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For stabilized linear systems with inhomogeneous per-turbations entering linearly this property is immediatelyseen from the variation of constants formula, cf. [14],which for (1) in particular implies linearity of � and lin-earity of � w.r.t. ky(0)k. Since for linear systems asymp-totic stability is equivalent to exponential stability (as aconsequence of the linearity) for these systems � vanishesexponentially fast for t ! 1. As recently shown in [8]also for homogeneous semilinear systems with boundedcontrol range exponential stability is a natural concept,at least when discrete (or sampled) feedbacks are takeninto account which for this problem were introduced in[6]. This gives rise to the question whether this input-to-state stability property also holds for the (now nonlinearand sampled) closed loop semilinear system.In this paper we will be able to give a positive answerto that question. Moreover, we will formulate a generaland easy to check condition for exponentially stabilizingfeedback laws that is equivalent to the linear-exponentialinput-to-state stability property and can be applied notonly to the mentioned optimal control based sampledfeedback law but also to several other exponentially sta-bilizing feedbacks proposed in the literature (see e.g. [1],[2], [11] and [12]).2 Problem setupIn our analysis we consider the following homogeneoussemilinear control system_x(t) = A(u(t))x(t) (2)and the perturbed system_y(t) = f(y(t); u(t); v(t)) (3)whereu(�) 2 U := fu : R! U ju measurableg;v(�) 2 V := fv : R! V j v measurable;kvj[�t;t]k1 <1 for all t � 0g:Here U � Rm is a compact subset and V � Rl is anarbitrary subset.



Furthermore we assume A : Rm ! Rd�d and f : Rd�Rm � Rl ! Rd to be Lipschitz and denote the uniquesolution trajectories of (2) and (3) with initial value x0 2Rd, control function u(�) 2 U , perturbation v(�) 2 V andinitial time t0 = 0 by x(t;x0; u(�)) and y(t;x0; u(�); v(�)),respectively.We assume that (2) and (3) satisfykA(u)x� f(x; u; v)k � Ckvk (4)for all x 2 Rd, all u 2 U and all v 2 V which means that(3) gives a model for an inhomogeneous perturbation of(2), e.g. f(x; u; v) = A(u)x + g(v) for some Rd-valuedfunction g with kg(v)k � Ckvk.Homogeneous semilinear control systems typically ariseas linearizations of nonlinear systems at singular points(cf. [8]) and model all kinds of parameter controlled sys-tems, e.g. oscillators where the damping or the restoringforce is controlled, see e.g. the examples in [7]. We liketo point out that all results stated here imply the corre-sponding local results for nonlinear systems at singularpoints using the techniques from [8].3 A robustness condition for small per-turbationsWe start by de�ning the meaning of a closed loop systemusing discrete feedback laws. Using this notation we willintroduce a small-perturbation-robustness condition foran exponentially stabilizing feedback.De�nition 1 Let F : Rd! U be an arbitrary map. Fora given time step h > 0 we denote the solution of thesampled closed loop system with initial value x0 2 Rdand initial time t0 2 R_x(t) = A(F (x(ih))x(t) (5)for all t 2 [ih; (i + 1)h); i 2 N; t � t0; x(t0) = x0 byxF (t; t0; x0) and the solution of_y(t) = f(y(t); F (y(ih)); v(t)) (6)for all t 2 [ih; (i + 1)h); i 2 N; t � t0; y(t0) = y0with initial value x0 2 Rd and initial time t0 2 R byyF (t; t0; y0; v(�)). We call F a discrete feedback law.The following de�nition gives the essential conditionused in order to obtain the input-to-state stability prop-erty.De�nition 2 We say that an exponentially stabilizingfeedback F satis�es the small-perturbation-robustnesscondition if there exist "� > 0, �"� > 0 and �"� > 0such that for all initial values y0 2 Rd, all perturbationfunctions v(�) 2 V, all admissible initial times t0 2 Randall t1 > t0 the inequality�(t; t0; y0; v(�)) � "� (7)

