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Robert Baier and Elza FarkhiDirected Sets andDi�erences of Convex Compact Sets1 IntroductionA linear normed and partially ordered space is introduced, in which the convex cone ofall nonempty convex compact sets in Rn is embedded. This space of so-called "directedsets" is a Banach and a Riesz space for dimension n � 2 and a Banach lattice for n = 1.We use essentially the speci�c parametrization of convex compact sets via theirsupport functions and consider the supporting faces as lower dimensional convex sets.Extending this approach, we de�ne a directed set as a pair of mappings that associateto each unit direction a (n� 1)-dimensional directed set ("directed supporting face")and a scalar function determining the position of this face in Rn . This method providesrecursive de�nitions, constructions and inductive proofs as well as a visualization ofdi�erences of general convex sets with oriented boundary parts.The basic di�erences of our approach to other existing embeddings are that thereare no equivalence classes (as in [13], [15]) and secondly, that di�erences of directedconvex sets in Rn are not real-valued functions of n arguments as in [5], but higher-dimensional maps representable as oriented manifolds, e.g. oriented curves/surfacesin the cases n = 2; 3. For nonconvex polygons in R2 see [3] in which an interestingcomputational-geometric method of polygonal tracings is presented (this approach hasbeen recently extended to polyhedrals in R3).The approach is based on the notions of generalized ([6], [11]) or directed intervals([8], [9]) in the one-dimensional case. In the n�dimensional case, there are essentialdi�erences, namely a mixed type part appears which does not exist in the case n = 1.As an application we give an example of set-valued interpolation where nonconvexvisualizations of directed sets appear as results.Basic NotationsLet C(Rn) be the set of all convex, compact, nonempty subsets of Rn . The followingoperations in C(Rn) are well-known:A+B := fa+ b j a 2 A; b 2 Bg (Minkowski addition)� � A := f� � a j a 2 Ag (scalar multiplication for � 2 R) (1)Each convex, compact, nonempty set A could be described via its support function��(l; A) := maxa2A < l; a > and reconstructed via the intersection of half-spaces withouter normal l 2 Sn (Sn is the unit sphere in Rn):A = \l2Snfx 2 Rn j <l; x>� ��(l; A)g 1



The support function for A 2 C(Rn) is Lipschitz-continuous and ful�lls��(l; A +B) = ��(l; A) + ��(l; B); ��(l; � � A) = � � ��(l; A) (� � 0):The Hausdor�-distance between two sets in C(Rn) could be expressed via the di�erenceof support functions: dH(A;B) = maxl2Sn j��(l; A)� ��(l; B)jThe supporting face (the set of supporting points) for the direction l 2 Sn isY (l; A) := fy(l; A) 2 A j <l; y(l; A)>= ��(l; A)g:Some of the de�nitions of di�erences of sets which are known in the literature andwhich are not discussed in the beginning are listed below:� algebraic di�erence A�B := fa� b j a 2 A; b 2 BgIt is not useable in our context, since in general A� A�6= f0Rng.� di�erences of intervalsClassical interval arithmetic uses the algebraic di�erence (cf. [10], . . . ), whereasthe de�nition of the subtraction in the space of generalized intervals (cf. [6],[11]) resp. directed intervals (cf. [8], [9]) is speci�ed by the subtraction of thecorresponding end points of the intervals.