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Abstract: We show that uniformly global asymptotic sta-
bility and input-to-state stability for a family of ordinary
differential equations are equivalent to uniformly global ex-
ponential stability and a nonlinear H., estimate, respec-
tively, under suitable nonlinear changes of variables.

1 Imtroduction

When dealing with stability properties of differential
equations and nonlinear control systems, the notion of
asymptotic stability as introduced by Lyapunov is one
of the fundamental concepts. For linear systems it is
easily verified to be equivalent to the property of ez-
ponential stability, which requires decay estimates of
the type “||z(t)]| < ee=*|[z(0)]|.” Usually motivated
by linearization techniques, exponential stability is of-
ten also used for nonlinear systems, although it is well
known that the equivalence from the linear case is no
longer valid here. (See for instance [15] for detailed
discussions of the comparative roles of asymptotic and
exponential stability in control theory.)

In this paper we want to investigate the behaviour of
those stability concepts under nonlinear changes of co-
ordinates. Of course, in order to get nontrivial results
one must define “coordinate change” with care, since
under diffeomorphisms the character of the lineariza-
tion at the equilibrium (which we take to be the origin)
is invariant. However, if, in the spirit of both structural
stability and the classical Hartman-Grobman Theorem
we relax the requirement that the change of variables be
smooth at the origin, more interesting things may hap-
pen. Thus, we ask that transformations be infinitely
differentiable except possibly at the origin, where they
are just continuously differentiable. Their respective

inverses are continuous globally, and infinitely differen-
tiable away from the origin.

Applying such a change of coordinates to an exponen-
tially stable system the exponential stability may be
lost, although asymptotic stability persists. On the
other hand, with this notion of changes of coordinates
it is in fact true that all asymptotically stable linear
systems can be transformed to & = —z; see e.g. [1].
The basic idea of the proof in [1] is based upon projec-
tions on the level sets of Lyapunov functions, which in
the linear case can of course be taken to be quadratic
(and hence have ellipsoids as level sets). Tt is natural
to use these ideas also in the general nonlinear case,
and Wilson’s paper [31], often cited in control theory,
remarked that level sets of Lyapunov functions are al-
ways homotopically equivalent to spheres. Indeed, it
is possible to obtain, in great generality, a change of
coordinates rendering the system exponentially stable,
and several partial versions of this fact have appeared
in the literature, especially in the context of general-
ized notions of homogeneity for nonlinear systems; see
for instance [4, 21, 14, 23, 20].

In this paper, we show that for all differential equations
evolving in finite-dimensional Euclidean spaces R" (at
least in spaces of dimensions # 4, 5) asymptotic stabil-
ity in the sense of Lyapunov and exponential stability
are one and the same under coordinate changes.

It is perhaps surprising that, at least for unperturbed
systems, this full result seems not to have been ob-
served before, as the proof is a fairly easy application
of results from differential topology. (Those results are
nontrivial, and are related to the generalized Poincaré
conjecture and cobordism theory; in fact, the reason



that we only make an assertion for # 4,5 is closely re-
lated to the fact that the original Poincaré conjecture
is still open.)

Note, however, that it has been common practice in
the papers treating the nonlinear case to use the flow
generated by the original system to define a change of
coordinates transforming the system to # = —z (being
exponentially stable), thereby reducing the regularity
of the transformation to that of the system. Here we
use the flow generated by the (normalized) Lyapunov
function itself, which yields more regular transforma-
tions. In addition, and most importantly, our proof
also allows for the treatment of perturbed systems for
which the reduction to # = —x makes no sense. (Note,
however, that this reduction is possible for all backward
complete unperturbed systems, cf. [8]).

In particular, our result confirms that Lyapunov’s no-
tion is the appropriate generalization of exponential
stability to nonlinear differential equations. For sys-
tems with inputs, the notion of input to state stabil-
ity (1S5) introduced in [25] and developed further in
[3,7,12, 13,16, 17, 22, 24, 27, 28] and other references,
has been proposed as a nonlinear generalization of the
requirement of finite £? gain or, as often also termed
because of the spectral characterizations valid for lin-
ear systems, “finite nonlinear > gain” (for which see

e.g. [2, 10, 11, 29]).

