
On the equivalence between asymptotic and exponentialstability, and between ISS and �nite H1 gainLars Gr�uneFachbereich MathematikJ.W. Goethe-Universit�atPostfach 11 19 3260054 Frankfurt a.M., Germanygruene@math.uni-frankfurt.de Eduardo D. SontagDepartment of MathematicsRutgers UniversityNew Brunswick, NJ 08903, USA,sontag@control.rutgers.eduFabian WirthZentrum f�ur TechnomathematikUniversit�at Bremen28334 Bremen, Germanyfabian@math.uni-bremen.deAbstract: We show that uniformly global asymptotic sta-bility and input-to-state stability for a family of ordinarydi�erential equations are equivalent to uniformly global ex-ponential stability and a nonlinear H1 estimate, respec-tively, under suitable nonlinear changes of variables.1 IntroductionWhen dealing with stability properties of di�erentialequations and nonlinear control systems, the notion ofasymptotic stability as introduced by Lyapunov is oneof the fundamental concepts. For linear systems it iseasily veri�ed to be equivalent to the property of ex-ponential stability, which requires decay estimates ofthe type \kx(t)k � ce��t kx(0)k." Usually motivatedby linearization techniques, exponential stability is of-ten also used for nonlinear systems, although it is wellknown that the equivalence from the linear case is nolonger valid here. (See for instance [15] for detaileddiscussions of the comparative roles of asymptotic andexponential stability in control theory.)In this paper we want to investigate the behaviour ofthose stability concepts under nonlinear changes of co-ordinates. Of course, in order to get nontrivial resultsone must de�ne \coordinate change" with care, sinceunder di�eomorphisms the character of the lineariza-tion at the equilibrium (which we take to be the origin)is invariant. However, if, in the spirit of both structuralstability and the classical Hartman-Grobman Theoremwe relax the requirement that the change of variables besmooth at the origin, more interesting things may hap-pen. Thus, we ask that transformations be in�nitelydi�erentiable except possibly at the origin, where theyare just continuously di�erentiable. Their respective

inverses are continuous globally, and in�nitely di�eren-tiable away from the origin.Applying such a change of coordinates to an exponen-tially stable system the exponential stability may belost, although asymptotic stability persists. On theother hand, with this notion of changes of coordinatesit is in fact true that all asymptotically stable linearsystems can be transformed to _x = �x; see e.g. [1].The basic idea of the proof in [1] is based upon projec-tions on the level sets of Lyapunov functions, which inthe linear case can of course be taken to be quadratic(and hence have ellipsoids as level sets). It is naturalto use these ideas also in the general nonlinear case,and Wilson's paper [31], often cited in control theory,remarked that level sets of Lyapunov functions are al-ways homotopically equivalent to spheres. Indeed, itis possible to obtain, in great generality, a change ofcoordinates rendering the system exponentially stable,and several partial versions of this fact have appearedin the literature, especially in the context of general-ized notions of homogeneity for nonlinear systems; seefor instance [4, 21, 14, 23, 20].In this paper, we show that for all di�erential equationsevolving in �nite-dimensional Euclidean spaces Rn (atleast in spaces of dimensions 6= 4; 5) asymptotic stabil-ity in the sense of Lyapunov and exponential stabilityare one and the same under coordinate changes.It is perhaps surprising that, at least for unperturbedsystems, this full result seems not to have been ob-served before, as the proof is a fairly easy applicationof results from di�erential topology. (Those results arenontrivial, and are related to the generalized Poincar�econjecture and cobordism theory; in fact, the reason



