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ROBERT BAIER AND ELZA FARKHI
Directed Sets and
Differences of Convex Compact Sets

1 Introduction

A linear normed and partially ordered space is introduced, in which the convex cone of
all nonempty convex compact sets in R” is embedded. This space of so-called ”directed
sets” is a Banach and a Riesz space for dimension n > 2 and a Banach lattice for n = 1.

We use essentially the specific parametrization of convex compact sets via their
support functions and consider the supporting faces as lower dimensional convex sets.
Extending this approach, we define a directed set as a pair of mappings that associate
to each unit direction a (n — 1)-dimensional directed set (”directed supporting face”)
and a scalar function determining the position of this face in R”. This method provides
recursive definitions, constructions and inductive proofs as well as a visualization of
differences of general convex sets with oriented boundary parts.

The basic differences of our approach to other existing embeddings are that there
are no equivalence classes (as in [13], [15]) and secondly, that differences of directed
convex sets in R* are not real-valued functions of n arguments as in [5], but higher-
dimensional maps representable as oriented manifolds, e.g. oriented curves/surfaces
in the cases n = 2,3. For nonconvex polygons in R? see [3] in which an interesting
computational-geometric method of polygonal tracings is presented (this approach has
been recently extended to polyhedrals in R?).

The approach is based on the notions of generalized ([6], [11]) or directed intervals
([8], [9]) in the one-dimensional case. In the n—dimensional case, there are essential
differences, namely a mixed type part appears which does not exist in the case n = 1.

As an application we give an example of set-valued interpolation where nonconvex
visualizations of directed sets appear as results.

Basic Notations

Let C(R™) be the set of all convex, compact, nonempty subsets of R". The following
operations in C(R") are well-known:

A+ B = {a+blac A, be B} (Minkowski addition)
AN A = {A-a|a€ A} (scalar multiplication for A € R) (1)

Each convex, compact, nonempty set A could be described via its support function
(1, A) = max < [,a > and reconstructed via the intersection of half-spaces with
ac

outer normal [ € S, (S,, is the unit sphere in R"):

A= ({z eR"| <lx><6"(l,A)}

leSn



The support function for A € C(R") is Lipschitz-continuous and fulfills
0" (l,A+ B) =6"(I,A) + 6" (I, B), (LA A)=X-6"(,A) (A>0).

The Hausdorff-distance between two sets in C(R") could be expressed via the difference

of support functions:
dg(4, B) = max 0% (1, A) — 6" (I, B)|
€5n

The supporting face (the set of supporting points) for the direction [ € S, is
V(1 A) = {y(l, A) € A| <ly(l, A)>=5"(, A)}.

Some of the definitions of differences of sets which are known in the literature and
which are not discussed in the beginning are listed below:
e algebraic difference A — B:={a—bla € A, b€ B}
[t is not useable in our context, since in general A — A; {On }.
e differences of intervals
Classical interval arithmetic uses the algebraic difference (cf. [10], ... ), whereas
the definition of the subtraction in the space of generalized intervals (cf. [6],
[11]) resp. directed intervals (cf. [8], [9]) is specified by the subtraction of the
corresponding end points of the intervals.
e Minkowski difference in [4], better known as geometric or star-shaped difference

AXB:={zeR'|z+ B C A}
This difference has the property that A * A = {0}, but may often be empty.
e Demyanov’s difference in [14]
A=B:=co{y(l,A) —y(l,B)|l € S,, Y(l,A) and Y (I, B) are singletons}

The difference A =+ B in [14] is always a superset of Demyanov’s difference A = B.
There is a close connection between Demyanov’s difference and the boundary
mapping of the difference of directed sets (cf. Proposition 3.10).

2 Directed Intervals

In interval analysis, Z(R) denotes the set of all real compact intervals
la,b] = {z € R|a <z < b}.
The operations x € {+, —, -, /} known from R are generalized to the interval case by
[a,b] * [c,d] = {x*xy|x € [a,b], y € [c,d]}.

