
Approximating Reachable SetsbyExtrapolation MethodsR. Baier and F. LempioAbstract. Order of convergence results with respect to Hausdor�distance are summarized for the numerical approximation of Au-mann's integral by an extrapolation method which is the set-valuedanalogue of Romberg's method. This method is applied to the dis-crete approximation of reachable sets of linear di�erential inclusions.For a broad class of linear control problems, it yields at least secondorder of convergence, for problems with additional implicit smooth-ness properties even higher order of convergence.Mathematics Subject Classi�cation (1991): 34A60, 49M25,65D30, 65L05, 93B03Keywords: Aumann's integral, reachable set, extrapolation methodx1. IntroductionCurves, surfaces, and higher dimensional manifolds, which are implicitly de-�ned as submanifolds of reachable sets of controlled dynamical systems, con-stitute a challenging object of approximation methods. In this paper, ourmain interest lies in extrapolation methods, especially in the visualization oforder of convergence results, for the discrete approximation of reachable setswith respect to Hausdor� distance.We concentrate on a special approach for the numerical approximationof reachable sets of linear di�erential inclusions which is based on the compu-tation of Aumann's integral for set-valued mappings. It consists in exploitingCurves and Surfaces II 1P. J. Laurent, A. Le M�ehaut�e, and L. L. Schumaker (eds.), pp. 1{10.Copyright oc 1991 by AKPeters, Boston.ISBN 0-12-XXXX.All rights of reproduction in any form reserved.



2 R. Baier and F. Lempioordinary quadrature formulae with nonnegative weights for the numerical ap-proximation of the dual representation of Aumann's integral via its supportfunctional. Theoretical roots of this approach could be traced back via [11]to [5]. The paper [4] is the �rst one with explicit numerical computations,exploiting mainly composite closed Newton-Cotes formulae for set-valued in-tegrands, and including an outline of proof techniques for error estimateswith respect to Hausdor� distance, which avoid the embedding of families ofconvex sets into abstract spaces (cp. [13,14]). All proofs are based on error es-timates using weak assumptions on the regularity of single-valued integrands(see [15,7,8,4]).In Section 2 we sketch the error estimate for the discrete approximationof Aumann's integral for set-valued mappings by an adaptation of Romberg'smethod ([6]). Contrary to [4], we admit perturbations of the set-valued in-tegrand and put emphasis on extrapolation methods from the very begin-ning. Since every column of the extrapolation tableau has to be interpretedby quadrature formulae with nonnegative weights, we restrict ourselves toequidistant grids with Romberg's sequence of stepsizes. As is familiar fromintegration of single-valued functions, the starting column is given by compos-ite trapezoidal rule, the �rst extrapolation step by composite Simpon's rule forset-valued mappings. The following columns of the extrapolation tableau canbe regarded as well as applications of quadrature formulae with nonnegativeweights on an equidistant grid. Thus, every extrapolation step de�nes an ap-proximation of Aumann's integral by a certain Minkowski sum of convex sets.Exploiting this interpretation of the extrapolation procedure numerically ina direct way or by the dual approach pursued in Sections 2 and 3 is a realchallenge for computational geometry, especially for higher dimensional prob-lems. Naturally, the order of convergence with respect to Hausdor� distancedepends on the smoothness of the set-valued integrand in an appropriatelyde�ned sense. For a broad class of integrands, exploiting results in [9,16], atleast order of convergence equal to 2 can be expected. For smooth integrands,extrapolation based on Romberg's integration scheme yields even higher orderapproximations, as is demonstrated by several examples in Section 3.Most important are adaptations of these extrapolation methods to lineardi�erential inclusions. As a result, in Section 3 we get higher order methodsfor the discrete approximation of reachable sets of special smooth classes oflinear control problems. Contrary to [3] and [4], we present in Example 2 acontrol region which is not even strictly convex and in Example 3 a controlregion with lower dimension than state space dimension, both nevertheless ad-mitting arbitrarily high order discrete approximations of the reachable sets byextrapolation methods. For linear control systems, especially non-autonomousones, a fundamental solution of the according homogeneous system has to becomputed numerically. This can be done by Runge-Kutta methods of appro-priate orders, cp. [4], or, as in Section 3, by extrapolation methods using thehybrid method announced in [3].In the �nal Section 4, we outline some open questions and possible direc-tions of future research.



