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these results to the optimal value functions. In Section 4a number of situations in which linear convergence holdsare characterized. Afterwards, in Section 5, we discusssome cases where these properties are satis�ed and �nally,in Section 6, we provide an example illustrating that forone and the same control system linear convergence mayor may not hold depending on the cost function de�ningthe functional to be minimized. For the proofs to thestatements given below we refer to [9].2 Problem formulationWe consider nonlinear optimal control problems for whichthe dynamics are given by control systems of the type_x(t) = f(x(t); u(t)) (2.1)on some Riemannian manifold M where f is such thatuniqueness and existence of solutions on R+ is satis�edfor u(�) 2 U := fu : R! U ju(�) measurableg and U �Rm is compact. For a given initial value x0 2M at timet = 0 and a given control function u(�) 2 U we denotethe trajectories of (2.1) by '(t; x0; u(�)). Letg :M �Rm ! R (2.2)be a cost function which is Lipschitz continuous andbounded, i.e. jg(x; u)j � Mg for some constant Mg . For� > 0 we de�ne the discounted functionalJ�(x0; u(�)) := � Z 10 e��sg('(s; x0; u(�)); u(s))ds (2.3)and the optimal value function for the corresponding min-imization problem byv�(x0) := infu(�)2U J�(x0; u(�)) (2.4)(Note that the corresponding maximization problem isobtained by simply replacing g by �g.)In order to characterize the convergence properties for� ! 0 we also need to de�ne the averaged functionalsJ t0(x0; u(�)) := 1t Z t0 g('(s; x0; u(�)); u(s))ds ;J0(x0; u(�)) := lim supt!1 J t0(x0; u(�)) :and the averaged minimal value functionv0(x) := infu(�)2U J0(x; u(�)) :



3 Discounted and averaged functionalsand value functionsIn this section we discuss the relation between discountedand averaged functionals and value functions. Here wewill use a theorem from the theory of Laplace transfor-mations as the starting point of our analysis, (see e.g. [5,Theorem 8.1]).Theorem 3.1 Let q : R! R be a measurable functionbounded by Mq. Then� 1Z0 e��tq(t)dt = �2 1Z0 e��t tZ0 q(s)ds dtWe use Theorem 3.1 in order to obtain the following re-lation between the rate of convergence of discounted andaverage time functionals.Proposition 3.2 Consider a point x 2 M . Let A 2 Rand T > 0 and assume there exist sequences of controlfunctions uk(�) 2 U and times Tk ! 1 as k ! 1 suchthat J t0(x; uk(�)) � �+ At for all t 2 [T; Tk]:Then there exist "k(�) ! 0 for each �xed � as k ! 1such thatJ�(x; uk(�)) � �+ A� + �2MgT 2 + "k(�)Conversely if there exists a � > 0 and u(�) 2 U such thatJ�(x; u(�)) � �+ A�then for each " > 0 there exists a time t(�; ") �p"=�Mgsuch that J t(�;")0 (x; u(�)) � � + A+ "t(�; ")Both assertions also hold for the converse inequality,where in the �rst assertion \+�2MgT 2" is replaced by\��2MgT 2" and in the second \+"" is replaced by \�"".In what follows we will also need the following estimate,which can be shown by a straightforward calculation.Lemma 3.3 Let J t0(x; u(�)) � � for all t 2 [0; T ]. ThenJ�(x; u(�)) � � + e��T 2Mg.4 A linear convergence TheoremWe will now use the estimates from the preceding sectionin order to deduce results on linear convergence by im-posing assumptions on the optimal trajectories. Also, weare going to use certain reachability and controllabilityproperties of the system, and will start this section byde�ning the necessary objects and properties.

