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1 Introduction

An important issue in the analysis of feedback stabilization is the robustness of the resulting
closed loop system with respect to exterior perturbations. When bounded deterministic
perturbations are considered the input-to-state stability property gives a convenient way
to formulate robustness properties. Introduced by Sontag [12] this property has been
investigated and reformulated in various ways (see e.g. [13], [14] and the references therein),
and can be regarded as a link between the operator-theoretic input-output stability concept
(where the input now is the perturbation) and a model based state-space approach. If y(¢)
denotes a solution of the stabilized and perturbed system and v(-) is the corresponding
perturbation function this property can be described by the inequality

Iy < max{a((ly(0)[],2), B([|v]p,a()lo) 3 (L.1)
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where o and 3 denote continuous functions with a(0,¢) = 0 for all ¢ > 0, 5(0) = 0 and
a(c,t) — 0 as t — oo for all ¢ € R.

For stabilized linear systems with inhomogeneous perturbations entering linearly this prop-
erty is immediately seen from the variation of constants formula, cf. [13], which for (1.1)
in particular implies linearity of 5 and linearity of a w.r.t. ||y(0)||. Since for linear systems
asymptotic stability is equivalent to exponential stability (as a consequence of the linear-
ity) for these systems a vanishes exponentially fast for ¢ — co. As recently shown in [8]
also for homogeneous semilinear systems with bounded control range exponential stability
is a natural concept, at least when discrete (or sampled) feedbacks are taken into account
which for this problem were introduced in [6]. Therefore the question arises, whether the
input-to-state stability property with linear dependence on initial value and perturbation
and with exponential decay also holds for the resulting closed loop system. This system,
however, will in general be nonlinear, hence the usual techniques for linear systems are
no longer available. Even worse, the kind of feedbacks discussed in [6] and [8] emerge
from discounted optimal control problems and thus are typically discontinuous; hence also
continuous dependence on the initial value will in general not hold for the closed loop
system.

It is therefore necessary — and the aim of this paper — to find a suitable condition
for possibly discrete and possibly discontinuous exponentially stabilizing feedback laws
which is easy to check and ensures input-to-state stability with respect to inhomogeneous
perturbations. Furthermore we will not only prove this qualitative property but will give
explicit estimates for the constants involved such that the sensitivity on perturbations can
be directly estimated from properties of the stabilizing feedback law. The condition will
be given in a rather general way such that it is applicable not only to the feedback from
[6] but also to various other exponentially stabilizing feedback concepts proposed in the
literature (see e.g. [1], [2], [10] and [11] for homogeneous bilinear systems which form a
more specific but widely considered subclass of semilinear systems). Conversely, we will
show that a suitable formulation of the input-to-state stability concept used here in turn
implies our condition, hence an equivalence result is established.

In this paper we proceed as follows. After defining the general setup in Section 2 we give
the precise meaning of (possibly discrete) exponentially stabilizing feedbacks in Section
3 and formulate a robustness condition with respect to small perturbations. In Section
4 we show the equivalence of this condition to the input-to-state stability property with
exponential decay and linear dependence on the perturbation. In Section 5 we recall
the feedback construction from [6] and show that this feedback law in fact satisfies the
robustness condition. As a consequence in Theorem 5.7 we obtain an equivalence result
between asymptotic null controllability and input-to-state stabilizability. Finally, in Section
6 we give an outlook on how these results may be used for the design of exponentially
stabilizing feedback laws with prescribed robustness margins.

2 Problem setup

In our analysis we consider the following homogeneous semilinear control system

#(1) = A(u(t))e (1) (2.1)
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and the perturbed system

where

u(-)eU = {u:R — U|u measurable},
v(-) €V = {v:R—V|vmeasurable, ||[v]_;llc < oo for all > 0}.

Here U C R™ is a compact subset and V' C R!is an arbitrary subset.

Furthermore we assume A : R™ — R and f : R x B™ x R — R? to be Lipschitz
and denote the unique solution trajectories of (2.1) and (2.2) with initial value zo € R?,
control function u(-) € U, perturbation v(-) € V and initial time ¢ = 0 by 2(¢; zo, u(+))
and y(t; xo, u(-), v(-)), respectively.