We also show in this paper that—in the same sense
as asymptotic stability equals exponential stability—
the two properties (ISS and finite H* gain) coincide
under coordinate changes now in both state and input
variables (again, assuming dimension # 4, 5).

2 Setup

We consider the family of differential equations

(t) = f(e(t),d(1)) (2.1)

where f: R”® x D — R” is continuous and for z # 0
locally Lipschitz continuous in x, where the local Lip-
schitz constants can be chosen uniformly in d € D C
R™. Let D denote the set of measurable, locally essen-
tially bounded functions from R to D. For any 9 € R"
and any d(-) € D, there exists at least one maximal so-
lution of (2.1) for ¢t > 0, with #(0) = xy. By abuse
of notation, we denote any such solution, even if not
unique, as ¢(t, g, d(+)), t € I(z,d(:)), where I(x,d(-))
is its existence interval. Throughout the paper, ||-|| de-
notes the usual Euclidean norm, and “smooth” means
C*. For a differentiable function V : R” — R the
expression Ly, V(x) denotes the directional derivative

DV (z)f(x, d).

The general framework afforded by the model (2.1)

allows us to treat simultaneously classical differential
equations (the case when D = {0}) and more gener-
ally robust stability of differential equations subject to
perturbations (when functions in D are seen as distur-
bances which do not change the equilibrium, as in pa-
rameter uncertainty), as well as systems with inputs in
which elements of D are seen as exogenous tracking or
regulation signals, or as actuator errors (in which case,
the continuity properties of (z,d) — ¢(-, 2, d) are of in-
terest). In light of these applications, we now describe
the appropriate stability concepts.

For the first, assume that DD is compact and that
f(0,d) = 0 for all d € D. Then we say that the
zero state i1s uniformly globally asymptotically stable
(UGAS) if there exists a class KL function /4 such that,
for each d(-) € D, every maximal solution is defined for
all t > 0 and

ot z, d()I < Bzl 1) (2.2)

for all ¢ > 0. As usual, we call a function o
[0,00) = [0,00) of class K, if it satisfies «(0) = 0 and
is continuous and strictly increasing (and class Ko, if
it is unbounded), and we call a continuous function
B :[0,00)% = [0,00) of class KL, if it is decreasing
to zero in the second and of class K in the first argu-
ment. (It is an easy exercise, cf. e.g. [18], to verify that
this definition is equivalent to the requirements of uni-
form stability and uniform attraction stated in “c — §”
terms.) Note that while our general assumptions on the
right hand side f do not guarantee uniqueness of so-
lutions through zero, the added assumption of asymp-
totic stability implies that ¢(¢,0,d) = 0 is the unique
solution with initial condition z = 0, for all d € D. As
a consequence, since away from zero we have a local
Lipschitz condition, solutions are unique for each given
initial state and d € D.

If the origin is no common fixed point for all values
d € D then (2.2) is impossible. In this case, however,
still a useful notion of stability is possible. We call
the system (2.1) (globally) input-to-state stable (ISS),
if there exists a class KL function § and a class K
function « such that all solutions of (2.1) satisfy

lott. 2. ()l < Al )+ o sup 4 (23)

for all d(-) € D and all ¢t > 0. Formulation (2.3) is
the most frequently used characterization of the ISS
property. Note that with # = 23 and & = 2a inequality
(2.3) immediately implies

60,2, d()] < max{ el 0, 6 sup ()

hence this “max” formulation can be used as an equiv-
alent characterization.



Two apparently stronger formulations of these proper-
ties are obtained if we replace §(||z|[,t) by ce™*||z]|,
more precisely we call the zero position of (2.1) uni-
formly globally exponentially stable (UGES), if there
exist constants ¢ > 1, A > 0 such that

(2,2, d())]] < ce™ ||| (2.4)

holds for all d(-) € D and all t > 0, and we call the sys-
tem input-to-state exponentially stable (ISES), if there
exist a class Ko function o and constants ¢ > 1, A > 0
such that

ot A < ma {ee™ o], of sup (-

(2.5)
for all d(-) € D and all ¢ > 0. (As usual, these de-
finitions use appropriate constants ¢, A > 0. In this
paper, however, we will see that we can always work
with “normalized” versions choosing ¢ = 1, A = 1. For
the (ISES) property we use the “max” formulation be-
cause it allows a further implication as stated in The-
orem b, below. Observe that (2.5) implies (2.3) with
Blllll, 1) = ce[]|.)