� Minkowski di�erence in [4], better known as geometric or star-shaped di�erenceA�* B := fx 2 Rn j x+B � AgThis di�erence has the property that A�* A = f0g, but may often be empty.� Demyanov's di�erence in [14]A�� B := cofy(l; A)� y(l; B) j l 2 Sn; Y (l; A) and Y (l; B) are singletonsgThe di�erence A��� B in [14] is always a superset of Demyanov's di�erence A�� B.There is a close connection between Demyanov's di�erence and the boundarymapping of the di�erence of directed sets (cf. Proposition 3.10).2 Directed IntervalsIn interval analysis, I(R) denotes the set of all real compact intervals[a; b] = fx 2 R j a � x � bg.The operations � 2 f+;�; �; =g known from R are generalized to the interval case by[a; b] � [c; d] = fx � y j x 2 [a; b]; y 2 [c; d]g:Since the di�erence is the algebraic di�erence of intervals, (I(R);+; �) is only anAbelian semigroup and not a vector space.In [6], [11] and [8], [9] generalized resp. directed intervals f[�; �] j�; � 2 Rg are studiedfor which the left end point could be greater than the right one. The isomorphism[�; �] 7! (�; �) 2 R2 induces operations/de�nitions for generalized (directed) inter-2



vals. The notion of directed intervals introduced here is in principle equivalent to thegeneralized intervals of Kaucher ([6]) and the directed intervals of Markov ([8], [9]).Our de�nition is slightly di�erent, since it is based on support functions and its scalarmultiples.Every interval in I(R) is convex, compact with support functiona1(l) := ��(l; [a; b]) = maxfl � a; l � bg (l = �1):De�nition 2.1 A directed interval �!A consists of a function a1 : f�1g ! R, i.e.�!A = (a1(l))l=�1 = (a1(�1); a1(1)) 2 R2The notation ���![�; �] := (��; �), where � = a1(�1), � = a1(1); is often used. Let D(R)denote the set of all directed intervals. The operations in D(R) are de�ned as follows:�!A +�!B := (a1(l) + b1(l))l=�1 addition� � �!A := (� � a1(l))l=�1 (� 2 R) scalar multiplication�!A ��!B := (a1(l)� b1(l))l=�1 subtractionk�!Ak := maxl=�1 ja1(l)j norm�!A � �!B :() a1(l) � b1(l) for l = �1 partial orderingsupf�!A;�!B g := (c1(l))l=�1 with c1(l) = maxfa1(l); b1(l)g supremuminff�!A;�!B g := � supf��!A;��!B g in�mumNote that multiplication by negative scalars and subtraction are identical to the corre-sponding operations on vectors in R2 and di�er from the standard interval operations(as in [10]). The space of directed intervals is isomorphic to the space of generalizedintervals, so that according to [6] the following properties of D(R) could be stated.Theorem 2.2 (D(R);+; �) is a vector space with the inverse ��!A = (�a1(l))l=�1 andthe subtraction de�ned in the table above. Furthermore, it is a a Banach space withthe norm k � k, a Banach lattice with the partial ordering "�" as well as a Riesz space.Example 2.3 Subtraction of embedded intervals gives ��![a; b]���![c; d] = ��������![a� c; b� d].����![�1; 2]�����![�3; 5] = ����![2;�3] and ����![�3; 5]�����![�1; 2] = ����![�2; 3]The results as well as an improper interval (the inverse of an embedded interval, alsocalled proper interval) and an embedded scalar are visualized in Figure 2.1 resp. 2.2:
−2 −1 0 1 2 3 −4 −3 −2 −1 0 1Fig. 2.1: proper interval ����![�2; 3] 2 D(R) resp. improper interval ����![1;�4] 2 D(R) 3