We assume that (2.1) and (2.2) satisfy
[ACu)z = f(z,u,0)] < Clo]] (2.3)

for all z € R all w € U and all v € V which means that (2.2) gives a model for an
inhomogeneous perturbation of (2.1), e.g. f(x,u,v) = A(u)x + g(v) for some R%valued
function g with ||g(v)|| < C||v]|.

Homogeneous semilinear control systems typically arise as linearizations of nonlinear sys-
tems at singular points (cf. [8]) and model all kinds of parameter controlled systems, e.g.
oscillators where the damping or the restoring force is controlled, see e.g. the examples in
[7]. We like to point out that all results in this paper remain valid for the more general class
of semilinear systems as discussed in [8]. The decision to restrict our analysis to the sim-
pler class (2.1) has only been made in order to avoid technical notation. Furthermore the
techniques from [8] easily allow to derive corresponding local results for nonlinear systems
at singular points from the global results for semilinear systems in this paper.

3 The small-perturbation-robustness condition

In this section we will define the meaning of a closed loop system using discrete feedback
laws. Using this notation we will introduce the definitions of (uniform) exponential stability
of these closed loop system and a small-perturbation-robustness condition for this stability.

Definition 3.1 Let F' : RY — U be an arbitrary map. For a given time step h > 0 we
denote the solution of the sampled closed loop system with initial value 2o € B? and initial
time g € R

i(t) = A(F(x(ih))z(t) for all t € [th,(¢+ 1)h), 1 €N, > tg, z(lo) = 0o (3.1)
by @ (t;to, z0) and the solution of
y(t) = f(y(t), F(y(ih)),v(t)) for all ¢ € [ih,(i+ 1)h),1 €N, t>1g, y(to) =y (3.2)

with initial value xo € R? and initial time to € R by yg(t;to, 3o, v(+)). We call F a discrete
feedback law.
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Remark 3.2 (i) The motivation for the name discrete feedback is given by the fact that
system (3.1) is equivalent to the discrete time system z;41 = x(h; z;, F(z;)), for which
F is a feedback in the classical sense. Feedback laws of this kind are also known in
the literature as sampled feedback or sample-and-hold feedback.

(ii) Note that these solutions 2 and yp a priori are only well defined for initial times
to = th, ¢ € N which we call the switching times of the feedback. However, given some
solution Zp(t) = xp(t;th, o) of (3.1) obviously also the solution xr(¢;t0, Zr(to)), is
meaningful for each t > ty and each ¢y > ¢h. Thus for a given initial value zg we allow
all initial times g € R for which there exists a solution Zp(t) = zp(¢;th, %) of (3.1)
with Zr(ty) = z¢ and analogously for (3.2). We call these initial times admissible.
Observe that the identity

rp(tito, vo) = xp(t + ti;to + 1, 2o) (3.3)
in general only holds for ty = hk with k € 7Z.

(iii) In order to obtain a convenient notation we abbreviate

Ap((-), 1) = A(F(e(ih)))a(t) and  fr(y(-),t,0) = f(y(1), F(y(ih)), v)

for t € [ih,(i 4+ 1)h). Here the time dependence of these vectorfields is only needed
to ensure a rigorous notation for handling trajectory pieces with admissible initial
times tg # th, ¢ € IN.

(iv) For each fixed h > 0 the existence of a unique solution is immediate from the in-
terpretation as a discrete time system in (i), see also [6]. If there exist unique limit
solutions for h — 0 (e.g. when F'is locally Lipschitz) we also admit the case h = 0
which then coincides with the classical notion of a closed loop system. Note that this
setup can easily be extended also to time varying feedback laws.

Using this definition of a closed loop system we can now define the meaning of exponential
stability.

Definition 3.3 For a given time step h > 0 we say that F' uniformly exponentially stabi-
lizes (2.1) if there exist constants 3 > 0 and p > 0 such that for each initial value z¢ the
finite time exponential growth rate satisfies

L lersto o)l 5

Aa(tst Fy:= -1 -
A( b 07$07 ) t il ||$0|| t—to

p (3.4)

for all admissible tg € R and all ¢ > t,.

