
ASYMPTOTIC CONTROLLABILITY AND EXPONENTIALSTABILIZATION OF NONLINEAR CONTROL SYSTEMS ATSINGULAR POINTSLARS GR�UNEyAbstract. We discuss the relation between exponential stabilization and asymptotic control-lability of nonlinear control systems with constrained control range at singular points. Using adiscounted optimal control approach we construct discrete feedback laws minimizing the Lyapunovexponent of the linearization. Thus we obtain an equivalence result between uniform exponentialcontrollability and uniform exponential stabilizability by means of a discrete feedback law.Key words. stabilization, nonlinear control systems, singular points, Lyapunov exponents,discounted optimal control problems, discrete feedback controlAMS subject classi�cations. 93D15, 93D221. Introduction. In this paper we will present a technique for the exponentialstabilization of nonlinear control systems with constrained control range at singularpoints. In particular we address the relation between asymptotic controllability andexponential stabilization and will derive an equivalence theorem. In our context asingular point is a �xed point for each admissible control value of the control system.Such singular situations do typically occur if the control enters in the parametersof an uncontrolled systems at a �xed point, for instance when the restoring forceof a nonlinear oscillator is controlled. One example our results can be applied to isthe stabilization problem of an inverted pendulum for which the suspension point ismoved up an down periodically and the period of this motion can be controlled, cf.[14]. The main tool used throughout this paper is the linearization of the nonlinearsystem which forms a semilinear system. For two-dimensional control a�ne systemsthis linearization approach has been carried out in [4], giving a characterization offeedback stabilizability by algebraic methods.The approach we follow here is based on optimal control techniques. More pre-cisely, we consider the Lyapunov exponents of the linearization and formulate a dis-counted optimal control problem in order to minimize these exponents, an idea thathas �rst been presented in [12]. Lyapunov exponents have recently turned out to bea suitable tool for the stability analysis of semilinear systems, see e.g. [7] and [8], andalso for their stabilization [11]. However, due to the fact that for discounted optimalcontrol problems optimal feedback laws are in general not available, we modify thefeedback concept and introduce discrete feedback laws that are based on a discretetime sampled approximation of the given continuous time system. Using this ap-proach it could be shown in [11] that for semilinear systems satisfying an accessibilitycondition exponential null controllability is equivalent to exponential stabilizability bydiscrete feedbacks. Using a similar feedback concept a result on the relation betweenasymptotic null controllability and practical stabilization for nonlinear systems hasbeen developed in [5] using Lyapunov functions.This paper is organized in two parts. In the �rst part we will focus on semilin-ear systems and extend the results from [11] and [12]. In particular in x3 we willyInstitut f�ur Mathematik, Universit�at Augsburg, Universit�atsstr. 14, 86135 Augsburg, Ger-many, E-Mail: Lars.Gruene@Math.Uni-Augsburg.de. Research partially supported by DFG GrantCo 124/12-2 1



2 LARS GR�UNEdiscuss di�erent null controllability concepts for semilinear systems and extend theapproximation results from [12] to general semilinear systems without any accessibil-ity assumptions. Then in x4 we will use this result in order to construct a stabilizingdiscrete feedback law following the outline of [11].In the second part we will apply this discrete feedback to a general nonlinearsystem at a singular point. For this purpose we will �rst prove a robustness propertyof the discrete feedback in x5. Using this result we will present the main theorem inx6, stating that (local) uniform exponential null controllability is equivalent to (local)exponential stabilizability by means of a discrete feedback.2. Preliminaries. We are interested in the stabilization of nonlinear controlsystems on Rd�M given by _x(t) = f(x(t); y(t); u(t))_y(t) = g(y(t); u(t))(2.1)where x 2 Rd and y 2M , M some Riemannian Manifold and f and g are vector�eldswhich are C2 in x, Lipschitz in y and continuous in u. The control function u(�) maybe chosen from the set U := fu : R! U ju(�) measurableg where U � Rm is compact,i.e. we have a constrained set of control values.For each pair (x0; y0) of initial values the trajectories of (2.1) will be denoted bythe pair (x(t; x0; y0; u(�)); y(t; y0; u(�))) and we assume them to exist uniquely for alltimes.Our interest lies on the stabilization of the x-component at a singular point x�,i.e. a point where f(x�; y; u) = 0 for all (y; u) 2 M � U . Throughout the paper wewill assume x� = 0.Note that our general setup covers several models: The additional equation for yallows us to model systems where time varying parametric excitations governed by anadditional (nonlinear) control or dynamical system enter the system to be stabilized.The case in which the control u does not enter explicitly in the function f and thecase in which f does not depend on y occur as special situations in this setup, hencethey are also covered.Our main tool for the stabilization is the linearization of (2.1) at the singularpoint which is given by _z(t) = A(y(t); u(t))z(t)_y(t) = g(y(t); u(t))(2.2)Here A(y; u) := @@xf(x�; y; u) 2 Rd�d and f(x; y; u) = A(y; u)x+ ~f (x; y; u). Then forany given compact subset K � M the di�erentiability assumption on f implies theinequality k ~f (x; y; u)k � Cfkxk2(2.3)which holds for some constant Cf for all y 2 K and all x in a neighbourhood of x�.As above we denote the trajectories of (2.2) by (z(t; z0; y0; u(�)); y(t; y0; u(�))) forthe pair of initial values (z0; y0).The �rst step is now to analyze and characterize the null controllability of (2.2).3. Lyapunov exponents and their approximation. This section is con-cerned with the asymptotic null controllability of the semilinear system (2.2). From[7] it is known for bilinear systems that exponential null controllability of (2.2) can



