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1 Motivation and aim of the thesis

Self-organization is a process of short-range attraction and long-range repulsion in which the
internal organization of a system increases in complexity. It is driven by interparticle po-
tentials and is opposed by the chaotic dynamics, characteristic of many non-equilibrium sys-
tems. In general, self-organization involves multiple time and length scales. Examples of self-
organization can be found in behavior of social animals, in economic systems (free market
economy), in mathematics and cybernetic, in biology and chemistry. The most robust and un-
ambiguous examples of self-organizing systems are from physics and chemistry, where the term
self-organization” is often replaced by the synonymous term ”self-assembly”. Examples from
physics include phase transitions, superconductivity and Bose-Einstein condensation, critical
opalescence of fluids at the critical point, spontaneous magnetization etc. In chemical sciences,
self-assembly is closely associated with soft matter, such as liquid crystals, colloidal crystals
and phase-separated block copolymers. The last ones constitute one of the most widely studied
classes of self-ordering complex fluids [1].

Block copolymers consist of two or more incompatible polymer chains (blocks) which are co-
valently bonded together. Due to the strong repulsion, unlike blocks tend to segregate. However,
as they are chemically bounded, a macroscopic phase separation is prohibited. Instead, periodic
microdomains of the size in the range from 5 to 100 nm are formed. Since the chemical identity
of each block can be judiciously selected prior to copolymerization, the self-assembly of block
copolymers offers one of the most general strategies for generating structures on the nanometer
length scale. Therefore this class of materials opens new perspectives for modern nanoscience
and nanotechnology.

Thin films of block copolymers are of particular technological interest, as the confined ge-
ometry offers additional possibilities to guide the self-assembly of nanostructures via interfa-
cial interactions, symmetry breaking, structural frustration and confinement-induced entropy
loss, resulting in richer phase behavior as compared to the bulk phase with the same composi-
tion. Nanostructured patterns from block copolymers are promising in applications as templates
for nanolithography, nanowires, high-density storage devices, quantum dots, photonic crystals,
nanostructured membranes, etc. [2, 3, 4, 5, 6, 7, 8, 9], where the size, shape and spatial arrange-
ment of the self-assembled structures are utilized.
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On the other side, thin films of block copolymers have proved to be suitable models for
the fundamental studies of interfacial phenomena, as they offer an excellent possibility to vi-
sualize the structure and dynamics of microdomains in real time and real space [10, 11, 12].
Therefore, studies on thin block copolymer films provide a deeper understanding of mecha-
nisms and interactions involved into self-assembly on a mesoscale, as well as of the processes
of structural ordering observed in other complex systems, ranging from solid crystals [13] to
membranes [14].

Indispensable for such understanding and control of the resulting nanostructures is the theo-
retical description of the related phenomena. Theoretical predictions rationalize and accelerate
experimental studies and provide deeper understanding of processes observed experimentally.
On the other hand, experiments test and validate theoretical assumptions.

In this thesis a detailed analysis of microdomain structure and their short- to long- term dy-
namics in thin films of asymmetric block copolymers is presented. The strength of this study is
that the modeling results are directly compared with the experimental findings on block copoly-
mer films with Scanning Force Microscopy (SFM).

The theoretical approach provides decisive understanding of the experimental results as it
allows more extensive variation of the system parameters than one could achieve in experiments.
Moreover, simulations allow time-resolved observation of the film structure beyond the surface
layer to which the SFM experimental studies are limited.

The core of this work are the calculations based on the dynamic density functional theory
(DDFT). The molecular model (A3B12As Gaussian chain) was chosen to describe the compar-
ative polystyrene-block-polybutadiene-block-polystyrene triblock copolymer, which has been
studied experimentally with SFM by A. Knoll [15].

The first part of the work includes systematic investigation of the phase behavior of cylinder-
forming block copolymers in thin films. The deviations from the cylinder bulk morphology,
observed both, in simulations and in experiments, were identified as surface reconstructions.
The phase diagrams of surface structures were constructed in a large parameter space covered
by simulations. This allowed to distinguish between surface field and confinement effects in the
observed phase behavior.

The advantage of DDFT method is that it provides the possibility to study the kinetics of
structure development and related transport mechanisms in block copolymeric systems. This
feature gave an impulse to establish in-situ SFM measurements [10] of the microdomain dy-
namics in thin block copolymer films.

The second part of this thesis presents a comparative study of the dynamics in thin films
on two different length scales: the dynamics of individual defects (on a scale of nm) and the
dynamics of surface relief structures (on a scale of several um). The pathway of structure



Introduction

formation and kinetics of phase transition give additional insight into the physics of the system.
The accordance between the modeling and the experimental results supports the assumption
that the material transport is governed by diffusion. Importantly, the good match between the
simulations and the experiments validates the kinetic model applied in DDFT.

The new insights gained from the presented research expands the understanding of the equi-
librium and dynamic behavior of block copolymers, and eventually provide means to control
the nanostructures in ordered fluids.



2 Method

2.1 Coarse-grained models of a block copolymer chain

Block copolymers can be theoretically and computationally described by models pertaining to
different length scales and corresponding time scales (Fig. 2.1). The level of details, resolution
and degree of freedom in simulations can be done on different levels of the building blocks of
a polymer chain: atoms, united atoms (chemical groups of a few atoms), monomers, groups
of monomers, chain segments of various lengths and entire chain. The process of collecting
many microscopic building blocks (or degrees of freedom) into fewer larger ones is referred
to as coarse-graining. The choice of the smallest block in the model determines not only the
spatial resolution, but also the corresponding time scales [16]. For example, atomistic models
retain detailed information about the chemical composition of a single chain, but the time scales
covered in atomistic simulations are some nanoseconds.
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Figure 2.1: Coarse-graining of block copolymer chain, adapted from [16]

