectral concepts. Therefore our result can be considered as an extension of
this previously known property.
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In the rest of this section we will discuss the parameter dependence of the uniform expo-
nential spectrum. For this purpose we introduce a family of flows parameterized by some
« € A by a continuous mapping ¢ : A X R X ¥ — F such that

(-, ) =P(a, -, )i RX E = E (3.2)

is a linear flow for each & € A where A is a compact metric space. Analogously we denote
by A** and ¥¢ . the corresponding exponential growth rates in finite time and the uniform
exponential spectra, respectively.

Using this terminology the following theorem holds.

Theorem 3.6 Consider a family (3.2) of linear flows ®*. Let (ag)ren be a sequence in
A satisfying ap — o9 for k — oo and some ag € A and assume that there exist compact
connected invariant sets p/K;, C PE for the flows P®,, satisfying limsup,_, . ¢/ C pKo
Then

limsup 7% (p Ki) C Xp%(pKo)
k—o0

i.e. the uniform exponential spectrum is upper semicontinuous. Here the limsup of sets is

defined by (3.1).

Proof: Choose v}, vk, 75 and g such that
Yk (pKE) = [y, ve] for all k€ N and X7%(pKo) =: [75, 7o)

Then by Theorem 3.3 there exist points Pe; and Pej such that A%%%(Pey) < ~; and
Akt (Pey) > i forall t > 0. We may choose a subsequence k; — oo such that lim;_ 'ygj =
liminf o0 77, limjee Y, = liminfr_ oo Yk, ]P)ezj — Pé;y € pKp and Peg, — Péy € pKo.
Continuous dependence for each fixed ¢t > 0 yields

Aot (peg) < liminf A (Pef ) < lim 57

J—00 — j—oo
and
A0 Pep) > limsup A ’t(]P)ek]) > lim g,
j—o0 o0
implying
76 < lim vz and yo > lim
j—oo j—oo Y
Hence
lim sup S5 () = [lim 7, lim ] € [35,70] = S5 (¢ K0)
koo J—r0o0 J—roo
which implies the assertion. [l

4 Relation to other spectral concepts

Here we will describe the relation of Yyg to the Lyapunov- and the Morse spectrum of
®, see [5], and conclude some results about the relation to other spectral concepts. For
the convenience of the reader we recall the definitions of the Lyapunov- and the Morse
spectrum.
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Definition 4.1 For any point e € F the Lyapunov exponent is defined by

Ae) = A(Pe) := lim sup A (Pe)

t—00

Let p K C PFE be a compact invariant set for the projected flow P®. The Lyapunov spectrum
over pI is defined by

Sy (eK) = {\(Pe) | Pe € p K}

Definition 4.2 For positive parameters ¢, ' > 0 an (¢,7)-chain ¢ is given by a number
n € N, times Tg, ..., T,_1 > T and points Pey, ..., Pe, such that

d(PO(T1;, Pe;),Pe;yq) < e for all e=0,...,n—1

The (finite time) exponential growth rate of a chain ¢ is given by

1 n—1
Z TZ'/\Ti (]P)ei)
=0

A(Q) = (”Z—: Ti)

Let p K C PE be a compact invariant set for the projected flow P® such that P®| g is chain
transitive. The Morse spectrum over pK is defined by

&m@Ky:{ueR

there exist T — oo, £ — 0 and
(ek, Tx)-chains (i in pK such that limg_eo AM(Cx) = p

Remark 4.3 From the definition of A(¢) for a chain ¢ it immediately follows that the
growth rate of a chain ¢ cannot be smaller (or larger) that the minimum (or maximum)
over the growth rates of the trajectory pieces in (.

A reinterpretation of Theorem 3.3 shows the following relation between the Lyapunov
spectrum and the uniform exponential spectrum.