De�nition 4.1 The positive orbit of x 2 M up to thetime T is de�ned byO+T (x) := fy 2M j 9 0 � t � T ; u(�) 2 U ; such that'(t; x; u(�)) = yg:The positive orbit of x 2 M is de�ned by O+(x) :=ST�0O+T (x). The negative orbits O�T (x) and O�(x) arede�ned similarly by using the time reversed system.De�nition 4.2 D � M is called a control set, if:(i) D � O+(x) for all x 2 D,(ii) for every x 2 D there is u(�) 2 U such that thecorresponding trajectory '(t; x; u(�)) 2 D 8 t � 0,(iii) D is maximal with the properties (i) and (ii)A control set C is called invariant, if C = O+(x) 8x 2 C.Note that this (usual) de�nition of control sets demandsonly approximate reachability; a convenient way to avoidassumptions about the speed of this asymptotic reach-ability (as they are imposed e.g. in [1]) is to assumelocal accessibility. If local accessibility holds we haveexact controllability in the interior of control sets, i.e.intD � O+(x) for all x 2 D, cp. e.g. [2].Using the notion of control sets we are now able to char-acterize situations in which linear convergence holds. Our�rst result is that v� is constant except for a term linearin � on compact subsets of the interior of control sets.Proposition 4.3 Consider a locally accessible optimalcontrol problem of the form (2.1){(2.4). Let D � M bea control set with nonvoid interior. Let K � intD be acompact set. Then there exists a constant CK such thatjv�(x) � v�(y)j � �CKMg for all x; y 2 K :The next step in the analysis of the rate of convergenceof optimal value functions on control sets is to deriveestimates for �nite time averaged functionals along tra-jectories staying in some compact subset of a control set.To this end for x 2 K � M we denote by Ux;K � U theset of all control functions u(�) satisfying '(t; x; u(�)) 2 Kfor all t � 0.Proposition 4.4 Consider the optimal control problem(2.1){(2.4) and assume that (2.1) is locally accessible. LetD �M be a control set with nonvoid interior and K � Dbe compact. Then(i) For each x 2 intK there exists a constant A = A(x) >0 and a time T = T (x) such thatJ t0(x; u(�)) � v0(x) � At ; for all u(�) 2 Ux;K , t > T .(ii) There exist a point x� 2 K and sequences of controlfunctions uk(�) 2 U and times tk !1 such thatJ t0(x�; uk(�)) � infx2K infu(�)2Ux;K J0(x; u(�)) + "k(T )for all t 2 [0;minfT; tkg] where "k(T )! 0 for k!1.



Now we can combine Propositions 3.2 and 4.4 in order toobtain our main theorem.Theorem 4.5 Consider the optimal control problem(2.1){(2.4) and assume that (2.1) is locally accessible.Let D � M be a control set with nonvoid interior. As-sume that one of the following conditions is satis�ed(i) There exist a compact subset K0 � intD and se-quences of points xk 2 K0 and control functions uk(�) 2Uxk;K0 such thatJ0(xk; uk(�))! v0jintD(ii) There exist x0 2 intD, T � 0 and sequences ofcontrol functions uk(�) 2 U and times Tk !1 as k!1such that the inequalityJ t0(x0; uk(�)) � v0jintD + Atholds for some constant A � 0 and all t 2 [T; Tk], k 2 N.Then for each compact subset K � intD there exist con-stants AK > 0 and �0 > 0 such thatv�(x) � v0jintD + �AK for all x 2 K and all � � �0:Conversely, if the following assumption is valid(iii) There exists x0 2 intD and a compact subset K1 � Dsuch that for all su�ciently small � > 0 there exist opti-mal trajectories for v� in Ux0;K1then for each compact subset K � intD there exist con-stant BK > 0 and �0 > 0 such thatv�(x) � v0jintD � �BK for all x 2 K and all � � �0:Using the invariance property of invariant control sets wecan conclude the following corollary.Corollary 4.6 Consider the optimal control problem(2.1){(2.4) and assume that (2.1) is locally accessible.Let C � M be a compact invariant control set with non-void interior. Assume that one of the following conditionsis satis�ed(i) There exist a compact subset K0 � intC and se-quences of points xk 2 K0 and control functions uk(�) 2 Usuch that '(t; xk; uk(�)) 2 K for all k 2 N and all t � 0and J0(xk; uk(�))! v0jintC(ii) There exist x0 2 intC, T � 0 and sequences of controlfunctions uk(�) 2 U and times Tk ! 1 as k ! 1 suchthat the inequalityJ t0(x0; uk(�)) � v0(x0) + Atholds for some constant A � 0 and all t 2 [T; Tk].Then for each compact subset K � intD there exist con-stant BK > 0 and �0 > 0 such thatjv�(x) � v0(x)j � �BK for all x 2 K and all � � �0:Proof: The invariance of C immediately implies thatassumption (iii) of Theorem 4.5 is always satis�ed (withK1 = C).

