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1.1 Introduction

The problem of static state feedback stabilization of control systems is one
of the classical problems in mathematical control theory. Whereas for linear
control systems a well known result states that if a system 1s asymptotically
controllable then it also asymptotically stabilizable by a continuous static
state feedback (in fact, even by a linear one), this property fails to hold for
nonlinear systems. The well known work of Brockett [2] makes this statement
mathematically precise, and the recent survey [24] gives a good introduction
into the geometrical obstructions to continuous feedback stabilization.

Thus, looking for stabilizing static state feedback laws for many nonlin-
ear systems it is inevitable to consider also discontinuous feedback laws. This,
however, causes a number of problems both in the theoretical analysis (due
to the possible lack of uniqueness of trajectories) as well as in the practi-
cal implementation. A reasonable solution concept for systems controlled by
discontinuous feedbacks 1s the idea of sampling: For a given sequence of in-
creasing times (the “sampling times”) one evaluates the feedback law at each
of these sampling times and uses the resulting control value as a (constant)
control up to the next sampling time. Continuing iteratively, it is not difficult
to see that the usual assumptions on the right hand side of the control sys-
tem indeed guarantee existence and uniqueness for this sampled trajectory.
A slightly more specific concept is the notion of discrete feedback introduced
in [7]: Here also sampled trajectories are considered, but instead of using ar-
bitrary sequences of sampling times, here the intersampling times are fixed
in advance, possibly depending on the state. Thus the resulting closed loop
system 1s essentially equivalent to a discrete time system.

The concept of sampling is known for quite a while and also used in the
context of stabilization, see e.g. [11, 12, 22], but only recently it was observed
that for general nonlinear systems asymptotic stabilizability by sampled feed-
back laws is equivalent to asymptotic controllability [4]. However, one has to
be careful in the definition of the behaviour of sampled systems: Although
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it 1s immediate that for each sequence of sampling times we obtain a unique
trajectory, the asymptotic behaviour of this trajectory may strongly depend
on the choice of the sampling rate (i.e. the maximal time allowed between
two discrete sampling times) The general equivalence result mentioned above,
for instance, is only true if we consider sampling rates tending to 0. Thus, it
may be interpreted either as a practical stability result for fixed positive sam-
pling rate, or as “real” stability for all possible limit trajectories for vanishing
sampling rates. These, however, will in general not be unique.

In the present paper, we discuss recent results on sampled and discrete
stability where special emphasis is put on requirements on the sampling rate
needed in order to achieve stability of the sampled closed loop system. In
particular we formulate the stability properties under consideration always
as stability with positive sampling rate, thus describing the system behav-
iour of individual sampled trajectories rather than limits of trajectories with
vanishing sampling rates. Using this approach we attempt to give a suitable
mathematical description for implementations of sampled feedback e.g. using
some digital controller, in which arbitrary small sampling rates in general will
not be realizable. In fact, the investigation of the effect of different sampling
rates is interesting not only for discontinuous feedback laws, since in practice
also continuous laws are often implemented in a sampled way using digital
controllers, and hence essentially the same problems occur.

For general nonlinear systems, a complete characterization of stabilizabil-
ity with positive sampling rate has not yet been developed. Such a character-
ization is, however, possible for nonlinear systems with certain homogenity
properties, and will be presented and illustrated in this paper.

For simplicity, here we will only deal with global or semi-global phenom-
ena, however, the concepts can be transferred also to the case where stabiliz-
ability is only possible from a proper subset of the state space. Concerning
the proofs of the results to be presented, instead of giving all the technical
details (for which we will refer to the appropriate literature) we restrict our-
selves to the main arguments hoping that this allows the reader to get some
insight into the problems without being bothered by too much technicalities.

1.2 Setup and definitions

We consider nonlinear control systems of the form

2(t) = f(2(t), u(t)) (1.1)
where u(+) €Y := {u : R = U, measurable and locally essentially bounded},
UCR™ 0eU, f:RIxU — RY £(0,0) = 0 and f is supposed to be
continuous in both variables and Lipschitz in z for each u € U.