Remark 3.4 (i) The slightly technical condition allowing varying initial times to € R
ensures a uniform estimate also for those admissible initial times ¢g that do not
coincide with the switching time of the feedback. Alternatively one could formulate
a condition on the behaviour at the switching times only. We have chosen this
particular formulation since it takes into account the continuous time structure of
the original system rather than the discrete time structure induced by the feedback.
Obviously Definition 3.3 is satisfied for all admissible to € R iff it is satisfied for all
admissible tg € [0, k), which is easily seen from (3.3).
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(ii) It is easily verified that inequality (3.4) is equivalent to
2 (t; to, zo)|| < e’ .

Thus our definition coincides with the classical notion of (uniform) exponential stabil-
ity as defined e.g. in [9] or [15]. Note that p measures the exponential decay whereas
[ can be interpreted as an estimate for the maximal growth of trajectories in finite
time.

(iii) Another equivalent property is the existence of a constant p’ > 0 and times T =
T(zo,t0) > to where T' — tg is uniformly bounded from above and from below such
that

Ma(T;to, w0, F) < —p.

This is easily seen by induction. Thus our property essentially only depends on the
behaviour of finite time trajectory pieces.

The following definition gives the essential condition used in the next section in order to
obtain the input-to-state stability property.

Definition 3.5 We say that the exponential stabilization via F' satisfies the small-per-
turbation-robustness condition if there exist ¢* > 0, g+ > 0 and S.« > 0 such that for all
initial values 5o € R all perturbation functions v(-) € V, all admissible initial times ¢, € R
and all ¢y > tp the inequality

_ Iy (ito, yo, v(-), 1, v(t) = Ar(yr(-5to, o, v(+)), D

77( 1 07 3/0,?]( )) ||yF(t7t07y07’U())|| -~ 5 (3 5)
for almost all ¢ € [to,?1] implies
1 t;t . =%
Af(t;t07x07F7fU(.)) — hl ||yF( ’ 073/07?]( ))H ﬁ Tor

Ti—t llvoll t—to

for all ¢ € [to,t1]. Here we call n(-;tq, yo, v(-)) the relative difference between Ap and fr
along the solution yx(+;to, yo, v(+)).

This condition demands that the exponential decay of the trajectories is preserved under
small relative changes to (2.1). Observe that Remark 3.4(i)—(iii) also applies here. Thus
by Remark 3.4(iii) this condition can be checked in finite time. Hence for exponentially
stabilizing feedback laws that are globally Lipschitz (e.g. the feedback laws discussed in
[1], [10] or [11]) or locally Lipschitz and homogeneous (as the one in [2, Theorem 2.1.4])
the verification of this condition is easily done exploiting the continuity of trajectories with
respect to perturbations of the vectorfield and therefore left to the reader. For the optimal
control based feedback from [6] — which is in general discontinuous — the condition is
verified in Section 5.

We end this section by giving an estimate for the relative difference 5(¢; ¢, yo, v(+)) for the
systems (2.1) and (2.2) which is easily obtained using inequality (2.3).
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Lemma 3.6 The relative difference 7(t; to, yo, v(+)) along a solution yg(-;to, yo, v(+)) satis-

fles
1

lyr(t; to, yo, v(-))|

n(t;to, Yo, v(+)) < C |||”(t)||

Proof: Follows immediately from inequality (2.3). [l

4 Linear-Exponential Input-to-State Stability

In this section we will show that the small-perturbation-robustness condition from Defini-
ton 3.5 implies input-to-state stability of system (3.2) with linear dependence on ||y(0)||
and ||v(-)||so and with exponential decay, and will precisely estimate the constants in the
resulting inequality. For the converse direction we show that this linear-exponential input-
to-state stability in turn implies the small-perturbation-robustness condition. Thus, an
equivalence result is obtained.

The first result is formulated in the following theorem, which is in fact rather easy to prove
once the robustness condition from Definition 3.5 is established.