Since the difference is the algebraic difference of intervals, (Z(R),+,-) is only an
Abelian semigroup and not a vector space.

In [6], [11] and [8], [9] generalized resp. directed intervals {[a, 5] | a, # € R} are studied
for which the left end point could be greater than the right one. The isomorphism
[, B] = (o, 3) € R? induces operations/definitions for generalized (directed) inter-
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vals. The notion of directed intervals introduced here is in principle equivalent to the
generalized intervals of Kaucher ([6]) and the directed intervals of Markov ([8], [9]).
Our definition is slightly different, since it is based on support functions and its scalar
multiples.

Every interval in Z(R) is convex, compact with support function

ai(l) :==d6*(l, [a,b]) = max{l - a,l - b} (I=+1).

Definition 2.1 A directed interval A consists of a function a; : {1} = R, i.e.

A = (@0)esr = (@(-1), (1) € B
The notation [, | := (—a, 3), where o = a;1(—1), # = a1(1), is often used. Let D(R)
denote the set of all directed intervals. The operations in D(R) are defined as follows:

A+B = (a1 (1) +b1(1))1=+1 addition
AA = A-a1(l)er (A ER) scalar multiplication
A-B = (ar(l) = b1(1))i=x1 subtraction
I4]l = max|a() norm
A < B:e— ar(l) <by(l) for I = £1 partial ordering
sup{ﬁ, ?} = (c1(0))i=41 with ¢;(1) = max{a;(1),b:(])} | supremum
inf{X, ?} = — sup{—ﬁ, —P)} infimum

Note that multiplication by negative scalars and subtraction are identical to the corre-
sponding operations on vectors in R? and differ from the standard interval operations
(as in [10]). The space of directed intervals is isomorphic to the space of generalized
intervals, so that according to [6] the following properties of D(R) could be stated.

Theorem 2.2 (D(R),+, ) is a vector space with the inverse A = (—ai(1))=+1 and
the subtraction defined in the table above. Furthermore, it is a a Banach space with
the norm || -||, @ Banach lattice with the partial ordering "<” as well as a Riesz space.

\

Example 2.3 Subtraction of embedded intervals gives [a, bj - [c,dj =[a—cb—d.

\ \ \

L2~ [3,5]=[2 3] and [-3,5—[-1,2] =[-2,3]

The results as well as an improper interval (the inverse of an embedded interval, also
called proper interval) and an embedded scalar are visualized in Figure 2.1 resp. 2.2:

2 -1 0 1 2 3 47 3 2 1 0 1
Fig. 2.1: proper interval [—2,3] € D(R) resp. improper interval [1, —4] € D(R)



05 10 15 2.0

3 2 -1 0 1 2
resp. degenerate interval [1,1

0
Fig. 2.2: the inverse |2, —3] of [-2,3

0
]

3 Directed Sets

We construct inductively the linear normed space D(R™) of directed sets in R”.

Definition 3.1 A is called a directed set
(i) in R, if it is a directed interval and ||Z||1 = max lai(1)],

(i1) in R*, n>2, if there exists a continuous function a, : S, — R and a uniformly
bounded function An 11 S, — D(R™Y) with respect to || - ||n_1-

Then, we denote A= (An_1(1), an(l))ics, and define

120 = 1 = max{sup |35l maxanl}, 1 = maxan(0)

The set of all directed sets in R" is denoted by D(R™).

The definition above is motivated by describing the convex, compact, nonempty set A
for each direction [ € S, as a pair

("Y (I, A) as (n — 1) dimensional (directed) set”, §*(1, A))es, -

Each operation is defined recursively and works separately on both components.