CONTROLLABILITY AND STABILIZATION AT SINGULAR POINTS 3be characterized by certain Lyapunov exponents provided an accessibility conditionholds and the matrix A does not depend on y. These conditions will be droppedhere and in addition we will show that the characterization is also valid if we replaceexponential null controllability by asymptotic null controllability.We will �rst introduce some concepts that will help us characterizing the prop-erties of (2.2), see [6] and [7] for more details. Afterwards we will show the relationbetween di�erent concepts of null controllability and then use these results in orderto extend the approximation results from [12].In order to measure the exponential null controllability we de�ne the Lyapunovexponent of a trajectory of (2.2) by�(z0; y0; u(�)) := lim supt!1 1t ln kz(t; z0; y0; u(�)kClearly �(z0; y0; u(�)) < 0 i� the corresponding trajectory converges to the originexponentially fast. For each pair of initial values we de�ne the in�mal Lyapunovexponent by ��(z0; y0) := infu(�)2U �(z0; y0; u(�))From the linearity of (2.2) it follows that �(z0; y0; u(�)) = �(�z0; y0; u(�)) for all� 2 Rn f0g. Hence we can use the projection of the z component to the unit sphereSd�1 which is given by _s(t) = h(s(t); y(t); u(t))_y(t) = g(y(t); u(t))(3.1)where h(s; y; u) = [A(y; u)�sTA(y; u)sId]s where Id denotes the d�d identity matrix.Denoting the projected trajectory by s(t; s0; y0; u(�)) it follows from the chain rule thatfor s0 = z0kz0k the Lyapunov exponent can be written as�(s0; y0; u(�)) = lim supt!1 1t Z t0 q(s(�; s0; y0; u(�)); y(�; y0; u(�)); u(� ))d�(3.2)where q(s; y; u) := sTA(y; u)s. This integral is also referred to as an averaged func-tional.By de�ning the exponential growth rate in �nite time t�t(z0; y0; u(�)) := 1t ln kz(t; z0; y0; u(�)kkz0kit is easily seen that kz(t; z0; y0; u(�))k = et�t(z0;y0;u(�))kz0k(3.3)As above this expression can be written in integral form using the projected system,i.e. for s0 = z0kz0k we obtain�t(s0; y0; u(�)) = 1t Z t0 q(s(�; s0; y0; u(�)); y(�; y0; u(�)); u(� ))d�In our de�nitions of null controllability we need the notion of a positively invariantset for the subsystem on M .



4 LARS GR�UNEDefinition 3.1. A subset K � M is called positively invariant for the subsystemof (2.2) on M if for all y0 2 K and all control functions u(�) 2 U the correspondingtrajectory satis�es y(t; y0; u(�)) 2 K for all t > 0.Now we can de�ne the concepts of null controllability, cp. also the stability con-cepts in [15].Definition 3.2. Let K � M be a compact positively invariant set for the sub-system of (2.2) on M .(i) The system (2.2) is called asymptotically null controllable over K if for anypair of initial values (z0; y0) 2 Rd �K there exists a control function u(�) 2 U suchthat limt!0kz(t; z0; y0; u(�))k = 0(ii) The system (2.2) is called exponentially null controllable over K if �� satis�essup(z0 ;y0)2Rd�K ��(z0; y0) < 0(iii) The system (2.2) is called uniformly exponentially null controllable over K ifthere exist constants C, � > 0, such that for any pair of initial values (z0; y0) 2 Rd�Kthere exists a control function u(z0;y0)(�) 2 U withkz(t; z0; y0; u(z0;y0)(�))k � Ce��tkz0kAn immediate consequence from (3.3) is that (2.2) is uniformly exponentially nullcontrollable over K i� there exists a time T > 0 and a constant � < 0 such that for anypair of initial values (z0; y0) 2 Rd �K there exists a control function u(z0;y0)(�) 2 Uwith �t(z0; y0; u(z0;y0)(�)) � � < 0for all t � T .It is easily seen from this de�nition that (iii)) (ii)) (i). In fact also the converseis true, i.e. the de�nitions are equivalent as the following proposition shows.Proposition 3.3. Let K � M be a compact positively invariant set for thesubsystem of (2.2) on M . Then for the system (2.2) asymptotic null controllabilityover K implies uniform exponential null controllability over K.Proof. We will �rst show the following property: There exist T > 0 and � < 0such that for each (z; y) 2 Rd�K there exists a control function u(z;y)(�) 2 U and atime t(z;y) � T such that �t(z;y)(z; y; u(z;y)(�)) < �.The asymptotic null controllability implies, that for each (~z0; ~y0) 2 Rd�K thereexists a time ~t(~z0;~y0) and a control function ~u(~z0;~y0)(�), such thatkz(~t(~z0;~y0); ~z0; ~y0; ~u(~z0;~y0)(�))k < 13k~z0kConsidering only those ~z0 with k~z0k = 1 (i.e. ~z0 2 Sd�1) and using the continuousdependence on the initial value we �nd a neighbourhood U (~z0; ~y0) in Sd�1�K suchthat for each (z; y) 2 U (~z0; ~y0) it holds thatkz(~t(~z0;~y0); z; y; ~u(~z0;~y0)(�))k < 12kzk:



CONTROLLABILITY AND STABILIZATION AT SINGULAR POINTS 5Hence it follows that �~t(~z0 ;~y0) (z; y; ~u(~z0;~y0)(�)) < (~z0;~y0) < 0 where(~z0;~y0) = ln 12~t(~z0;~y0) :By the compactness of Sd�1 � K we may pick a �nite number of pairs (~z0; ~y0)such that the neighbourhoods U (~z0; ~y0) cover Sd�1 � K. Now the independence of�t from the norm of z yields the asserted property where T is the maximum over all~t(~z0;~y0) and � < 0 the maximum over all (~z0;~y0).Now pick an arbitrary pair (z0; y0) of initial values. We use the control u0(�) :=u(z0;y0)(�) from above up to the time t1 := t(z0;y0) < T from above and end up at thepoint (z1; y1) = (z(t1; z0; y0; u0(�)); y(t0; y0; u0(�)). We continue iteratively by de�ningti+1 := ti+ t(zi;yi) and ui(�) := u(zi;yi)(�) and de�ne a control function u : R+ ! U byu(t) := ui(t� ti); t 2 [ti; ti+1]for i 2 N0 where t0 := 0.This yields �ti(z0; y0; u(�)) < � for all ti, i 2 N0 and since ti � ti�1 < T it followsthat for any t > 0 there exists ti =: ti(t) with 0 � t � ti(t) < T . By the de�nition of�t we obtain�t(z0; y0; u(�)) = ti(t)t �ti(t)(z0; y0; u(�)) + t� ti(t)t �t�ti(t)(zi; yi; ui(�))which yields �t(z0; y0; u(�)) < � + "(t)where "(t) = t� ti(t)t ��t�ti(t)(zi; yi; ui(�))� �ti(t)(z0; y0; u(�))�implying "(t) ! 0 for t!1 independently from (z0; y0) since �t is uniformly boundedfor all t > 0 and all (z; y) 2 Rd�K. Hence there exists " > 0 and a time T > 0 suchthat �t(z0; y0; u(�)) < � + " < 0 for all t � T and the assertion follows.Using essentially the same arguments as in the previous proof, we can also deter-mine the uniform upper bound for the values of the �t.Proposition 3.4. Let K � M be a compact positively invariant set for thesubsystem of (2.2) on M . Let � := sup(z0;y0)2Rd�K ��(z0; y0).Then for each " > 0 there exists a T > 0 such that for any (z0; y0) 2 Rd � Kthere exists a control function u(�) 2 U satisfying�t(z0; y0; u(�)) < � + "for all t � T .Proof. For any pair (~z0; ~y0) 2 Rd � K there exists a control function ~u(~z0;~y0)(�)and a time ~t(~z0;~y0) such that�~t(~z0;~y0) (~z0; ~y0; ~u(~z0;~y0)(�)) < � + "3



6 LARS GR�UNEAs in the previous proof continuous dependence and compactness implies that for anypair (z; y) there exist t(z;y) bounded by some ~T and control functions u(z;y) 2 U , suchthat �t(z;y)(z; y; u(z;y)(�)) < � + "2Following the previous proof we can iteratively construct control functions satis-fying �t(z0; y0; u(�)) < � + "2 + "(t)Again "(t) can be chosen independently from (z0; y0) and "(t) ! 0 as t ! 1; hencethe assertion follows by choosing T such that "(t) < "2 for all t � T .This result implies that the � in De�nition 3.2 (iii) can be chosen arbitrarily closeto the sup-inf Lyapunov exponent � as de�ned in Proposition 3.4. This Lyapunovexponent therefore gives the characteristic value for the null controllability of (2.2).The construction of the stabilizing discrete feedback in the next section | follow-ing the outline of [11] | is based on the minimization of the Lyapunov exponent. Thisis related to minimizing (3.2) which forms an average time optimal control problem,for which the construction of optimal feedback controls is still an unsolved problem.Hence we will not approach this problem directly but we will use the approxima-tion of (3.2) by a discounted functional with discount rate � > 0 de�ned byJ�(s0; y0; u(�)) := Z 10 e��� q(s(�; s0; y0; u(�)); y(�; y0; u(�)); u(� ))d�(3.4)The function v�(s0; y0) := infu(�)2U J�(s0; y0; u(�))(3.5)is called the optimal value function of this discounted optimal control problem.The relation between this problem and the minimization of (3.2) has been dis-cussed in [12] for the case where (3.1) is locally accessible exploiting the controllabilityproperties of (3.1). Here we will use Proposition 3.4 in combination with a strongerversion of the Approximation Theorems from [12] in order to show this relation with-out assuming local accessibility.Lemma 3.5. (Approximation Theorems) Let q : R ! R be a measurablefunction satisfying jq(s)j < Mq for almost all s 2 R.(i) Assume there exists a time T > 0 such that1t Z t0 q(� )d� < � for all t � TThen for any " > 0 and all 0 < � < "(Mq+�+")T the following inequality holds:� Z 10 e��� q(� )d� � � + "(ii) Let � > 0 be arbitrary and let� Z 10 e��� q(� )d� =: �



CONTROLLABILITY AND STABILIZATION AT SINGULAR POINTS 7Then for any " > 0 there exists a T 2 [ "(4Mq+4�+")� ;�1� ln "4Mq ] satisfying1T Z T0 q(� )d� � � + ":(iii) Let � > 0 be arbitrary and let � 2 R such that� Z 10 e��� q(t+ � )d� � � for all t � 0:Then lim supT!1 1T Z T0 q(� )d� � �Proof. The rather technical proof can be found in the appendix.Next we can formulate the consequence for the optimal value function.Theorem 3.6. LetK � M be a compact positively invariant set for the subsystemon M of (2.2). Thenlim�!0 sup(s;y)2Sd�1�K �v�(s; y) = sup(s;y)2Sd�1�K ��(s; y)Proof. Let � := sup(s;y)2Sd�1�K ��(s; y) and " > 0. By Proposition 3.4 thereexists a time T > 0 such that for each pair (s; y) 2 Sd�1 �K there exists a controlfunction u(�) 2 U such that �t(s; y; u(�)) < � + "2 :By Lemma 3.5 (i) this implies �J�(s; y; u(�)) < � + "for all su�ciently small � > 0. Since " > 0 was arbitrary this implieslim sup�!0 sup(s;y)2Sd�1�K �v�(s; y) � �:Now assume lim inf�!0 sup(s;y)2Sd�1�K �v�(s; y) =  < �. Then there exists � > 0such that by Bellman's optimality principle [19, Theorem 1.2] for each pair (s; y) thereexists a control function u(�) satisfying�J�(s(t; s; y; u(�)); y(t; y; u(�)); u(t+ �)) < ~ < �for all t � 0. Now by Lemma3.5 (iii) it follows that ��(s; y) � ~ < � which contradictsthe de�nition of �. Hence the assertion follows.This theorem states that the Lyapunov exponent that gives the characteristicnumber for null controllability can be approximated by the value function of a dis-counted optimal control problem.Since algorithms for the numerical computation of v� are known (cf. e.g. [9] and[13]) this theorem also lays the foundation for the numerical null controllability analy-sis of semilinear systems, see also [12]. This is of particular interest because the ques-tion whether (2.2) is null controllable can in general not by answered by analyticalmethods.