Theorem 4.1 Let F: R? — U be a (discrete) Feedback which for some time step h > 0
satisfies the small-perturbation-robustness condition from Definition 3.5. Then the (sam-
pled) closed loop system (3.2) is exponentially input-to-state stable with linear dependence
on the initial value and the perturbation, i.e.

o (f— eﬁa*
197 (15 20, yo, v(-))I < maX{eﬁa*e ol t°)||yo||,Cg—*||v|[t0¢](-)||oo} (4.1)

holds for all initial values yo € R%, all v(-) € V, and all admissible initial times to > 0 with
constants ¢, B+ and oo+« > 0 from Definition 3.5 and C' > 0 from inequality (2.3).

Proof: We show the inequality for ||v(-)||cc. The desired estimate for ||v](, 4(+)]|co then
follows from the fact that yr(;to, yo, v(+)) is obviously independent from v[(_ ;,)(+) and
v|(tvoo)(‘)'

Fix some t* > to and assume [|yp(t*;to, yo, v(+))|| > S||v(+)||co. We consider two different
cases:

Case 1: ||yr(t;to, yo, v(+))]| > S||0(+)||eo for all ¢ € [to,t*]. Then by Lemma 3.6 inequality
(3.5) holds for almost all ¢ € [tg,t*] and the assertion immediately follows from the small-
perturbation-robustness condition.

Case 2: There exists ¢; := sup{s € [to, *]|||yr(s;to, yo.v(-))|| < S|lv(-)]|}. Then the
continuity of the trajectory in ¢ implies ||yp(t1;to, Yo, v(-))|| = £]|v(+)||oo and by Lemma 3.6
inequality (3.5)is satisfied for almost all ¢ € [¢1,¢*]. Thus the small-perturbation-robustness
condition yields

o (tF L C
g (75 o, yo, ve()|| < €% =7 =1y (b1 1, yo, vi(-))]] < e 5—*||U(')||oo

which finishes the proof. [l
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Remark 4.2 Note that the argument in Case 2 in fact shows that t* — ¢; is bounded
since otherwise the inequality e’e*e=7=*("=t1) < 1 holds which contradicts the assumption
lyr(t:to, yo, ()| > S|o(+)]|c. Thus for any fixed initial value yo € R we can conclude
the existence of times t; — oo, where t; depends on yg, ;41 — t; is bounded for all ¢ € N
independently of yy and

- C
lyr (L5 o, yo, () < €7 o I+ Mot o421 (oo

holds, i.e. in particular the constant e’* just describes the deviation from 5%||v|[t0,t0—|—t](')||oo

on bounded time intervals. In general the ratio e’* /e* determines the sensitivity of the
solution on the perturbation. Therefore it could be an objective in feedback design for
disturbance attenuation to keep this ratio small leading to H..-like considerations.

In the proof of the preceding theorem we have used the estimate from Lemma 3.6 in
order to obtain an explicit estimate for the robustness of the solutions with respect to the
perturbations. Inspection of the proof, however, shows that the theorem remains valid if
inequality 4.1 is replaced by

B
197 (5 20, yo, ()] < maX{eﬁa*e O goll, —llgo 1. ()Iloo} (4.2)

where ¢,(?) := fr(yr(-;to, yo,v(+)),t,v(t)) — Ar(yr(-; to, yo, v(+)), t). Although less explicit,
this estimate is in general stronger since the relative error might be overestimated by
Lemma 3.6. In fact, if the linear-exponential input-to-state stability is expressed in terms
of inequality (4.2) then it is equivalent to the small-perturbation-robustness condition as
the following theorem shows.

Theorem 4.3 Let I/ : RY — U be a (discrete) Feedback. Assume that for a given time
step h > 0 the (sampled) closed loop system (3.2) satisfies

g (t; t0, yo, v())]| < max { C1e=E =0 [yo|, Callgulgg (- )lloc |
for all initial values yo € R?, all v(-) € V, all admissible initial times ¢y € R and all ¢ > 7
with some constants (1, Cy, ¢ > 0 and g, as above.

Then the small-perturbation-robustness condition from Definition 3.5 is satisfied.

