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Abstract. We discuss the relation between exponential stabilization and asymptotic control-
lability of nonlinear control systems with constrained control range at singular points. Using a
discounted optimal control approach we construct discrete feedback laws minimizing the Lyapunov
exponent of the linearization. Thus we obtain an equivalence result between uniform exponential
controllability and uniform exponential stabilizability by means of a discrete feedback law.
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1. Introduction. In this paper we will present a technique for the exponential
stabilization of nonlinear control systems with constrained control range at singular
points. In particular we address the relation between asymptotic controllability and
exponential stabilization and will derive an equivalence theorem. In our context a
singular point is a fixed point for each admissible control value of the control system.
Such singular situations do typically occur if the control enters in the parameters
of an uncontrolled systems at a fixed point, for instance when the restoring force
of a nonlinear oscillator is controlled. One example our results can be applied to is
the stabilization problem of an inverted pendulum for which the suspension point 1s
moved up an down periodically and the period of this motion can be controlled, cf.
[14]. The main tool used throughout this paper is the linearization of the nonlinear
system which forms a semilinear system. For two-dimensional control affine systems
this linearization approach has been carried out in [4], giving a characterization of
feedback stabilizability by algebraic methods.

The approach we follow here is based on optimal control techniques. More pre-
cisely, we consider the Lyapunov exponents of the linearization and formulate a dis-
counted optimal control problem in order to minimize these exponents, an idea that
has first been presented in [12]. Lyapunov exponents have recently turned out to be
a suitable tool for the stability analysis of semilinear systems, see e.g. [7] and [8], and
also for their stabilization [11]. However, due to the fact that for discounted optimal
control problems optimal feedback laws are in general not available, we modify the
feedback concept and introduce discrete feedback laws that are based on a discrete
time sampled approximation of the given continuous time system. Using this ap-
proach it could be shown in [11] that for semilinear systems satisfying an accessibility
condition exponential null controllability is equivalent to exponential stabilizability by
discrete feedbacks. Using a similar feedback concept a result on the relation between
asymptotic null controllability and practical stabilization for nonlinear systems has
been developed in [5] using Lyapunov functions.

This paper is organized in two parts. In the first part we will focus on semilin-
ear systems and extend the results from [11] and [12]. In particular in §3 we will

tInstitut fiir Mathematik, Universitat Augsburg, Universititsstr. 14, 86135 Augsburg, Cer-
many, E-Mail: Lars.Gruene@Math.Uni-Augsburg.de. Research partially supported by DFG Grant
Co 124/12-2



2 LARS GRUNE

discuss different null controllability concepts for semilinear systems and extend the
approximation results from [12] to general semilinear systems without any accessibil-
ity assumptions. Then in §4 we will use this result in order to construct a stabilizing
discrete feedback law following the outline of [11].

In the second part we will apply this discrete feedback to a general nonlinear
system at a singular point. For this purpose we will first prove a robustness property
of the discrete feedback in §5. Using this result we will present the main theorem in
§6, stating that (local) uniform exponential null controllability is equivalent to (local)
exponential stabilizability by means of a discrete feedback.

2. Preliminaries. We are interested In the stabilization of nonlinear control
systems on IR? x M given by

2(t) = fla(t),y(t),u(t))
(2.1) g(t) = g(y(t),u(t)

where 2 € R? and y € M, M some Riemannian Manifold and f and ¢ are vectorfields
which are C? in z, Lipschitz in y and continuous in u. The control function u(-) may
be chosen from the set & := {u : R — U |u(-) measurable} where U C R™ is compact,
i.e. we have a constrained set of control values.

For each pair (xp, yo) of initial values the trajectories of (2.1) will be denoted by
the pair (z(t, zo, yo, u(*)), y(t, yo, u(-))) and we assume them to exist uniquely for all
times.

Our interest lies on the stabilization of the z-component at a singular point x*,
i.e. a point where f(2*,y,u) = 0 for all (y,u) € M x U. Throughout the paper we
will assume z* = 0.

Note that our general setup covers several models: The additional equation for y
allows us to model systems where time varying parametric excitations governed by an
additional (nonlinear) control or dynamical system enter the system to be stabilized.
The case in which the control u does not enter explicitly in the function f and the
case in which f does not depend on y occur as special situations in this setup, hence
they are also covered.

Our main tool for the stabilization is the linearization of (2.1) at the singular
point which is given by

) ) = Aly(t),u(t)=(0)

y(t) = g(y(t),u(t))
Here A(y,u) := 2 f(z*,y,u) € R and f(z,y,u) = A(y, u)x + f(x,y,u). Then for
any given compact subset K C M the differentiability assumption on f implies the
inequality

(2.3) 1F (2, g, w)|| < O[]

which holds for some constant C; for all y € K and all z in a neighbourhood of z*.
As above we denote the trajectories of (2.2) by (z(¢, zo, yo, (")), y(t, yo, u(-))) for
the pair of initial values (zg, yo).
The first step is now to analyze and characterize the null controllability of (2.2).

3. Lyapunov exponents and their approximation. This section is con-
cerned with the asymptotic null controllability of the semilinear system (2.2). From
[7] it is known for bilinear systems that exponential null controllability of (2.2) can
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be characterized by certain Lyapunov exponents provided an accessibility condition
holds and the matrix A does not depend on y. These conditions will be dropped
here and in addition we will show that the characterization is also valid if we replace
exponential null controllability by asymptotic null controllability.