On a mesoscale the macromolecular nature of polymers suppresses effects related to the
atomic details, providing systems where the behavior is more universal and dependent upon far
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fewer parameters [17]. A well known example of a coarse grained description of polymers is
the lattice based model of a polymer chain in solution, applied by Flory and Huggins [18, 19]
in order to determine the entropy of mixing between the components. Here the monomers and
the solvent molecules are represented as particles occupying one lattice site each and only the
interaction between next nearest neighbors are taken into account by a single Flory-Huggins yx
parameter. This model was later extended for the phase separation in the melt of homopoly-
mers by de Gennes [20]. A similar coarse-grained representation of block copolymer chains is
applied in particle-based Monte Carlo [21, 22] and molecular dynamics computer simulations.
Alternatively, high-molecular-weight polymers can be accurately modeled as Gaussian
chains, where they are represented by smooth space curves with a simple stretching energy
to treat their local configurational entropy, and the molecular interaction between A and B seg-
ments can be represented by . On a coarse-grained level the Gaussian chain can be represented
as ”spring and beads” model, where springs mimic the stretching behavior of chain segments
and different kinds of beads correspond to different components. The degree of coarse-graining
determines the calculation costs and is reflected in spatial resolution. The Gaussian chain model
is only an example of polymer chain representation. It is well suitable to describe block copoly-
mers characterized by a flexible backbone. Indeed, liquid crystalline polymers molecules are
better described by a stiff worm-like chain [23].
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2.2 Field theoretic calculation

While the applications of block copolymers often make use of the unique surface or interfacial
properties, the understanding of block copolymer thermodynamics is based on the analysis of
phase behavior in bulk. Theoretical studies concern with predictions regarding the microdomain
geometry, size, and stability as a function of molecular parameters such as volume composition,
degree of polymerization, chain architecture, interaction between components, etc. Theoretic
description of phase separation in block copolymers is typically based on phenomenological
energy expansion [24], or on particle-based simulations (e.g. Monte Carlo [21, 22]), or on field
theoretic calculations [25]. Here the focus is on the latter method which has been utilized in the
present work.

In field theoretic models the variables are the local concentration or density of species in a
volume or the size and shape of the elements. It should be noted, that these mesoscopic models
neglect atomistic details below 1 nm and time scales related to nanoseconds, nevertheless they
lead to significant advances in the understanding of block copolymer structures, dynamics and
phase behavior on a mesoscale.

Starting with the works of Edwards [26], field theory models have been extensively used in
approximate analytical calculations for a variety of systems such as polymer solutions, polymer
melts and blends and copolymers [27, 28].

The theory of phase separation in the bulk of block copolymer melts was originally developed
in two limiting regimes (see Fig. 2.2): the weak segregation limit (WSL), which is valid near
the order-disorder transition (ODT) where the magnitude of the oscillation of the local densities
is small, and the strong segregation limit (SSL), which is valid in a well-ordered state where the
interface between the microdomains is small in comparison to the microdomain size. An excel-
lent detailed review on these two limiting regimes was written by Bates and Fredrickson [29].

Figure 2.2: One-dimensional composition profiles characterizing the weak (WSL) and strong
(SL) segregation limits. f refers to the local A-block volume fraction, while ¢a
shows its macroscopic (mean) value.

The theory of WSL was originally developed by Leibler [28] and is based on the expansion
of the free energy in powers of an order parameter. This theory describes well the transition
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from a disordered phase to an ordered phase. Scattering functions in the disordered phase are
predicted by the theory, and the spinodal is obtained as the position of points for which the
scattering function diverges. Lamellar, hexagonal and cubic phases in a weakly segregated melt
of diblock copolymers were predicted by Leibler [28] within a mean field approximation by
regarding preassumed periodic structures and looking for minimal free energy. His conclusion
was that, at equilibrium, the bulk state of the diblock system is determined by only two relevant
parameters: the copolymer chain composition f and the product ¥ N (N is the polymerization
index). Fredrickson and Helfand [30] extended the theory of Leibler by taking into account
composition fluctuations, which are essential near ODT. De la Cruz and Sanchez [31] applied
WSL theory to more complex block copolymer architectures like star and grafted polymers.
Mayes and Sanchez [32] calculated the phase diagram for ABA triblock copolymers.

In strong segregation limit, the physical principles that govern the microdomain period and
the selection of ordered phases have been well-established by the works of Meier [33] and
Helfand [27, 34]. The strong segregation theory of Helfand [27, 34] is based on the use of di-
rect space distribution functions which describe the probabilities of finding chain-end segments
of different lengths at different positions. These probabilities predict the assumed densities.
Deviations from the ideal Gaussian chain conformations are quantitatively taken into account
by introduction of a spatially varying mean field. Helfand and Wasserman developed numerical
techniques for calculating the phase diagram in strong segregation limit and established regions
of stability for spheres [35], cylinders [36] and lamellae [34] phases. Semenov [37] suggested
an analytical solution of self consistent theory in the asymptotic limit yN — oo,

Matsen and coworkers [38, 40, 41, 42, 43, 44, 45, 46] have solved Helfands self consistent
field theoretic equations without the limiting narrow interface approximation [34] for the com-
plete spectrum of segregations. For the simplest architecture of linear AB diblock copolymers,
four morphologies have been determined to be thermodynamically stable in the bulk, depend-
ing on N and the volume fractions of the two blocks: lamellae of alternating A-rich and B-rich
layers, hexagonally packed cylinders of the minority component (A) in the matrix of the other
component (B), A-spheres packed on a body-centered cubic lattice in the B-matrix, and a bicon-
tinuous gyroid phase [46] (Fig. 2.3).

A promising alternative to spectral SCFT methods, which consider preassumed periodic
structures, is the DDFT method, developed by Fraaije and co-workers [47, 48]. Here the mini-
mization of the free energy automatically results from an evolution of the density distribution,
driven by diffusional dynamics and gradients of chemical potentials [47]. This dynamic ap-
proach allows to study the kinetics of phase separation and phase transitions and the transport
mechanisms in block copolymers. It does not require a priori knowledge on the structure and
therefore can be used to predict new morphologies. In contrast to static approaches which clas-
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Figure 2.3: Phase diagram of self-assembled structures in AB diblock copolymer, (a)predicted
by self-consistent mean field theory [38] and (b) measured experimentally using
polystyrene-polyisoprene diblock copolymers [39]. (¢) Schematic illustrations of
equilibrium morphologies for linear AB diblock copolymer.
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sify block copolymer morphologies via equilibrium theories, the dynamic approach recognizes
the fact that by their nature block copolymer patterns are not always regular. In experiments,
the morphology of a single sample typically includes defects and often consists of coexisting
morphologies. In general, real (experimental) systems self-assemble only under the influence
of thermal energy (or enhanced mobility of block copolymer). The self-organization process
requires material flow and energy exchange, and hence, it can only be characterized via the
dynamic properties of the system.