Approximating Reachable Sets by Extrapolation Methods 3x2. Set-Valued IntegrationAccording to [2], we use the following de�nition of an integral of a set-valuedmapping.De�nition. Let I = [a; b] with a < b be a compact interval, and F : I =) IRna set-valued mapping of I into the set of all subsets of IRn. Then the setZI F (� )d� = fz 2 IRn : there exists an integrable selectionf(�) of F (�) on I with z = ZI f(� )d�gis called Aumann's integral of F (�) over I.Our objective is to approximate Aumann's integral numerically by ex-trapolatory quadrature formulae which are motivated by classical Rombergquadrature. Choose Romberg's sequence of stepsizesh0 = b � a; hi = 2�ih0 (i = 1; : : : ; r)corresponding to the sequence of gridsa = ti;0 < ti;1 < : : : < ti;2i = b; ti;j = a+ jhi (j = 0; : : : ; 2i)and compute as �rst column of the extrapolation tableau the correspondingweighted Minkowski sums of setsTi0(F ) = hi 2412co(F (a)) + 2i�1Xj=1 co (F (ti;j )) + 12co(F (b))35 : (1)Here co(�) denotes the closed convex hull operation. This is just the set-valued analogue of composite trapezoidal rule. In fact, up to now, due to thecomputational complexity of this rule, the calculation in (1) is done for thedual representation of Ti0(F ) by means of its support functional�?(l; Ti0(F )) = supz2Ti0(F )(ljz)= hi 2412�?(l; F (a)) + 2i�1Xj=1 �? (l; F (ti;j)) + 12�?(l; F (b))35for all l 2 IRn, where (�j�) denotes the usual inner product in IRn with inducedEuclidean norm k � k2.Because of the fact that for an integrably bounded measurable set-valuedmapping F (�) with nonempty and closed values Aumann's integral is convexand compact (cf. [1]) the following equality holds�?�l;ZI F (� )d�� = ZI �?(l; F (� )) d� = �? (l; Ti0(F )) +Ri0(l; F )



4 R. Baier and F. Lempiowith a remainder term Ri0(l; F ) depending on l 2 IRn and F (�). Motivatedby classical Romberg integration, this relation suggests the following dualextrapolation scheme�? (l; Tik(F )) = 4k�? (l; Ti;k�1(F )) � �? (l; Ti�1;k�1(F ))4k � 1 (2)for i = 1; : : : ; r; k = 1; : : : ; s; k � i with some s � r. It is well-known (see [12])that the right-hand side of (2) can be written also as a quadrature formulawith nonnegative weights for the integrand �?(l; F (�)), e.g., for k = 1 one getsthe set-valued analogue of composite Simpson's rule. Therefore, the left-handside �? (l; Tik(F )) is in fact a value of a support functional of a well-de�nedclosed convex set Tik(F ).Moreover, due to the well-known relation between Hausdor� distancehaus(�; �) with respect to Euclidean norm and support functionals, cp. e.g.,[13], the representation holdshaus�ZI F (� )d�; Tik(F )� = supklk2=1 j �?�l;ZI F (� )d��� �? (l; Tik(F )) j (3)Hence, exploiting error estimates for classical Romberg integration under weakregularity assumptions and admitting, contrary to [4], perturbations of Fof suitable order with respect to Hausdor� distance, we get the followingfundamental order of convergence result.Theorem. Let F : I =) IRn be a measurable and integrably bounded set-valued mapping with nonempty compact values. Assume that the supportfunction �?(l; F (�)) has an absolutely continuous (2s)-th derivative and thatits (2s + 1)-st derivative is of bounded variation with respect to t uniformlyfor all l 2 IRn with klk2 = 1. Moreover, assume that ~F : I =) IRn isa perturbation of F with nonempty compact convex values such that theHausdor� distance haus(co(F (t)); ~F (t)) � c1 � h2s+2rwith a constant c1 which is independent of hr.Then the estimatehaus�ZI F (� )d�; Trs( ~F )� � c2 � h2s+2rholds with a constant c2 which is independent of hr.