8 LARS GR�UNE4. Construction of the discrete feedback. We will now present a feedbackconstruction for the (approximately) optimal solution of the discounted optimal con-trol problem de�ned by (3.4) and (3.5), which will then be stabilizing for (2.2).In general the construction of optimal feedback laws for discounted optimal controlproblems is an unsolved problem. One of the main problems is that optimal feedbacksare typically discontinuous and hence properties like the existence and uniqueness ofthe corresponding solutions are no longer guaranteed. Some e�ort has been made inorder to take these di�culties into account e.g. by using di�erential inclusions (see[10] and [1]). However, apart from the fact that this approach leads to a character-ization of optimal trajectories rather than to a construction of a feedback law, fromthe stabilization (and application) point of view it seems desirable to preserve theseproperties. Furthermore we will need a certain robustness property as discussed in x5in order to apply the feedback to the nonlinear system.These considerations lead to a somewhatmodi�ed feedback concept which is basedon an approximation of U as introduced in [11]. Theorem 3.6 yields the propertyneeded for the construction of the stabilizing discrete feedback in xx3 and 4 of thisreference and our construction now follows this outline. We will therefore just givethe idea of the construction and omit the proofs except for the concluding theorem.We approximate U byUh := fu : R! U juj[ih;(i+1)h) � ui for all i 2Zgfor some time step h > 0. This discretization for discounted optimal control problemsbears some similarity to the discretization in [2] and [3]; in fact what we obtain is adiscrete time system by the process of sampling (cf. [21, Section 2.10]):si+1 = s(h; si; yi; ui); yi+1 = y(h; yi; ui)(4.1)where (ui)i2Z2 UZ.De�ning vh� (s0; y0) := infu(�)2Uh J�(s0; y0; u(�))the approximation property kv� � vh� k1 � Ch 2holds for  = �=L where L denotes the Lipschitz constant of (3.1), see [3].Bellman's optimality principle [19, Theorem 1.2] yieldsvh� (s0; y0) =infu2U(Z h0 e��� q(s(�; s0; y0; u); y(�; y0; u); u)d� + e��hvh� (s(h; s0; y0; u); y(h; y0; u)))By the continuity of all functions involved and the compactness of U we can nowde�ne a function F : Sd�1 � K ! U by choosing F (s0; y0) := u 2 U such that thein�mum above is attained in u.We may now apply F to (3.1) by_s(t) = h(s(t); y(t); F (s(� th �h); y(� th�h)))_y(t) = g(y(t); F (s(� th�h); y(� th� h)))(4.2)



CONTROLLABILITY AND STABILIZATION AT SINGULAR POINTS 9We denote the solution trajectories of (4.2) by (sF (t; s0; y0); yF (t; y0)).Feedback laws of this kind can be found in the literature under the name ofmodi�ed feedback control [16], [17], sample-and-hold control or sampled feedback [20],[22] and step-by-step control [18]. Of particular interest in this context is the recentwork [5] where a stabilization result using a \sampled feedback" control is presented.We will discuss the relation between this work and the present paper in x6.In our terminology we call F a \discrete" feedback control, a notion being mo-tivated by the fact that F is indeed a feedback control for the discrete time system(4.1). From this interpretation the existence and uniqueness of the trajectories of(4.2) is immediately clear.If we evaluateJ�(s; y; F ) := Z 10 e��� q(sF (�; s; y); yF (�; y); F (sF (h�hih; s; y); yF (h �hih; y)� ))d�i.e. the discounted value along the trajectories of (4.2) it follows that J�(s; y; F ) =vh� (s; y) for all initial values (s; y) 2 S� K ([11, Theorem 3.6]). Hence F forms anoptimal discrete feedback for the discounted optimal control problem with respect tothe discretized control functions from Uh.In the same way we de�ne the averaged value along the trajectories by�t(s; y; F ) := 1t Z t0 q(sF (�; s; y); yF (�; y); F (sF (h�hih; s; y); yF (h�hih; y)� ))d�By de�ning FR(z; y) := F (z=kzk; y) we can apply FRto the non projected system(2.2) by _z(t) = A(y(t); FR(s(� th� h); y(� th �h)))z(t)_y(t) = g(y(t); FR(z(� th�h); y(� th �h)))(4.3)As above we denote the corresponding trajectories by (xFR(t; x0; y0); yFR(t; y0)). Ap-plying FRthis way we can state the following theorem.Theorem 4.1. LetK � M be a compact positively invariant set for the subsystemof (2.2) on M . Then (2.2) is asymptotically null controllable over K if and only ifthere exists a time step h and a discrete feedback law FR: R�K! U such that (4.3)is uniformly exponentially stable, i.e. there exists C, � > 0 such that every trajectoryof (4.3) satis�es the condition from De�nition 3.2 (iii).Proof. \)" Assume asymptotic null controllability of (2.2). By [11, Corollary3.7], it follows that for any " > 0 there exists h > 0 such that the discrete feedbackas de�ned above satis�es �J�(s; y; F ) < �v�(s; y) + "(4.4)Choosing � > 0 su�ciently small Proposition 3.3 implies that there exists � < 0 suchthat �J�(s; y; F ) < �, hence from Lemma 3.5 (ii) we can conclude that for any " > 0there exists a bounded time t = t(") > 0 such that �t(s; y; F ) < � + ". Using [11,Lemma 4.1] we obtain estimate (4.4) for the next trajectory piece and can inductivelyobtain the assertion as in the proof of Proposition 3.3.\(" This direction is immediately clear.Note that this stabilizing discrete feedback law is numerically computable | atleast for lower dimensional systems | using the algorithm proposed in [11] and [13].



