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Abstract

In this paper we investigate the robustness of state feed-
back stabilized semilinear control systems subject to in-
homogeneous perturbations in terms of input-to-state
stability. In particular we are interested in the robustness
of an optimal control based exponentially stabilizing dis-
continuous sampled discrete feedback, which is known to
exist whenever the system under consideration is asymp-
totically null controllable. For this purpose we introduce
a robustness condition that will turn out to be equiv-
alent to a suitable input-to-state stability formulation.
Validating this condition for the optimal control based
feedback using a suitable Lyapunov function we obtain
an equivalence between (open loop) asymptotic null con-
trollability and robust input-to-state (state feedback) sta-
bilizability.

1 Introduction

An important issue in the analysis of feedback stabiliza-
tion is the robustness of the resulting closed loop system
with respect to exterior perturbations. When bounded
deterministic perturbations are considered the input-to-
state stability property gives a convenient way to formu-
late robustness properties. Introduced by Sontag [13] this
property has been investigated and reformulated in var-
ious ways (see e.g. [14], [15] and the references therein).
If y(¢) denotes a solution of the stabilized and perturbed
system and v(+) is the corresponding perturbation func-
tion this property can be described by the inequality

lyOIl < max{a([ly(0)I], £), B(llvlp,a()lle)t (1)
where « and 3 denote continuous functions with (0, ) =
0 for all t > 0, 3(0) = 0 and «(c,?) — 0 as t — oo for all
ceR.

* After February 1999: Fachbereich Mathematik, AG 1.1, Johann
Wolfgang Goethe-Universitat, Postfach 11 19 32, 60054 Frankfurt
am Main, Germany, gruene@math.uni-frankfurt.de

For stabilized linear systems with inhomogeneous per-
turbations entering linearly this property is immediately
seen from the variation of constants formula, cf. [14],
which for (1) in particular implies linearity of 5 and lin-
earity of & w.r.t. ||y(0)]|. Since for linear systems asymp-
totic stability is equivalent to exponential stability (as a
consequence of the linearity) for these systems « vanishes
exponentially fast for ¢ — oco. As recently shown in [8]
also for homogeneous semilinear systems with bounded
control range exponential stability is a natural concept,
at least when discrete (or sampled) feedbacks are taken
into account which for this problem were introduced in
[6]. This gives rise to the question whether this input-to-
state stability property also holds for the (now nonlinear
and sampled) closed loop semilinear system.

In this paper we will be able to give a positive answer
to that question. Moreover, we will formulate a general
and easy to check condition for exponentially stabilizing
feedback laws that is equivalent to the linear-exponential
input-to-state stability property and can be applied not
only to the mentioned optimal control based sampled
feedback law but also to several other exponentially sta-
bilizing feedbacks proposed in the literature (see e.g. [1],
[2], [11] and [12]).

2 Problem setup

In our analysis we consider the following homogeneous
semilinear control system

(2)

(3)

where
u(-)y el {u : R — U | u measurable},
v(-) €V = {v:R—V|vmeasurable,

|v](=t,1]lee < 00 for all ¢ > 0}.

Here U C R™ is a compact subset and V C R!is an
arbitrary subset.



Furthermore we assume A : R™ — R4 and f: RY x
R™ x RY — R? to be Lipschitz and denote the unique
solution trajectories of (2) and (3) with initial value zy €
R4, control function u(-) € U, perturbation v(-) € V and
initial time tg = 0 by #(¢; 2o, u(+)) and y(t; zg, u(-), v(+)),
respectively.

We assume that (2) and (3) satisfy

()2 — 7w )] < Il (@
for all € R? all u € U and all v € V which means that
(3) gives a model for an inhomogeneous perturbation of
(2), e.g. f(z,u,v) = A(u)z + g(v) for some R%valued
function g with ||g(v)|| < C||v||.

Homogeneous semilinear control systems typically arise
as linearizations of nonlinear systems at singular points
(cf. [8]) and model all kinds of parameter controlled sys-
tems, e.g. oscillators where the damping or the restoring
force is controlled, see e.g. the examples in [7]. We like
to point out that all results stated here imply the corre-
sponding local results for nonlinear systems at singular
points using the techniques from [8].

3 A robustness condition for small per-
turbations

We start by defining the meaning of a closed loop system
using discrete feedback laws. Using this notation we will
introduce a small-perturbation-robustness condition for
an exponentially stabilizing feedback.

Definition 1 Let F': R? — U be an arbitrary map. For
a gwen time step h > 0 we denote the solution of the
sampled closed loop system with initial value o € R?
and nitial time tg € R

#(t) = A(F (x(ih))e(l) ()

for allt € [ih,(i+ 1)h),i € N, t > tg, x(to) = xo by

zp(t;to, o) and the solution of

y(t) = f(y(0), Fy(ih)), v(1)) (6)

for all t € [ih, (i + 1)h), i € N, t > to, y(to) = wo
with initial value zo € R? and initial time to € R by
yr(t;to, yo,v(+)). We call F' a discrete feedback law.