Definition 3.2 Let A = (A,_1 (1), an(D)ics,» B = (Bu1 (1), (1) )ics,

A+ B = @15+ Bor(), an(l) + bu(1))ics,
ANA = A (0N an(D)ies, (A € R).
A-B = A+ (B)= A 1(5 - Borll5, anll) — bu(D))ics,
(i) YieS,: an (1) <0, (1)
A<B:e ! (i) if 3 €S, with an(1) =bn (1),
(1)

then A,_i(1) < Bp_1 (1)

sup{ A, B} := (Sp_1(1), max{an (1), ba()}ics,

B, () Cifan(l) < ba(l)
Sn_l(zi = sup{A,_1(1}, Bp_1 ()} if a, (1) = b, (1)
A, (1 if a, (1) > byu(l).

inf{X, 1_5?} =— sup{—j, —1_5’)}




Proposition 3.3  (D(R"),+,-) is a vector space with the zero element Opgn)
= (0p(rn—1), Or)ies, and the inverse of X, A= (—An_1(D), —an(l))ics, -

Proposition 3.4 (D(R"),||-||) is a Banach space and |- || is a semi-norm. It is even
a lattice and a Riesz space with the ordering and supremum /infimum in Definition 3.2.

One may interpret the supporting face Y (I, A) as (n — 1)-dimensional (directed) set,
e.g. by the following procedure:

e translate the hyperplane which is orthogonal to [ and contains Y(I, A) to the
origin by the vector 6*(, A)l

e rotate the result into the plane {x, = 0} until the attached orthogonal vector I
coincides with e”

e project the rotated image of Y (I, A) into R* !

e embed the result in the space D(R" 1)

Definition 3.5 The set A € C(R") is embedded into the set D(R") via J,, : C(R") —
D(R"):
(i) Ji(a,b) = [0l = (~a,b) forn =1

(i1) Jn(ﬁ) = (Jno1(Po1(Y (1, A))), 0%(1, A) )ies, forn > 2
P, 1 (x) == w1 0B (v — 0°(1, A)l) and 7,_1, is the projection from R™ to
R"™', R, is a rotation matriz which satisfies for the unit vectors €', ... e"

R, (1) =€", Rn,l(span{l}L) = span{e', e’ ... "1} (2)

and must be uniquely defined for the embedding. A possible construction is
skipped due to the lack of space, only the properties in (2) are used in the proofs.

To define the visualization of a directed set, the convex and the concave part of a
directed set are defined.

Definition 3.6 Let A ¢ D(R™). The definition of its conver and concave part are:

PH(X) = {xeR"|foreveryl e S, : <l,x><a,()},
Nn(ﬁ) = {—xeR"|foreveryl € S, : <l,x>< —a,(l)}

At least one of the convex and the concave part of i is empty, except the case that
both are equal and contain only one point. It could happen that both of them are
empty and the set coincides with the mixed type part defined in Definition 3.7, but in
the one-dimensional case, exactly one of Pi([a,b]) and N;([a,b]) is empty, if a # b.



Definition 3.7 Let A € D(R™). The visualization V,, : D(R"*) = R consists of three
parts, the convexr and concave part as well as the mized type part Mn(X) Mn(X)

collects all reprojected points from the visualization of the boundary parts A,_1(l) which
are not elements of the other two parts. Both sets are defined simultaneously:

My(A) =0, Vi(A):=P(A)UN(A) (n=1)
Mo(A) = U {z € QuuVas (A1) | @ ¢ PA(A)UN,(A)} (n>2)

€S,

Vo(A) = Py(A) UN,(A) UM, (A) (n>2)

with the reprojection Qn (y) = R;jﬂn,n_l(y) +a, (), y € R* 1. mppnoy is the natural
embedding of R* ! into R".
The boundary mapping B, : D(R") = R" is defined as

Bu(A) == P, (A) UAN,(A) U M,(A).

The "boundary” of a directed set consists of the boundary of the convex or concave
part and the additional part of mixed type, which is outside the convex and the
concave part. This mixed type part is always empty in the case n = 1 or if the set is
an embedded convex set and usually nonempty otherwise. Each point © € R" from
the reprojected image of the visualization of the (n — 1)-dimensional boundary part
A,—1(l) for some "normal” direction | € S, is a "boundary” point, i.e. z € Bn(X)
All these directions [ are attached to z and form its directions bundle O, (x, 4).