We will first introduce some concepts that will help us characterizing the prop-
erties of (2.2), see [6] and [7] for more details. Afterwards we will show the relation
between different concepts of null controllability and then use these results in order
to extend the approximation results from [12].

In order to measure the exponential null controllability we define the Lyapunov
exponent of a trajectory of (2.2) by

) 1

Azo, yo, u(+)) == limsup — In||z(¢, zo, yo, u(-)||
t—=00 t

Clearly A(zo, yo,u(-)) < 0 iff the corresponding trajectory converges to the origin

exponentially fast. For each pair of initial values we define the infimal Lyapunov

exponent by

A" (20, 90) = u(H)lgu Alz0, Yo, u("))

From the linearity of (2.2) it follows that A(zg, yo, u(-)) = M ezg, yo, u(-)) for all
a € R\ {0}. Hence we can use the projection of the z component to the unit sphere
S1 which is given by

$(t) h(s(t), (1), u(t))
(3.1) g(t) = g(y(t),ut)

where h(s,y,u) = [A(y, u)—sT A(y, u)sld]s where Id denotes the d x d identity matrix.
Denoting the projected trajectory by s(t, so, yo, u(+)) it follows from the chain rule that

for sg = ”j—g” the Lyapunov exponent can be written as
1 t
(3.2)  A(so,yo,u(-)) = limsup — / q(s(7, s0, yo, u(")), y(7,yo, u(-)), u(r))dr
t—=00 t 0
where q(s,y,u) := sT A(y,u)s. This integral is also referred to as an averaged func-
tional.

By defining the exponential growth rate in finite time ¢

1 t )
X (0, yo, () o= L1 2L 2080, Ol
t |Izol|
it 1s easily seen that

(3-3) 2(, 20, g0, u(-))] = ¢ Cov O]z

As above this expression can be written in integral form using the projected system,
l.e. for sg = ”j—g” we obtaln

N 0, () = 7 [ alstr 50,00, 000), 0 0() u(r))r

In our definitions of null controllability we need the notion of a positively invariant
set for the subsystem on M.
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DEFINITION 3.1. A subset K C M s called positively invariant for the subsystem
of (2.2) on M if for all yo € K and all control functions u(-) € U the corresponding
tragectory satisfies y(t, yo, u(-)) € K for all t > 0.

Now we can define the concepts of null controllability, cp. also the stability con-
cepts in [15].

DEFINITION 3.2. Let K C M be a compact positively invariant set for the sub-
system of (2.2) on M.

(i) The system (2.2) is called asymptotically null controllable over K if for any
pair of initial values (zo,yo) € R? x K there exists a control function u(-) € U such
that

th—I}(%Hz(t’ 20, Yo, U())H =0

(ii) The system (2.2) is called exponentially null controllable over K if A* satisfies
SUP (., yo)eRdx K A" (20, Y0) <0

(iii) The system (2.2) is called uniformly exponentially null controllable over K if
there exist constants C, a > 0, such that for any pair of initial values (zo, yo) € R4x K
there emists a control function u(., y,\(-) € U with

[12(t, 20, 90, Ugz,90) (D] < Ce™|0]|

An immediate consequence from (3.3) is that (2.2) is uniformly exponentially null
controllable over K iff there exists a time 7" > 0 and a constant o < 0 such that for any
pair of initial values (29,y0) € RY x K there exists a control function U(z,y0) (1) EU
with

At(ZOa Yo, U(zo,yo)(')) S o <0

forallt > T.

It is easily seen from this definition that (iii) = (ii) = (i). In fact also the converse
is true, i.e. the definitions are equivalent as the following proposition shows.

ProprosiTION 3.3. Let K C M be a compact posilively invariant sel for the
subsystem of (2.2) on M. Then for the system (2.2) asymptotic null controllability
over K implies uniform exponential null controllability over K.

Proof. We will first show the following property: There exist 7' > 0 and ¢ < 0
such that for each (z,y) € R¢ x K there exists a control function Uz y)(-) €U and a
time ¢(; ;) < T such that A'¢ (2, y,u¢; () < 0.

The asymptotic null controllability implies, that for each (Zg,90) € R¢ x K there
exists a time {(guygo) and a control function 4z, g,)(-), such that

L~ 1.
12t (z0,50) 70, Jo, Uz, 50) DI < 3120l

Considering only those Z5 with ||Zg]| = 1 (i.e. Zp € S?7!) and using the continuous
dependence on the initial value we find a neighbourhood U(Zg, g) in S~ x K such
that for each (z,y) € U(Zy, Jo) it holds that

- 1
||Z( (50,170)’Zayau(ioygo)('))n < 5”’2”
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Hence it follows that AfGo.50) (2,9, U(20,50) (1)) < V(50,50) < 0 where

—_

[N

n

7(507370) =7

t(z0, 0).

3

By the compactness of S¢7! x K we may pick a finite number of pairs (%o, o)
such that the neighbourhoods U(Zy, §y) cover S9! x K. Now the independence of
Af from the norm of z yields the asserted property where 7' is the maximum over all
{(guygo) and o < 0 the maximum over all vz, 4,)-

Now pick an arbitrary pair (zp, yo) of initial values. We use the control ug(-) :=
U(zg,y0) () from above up to the time ¢ :=1(., ,,) < T from above and end up at the
point (z1,y1) = (2(t1, 20, Yo, wo(-)), y(to, Yo, uo()). We continue iteratively by defining
tig1 =1 +1(z, y,) and u;(-) = u(z, y,)(-) and define a control function u : Rt = U by

w(t) =t —1;), t € [ti, ti41]

for ¢+ € Ny where t; := 0.