10 LARS GR�UNE5. Robustness of the discrete feedback control. From the de�nition of thediscrete feedback F and FRit is obvious that these functions are typically discontin-uous. Hence by applying this feedback law continuous dependence of the trajectorieson the initial value will in general not hold.This gives rise to the question of the robustness of the optimal trajectories. Moreprecisely: Do optimal trajectories remain approximately optimal under small pertur-bations?The answer is given in the following proposition and is essentially based on theHoelder continuity of vh� which satis�esjvh� (s; y) � vh� (~s; ~y)j � C(dS(s; ~s) + dM(y; ~y))where  = �=L and L is the Lipschitz constant of (3.1). For systems in Rn thisimmediately follows from [3, Lemma 4.1]; the proof is easily transferred to generalmanifolds. Here dSand dM denote some metrics on Sand M , respectively.In what follows we allow time varying perturbations of the following kind: Assumethat we have a time varying system on Sd�1�K given by_s(t) = ~h(t; s(t); y(t); u(t))_y(t) = ~g(t; y(t); u(t))(5.1)with trajectories (~s(t; t�; s0; y0; u(�)); ~y(t; t�; y0; u(�))) using the initial time t�. Forsome pair of initial values (s0; y0) and a discrete Feedback F with time step h > 0we denote the solution trajectories of (5.1) applying F with initial time t� = 0 by(~sF (t; s0; y0); ~yF (t; y0)). Using the abbreviations ti := ih, ~si := ~sF (ti; s0; y0), ~yi :=~yF (ti; y0) and ui := F (~si; ~yi) we assumedS(~s(t; ti; ~si; ~yi; ui); s(t; ~si; ~yi; ui)) + dM(~y(t; ti; ~yi; ui); y(t; ~yi; ui)) < "i(5.2)for all t 2 [0; h], all i 2 N and some sequence ("i)i2N.Proposition 5.1. Consider the system (3.1), a time step h, the correspondingoptimal value function vh� and the optimal discrete feedback F . Assume that a sys-tem (5.1) with the property (5.2) for some pair of initial values (s; y) is given anddenote the trajectories of (5.1) with initial time t� = 0 and the discrete feedback F by(~sF (t; s0; y0); ~yF (t; y0)).Then for any k 2 N the following inequality holdsjvh� (s; y) � ~J�(s; y; F )j < C k�1Xi=0 e��hi"i + 2e��hkMq�where~J�(s; y; F ) := Z 10 e��� q(~sF (�; s; y); ~yF (�; y); F (~sF (h�hih; s; y); ~yF (h �hih; y)� ))d�is the value along the discrete feedback controlled trajectory of (5.1) and Mq is thebound of jqj on Sd�1�K.Remark 5.2. Note that the right hand side of this inequality becomes small if the"i are small for all su�ciently large i 2 N.Proof. From the de�nition of F and the assumption (5.2) it follows thatvh� (s; y) = Z h0 q(sF (�; s; y); yF (�; y); F (s; y)) + e��hvh� (sF (h; s; y); yF (h; y))= Z h0 q(~sF (�; s; y); ~yF (�; y); F (s; y)) + e��hvh� (~sF (h; s; y); ~yF (h; y)) + ~C"0



CONTROLLABILITY AND STABILIZATION AT SINGULAR POINTS 11where j ~Cj < C. On the other hand we obtain~J�(s; y; F ) = Z h0 q(~sF (�; s; y); ~yF (�; y); F (s; y)) + e��h ~J�(~sF (h; s; y); ~yF (h; y); F )This yieldsjvh� (s; y) � ~J�(s; y; F )j� e��hjvh� (~sF (h; s; y); ~yF (h; y)) � ~J�(~sF (h; s; y); ~yF (h; y); F )j+ C"0By observing that vh� and ~J� are bounded by Mq=� the assertion follows by induction.This robustness property is the main tool for the linearization result in the nextsection.6. Stabilization of the nonlinear system. We will now return to our originalsystem (2.1). We recall the fact that f(x; y; u) = A(y; u)x + ~f (x; y; u) where for y ina compact set K � M the estimate k ~f(x; y; u)k � Cfkxk2 holds for all x 2 B�f (0),the ball with radius �f around 0, cp. (2.3).In analogy to De�nition 3.2 we begin by de�ning the controllability concepts forsystem (2.1). Since we assume that the singular point x� coincides with the originwe may again formulate these concepts in terms of null controllability. As in thesemilinear case we denote the exponential growth rates of a trajectory by�tf (x0; y0; u(�)) := 1t ln kx(t; x0; y0; u(�))kkx0kand ��f (x0; y0) := infu(�)2U lim supt!1 �t(x0; y0; u(�))Definition 6.1. Let K � M be a compact positively invariant set for the sub-system of (2.1) on M .(i) The system (2.1) is called (locally) asymptotically null controllable over K ifthere exists a neighbourhood B(0) of 0 such that for any pair of initial values (x0; y0) 2B(0) �K there exists a control function u(�) 2 U withlimt!0kx(t; z0; y0; u(�))k = 0(ii) The system (2.1) is called (locally) exponentially null controllable over K ifthere exists a neighbourhood B(0) of 0 such that sup(x0;y0)2B(0)�K ��f (x0; y0) < 0.(iii) The system (2.2) is called (locally) uniformly exponentially null controllableover K if there exists a neighbourhood B(0) of 0 and constants C, � > 0, suchthat for any pair of initial values (x0; y0) 2 B(0) �K there exists a control functionu(x0;y0)(�) 2 U with kz(t; x0; y0; u(x0;y0)(�))k � Ce��tkx0kAs in the semilinear case the implications (iii)) (ii)) (i) are obvious. However,for nonlinear systems the converse is not true, as the example below will show. Note