For all ¢ > 0 for which the (unique) open loop trajectory of (1.1) exists
for some initial o € R¢ some control function u(-) € U, and initial time
to = 0 we denote it by 2 (¢, zo, u(")).
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In order to characterize asymptotic behaviour at the origin, recall that a
function « : [0, 00) — [0, 00) is called of class K, if it satisfies «(0) = 0 and is
continuous and strictly increasing (and class Ko if it is unbounded), and a
continuous function 3 : [0,00)? — [0, c0) is called of class KL, if it is of class
K in the first argument and decreasing to zero in the second variable.

Using this definition we are now able to characterize asymptotic control-
lability.

Definition 1.2.1. System (1.1) is called asymptotically controllable (to the
origin) if there exists a class KL function 3 such that for each xo € R? there
exists ug,(-) € U with

(2, 20, wao (DI < B[], 1) for all t >0,

and 1t s called asymptotically controllable with finite controls if it s as-
ymptotically controllable and there exists an open set N 3 0 and a constant
C' > 0 such that for all zy € N the control ug, () from above can be chosen
with |tz (Yoo < C

Note that sometimes the definition of asymptotic controllability already
includes finite controls, e.g. in [4, 24]. Here we do not necessarily demand this
technical property, since for certain results we can do without it.

An important tool in the stability analysis is the control Lyapunov func-
tion as given by the following definition.

Definition 1.2.2. A continuous function V : R4 — [0, o) is called a control
Lyapunov function, if it is positive definite (i.e. V(0) =0 iff V = 0), proper
(i.e. V(z) = o0 as ||z|]| = o0), and there exists a continuous and positive
definite function W : R4 — [0, 00) such that for each bounded subset G C R¢
there exists a compact subset Ug C U with

min DV (z;v) < =W (x) for all z € G.
vecof(z,Ug) -

Here DV (x;v) denotes the lower directional derivative

DV (z;v) := liminf ! (V(z+t) = V(x)),
tN\O, v —v
fle,Ug) := {f(z,u) |u € Ug}, and cof(x,Ug) denotes the conver hull of
f(z,Ug).

It is a well known result in control theory that system (1.1) admits a control
Lyapunov functions if and only if it is asymptotically controllable with finite
controls.

Finally, we introduce the concepts of sampled and discrete feedback con-
trol.
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Definition 1.2.3. (i) A sampled feedback law is is a (possibly discontinu-
ous) map F : R — U with sup,c ||F(2)|| < oo for all compact K C R*
which s applied the following way:

An infinite sequence ™ = (1;)iem, of times satisfying

O=tg<ti <ty <... and t; =00 asi—
15 called a sampling schedule. The values

t;, Aty =ty —t;, and d(m):=sup At
1€ENg
are called the sampling times, intersampling times, and sampling rate, respec-
tively. For any sampling schedule © the corresponding sampled or m-trajectory
z.(t, 20, F) with initial value xo € RY at initial time to = 0 is defined induc-
tively by

to(t, o, Fy = a(t —t;, 2, F(x;)), for all ¢ € [t;,%;41],71 € Ng

where x; = v, (i, 2o, F') and x(t, z;, F(x;)) denotes the (open loop) trajectory
of (1.1) with constant control value F(x;) and initial value x;.

(ii) A discrete feedback law is a sampled feedback law together with a (possibly
state dependent) time step h(z) > 0, z € R? with inf.cx h(z) > 0 for each
compact set K % 0, which for each initial value ro € R? is applied using
sampling schedules m satisfying At; = h(xz;). We denote the corresponding
tragectories by xp(t;, xo, F).

Observe that uniqueness of the w-trajectories for sampled and discrete
feedbacks (on their maximal intervals of existence) follows immediately from
the definition also for discontinuous feedback maps F'.

The sampling schedules specified in the definition of the discrete feed-
back are uniquely determined by the initial value. The name “discrete feed-
back” origins from the fact that the resulting sampled closed loop sys-
tem is in one-to-one correspondence to the discrete time system given by
ziy1 = x(h(xs), 2i, F(x;)). The discrete feedback concept is particularly use-
ful when numerical methods involving discretization of trajectories are used
for feedback design, since in this situation the time step h can correspond to
some numerical discretization parameter, cp. [7].