This yields A*#(z2q, yo, u(-)) < o for all ¢;, i € Ny and since ¢; —t;_1 < T' it follows
that for any ¢ > 0 there exists ¢; =: ¢;(¢) with 0 <¢ —¢;(¢t) < T. By the definition of
A we obtain

(1)

Vo, wo,u()) = = XSO (20, yo, u( ) + L)

t

X8O (s, wi ()
which yields
X (20,50, u(")) < o +e(t)

where

) = T (0= g () = X 0,0, u())

implyinge(t) — 0 for ¢ — oo independently from (zg, yo) since A’ is uniformly bounded
for all t > 0 and all (z,y) € R¢ x K. Hence there exists ¢ > 0 and a time 7' > 0 such
that A (zo,y0,u(-)) < o +¢ <0 for all t > T and the assertion follows. O

Using essentially the same arguments as in the previous proof, we can also deter-
mine the uniform upper bound for the values of the A.

ProprosiTION 3.4. Let K C M be a compact posilively invariant sel for the
subsystem of (2.2) on M. Let o := SUP (24 yo)€R4x K A*(z0, ¥o).

Then for each ¢ > 0 there exists a T > 0 such that for any (z0,y0) € R? x K
there exists a control function u(-) € U satisfying

/\t(zo,yo,u(~)) <o+te

forallt >1T.
Proof. For any pair (%o, o) € R? x K there exists a control function U(z,,50) (")
and a time {(guygo) such that

Eos - o~ o~ 2
/\t(zo’yo)(ZO’ Yo, u('goygo)(')) <o+ g
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As in the previous proof continuous dependence and compactness implies that for any
pair (2, y) there exist ¢(, ;) bounded by some 7" and control functions w( ) € U, such
that

2
At(z,y)(z’ Y, u(z,y)()) <o+ 5

Following the previous proof we can iteratively construct control functions satis-
fying

X (z0, 30, u()) < o+ = + (1)

Again ¢(¢) can be chosen independently from (zp, yo) and £(t) — 0 as t = oo; hence
the assertion follows by choosing 7" such that ¢(t) < 5 for all ¢ > 7". O

This result implies that the « in Definition 3.2 (iii) can be chosen arbitrarily close
to the sup-inf Lyapunov exponent ¢ as defined in Proposition 3.4. This Lyapunov
exponent therefore gives the characteristic value for the null controllability of (2.2).

The construction of the stabilizing discrete feedback in the next section — follow-
ing the outline of [11] — is based on the minimization of the Lyapunov exponent. This
is related to minimizing (3.2) which forms an average time optimal control problem,
for which the construction of optimal feedback controls is still an unsolved problem.

Hence we will not approach this problem directly but we will use the approxima-
tion of (3.2) by a discounted functional with discount rate § > 0 defined by

B0 oo ) = [ e als(r 0,0, u0) w0, u(). ()
The function
(3.5) vs (50, Yo) = Jnf Js(s0, Y0, u(-))

1s called the optimal value function of this discounted optimal control problem.

The relation between this problem and the minimization of (3.2) has been dis-
cussed in [12] for the case where (3.1) is locally accessible exploiting the controllability
properties of (3.1). Here we will use Proposition 3.4 in combination with a stronger
version of the Approximation Theorems from [12] in order to show this relation with-
out assuming local accessibility.

LEmMMA 3.5. (Approximation Theorems) Let ¢ : R — R be a measurable
function satisfying |q(s)| < M, for almost all s € R.

(i) Assume there exists a time T > 0 such that

1 t
;/ q(r)dr < o for all t > T
0

Then for any e > 0 and all 0 < 6 < i the following inequality holds:

Mq+€a+a)T
(5/ e Tg(r)dr < o+e

0

(ii) Let 6 > 0 be arbitrary and let

(5/ 6_67(](T)d7' =0
0
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—% In Lq] satisfying

Then for any ¢ > 0 there exists a T € [( I

<
4M +40+4¢)3>

1 T
T/o g(r)dr < o +e.
(iii) Let 6 > 0 be arbitrary and let o € R such that
(5/ e™7q(t+ 7)dr < ¢ for all > 0.
0

Then

1 T
limsup—/ q(r)dr <o
T— 00 T 0

Proof. The rather technical proof can be found in the appendix.

Next we can formulate the consequence for the optimal value function.

THEOREM 3.6. Let K C M be a compact positively invariant sel for the subsystem
on M of (2.2). Then

lim sup dus(s,y) = sup A*(s,y)
50 (5,y)€84-1x K (5,y)€84-1x K

Proof. Let o := sup(, ,)ega-1xK A*(s,y) and ¢ > 0. By Proposition 3.4 there
exists a time 7' > 0 such that for each pair (s,y) € S?! x K there exists a control
function u(-) € Y such that

/\t(s,y,u(~)) <o+ %

By Lemma 3.5 (i) this implies
dJs(s,y,u(’)) <o+e¢
for all sufficiently small 6 > 0. Since ¢ > 0 was arbitrary this implies

lim sup sup dus(s,y) < 0.
§—=0  (s,y)ES4-1xK

Now assume lim infs_o sup, ,)ega-1x g 0vs(s,y) =y < 0. Then there exists § > 0
such that by Bellman’s optimality principle [19, Theorem 1.2] for each pair (s, y) there
exists a control function u(-) satisfying

6J5(5(t’ 5 Y, u())a y(t, Y, u())’ u(t + )) <y<o

forallt > 0. Now by Lemma 3.5 (iii) it follows that A*(s, y) <4 < ¢ which contradicts
the definition of o. Hence the assertion follows. O

This theorem states that the Lyapunov exponent that gives the characteristic
number for null controllability can be approximated by the value function of a dis-
counted optimal control problem.