12 LARS GR�UNEthat frequently the notion of exponential stability already demands the uniformity asin (iii), cf. e.g. [23] or [24].We will now �rst prove some a-priori estimates for the solutions of (2.1) and (2.2).Lemma 6.2. Abbreviate with (x(t); y(t)) and (z(t); y(t)) the solutions of the sys-tems (2.1) and (2.2) for a pair of initial values (x0; y0) and a control function u(�).Let T > 0 be a given time.Then there exist constants �; �; C > 0 and �(T ) > 0 independent from u(�) suchthat for all t 2 [0; T ] the following estimates hold:(i) kx(t)k 2 [e��tkx0k; e�tkx0k] for all x0 2 B�(T )(0)(ii) kz(t)k 2 [e��tkx0k; e�tkx0k] for all x0 2 Rd(iii) kx(t)� z(t)k � tCe�tkx0k2 for all x0 2 B�(T )(0)where B�(T )(0) denotes the ball with radius �(T ) around the origin.Proof. (i) We show the estimate for the upper bound; the estimate for the lowerbound follows from (ii) and (iii). From the linearization it follows thatx(t) = x0 + Z t0 A(y(� ); u(� ))x(� ) + ~f(x(� ); y(� ); u(� ))d�As long as x(t) 2 B�f (0) this implieskx(t)k � kx0k+ Z t0 �ky(� )kd�for some constant � > 0. This yields kx(t)k � e�tkx0k as long as e�tkx0k � �f andhence the assertion follows with �(T ) = �f=e�T .(ii) This is an easy consequence from the linearity of the system.(iii) De�ne m(t) := x(t)�z(t). From (i) and (ii) it follows that km(t)k � e�tkx0k.Furthermore m is a solution of the di�erential equation_m(t) = A(y(t); u(t))m(t) + ~f(y(s); m(t) + z(t); u(t)); z(0) = 0and thus satis�eskm(t)k � Z t0 kA(y(� ); u(� ))m(� )k+ k ~f(y(� ); m(� ) + z(� ); u(� ))kd�� Z t0 kA(y(� ); u(� ))m(� )k+ Cf (km(� )k2 + kz(� )kkm(� )k+ kz(� )k2)d�� tCfe2�tkx0k2 + Z t0 km(s)kdsfor some constant  > 0. Now the Gronwall Lemma yieldskm(t)k � tCfe2�tkx0k2etand thus the assertion.As in the semilinear case we may now write the exponential growth rate in �nitetime in integral form�tf (x0; y0; u(�)) = 1t Z t0 qf (x(�; x0; y0; u(�)); y(�; y0; u(�)); u(� ))d�



CONTROLLABILITY AND STABILIZATION AT SINGULAR POINTS 13where qf (x; y; u) = q( xkxk ; y; u) + xt ~f(x; y; u)kxk2which can be calculated using the chain rule.A simple calculation shows thatkx(t; x0; y0; u(�))k = kx0ket�tf (x0;y0;u(�))t:We can now apply the discrete feedback FRfrom the previous sections to (2.1) by_x(t) = f(x(t); y(t); FR(x(� th�h); y(� th �h)))_y(t) = g(y(t); FR(x(� th�h); y(� th �h)))(6.1)and denote the resulting trajectories by (xFR(t; x0; y0); yFR(t; y0)).De�ning the growth rate of kxFR(t; x0; y0)k in �nite time by�tf (x0; y0; FR) := 1t ln kxFR(t; x0; y0)kkx0kwe obtain the following estimate.Lemma 6.3. Let �; h > 0 and let F be an optimal discrete feedback with respectto vh� for the linearization (2.2). Let � := sup(s;y)2Sd�1�K �vh� (x; y). Then for any" > 0 there exists an interval [C�("); C�(")] and a constant �(") > 0 such that for allpairs of initial values x0; y0 where x0 2 B�(")(0) the estimate�tf (x0; y0; FR) � � + "holds for some t 2 [C�("); C�(")].Proof. For a �xed pair of initial values (x0; y0) and a control function u(�) 2 Uwe abbreviate x(t) := x(t; x0; y0; u(�)) and de�ne~h(t; s; y; u) = f(x(t); y; u)kx(t)k ��f(x(t); y; u)kx(t)k ; s� sfor s 2Sd�1. With s0 := x0=kx0k and ~s(t; s0; y0; u(�)) := x(t)=kx(t)k it follows that_~s(t; s0; y0; u(�)) = ~h(t; ~s(t; s0; y0; u(�)); y(t; y0; u(�)); u(t))hence the projection of the trajectory x(t) onto Sforms a solution trajectory of thistime varying control system.Let now xi := xFR(ih; x0; y0). Using Lemma 6.2 we obtain z(h; xi; yi; u)kz(h; xi; yi; u)k � x(h; xi; yi; u)kx(h; xi; yi; u)k � hC1kxikBy Lemma 6.2 xi can be made arbitrarily small for each �xed i 2 N by choosingx0 su�ciently small and we can use Proposition 5.1 with s = z=kzk and ~s = x=kxkin order to obtain the estimate� ~J�(x0; y0; F ) � � + "4