Approximating Reachable Sets by Extrapolation Methods 5x3. Approximation of Reachable SetsMost important is the application of quadrature formulae for set-valued in-tegrals to the approximation of reachable sets R(b; a; Y0) for linear di�erentialinclusions consisting of all possible endpoints of absolutely continuous func-tions y(�) on I which satisfyy0(t) 2 A(t)y(t) +B(t)U (for almost every t 2 I := [a; b]);y(a) 2 Y0: (4)Here, A(�) is an integrable n � n-matrix function, B(�) an integrable n �m-matrix function, U � IRm is a compact, nonempty control region and Y0 � IRna compact, convex, nonempty initial set.Denoting with �(t; � ) the fundamental solution of the corresponding ho-mogeneous di�erential equation with �(�; � ) = En, the reachable set of (4)could be equivalently expressed by a set-valued integral, namelyR(b; a; Y0) = �(b; a)Y0 + bZa �(b; � )B(� )Ud�:Applying the extrapolation method of Section 2 and replacing all values�(b; tr;j ) in Trs(�(b; �)B(�)U) with approximations e�rs(b; tr;j ) computed withan error of order O(h2s+2r ) ( e.g., with an extrapolation of the midpoint rulefor su�ciently smooth A(�)), we could compute the sete�rs(b; a)Y0 + Trs(e�rs(b; �)B(�)U)which approximates the reachable set with order O(h2s+2r ) on appropriatesmoothness assumptions, cp. Section 2.To demonstrate the convergence properties of the extrapolation methodfor various types of control regions U , we consider the following three ex-amples. In all tables, the Hausdor� distance in (3) is approximated in thefollowing way: the exact integral is replaced by a very precisely computedreference set and the supremum in (3) is restricted to a discretization of theboundary of the unit ball.Example 1. We regard the following time-dependent linear di�erential in-clusion on I = [1; 2] withA(t) = � 0 1�2=t2 2=t� ; B(t) = � t2 0t tet� ; Y0 = f�00�gand U = B1(0) � IR2 as the closed Euclidean unit ball, especially, U is astrictly convex control region.This example possesses typical properties which allow higher order of conver-gence: the matrix function B(�) is invertible on I and A(�); B(�) are su�cientlyoften di�erentiable, so that the support function��(l; �(2; t)B(t)) = kB(t)��(2; t)�lk2
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-6.0 -4.0 -2.0  0.0  2.0  4.0  6.0Figure 1. Approximations T00; T10; T11 resp. T22 for Example 1is also su�ciently often di�erentiable with bounded derivatives uniformly forall l 2 IR2 with klk2 = 1. Figure 1 shows the �rst three approximationstogether with T22 which coincides with the reachable set within plotting ac-curacy.The corresponding convergence tables with an estimated Hausdor� distancebetween the approximations and the reachable set together with an estimatedorder of convergence are shown in Tables 1 and 2.Trs approximation error orderT00 1:4565749402558685T10 0:3420734035031976 2:0902T20 0:0856358565527171 1:9980T30 0:0214188467870042 1:9993T40 0:0053554930687882 1:9998T50 0:0013389211774539 1:9999T60 0:0003347332747903 2:0000 Trs approximation error orderT11 0:1107201069639423T21 0:0087819059343079 3:6562T31 0:0005074987990517 4:1131T41 0:0000293793678088 4:1105T51 0:0000017870583280 4:0391T61 0:0000001111448684 4:0071Table 1: Errors of Tr0 and Tr1 for Example 1Trs approximation error orderT22 0:0096375283496939T32 0:0003822727111560 4:6560T42 0:0000060351547466 5:9851T52 0:0000000724816180 6:3796T62 0:0000000010038779 6:1740 Trs approximation error orderT33 0:0004745738258154T43 0:0000100916525794 5:5554T53 0:0000000644178035 7:2915T63 0:0000000001809770 8:4755Table 2: Errors of Tr2 and Tr3 for Example 1



Approximating Reachable Sets by Extrapolation Methods 7Example 2. Consider the linear di�erential inclusion on I = [0; 1] withA(t) = � 1 �14 �3� ; B(t) = � 1� t tet3� 2t (�1 + 2t)et� ; Y0 = f�00�gand U = [�1; 1]2 � IR2 as the unit ball with respect to the maximum norm,especially, U is a control set which has corners and is not strictly convex.Nevertheless, all assumptions of the convergence theorem are ful�lled, since��(l; �(1; � )B(� )U) = e�(1��)(jl2j+ e� jl1 + l2j)is arbitrarily often di�erentiable with bounded derivatives uniformly for alll 2 IR2 with klk2 = 1. Figure 2 shows the �rst three approximations togetherwith T22 which again coincides with the exact reachable set within plottingprecision.
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-2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0Figure 2. Approximations T00; T10; T11 resp. T22 for Example 2Convergence tables for this example can be found in Tables 3 and 4.Trs approximation error orderT00 1:1377005895412307T10 0:1511442148720676 2:9121T20 0:0362760384531468 2:0588T30 0:0092155851665754 1:9769T40 0:0023132235480369 1:9942T50 0:0005788914860450 1:9985 Trs approximation error orderT11 0:0078719847420130T21 0:0005332856739972 3:8837T31 0:0000340540243489 3:9690T41 0:0000021400309889 3:9921T51 0:0000001339354307 3:9980Table 3: Errors of Tr0 and Tr1 for Example 2Trs approximation error orderT22 0:0000486148810883T32 0:0000008339770790 5:8652T42 0:0000000133505798 5:9650T52 0:0000000002098739 5:9912 Trs approximation error orderT33 0:0000000755683551T43 0:0000000003248339 7:8619T53 0:0000000000012932 7:9726Table 4: Errors of Tr2 and Tr3 for Example 2