Since algorithms for the numerical computation of vs are known (cf. e.g. [9] and
[13]) this theorem also lays the foundation for the numerical null controllability analy-
sis of semilinear systems, see also [12]. This is of particular interest because the ques-
tion whether (2.2) is null controllable can in general not by answered by analytical
methods.
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4. Construction of the discrete feedback. We will now present a feedback
construction for the (approximately) optimal solution of the discounted optimal con-
trol problem defined by (3.4) and (3.5), which will then be stabilizing for (2.2).

In general the construction of optimal feedback laws for discounted optimal control
problems 1s an unsolved problem. One of the main problems is that optimal feedbacks
are typically discontinuous and hence properties like the existence and uniqueness of
the corresponding solutions are no longer guaranteed. Some effort has been made in
order to take these difficulties into account e.g. by using differential inclusions (see
[10] and [1]). However, apart from the fact that this approach leads to a character-
ization of optimal trajectories rather than to a construction of a feedback law, from
the stabilization (and application) point of view it seems desirable to preserve these
properties. Furthermore we will need a certain robustness property as discussed in §5
in order to apply the feedback to the nonlinear system.

These considerations lead to a somewhat modified feedback concept which is based
on an approximation of ¥ as introduced in [11]. Theorem 3.6 yields the property
needed for the construction of the stabilizing discrete feedback in §§3 and 4 of this
reference and our construction now follows this outline. We will therefore just give
the idea of the construction and omit the proofs except for the concluding theorem.

We approximate i by

Uy, = {u R —>U | U|[ih,(z’+1)h) =u; for all 7z € Z}

for some time step A > 0. This discretization for discounted optimal control problems
bears some similarity to the discretization in [2] and [3]; in fact what we obtain is a
discrete time system by the process of sampling (cf. [21, Section 2.10]):

(4.1) siv1 = s(h, si, ¥, wi), yier = y(h, vi, wi)

where (u;)iez € UL.
Defining

vg(so, yo) = lelefuh J(;(so, Yo, U())

u(-)
the approximation property
llvs = v3leo < ChZ

holds for v = 6/L where L denotes the Lipschitz constant of (3.1), see [3].
Bellman’s optimality principle [19, Theorem 1.2] yields

Ug(so,yo) =

h
Hellfj" {/ 6_6TQ(5(Ta 50, Yo, U), y(Ta Yo, U), U)dT+ 6_6hv§(5(h’a 50, Yo, U), y(ha Yo, U))}
u 0

By the continuity of all functions involved and the compactness of U we can now
define a function F : S47! x K — U by choosing F(sg,yo) := u € U such that the
infimum above is attained in u.

We may now apply F' to (3.1) by

(4.2)
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We denote the solution trajectories of (4.2) by (sr(t, so,y0), yr(t, yo))-

Feedback laws of this kind can be found in the literature under the name of
modified feedback control [16], [17], sample-and-hold control or sampled feedback [20],
[22] and step-by-step control [18]. Of particular interest in this context is the recent
work [5] where a stabilization result using a “sampled feedback” control is presented.
We will discuss the relation between this work and the present paper in §6.

In our terminology we call F' a “discrete” feedback control, a notion being mo-
tivated by the fact that F' is indeed a feedback control for the discrete time system
(4.1). From this interpretation the existence and uniqueness of the trajectories of
(4.2) is immediately clear.

If we evaluate

T T

Js(s,y, ) == /000 6_67(](85'(7',8,3/), yr (T, y),F(sF({h} h,s,y), yF({h} h,y)T))dr

i.e. the discounted value along the trajectories of (4.2) it follows that Js(s,y, F') =
vl (s,y) for all initial values (s,y) € S x K ([11, Theorem 3.6]). Hence F forms an
optimal discrete feedback for the discounted optimal control problem with respect to
the discretized control functions from /.

In the same way we define the averaged value along the trajectories by

T

h

T

}h’s’y)’yF({h

} h,y)T))dr

/\t(s,y, Fy):= %/0 q(sr(7,5,9), yr(T, y)’F(SF({

By defining Fr(z,y) := F(z/||z||, y) we can apply Fg to the non projected system
(2.2) by

) = AW, Fr(s([5] 0, ([5] 1)) =(0)
o(t) = g(u®), Fe(=([£] h),w([£] h))
(

As above we denote the corresponding trajectories by (2, (¢, %0, o), yry (1, 40)). Ap-
plying Fg this way we can state the following theorem.

THEOREM 4.1. Let K C M be a compact positively invariant set for the subsystem
of (2.2) on M. Then (2.2) is asymptotically null controllable over K if and only if
there exists a time step h and a discrete feedback law Fg : R x K — U such that (4.3)
1s uniformly exponentially stable, 1.e. there exists C', a > 0 such that every trajectory
of (4.3) satisfies the condition from Definition 3.2 (iii).

Proof. “=” Assume asymptotic null controllability of (2.2). By [11, Corollary
3.7], it follows that for any e > 0 there exists h > 0 such that the discrete feedback
as defined above satisfies

(4.3)

(4.4) d0Js(s,y, F) < dus(s,y) +¢

Choosing § > 0 sufficiently small Proposition 3.3 implies that there exists o < 0 such
that 6J5(s,y, F') < o, hence from Lemma 3.5 (ii) we can conclude that for any £ > 0
there exists a bounded time ¢ = t(¢) > 0 such that A'(s,y, F') < o + ¢. Using [11,
Lemma 4.1] we obtain estimate (4.4) for the next trajectory piece and can inductively
obtain the assertion as in the proof of Proposition 3.3.