Extending the concepts in [1, p. 207] to our nonlinear
setting, we will call a homeomorphism

T:R" > R"

a change of variables if T(0) = 0, T is C* on R" and
T is diffeomorphism on R™\ {0} (i.e., the restrictions
of T and of T=! to R™\ {0} are both smooth). Given
a change of variables 7' and a system (2.1), we may
consider the transformed system

9(t) = f(y(1), d(1)), (2.6)

where, by definition,
Fly,d) = DT(T™ () S(T7" (y), d) -

In other words, system (2.6) is obtained from the
original system by means of the change of variables
y = T'(x). Observe that the new system again satisfies
the general requirements: f(y, d) is continuous, and it
is locally Lipschitz on « for  # 0, uniformly on d.

It is our aim to show that for dimensions n # 4,5 the
following assertions are true. Given a system of the
form (2.1) satisfying (2.2) or (2.3), respectively, there
exists a transformed system that satisfies (2.4) or (2.5),
respectively. In this sense, global asymptotic stability
is equivalent to global exponential stability under non-
linear changes of coordinates. Furthermore, one may
obtain transformed systems where the constants defin-
ing the exponential stability property can be chosen to
be the special values ¢ = A = 1.

Furthermore we show that if system (2.1) is ISES (2.5)
with ¢ = A = 1 then there exists a homeomorphism

R :R™ — R™ on the input space with R(0) = 0 that is
a diffeomorphism on R™\ {0} such that the transformed
system with v = R(d)

g(t) = flx(),v(1), flx,v)=f(z, R (v)) (27)

satisfies the following “Ls; to Ls” nonlinear H., esti-
mate:

/0 16(s, 2, v(-)|%ds < Jla]f? + / lo(s)|2ds.  (28)

Since (2.8) in turn implies ISS (by [26, Theorem 1]), we
obtain equivalence between ISS and the nonlinear H
estimate (2.8) up to nonlinear changes of coordinates.

Remark 2.1 Since we are not requiring that the in-
verse of a change of variables be itself a change of vari-
ables (because one may, and in fact does in our con-
structions, have DT(0) = 0, in which case T~! is not
differentiable at the origin), the way to define a notion
of “equivalence” is by taking the transitive and sym-
metric closure of the relation given by such changes
of variables. That is, we could say that system (2.1)
is equivalent to a system (2.6) if there exist k& € N
and maps fo = f, f1,...,fx = f : R x D — R7?,
all satisfying the assumptions on f, with the follow-
ing properties: For each ¢ = 0,...,k — 1 there exists
a change of variables T" as above such that fi(y,d) =
DT(T~Yy)) fm (T (y),d), where l = i;m =i+ 1 or
l=i+1,m=1.

3 Construction of the coordinate
transformation

The main tool for our construction of 7" is the use of
an appropriate Lyapunov function V. In fact, we can
obtain T for a whole class of functions as stated in the
following proposition. Recall that a function V : R” —
R is called positive definite if V(0) = 0 and V(z) > 0
for all # # 0, and proper if the set {z|V(z) < 3} is
bounded for each 8 > 0.

The next result says that, given some class Ko, func-
tion +, any such function may look like v(||#||) under a
coordinate change. This implies in particular that the
level sets under coordinate change are spheres. It may
therefore not come as a surprise that a basic ingredient
of the proof is related to the question of whether level
sets of Lyapunov functions in R” are diffeomorphic to
the sphere S”~'. This question is solved except for
the two special cases of dimensions n = 4 and n = 5,
though in the case n = 5 it is at least known that the
statement is true if only homeomorphisms are required.
(For the case n = 4 this question is equivalent to the
Poincaré conjecture; see [31].)