5 ApplicationsIn this section we will highlight two situations in whichlinear convergence can be concluded from the theoremsin the preceding section.The �rst situation is given by completely controllable sys-tems on compact manifolds. More precisely the followingcorollary is an immediate consequence of Corollary 4.6.Corollary 5.1 Consider a locally accessible optimalcontrol system (2.1){(2.4) on a compact manifoldM . As-sume the system is completely controllable, i.e. there ex-ists an invariant control set C = M . Then there exists aconstant K > 0 such thatkv� � v0k1 < K�:Note that this setup coincides with the one in [6]; infact there is a strong relation between this result and theperiodicity result there since in both cases the values oftrajectory pieces have to be estimated. The techniques,however, used in order to obtain these results are ratherdi�erent.The second application of our results is somewhat morespeci�c. Here we consider the problem of the approx-imation of the top Lyapunov exponent of a semi-linearcontrol system _x(t) = A(u(t))x(t); x 2 Rd (5.1)This problem is the continuous time analogue to the oneconsidered in [11]. Note that here we consider the maxi-mization problem so all results are applied with invertedinequalities. Also, since here we are going to derive an es-timate for the supremum of v� we will directly use Propo-sitions 3.2 and 4.4 instead of Theorem 4.5.We will brie
y collect some facts about this problem, fordetailed information we refer to [3] and [4].The Lyapunov exponent of a solution x(t; x0; u(�)) of (5.1)is de�ned by�(x0; u(�)) = lim supt!1 1t ln kx(t; x0; u(�))kwhich for kx0k = 1 can also be expressed as an averagedintegral by�(x0; u(�)) = lim supt!1 1t tZ0 g('(s; x0; u(�)); u(s))dswhere '(t; x0; u(�)) denotes the solution of the systemprojected to M = Sd�1 | which satis�es _s(t) =(A(u(t)) � s(t)TAu(t)s(t) � Id)s(t) | and g is a suitablefunction meeting our general assumptions. The top Lya-punov exponent can be de�ned on Sd�1 via� := supx02Sd�1 supu(�)2U �(x0; u(�)):



It characterizes the stability of the solutions of (5.1) un-der all possible functions u(�), and can also be used tode�ne a stability radius of (5.1) analogously to [11].It already follows from the arguments in [8] thatsupx2Sd�1 v�(x) converges to � as � ! 0. Now it remainsto determine the rate of convergence.Assuming local accessibility for the projected systemthere exists a invariant control set C � Sd�1 with non-void interior (in Sd�1). Furthermore the top Lyapunovexponent can be realized from any initial value x0 2 Sd�1,hence from any point x0 2 intC. Thus Proposition 4.4(ii)with K = C yields the existence of a point x� 2 C andsequences of control functions ul(�) = u(tkl+ �) and timestl satisfyingJ t0(x�; ul(�)) � �� "l(T ) for all t 2 [0;minfT; tlg]:We can conclude that v�(x�) � � for all � > 0 and itremains to �nd an upper bound for supx2Sd�1 v�(x). Tothis end consider a basis x1; : : : ; xd ofRd such that kxik =1 and xi 2 intC for all i = 1; : : : ; d. Then Proposition4.4(i) with K = C yields the existence of a constant B >0 such that J0(xi; u(�)) � �+ Btfor all i = 1; : : : ; d and all u(�) 2 U and hencekx(t; xi; u(�))k � eBe�t. By the compactness of Sd�1there exists a constant � > 0 such that any pointx0 2 Sd�1 can be written as a linear combination x0 =Pdi=1 �i(x0)xi with coe�cients j�i(x0)j � �. Thus weobtainkx(t; x0; u(�))k = k dXi=1 �i(x0)x(t; xi; u(�))k � d�eBe�t:Thus with A = B + lnd� it follows thatJ0(x0; u(�)) � �+ Atfor all x0 2Sd�1 and all u(�) 2 U . For any ~A > A Propo-sition 3.2 (with uk(�) = u(�) for all k) yields v�(x0) ��+ � ~A for all su�ciently small � which �nally yields thedesired estimate supx2Sd�1 v�(x) 2 [�; �+ � ~A] :6 An ExampleHere we provide an example of a simple 1d control systemwith one (invariant) control set where linear convergencedoes or does not hold depending on the cost function.Consider the control system_x = �uxjxj+ (u� 1)(x� 1)jx� 1j (6.1)with x 2 R and u 2 [0; 1]. It is easily seen that (6.1)possesses an (invariant) control set C = [0; 1]. For thecost function g1(x; u) = jxj and initial values x0 2 C it isobviously optimal to steer to the left as fast as possible,i.e. the optimal control is u � 1.