1.3 Stability concepts for sampled systems

In this section we introduce and discuss appropriate (asymptotic) stability
concepts for nonlinear control systems with sampled and discrete feedback. In
contrast to the classical case, here we have an additional parameter, namely
the sampling rate, which we take into account in our definition.
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Definition 1.3.1. We call the sampled closed loop system from Definition
(i) semi-globally practically stable with positive sampling rate, if there exists
a class KL function B such that for each open set B C R™ and each compact
set K C R™ satisfying 0 € B C K there exists At > 0 such that

er(t, 2o, F) € B = |lex(t, o, F)|| < B(][xol], 7)

forallt >0, all xg € K and all m with d(r) < At,
(ii) semi-globally stable with positive sampling rate, if (i) holds and the
sampling rate At > 0 can be chosen independently of B,
(iii) globally practically stable with positive sampling rate if (i) holds and
the sampling rate At > 0 can be chosen independently of K,
(iv) globally stable with positive sampling rate if (i) holds and the sampling
rate At > 0 can be chosen independently of K and B.

We call the stability in (i)-(iv) exponential if the function § satisfies
B(||zo|l, t) < Ce™|zol| for constants C', o > 0 which may depend on K, and
uniformly exponential if C, o > 0 can be chosen independently of K.

Note that each of the concepts (ii)—(iv) implies (i) which is exactly the s-
stability property as defined in [4], cf. also [24, Sections 3.1 and 5.1]. In partic-
ular, any of these concepts implies global stability for the (possibly nonunique)
limiting trajectories as h — 0. The difference “only” lies in the performance
with positive sampling rate. From the applications point of view, however,
this is an important issue, since e.g. for an implementation of a feedback us-
ing some digital controller arbitrary small sampling rates in general will not
be realizable. Furthermore if the sampling rate tends to zero the resulting
stability may be sensitive to measurement errors, if the feedback is based on
a non-smooth control Lyapunov function, see [17, 24]. In contrast to this it is
quite straightforward to see that for a fixed sampling rate the stability is in
fact robust to small errors in the state measurement (small, of course, relative
to the norm of the current state of the system) if there exists a corresponding
Lipschitz continuous control Lyapunov function, cf. [24, Theorem EJ.

Analogously, we define the corresponding concepts for systems controlled
by discrete feedback.

Definition 1.3.2. We call the discrete feedback controlled system from Def-
inition 1.2.3(ii)

(i) semi-globally practically stable with positive sampling rate, if there exists
a class KL function § such that

2 (8, 2o, F)| < B(ll2oll, 1)

for all zy € RY,

(ii) semi-globally stable with positive sampling rate, if (i) holds and the time
step h satisfies infye g h(z) > 0 for all compact sets K C RY,

(iii) globally practically stable with positive sampling rate if (i) holds and
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the time step h satisfies infrgp h(x) > 0 for all open sets B C R¢ with 0 € B,
(iv) globally stable with positive sampling rate if (i) holds and the time step
h satisfies inf ,cga h(z) > 0.

Again, we call the stability in (i)-(iv) exponential if 8 satisfies 3(||xo], 1) <
Ce=%||xo|| for constants C',o > 0 which may depend on K, and uniformly
exponential «f C, o > 0 can be chosen independently of K.

In fact, it is not difficult to see that the following implications hold.

Proposition 1.3.1. Each of the sampled stability concepts from Definition
1.3.1(i)-(iv) implies the corresponding discrete stability concept from Defin-
ition 1.3.2(i)-(iv).

Proof. We show the implication Definition 1.3.1(i) = Definition 1.3.2(i), the
other implications follow similarly.

Assume Definition 1.3.1(i) holds for some class XL function 8. Consider
a sequence of compact sets (K;)ijeny with K; C K41 and UiEN K; =R¢? and
a sequence of open sets (B;)ieny with Bjy1 C B; and ﬂiEN B; = {0}, such
that By C Kj. For each pair K; and B;, i € N denote by 7; > 0 the value
At from the assumption. Now for each point z € R? we pick the minimal
index i(z) € N such that x € Ky, \ Bi(r) and define the time step h via

h(z) = Ti(z)-
Then from the construction of A and the assumption it follows that
l|zn(t, 2o, F)|| < B(]|zo]|,0) for all ¢ > 0. (1.2)

Furthermore we can conclude that for each 7 € IN there exists times ¢t; > 0
and 7; > 0 with

zp(t, g, F) € Biyq for all g€ By, t > t;
and
zp(t, g, F) € Ky for all g € K;,t > T;.