“«<=" This direction is immediately clear. O

Note that this stabilizing discrete feedback law is numerically computable — at
least for lower dimensional systems — using the algorithm proposed in [11] and [13].
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5. Robustness of the discrete feedback control. From the definition of the
discrete feedback F' and Fg it is obvious that these functions are typically discontin-
uous. Hence by applying this feedback law continuous dependence of the trajectories
on the initial value will in general not hold.

This gives rise to the question of the robustness of the optimal trajectories. More
precisely: Do optimal trajectories remain approximately optimal under small pertur-
bations?

The answer is given in the following proposition and is essentially based on the
Hoelder continuity of vg which satisfies

|0 (s,9) — v} (5, 9)| < C(ds(s, 5) + dar(y, )
where v = 6/L and L is the Lipschitz constant of (3.1). For systems in R”™ this
immediately follows from [3, Lemma 4.1]; the proof is easily transferred to general
manifolds. Here dg and djs denote some metrics on S and M, respectively.

In what follows we allow time varying perturbations of the following kind: Assume
that we have a time varying system on S?~! x K given by

s(t) = h(t,s(t),y(t), u(t)
(5.1) . -

y(t) = gt y(t),u(t))
with trajectories ($(¢,t*, so, Yo, u(+)), ¥(t,t*, yo, u(-))) using the initial time ¢*. TFor
some pair of initial values (sg,yo) and a discrete Feedback F' with time step h > 0
we denote the solution trajectories of (5.1) applying F with initial time ¢* = 0 by
(5r(t,s0,90),yr(t,y0)). Using the abbreviations ¢; := ¢h, §; = §p(t;, S0, Y0), Ui =
gr(ti, yo) and u; := F(8;, ;) we assume

(6.2)  ds(3(t,ts, 55, Ui, wi), s(t, 81, Ui, wi)) + dar (G(E, 6, Ui, wi), y(E, s, wi)) < &y

for all t € [0, ], all i € N and some sequence (g;)en.

PRrROPOSITION 5.1. Consider the system (3.1), a time step h, the corresponding
optimal value function v? and the optimal discrete feedback F. Assume that a sys-
tem (5.1) with the property (5.2) for some pair of initial values (s,y) is given and
denote the trajectories of (5.1) with initial time t* = 0 and the discrete feedback F by
(87 (t,50,%0), Jr (t, ¥0))-

Then for any k € N the following inequality holds

—3hi _ M
|v§(5ay) Jasy, <CZ §hi el + 6hkTq

where
Tssnp) = [ (e (s, o) FGe (2] bos,, e (2] b

is the value along the discrete feedback controlled trajectory of (5.1) and My is the
bound of |q| on S*! x K.

Remark 5.2. Note that the right hand side of this inequality becomes small if the
g; are small for all sufficiently large 1 € .

Proof. From the definition of F' and the assumption (5.2) it follows that

/U(I;(S’y) = /0 q(sF(T’S’y)’yF(T’ y)’F(S’y)) te 6hv§(5F(h,5,y),yF(h,y))

h
=/ 4(Gr(r5,9), 50 (r,y), F(s,9)) + e~ Gr(hy 5, 9), G (b 9)) + Ce)
0
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where |C] < C'. On the other hand we obtain

h

Jé(sﬁy’ F) = / q(gF(TaSay)agF(Ta y)aF(S’y)) + 6_6hJ6(§F(haSay)agF(hay)aF)
0

This yields

|v§(5,y) - j(;(s,y, F)|
S 6_6h|v§(§F(haSay)agF(h’ay)) - J5(§F(ha5ay)agF(hay)aF)| + 068

By observing that vg and Js are bounded by M,/é the assertion follows by induction.
O

This robustness property is the main tool for the linearization result in the next
section.

6. Stabilization of the nonlinear system. We will now return to our original
system (2.1). We recall the fact that f(z,y,u) = A(y, u)r + f(x, y, u) where for y in
a compact set K C M the estimate ||f(z,y,u)|| < C¢||#||* holds for all x € B,,(0),
the ball with radius 5; around 0, cp. (2.3).

In analogy to Definition 3.2 we begin by defining the controllability concepts for
system (2.1). Since we assume that the singular point * coincides with the origin
we may again formulate these concepts in terms of null controllability. As in the
semilinear case we denote the exponential growth rates of a trajectory by

(2, 20, yo, u(-))]]
[[zoll

1
/\jt(xo, yo, u(+)) := n In
and

* . . t
At (o, o) = uﬁ.?iuh?ii‘j“ (o, yo, u(-))
DEFINITION 6.1. Let K C M be a compact positively invariant set for the sub-
system of (2.1) on M.
(i) The system (2.1) is called (locally) asymptotically null controllable over K if
there exists a neighbourhood B(0) of 0 such that for any pair of initial values (xg, yo) €
B(0) x K there exists a control function u(-) € U with

tlg% ||l‘(t, 20, Yo, U())H =0

(ii) The system (2.1) is called (locally) exponentially null controllable over K if
there exists a neighbourhood B(0) of 0 such that SUD (00,50 )€ B(0) x K At(zo,90) < 0.

