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1 Introduction

In this paper an adaptive grid scheme for the solution of the discrete first order Hamilton-
Jacobi-Bellman equation

sup
u∈U
{vh(x)− βvh(Φh(x, u))− hg(x, u)}= 0

on Ω ⊂ Rn with 0 < β < 1 is developed. Here Φh is the right hand side of a discrete time
control system and g is the so called cost function.

For β = 1− δh the solution vh of this equation is the optimal value function of the discrete
discounted optimal control problem

min
ux(·)∈Uh

Jh(x, ux(·)), with Jh(x, ux(·)) := h
∞∑
i=0

βig(xi, ui) (1.1)
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where xi+1 = Φh(xi, ui), Uh := {u : R → U : u is constant on [ih, (i+ 1)h)}, ui = u(ih)
and U ⊂ Rm is the set of admissible control values. The value δ > 0 is called the discount
rate.

Control problems of this type arise e.g. by discretization of continuous time discounted
optimal control systems (see e.g. [3], [10]) or when time discrete control systems are consid-
ered, i.e. h = 1 and Φh is the right hand side of the time discrete control system. The setup
is also related to Markov Chain Approximations of discounted continuous time stochastic
control problems (cp. [15, Section 4.2]).

To solve this equation numerically a finite difference scheme is used, for which a discretiza-
tion of Ω is necessary. The convergence of this method for the case of an equidistant
discretization with node distance k of Ω is analyzed e.g. in [10] and [12], algorithms to
solve the discretized equation are proposed e.g. in [9] and [11].

For δ → 0 the optimal value function of the continuous time discounted optimal control
problem converges to the optimal value function of the average cost optimal control problem
(cp. [4], [19], [13, Section 2]). Therefore in order to approximate this optimal value function
it is necessary to solve (1.1) for small discount rates δ > 0. However, it turns out that
in this case the convergence rate for k → 0 is very small. It can only be proved that
‖vh − v

k
h‖∞ < Ck

γ
2 with γ = D

δ for constants C, D > 0. Furthermore for certain optimal
control problems and small δ > 0 the value function is almost constant on large parts of
the state space with steep areas around certain subsets of Ω (cp. Section 4). This leads to
the idea to use a coarse discretization of Ω with refinement on certain ”critical regions”,
which means an adaptive grid for the discretization of Ω to calculate a good approximation
of vh.

In Section 2 we will introduce local a posteriori error estimates ei corresponding to the
simplices Si, j = i, . . . , P of the discretization Ξ of Ω. We will prove the existence of
constants C1, C2 > 0 such that

C1 sup
i=1,...,P

ei ≤ ‖vh − v
Ξ
h‖∞ ≤ C2 sup

i=1,...,P
ei.

Error estimates with similar properties have been investigated for Finite Element Methods
(see e.g. [1], [17]) and for Boundary Element Methods (see e.g. [17], [18] and [8]). It will
also be proved that ei → 0 as the size of the corresponding simplex Sj converges to 0.

In Section 3 first an algorithm to solve the discretized equation is developed, then the
adaptive grid scheme is presented. The adapting iteration – based on numerically calculated
approximations ẽi of the error estimates ei – is given for the general n-dimensional case
and a refinement and coarsening method is described for two-dimensional grids.

Finally, in Section 4 numerical examples are discussed.

2 Local error estimates

We want to solve the discrete Hamilton Jacobi Bellman equation

sup
u∈U
{vh(x)− βvh(Φh(x, u))− hg(x, u)}= 0 (2.1)
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on Ω ⊂ Rn with β := 1 − δh and δh < 1. We assume that there exist constants Lg, Lh,
Mg, Mh > 0 such that

|g(x, u)− g(y, u)| ≤ Lg‖x− y‖ and ‖Φh(x, u)− Φh(y, u)‖ ≤ Lh‖x− y‖

as well as

|g(x, u)|< Mg and ‖Φh(x, u)− x‖ ≤Mh

for all x, y ∈ Ω and all u ∈ U where U ⊂ Rm is compact.
The operator Th related to (2.1) is defined by

Th(vh)(x) = inf
u∈U
{βvh(Φh(x, u)) + hg(x, u)}. (2.2)

Th is a contraction and vh is the unique bounded solution of the fixed point equation
vh(x) = Th(vh)(x) for all x ∈ Ω (cp. [2]).

In order to reduce this equation to a finite dimensional problem we use a triangulation Ξ
of Ω into a finite number P of simplices Sj with N nodes xi and look for the solution of
(2.1) in the space of piecewise affine functions W := {w ∈ C(Ω) | ∇w(x) = cj in Sj}.