Using the assumption and these two properties by induction it follows that
there exist times s; > 0 such that

zp(t g, F) € By for all ag € K; \ Kj_q, 1> 5.

which, together with (1.2) implies the existence of the desired class KL func-
tion (which, however, in general will not coincide with the original 3.)

It 1s an open question whether the converse implications also hold. The
only exception is the case of semi-global practical stability where the following
(much stronger) theorem holds, whose main statement goes back to [4].

Theorem 1.3.1. Consider the system (1.1). Then the following properties
are equivalent
(i) The system is asymptotically controllable with finite controls
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(ii) There exists a feedback F such that the sampled closed loop system is
semi-globally practically stable with positive sampling rate

(iii) There esists a feedback F' and a time step h such that the discrete feed-
back controlled system system s semi-globally practically stable with positive
sampling rate

Sketch of Proof. “(ii) = (iii)” follows from Proposition 1.3.1, “(iii) = (i)” is
immediately clear.

We sketch the basic idea of the proof of “(i) = (ii)”, for a detailled proof
see [4]. From [23] asymptotic controllability with finite controls implies the
existence of a continuous control Lyapunov function Vj.

For a positive parameter 7 > 0 we consider the approximation of Vy by
the (quadratic) inf-convolution

~ Iz — ull®
Vi = inf {V
) = int {vt + 122
For each z € R? we denote by ys(z) a point realizing the minimum on the
right hand side of this definition, and define

_ = ys(@)
Cole) = T
Then a straightforward but technical calculation shows that with F' defined
by
(Cp (), f(x, F(x))) = inf (Cp(x), fz, u))
we obtain

7_2

32
where wg(zg) — 0 as § — 0, ws depends on 4 and on the modulus of conti-
nuity of V in xg, and C'(zg) > 0 is a suitable constant essentially depending
on |f(zg, F(xg))| (in fact, behind this estimate lies the theory of proximal
sub- and supergradients, see e.g. [3] for an exposition).

By a compactness argument now on each ring R = {z € R4|0 < a; <
||z]] < aa} we can formulate inequality (1.3) uniformly for ¢ € R, which for
B > 0 and 7 > 0 sufficiently small implies that on R the function V3 is a
control Lyapunov function which decreases along (¢, xg, F'(x0)) for t € [0, 7].
Choosing a growing family of rings R; C R; 11 covering R4\ {0} and carefully
(and rather technically) “gluing” the feedback together on dR; finally yields
the assertion.

Vo (2(7, 20, F(20)) — Va(2) < —=7W(x0) + ws(zo)T + C(20) (1.3)

This result in fact states that a stabilizing sampled feedback can always be
found under the assumption of asymptotic controllabilty, provided we allow
vanishing sampling rates. The question we want to address in the remaining
sections is whether one can give conditions under which (sampled or discrete)
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stability with some fized positive sampling rate can be achieved. Looking at
the Proof of Theorem 1.3.1, one sees that the regularity of V plays a crucial
role in estimate (1.3) (via the function w) and hence in the choice of the
time step 7. Thus one might conjecture that certain regularity properties
of the corresponding control Lyapunov function could serve as a sufficient
condition. However, the example discussed in the next section shows that
even the existence of a ' control Lapunov function does not necessarily

help.

1.4 A counterexample to stabilizability with positive
sampling rate

In this section we briefly discuss an example where stability by discrete or
sampled feedback with positive sampling rate is not possible. Consider the
system

F=r(0 —u)?—r?

written in polar coordinates r € [0,00), # € [0, 27), with U = R.
Obviously the (classical) feedback F(r,#) = @ stabilizes this system.
However, considering the ball By := {(0,7)|6 € [0,2x),r € [0,1)} and
fixing some arbitrary i > 0 it is easily seen that any trajectory with initial
value (0y, rg) € By which stays in By for t € [0, h] satisfies

||7(t, ro, u)|| > Cire for all we U, t €0, A] (1.4)

for suitable some € > 0. Moreover, there exist constants ug > 0 and Cy > 0
such that

||7(t, ro, u)|| < Carg for all |u| < ug, t € [0, A] (1.5)

and
||7(t, ro, u)|| > ro +tChrrg for all |u] > ug, t € [0, h]. (1.6)
Thus for each v € U with |u| < up from (1.4) and (1.5) we can conclude