The following definition gives the essential condition
used in order to obtain the input-to-state stability prop-
erty.

Definition 2 We say that an exponentially stabilizing
feedback F  satisfies the small-perturbation-robustness
condition if there exist € > 0, 6. > 0 and [+ > 0
such that for all initial values yo € R?, all perturbation
functions v(-) € V, all admissible initial times ty € R and
allty >ty the inequality

U(t,to, Yo, U()) S 6*

(7)

for almost all t € [tg,t1] implies

1 i1 .
1o I (t5to, 30, o))

Ap(tsto, xo, Fou()) =

t=to [lwoll
6&*
< t—to — Og*

for allt € [to,t1]. Here

— |fr(yr,t,v(t)) — Ap(yr, t)yr||
' lyr @)l

15 called the relative difference between Ap and frp along
the solution yr(-) = yr(-;to, yo,v(+)) and fr and Ap de-
note the (sampled, hence time dependent) vectorfields us-
g the discrete feedback F.

n(t;to, Yo, v(+))

This condition demands that the trajectories of the
perturbed system converge to the origin exponentially
fast provided the relative changes to (2) are sufficiently
small. Observe that this is essentially a finite time con-
dition, i.e. it can be checked using finite time trajectory
pieces (see [9] for a more detailled analysis of this condi-
tion). Hence for exponentially stabilizing feedback laws
that are globally Lipschitz (e.g. the feedback laws dis-
cussed in [1], [11] or [12]) or locally Lipschitz and homo-
geneous (as the one in [2, Theorem 2.1.4]) the verification
of this condition is easily done exploiting the continuity
of trajectories with respect to perturbations of the vec-
torfield. For the optimal control based feedback from [6]
— which is in general discontinuous — we will indicate
in what follows how this condition can be verified.

Observe that under our assumption on the system the
relative difference can be estimated by

1
(t;to, yo,v(+))||

el

n(tath Yo, U()) S C
llyr

which is immediate from (4).

4 Linear - Exponential Input - to - State
Stability

In this section we will show that the small-perturbation-
robustness condition from Definiton 2 implies input-to-
state stability of system (6) with linear dependence on
[ly(0)|] and ||v(-)||lec and with exponential decay, and
will precisely estimate the constants in the resulting in-
equality. For the converse direction we show that this
linear-exponential input-to-state stability in turn implies
the small-perturbation-robustness condition.
equivalence result is obtained.

Thus, an

Theorem 1 Let F' : RY — U be a (discrete) Feed-
back which for some time step h > 0 satisfies the
small-perturbation-robustness condition from Definition
2. Then the (sampled) closed loop system (6) is expo-
nentially input-to-state stable with linear dependence on



the initial value and the perturbation, i.e.

lyr (t; to, yo, v(-))|| <

e o (= €

oBer
||v|[t0,ﬂ<~>||oo} ®)

6*

holds for all initial values yo € RY, all v(-) € V, and all
admaissible initial times tg > 0 with constants €*, B+ and
gex > 0 from Definition 2 and C > 0 from inequality (4).

Proof: Straightforward, by observing that condition (7)
is satisfied whenever |jyp|| > €%||U|[t0,t](')||oo~ For a de-
tailled proof see [9].

Remark 1 Note that in general the ratio eP<* [c* deter-
mines the sensitivity of the solution on the perturbation.
Therefore it could be an objective in feedback design for
disturbance attenuation to keep this ratio small leading to
Hoo-like considerations.

A less explicit, but slightly stronger formulation of this
theorem can be obtained when inequality (8) is replaced

by

lyr (t;to, yo, v())|| <

Bex
max {eﬁf* e e (t_t°)||y0||,

[
c*

||gv|[t0,ﬂ<~>||oo} ©)

using the difference between the vectorfields g, (¢) :=
fr(yr(5to, yo, v()), 4 v(t) — Ar(yr(-ito, Yo, v(+)), ¢). In
fact, if the linear-exponential input-to-state stability is
expressed in terms of inequality (9) then it is equivalent
to the small-perturbation-robustness condition as the fol-
lowing theorem states.

Theorem 2 Let F : RY — U be a (discrete) Feedback.
Assume that for a given time step h > 0 the (sampled)
closed loop system (6) satisfies

lyr (t; o, yo, v())|| <
maX{Cle_U(t_tD)HyoH, Cz||gv|[to,t](')||oo}

for all initial values yo € RY, all v(-) € V, all admissible
mitial times tg € R and all t > to with some constants
Cy, Cy, 0 >0 and g, as above.