for almost all t 2 [t0; t1] implies�f (t; t0; x0; F; v(�)) := 1t � t0 ln kyF (t; t0; y0; v(�))kky0k< �"�t � t0 � �"�for all t 2 [t0; t1]. Here�(t; t0; y0; v(�)) := kfF (yF ; t; v(t))� AF (yF ; t)yFkkyF (t)kis called the relative di�erence between AF and fF alongthe solution yF (�) = yF (�; t0; y0; v(�)) and fF and AF de-note the (sampled, hence time dependent) vector�elds us-ing the discrete feedback F.This condition demands that the trajectories of theperturbed system converge to the origin exponentiallyfast provided the relative changes to (2) are su�cientlysmall. Observe that this is essentially a �nite time con-dition, i.e. it can be checked using �nite time trajectorypieces (see [9] for a more detailled analysis of this condi-tion). Hence for exponentially stabilizing feedback lawsthat are globally Lipschitz (e.g. the feedback laws dis-cussed in [1], [11] or [12]) or locally Lipschitz and homo-geneous (as the one in [2, Theorem 2.1.4]) the veri�cationof this condition is easily done exploiting the continuityof trajectories with respect to perturbations of the vec-tor�eld. For the optimal control based feedback from [6]| which is in general discontinuous | we will indicatein what follows how this condition can be veri�ed.Observe that under our assumption on the system therelative di�erence can be estimated by�(t; t0; y0; v(�)) � C 1kyF (t; t0; y0; v(�))kkv(t)kwhich is immediate from (4).4 Linear - Exponential Input - to - StateStabilityIn this section we will show that the small-perturbation-robustness condition from De�niton 2 implies input-to-state stability of system (6) with linear dependence onky(0)k and kv(�)k1 and with exponential decay, andwill precisely estimate the constants in the resulting in-equality. For the converse direction we show that thislinear-exponential input-to-state stability in turn impliesthe small-perturbation-robustness condition. Thus, anequivalence result is obtained.Theorem 1 Let F : Rd ! U be a (discrete) Feed-back which for some time step h � 0 satis�es thesmall-perturbation-robustness condition from De�nition2. Then the (sampled) closed loop system (6) is expo-nentially input-to-state stable with linear dependence on



the initial value and the perturbation, i.e.kyF (t; t0; y0; v(�))k �max�e�"� e��"� (t�t0)ky0k; Ce�"�"� kvj[t0;t](�)k1� (8)holds for all initial values y0 2 Rd, all v(�) 2 V, and alladmissible initial times t0 > 0 with constants "�, �"� and�"� > 0 from De�nition 2 and C > 0 from inequality (4).Proof: Straightforward, by observing that condition (7)is satis�ed whenever kyF k � C"� kvj[t0;t](�)k1. For a de-tailled proof see [9].Remark 1 Note that in general the ratio e�"� ="� deter-mines the sensitivity of the solution on the perturbation.Therefore it could be an objective in feedback design fordisturbance attenuation to keep this ratio small leading toH1-like considerations.A less explicit, but slightly stronger formulation of thistheorem can be obtained when inequality (8) is replacedbykyF (t; t0; y0; v(�))k �max�e�"� e��"� (t�t0)ky0k; e�"�"� kgvj[t0;t](�)k1� (9)using the di�erence between the vector�elds gv(t) :=fF (yF (�; t0; y0; v(�)); t; v(t)) � AF (yF (�; t0; y0; v(�)); t). Infact, if the linear-exponential input-to-state stability isexpressed in terms of inequality (9) then it is equivalentto the small-perturbation-robustness condition as the fol-lowing theorem states.Theorem 2 Let F : Rd ! U be a (discrete) Feedback.Assume that for a given time step h � 0 the (sampled)closed loop system (6) satis�eskyF (t; t0; y0; v(�))k �maxnC1e��(t�t0)ky0k; C2kgvj[t0;t](�)k1ofor all initial values y0 2 Rd, all v(�) 2 V, all admissibleinitial times t0 2 R and all t � t0 with some constantsC1, C2, � > 0 and gv as above.Then the small-perturbation-robustness condition fromDe�nition 2 is satis�ed.The proof can be found in [9].Remark 2 It is worth noting that these theorems estab-lish a qualitative but no quantitative equivalence betweenthese two properties, which is due to the fact that theinput-to-state stability is expressed using the k �k1 norm.