Another advantage of the dynamic approach is that it describes more realistically the prepa-
ration and/or processing of block copolymer samples where the typical experimental times are
orders of magnitude shorter than thermodynamic relaxation times, and thus non-perfectly or-
dered structures substantially contribute to the behavior of the final material. Quenching in the
absence of a biasing field often results in messy, irregular, nonequilibrium states with ”poorly
defined morphologies” [49].

Finally, it should be noted, that equilibrium structures computed with DDFT in fact represent
solutions of the SCFT equations.
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2.3 Thin films of block copolymers

Over the last decades thin block copolymer films have been the subject of intensive research,
both experimental [3, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59] and theoretical [24, 60, 61, 62].
Below, the main achievements of the theoretical description of confined block copolymers are
summarized.

The effect of a single surface was firstly studied by Semenov [37] in strong segregation limit
and by Fredrickson [60] in weak segregation limit. In a weakly segregated lamella-forming
diblock copolymer melt Fredrickson found that surface induces sinusoidal composition oscil-
lations which exponentially decay into the bulk. Shull [61] has extended the study of surface
effects via a full mean-field treatment. He confined the block copolymer between two surfaces
and analyzed thickness instabilities by means of free energy minimums. The same analysis
was done by Turner [62] with a phenomenological free energy description. Walton et al. [55]
extended the study on confined films to the case of lamellae which are oriented perpendicular
to the film surfaces. Pickett and Balazs [63] analyzed the stability regions of the perpendicular
orientation in lamellar thin films with self consistent field calculations taking additionally into
account the preferential attraction of one component to the surface. Together with Fasolka et
al. [64] they reported an analysis of the morphological behavior of films with thicknesses below
the equilibrium period Lg via self consistent field calculations.

Matsen [65] has first reported self consistent field (SCF) calculations of a phase diagram as
a function of thickness for a lamella-forming diblock copolymer. Additionally to the stability
analysis for unconfined films, he considered mixed morphologies and undulations in domain
shapes.

Most of published research concerns lamella-forming systems, while block copolymers
which form hexagonally ordered cylinders are considerably less studied. Here the intrinsic 3D
interfacial curvature provides in thin films extra degrees of freedom, and a realistic 3D-space
description of microdomain structure is required. By now it is well established that confine-
ments and surface fields effects can cause the microdomains to deviate from the bulk cylindrical
structure.

Turner predicted a transition to the non-bulk lamellar morphology in the vicinity of a sur-
face [24], while Suh et al. [66] analyzed the stability regions of parallel and perpendicular
orientations of cylinders as a function of the film thickness. Both studies use a phenomeno-
logical free energy model for the strong segregation limit. The first detailed study by means
of SCFT as well as the first phase diagram for asymmetric diblock copolymers in a thin film
were reported by Huinink et al. [67, 68, 69]. These papers were followed by a serious of
other publications based on the same method [10, 58, 70, 71, 72] or on Monte-Carlo simula-
tions [73, 74, 75, 76, 77, 78].

10
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2.4 Dynamic density functional theory for thin films of

block copolymers: computer simulations

Computer simulations reported here were performed with the parallel MesoDyn code [79],
which is based on the (Mean-Field) Dynamic Density Functional Theory (DDFT) originally
proposed by Fraaije [47, 48]. In literature the theory is also referred to as Dynamic Self Con-
sistent Field Theory (DSCFT) [25].

Molecular model and the free energy functional

A system of volume V which contains n Gaussian chains of the length N = Na + Ng is con-
sidered. The chemical composition of the polymer molecule is reflected by beads of different
types, labeled by the index |. The bead index number is s=1,...,N. We assume the volume of
different beads to be the same, therefore fo = %

The Hamiltonian of one ideal Gaussian chain can be written as:

3kT N
G
2a2 2 RS— ’ (21)

here a is the Gaussian bond length parameter, k is the Bolzmann constant, T is the temperature,
Rs is the position of the st bead.
In the presence of an additional external field U the partition function for a single chain is:

1 G
D= W/vw[e RrIHC+EE Us(R) HdRs 2.2)

A3N s the normalization factor [48]. The corresponding single chain distribution is given by

the Bolzmann distribution:
V= ée‘%[HG‘FZQ_l Us(Rs)] (2.3)

For a system of volume V the transition from the particle based to the field theoretic approach
is given by density functionals:

_ NSk - HOAY UR) o T
PR = g 3. 85 | S(R-Rye # M2 R TT R, (2.4)
s=1 s=1
This density functional for the Gaussian chain relates bijectively and in a self-consistent way
the density fields p; and the external potentials U; [48, 80]. There is no known closed analyt-
ical expression for the inverse density functional U, (p), but it can be calculated efficiently by
numerical procedures [81, 82].

11
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The free energy for such a system can be expressed as [48]:

Flp] = —KTIn®d"/n! — Z/Vu. (r)pi (r)dr +F"4[p] 2.5)
|

The non-ideal part of free energy F™9 captures two types of interactions: (1) the hard-core
interactions or incompressibility of the polymer melt, which are included via the phenomeno-
logical Helfand penalty function [27], and (2) the cohesive interaction between the beads. The
second one is commonly taken into account in the same way as by the Flory-Huggins lattice
theory [19]. The compressibility of the system is included via:

ol =5 [ (S(pir) - o) @9)

Here ky is Helfand coefficient, p,0 is the average concentration of the component I, and v, is
the bead volume.
For the cohesive interaction between the beads, a Gaussian kernel is used:

3 \32 3(rry
—) e 2
The strength of the interaction, s|°J (in kJ/mol) is directly related to the Flory-Huggins parame-
ter (yi3 = 1000£|°J/NakT). The input to the free energy functional is:

Flpl = 53, f st~ ot e @7)

Dynamic equations

The thermodynamic forces, that drive the phase separation and the structure formation, are
local gradients in the intrinsic chemical potential. The chemical potentials are derived from the
functional differentiation of the free energy and are a function of the external potentials and the

density fields:
oF

r=—— 2.8
(= o (1) (2.8)
In the simulational code, applied in this thesis, the time evolution of the density field p(r) is
described by a Langevin equation for diffusion with a constant mobility (M,) of beads [83]:
api

W=M|V'P|VM+H|, (2.9)

12
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1, is a thermal noise, distributed according to the fluctuation-dissipation theorem [84].