(iii) The system (2.2) is called (locally) uniformly exponentially null controllable
over K if there exists a neighbourhood B(0) of 0 and constants C, a > 0, such
that for any pair of initial values (xo,yo) € B(0) x K there exists a control function
u(xu,yo)(') € U with

[12(t, 20, Yo, Uiz o) (| < Ce™ [0

As in the semilinear case the implications (iii) = (ii) = (i) are obvious. However,
for nonlinear systems the converse is not true, as the example below will show. Note
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that frequently the notion of exponential stability already demands the uniformity as
in (iil), cf. e.g. [23] or [24].

We will now first prove some a-priori estimates for the solutions of (2.1) and (2.2).

LEMMA 6.2. Abbreviate with (x(t),y(t)) and (z(t),y(t)) the solutions of the sys-
tems (2.1) and (2.2) for a pair of initial values (xg,y0) and a control function u(-).
Let T > 0 be a given time.

Then there exist constants o, 3, C >0 and n(T) > 0 independent from u(-) such
that for all t € [0,T] the following estimates hold:

(1) llz (@) € [e=*|lwoll, e**|lzoll] for all xo € Byr)(0)

(ii) =0l € e llaoll, e**lzc]] for all 2o € B

fii) 11e(0) — =(0)]) < tCe* |lzal]? for all 2o € By (T)(0)
where B, (T)(0) denotes the ball with radius n(T') around the origin.

Proof. (i) We show the estimate for the upper bound; the estimate for the lower
bound follows from (ii) and (iii). From the linearization it follows that

z(t) = zo +/0 Ay(r), u(r))e(r) + f(2(7), y(7), u(r))dT

As long as x(t) € B,, (0) this implies

@I < llzoll +/0 ally(r)lldr

for some constant o > 0. This yields ||z(¢)|| < e*!||z¢]| as long as e**||zo|| < ny and
hence the assertion follows with n(T) = n;/e®T.

(i) This is an easy consequence from the linearity of the system.

(iii) Define m(t) := x(t) — z(¢). From (i) and (i) it follows that ||[m(t)|| < e**||zo]].
Furthermore m is a solution of the differential equation

m(t) = Ay(L), u(t))m(t) + f(y(s), m(t) + z(1), u(t)), 2(0) =0

and thus satisfies

Im(B)] < /0 1A (r), w(m)m(Ol| + |IF (y(r), m(r) + =(7), u(r))||dr

S/O [AQ(r), w(r))m(n)][ + Cr(lm(DI + = (Ollllm(r)]] + |z (7)]*)dr
<ty faoll + [ ylm(s) s

for some constant v > 0. Now the Gronwall Lemma yields

[[m(@)]| < tCre|lzol|*e™
and thus the assertion. O

As in the semilinear case we may now write the exponential growth rate in finite
time in integral form

(oo u()) = 1 [ (om0, 0,0 o, ), ) e
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where

.
irlen) = oo >+%

which can be calculated using the chain rule.
A simple calculation shows that

2 (¢, o, yo, u(-))|| = ||zo||e s (Fove ()t

We can now apply the discrete feedback Fg from the previous sections to (2.1) by
#(t) = f(l‘(t), (@([5] W), u([£] )
g(t) = g(yt), F [%] y([E] )

and denote the resulting trajectories by (zm, (¢, o, yo), yr (¢, ¥0))-
Defining the growth rate of ||z g, (¢, 2o, yo)|| in finite time by

(6.1)

25 (L, o0, o)

M (2o, yo, Fr) == —1
d l|loll

we obtain the following estimate.

LEMMA 6.3. Let d, h > 0 and let F' be an optimal discrete feedback with respect
to vt for the linearization (2.2). Let o := SUD(s,y)eSd-1x K §vl(z,y). Then for any
£ > 0 there exists an interval [C_ (), C~ (¢)] and a constant n(c) > 0 such that for all
pairs of iitial values xq, yo where xo € By(y(0) the estimate

/\jt(xo,yo,F]R) <o+e

holds for some t € [C_(g),C~ (¢)].
Proof. For a fixed pair of initial values (29, yo) and a control function u(-) € Y
we abbreviate #(t) := z(t, 2o, yo, u(+)) and define

Jx(t),y,u) flx(t),y,u)
‘< 2 (0)] >

for s € SL. With sq := zo/||z0l| and 5(¢, 50, yo, u(-)) := (t)/||z(¢)|| it follows that

]Nl(t, S, Y, u) =

g(ta S0, Yo, u()) = h(t’ §(ta 50, Yo, u())’ y(t’ Yo, u())’ u(t))

hence the projection of the trajectory «(¢) onto S forms a solution trajectory of this
time varying control system.
Let now z; := zp,(ih, 2o, yo). Using Lemma 6.2 we obtain

Z(h,l‘i,yi,u) (h TiyYi, U
Z(haxlaylau)H ||$(haxlayla
By Lemma 6.2 z; can be made arbitrarily small for each fixed ¢ € N by choosing

zq sufficiently small and we can use Proposition 5.1 with s = z/||z|| and § = z/||«||
in order to obtain the estimate

1 H < Ml

~ e
dJs(xo,y0, ) < o+ 1
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for all sufficiently small zq.
From the linearization estimates we obtain

5| < Crllill < Crelaol|
]|

for all sufficiently small ||z;||, i.e. all sufficiently small ||xg]].

Hence ||Q(me(ta Lo, yo)a B )/Hme(ta Lo, yO)H — 45 (me(ta Lo, yO)a B )H can be made
arbitrarily small on each bounded time interval by choosing zg sufficiently close to
the origin and using [3, Lemma 4.1] we can conclude

T T 9

§ [ astanre). v (). Faten (7] oo ). v (7] odlr <o+ 5

for all sufficiently small |||

Now Lemma 3.5 (ii) yields the assertion. O

In order prove the stability of (6.1) the last thing that remains to do is putting
together the trajectory pieces.