−3 −2 −1 0 1 2 0.0 0.5 1.0 1.5 2.0Fig. 2.2: the inverse ����![2;�3] of ����![�2; 3] resp. degenerate interval ��![1; 1]3 Directed SetsWe construct inductively the linear normed space D(Rn) of directed sets in Rn .De�nition 3.1 �!A is called a directed set(i) in R, if it is a directed interval and k�!Ak1 := maxl=�1 ja1(l)j,(ii) in Rn ; n � 2, if there exists a continuous function an : Sn ! R and a uniformlybounded function ��!An�1 : Sn ! D(Rn�1) with respect to k � kn�1.Then, we denote �!A = (����!An�1(l); an(l))l2Sn and de�nek�!Ak := k�!Akn := maxfsupl2Sn k����!An�1(l)kn�1;maxl2Sn jan(l)jg; jjj�!A jjj := maxl2Sn jan(l)jThe set of all directed sets in Rn is denoted by D(Rn).The de�nition above is motivated by describing the convex, compact, nonempty set Afor each direction l 2 Sn as a pair("Y (l; A) as (n� 1) dimensional (directed) set", ��(l; A))l2Sn.Each operation is de�ned recursively and works separately on both components.De�nition 3.2 Let �!A = (����!An�1(l); an(l))l2Sn, �!B = (����!Bn�1(l); bn(l))l2Sn.�!A +�!B := (����!An�1(l) +����!Bn�1(l); an(l) + bn(l))l2Sn� � �!A := (� � ����!An�1(l); � � an(l))l2Sn (� 2 R):�!A ��!B := �!A + (��!B ) = (����!An�1(l)�����!Bn�1(l); an(l)� bn(l))l2Sn�!A � �!B :() 8><>: (i) 8l 2 Sn : an(l)� bn(l)(ii) if 9l 2 Sn with an(l) = bn(l);then ����!An�1(l)�����!Bn�1(l)supf�!A;�!B g := (����!Sn�1(l);maxfan(l); bn(l)g)l2Sn����!Sn�1(l) :=8><>: ����!Bn�1(l) if an(l) < bn(l)supf����!An�1(l);����!Bn�1(l)g if an(l) = bn(l)����!An�1(l) if an(l) > bn(l):inff�!A;�!B g :=� supf��!A;��!B g4



Proposition 3.3 (D(Rn);+; �) is a vector space with the zero element ���!0D(Rn)= (�����!0D(Rn�1); 0R)l2Sn and the inverse of �!A , ��!A = (�����!An�1(l);�an(l))l2Sn.Proposition 3.4 (D(Rn); k � k) is a Banach space and jjj� jjj is a semi-norm. It is evena lattice and a Riesz space with the ordering and supremum/in�mum in De�nition 3.2.One may interpret the supporting face Y (l; A) as (n � 1)-dimensional (directed) set,e.g. by the following procedure:� translate the hyperplane which is orthogonal to l and contains Y (l; A) to theorigin by the vector ��(l; A)l� rotate the result into the plane fxn = 0g until the attached orthogonal vector lcoincides with en� project the rotated image of Y (l; A) into Rn�1� embed the result in the space D(Rn�1)De�nition 3.5 The set A 2 C(Rn) is embedded into the set D(Rn) via Jn : C(Rn)!D(Rn):(i) J1([a; b]) := ��![a; b] = (�a; b) for n = 1(ii) Jn(�!A ) := (Jn�1(Pn�1;l(Y (l; A))); ��(l; A))l2Sn for n � 2Pn�1;l(x) := �n�1;nRn;l(x � ��(l; A)l) and �n�1;n is the projection from Rn toRn�1 , Rn;l is a rotation matrix which satis�es for the unit vectors e1; : : : ; enRn;l(l) = en; Rn;l(spanflg?) = spanfe1; e2; : : : ; en�1g (2)and must be uniquely de�ned for the embedding. A possible construction isskipped due to the lack of space, only the properties in (2) are used in the proofs.To de�ne the visualization of a directed set, the convex and the concave part of adirected set are de�ned.De�nition 3.6 Let �!A 2 D(Rn). The de�nition of its convex and concave part are:Pn(�!A ) := fx 2 Rn j for every l 2 Sn : <l; x>� an(l)g;Nn(�!A ) := f�x 2 Rn j for every l 2 Sn : <l; x>� �an(l)gAt least one of the convex and the concave part of �!A is empty, except the case thatboth are equal and contain only one point. It could happen that both of them areempty and the set coincides with the mixed type part de�ned in De�nition 3.7, but inthe one-dimensional case, exactly one of P1(��![a; b]) and N1(��![a; b]) is empty, if a 6= b: 5