Surface fields and confinement effects

The effect of a substrate in thin films is modeled via confining the block copolymer in a slit.
The surfaces of the slit are regarded as hard objects and mass transport through these objects
has to be forbidden. Therefore, rigid-wall boundary conditions constrain a thin film by keeping
the flux perpendicular to the substrate equal zero [67, 85]: Vu; x i =0, where i is the normal
of the slit surface. The solid surfaces are treated like hard walls also called "mask fields”. The
interactions with the substrate is taken into account in the same way as the interaction between
the beads (Fig. 3.1). The surface field induced term in F"d js:

Fw”[p]:%szvagm(\r—r'\)p|(r)pM(r')drdr' (2.10)

where py (r’) describes the position of the mask (pm(r’) is equal 1 if r’ belongs to the mask, or
0 if r’ belongs to the polymer film).

Numerics

The Gaussian chain density functional (Eq. 2.4), the equation for intrinsic chemical potentials
(Eg. 2.8), the Langevin equation for diffusion (Eq. 2.9) and the expression for the thermal noise
form together a closed set. This set is integrated on a 27-stencil cubic mesh by a Crank-Nicolson
scheme [81]. Zero external potential fields and homogeneous density distributions are used as
starting configurations for the integration.

13



3 Overview of thesis

3.1 Results

In this thesis modeling results on structure formation at multiple time- and length- scales in
thin films of asymmetric cylinder-forming block copolymers are presented and discussed. The
complexity of the simulated system was stepwise increased to model the behavior of supported
thin films of polystyrene-polybutadien di- and tri- block copolymers, which form polystyrene
cylinders in a polybutadiene matrix in bulk [11, 15, 86]. The thesis includes five publications.
Chapters 4 and 5 report on the equilibrium structures in thin films of compositionally asym-
metric block copolymers. Chapters 6 and 7 consider structural defects and their dynamics. Fi-
nally, the dynamics of surface relief structures is reported in Chapter 8. Each chapter includes a
detailed comparison of simulations with experimental observations in order to ascertain the rel-
evant parameters, which determine the morphology and the dynamics in thin copolymer films,
and to suggest specific mechanisms, which govern the structural ordering.

Phase behavior in thin films of cylinder-forming block copolymers

Since the seminal work of Anastasiadis et al. [51], the behavior of lamella-forming block
copolymers in thin films has been studied in detail and two major effects have been identified.
The preferential attraction of one type of block to the surface (the surface field) causes the
lamellae to align parallel to the interfaces. As a result, the film forms islands or holes where
the film thickness is a (half) integer multiple of the lamella spacing in the bulk. In cases where
the film thickness is not compatible with the natural bulk domain spacing or when the film/air
and the film/substrate interface is not selective, lamellae can orient perpendicular to the inter-
faces [55, 57, 64, 87].

The behavior of cylinder-forming systems is more complex. Here, besides cylinders oriented
parallel and perpendicular to the surface, a variety of deviations from the bulk structure have
been observed: disordered phase [88], a wetting layer [89], spherical microdomains [90], a
perforated lamella [90], as well as more complicated hybrid structures such as cylinders with

14
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necks [91], a perforated lamella with spheres [92, 93], and an inverted phase. [94] Although
various models have been developed to describe this behavior [24, 68, 73, 95] (for summary,
see Ref. [73]), modeling and experimental results agree qualitatively only in parts. The goal
of the research presented in chapters 4 and 5, is to clarify which of the reported phenomena are
specific to the particular system and/or route of film preparation and which are general behavior,
and to establish general understanding of the underlying fundamentals.

Figure 3.1: Effect of the strength of the surface field ey on microdomain structures and sur-
face reconstructions. Gray boxes indicate €y values where simulations have been
done. Isodensity surfaces (pa = 0.45) are shown for typical structures. (a) One
microdomain thick films (H = 6). (b) Rather thick films (9 microdomains, H = 54).

Chapter 4 reports results of numerical calculations of phase behavior in a thin films of
cylinder-forming triblock copolymers in a large range of parameter (the bead-bead interaction
epg, the layer thickness H and the interaction with surfaces ey are varied). The effect of bead-
bead interaction on a bulk morphology for a model A3B12A3 Gaussian chain with a volume
fraction of A component fa = 0.33 is investigated in order to determine the parameter space
of the cylinder morphology. Next, the effect of confinement on the cylinder phase is studied.
For selected epg values the thin film morphology as a function of the film thickness (H) and an
effective surface interaction (ey = eam — €am) IS investigated. The important feature of the thin
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film phase behavior is the existence of non cylindrical morphologies: a wetting layer, a perfo-
rated lamella, a lamella (see Fig. 3.1). These deviations are present in thin films (one domain
spacing), as well as at surface of thick films (9 domain spacings), Fig. 3.1, and are identified
as surface reconstruction. The same morphologies were reported also experimentally (see cita-
tions above). The results indicate that these morphologies are induced by surface fields, which
extend into the bulk with a decay length of about one microdomain spacing. Furthermore,
surface fields are additive, and for very thin films the effects of both surfaces combine.

Together with what is known for lamella-forming systems the calculated results give evi-
dence of a general mechanism governing the phase behavior in thin block copolymer films: The
interplay between the strength of the surface field and the deformability of the bulk structure
determines how the system rearranges in the vicinity of the surface. This causes either an ori-
entation of the bulk structure (e.g. cylinders oriented parallel or perpendicular to the substrate)
or the formation of surface reconstructions (wetting layer, perforated lamella and lamella). The
stability regions of the different phases are modulated by the film thickness via interference of
surface fields and confinement effects.

Finally, via comparison of experimental [86] and simulational phase diagrams, the experi-
mental control parameter (the polymer concentration in the swollen block copolymer film) is
related to the interaction parameter of polymer beads with the surface used in the calculations.

Chapter 5 is published as a short communication [58]. It presents a comparative study of
the phase behavior of cylinder-forming ABA block copolymers in thin films. The experiments
are done on SBS triblock copolymers thin films, equilibrated by annealing in chloroform vapor.
The morphology is measured by scanning force microscopy (SFM). The experimental system is
parametrized based on the results of chapter 4. The effect of the solvent is modeled by introduc-
ing an effective surface interaction parameter proportional to the polymer concentration. The
experimentally determined yN parameter of ~ 35 corresponds to eag = 6,5 in simulations. The
simulation of an A3B12A3 block copolymer film, done in a wedge-shaped geometry (where the
film thickness varies), exhibits exactly the same sequence of phases as the SFM measurements
on SBS film with increasing film thickness. The good match corroborates the assignment of
experimentally observed 2D surface patterns to distinct phases. In particular, the calculations
allow to distinguish between perforated lamella phase (black dot pattern) and perpendicular
cylinder phase (white dot pattern), Fig. 3.2. The experiment and the simulation reveal variety of
phases in a single system under identical equilibration conditions. This finding indicates that,
together with effective surface interaction, the film thickness is an important control parameter.