Every point Φh(xi, u) can be written as a convex combination of the nodes or vertices xj
of the simplex containing it with coefficients λij(u). Let Λ(u) := [λij(u)]i,j=1,...,N be the
matrix containing these coefficients and G(u) := [g(xi, u)]i=1,...,N an N -dimensional vector.
Now we can use (2.2) to obtain a fixed point equation in the nodes of the triangulation

V = TΞ
h (V ), TΞ

h (V ) := inf
u∈U

(
βΛ(u)V + hG(u)

)
(2.3)

TΞ
h is a contraction in RN with contraction factor β = 1− δh and therefore has a unique

fixed point V ∗. Let vΞ
h be the function obtained by linear interpolation of V ∗. This function

vΞ
h can be used to calculate control functions for the optimal control problem (1.1): Let
x ∈ Ω and ux ∈ U such that

βvΞ
h (Φh(x, u

x)) + hg(x, ux) = min
u∈U
{βvΞ

h (Φh(x, u)) + hg(x, u)} (2.4)

Then for any initial value x0 ∈ Ω we can define a control function ux0 ∈ Uh by ux0,i = uxi ,
xi+1 = Φh(xi, ux0,i).

In order to estimate how good vΞ
h approximates vh we define a posteriori error estimates

that are based on local values of the residual.

Definition 2.1 For every point x ∈ Ω and every simplex Si ∈ Ξ we define

e(x) := |vΞ
h (x)− Th(v

Ξ
h )(x)| and ei := max

x∈Si
e(x).

These error estimates have local and global properties as stated in the following two theo-
rems. The global properties of these estimates are given in the first theorem:
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Theorem 2.2 Let ei be the error estimates as defined in Definition 2.1. Then the following
inequality holds:

1

2
max

i=1,...,P
ei ≤ sup

x∈Ω
|vh(x)− v

Ξ
h (x)| ≤

1

δh
max

i=1,...,P
ei.

Proof: Observe that for any two functions v, ṽ : Ω → R and any x ∈ Ω the operator TΞ
h

satisfies

|Th(v)(x)− Th(ṽ)(x)| ≤ β sup
y∈Φh(x,U)

|v(y)− ṽ(y)|. (2.5)

Since Th(vh) = vh it follows for all x ∈ Ω that

|vΞ
h (x)− Th(v

Ξ
h )(x)| = |vΞ

h (x)− vh(x) + Th(vh)(x)− Th(v
Ξ
h )(x)|

≤ |vΞ
h (x)− vh(x)|+ |Th(vh)(x)− Th(v

Ξ
h )(x)|

≤ 2 sup
y∈Ω
|vΞ
h (y)− vh(y)|

where the last inequality follows by (2.5). This shows the first inequality.

Conversely for all x ∈ Ω we have

|vh(x)− v
Ξ
h (x)| = |Th(v

Ξ
h )(x)− vΞ

h (x) + Th(vh)(x)− Th(v
Ξ
h )(x)|

≤ |Th(v
Ξ
h )(x)− vΞ

h (x)|+ |Th(vh)(x)− Th(v
Ξ
h )(x)|

≤ e(x) + β sup
y∈Ω
|vh(y)− v

Ξ
h (y)|

where the last inequality again follows by (2.5). This implies the second inequality since
β = 1− δh.

The construction of the error estimates also allows some local results as stated in the
following theorem.

Theorem 2.3 Let e(x) be the error estimates as defined in Definition 2.1. Then

1

2
e(x) ≤ sup

y∈UMh(x)
|vh(y)− v

Ξ
h (y)|

where UMh
(x) denotes the ball around x with radius Mh.

Conversely if K ⊂ Ω satisfies Φh(x, u
x) ∈ K for all x ∈ K and the control values ux from

(2.4) then

vh(x) ≤ vΞ
h (x) +

1

δh
sup
y∈K

e(y) for all x ∈ K,

which means that in this case vΞ
h + 1

δh supy∈K e(y) is an upper bound for vh.

Proof: With the same arguments as in the proof of Theorem 2.2 where the suprema are
taken over UMh

(x) and K, respectively.
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Remark 2.4 The opposite inequality for the second estimate can be obtained if we assume
invariance ofK with respect to the controlvalues where (2.1) attains its minimum. However,
this property is difficult to check.

The local error estimates can also be used to give an estimate for the functional along the
calculated trajectory as defined in (2.4).