ProPOSITION 6.4. Consider system (2.1). Let K C M be a compact positively
invariant set for the subsystem of (2.1) on M. Assume that the linearization (2.2) is
asymptotically null controllable over K. Then there is 6 > 0 and h > 0 such that the
system (6.1) with the discrete feedback Fg is uniformly exponentially stable in some
neighbourhood of the origin.

Proof. From the assumptions on the linearization Lemma 6.3 can be applied with
o < 0.

Hence for all sufficiently small initial values ||| there exists a t € [C_ (), C™ ()]
such that

||me(t’ Lo, yO)H

<o+e<0
[[zoll

1 In
[
Abbreviating 1 := 2 g, (¢, 2o, yo) it holds that ||z1]] < ||zo]|. Thus we can proceed
inductively as in the proof of Proposition 3.3 and the assertion follows. O
This proposition gives a characterization of exponential discrete feedback sta-
bilizability by looking at its linearization. However, we would also like to have a
characterization in terms of the nonlinear system itself. Clearly, since we are deal-
ing with linearizations, asymptotic null controllability of the nonlinear system is not
sufficient, see e.g. [4, Example (15)].
In fact, even exponential null controllability is not sufficient, as the following

example shows. Consider
_1 2
D Vetw (7T Y Vetus( 72,
5 3 0

: -1 0 —3
METIEE
where U = [-1,1]3.

We claim that the linearized system is not asymptotically null controllable: Look-
ing at the initial values zo = (0, 22)7, 22 > 0 it is easily seen that

[T

0
A(U)ZO o ( (1 + %Ul + %UQ)ZQ )

Denoting the solution by z(t,zo,u(:)) = (21(t, 20, u(")), 22(¢, 20, u(-)))T we obtain
z1(t, zo,u(+)) = 0 and z2(t, z0, u(-)) > z2 since (1 + %ul(t) + %uz(t)) > 0 for all
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u(-) € U and all ¢ > 0. Thus we can conclude ||z(t, zo, u(-))|| > ||z2|| for all u(-) € U,
meaning that for all initial values zy of the considered form no possible trajectory
converges to the origin, which implies our claim.

However, for any = = (21, 22)7 € C, where C is the cone defined by

sl 2 9 1
C:= R | |— —
{( T2 ) € x] < 10}
we can choose the control u, = (upy, tgo, tp3) := (xl/zgj“ ,0,0) € U. Then a simple
computation yields
1
fle,ug) = (=1 — §ux1)x

and since gy = uy for all & € R\ {0} the solution for u,(-) = u, satisfies
z(t, z,ug(r)) = e(ml=guei)ty

Hence the corresponding trajectory satisfies ||z(t, z, ugz)|| < e_%t||x|| and thus con-
verges to the origin exponentially fast.

For all initial values o € R?\ C we choose u(t) = (=1, —1,sgn(z1)) (with the
convention sgn(0) = 1) as long as the corresponding trajectory stays outside C and
switch to u, from above once the trajectory reaches a point = € C.

Using this control function, any trajectory will enter the cone C in some finite
time and then converge to the origin exponentially fast, thus the overall trajectory
also converges to the origin exponentialy fast. Hence the nonlinear system is expo-
nentially null controllable, although the semilinear system is not even asymptotically
null controllable. Thus exponential null controllability of the nonlinear system does
not imply asymptotic null controllability of the linearized system.

In order to formulate the desired result we therefore need the notion of uniform
exponential null controllability.

THEOREM 6.5. Consider system (2.1). Let K C M be a compact positively
invariant set for the subsystem of (2.1) on M. Then the following properties are
equivalent:

(i) (2.1) is (locally) uniformly exponentially null controllable over K

(ii) (2.2) is asymptotically null controllable over K

(iii) There is h > 0 and a discrete feedback that (locally) stabilizes (2.1) uniformly

exponentially over K

Proof. “(i1)=(iii)” is Proposition 6.4, “(iii)=(i)” is immediately clear. It remains
to show “(i)=(ii)”:

Let B(0) be the neighbourhood in which uniform exponential null controllability
holds. From (i) it follows that for any ¢ > 0 there exists a 7' > 0 such that for all
(xo,y0) € B(0) x K there exists a control function (g, 4, (-) € U with

/\? ($0a Yo, U(xo,yo)(')) <—a+e

Using the estimates from the proof of Lemma 6.3 we obtain for the growth rate of

(2.2)

/\T(xo’ Yo, u(xo,yo)(')) < —a+2e
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for xg sufficiently close to the origin. Due to the linearity of (2.2) this estimate
holds for all zp € R% Now by induction we obtain the assertion as in the proof of
Proposition 3.3. O

This theorem shows in particular that any attempt to stabilize (2.1) at a singular
point by using its linearization must fail if uniform exponential controllability is not
satisfied, because the linearized system will not even be asymptotically null control-
lable. Conversely, exponential discrete feedback stabilization is always possible under
this condition. We have therefore obtained the strongest result possible within the
linearization approach.

A related result has been developed in [5] using Lyapunov functions: It is shown
that for nonlinear systems asymptotic controllability to a (not necessarily singular)
point # implies stabilizability by means of a discrete feedback, where in order to
reach x the step size A must tend to 0. The result can therefore be interpreted as a
kind of practical stabilization. In contrast to this practical stability here we obtain
exponential stability using a discrete feedback with a fized step size.