Proof: Excluding the trivial case ||yo|| = ||gult,q(*)]lcc = 0 we can conclude

(£ to, o, v())| < max { Cre™E =0 lgo|, Callgulgg (- )lloc | (4.3)

for arbitrary Cy > C1 and Cy > (Cy. Now fix t* > 0 such that Cie™"" < 1 and let
e* < e~ /(. Let yo € R be an arbitrary initial value, let v(-) € V and let 5 € R be an
admissible initial time. Assume that v(-) € V satisfies inequality (3.5) on [to, ;] where we
assume w.l.o.g. that t; — {9 > t* (otherwise we may set v(t) = 0 for all ¢t > #;).

Then we claim that

yr(t; to, o, v(-)) < Cre= 70 |yo|| for all t € [to,to + t7] (4.4)
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implying )
A (t*5t0, yo, Fov(+)) < —p' with p = o — In(Cy)/t" > 0
which by Remark 3.4(iii) (or directly by induction) implies the assertion.
In order to see (4.4) assume that there exists ¢ € [tg, to+ ¢*] such that (4.4) is not satisfied.

Then using the continuity of the trajectory in ¢ end noting that Cy > 1 we obtain the
existence of a 1 € (to, ] such that

[yt tos yo, ()| = Cre™ 717 1yo | (4.5)

and
gt to, 0w oD < Cre= =N yol| < Calyo] for all £ € [to,ta].  (4.6)

Combining (4.3) and (4.5) implies

lyr(t1: to, yo, v (DI < Callguliig a1 (oo

and by (3.5), (4.6) and the choice of ¢* > 0 we can continue

Callgoliio.c( Moo < Coe™[lyr (-5 Lo, Yo, 0())ltgiallee < €% Cllyol]

which contradicts the choice of ¢;. Thus (4.4) follows. [

Remark 4.4 Theorems 4.1 and 4.3 show that the small-perturbation-robustness condition
and the linear-exponential input-to-state stability are qualitatively equivalent, i.e. they
describe the same qualitative behaviour of the trajectories. Note, however, that when we
apply Theorem 4.3 with constants Cy, Cy and o as in (4.2) it is in general not possible to
recover the original constants €*, g.« and f.« in Definition 3.5. This is due to the fact that
the input-to-state stability is formulated using the || - ||oc norm which does not measure
the decay of ||v(?)|| as the trajectory approaches the origin. Thus quantitatively these two
characterizations are not equivalent.

5 An optimal control based feedback

In this section we briefly recall the construction of an exponentially stabilizing discrete
feedback from [6] which in turn is based on results from [7]. Afterwards we slightly extend
Proposition 5.1 from [8] in order to see that this feedback satisfies the condition from
Definition 3.5. At the end we state some immediate consequences from this fact and
Theorem 4.1.

The feedback from [6] is constructed via a discounted optimal control problem on the
real projective space which we represent by the unit sphere S9~! where opposite points are
identified. For simplicity we use the embedding S¢~' ¢ R¢ and the corresponding R%norm.

The projection of (2.1) onto S?~! reads

P(t) = h(p(t),u(t)) (5.1)

where h(p,u) = [A(u) — pP A(u)pld]p for p € S91. It is easily verified that if z(¢) is
a solution of (2.1) then p(¢) := z(t)/||z(t)|| is a solution of (5.1). Moreover, a simple
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application of the chain rule shows that for py = z¢/||@0|| the exponential growth rate A4
satisfies

to+t
1

Aa(tsto, zo,u(+)) = Aalts to, po,u(-)) = n / q(p(75 po, ul+)), u(r))dr

where ¢(p,u) = p A(u)p and p(t; po, u(-)) denotes the solution of (5.1) with initial value
po at initial time ¢y = 0 and control function u(-) € U.

The results from [8, Proposition 3.3 and Theorem 3.6] and [6, Theorem 3.3] yield that
(open-loop) asymptotic null controllability of system (2.1) is equivalent to the fact that
for all sufficiently small 6 > 0 and & > 0 there exists a function ng 0§91 . B with the
following properties:

(i) v} is Hoelder continuous, i.e. |§v(p) — év2(q)| < H||p—q||", for all p, ¢ € S9! where
v =46/L for small é >0 and H and L are constants independent of ¢

(ii) dv}(p) < —& for some & > 0 and all p € §4-1

(iii) v? satisfies

h
o3 (po) = inf {/0 e~ Tq(p(7; po, u), w)dr + e~ u3 (p(h po, u))}

Note that u here denotes a fixed control value and not a time varying function.