The experimental phase diagram (surface structures as a function of solvent contens and film
thickness) is compared with the simulated phase diagram (surface structures as a function of
surface field and film thickness). Although DDFT simulations simplify the effect of solvent
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Figure 3.2: Top: TappingMode SFM phase images of thin polystyrene-block-polybutadiene-
block-polystyrene films on silicon substrates after annealing in chloroform va-
por. Bright (dark) corresponds to PS (PB) microdomains below a top PB layer.
Schematic height profile of the phase images shown in the middle. Bottom: Smula-
tion of an A3B12A3 block copolymer filmin one large simulation box with from left
to right increasing filmthickness H (x), eag = 6.5, and ey = 6.0.

annealing, they predict the experimental phase diagram with intriguing complexity: the com-
parison of experimental results and simulations allows to distinguish the effects of the two
constraints being simultaneously present in thin films, the surface field and the film thickness.
Similar phase behavior reveals the general character of the response of the cylinder phase to the
above constraints.

Specific features of defect structure and dynamics in cylinder phase of block copolymers

The application of block copolymers in conventional lithography [7] requires large area of
defectless nanopatterns. Various strategies such as chemical modification of the substrate [96,
97, 98] or external fields [99] are used to align and order the microdomains over macroscopically
large areas. In order to control the process of ordering one needs to understand the dynamics in
thin films, particularly the dynamics of defects and the mechanisms of defect annihilation. This
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makes the dynamics of nanostructured fluids in thin films to an issue of recent interest [10, 100].
Chapters 6 and 7 consider the structure and the dynamics of typical defects in the cylinder
phase of block copolymers.

Chapter 6 presents a detailed experimental and theoretical comparative study of defect fea-
tures which are specific for the cylindric structures in block copolymer films. Additionally
to classical topological defect configurations, such as edge dislocations and disclinations well
known for a broad range of condensed matter, including liquid crystals and block copoly-
mers [98, 101, 102, 103, 104, 105], representative modified, specific and grain boundary defects
have been identified.

Modified classical defects result from incorporation of elements of non-bulk structures into a
classical defect. This class of defects reflects the rich phase behavior of cylinder-forming block
copolymers in thin films [58].

Specific defects, such as bridge-like connections between neighboring cylinders, do not influ-
ence the orientational order parameter, but enhance the connectivity of the minority component
in thin films. These specific defects stress the structural similarities between cylinder patterns
and other types of soft structured matter such as lyothropic liquid crystals and biological mem-
branes, where analogous bridging connections and their important transport function have been
reported [106].

As an example of typical grain boundary defect, T-junctions and their dynamics are ana-
lyzed. Good agreement between the dynamic experiments and simulations on the details of the
lateral propagation of a complex 3T-junction defect suggests diffusion-driven lateral transport
and correlated defect motion due to the interconnectivity of the polymer chains.

The simulation results, which access the 3D structure of thin films, shows that purely topo-
logical arguments and 2D representation are not sufficient to elucidate the stability and mobility
of defects in cylinder morphology. Characteristic for all types of defects in cylinder-forming
thin films is the connectivity of the minority (A or polystyrene) phase. Configurations with an
open cylinder end are typically short-lived elementary steps of defect reconstruction, and are,
in general, less stable than defects with closed cylinder end (branched cylinders). The results
indicate that the material transport in block copolymers occurs preferentially along rather than
across the A-B interface.
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Chapter 7 reports on temporal phase transitions as a specific defect annihilation pathway.
Both, time resolved experiments and DDFT simulations reveal temporal changes of the local
morphology which accompany the reorientation of cylindrical grains (see Fig. 3.3). The for-
mation of local transient phases such as spherical domains, perforated lamella, and lamellar
patches is a short-term pathway facilitating the long-term behavior. The observed structural
evolution is closely related to the equilibrium phase behavior in cylinder-forming films, which
has been studied in detail in chapters 4 and 5. The temporal non bulk structures have also been
observed in phase diagrams (chapter 5) under variation of the film thickness or surface fields.
These results demonstrate that microdomain dynamics is closely related to the intrinsic rich
morphological behavior of cylinder phase under confinement.

Time evolution of surface relief structures in thin block copolymer films

Chapter 8 reports on the dynamics of the early stage of terrace formation in thin supported
films of cylinder-forming triblock copolymers, studied both theoretically using DDFT and ex-
perimentally by in-situ SFM.

Time, s
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Figure 3.4: Left: Step heights in the experiment and in the simulations are plotted as a func-
tion of time. Right: Shapshots of structure as revealed by SFM measurements and
simulations after 8 hours of annealing (or 25 000 simulation steps)

A universal experimentally observed phenomenon in thin films of block copolymers is the
formation of terraces with the film thickness of a (half) integer multiple of the natural mi-
crodomain spacing [3, 50, 51, 52, 53, 107]. Experimentally, nucleation and subsequent growth
of surface relief structures, are typically followed by time-resolved optical micrographs or SFM,
and are studied as a function of surface fields [108, 109, 110], molecular architecture [111], film
thickness [87, 112], and annealing conditions [111, 112, 113]. The main accent in the above
mentioned experimental works as well as in a few theoretical works [100, 109, 114] on ter-
race formation dynamics is done on late stages, where the step height between the terraces has
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Figure 3.5: Smulation snapshots and schematic representation of the C;C, —to—C, , transi-
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reached the equilibrium value and remains constant. The late stage can be characterized by a
local rearrangement in microdomain structure (ordering processes) [10] and by coalescence of
terraces [114]. However, the largest part of the material transport within thin film takes place
on early stages of annealing. Therefore, a detailed study of early stages gives new insights into
transport mechanisms in block copolymers.

In experiment, an initially flat SBS film of incommensurable thickness is continuously im-
aged by SFM, and the evolution of vertical orientation of cylinders into parallel one, as well as
the respective development of thickness gradient (terrace formation) is captured in detail.