Proposition 3.1 Let n # 4,5 and let V : R?” — R
be a proper, positive definite C'* function. Assume fur-
thermore that V' is smooth on R™\ {0} with nonva-
nishing gradient. Then for each class K, function =
which is smooth on (0, 00) there exists a homeomor-
phism 7' : R™ = R” with 7(0) = 0 such that

V(y) = V(T () = ~(llyll) -

T can be chosen to be a diffeomorphism on R™\ {0},
and, in particular, there exists a class Ko function 5

which is smooth on (0, c0) and satisfies v(s)/v'(s) > s
such that 7 is C! with DT(0) = 0.

Proof: For the function V' the right hand side of the
normed gradient flow

i VViz)
IVV(@)]]?

is well defined and smooth for x # 0. Denote the so-
lutions by 4(¢,2). Then V(¢(t,z)) = V(x) + ¢, and
thus since V is proper and VV(z) # 0 for « # 0 for
a given initial value z € R™ ¢ is well defined for all
t € (—V(x),00), thus also smooth (see e.g. [9, Corol-
lary 4.1]).

Fix ¢ > 0. We define a map 7 : R™\ {0} — V~1(¢) by
m(x) = ¢Y(c—V(x), ).

Obviously 7 i1s smooth, and since the gradient flow
crosses each level set V~1(a),a > 0 exactly once it
induces a diffecomorphism between each two level sets
of V', which are C'°° manifolds due to the fact that
V' is smooth away from the origin with nonvanishing
gradient.

Now observe that the properties of V imply that
V=1(c) is a homotopy sphere (cf. also [31, Discussion
after Theorem 1.1]), which implies that V=!(c) is dif-
feomorphic to S"~t for n = 1,2,3 (see e.g. [5]) and
for n > 6 (by [19, §9, Proposition A]). Thus for all
dimensions n # 4,5 we may choose a diffeomorphism
S :V=He) = S"~L (By [6] we could choose S to be

at least a homeomorphism in the case n =5.)

Let @) := S o w. The coordinate transformation 7' is
now given by 7(0) = 0 and

T(x) =77 (V(2) Qx), z#0.
An easy computation verifies that 771(0) = 0 and
T y) =¥ (7(3/) —c, 857 (ﬁ)) , y#F0,

hence T is a diffecomorphism on R”™ \ {0} (resp. a
homeomorphism if n = 5). Since V(0) = 0, and

U(t, S (y/llyll)) — 0 as t N\, —e¢, both T and T}

are homeomorphisms.

Finally, we have that

v (v (s - e.57 (74)))

= y(llylD

V(T (y))

which finishes the proof of the first assertion.

For the second assertion define

L(s) := S 1DQ ()|l

and choose any class K function a which is "> and
satisfies

a(s) < ) for all s € (0,1].

Then the function A given by

1s smooth and of class K, and by straightforward com-
putations (see [8]) the desired properties are verified
setting v := h~ L. D

4 Main Results

Using the coordinate transformation 7' we can now
prove our main results.

Theorem 4.1 Let n # 4,5 and consider any system
(2.1) on R™ which is UGAS (2.2). We suppose that
the set D C R™ is compact. Then, (2.1) can be trans-
formed into a system (2.6) that is UGES (2.4).

In particular, the constants in (2.4) can be chosen to

bec=1,A=1.

Proof: Under our assumptions, by [18, Theorem 2.9,
Remark 4.1]* there exists a smooth function V : R™ —
R for (2.1) such that

Ly V(e) < —aa(]lz]]) (4.9)

for some class K., function «;. Furthermore, there
exist class K., functions as, az such that

as(|[e]l) < V(x) < as(llz]]) . (4.10)

ITo be precise, the results in that reference make as a blanket
assumption the hypothesis that f is locally Lipschitz, not merely
continuous, at z = 0. However, as noted in e.g. [30], the Lipschitz
condition at the origin is not used in the proofs.



Now let ay be a C' function of class K., which is
smooth on (0,00) and satisfies o4(0) = 0, such that
aq(a) < min{a, a; o a3 (a)} for all @ > 0.