A
r(h, (ro,00), u) —ro > /0 (0o + 71— u)201r0 — C'ergdr

h3
= ((90 —u)?h + (0 — u)h® + 3) Ciro — hC3rg

h3
ECWO — hszrg

Y

for all trajectories with r(¢, (7o, fy), u) € By for all ¢ € [0, h] where for the last
inequality we used that the minimum in u € U is attained for u = h/2 + ;.
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From this estimate and inequality (1.6) we can finally conclude that
any sampled closed loop trajectory with intersampling times At; > h with
(fo,70) € B:(0) := {(#,7)]|0 € [0,2m),r € [0,¢)} leaves B.(0) in finite time
for each ¢ < min{1,C1h?/(12C3)}, and consequently neither sampled nor
discrete stability with positive sampling rate are possible.

We finally note that the function V(r,8) = r? is a C'* control Lyapunov
function for this system, and that the vector field is C'°°, hence these regu-
larity properties do not imply stabilizability with positive sampling rate.

1.5 Homogeneous systems

In this section we summarize results from [10] which show that for homoge-
neous systems the stabilizability properties with positive sampling rate can
be fully determined just by looking at the degree of the system. Stabiliza-
tion of homogeneous systems has already been investigated by a number of
authors, see e.g. [14, 15, 16, 19, 20, 21, 25].

Let us start by defining what we mean by a “homogeneous system”. Here
we slightly relax the Lipschitz condition on the vector field f and do only
assume Lipschitz continuity in z € R4\ {0}.

Definition 1.5.1. We call system (1.1) homogeneous if there exist r; > 0,
i=1,...,d,s;>0,j=1,...,m and 7 € (—min, r;, ) such that

f(Aqr, Agu) = " Ag f(z,u) for all ue U, o >0 (1.7)

and {Aqu|u e U} CU forall « > 0.
For compact U C R™ we call system (1.1) homogeneous-in-the-state if

there exist r; >0, i=1,...,d and 7 € (—min; 15, 00) such that
fAqz,u) = a" Agf(z,u) for all we U, o >0 (1.8)
Here
a0 .- 0 ast 0 .- 0
Ay = 0 and A, = 0
S0 R
0 ... 0 o™ 0 ... 0 am

are called dilation matrices. With k = min; r; we denote the minimal power
(of the state dilation) and the value 7 € (—k,0) is called the degree of the
system.

The core idea for the construction the stabilizing feedback here lies in
finding a homogeneous control Lyapunov function in order to apply the con-
struction of the proof of Theorem 1.3.1. This will first be accomplished for
systems homogeneous-in-the-state with a very simple structure, using similar
ideas as utilized for semilinear systems in [7, 8, 9]. Assume



10 1. Stabilization by sampled and discrete feedback

floax,u) = af(x,u) for all « > 0,ueclU (1.9)

In the notation of Definition 1.5.1 this system is homogeneous-in-the-state
with degree 7 = 0 with respect to the so-called standard dilation A, = a I.
We assume furthermore that /' C R™ is compact. Defining the exponential
growth rates

/\t(l‘o, u(+)) = %ln W

for each zg # 0 and each u(-) € U it is easily seen from the homogenity
property that the system is asymptotically controllable if and only if there
exist T\ o > 0 such that for each xg # 0 there exists u,, () € Y with

M(zg,uz, (1) < —o <0 (1.10)

for all g # 0 and all all ¢ > T, cp. [10, Propositions 3.2 and 3.3]. (The idea
of considering exponential growth rates is strongly connected with — and in
fact inspired by — the spectral theory developed in [5, 6].)

Another easy consequence of this homogenity property is the fact that
the projection

8(t,80,u(~)) = M so = Hi—zH

et zo, u()I
of (1.9) onto the unit sphere S9! is well defined. A simple application of the
chain rule shows that s is the solution of

s(t) = fe(s(t),u(t)), fs(s,u) = f(s,u) — (s, f(s,u))s
and that for sp = xo/||zo|| the exponential growth rate A satisfies
1 t
/\t(xo, u(+)) = /\t(so, u(+)) = ?/ q(s(r, so, u(")), u(r))dr
0
with ¢(s,u) = (s, f(s,u)). Thus defining the discounted integral