that we only make an assertion for 6= 4; 5 is closely re-lated to the fact that the original Poincar�e conjectureis still open.)Note, however, that it has been common practice inthe papers treating the nonlinear case to use the owgenerated by the original system to de�ne a change ofcoordinates transforming the system to _x = �x (beingexponentially stable), thereby reducing the regularityof the transformation to that of the system. Here weuse the ow generated by the (normalized) Lyapunovfunction itself, which yields more regular transforma-tions. In addition, and most importantly, our proofalso allows for the treatment of perturbed systems forwhich the reduction to _x = �x makes no sense. (Note,however, that this reduction is possible for all backwardcomplete unperturbed systems, cf. [8]).In particular, our result con�rms that Lyapunov's no-tion is the appropriate generalization of exponentialstability to nonlinear di�erential equations. For sys-tems with inputs, the notion of input to state stabil-ity (ISS) introduced in [25] and developed further in[3, 7, 12, 13, 16, 17, 22, 24, 27, 28] and other references,has been proposed as a nonlinear generalization of therequirement of �nite L2 gain or, as often also termedbecause of the spectral characterizations valid for lin-ear systems, \�nite nonlinear H1 gain" (for which seee.g. [2, 10, 11, 29]).We also show in this paper that|in the same senseas asymptotic stability equals exponential stability|the two properties (ISS and �nite H1 gain) coincideunder coordinate changes now in both state and inputvariables (again, assuming dimension 6= 4; 5).2 SetupWe consider the family of di�erential equations_x(t) = f(x(t); d(t)) (2.1)where f : Rn � D ! Rn is continuous and for x 6= 0locally Lipschitz continuous in x, where the local Lip-schitz constants can be chosen uniformly in d 2 D �Rm. Let D denote the set of measurable, locally essen-tially bounded functions fromR toD. For any x0 2 Rnand any d(�) 2 D, there exists at least one maximal so-lution of (2.1) for t � 0, with x(0) = x0. By abuseof notation, we denote any such solution, even if notunique, as �(t; x0; d(�)), t 2 I(x; d(�)), where I(x; d(�))is its existence interval. Throughout the paper, k�k de-notes the usual Euclidean norm, and \smooth" meansC1. For a di�erentiable function V : Rn ! R theexpression LfdV (x) denotes the directional derivativeDV (x)f(x; d).The general framework a�orded by the model (2.1)

allows us to treat simultaneously classical di�erentialequations (the case when D = f0g) and more gener-ally robust stability of di�erential equations subject toperturbations (when functions in D are seen as distur-bances which do not change the equilibrium, as in pa-rameter uncertainty), as well as systems with inputs inwhich elements of D are seen as exogenous tracking orregulation signals, or as actuator errors (in which case,the continuity properties of (x; d) 7! �(�; x; d) are of in-terest). In light of these applications, we now describethe appropriate stability concepts.For the �rst, assume that D is compact and thatf(0; d) = 0 for all d 2 D. Then we say that thezero state is uniformly globally asymptotically stable(UGAS) if there exists a class KL function � such that,for each d(�) 2 D, every maximal solution is de�ned forall t � 0 and k�(t; x; d(�))k � �(kxk; t) (2.2)for all t � 0. As usual, we call a function � :[0;1)! [0;1) of class K, if it satis�es �(0) = 0 andis continuous and strictly increasing (and class K1 ifit is unbounded), and we call a continuous function� : [0;1)2 ! [0;1) of class KL, if it is decreasingto zero in the second and of class K in the �rst argu-ment. (It is an easy exercise, cf. e.g. [18], to verify thatthis de�nition is equivalent to the requirements of uni-form stability and uniform attraction stated in \"� �"terms.) Note that while our general assumptions on theright hand side f do not guarantee uniqueness of so-lutions through zero, the added assumption of asymp-totic stability implies that �(t; 0; d) � 0 is the uniquesolution with initial condition x = 0, for all d 2 D. Asa consequence, since away from zero we have a localLipschitz condition, solutions are unique for each giveninitial state and d 2 D.If the origin is no common �xed point for all valuesd 2 D then (2.2) is impossible. In this case, however,still a useful notion of stability is possible. We callthe system (2.1) (globally) input-to-state stable (ISS),if there exists a class KL function � and a class K1function � such that all solutions of (2.1) satisfyk�(t; x; d(�))k � �(kxk; t) + �( sup0���tkd(� )k) (2.3)for all d(�) 2 D and all t � 0. Formulation (2.3) isthe most frequently used characterization of the ISSproperty. Note that with ~� = 2� and ~� = 2� inequality(2.3) immediately impliesk�(t; x; d(�))k � max�~�(kxk; t); ~�( sup0���t kd(� )k)� ;hence this \max" formulation can be used as an equiv-alent characterization.