14 LARS GR�UNEfor all su�ciently small x0.From the linearization estimates we obtain�����xti ~f (xi; u)kxik2 ����� � Cfkxik � Cfetkx0kfor all su�ciently small kxik, i.e. all su�ciently small kx0k.Hence kq(xFR(t; x0; y0); �; �)=kxFR(t; x0; y0)k � qf (xFR(t; x0; y0); �; �)k can be madearbitrarily small on each bounded time interval by choosing x0 su�ciently close tothe origin and using [3, Lemma 4.1] we can conclude� Z 10 e��� qf (xFR(�; x; y); yFR(�; y); FR(xFR(h�hih; x; y); yFR(h�hih; y)))d� � � + "2for all su�ciently small kx0k.Now Lemma 3.5 (ii) yields the assertion.In order prove the stability of (6.1) the last thing that remains to do is puttingtogether the trajectory pieces.Proposition 6.4. Consider system (2.1). Let K � M be a compact positivelyinvariant set for the subsystem of (2.1) on M . Assume that the linearization (2.2) isasymptotically null controllable over K. Then there is � > 0 and h > 0 such that thesystem (6.1) with the discrete feedback FRis uniformly exponentially stable in someneighbourhood of the origin.Proof. From the assumptions on the linearization Lemma 6.3 can be applied with� < 0.Hence for all su�ciently small initial values kx0k there exists a t 2 [C�("); C�(")]such that 1t ln kxFR(t; x0; y0)kkx0k � � + " < 0Abbreviating x1 := xFR(t; x0; y0) it holds that kx1k < kx0k. Thus we can proceedinductively as in the proof of Proposition 3.3 and the assertion follows.This proposition gives a characterization of exponential discrete feedback sta-bilizability by looking at its linearization. However, we would also like to have acharacterization in terms of the nonlinear system itself. Clearly, since we are deal-ing with linearizations, asymptotic null controllability of the nonlinear system is notsu�cient, see e.g. [4, Example (15)].In fact, even exponential null controllability is not su�cient, as the followingexample shows. Consider_x = � �1 00 1 �x+ u1� �12 0�13 12 �x+ u2� �12 013 12 �x+ u3� x220 � ;where U = [�1; 1]3.We claim that the linearized system is not asymptotically null controllable: Look-ing at the initial values z0 = (0; z2)T , z2 > 0 it is easily seen thatA(u)z0 = � 0(1 + 12u1 + 12u2)z2 �Denoting the solution by z(t; x0; u(�)) = (z1(t; z0; u(�)); z2(t; z0; u(�)))T we obtainz1(t; z0; u(�)) � 0 and z2(t; z0; u(�)) � z2 since (1 + 12u1(t) + 12u2(t)) � 0 for all



CONTROLLABILITY AND STABILIZATION AT SINGULAR POINTS 15u(�) 2 U and all t � 0. Thus we can conclude kz(t; z0; u(�))k � kz2k for all u(�) 2 U ,meaning that for all initial values z0 of the considered form no possible trajectoryconverges to the origin, which implies our claim.However, for any x = (x1; x2)T 2 C, where C is the cone de�ned byC := �� x1x2 � 2 R2 ���� ����x2x1 ���� < 110�we can choose the control ux = (ux1; ux2; ux3) := ( 2x2x1=3�x2 ; 0; 0) 2 U . Then a simplecomputation yields f(x; ux) = (�1 � 12ux1)xand since u�x = ux for all � 2 Rn f0g the solution for ux(�) � ux satis�esx(t; x; ux(�)) = e(�1� 12ux1)tx:Hence the corresponding trajectory satis�es kx(t; x; ux)k � e� 12 tkxk and thus con-verges to the origin exponentially fast.For all initial values x0 2 R2 n C we choose u(t) � (�1;�1; sgn(x1)) (with theconvention sgn(0) = 1) as long as the corresponding trajectory stays outside C andswitch to ux from above once the trajectory reaches a point x 2 C.Using this control function, any trajectory will enter the cone C in some �nitetime and then converge to the origin exponentially fast, thus the overall trajectoryalso converges to the origin exponentialy fast. Hence the nonlinear system is expo-nentially null controllable, although the semilinear system is not even asymptoticallynull controllable. Thus exponential null controllability of the nonlinear system doesnot imply asymptotic null controllability of the linearized system.In order to formulate the desired result we therefore need the notion of uniformexponential null controllability.Theorem 6.5. Consider system (2.1). Let K � M be a compact positivelyinvariant set for the subsystem of (2.1) on M . Then the following properties areequivalent:(i) (2.1) is (locally) uniformly exponentially null controllable over K(ii) (2.2) is asymptotically null controllable over K(iii) There is h > 0 and a discrete feedback that (locally) stabilizes (2.1) uniformlyexponentially over KProof. \(ii))(iii)" is Proposition 6.4, \(iii))(i)" is immediately clear. It remainsto show \(i))(ii)":Let B(0) be the neighbourhood in which uniform exponential null controllabilityholds. From (i) it follows that for any " > 0 there exists a T > 0 such that for all(x0; y0) 2 B(0) �K there exists a control function u(x0;y0)(�) 2 U with�Tf (x0; y0; u(x0;y0)(�)) < ��+ "Using the estimates from the proof of Lemma 6.3 we obtain for the growth rate of(2.2) �T (x0; y0; u(x0;y0)(�)) < ��+ 2"