Theorem 2.5 Let ux(·) be the discrete controlfunction as defined in (2.4). Let (xi)i∈N be
the corresponding discrete trajectory. Then

|Jh(x, ux(·))− v
Ξ
h (x)| ≤

∞∑
i=0

βie(xi).

In particular if (xi) stays inside some set K ⊂ Ω such that e(x) < ε for all x ∈ K it follows
that

|Jh(x, ux(·))− v
Ξ
h (x)| ≤

ε

δh
.

Proof: By definition of e(x) we know that |hg(xi, ui) −
(
vΞ
h (xi)− βvΞ

h (xi+1)
)
| ≤ e(xi).

Hence

Jh(x, ux(·)) = h
∞∑
i=0

βig(xi, ui)

≤
∞∑
i=0

βi
(
vΞ
h (xi)− βv

Ξ
h (xi+1) + e(xi)

)
= vΞ

h (x) +
∞∑
i=0

βie(xi)

where
∑∞
i=0 β

i = 1
δh . Since the opposite inequality can be obtained in the same way the

assertion follows.

Remark 2.6 In this theorem we assume the worst case, i.e. that all errors ei along xi
accumulate. Since this is not necessarily true, the value Jh(x, ux) may be smaller than
vΞ
h (x). In this case Jh(x, ux) can be used as an approximation for vh(x) and the inequality

vh(x) ≤ Jh(x, ux) < vΞ
h (x)

holds (cp. second example in Section 4).

We will now discuss how the local error estimate ei depends on the size of the corresponding
simplex Si. To do this we need a result about the continuity of vΞ

h which can be obtained
by looking at the geometry of the grid. For this purpose the grid has to satisfy a regularity
condition.
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Definition 2.7 A grid Ξ satisfies the regularity condition with regularity constant cΞ > 0
if for each simplex Sm with nodes xp1, . . . , xpn+1 the inequality

‖xpi − xpj‖ ≤ cΞ‖xpl −
∑

k=1,...,n+1
k 6=l

λkxpk‖

holds for all i, j, l = 1, . . . , n+ 1 and all λk ≥ 0 with
∑n+1

k=1
k 6=l

λk = 1.

This condition guarantees that the distance between a node and the opposite edge cannot
become arbitrarily small in relation to the distance of two nodes of this simplex. In the
two-dimensional case this means that no triangles with arbitrarily small angles appear in
the triangulation.

To formulate the consequences of this condition we introduce the following notation:

For each simplex Sl of Ξ denote by ∇vΞ
h |Sl the gradient of vΞ

h on Sl (which is constant) and
let ‖∇vΞ

h‖∞ be the maximum over all simplices Sl of ‖∇vΞ
h |Sl‖. Furthermore for any two

nodes xi 6= xj belonging to one simplex Sl of Ξ we define the directional derivative along
the edge connecting xi and xj by

dij :=
vΞ
h (xi)− vΞ

h (xj)

‖xi − xj‖
.

Using this notation the following lemma shows a consequence of the regularity condition.

Lemma 2.8 Let vΞ
h be the continuous and piecewise affine solution of (2.3) corresponding

to a grid Ξ satisfying the regularity condition with constant cΞ. Then

‖∇vΞ
h‖∞ ≤ cΞ max |dij|

where the maximum is taken over all simplices Sl of Ξ and all i 6= j with xi, xj belonging
to Sl.

Proof: For any simplex Sl there exist points x, y in Sl such that ‖∇vΞ
h |Sl‖ =

|vΞ
h (x)−vΞ

h (y)|
‖x−y‖ .

Now consider the line from (x, vΞ
h (x)) to (y, vΞ

h (y)) in Rn+1. This line can be shifted
parallely and scaled to a line from (xpj , v

Ξ
h (xpj)) to (z, vΞ

h (z)) where xpj is a node of Sl and
z =

∑
i=1,...,n+1

i6=j
λixpi is a convex combination of the other nodes of Sl.

Since vΞ
h |Sl is affine (i.e. it can be written as vΞ

h (x) = cTx + b where c = ∇vΞ
h |Sl) these

operations do not change the difference quotient:

|vΞ
h (x)− vΞ

h (y)|

‖x− y‖
=
|vΞ
h (xpj)− v

Ξ
h (z)|

‖xpj − z‖
.