De�nition 3.7 Let �!A 2 D(Rn). The visualization Vn : D(Rn)) Rn consists of threeparts, the convex and concave part as well as the mixed type part Mn(�!A ). Mn(�!A )collects all reprojected points from the visualization of the boundary parts ����!An�1(l) whichare not elements of the other two parts. Both sets are de�ned simultaneously:M1(�!A ) := ;; V1(�!A ) := P1(�!A ) [N1(�!A ) (n = 1)Mn(�!A ) := Sl2Snfx 2 Qn;l(Vn�1(����!An�1(l))) j x =2 Pn(�!A ) [Nn(�!A )g (n � 2)Vn(�!A ) := Pn(�!A ) [Nn(�!A ) [Mn(�!A ) (n � 2)with the reprojection Qn;l(y) := R�1n;l�n;n�1(y) + an(l)l, y 2 Rn�1 . �n;n�1 is the naturalembedding of Rn�1 into Rn .The boundary mapping Bn : D(Rn)) Rn is de�ned asBn(�!A ) := @Pn(�!A ) [ @Nn(�!A ) [Mn(�!A ):The "boundary" of a directed set consists of the boundary of the convex or concavepart and the additional part of mixed type, which is outside the convex and theconcave part. This mixed type part is always empty in the case n = 1 or if the set isan embedded convex set and usually nonempty otherwise. Each point x 2 Rn fromthe reprojected image of the visualization of the (n � 1)-dimensional boundary part����!An�1(l) for some "normal" direction l 2 Sn is a "boundary" point, i.e. x 2 Bn(�!A ).All these directions l are attached to x and form its directions bundle On(x;�!A ).Each part of the boundary of the inverse of a directed set is the (pointwise) negative(according to (1)) of the boundary part of the directed set itself. The convex part ofthe inverse is the (pointwise) negative of the concave part of the original set. Therefore,the visualization of ��!A is the (pointwise) negative of the visualization of �!A .Proposition 3.8 �!A 2 D(Rn). It follows with the convention �; = ;:Pn(��!A ) = �Nn(�!A ); Nn(��!A ) = �Pn(�!A ); Vn(��!A ) = �Vn(�!A )Furthermore, the direction bundle of the "negative" points remains the same as of thecorresponding "positive" points, i.e.On(�x;��!A ) = On(x;�!A ) (x 2 Bn(�!A ) = �Bn(��!A )): (3)Example 3.9 According to (3) the visualization of the inverse is formed by multiply-ing all boundary points of the original set with �1 and keeping their correspondingdirections l. The outer normals l 2 Sn of the directed set ���![0; 2]2 become inner normalsof its inverse ����![0; 2]2 (see Figure 3.1).6
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Fig. 3.1: �!A resp. ��!A for A = [0; 2]2The visualization of di�erences of directed sets are strongly related to other di�erences.Proposition 3.10 A;B 2 C(Rn). Then, the following is true:Pn(�!A ��!B ) = A�* B; Nn(�!A ��!B ) = �(B�* A); coBn(�!A ��!B ) = A�� B;Sl2Snfy(l; A)� y(l; B) jY (l; A), Y (l; B) are singletonsg � Bn(�!A ��!B )The operations and de�nitions (addition, scalar multiplication, ordering, norm, . . . )are generalizations to the ones known for convex sets.Proposition 3.11 A;B 2 C(Rn) and � � 0. Then, it is valid:�!A +�!B =����!A+B Vn(�!A +�!B )=A+B� � �!A =��!� � A Vn(� � �!A )=� � Ak�!Ak = jjj�!A jjj=supa2A kak2 kVn(�!A )k=supa2A kak2jjj� jjj de�nes a metric on Jn(C(Rn)) with �(�!A;�!B ) := jjj�!A ��!B jjj = dH(A;B).Example 3.12 Let A = B2(0), B = [�1; 1]2. The boundary of �!A ��!B consists of theboundary of A�* B (convex part), all other points of Bn(�!A � �!B ) are elements of themixed type part Mn(�!A ��!B ). All di�erences of supporting points inside of A�� B areelements of the boundary of �!A ��!B (see Figure 3.2 and 3.3).