Then the small-perturbation-robusiness condition from
Definition 2 is satisfied.

The proof can be found in [9].

Remark 2 [t is worth noting that these theorems estab-
lish a qualitative but no quantitative equivalence between
these two properties, which is due to the fact that the
input-to-state stability is expressed using the || -||co norm.

5 An optimal control based feedback

In this section we briefly recall the construction of an ex-
ponentially stabilizing discrete feedback from [6] which in
turn is based on results from [7] and show that it satisfies
the condition from Definition 2. This leads us to an exis-
tence theorem for exponentially input-to-state stabilizing
feedback laws.

The feedback from [6] is constructed via a discounted
optimal control problem on the unit sphere S=*. A vali-
dation of Definition 2 based directly on this optimal con-
trol problem using the integration theorem for Laplace
transformations [5] can be found in [9], where also quan-
titative properties are discussed. Here we sketch a differ-
ent approach based on an suitable discrete time Lyapunov
function.

The results from [8, Proposition 3.3 and Theorem 3.6]
and [6, Theorem 3.3] yield that (open-loop) asymptotic
null controllability of system (2) is equivalent to the fact
that for all sufficiently small § > 0 and & > 0 there exists
a function v? : S471 — R with the following properties:

(i) v? is Holder continuous, i.e. [vf(s)— v (p)| < H||s —
p||?, for all 5, p € S4=! and some v € (0, 1]

(i) 8v2(s) < —o for some ¢ > 0 and all s € S4~1
(iii) v? satisfies

vg (s0) =

A

in[f] / e~ Tq(s(7; 80, u), w)dr + e~ Mol (s(h; s, u))

ue 0
where s(-;s0,u) = x(-;20,w)/||x(-;z0,u)|| is the
projection of the trajectory of (2) onto S¢~! and

A
Jo a(s(; 50, u), u)dr = In(||x(h; zo, u)||/||xo]|). Note
that u here denotes a fixed control value and not a
time varying function.

Remark 3 The function v? is the optimal value function
of a discounted optimal control problem with piecewise
constant control functions. In fact sup cga—s Svi(s) —
A as h — 0 and 6 — 0, where X* s a characteristic
Lyapunov exponent of (2), cp. [7]. Here we only need that
A* < 0 iff (2) is asymptotically null controllable, which is
shown e.g. in [8]. For more information about Lyapunov
exponents for these kind of systems the reader is referred

to [3] and [4] and the references therin.

A discrete feedback based on this function can now be
defined as follows: For each point 2o € RY\ {0} we chose a
control value u* € U such that the right hand side of (iii)
is minimized for sy = x¢/||xo|| and define F(zg) = u*.

In order to validate the robustness condition from Def-
inition 2 we introduce the function

w(z) = evfs‘(x/llxll)”x”.

The properties of this function are given by the following
Proposition.



Proposition 1 The function w(x) satisfies

(i) There exist constants Cy, Cy > 0 such that Cy||z|| <
w(z) < Cy|||

(ii) There exist a constant C' > 0 such that for all
z1, 29 € RY with ||zy|| < ||z2|| the inequality |w(zy)—
w(z2)| < C(lJer — @a||"|aa]['77 + [|l21 — @2|]) holds

(iii) w(xp(h;0,x)) < e~ PotOBR (&) for the constant
o >0 from above

r.e. the function w is a Holder continuous discrete time
Lyapunov function for the exponentially stabilized sam-
pled closed loop system.

Proof: (i) and (ii) are obtained by straightforward com-
putations. (iii) is obtained by inserting the Properties
(ii) and (iii) of v to the Definition of w(z). |

Proposition 2 The feedback F' as defined above salisfies
the robustness condition from Definition 2 for sufficiently

small h >0 and 6 > 0.

Proof: Abbreviate y; = yr(ih;to, yo,v(:)). Then the

relative difference condition implies

li+1 — 2 (h; 0, y;)]
it

< Le*h

for some constant L > 0. Thus Proposition 1(ii) yields
w(yi+1) < w(zp(h;0,y;)) + K|lyi1]|(e7h)"

for some constant K. Thus by Proposition 1(i) for each
a > 0 there exists § > 0, A > 0 and € > 0 such that

w(yirr) < e uw(y;)

which by Proposition 1(i) and (iii) implies exponential
convergence and thus the desired estimate from Defini-
tion 2. |

The following existence theorem for input-to-state sta-
bilizing feedbacks is now an easy consequence from The-
orem 1 and the results in this section.

Theorem 3 Consider the system (3) and assume there
exists a semilinear system (2) satisfying (4). Let (2) be
asymptotically null controllable by open loop controls with
values in U. Then there exists a time step h > 0 and
a discrete feedback F with values in U such that (3) is
linear-exponentially input-to-state stable in the sense of
Theorem 1.
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