We now pick nodes xk and xm from Sl such that |vΞ
h (xk) − vΞ

h (xm)| becomes maximal.
Then

|vΞ
h (xpj)− v

Ξ
h (z)| ≤ |vΞ

h (xk)− v
Ξ
h (xm)|
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and the regularity condition (Definition 2.7) yields

cΞ‖xpj − z‖ ≥ ‖xk − xm‖.

Hence

|vΞ
h (x)− vΞ

h (y)|

‖x− y‖
=
|vΞ
h (xpj)− v

Ξ
h (z)|

‖xpj − z‖
≤ cΞ

|vΞ
h (xk)− vΞ

h (xm)|

‖xk − xm‖
= cΞ|dkm|

and the assertion follows.

Using this lemma we can prove that the function vΞ
h is Hölder continuous.

Theorem 2.9 For any grid Ξ with cΞ < C and any two points x, y ∈ Ω the inequality

|vΞ
h (x)− vΞ

h (y)| ≤ L‖x− y‖γ

holds for constants L, γ > 0 independent of Ξ.

Proof: We use the contraction operator TΞ
h to prove this property. The function vΞ

h can
be obtained by the iteration procedure

v0 ≡ 0 vk+1 := TΞ
h (vk) (2.6)

Since the contraction factor β of TΞ
h satisfies β < e−δh and vΞ

h is bounded by Mg/δ it
follows that

‖vk − v
Ξ
h‖∞ ≤ β

k‖v0 − v
Ξ
h‖∞ ≤ e

−δhkMg

δ
which can be written as

‖vk − v
Ξ
h ‖∞ ≤

∞∫
hk

e−δtMgdt. (2.7)

By induction we will now prove that vk is Lipschitz continuous: Let Lk denote the corre-
sponding Lipschitz constant. Clearly L0 = 0 holds. For any two vertices xi 6= xj belonging
to one simplex of the grid we have

|vk(xi)− vk(xj)| = |T
Ξ
h (vk−1(xi))− T

Ξ
h (vk−1(xj))| ≤ βLk−1Lh‖xi − xj‖+ hLg‖xi − xj‖

hence |dij| ≤ βLk−1Lh + hLg. The Mean Value Theorem and Lemma 2.8 now imply

Lk ≤ ‖∇v
Ξ
h‖∞ ≤ C(βLk−1Lh + hLg)

and hence with α := ln(CLh)
h and b := max{eh(δ−α), 1} it follows

Lk ≤ hCLg

k−1∑
j=0

ejh(α−δ) ≤ b

h(k−1)∫
0

CLge
(α−δ)tdt (2.8)

Putting (2.7) and (2.8) together one obtains

|vΞ
h (x)− vΞ

h (y)| ≤ b

∞∫
0

e−δtΦ(t)dt

where Φ(t) ≤ min{CLge
αt‖x − y‖, 2Mg}. Now [3, Lemma 4.1] can be used to give an

estimate for this integral and the assertion follows.
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Corollary 2.10 The local error estimates e(x) and ei from Definition 2.1 satisfy

|e(x)− e(y)| ≤ Le‖x− y‖
γ and ei ≤ Lemax{‖x− y‖ : x, y ∈ Si}

γ.

Proof: The first assertion follows directly from Theorem 2.9, and the second from the first
since e(xi) = 0 for all nodes xi of Ξ.

Remark 2.11 The rate of convergence of ei → 0 for small discount rates δ is very slow,
since in this case we have γ = D/δ for some constant D > 0 (which again follows from the
estimate in [3, Lemma 4.1]). An example of a problem with small discount rate is shown
in Section 4.
Since α → ∞ as h → 0 in the proof of Theorem 2.9 the convergence may also become
slow for small parameters h > 0. However, the estimate |vΞ

h − v
Ξ
h̃
| ≤ Mg(h + h̃ + |h − h̃|)

that holds for sufficiently small h, h̃ > 0 (cp. [12, Section 3.4.3]) guarantees that the error
estimates do not converge to infinity for h→ 0.

The next lemma gives a property that will be used to coarsen the grid.

Lemma 2.12 Let V ∈ RN be a vector with ‖TΞ
h (V ) − V ‖∞ < ε. Then the solution

V ∗ ∈ RN of (2.3) satisfies

‖V − V ∗‖∞ <
ε

δh
.

Proof: For some u ∈ U we have

|[V − V ∗]i| ≤ β|[Λ(u)(V − V ∗)]i|+ ε

≤ β‖V − V ∗‖∞ + ε

and hence
‖V − V ∗‖∞ ≤ β‖V − V

∗‖∞ + ε

which implies the assertion since β = 1− δh.