Each part of the boundary of the inverse of a directed set is the (pointwise) negative
(according to (1)) of the boundary part of the directed set itself. The convex part of
the inverse is the (pointwise) negative of the concave part of the original set. Therefore,
the visualization of — A is the (pointwise) negative of the visualization of .

Proposition 3.8 e D(R™). It follows with the convention —() = ():
Pn(_X) = _Nn(X)J Nn(_X) = _Pn(X)J Vn(_X) = _Vn(X)

Furthermore, the direction bundle of the "negative” points remains the same as of the
corresponding "positive” points, i.e.

Ou(=2,—A) = Oy, A) (v € B,(4) = =B, (=4A)). (3)

Example 3.9 According to (3) the visualization of the inverse is formed by multiply-
ing all boundary points of the original set with —1 and keeping their corresponding

directions . The outer normals | € S,, of the directed set [0, 2]" become inner normals
of its inverse —|0, 2]3 (see Figure 3.1).
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Fig. 8.1: A resp. A for A =10,2]?
The visualization of differences of directed sets are strongly related to other differences.
Proposition 3.10 A, B € C(R"). Then, the following is true:
P(A-B)=A%*B, N (A-B)=-(B*A), @B, (A—-B)=A-B,
lg {y(l,; A) —y(l, B) | Y (I, A), Y(Il, B) are singletons} C BR(Z - 1_5?)
The operations and definitions (addition, scalar multiplication, ordering, norm, ...)

are generalizations to the ones known for convex sets.

Proposition 3.11 A, B € C(R") and X\ > 0. Then, it is valid:

A+B=A+B |V,(A+B)=A+B
ANA=xA Voh- A)=x-4

1A = A =supllalls|  [[Va(A)| =sup ||l
acA acA

I- || defines a metric on J,(C(R*)) with (A, B) := |[A — B = dy(A, B).

Example 3.12 Let A = By(0), B = [-1,1]%. The boundary on — B consists of the
boundary of AX B (convex part), all other points of BR(Z - ?) are elements of the
maxed type part Mn(ﬁ — ?) All differences of supporting points inside of A ~B are
elements of the boundar: ofX — B (see Figure 3.2 and 3.3).

1.5 T

<

5 . . . . .
-1.5 -1 -0.5 (0] 0.5 1 1.5

resp. non-convexified part of A=~ B
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Fig. 3.3: Demyanov’s difference A~ B resp. VR(Z - 1_5’))

4 Applications and Numerical Example

One example of set-valued interpolation is studied to show the visualization of di-
rected sets in applications, especially, if negative weights appear in formulas. Further
results and a more detailed research on applications (computation of reachable sets by
extrapolation methods in [1], differentiable set-valued mappings in [2], the connection
to minimal pairs in [12], error estimates, ...) must be postponed to a forthcoming
publication.

Linear interpolation can be done in the space C(R™), but interpolation with a higher
polynomial degree creates negative weights.

Example 4.1 Consider the quadratic interpolation of the set-valued mapping in [7]

F(t) = < (t—|—1)(')(t—|—2) tQi_l )Bl(0)7 (t € [-3,3])

with the prescribed sets F/(—3), F/(0), F'(3).

a) geometric difference

Py(t) :={z e R |Vl € Sy: <lz>< py(l,t) := i:Li(t)é*(l, Ft)}  (4)

j=o.1,2 ¢
i
Although, the prescribed sets are conver sets, Po(—1.5) is an empty set. P(1)

is conver and compact, but ps(-,1) is nonconver which creates non-supporting

hyperplanes in (4).
b) difference of directed sets

with the Lagrange polynomials L;(t) = [] ttf_ttj‘ andt; =—-3+1i-3 (1=0,1,2)
J

Ph(t) := Y Li()F (&)

?2(—1.5) and ?2(1) are "mized-type” directed sets (see Figure 3.4), ?2(—1.5) has
an empty convex and concave part, Py(1) has a nonempty convex part Py(1).
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Fig. 3.4: Py(—1.5) resp. Po(1)
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