In simulations the free film surface is created as an interface between the block copolymer
and a third component which does not mix with the block copolymer and acts as an air”
phase [115, 116]. This interface can spontaneously change its shape during a simulation run.
The focus of this study is on the early stage of terrace formation, which is characterized by
the development of the step height up to 80% of its equilibrium value and by an associated
reorientation of cylindrical domains. Simulations reveal that the formation of the microstructure
starts at the substrate. Subsequently, the initially flat film develops terraces.

Both, the experiments and the simulations show that the change of the local height is strongly
connected to the changes in the local microstructure. They show excellent agreement in details
of structural phase transitions and in the dynamics of step development (see Fig. 3.4). The
detailed pathways of the transitions, as revealed by simulations, suggest a diffusion of block
copolymer chains along the microstructure interfaces and indicate an important role of the C, C
(neck) structure as material-transport-channel between neighboring terraces in thin cylinder-
forming films, see Fig. 3.5. The proposed method gives direct access to the kinetics of phase
transitions in real space and real time, and so can serve as an alternative (or at least complement)
to dynamic studies in bulk, were only statistical mean values are available from scattering data.

20



Introduction

3.2 Individual contribution of authors

Chapter 4 is published in J. Chem. Phys. 120, 1117 (2004) under the title Phase behavior in
thin films of cylinder-forming ABA block copolymers: Mesoscale modeling by Horvat A.,
Lyakhova K.S., Sevink G.J.A., Zvelindovsky A.V., Magerle R.

| established the mesoscale modeling as a complement method to the experimental investi-
gations of the thin film behavior. | have planed and performed all simulations presented in this
work. | have mapped the experiments, performed in the same group, [86] to the theoretical
phase diagram, which cover a much larger parameter space than available in the experiments.
Robert Magerle contributed eminently to the scientific discussion. Katya Lyakhova has intro-
duced the simulational code to me. Agur Sevink and Andrej Zvelindovski have supported the
simulational code and were involved in the discussion. The publication was written by me.

Chapter 5 is published in Phys. Rev. Lett. 89, 035501 (2002) under the title Phase behavior
in thin films of cylinder-forming block copolymers by Knoll A., Horvat A., Lyakhova K.S.,
Krausch G., Sevink G.J.A., Zvelindovsky A.V., Magerle R.

| have parametrized the simulations in respect to the experiment. | have performed all simu-
lations and have analyzed and interpreted all theoretical results. All SFM measurements were
done by Armin Knoll. Katya Lyakhova, Agur Sevink and Andrej Zvelindovski were involved in
the discussion of the simulational data. Georg Krausch and Robert Magerle contributed essen-
tially to the scientific discussion. The paper consists of two equivalent components: experimen-
tal and simulational phase diagrams, and their comparison. The contribution of experiment and
of the simulation is of the same impact, but the experiment was carried out first, and therefore
Armin Knoll is firstly mentioned in the author register. Both parts (simulations and experi-
ments) presented in this Letter gave rise of two separate publications: on experimental details
by Armin Knoll (see Ref. [86]) and on simulations by me (Chapter 2 or Ref. [70]). | have writ-
ten this article together with Armin Knoll and Robert Magerle.

Chapter 6 is published in ACS Nano 2, 1143-1452 (2008) under the title Specific features of
defect structure and dynamics in cylinder phase of block copolymers by Horvat A., Sevink
G.J.A,, Zvelindovsky A.V., Krekhov A., and Tsarkova L.

| have performed all simulations and have analyzed and evaluated all simulational results.
The SFM measurements were done by Larisa Tsarkova. Agur Sevink and Andrej Zvelindovski
have supported the simulational code. Alexei Krekhov has contributed to the discussion of
similarities between block copolymers and liquid crystals. The manuscript was written together
with Larisa Tsarkova.
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Chapter 7 is published as ACS preprint (2006) under the title: ”Structural Ordering in Thin
Films of Cylinder Forming Block Copolymers” by Tsarkova L., Horvat A., Krausch G.,
Magerle R.

| have performed the simulations and have analyzed the simulational results. The SFM mea-
surements were done by Larisa Tsarkova. The results were discussed with Georg Krausch and
Robert Magerle. The contribution of experiment and of simulation are of the same impact. The
results were presented on ACS conference by Larisa Tsarkova, and therefore she is firstly men-
tioned in the author register. This article was written together with Larisa Tsarkova.

Chapter 8 is published in Macromolecules 40, 6930-6939 (2007) under the title " Time Evolu-
tion of Surface Relief Structure in Thin Films of Block Copolymers” by Horvat A., Knoll
A., Krausch G., Tsarkova L., Lyakhova K.S., Sevink G.J.A., Zvelindovsky A.V., Magerle R.

| have planned and performed all simulations to model terrace formation in thin films of block
copolymer. The SFM measurements for comparison were supported by Armin Knoll. I have
evaluated, analyzed and compared all results. | have discussed the comparison of simulation
results with the experiment with Georg Krausch, Larisa Tsarkova and Robert Magerle. | have
also profited from discussions with Agur Sevink, who has modified the simulational code to
enable the simulations of terrace formation. Katya Lyakhova and Andrej Zvelindovski were
involved in discussion. The publication was written by me.
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4 Phase behavior in thin films of
cylinder-forming ABA block

copolymers: Mesoscale modeling

Horvat A., Lyakhova K. S., Sevink G. J. A., Zvelindovsky A. V. and Magerle R.
published in J.Chem.Phys., 2004, 120, 1117-1126.

The phase behavior of cylinder-forming ABA block copolymers in thin films is modeled
in detail using dynamic density functional theory and compared with recent experiments on
polystyrene-block-polybutadiene-block-polystyrene triblock copolymers. Deviations from the
bulk structure, such as wetting layer, perforated lamella, and lamella, are identified as surface
reconstructions. Their stability regions are determined by an interplay between surface fields
and confinement effects. Our results give evidence for a general mechanism governing the phase
behavior in thin films of modulated phases.

4.1 Introduction

Block copolymers self-assemble into ordered structures with characteristic lengths determined
by the molecular size, which is in the 10-100 nm range.>? This property has attracted much
interest in the area of soft condensed matter physics and nanotechnology. There is large interest
to understand, predict, and control structure formation in this class of ordered polymeric fluids.