3 Adaptive Grids

The previous section gives us all properties to construct adaptive grids based on local values
of the residual. We will now present an algorithm that solves the equation (2.3) taking
advantage of a solution of (2.3) corresponding to a different grid.

To describe the algorithm we have to introduce some notation: Let V ∈ RN be an N -
dimensional vector. Let [V ]i denote the i-th component of this vector and Fi(V, w) ∈ RN

denote the vector that is obtained by replacing the i-th component of V by w, i.e.

Fi(V, w) := ([V ]1, . . . , [V ]i−1, w, [V ]i+1, . . . , [V ]N)T

With this notation we can define an operator Si as follows.
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Definition 3.1 Let V ∈ RN be a vector and i ∈ {1, . . . , N}. Let w ∈ R such that

[TΞ
h (Fi(V, w))]i = w and define Si(V ) := Fi(V, w).

The uniqueness of w follows from the fact that TΞ
h is a contraction. Using this operator

we can perform either a total step (Step 2a) or a single step (Step 2b) iteration:

Step 1: Take V0 ∈ RN arbitrary, let n = 0

Step 2a: Let [Vn+1]i := [Si(Vn)]i for i = 1, . . . , N

or
Step 2b: Let V 0

n := Vn, compute sequentially V i
n = Si(V

i−1
n ) for i = 1, . . . , N and let

Vn+1 := V N
n

Step 3: If ‖Vn − Vn+1‖ < δend stop, else let n := n+ 1 and continue with Step 2 (a or b)

Remark 3.2 The value w in Definition 3.1 can be determined as follows: We are looking
for a w ∈ R such that

w = min
u∈U

β
∑

j=1,...,N

j 6=i

λij(u)[V ]j + βλii(u)w+ hGi(u)

 .
It is easily seen that this is equivalent to

w = min
u∈U


β
∑

j=1,...,N

j 6=i
λij(u)[V ]j + hGi(u)

1− βλii(u)


cp. [13, Section 4]
If the initial vector V0 lies in the set V of monotone convergence of TΞ

h (as defined in [13,
Section 4]) the single step iteration is exactly the increasing coordinate algorithm described
there. The main difference lies in the fact, that here no assumptions on V0 are imposed.

The convergence of the algorithm is proved in the following lemma.

Lemma 3.3 Let S(V ) denote the vector obtained by applying Step 2 (a or b) for i =
1, . . . , N to a vector V ∈ RN . Then for any two vectors V1, V2 ∈ RN one has

‖S(V1)− S(V2)‖∞ ≤ β‖V1 − V2‖∞

and hence S : RN → RN is a contraction and the algorithm converges to a unique fixed
point of S which then is also a fixed point of TΞ

h .
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Proof: We first show an estimate for the components. Fix i ∈ {1, . . . , N}. Then for some
ū ∈ U we have

|[Si(V1)]i − [Si(V2)]i| = |[TΞ
h (Si(V1))]i − [TΞ

h (Si(V2))]i|

≤ β

∣∣∣∣∣∣
∑

j=1,...,N

λij(ū)[Si(V1)− Si(V2)]j

∣∣∣∣∣∣
≤ β max

j=1,...,N
|[Si(V1)− Si(V2)]j|.

If this maximum is attained for j = i then it follows that |[Si(V1)]i − [Si(V2)]i| = 0 and
hence maxj=1,...,N |[Si(V1)− Si(V2)]j| = 0. This implies

|[Si(V1)]i − [Si(V2)]i| ≤ β max
j=1,...,N

j 6=i

|[Si(V1)− Si(V2)]j| = β max
j=1,...,N

j 6=i

|[V1− V2]j| ≤ β‖V1 − V2‖∞

Now the assertion follows directly for both iterations.

Remark 3.4 Exept for the case of monotone convergence (cp. [13, Lemma 4.3]) it is not
clear that this iteration is faster than the iteration using TΞ

h . However, the estimate for
the operator Si from Step 2 (a or b) as shown in the proof of Lemma 3.3

|[Si(V1)]i − [Si(V2)]i| ≤ β max
j=1,...,N

j 6=i

|[V1− V2]j|

is better than the corresponding estimate for TΞ
h

|[TΞ
h (V1)]i − [TΞ

h (V2)]i| ≤ β max
j=1,...,N

|[V1 − V2]j|.

Numerical tests have shown that the iterations using Si are considerably faster.

Remark 3.5 The acceleration method developed by R.L.V. Gonzáles and C.A. Sagas-
tizábal [11] can also be applied to this iteration and shows good results.