The solution for this constant control is given by x(t) =x0tx0+1 , thus J t0(x0; 1) = ln(tx0+1)tx0 does not converge lin-early, and by the �rst assertion of Proposition 3.2 (forthe converse inequality) the same holds for �v�.Now we consider g2(x; u) = jx�0:5j. For the initial valuex0 = 1=2 we obtain with u � 1=2 that x(t; x0; u) = x0 forall t > 0, hence J t0(1=2; 1=2) = 0 for all t > 0. Obviouslyhere Condition (i) of Corollary 4.6 is satis�ed, thus linearconvergence follows. A similar argumentation is valid forall � 2 (0; 1).7 ConclusionsConvergence rates of optimal value functions of dis-counted optimal control problems have been investigated.It has been shown that under appropriate assumptionslinear convergence holds. These conditions are applied toproblems from application implying linear convergence.However, an example shows that linear convergence isnot always satis�ed.References[1] M. Arisawa, Le probl�eme ergodique pour les �equations deHamilton-Jacobi-Bellman. Dissertation, Universit�e ParisIX Dauphine, 1996.[2] F. Colonius, Asymptotic behaviour of optimal controlsystems with low discount rates, Math. Oper. Res., 14(1989), pp. 309{316.[3] F. Colonius, W. Kliemann, Maximal and minimalLyapunov exponents of bilinear control systems J. Di�er.Equations, 101 (1993), pp. 232{275[4] , The Lyapunov spectrum of families of time varyingmatrices, Trans. Amer. Math. Soc., 348 (1996), pp. 4389{4408[5] G. Doetsch, Introduction to the Theory and Applicationof the Laplace Transformation, Springer Verlag, 1974.[6] G. Grammel, An estimate for periodic suboptimal con-trols, Report No. 1997/8, Centre for Industrial and Ap-plied Mathematics, University of South Australia. To ap-pear in JOTA.[7] L. Gr�une, Numerical stabilization of bilinear control sys-tems, SIAM J. Control Optim., 34 (1996), pp. 2024{2050.[8] , On the relation of discounted and average time op-timal value functions, J. Di�er. Equ., to appear.[9] L. Gr�une, F. Wirth , On the rate of convergence of �nitetime averaged and in�nite horizon discounted optimal con-trol problems, Berichte aus der Technomathematik, Uni-versit�at Bremen, 1998, to appear.[10] P. L. Lions, Neumann type boundary conditions forHamilton-Jacobi Equations, Duke Math. J., 52 (1985),pp. 793{820.[11] F. Wirth, Using discounted optimal control to computereal time-varying stability radii. In Proc. of 36th IEEECDC, San Diego, CA, 1997, pp. 3278 - 3283.[12] , Asymptotics of value functions of discrete-timediscounted optimal control, Report 411, Institut f�ur Dy-namische Systeme, Universit�at Bremen, 1997. submitted.[13] A. A. Yushkevich, A note on asymptotics of discountedvalue function and strong 0-discount optimality. Math.Methods of Oper. Res., 44 (1996), pp. 223{231.