In bulk, the block copolymer microdomain structure is determined mainly by the molecular
architecture and the interaction between the different components (blocks). At the air-polymer
interface and the film-substrate interface additional driving forces for structure formation exist.
Typically, one component has a lower interfacial energy than the other. This causes a prefer-
ential attraction of one type of block to the interface (or surface), which can result either in
an alignment of the bulk structure at the interface3—° and/or a deviation of the microdomain
structure from the bulk. These deviations in the vicinity of the interface have been shown to be
analogous to surface reconstructions of crystal surfaces.®
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In thin films, additional constraints play an important role. Here, the microdomain structure
has to adjust to two interfaces and a certain film thickness, which can be a noninteger multiple of
the microdomain spacing in the bulk. Both constraints together cause a complex and interesting
phase behavior.

Since the seminal work of Anastasiadis et al.,® the behavior of lamellae forming block
copolymers in thin films has been studied in detail and two major effects have been identi-
fied (for reviews, see Refs. 7-9). The preferential attraction of one type of block to the surface
(the surface field) causes the lamella to align parallel to interfaces and the film forms islands or
holes where the film thickness is a (half) integer multiple of the lamella spacing in the bulk. In
cases where the film thickness is not compatible with the natural bulk domain spacing or when
the film/air and the film/substrate interface is not selective, lamellae can orient perpendicular to
the interfaces.*°

The behavior of cylinder forming systems is more complex and less understood. Here, the
natural hexagonal packing of cylinders cannot be retained close to the planar interface, which,
regardless of its orientation, always breaks the symmetry of the bulk structure. As a result,
besides cylinders oriented parallel and perpendicular to the surface,10-12 a variety of deviations
from the bulk structure have been observed near surfaces and in thin films, such as a disor-
dered phase,1© a wetting layer,* spherical microdomains,'® a perforated lamella,'® as well as
more complicated hybrid structures such as cylinders with necks,® a perforated lamella with
spheres,!” and an inverted phase.!®

Various theories have been used to describe this behavior.1%26 A brief summary of exper-
imental and simulation results is given in Ref. 24. With dynamic density functional theory
(DDFT), a dynamic variant of self-consistent field theory, Huinink et al.?1:22 have calculated a
phase diagram for thin films of cylinder forming diblock copolymers. They found that noncylin-
drical structures are stabilized by the surface field in the vicinity of surfaces and in thin films.
With increasing strength of the surface field a sequence of phase transitions was predicted: from
a wetting layer, to cylinders oriented perpendicular to the surface, to cylinders oriented parallel
to the surface, to a hexagonally perforated lamella, and to a lamella.

Theoretical and experimental results agree qualitatively only in part. From the experimental
point of view, only single deviations from the bulk structure and no phase diagrams have been
reported. Therefore it remains unclear which of the reported phenomena are specific to the
particular block copolymer and/or route of film preparation and which are general behavior.
From the modeling point of view, no model predicts all experimentally observed phases. In
particular, a detailed and quantitative comparison between modeling and experimental results
is missing. The underlying fundamentals remain unclear.

Recently, Knoll et al.2” have measured the phase diagram for thin films of concentrated so-
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Figure 1: (a), (b) TappingMode™ scanning force microscopy phase images of thin polystyrene-
bl ock-pol ybutadi ene-bl ock-polystyrene (SBS) films on silicon substrates after anneal-
ing in chloroform vapor. The surface is covered with a homogeneous &~ 10-nm+-thick
PB layer. Bright (dark) corresponds to PS (PB) microdomains below this top PB
layer. Contour lines calculated from the corresponding height images are superim-
posed. (c) Schematic height profile of the phase images shown in (a) and (b). (d)
Smulation of an AzB12A3 block copolymer filmin one large simulation box with from
left to right increasing film thickness H(x), eag = 6.5, and gy = 6.0. The isodensity
surface pa = 0.5 is shown. [Reprinted from: A. Knoll et al., Phys. Rev. Lett. 89,
035501 (2002)]

lutions of a polystyrene-block-polybutadiene-block-polystyrene (SBS) triblock copolymer in
chloroform as function of film thickness and polymer concentration. In this communication?’
we have presented matching computer simulations of thin films of ABA triblock copolymers
which model in stunning detail the experimentally observed phase behavior. As an example,
Fig. 1 shows a comparison of the experimental results of Knoll et al.2” and our simulations of a
corresponding AzB12Ag triblock copolymer film, where the interfaces preferentially attract the
B block. In Fig. 1 the film thickness increases from left to right and a rich variety of structures
is observed. With increasing film thickness, both experiments and calculations show the same
sequence of thin film phases: a disordered film (dis) for the smallest thickness, A spheres or
very short upright A cylinders (C ), A cylinders oriented parallel to the film plane (C, 1), a per-
forated A lamella (PL), parallel oriented A cylinders with an elongated cross section and necks,
perpendicular oriented A cylinders (C ), and finally two layers of parallel oriented A cylinders
(Cy,2)- The phase transitions occur at well-defined film thickness as can be seen from the white
contour lines that represent points of equal film thickness [Figs. 1(a) 1(b)].

As measured three-dimensional volume images of a thin films microdomain structure are
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rather rare.16:17:28.29 DDFT simulations as shown in Fig. 1(d) facilitate us to interpret the exper-
imentally easy observed surface structures in terms of the volume structure of the films. Further-
more, compared to the experiments2’-39 and previous simulations on diblock copolymers,21:22
our simulations cover a much larger parameter space. Only this enabled us to distinguish be-
tween the different physical phenomena governing the phase behavoir in thin films. The phe-
nomena and their interplay can be summarized in the following way: (1) The surface field can
either orient the bulk structure or it can stabilize deviations from bulk structures, such as wetting
layer, perforated lamella, and lamella, which we identified as surface reconstructions.® (2) The
film thickness is modulating the stability regions of the effects.

The aim of this paper is to give a detailed report of our simulation results. The experimental
part is reported in the preceeding companion article.C First, we report briefly the phase behavior
of an AgB12A3 melt in the bulk. Then we focus on the phase behavior of cylinders forming
systems in thin films. The basic types of surface structures and surface reconstructions are
introduced and the underlying physics is explained. Finally, we compare our results with the
corresponding experiments of Knoll et al.2% and the phase behavior of other cylinder and lamella
forming block copolymers.