Js(so,u(r)) = / e q(s(r, s0,u(")), u(r))dr
0
and the corresponding optimal value function
vs(sg) := u(H)lgu Js(s0, u(+))

from (1.10) and [9, Lemma 3.5(ii)] we obtain that if system (1.9) is asymp-
totically controllable then for each p € (0,0) there exists J, > 0 such that
for all § € (0,d,] and all s € S"~! the inequality

dvs(s0) < —p

holds. Note that vs is Holder continuous and bounded for each 4 > 0,
cp. e.g. [1]. We now fix some p € (0,0) and some § € (0,5,] and define

V() i= e2esle/Ie g2,
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Using Bellman’s Optimality Principle a straightforward (but tedious) com-
putation shows that the function Vj 1s a control Lyapunov function which is
homogeneous with degree 7 = 1 with respect to the standard dilation and
satisfies

vecg}i(I;,U)Dvo(x; v) < =2pVp (),
cp. [10, Lemma 4.1].

Now we use this function as the starting point in the proof of Theorem
1.3.1, and proceed analogously (for details see [10, Proposition 4.2]). Note
that Vg inherits the homogenity properties of V4, thus F can be chosen to
be constant on rays of the form az, o > 0, x € R% Now we chose a ring R
containing S9! and consider inequality (1.3) (with W (z) = 2pVy(z)). Again
by a compactness argument, from this inequality we obtain

Vi (2(r, 0, F'(20)) — Va(xo) < —7pVo(20)

for some > 0 and some 7 > 0 sufficiently small, all 7 € [0, 7] and all
xg € S%1. Then homogenity immediately implies this inequality for all 2 €
R4 and hence the resulting feedback law globally stabilizes system (1.9) with
positive sampling rate, in fact even uniformly exponentially.

This result can be carried over to the general homogeneous systems from
Definition 1.5.1, leading to the following theorem. Here the function N(z) is
given by

N(z) := (Zxﬁ)

with p =2 ngl 7.

Theorem 1.5.1. Consider a homogeneous system according to Definition
1.5.1 with dilation matrices A, and A, minimal power k > 0, and degree
T € (—k,00), and assume asymptotic controllability.

Then there exists a feedback law F : R — U satisfying F(z) € An)Uo
for some compact Uy C U and F(Ayz) = A F(x) for all z € R and all
a > 0 such that the corresponding sampled closed loop system is either
(i) semi-globally stable (if 7 >0), or
(ii) globally uniformly exponentially stable (if T =10}, or
(iii) globally practically exponentially stable (if 7 < 0)
with fired sampling rate.

The analogous result holds for systems homogeneous-in-the-state; here I’
satisfies F(x) € U and F(A,x) = F(z) for all x € R? and all a > 0.

Sketch of Proof. (See [10, Theorem 2.6 and 4.3] for a detailled proof.)

First observe that the function N satisfies N(Ay2) = aN(z). Hence if for
a homogeneous system we replace f by f(z, An(,yu) we obtain a system
homogeneous-in-the-state. A straightforward application of the homogenity
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yields that this system is asymptotically controllable with control values in
some compact set Uy C U if and only if the original homogeneous system
is asymptotically controllable, see [10, Proposition 6.1]; conversely if F sta-
bilizes the system homogeneous-in-the-state then AN(x)F(x) stabilizes the
original homogeneous system. Hence it suffices to show the theorem for sys-
tems homogeneous-in-the-state.

To this end consider the manifold N=1(1) := {z € RY| N(z) = 1}. Ob-
viously the function S(z) = z/||z|| gives a diffeomorphism from N~1(1)
to S47L. Thus the function ¥(x) = N(z)*S(P(z)) with P(z) = AJ_\,@)JJ
is a continuous cordinate transformation with continuous inverse (both are
also differentiable except possibly at the origin), and replacing f(z,u) by
DU (W=Y(z))f(W~1(x),u) we obtain a system which is homogeneous in the
state with respect to the standard dilation and with degree v = 7/k. Replac-
ing further f(z,u) by f(z,u)||z||”7 — i.e. applying a time transformation
— we end up with a system of type (1.9) for which the stabilizing feed-
back based on the control Lyapunov function Vs has been constructed above.
Re-translating this to the general system we first have to remove the time
transformation which essentially depends on the sign of degree of the system.
This affects the sampling rates and thus leads to the three different cases
(1), (ii) and (iii). Since the space transformation does not affect the stability
properties of the sampled closed loop system we obtain the assertion.