Theorem 4.4 Let p K C PF be a connected compact invariant set for the projected flow
P®. Then

Yy (eK) C Sup(pk)

and there exist points Pe* and Pe € pK such that
A(Pe®) = min Xpyg(pK) and A(Pe) = max Xpg(pK)

For these points the Lyapunov exponents are actually limits.

Proof: The inclusion follows immediately from the definition of the spectra. The existence
of Pe* and Pe has been proved in Theorem 3.3. i
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Remark 4.5 Note that it is easily seen that the strict inclusion X1, (pK) C Xyg(pk)
may occur. A simple example for this case is given by a flow induced by a linear ordinary
differential equation & = Az on R? with k& > 2 different Lyapunov exponents Ay < ... < A
(which here coincide with the real parts of the eigenvalues of A). Choosing pK = P41 i.e.
the whole real projective space, we obtain that

ELy(Pd_l) = {/\17 .. -7/\k} 75 [/\17 /\k] = EUE(EDd_l).

Next we show the relation to the Morse spectrum. Clearly, the value of X5 (pK') depends
in a strong way on the choice of p K’ C PFE. By choosing subsets on which the flow is chain
transitive we can show equivalence of the Morse spectrum and the uniform exponential
spectrum.

Theorem 4.6 Let p/ C PE be a compact invariant set for the projected flow P® such
that P®|,x is chain transitive. Then

Yumo(pK) = Sup(eK)

Proof: Note that any finite time trajectory is also a (trivial) chain with zero jumps, hence
Sue(pK) C Yp,(pK) is immediately implied. Furthermore the closedness of Xz, (pK)
follows from the definition via limits. Since Xy g(pf) is an interval (note that the chain
transitivity implies the connectedness of pK), it remains to show that min Xyg(pK) <
min Xpz,(pK) and max Xpyg(pK) > maxXp,(pK). We show the property for the mini-
mum; the corresponding inequality for the maximum follows by the same arguments.

Denote £* := min Xy, (pK) and Let (i be a sequence of (gg, T)-chains in p K with e, — 0,
Ty — oo and A(Cxy) — k™ as k — oo. From the definition of A(Cx) (cp. Remark 4.3)
it follows that in each chain (; there exist a trajectory piece starting in Pej with time
tr, > Ty such that A (Per) < A((r). Hence there exists a subsequence t,, ex, such that
lim,,_y oo A™n (Peg, ) < x* which yields the desired property. [l

In particular this theorem states that the jumps in the chains do not contribute to the
values in the Morse spectrum. However, in order to define the Morse sets topologically
they are nevertheless necessary. Using the equality from this theorem we are now able to
transfer our results from the last section to the Morse spectrum.

Corollary 4.7 Let p X' C PF be a compact invariant set for the projected flow P® such
that P® is chain transitive on pK.

Then the Morse spectrum s, (pK) is a closed interval whose extremal points are actually
Lyapunov exponents for some points Pe* and Pe € pF. For these points the Lyapunov
exponents are actually limits.
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Proof: Follows immediately from the theorems in this section. a

Apart from the fact that this yields an alternative proof for the properties of the Morse
spectrum one can use this equality in order to define a spectrum for ® via the finite time
exponential growth rates. By defining

of the chain recurrent set of P® (4.1)

EUE((I)) = U {EUE(IPI() ‘

K is a connected component }

we obtain a spectrum that is equivalent to the Morse spectrum but is defined using trajec-
tory pieces instead of chains.

Remark 4.8 By defining a spectrum this way the relation to the Oseledets, topological
and dynamical (or dichotomy) spectrum as stated in [5] do hold as well for the uniform
exponential spectrum.

In particular [5, Inclusion (5.17)] implies that the boundary points of the dynamical spec-
trum form a subset of the boundary points of the uniform exponential spectrum. This
enables us to reproduce a result from [11] — namely that the boundary points of the dy-
namical spectrum are Lyapunov exponents for the flow — by the direct analytic arguments
of Theorem 3.3.
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