With this algorithm it is possible to use a solution vΞ1
h corresponding to a grid Ξ1 as an

initial value for the iteration using a new grid Ξ2. An initial vector V0 is obtained by
interpolation: [V0]i = vΞ1

h (xi) for all nodes xi of Ξ2.

Corollary 2.10 implies that ei = maxx∈Si e(x) can be approximated by evaluating ẽi :=
maxyk∈Si e(yk) for finitely many points yk ∈ Si. Clearly, these points yi should not coincide
with the nodes xi of the grid since the identity e(xi) = 0 is obvious. The points yk used in
the examples discussed in Section 4 are described there.

The error estimates ẽi can now be calculated numerically and can be used as a criterion to
refine all simplices Si that ”belong” to large ẽi.

To refine and to coarsen simplices in the two-dimensional case we use a grid scheme pro-
posed by R. Löhner [16] for the Finite Element Method. To refine a simplex we proceed
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as follows:
For any two nodes xj, xk belonging to Si we calculate the new node

xnew(xj, xk) :=
1

2
(xj + xk).

Thus every edge of Si is divided into two parts of the same length. Using this new nodes
Si can be divided into 4 new simplices. This refinement is called regular.

To make sure that vΞ
h is continuous it is necessary that every simplex has exactly one

neighbour on any edge. To guarantee this property without introducing arbitrarily ”flat”
simplices (which would cause arbitrarily large regularity constants cΞ, cp. Definition 2.7)
we use the following neighbourhood condition:
Any simplex may have at most one edge with more than one neighbour; at this edge there
may be at most two neighbours.
All simplices not satisfying this condition are refined regularly as described above and we
end up with a grid that only consists of regularly refined simplices satisfying this condition.
In the next step all simplices with two neighbours on one edge are divided into two simplices
at this edge. Thus any of the new simplices becomes a unique neighbour of one of the old
neighbouring simplices. This partition into two new simplices is called irregular refinement.
Figure 3.1 illustrates this principle: in the first step all regular refinements are inserted, in
the second step the irregular refinements are added.

Figure 3.1: Neighbour refinement

An irregular subsimplex will not be refined further. If this is necessary – i.e. if the
corresponding error estimate is large – then the irregular refinement will be reversed and
the upper simplex will be refined regularly. This guarantees that the grid constant cΞ will
not increase during the refinement procedure.

Lemma 2.12 is used to give a criterion to coarsen a previously refined simplex Si: If

|vΞ
h (xnew(xj, xk))−

1

2

(
vΞ
h (xj) + vΞ

h (xk)
)
| < ε (3.1)

for all nodes xj , xk of Si then this simplex will be coarsened. From Lemma 2.12 it follows
that the solution corresponding to the coarsened grid Ξ1 and the solution corresponding
to the refined grid Ξ2 satisfy

‖vΞ1
h − v

Ξ2
h ‖∞ <

ε

δh
.

Using this techniques the grid adapting iteration can be described as follows

Step 1: Take an initial grid Ξ0 covering Ω and refinement parameters tol > 0, Θ ∈ (0, 1);
let n=0
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Step 2: Calculate the solution vΞn
h corresponding to the grid Ξn and the error estimates

ẽi, i = 1, . . . , P . If supi∈{1,...,P} ẽi < tol stop, else refine all simplices Si corresponding to
error estimates ẽi > Θsupi∈{1,...,P} ẽi

Step 3: Coarsen all simplices Si that satisfy (3.1) (with ε = tol) and have not been refined
in Step 2

Step 4: Calculate a new grid Ξn by inserting all necessary neighbour refinements, let
n := n+ 1 and continue with Step 2

By virtue of Corollary 2.10 the refining iteration (i.e. the iteration without Step 3) will
terminate with a grid Ξ and a solution satisfying ‖vΞ

h − vh‖∞ < tol
δh . The coarsening (Step

3) destroys the monotonicity of the adapting procedure and therefore convergence is no
longer guaranteed. However, Lemma 2.12 yields that the difference between the coarsed
and the refined solution is small. The numerical examples in the next section show that
- using a suitable parameter tol - this step helps to reduce the number of simplices and
vertices during the adapting iteration without increasing the error too much.

As already mentioned in Remark 2.11 the convergence of ei → 0 may be very slow for
small discount rates δ. In the next section we will also discuss an example where this is
the case.