Remark 5.1 The function ng is the optimal value function of a discounted optimal control
problem with piecewise constant control functions. In fact sup,cga—1 61}?(1)) —Aash—0
and 6 — 0, where A\* is a characteristic Lyapunov exponent of (2.1), cp. [7]. Here we only
need that A\* < 0 iff (2.1) is asymptotically null controllable, which is shown e.g. in [8].
For more information about Lyapunov exponents for these kind of systems the reader is
referred to [3] and [4] and the references therin.

Based on this function v? we define a feedback F : S¥=! — U by chosing F(p) = u such
that expression on the the right hand side in (iii) is minimized. Inserting F' into (5.1) as
a discrete feedback with time step h and denoting the corresponding solution trajectories
analogous to (3.1) by pr the equality

T

[ e atpetriom). e[ 7| 10,00 = o) (52)

is easily derived from (iii) by induction, cf. [6]. Here [r] denotes the largest integer less or
equal to r € R.

The crucial property needed for the robustness of this feedback is the robustness of equality
(5.2) which we will investigate now. In our analysis we allow time varying perturbations
of the following kind: Assume that we have a time varying system on S%~! x K given by

B(t) = h(t, p(1), u(t)) (5.3)
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with trajectories p(t; o, po, u(-)). Furthermore let G(¢, p, u) be a bounded time varying cost
function. For some initial value py and a discrete Feedback F' with time step h > 0 we
denote the solution trajectories of (5.3) applying F' with initial time tg by pr(t;to, po)-
Using the abbreviations t; := hk, pri := pr(tr; 0, po) and ug := F(pr ) we assume

1P(ts thy PE gy wk) — Pt — Ly DER, ur)|| < €p ok (5.4)

for almost all ¢ € [0, h] and

h
/0 |G(te + 7, (T3 e, DR R Uk)s k) — q(P(T3 Ly DE s Uk ), w)|dT < €41 (5.5)

for all k& € IV and real sequences (g, k)ien and (g4%)ien. This gives estimates for the local
difference between p and p and between § and ¢, respectively, along the trajectory pp.
From these local estimates we can now obtain an estimate for the discounted functional
along the whole trajectory pg.

Proposition 5.2 Consider the system (5.1), a time step h, the corresponding optimal
value function v? and the optimal discrete feedback F. Assume that a system (5.3) satis-
fying (5.4) and a cost function satisfying (5.5) for some initial value p is given, denote the
trajectories of (5.3) with initial time #y and the discrete feedback F' as above by pr(¢;to, po)
and abbreviate pry := pr(hk; 0, po).

Then for any k& € I the following inequality holds

k-1
|05 (po) = J5(0, po, )| < D_ €™ (eq 4+ Hey )+ e |v5 (i) — Jo(hk, Py, F)
=0
where
~ 0 5 5 5 T
Js(to,p, ) := /0 e~ q(r + to, pr(7s to, p), F(Br( H hs to, p)))dr
with [r] := sup{k € Z| k < r} is the discounted value along the discrete feedback controlled
trajectory of (5.3) with initial time ¢y and H and « are the Hoelder constant and exponent
of ng.

Proof: From the assertion, the Hoelder continuity of ng and the definition of F’ it follows

that
|U§L(p0) - j5(07p07 F)| S £q,0 + 6_6h|v§(pF(h; 07])0)) - j(s(hvi)F,lv F)|
< £9,0 + Hg;p + 6_6h|v§(ﬁF,l) - J(S(hvi)F,lv F)|
Thus induction yields the assertion. a
Defining Fg : R41 — U via
Fg(z) := F(a/||z]|)fora #0, F(0) € Uarbitrary (5.6)

we can apply Fr to (2.2). The following lemma (which is in the same fashion as Lemma
3.5(ii) from [8]) establishes the link between the robustness of the discounted functionals
and the exponential growth rates. Here we present a different proof than in [8] yielding a
different estimate that in particular does not depend on the bounds of ¢.
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Lemma 5.3 Let ¢ : R — R be a bounded measurable function. Let é > 0 be arbitrary
and define

t) ;:6/ 6_6Tq(T—|-t)dT and ot (t;,ty):= sup o(t).
0

t€[t1,t2]

Then for any two times t1,%9 € R with #; < t5 the estimate

1
ty — 14

O'+(t1,t2) - O'(tz)
(tz — t1)6

t
/ ’ q(s)ds < U+(t1,t2) +
t1

holds. The same estimate holds for the opposite inequality with ¢~ defined analogously to
ot via the infimum.