8 R. Baier and F. LempioExample 3. Modifying Example 2 only slightly, we chooseB(t) = � tet(�1 + 2t)et�and U = [�1; 1] � IR as a control region with a lower dimension than statespace dimension.Nevertheless, the support function��(l; �(1; � )B(� )U) = e�(1�2�)jl1 + l2jful�lls all assumptions of the convergence theorem. Due to unavoidable errorsin the computation of the fundamental system, the reachable set is approx-imated by solid polygons which converge quickly to the straight line shown inFigure 3.
-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

 2.0

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5
-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

 2.0

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5
-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

 2.0

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5
-2.0

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

 2.0

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5Figure 3. Approximations T00; T10; T11 resp. T22 for Example 3One observes the expected order of convergence in Tables 5 and 6.Trs approximation error orderT00 0:4713014578701207T10 0:0668209378745849 2:8183T20 0:0197452231727039 1:7588T30 0:0051496006755192 1:9390T40 0:0013012561272192 1:9846T50 0:0003261847432624 1:9961 Trs approximation error orderT11 0:0047332585545146T21 0:0003239110494004 3:8692T31 0:0000207428109016 3:9649T41 0:0000013044760001 3:9911T51 0:0000000816565897 3:9978Table 5: Errors of Tr0 and Tr1 for Example 3Trs approximation error orderT22 0:0000481425650156T32 0:0000008264432341 5:8643T42 0:0000000132322462 5:9648T52 0:0000000002080203 5:9912 Trs approximation error orderT33 0:0000000754808080T43 0:0000000003244811 7:8618T53 0:0000000000012885 7:9763Table 6: Errors of Tr2 and Tr3 for Example 3



Approximating Reachable Sets by Extrapolation Methods 9x4. Concluding RemarksWe tried to point out the intrinsic relation between set-valued numerical in-tegration by extrapolation methods and higher order discrete approximationsof reachable sets for linear control problems. In principle, each discrete ap-proximation is a weighted Minkowski sum of closed convex sets. Especiallyfor higher state space dimension, the direct computation of these sums or oftheir dual representation by support functionals is a real challenge. Admittingerrors up to a certain order in the di�erent terms of the Minkowski sum resp.in the set-valued integrand could ease this task.For a remarkably broad class of linear control problems one gets at leastsecond order of convergence. We have shown by several examples that higherorder of convergence can be achieved if the underlying problem has additionalsmoothness properties, even if the control region is not strictly convex or ifthe dimension of the control region is smaller than state space dimension. Acharacterization of broader classes of such problems with additional implicitsmoothness properties would be very desirable.For nonlinear problems, reachable sets are not any longer necessarilyconvex and an integral representation by Aumann's integral is not available.Nevertheless, �rst order of convergence can be achieved by Euler's method(see [10]), and second order of convergence by modi�ed Euler method forspecial problem classes ([17]). The development of higher order methods isan interesting and challenging �eld of ongoing research.References1. Aubin, J.-P., and H. Frankowska, Set-Valued Analysis, Birkh�auser, Bos-ton{Basel{Berlin, 1990.2. Aumann, R. J., Integrals of set-valued functions, J. Math. Anal. Appl.12, no. 1 (1965), 1{12.3. Baier, R., Extrapolation methods for the computation of set-valued integ-rals and reachable sets of linear di�erential inclusions, ZAMM 74, no. 6(1993).4. Baier, R., and F. Lempio, Computing Aumann's integral, in Proceedingsof the IIASA Workshop on Modelling Techniques for Uncertain Systems,Sopron (Hungary), July 6{10, 1992.5. Balaban, E. I., On the approximate evaluation of the Riemann integral ofmany-valued mapping, U.S.S.R. Comput. Maths. Math. Phys. 22, no. 2(1982), 233{238.6. Bulirsch, R., Bemerkungen zur Romberg-Integration, Numer. Math. 6(1964), 6{16.7. Chartres, B. A., and R. S. Stepleman, Actual order of convergence ofRunge-Kutta methods on di�erential equations with discontinuities,SIAM J. Numer. Anal. 11, no. 6 (1974), 1193{1206.8. Chartres, B. A., and R. S. Stepleman, Convergence of linear multistepmethods for di�erential equations with discontinuities, Numer. Math. 27(1976), 1{10.
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