7. Conclusions. In this paper we developed results on the relation between
null controllability and exponential stabilization by using a discrete feedback law for
nonlinear systems at singular points. The construction of the feedback i1s obtained
by minimizing the Lyapunov exponent of the linearized system, which forms a semi-
linear system. For semilinear systems asymptotic null controllability and exponen-
tial stabilizability by a discrete feedback turned out to be equivalent. For general
nonlinear systems the equivalence between uniform exponential controllability and
uniform exponential stabilizability has been shown. An example illustrated that uni-
form exponential controllability is in fact a necessary condition for the applicability
of linearization techniques.

8. Appendix: Proof of Lemma 3.5. (i) Fix ¢ > 0. We may assume ¢ = —¢
otherwise we use ¢ — 0 — ¢ and My 4 o + ¢ instead of ¢ and M,. Hence there exists
0 < Ty < T such that

To ¢

(8.1) / q(r)dr = —Tpe and / q(r)dr < —=te  for all t > Tp.
0 0

This yields

(8.2) /t q(r)dr < (t = Ty)(—¢e) for all ¢t > Tp.

Since for all y € [0, 1) the inequality In(1 — y) < —y and hence e¥ > 1 — y holds, we
obtain

To To
|/ q(m)dr — / e_étq(r) dr| < Ty(1 — e_éT”)M
0 0

<T(l—eTYM
< OT*M

Thus the inequality in (8.1) implies for § < 377 < 377

To
(8.3) (5/ e~ q(r) dr < §(=Toe + 0T*M) < 0
0
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Now fix € > 0. Since ¢ is bounded there exists T} > T such that
(o) Tl
(8.4) | e_éTq(T) dr — / e_éTq(T) dr| < ¢
To To
From estimate (8.2) choose v > 0 maximal with the property

(8.5) /Tl o (r) dr — /Tﬂ () dr=0

To To

where g7 and ¢~ denote the positive and negative part of g, respectively. Now we can
define a monotonically decreasing sequence 7;, ¢t € N by 7 := 1T}, 7 :=T1 —~, and

Tir1 ;= min{t € [Ty, 7] | —/ q (7) dT—|—/ ) q+(7') dr =0}
t T

T

This sequence 1s well defined: Assume that there exists 7; for some ¢ > 2. In the case
¢ > 2 for all j with ¢ > 5 > 3 the equality

—/Jq_(s)ds—l—/]_ q+(5)d5:—/J_ q_(s)ds—l—/]_ gt (s)ds
Ty T; Ty Tio1

holds and by induction and the choice of v in (8.5) it follows

S [Trma= [T @ [t <o

To : To T1—y

This guarantees the existence of 1;41. Since (7;) is monotone and bounded the se-
quence converges to some 7 > Ty. We claim 7 = Ty:
c. . Ti—y _ T
By the definition of 7; it follows that — sz-1|—1 q~(r)dr + fnl qt(r)dr = 0. The
convergence 7; — T yields the equality

Ty—7y Ty
—/ q_(T)dT—I—/ q+(7')d7':0

This implies f;u q(7) dr = 0, which shows the asserted equality using (8.2).
Hence we can choose k € N such that |rx_1 — Ty| < € and replace 74 by 7 = Top.

Thus we can estimate
(—/ e_éTq_(T) dT—|—/ ) 6_57q+(7') dr) + Mg
Ti41 T

-1

/ QRS

Tq :

2

2

T

(—/ 6_6T’q_(T)dT—|—/ ) 6_6T’q+(7')d7') +Mée
Ti41 Ty

=0

IA
I e
N

I
3

In connection with (8.3) and (8.4) this yields

00 To T 00
/ e=g(r)dr = / e~ q(r) dT+/ e q(r) dT+/ e=°Tq(r)dr <0+ Me+e
0 0 To T,
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Since £ > 0 was arbitrary this proves (i).
(i1) Assume the opposite: Let

1 € In =4+

t
! Mo
t/oq(T)dT>0-+5 for alltE[(4M+40_+6)5’ $ ]

We define ¢ via

This yields

1

¢
—/ J(r)dr > o+ ¢ for all ¢ >
0

3
t (AM + 40 +¢)d

and by (i) (with opposite signs and inequalities) we obtain

(5/ 6_6T§(T)d7' >0+ 3
0 - 4

Hence

(5/ 6_67(](T)d7':(5/ e_éT(j(T)dT—é/lnL q(m) — q(r)dr
0 0 — M

3 o _ér 1
ZU+ZE_6/_1H§LM6 2Mdr = 0'—1—16,

which contradicts the assumption on this discounted integral.
(iii) By (ii) for any ¢ > 0 there exist times 7(t) bounded from below and above
such that

1

(t)
— t+7r)dr<o+e¢
T(t)/o g(t+7)

Hence 74 := 0, 7,41 = 7 + 7(7;) defines a monotonically increasing sequence diverging
to infinity for which there exists ¢ € R such that 7,41 — 7 < a for all ¢ € N. For
arbitrary 7" > 0 let 7;(7) be the maximal element of this sequence satisfying 7y < T'.
Thus we obtain

T—oo

1 T 1 (1) T
lim su —/ 7)dT = lim sup — / TdT—|—/ VdT
pT 0 q( ) T—>oopT ]Z:% Tio1 q( ) Ti(T) q( )
M

<limsup<a—|—6—|—a—) = o+¢
T Tooo T

Since ¢ > 0 was arbitrary the assertion follows.O
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