Two apparently stronger formulations of these proper-ties are obtained if we replace �(kxk; t) by ce��tkxk,more precisely we call the zero position of (2.1) uni-formly globally exponentially stable (UGES), if thereexist constants c � 1; � > 0 such thatk�(t; x; d(�))k � ce��tkxk (2.4)holds for all d(�) 2 D and all t � 0, and we call the sys-tem input-to-state exponentially stable (ISES), if thereexist a class K1 function � and constants c � 1; � > 0such thatk�(t; x; d(�))k � max�ce��tkxk; �( sup0���tkd(� )k)�(2.5)for all d(�) 2 D and all t � 0. (As usual, these de-�nitions use appropriate constants c; � > 0. In thispaper, however, we will see that we can always workwith \normalized" versions choosing c = 1; � = 1. Forthe (ISES) property we use the \max" formulation be-cause it allows a further implication as stated in The-orem 5, below. Observe that (2.5) implies (2.3) with�(kxk; t) = ce��tkxk.)Extending the concepts in [1, p. 207] to our nonlinearsetting, we will call a homeomorphismT : Rn! Rna change of variables if T (0) = 0, T is C1 on Rn, andT is di�eomorphism on Rn n f0g (i.e., the restrictionsof T and of T�1 to Rn n f0g are both smooth). Givena change of variables T and a system (2.1), we mayconsider the transformed system_y(t) = ~f (y(t); d(t)) ; (2.6)where, by de�nition,~f(y; d) = DT (T�1(y))f(T�1(y); d) :In other words, system (2.6) is obtained from theoriginal system by means of the change of variablesy = T (x). Observe that the new system again satis�esthe general requirements: ~f (y; d) is continuous, and itis locally Lipschitz on x for x 6= 0, uniformly on d.It is our aim to show that for dimensions n 6= 4; 5 thefollowing assertions are true. Given a system of theform (2.1) satisfying (2.2) or (2.3), respectively, thereexists a transformed system that satis�es (2.4) or (2.5),respectively. In this sense, global asymptotic stabilityis equivalent to global exponential stability under non-linear changes of coordinates. Furthermore, one mayobtain transformed systems where the constants de�n-ing the exponential stability property can be chosen tobe the special values c = � = 1.Furthermore we show that if system (2.1) is ISES (2.5)with c = � = 1 then there exists a homeomorphism

R : Rm! Rm on the input space with R(0) = 0 that isa di�eomorphismonRmnf0g such that the transformedsystem with v = R(d)_y(t) = �f (x(t); v(t)); �f (x; v) = f(x;R�1(v)) (2.7)satis�es the following \L2 to L2" nonlinear H1 esti-mate:Z t0 k�(s; x; v(�))k2ds � kxk2 + Z t0 kv(s)k2ds: (2.8)Since (2.8) in turn implies ISS (by [26, Theorem 1]), weobtain equivalence between ISS and the nonlinear H1estimate (2.8) up to nonlinear changes of coordinates.Remark 2.1 Since we are not requiring that the in-verse of a change of variables be itself a change of vari-ables (because one may, and in fact does in our con-structions, have DT (0) = 0, in which case T�1 is notdi�erentiable at the origin), the way to de�ne a notionof \equivalence" is by taking the transitive and sym-metric closure of the relation given by such changesof variables. That is, we could say that system (2.1)is equivalent to a system (2.6) if there exist k 2 Nand maps f0 = f; f1; : : : ; fk = ~f : Rn � D ! Rn,all satisfying the assumptions on f , with the follow-ing properties: For each i = 0; : : : ; k � 1 there existsa change of variables T as above such that fl(y; d) =DT (T�1(y))fm(T�1(y); d), where l = i;m = i + 1 orl = i+ 1;m = i.3 Construction of the coordinatetransformationThe main tool for our construction of T is the use ofan appropriate Lyapunov function V . In fact, we canobtain T for a whole class of functions as stated in thefollowing proposition. Recall that a function V : Rn!R is called positive de�nite if V (0) = 0 and V (x) > 0for all x 6= 0, and proper if the set fx jV (x) � �g isbounded for each � � 0.The next result says that, given some class K1 func-tion , any such function may look like (kxk) under acoordinate change. This implies in particular that thelevel sets under coordinate change are spheres. It maytherefore not come as a surprise that a basic ingredientof the proof is related to the question of whether levelsets of Lyapunov functions in Rn are di�eomorphic tothe sphere Sn�1. This question is solved except forthe two special cases of dimensions n = 4 and n = 5,though in the case n = 5 it is at least known that thestatement is true if only homeomorphisms are required.(For the case n = 4 this question is equivalent to thePoincar�e conjecture; see [31].)