Proof: The integration theorem for Laplace transformations (see e.g. [5, Theorem 8.1])

52/ —“/ dsdt_é/ 7y

A simple calculation shows that

52/ —“/ dsdt_é/ e=57g dr+e—5bé/

for all b > 0 and thus, subtracting the second from the first inequality

52/ —“/ s)ds dt = 5/ —i7y — 7% /boo q(s)ds (5.7)

Furthermore for the discounted functional the inequality

states

6/Ob e Tq(to + T)dT = a(tg) — e o (to + b) (5.8)

follows immediately from the definition of ¢ for all 5 > 0 and all b > 0.

Now define G(-) = ¢(+) — ot (t1,t5) and pick to € [t;,15] maximal with [I°G(s)ds < 0. If
to = t3 we are done, otherwise the choice of t3 implies

/tt G(s)ds >0 (5.9)

for all t € [to, t2].

From the definition of § and (5.8) with b = t5 — {5 we can conclude

b
/0 e TG(to+7)dT < ot (ty,ty) — e Po(ty) — (1 — e 7)ot (11, ty) = e (aF (tg, t2) — 0(t2))
(5.10)
Applying (5.7) to ¢(tg + -) and inserting (5.9) and (5.10) we obtain

6_66( (tl,tz) — 0 tz _ébé/ to + 8
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Now the choice of ty and the definition of § impliy

/Ob (to+ s)ds = /t2 (s)ds = /t2 q(s)ds — (ty — t1)ot (11, t2)

t1 t1

which yields the assertion. a

Now we have collected all technical tools in order to prove the desired robustness result.

Proposition 5.4 Consider the system (2.2) and the discrete feedback Fg from (5.6). Con-
sider an initial value yo € R?, a perturbation v(-) € V, an admissible initial time ¢, € ®, a
time t; > ?p such that inequality (3.5) is satisfied for some ¢* > 0 and almost all ¢ € [to, 1]
Then for all ¢ € [tg, t1] the inequality

Ber - 6€*h + K(e*h)Y

As(t;t ()<
f(7 05 Yo, 7?]())—15_150 1 — e—6h

+ Méh (5.11)

holds for some (. > 0 and suitable constants K, M > 0. In particular if & is positive
and h > 0 and €* > 0 are sufficiently small the small-perturbation-robustness condition of
Definition 3.5 is satisfied.

Proof: We abbreviate y(t) = yr(¢;to, Yo, v(+)) and define

f(y(t), u, v(t)) _ f(y(t), u, v(t))
Tyl < (D] ’p>p

for p € 591, With po := ao/|Jeo|| and pr(t) := y(t)/|ly(0)]] it follows that

he(t,p,u):=

pr(t) = hy(t, pr(t), F(pr(ih)))

for all t € [ih, (i + 1)h) and all i € IN; hence the projection of the trajectory y(t) onto S4~1
forms a solution trajectory of this time varying control system using the discrete feedback

F.
Applying the chain rule it is easily verified that

to+t
: 1 fy(r),u,0(7)) _y(7)
As(tito, yo, F) = - /< 1y(7)]] ’||y(T)||>dT
Now define
. _ | hp(tpou), t<t
h(t, p,u) -—{ h(p,u), t>t1
and

fy(m),u(r
(Hpesp), t<n

q(pvu)v 1>t

By an appropriate shift of the time variable we may assume {g € (=h,0]. Let p* := pr(0).
Then (3.5) implies the assumptions (5.4) and (5.5) with ¢, < Khe* (for some appropriate

q(t,p,u) = {
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constant K > 0) and g, 4 < he* for hk <ty and €, = ¢4 = 0 for hk > t1. Thus applying
Proposition 5.2 we obtain

7 * ~ 1 * ' *
(SJ(S(O,p ,F) S —U+6m(h€ + ]X(ha’f )’V)

with K = HEK.
Since § and J are bounded from below on [to, 0] we obtain

o0

P t 6—5(T—t0)(j(7',]3F(7'5Ovpo)’F(ﬁF([

T

h] h;0,po)))dr <
e 10§ J5(0, p*, F) + 6(—to) M < 8.J5(0,p", F) + 8hM

(since usually 6h << 1 we refrain from giving an explicit estimate for AM).