4 Numerical examples

The system discussed here is a three-dimensional linear oscillator given by

ẏ = A(u)y with A(u) =

 0 1 0
0 0 1

−(c+ u) −b −a

 , y =

 y1

y2

y3

 (4.1)

The solutions of this – so called bilinear – control system are projected onto the projective
space P2 (cp. [7]) which is identified with one half of the unit sphere S2.The system is
discretized by an Euler method on S2 with time step h, i.e. performing an Euler step in
R3 and projecting the solution back to S2. Hence we have

ΦS
2

h (s, u) :=
s+ hA(u)s

‖s+ hA(u)s‖
.

The cost function g is given by

g(s, u) = (−c− u)s1s3 + s1s2 + (1− b)s2s3 − as
2
3 (4.2)

with s = (s1, s2, s3)
T ∈ S2. Using similar techniques as in [3] on S2 it can be shown that

the value function vh of the discretized system converges to the value function vδ of the
original system for h→ 0.

To obtain a region Ω ⊂ R2 that can be divided into simplices Si we use the stereographic
projection to map a part of S2 containing the upper half onto [−1, 1]× [−1, 1] =: Ω. With
this projection we obtain the function Φh(x, u) on Ω from the discretization ΦS

2

h (s, u) on
S2 defined above.

12



For δ → 0 the value function δvδ converges to a discontinuous function λ∗. For suitable
parameters a, b, c ∈ R there exists a set D1 ⊂ P2 (a so called open control set) such that λ∗

is constant on D1, constant outside clD1 with a different value and hence jumps at ∂D1.
λ∗(s) is the minimal Lyapunov exponent of (4.1) with initial value s, cp. [13, Section 2].
(For more information about projected bilinear control systems and Lyapunov exponents
see e.g. [6], [7], [5].) Clearly this convergence cannot be uniform for the whole state space
but it can be shown that δvδ converges uniformly on compact subsets of intD1 and on
compact subsets of int(P2 \ D1) (cp. [13]). This implies that for small δ > 0 δvδ will
be steep around ∂D1. Figure 4.1 shows the boundary of D1, it was computed using the
program CS2DIM by G. Häckl [14].

Figure 4.1: Control set D1

All examples were calculated with a = 1, b = 0, c = 0.5, U = {−0.3, −0.25, . . . , 0.3},
h = 0.05 and Θ = 0.1. The first example is calculated with discount rate δ = 1. The
initial grid was chosen with N = 169 vertices. Table 4.1 shows the number of vertices for
the adaptive iteration with coarsening (N1) (tol = 0.003) and without coarsening (N2) and
the corresponding error estimates err1, err2 i.e. the maximum of the error estimates ẽi of
the solutions. Here ẽi is calculated using the following four points yk, k = 1, . . . , 4 in each
simplex: If xl1, xl2, xl3 denote the vertices of the simplex then

y1 = 1
10xl1 + 9

20(xl2 + xl3), y2 = 1
10xl2 + 9

20(xl1 + xl3)
y3 = 1

10xl3 + 9
20(xl1 + xl2) y4 = 1

3(xl1 + xl2 + xl3)

Figure 4.2 shows the value functions for the initial grid, Figure 4.3 for the adapted grid
(with coarsening).
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#iter N1 err1 N2 err2

0 169 0.027048 169 0.027048

1 576 0.021922 576 0.021922

2 1589 0.018499 1597 0.018499

3 2641 0.023188 2907 0.023188

4 2501 0.020628 3291 0.020701

5 2958 0.019959 3636 0.019937

6 3280 0.006341 4016 0.006337

7 10167 0.006775 11401 0.006815

8 9257 0.003953 14542 0.002795

9 18849 0.003176 33322 0.003256

Table 4.1: Vertices and errors for δ = 1

A typical behaviour of the error estimate is that its convergence to zero is not monotone.
This happens because the smaller a simplex S becomes the steeper the function vΞ

h |S may
be. Although Corollary 2.10 guarantees that eventually the error will become smaller if
the size of the simplices converges to zero it may happen that one refinement step causes
an increasing of the error estimates corresponding to simplices in a neighbourhood of the
refined simplices.

The effect of the coarsening of the simplices strongly depends on the choice of the parameter
tol. If tol is too small no simplex will be coarsened; if tol is too large, simplices will be
coarsened in one iteration step and refined again in the next step which reduces the speed
of convergence. Several numerical examples showed that good results can be expected if
tol is slightly smaller than the desired accuracy, e.g. in the example above the choice of
tol = 0.003 is suitable for a desired accuracy 0.004.