Proposition 3.1 Let n 6= 4; 5 and let V : Rn ! Rbe a proper, positive de�nite C1 function. Assume fur-thermore that V is smooth on Rn n f0g with nonva-nishing gradient. Then for each class K1 function which is smooth on (0;1) there exists a homeomor-phism T : Rn! Rn with T (0) = 0 such that~V (y) := V (T�1(y)) = (kyk) :T can be chosen to be a di�eomorphism on Rn n f0g,and, in particular, there exists a class K1 function which is smooth on (0;1) and satis�es (s)=0(s) � ssuch that T is C1 with DT (0) = 0.Proof: For the function V the right hand side of thenormed gradient ow_x = rV (x)0krV (x)k2is well de�ned and smooth for x 6= 0. Denote the so-lutions by  (t; x). Then V ( (t; x)) = V (x) + t, andthus since V is proper and rV (x) 6= 0 for x 6= 0 fora given initial value x 2 Rn  is well de�ned for allt 2 (�V (x);1), thus also smooth (see e.g. [9, Corol-lary 4.1]).Fix c > 0. We de�ne a map � : Rn n f0g ! V �1(c) by�(x) =  (c� V (x); x) :Obviously � is smooth, and since the gradient owcrosses each level set V �1(a); a > 0 exactly once itinduces a di�eomorphism between each two level setsof V , which are C1 manifolds due to the fact thatV is smooth away from the origin with nonvanishinggradient.Now observe that the properties of V imply thatV �1(c) is a homotopy sphere (cf. also [31, Discussionafter Theorem 1.1]), which implies that V �1(c) is dif-feomorphic to Sn�1 for n = 1; 2; 3 (see e.g. [5]) andfor n � 6 (by [19, x9, Proposition A]). Thus for alldimensions n 6= 4; 5 we may choose a di�eomorphismS : V �1(c) ! Sn�1. (By [6] we could choose S to beat least a homeomorphism in the case n = 5.)Let Q := S � �. The coordinate transformation T isnow given by T (0) = 0 andT (x) = �1(V (x))Q(x) ; x 6= 0 :An easy computation veri�es that T�1(0) = 0 andT�1(y) =  �(y) � c; S�1� ykyk�� ; y 6= 0 ;hence T is a di�eomorphism on Rn n f0g (resp. ahomeomorphism if n = 5). Since V (0) = 0, and

 (t; S�1(y=kyk)) ! 0 as t & �c, both T and T�1are homeomorphisms.Finally, we have thatV (T�1(y)) = V � �(kyk) � c; S�1� ykyk���= (kyk)which �nishes the proof of the �rst assertion.For the second assertion de�neL(s) := supV (x)=s kDQ(x)kand choose any class K function a which is C1 andsatis�es a(s) � sL(s) for all s 2 (0; 1] :Then the function h given byh(r) = Z r0 a(s)dsis smooth and of class K1, and by straightforward com-putations (see [8]) the desired properties are veri�edsetting  := h�1. 4 Main ResultsUsing the coordinate transformation T we can nowprove our main results.Theorem 4.1 Let n 6= 4; 5 and consider any system(2.1) on Rn which is UGAS (2.2). We suppose thatthe set D � Rm is compact. Then, (2.1) can be trans-formed into a system (2.6) that is UGES (2.4).In particular, the constants in (2.4) can be chosen tobe c = 1; � = 1.Proof: Under our assumptions, by [18, Theorem 2.9,Remark 4.1]1 there exists a smooth function V : Rn!R for (2.1) such thatLfdV (x) � ��1(kxk) (4.9)for some class K1 function �1. Furthermore, thereexist class K1 functions �2; �3 such that�2(kxk) � V (x) � �3(kxk) : (4.10)1To be precise, the results in that reference make as a blanketassumption the hypothesis that f is locally Lipschitz, not merelycontinuous, at x = 0. However, as noted in e.g. [30], the Lipschitzcondition at the origin is not used in the proofs.