Since 6j(t,p0, F') is obviously bounded for all ¢ > #; Lemma 5.3 yields the assertion. [l

K(he*)

Remark 5.5 For small ¢* > 0 the term 67-—— will be the dominant one in (5.11) if
h

v < 1. Thus if the value function vg is not Lipschitz continuous a linear relation between

the exponential decay rate o« and £* can not be expected.

Remark 5.6 Observe that Lemma 5.3 also gives an estimate for .+, namely it depends
on 1/é and on the difference between the minimal and maximal value of the discounted
functional along the considered trajectory. While this second quantity is not at our disposal
in this feedback design, the first one can be minimized by choosing § > 0 as large as possible.
Since also the regularity of the value function ng depends on ¢ (via its Holder exponent +)
this also admits larger values of ¢* and thus we expect an additional positive effect on the
robustness.

We conjecture, however, that a more efficient feedback design using this idea of minimizing
the exponential growth rate can be obtained by using the value function of a suitable
differential game rather than the value function of an optimal control problem, which does
not contain any knowledge about the specific structure of the perturbation.

The following existence theorem for input-to-state stabilizing feedback laws is now an easy
consequence from the results in this section and Theorem 4.1.

Theorem 5.7 Consider the system (2.2) and assume there exists a semilinear system (2.1)
satisfying (2.3). Let (2.1) be asymptotically null controllable by open loop controls with
values in U. Then there exists a time step A > 0 and a discrete feedback Fg with values in
U such that (2.2) is linear-exponentially input-to-state stable in the sense of Theorem 4.1.

Proof: By Remark 5.1 asymptotic null controllability implies the existence of the feedback
Fr from Proposition 5.4 which hence satisfies Definition 3.5. Thus Theorem 4.1 implies
the assertion. i

Remark 5.8 Since the converse implication is obvious, Theorem 5.7 establishes an equiva-
lence between asymptotic null controllability and input-to-state stabilizability with a-priori
bounds on the control range.
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6 Conclusions and Outlook

In this paper we have shown that the closed loop system (3.2) with inhomogeneous per-
turbations satisfies the input-to-state stability property with exponential decay and linear
dependence on the perturbation if the exponentially stabilizing (possibly discontinuous)
feedback for the associated semilinear system (3.1) satisfies some robustness property with
respect to small perturbations which can be checked on finite time intervals. Conversely,
linear-exponential input-to-state stability implies this robustness property, which estab-
lishes an equivalence between these two characterizations. In particular the optimal control
based discrete feedback constructed in [6] satisfies this robustness property; thus by using
the results from [8] we obtain an equivalence result between asymptotic null controllability
of semilinear systems (with bounded control range) and input-to-state stabilizability by
means of a bounded discrete feedback with respect to inhomogeneous perturbations. Note
that — by using the techniques from [8] — the results immediately imply the corresponding
local properties for nonlinear systems at singular points.

We like to point out that Theorem 4.1 gives an explicit estimate for the sensitivity of the
closed loop system to inhomogeneous perturbations depending on f.«/e*. Maximizing &*
while keeping (.« bounded or even small for a given compact control range U provides an
approach to the disturbance attenuation problem (in the || - ||oo-norm for the perturbation
and the trajectories) with exponential stability for semilinear and nonlinear systems at
singular points with bounded control range. In particular the extension of the optimal
control based feedback to one based on a suitable differential game seems to be a promising
way in that direction.

Acknowledgement: I would like to thank Fabian Wirth for fruitful discussions about
discounted and averaged functionals and the Laplace transformation.
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