Note that the numerical methods from [7] are easily transferred to the
homogeneous case, thus they give a possibility to compute stabilizing discrete
feedbacks numerically. See the next section for examples.

Observe that the stabilizing homogeneous feedback corresponds to a ho-
mogeneous control Lyapunov function obtained by applying the coordinate
transformation ¥~! to V. This may be used to transfer these results to
local results for systems approximated by homogeneous systems, similar to
[13, 16, 18].

Furthermore, note that even if a homogeneous system admits a stabilizing
continuous static state feedback law, a stabilizing continuous and homoge-
neous static state feedback for does not exist in general, cp. [21]. One way
to overcome the non-homogenity is by using dynamic feedbacks, see [14], the
above theorem in fact shows that discontinuous feedbacks provide another
way.

If we assume Lipschitz continuity of the homogeneous system in the orogin
we immediately obtain 7 > 0, and thus at least semi-global stabilizability. If
we assume global Lipschitz continuity (i.e. the existence of a global Lipschitz
constant) this implies 7 = 0 and thus even global stabilizability.
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1.6 Examples

Let us now illustrate our results by two examples. The first example, given
by the vector field

Fle,u) = (g;;—+u$lu2) (1.11)

forz = (21, 29)7 € R% u € U = IR, is taken from [21] where it has been shown
that a stabilizing continuous and homogeneous feedback law cannot exist for
this system. The vector field f is homogeneous with A, = diag(c, «®) and

0.8 |

0.4 |-

0.2 |

X2
o

-0.2

06 |

08 |

_1 Il Il Il Il Il Il Il Il
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x1

Fig. 1.1. Trajectories for stabilized system (1.11)

A, = . Thus we obtain N (z) = (4 23)*/5. For system (1.11) a stabilizing
discrete feedback has been computed numerically using the techniques from
[7] extended to the general homogeneous case. Analyzing the switching curves
of the numerical feedback in this case it was easy to derive the feedback

— N($)’$1§_x§
F(z) = {—N(x), 2y > —ad

stabilizing the sampled system for all sufficiently small sampling rates. Figure
1.1 shows the corresponding (numerically simulated) sampled trajectories
for some initial values, here the intersampling times have been chosen as
At; = 0.01 for all 7 € Ng.

The second example is the nonholonomic integrator given by Brockett [2]
as an example for a system being asymptotically null controllable but not
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stabilizable by a continuous feedback law. In suitable coordinates (cf. [24],
where also the physical meaning is discussed) it is given by the vector field

floe,u) = u; (1.12)

LUz

for = (w1, 22, 23)7 € B3 u = (uy,us)? € U = R2 For this f we obtain
homogenity with A, = diag(a, o, «?) and A, = diag(a, a), hence N(z) =
(x+ad+23)1/*. Again a stabilizing discrete feedback law has been computed
numerically.

Also 1n this example 1t should be possible to derive an explicit formula
from the numerical results. This is, however, considerably more complicated,
since a number of switching surfaces have to be identified. Hence we di-
rectly used the numerically computed feedback for the simulation shown in
the Figures 1.2-1.4 in different projections; the time step is A = 0.01, the
controlvalues were chosen as Uy = {—1,1}.

05 B

05 | o

-1 -0.5 0 0.5 1
x1

Fig. 1.2. Trajectories for stabilized system (1.12), projected to the (z1,z2) plane
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Fig. 1.3. Trajectories for stabilized system (1.12), projected to the (z1,zs) plane

X3
o
[

05 | i

Fig. 1.4. Trajectories for stabilized system (1.12), projected to the (z2,zs) plane

Summary

In this paper we discussed the stabilization of systems with sampled and
discrete feedback. Whereas this is always possible provided the system un-
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der consideration is asymptotically controllable, in general it can only be
achieved by using vanishing intersampling times close to the origin, or far
away from 1t. This fact is illustrated by an example. For general vector fields
conditions ensuring sampled or discrete stabilizability with positive sampling
rate are still unknown. For homogeneous systems, however, this property can
be completely characterized by the degree of homogenity of the system. Two
examples of stabilized homogeneous systems illustrate this fact.
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