Now let �4 be a C1 function of class K1 which issmooth on (0;1) and satis�es �04(0) = 0, such that�4(a) � minfa; �1 � ��13 (a)g for all a � 0.Such a function can be obtained e.g. by a slight modi-�cation of the construction in [22, Proof of Lemma 11],see [8] for an explicit construction. Thus we obtainLfdV (x) � ��4(V (x)): (4.11)Now de�ne�(a) := exp�� Z 1a �4(� )�1d�� for a > 0; �(0) := 0Obviously � is smooth on (0;1); furthermore � is ofclass K1 and by [22, Lemma 12] � is a C1 function on[0;1) with �0(0) = 0. Thus de�ningW (x) := �(V (x))we obtain a C1 Lyapunov function, which is smooth onRn n f0g, for which an easy calculation shows thatLfdW (x) � �W (x):Applying Proposition 3.1 to W , using the class K1function  with (s)=0(s) � s we obtain for each d 2 Dand y 6= 0h ~f (y; d); yi = kyk0(kyk)L ~fd ~W (y) � �kyk2 :Clearly the overall inequality also holds for y = 0 sothat we obtainddtky(t)k2 = 2h ~f(y(t); d(t)); y(t)i � �2ky(t)k2and hence ky(t)k2 � e�2tky(0)k2, i.e. the desired expo-nential estimate.Theorem 4.2 Let n 6= 4; 5 and suppose that the sys-tem (2.1) on Rn is ISS (2.3) with some class K1 func-tion � and some class KL function �. Then (2.1) is canbe transformed into a system (2.6) that is ISES (2.5)with constants c = � = 1.Proof: By [27, Theorem 1]2 there exists a C1 func-tion V which is smooth on Rn n f0g and a class K1function � such thatkxk > �(kdk) ) LfdV (x) � ��1(kxk)for some class K1 function �1. Furthermore, thereexist class K1 functions �2; �3 such that�2(kxk) � V (x) � �3(kxk) :2As with the UGAS proof, it is easy to verify that the as-sumption that the right-hand side is Lipschitz at zero is neveractually used in [27]. The possible non-uniqueness of trajectoriesdoes not a�ect the argument used in Lemma 2.12 in that paper,which reduces the problem to one of UGAS.

As in the proof of Theorem 4.1 we �nd a function �which is class K1, C1, and smooth on Rn n f0g, suchthat W = � � V satis�eskxk > �(kdk) ) LfdW (x) � �W (x) :Now Proposition 3.1 yields a parameter transforma-tion T such that ~W (y) = W (T�1(y)) = (kyk) and(s)=0(s) � s.Now choose a class K1 function � such thatkT�1(y)k � �(kyk) and de�ne ~� = ��1 � �. Then astraightforward calculation yieldskyk > ~�(kdk) ) L ~fd ~W (y) � � ~W (y): (4.12)Similar to the proof of Theorem 4.1 this impliesk~�(t; y; d(�))k � e�tkykas long as k~�(t; y; d(�))k > ~�(sup0���t kd(� )k) whichyields the desired estimate.Theorem 4.3 Consider the system (2.1) on Rn be-ing ISES (2.5) with some class K1 function � andc = � = 1. Then there exists a homeomorphismR : Rm ! Rm on the input space with R(0) = 0,that is a di�eomorphism on Rmnf0g, such that the thetransformed system (2.7) satis�es the nonlinearH1 es-timate (2.8).Proof: Consider the function W (x) = kxk2. From(2.5) with c = � = 1 it is immediate that for anyd(�) 2 D, any x 2 Rn, and any T > 0 we havekxk � eT�( sup0���T kd(� )k)) W (�(t; x; d(�)))� e�2tW (x) for all t 2 [0; T ] :In particular this estimate is valid for constant func-tions d(�) � d 2 D, thus the mean value theorem (ob-serve W (�(0; x; d)) = W (x) = e�0W (x)) yieldskxk � �(kdk) ) LfdW (x) � �2W (x) � �W (x) :Now de�ning~�(r) = supkxk��(r);kdk�rhf(x; d); xiwe obtain a class K1 function ~� withLfdW (x) � �W (x) + ~�(kdk):Without loss of generality (one could take a larger ~�),we may assume ~� to be smooth on (0;1), and thusR(d) := ~�(kdk)2dkdkhas the regularity properties as stated in the assertion.Now the transformation (2.7) yieldsL �fvW (x) � �W (x) + kvk2:Integrating this equation along a trajectory x(�) givesthe desired estimate (2.8).
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