The values of vΞk
h lie between −1.37 and 0.1. Using the solution corresponding to the

grid Ξ9 trajectories with Jh(x, ux(·)) < −1.4 can be calculated. The minimal value of the
value function vΞ0

h is −1.02 and therefore the error of this solution can be estimated as

|vΞ0
h − vh| > 0.38. Using the error estimates ẽi one obtains |vΞ0

h − vh| < 0.027/0.05 = 0.54.
Hence here the error estimate from Theorem 2.2 gives a good approximation for the global
error of the solution.
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Figure 4.2: Value function for δ = 1, initial grid

Figure 4.3: Value function for δ = 1, adapted grid

The drop of the refined value function corresponds to the control set D1. Figure 4.4 shows
the refined grid around D1.
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Figure 4.4: Adapted grid for δ = 1 around D1

The second example is the same optimal control system with lower discount rate δ =
0.01. Table 4.2 shows the number of vertices N and the maximal error estimate err for
each iteration step using the algorithm with coarsening and tol = 0.1. In addition we
pick the initial value x0 = (0.255,−0.335) inside (and near the boundary of) D1 and the
corresponding trajectory (xi)i∈N with the control function from (2.4). The table shows the
error errtra :=

∑∞
i=0 β

ie(xi) along (xi) as discussed in Theorem 2.5 and the corresponding
functional Jh(x0, ux0). (Note that the values err and errtra are not directly comparable,
cp. Theorem 2.2 and Theorem 2.5.)
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#iter N err errtra Jh(x0, ux0)

0 169 0.23 8.638 -0.908

1 231 0.47 12.209 -1.133

2 228 0.48 9.219 -1.346

3 281 1.60 11.828 -1.254

4 306 2.03 14.616 -3.302

5 388 1.89 17.531 -4.337

6 735 7.18 96.307 -128.257

7 1488 15.58 33.255 -131.910

8 2705 21.45 17.164 -137.768

9 4558 19.11 4.681 -138.185

10 8323 31.03 2.098 -138.277

11 12820 30.55 1.952 -139.255

12 20900 30.08 2.376 -139.485

Table 4.2: Vertices and errors for δ = 0.01

In this example the values of vΞk
h lie between −137.5 and 10, hence the relation between

the maximum of the error estimates err and the values of the solutions is worse than in
the first example. In addition the supremum of the error estimates increases considerably
until the tenth iteration and then decreases very slowly. This slow convergence is exactly
what one would expect for low discount rates since the exponent γ > 0 from Corollary 2.10
is close to 0, cp. Remark 2.11.

Nevertheless the error errtra along the trajectory decreases and the calculated functional
along the trajectory decreases monotonically. Here even in the case when the convergence
of ei to zero is very slow the adaptive grid yields good results for the calculation of optimal
controls.

The jump in the functional from iteration step five to step six corresponds to a change in
the behaviour of the trajectory xi: From this step on the trajectory xi stays inside D1; for
all grids before the trajectory leaves D1 after a short time. After this iteration the value
for Jh(x0, ux0(·)) is smaller than the minimum of the corresponding solution vΞk

h , which is
about -137.5 for Ξ12 (cp. Remark 2.6).

Again for Ξ0 the estimate from Theorem 2.2 gives a good approximation of the global error
of the solution.

The following figures show the value function corresponding to the adapted grid and the
corresponding grid around D1.
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Figure 4.5: Value function for δ = 0.01 around D1 with adapted grid

Figure 4.6: Adapted grid for δ = 0.01 around D1

The only region that is refined in this example is the neighbourhood of ∂D1. The steepness
of the value function in this region is the main reason for the large local errors.
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Conclusions: The adaptive grid strategy based on the local values of the residual ei turns
out to be a good tool to calculate grids for the solution of (2.1). Without any knowledge
of the ”critical regions” i.e. without further analysis of the optimal control system a good
discretization for the problem can be obtained.
In the case of small discount rates δ the strategy helps to develop grids such that good
control functions and trajectories can be calculated and hence gives at least a good upper
bound for vh. For large discount rates one can expect that the error estimates ei converge
to zero during the adapting iteration. In this case a good approximation for vh can be
calculated and furthermore the quality of this approximation can be controlled using the
error estimates ei.
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rapide d’équations discrètes de Hamilton-Jacobi-Bellman, Comptes Rendus Acad. Sc.
Paris, Serie I, 311 (1990), pp. 45–50.
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[13] L. Grüne, Numerical stabilization of bilinear control systems, to appear in: SIAM
Journal on Control and Optimization, (1996).

20
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