5 An optimal control based feedbackIn this section we brie
y recall the construction of an ex-ponentially stabilizing discrete feedback from [6] which inturn is based on results from [7] and show that it satis�esthe condition from De�nition 2. This leads us to an exis-tence theorem for exponentially input-to-state stabilizingfeedback laws.The feedback from [6] is constructed via a discountedoptimal control problem on the unit sphere Sd�1. A vali-dation of De�nition 2 based directly on this optimal con-trol problem using the integration theorem for Laplacetransformations [5] can be found in [9], where also quan-titative properties are discussed. Here we sketch a di�er-ent approach based on an suitable discrete time Lyapunovfunction.The results from [8, Proposition 3.3 and Theorem 3.6]and [6, Theorem 3.3] yield that (open-loop) asymptoticnull controllability of system (2) is equivalent to the factthat for all su�ciently small � > 0 and h > 0 there existsa function vh� :Sd�1 ! Rwith the following properties:(i) vh� is H�older continuous, i.e. jvh� (s)�vh� (p)j � Hks�pk
 , for all s; p 2 Sd�1 and some 
 2 (0; 1](ii) �vh� (s) < �� for some � > 0 and all s 2Sd�1(iii) vh� satis�esvh� (s0) =infu2U (Z h0 e��� q(s(� ; s0; u); u)d� + e��hvh� (s(h; s0; u)))where s(�; s0; u) = x(�;x0; u)=kx(�;x0; u)k is theprojection of the trajectory of (2) onto Sd�1 andR h0 q(s(� ; s0; u); u)d� = ln(kx(h;x0; u)k=kx0k). Notethat u here denotes a �xed control value and not atime varying function.Remark 3 The function vh� is the optimal value functionof a discounted optimal control problem with piecewiseconstant control functions. In fact sups2Sd�1 �vh� (s) !�� as h ! 0 and � ! 0, where �� is a characteristicLyapunov exponent of (2), cp. [7]. Here we only need that�� < 0 i� (2) is asymptotically null controllable, which isshown e.g. in [8]. For more information about Lyapunovexponents for these kind of systems the reader is referredto [3] and [4] and the references therin.A discrete feedback based on this function can now bede�ned as follows: For each point x0 2 Rdnf0gwe chose acontrol value u� 2 U such that the right hand side of (iii)is minimized for s0 = x0=kx0k and de�ne F (x0) = u�.In order to validate the robustness condition from Def-inition 2 we introduce the functionw(x) = evh� (x=kxk)kxk:The properties of this function are given by the followingProposition.



Proposition 1 The function w(x) satis�es(i) There exist constants C1, C2 > 0 such that C1kxk �w(x) � C2kxk(ii) There exist a constant C > 0 such that for allx1; x2 2 Rd with kx1k � kx2k the inequality jw(x1)�w(x2)j � C(kx1 � x2k
kx1k1�
 + kx1 � x2k) holds(iii) w(xF (h; 0; x)) � e�h(�+O(�h))w(x) for the constant� > 0 from abovei.e. the function w is a H�older continuous discrete timeLyapunov function for the exponentially stabilized sam-pled closed loop system.Proof: (i) and (ii) are obtained by straightforward com-putations. (iii) is obtained by inserting the Properties(ii) and (iii) of vh� to the De�nition of w(x).Proposition 2 The feedback F as de�ned above satis�esthe robustness condition from De�nition 2 for su�cientlysmall h > 0 and � > 0.Proof: Abbreviate yi = yF (ih; t0; y0; v(�)). Then therelative di�erence condition implieskyi+1 � xF (h; 0; yi)kkyi+1k � L"�hfor some constant L > 0. Thus Proposition 1(ii) yieldsw(yi+1) � w(xF (h; 0; yi)) +Kkyi+1k("�h)
for some constant K. Thus by Proposition 1(i) for each� > 0 there exists � > 0, h > 0 and "� > 0 such thatw(yi+1) � e�(���)hw(yi)which by Proposition 1(i) and (iii) implies exponentialconvergence and thus the desired estimate from De�ni-tion 2.The following existence theorem for input-to-state sta-bilizing feedbacks is now an easy consequence from The-orem 1 and the results in this section.Theorem 3 Consider the system (3) and assume thereexists a semilinear system (2) satisfying (4). Let (2) beasymptotically null controllable by open loop controls withvalues in U . Then there exists a time step h > 0 anda discrete feedback F with values in U such that (3) islinear-exponentially input-to-state stable in the sense ofTheorem 1.References[1] S. �Celikovsk�y, On the stabilization of the homo-geneous bilinear system, Syst. Control Letters, 21(1993), pp. 503{510.
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