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Fig. 3.2: geometric di�erence A�* B resp. non-convexi�ed part of A�� B 7
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Fig. 3.3: Demyanov's di�erence A�� B resp. Vn(�!A ��!B )4 Applications and Numerical ExampleOne example of set-valued interpolation is studied to show the visualization of di-rected sets in applications, especially, if negative weights appear in formulas. Furtherresults and a more detailed research on applications (computation of reachable sets byextrapolation methods in [1], di�erentiable set-valued mappings in [2], the connectionto minimal pairs in [12], error estimates, . . . ) must be postponed to a forthcomingpublication.Linear interpolation can be done in the space C(Rn), but interpolation with a higherpolynomial degree creates negative weights.Example 4.1 Consider the quadratic interpolation of the set-valued mapping in [7]F (t) = � (t+ 1) � (t+ 2) 10 t2 + 1 �B1(0); (t 2 [�3; 3])with the prescribed sets F (�3); F (0); F (3).a) geometric di�erenceP2(t) := f x 2 R2 j 8l 2 S2 : <l; x>� p2(l; t) := 2Xi=0 Li(t)��(l; F (ti)) g (4)with the Lagrange polynomials Li(t) = Qj=0;1;2j 6=i t�tjti�tj and ti = �3 + i � 3 (i = 0; 1; 2)Although, the prescribed sets are convex sets, P2(�1:5) is an empty set. P2(1)is convex and compact, but p2(�; 1) is nonconvex which creates non-supportinghyperplanes in (4).b) di�erence of directed sets �!P2(t) := 2Xi=0 Li(t)���!F (ti)�!P2(�1:5) and �!P2(1) are "mixed-type" directed sets (see Figure 3.4), �!P2(�1:5) hasan empty convex and concave part, �!P2(1) has a nonempty convex part P2(1).8
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Fig. 3.4: �!P2(�1:5) resp. �!P2(1)References[1] R. Baier. Mengenwertige Integration und die diskrete Approximation erreichbarerMengen. Bayreuther Mathematische Schriften 50 (1995).[2] T. D. Donchev, E. M. Farkhi. Moduli of Smoothness of Vector Valued Functionsof a Real Variable and Applications. Numer. Funct. Anal. Optim. 11 (1990), no.5 & 6, 497{509.[3] L. Guibas, L. Ramshaw, J. Stol�. A kinematic framework for computational ge-ometry. In Proceedings 24th annual symposium on foundations of computer sci-ence, Nov. 7{9, 1983, Tucson, Arizona, pp. 100{111, IEEE Computer Press, LosAlamitos, California, 1983.[4] H. Hadwiger. Minkowskische Addition und Subtraktion beliebiger Punktmengenund die Theoreme von Erhard Schmidt. Math. Z. 53 (1950), Heft 3, 210{218.[5] P. L. H�ormander. Sur la fonction d'appui des ensembles convexes dans un espacelocalement convexe. Ark. Mat. 3 (1954), no. 12, 181{186.[6] E. Kaucher. Interval Analysis in the Extended Interval Space IR. Comput. Suppl.2 (1980), 33{49.[7] F. Lempio. Set-Valued Interpolation, Di�erential Inclusions, and Sensitivity inOptimization. In R. Lucchetti, J. Revalski (eds.), Recent Developments in Well-Posed Variational Problems, pp. 137{169, Kluwer Academic, Dordrecht, 1995.[8] S. Markov. On the presentation of ranges of monotone functions using intervalarithmetic. Interval Comput. 4 (1992), no. 6, 19{31.[9] S. Markov. On directed interval arithmetic and its applications. JUCS 1 (1995),no. 7, 514{526.[10] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cli�s, N.J., 1966.[11] H.-J. Ortolf. Eine Verallgemeinerung der Intervallarithmetik. GMD-Bericht 11(1969), Bonn.[12] D. Pallaschke, S. Scholtes, R. Urba�nski. On Minimal Pairs of Convex CompactSets. Bull. Pol. Acad. Sci., Math. 39 (1989), no. 1{2, 105{109.[13] H. R�adstr�om. An embedding theorem for spaces of convex sets. Proc. Amer. Math.Soc. 3 (1952), 165{169.[14] A. Rubinov, I. Akhundov. Di�erence of compact sets in the sense of Demyanovand its application to non-smooth analysis. Optimization 23 (1992), 179{188.[15] K. E. Schmidt. Embedding Theorems for Classes of Convex Sets. Acta Appl. Math.5 (1986), 209{237. 9