16 LARS GR�UNEfor x0 su�ciently close to the origin. Due to the linearity of (2.2) this estimateholds for all x0 2 Rd. Now by induction we obtain the assertion as in the proof ofProposition 3.3.This theorem shows in particular that any attempt to stabilize (2.1) at a singularpoint by using its linearization must fail if uniform exponential controllability is notsatis�ed, because the linearized system will not even be asymptotically null control-lable. Conversely, exponential discrete feedback stabilization is always possible underthis condition. We have therefore obtained the strongest result possible within thelinearization approach.A related result has been developed in [5] using Lyapunov functions: It is shownthat for nonlinear systems asymptotic controllability to a (not necessarily singular)point x implies stabilizability by means of a discrete feedback, where in order toreach x the step size h must tend to 0. The result can therefore be interpreted as akind of practical stabilization. In contrast to this practical stability here we obtainexponential stability using a discrete feedback with a �xed step size.7. Conclusions. In this paper we developed results on the relation betweennull controllability and exponential stabilization by using a discrete feedback law fornonlinear systems at singular points. The construction of the feedback is obtainedby minimizing the Lyapunov exponent of the linearized system, which forms a semi-linear system. For semilinear systems asymptotic null controllability and exponen-tial stabilizability by a discrete feedback turned out to be equivalent. For generalnonlinear systems the equivalence between uniform exponential controllability anduniform exponential stabilizability has been shown. An example illustrated that uni-form exponential controllability is in fact a necessary condition for the applicabilityof linearization techniques.8. Appendix: Proof of Lemma 3.5. (i) Fix " > 0. We may assume � = �"otherwise we use q � � � " and Mq + � + " instead of q and Mq . Hence there exists0 � T0 < T such thatZ T00 q(� ) d� = �T0" and Z t0 q(� ) d� < �t" for all t > T0:(8.1)This yields Z tT0 q(� ) d� < (t � T0)(�") for all t > T0:(8.2)Since for all y 2 [0; 1) the inequality ln(1� y) � �y and hence e�y � 1� y holds, weobtain j Z T00 q(� ) d� � Z T00 e��tq(� ) d� j � T0(1� e��T0)M� T (1� e��T )M� �T 2MThus the inequality in (8.1) implies for � < "MT < "MT0� Z T00 e��� q(� ) d� < �(�T0" + �T 2M ) < 0(8.3)



CONTROLLABILITY AND STABILIZATION AT SINGULAR POINTS 17Now �x ~" > 0. Since q is bounded there exists T1 > T0 such thatj Z 1T0 e��� q(� ) d� � Z T1T0 e��� q(� ) d� j � ~"(8.4)From estimate (8.2) choose  > 0 maximal with the propertyZ T1T0 q+(� ) d� � Z T1�T0 q�(� ) d� = 0(8.5)where q+ and q� denote the positive and negative part of q, respectively. Now we cande�ne a monotonically decreasing sequence �i, i 2 N by �1 := T1; �2 := T1 � , and�i+1 := minft 2 [T0; �i] j � Z �it q�(� ) d� + Z �i�1�i q+(� ) d� = 0gThis sequence is well de�ned: Assume that there exists �i for some i � 2. In the casei > 2 for all j with i � j � 3 the equality� Z �jT0 q�(s) ds + Z �j�1�j q+(s) ds = � Z �j�1T0 q�(s) ds + Z �j�2�j�1 q+(s) dsholds and by induction and the choice of  in (8.5) it follows� Z �iT0 q�(� ) d� + Z �i�1�i q+(� ) d� = � Z T1�T0 q�(� ) d� + Z T1T1� q+(� ) d� � 0:This guarantees the existence of �i+1. Since (�i) is monotone and bounded the se-quence converges to some ~� � T0. We claim ~� = T0:By the de�nition of �i it follows that � R T1��i+1 q�(� ) d� + R T1�i q+(� ) d� = 0. Theconvergence �i ! ~� yields the equality� Z T1�~� q�(� ) d� + Z T1~� q+(� ) d� = 0This implies R ~�T0 q(� ) d� = 0, which shows the asserted equality using (8.2).Hence we can choose k 2 N such that j�k�1 � T0j � ~" and replace �k by �k = T0.Thus we can estimateZ T1T0 e��� q(� ) d� � k�1Xi=2  � Z �i�i+1 e��� q�(� ) d� + Z �i�1�i e��� q+(� ) d�!+M ~"� k�1Xi=2  � Z �i�i+1 e���iq�(� )d� + Z �i�1�i e���iq+(� )d�!| {z }=0 +M ~"= M ~"In connection with (8.3) and (8.4) this yieldsZ 10 e��� q(� ) d� = Z T00 e��� q(� ) d�+Z T1T0 e��� q(� ) d�+Z 1T1 e��� q(� ) d� < 0+M ~"+~"



18 LARS GR�UNESince ~" > 0 was arbitrary this proves (i).(ii) Assume the opposite: Let1t Z t0 q(� )d� > � + " for all t 2 [ "(4M + 4� + ")� ;� ln "4M� ]We de�ne ~q via ~q(� ) := ( q(� ); � � � ln "4M�� + "; � > � ln "4M�This yields 1t Z t0 ~q(� )d� > � + " for all t � "(4M + 4� + ")�and by (i) (with opposite signs and inequalities) we obtain� Z 10 e��� ~q(� )d� � � + 34"Hence � Z 10 e��� q(� )d� = � Z 10 e��� ~q(� )d� � � Z 1� ln "4M� ~q(� )� q(� )d�� � + 34" � � Z 1� ln "4M� e��� 2Md� = � + 14";which contradicts the assumption on this discounted integral.(iii) By (ii) for any " > 0 there exist times � (t) bounded from below and abovesuch that 1� (t) Z �(t)0 q(t+ � )d� < � + "Hence �0 := 0, �i+1 = �i+ � (�i) de�nes a monotonically increasing sequence divergingto in�nity for which there exists a 2 R such that �i+1 � �i < a for all i 2 N. Forarbitrary T > 0 let �i(T ) be the maximal element of this sequence satisfying �i(T ) � T .Thus we obtainlim supT!1 1T Z T0 q(� )d� = lim supT!1 1T 0@i(T )Xj=0 Z �j�j�1 q(� )d� + Z T�i(T ) q(� )d�1A� lim supT!1 �� + " + aMT � = � + "Since " > 0 was arbitrary the assertion follows.REFERENCES[1] P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in controltheory, SIAM J. Control Optim., 29 (1991), pp. 1322{1347.
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