Such a function can be obtained e.g. by a slight modi-
fication of the construction in [22, Proof of Lemma 11],
see [8] for an explicit construction. Thus we obtain

Ly V (&) < —aa(V(2)). (4.11)
Now define

p(a) = exp <_ /al oz4(7')_1d7') fora>0, p(0):=0

Obviously p is smooth on (0, c0); furthermore p is of
class Ko, and by [22, Lemma 12] p is a C! function on
[0, 00) with p'(0) = 0. Thus defining

W(z) := p(V(2))

we obtain a C'' Lyapunov function, which is smooth on
R™\ {0}, for which an easy calculation shows that

L, W(x) < —W(2).

Applying Proposition 3.1 to W, using the class K,
function v with y(s)/v'(s) > s we obtain for each d € D
and y £ 0

Gndwy = L1y < i

Yyl

Clearly the overall inequality also holds for ¥y = 0 so
that we obtain

%Ily(f)ll2 = 2(f(y(t), d(1), y(t)) < —2lly(®)]"

and hence |[y(t)]|? < e=2!||y(0)]|?, i.e. the desired expo-
nential estimate. [l

Theorem 4.2 Let n # 4,5 and suppose that the sys-
tem (2.1) on R™ is ISS (2.3) with some class K func-
tion o and some class K £ function 5. Then (2.1) is can
be transformed into a system (2.6) that is ISES (2.5)
with constants ¢ = A = 1.

Proof: By [27, Theorem 1]? there exists a C'! func-
tion V' which is smooth on R™\ {0} and a class K
function y such that

11l > x(/ld]l)

for some class K., function «;. Furthermore, there
exist class K., functions as, as such that

= Ly Vi(z) < —an(]fz]])

as([fe|l) < V() < as(llz]]) -

2As with the UGAS proof, it is easy to verify that the as-
sumption that the right-hand side is Lipschitz at zero is never
actually used in [27]. The possible non-uniqueness of trajectories
does not affect the argument used in Lemma 2.12 in that paper,
which reduces the problem to one of UGAS.

As in the proof of Theorem 4.1 we find a function p
which is class Koo, C*t, and smooth on R"™\ {0}, such
that W = p o V satisfies
lzll > x(ldll) = LpW(r) <-W(z).

Now Proposition 3.1 yields a parameter transforma-
tion 7' such that W(y) = W(T~(y)) = v(|y|]) and
1(5)/9'(5) > 5

Now choose a class K. function J such that

IT=Y(y)|| > d(||y|]) and define & = §=! o x. Then a
straightforward calculation yields

Iyl > a(ldll) = L;W(y) <-W(y). (4.12)
Similar to the proof of Theorem 4.1 this implies

16ty d(DI < eIyl

as long as ||q~5(t,y, d(-))| > d(SUPogrgt ||d(7)||) which
yields the desired estimate.

Theorem 4.3 Consider the system (2.1) on R™ be-
ing ISES (2.5) with some class Ko function o and
¢ = A = 1. Then there exists a homeomorphism
R : R™ — R™ on the input space with R(0) = 0,
that is a diffeomorphism on R™\ {0}, such that the the
transformed system (2.7) satisfies the nonlinear H, es-
timate (2.8).

Proof:  Consider the function W(z) = ||z]|>. From
(2.5) with ¢ = A = 1 it is immediate that for any
d(-) € D, any x € R" and any T > 0 we have

[l > e a( sup_|ld(r)])
0<7<T

= W(e(t,z,d(-)) < e *W(x) for all t €[0,7].
In particular this estimate is valid for constant func-
tions d(-) = d € D, thus the mean value theorem (ob-
serve W(¢(0,z,d)) = W(z) = e "W (x)) yields

lzl][ > a(ld]]) = Lg,W(e) <=2W(z) < -W(z).
Now defining
(f(z,d),z)

a(r) = sup
[lell<a(r)[ldl|<r

we obtain a class K., function & with
Ly W(x) < =W(x) + a||d]]).

Without loss of generality (one could take a larger &),
we may assume & to be smooth on (0, 00), and thus
a(d|l)*d
R(d) .= ——"—
1]l

has the regularity properties as stated in the assertion.
Now the transformation (2.7) yields
Ly W(2) € —W(z) +[lo]l*

Integrating this equation along a trajectory (-) gives
the desired estimate (2.8).
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