4.2 Method

We have modeled the phase behavior in thin films with mean-field DDFT, which was developed
by Fraaije et al.31~33 for mesoscale modeling the phase separation and ordering processes of
multicomponent polymeric systems. For our simulations we used the standard MESODYN
code.3*

As a molecular model an ideal Gaussian chain is used. In this ”spring and beads” model,
springs mimic the stretching behavior of a chain fragment and different kinds of beads corre-
spond to different components in the block copolymer. All nonideal interactions are included
via a mean field and the strength of interaction between different components is characterized
by the interaction parameter eag , Which we express in units of kJ/mol. This parameter can be
related to the conventional Flory-Huggins parameter y (see Sec. 4.3.1). Interfaces are treated
as hard walls, with the flux perpendicular to the interface and the density at the interface kept
equal to zero.®® The interaction between components and interfaces is characterized by cor-
responding mean field interaction parameters eav and egm. As only the difference between
the interaction parameters is relevant for structure formation3® we used an effective interface-
polymer interaction parameter ey = eam — €gm, Which characterizes the strength of the surface
field. A positive g ; parameter corresponds to a repulsion between the components | and J. The
dynamics of the component densities p (F,t), with | = A B, is described by a set of functional
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Langevin equations. These are diffusion equations of the component densities which take into
account the noise in the system. Driving forces for diffusion are local gradients of chemical
potentials 1y = SF[{p1}]/dp1. The Langevin diffusion equations are solved numerically with
homogeneous initial conditions. As MESODY N is based on the same type of free energy func-
tional as self-consistent field theory (SCFT),® it is expected to approach on long time scales the
same solutions as SCFT does by searching for the absolute minimum of the free energy. With
MESODY N, however, structure formation proceeds via local gradients of chemical potentials
that are intrinsic to the system. In this way, long lived transition states can also be visited in a
simulation run. This ambiguity, however, is shared with the experiments, where the specimen
is also quenched after a finite annealing time.3°

The simulations were done on a cubic grid of dimensions X x Y x (H + 1), with the interface
positioned at z= 0. Due to the periodicity of boundary conditions, the system is confined
between two interfaces separated by H grid points. The triblock copolymer is modeled as a
melt of A3B12A3 chains, which can be seen as two connected A3Bg chains. The architecture of
the A3B12A3 chain enters specifically in the calculation of the density fields from the external
potentials and in the partition function, respectively, the free energy.32~32 For our simulations
we partly relied on previous results (Refs. 21 and 22). Apart from the chain architecture all
simulation parameters are the same as for the A3Bg diblock system studied in Refs. 21 and 22,
with an exception for the interaction parameter eag. In addition, we have varied this interaction
parameter in a range where the A3B12A3 system forms cylinders in the bulk. Doing so we
can also study the influence of the molecular architecture on the observered phenomena by
comparing our results on A3B12Ag triblock copolymer with the behavior of the corresponding
AzBg diblock copolymer. At the same time, this study allowed us to determine the value of the
interaction parameter eag that best matches the experimental situation. As in Refs. 21 and 22,
we followed the temporal evolution in the system until significant changes of the free energy,
the order parameter, and the microdomain structure no longer occurred.

4.3 Results

4.3.1 Bulk structure

As a first step, we parametrized the system studied experimentally by Knoll et al.?’-3° For
this, we investigated the phase behavior in the bulk and determine the range of eag where the
system forms cylinders. In Fig. 2 the phase diagrams of a melt of ABA triblock copolymers
with A-volume fraction fo = 1/3 are shown, which were calculated with DDFT and SCFT.36
The Flory-Huggins parameter y and eap are related through y = (v=1/2kT) [2eas — £an — €8]
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[Eg. (32) in Ref. 32]. In our case, with v =1, eaan =egg =0, N=18, and T = 413 K,
XN =~ eap x 5.43 mol/kJ.
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Figure 2: Bulk phase diagrams for ABA triblock copolymer melts with fa = 1/3 as a function
of interaction parameters YN and exg. Results of Matsen (Ref. 30) obtained with
SCFT are compared with our results calculated with DDFT for an AzB12As melt in
32 x 32 x 32 large simulation boxes. Phases are labeled as G (gyroid), G (gyroid-
like), C (cylinders), S(spheres), and dis (disordered).

The phase separation process was simulated with DDFT in a cubic box with 32 x 32 x 32 grid
points and periodic boundary conditions. The calculations were started with a homogeneous
melt. During the simulation run we observe similar processes as previously reported.3! First
the segregation of the A and B blocks into interconnected domains takes place. The separation
process continues with the break-up of an initially connected network of different domains into
well-defined structures. Microdomains with different orientations form simultaneously during
the phase separation process, which leads to a very defective structure. The last and slowest
process is the long-range ordering of the microdomain structure, which proceeds via annealing
of defects. Our calculations were done until 4000 time steps, where the long-range ordering
process is still not completed. Nevertheless, the result is sufficient to characterize the formed
microdomain structure. For eag < 5.75 no phase separation occurs. The Adensity pa is spatially
inhomogeneous with a mean value (averaged over all grid points) of 0.33 and standard deviation
of 0.03. The mean value of 0.33 corresponds to the volume fraction fa of the A component.

35



Publications

As the interaction parameter eag increases, A-rich domains of spherical shape (S) form in a
B-rich matrix for 5.8 < eag < 6.0. In the range 6.1 < eag < 6.5, well-separated cylindrical A
microdomains (C) embedded in the B matrix were observed. For eag > 6.6, we observe an
A-rich network of microdomains embedded in a B-rich matrix. Because of the large amount of
three-fold connections we relate this structure to a defective gyroid phase. We have also done
simulations in smaller simulation boxes, 16 x 16 x 16 in size, and obtained similar results but
with better ordered structures.

For eag = 6.5 we determined the distance between cylinders in the bulk. For this purpose
we did a simulation in a 64 x 64 x 1 large box, analogous to Huinink et al.?! Here, due to the
periodic boundary conditions, the cylinders orient perpendicular to the 64 x 64 plane and show
up as hexagonally packed dots. The distance between next-nearest cylinders was determined to
be ag = 6.9+ 0.5 grid units.

Our results are similar to those obtained with SCFT. With increasing interaction parameter
both methods predict transitions from a disordered state to spheres, then cylinders, and a gyroid
phase. We observe the transition from the disordered state to spheres at a higher value of eag
than predicted by Matsen et al.3® The discrepancy could be due to the relatively small size of
the chain and the nonlocality of the nonideal interactions.32 The phase boundary between the
cylinder and gyroid phase is the same in both simulation results and this region of the phase
diagram is of particular interest of the present study. An obvious difference is the presence of
defects in the microdomain structures simulated with DDFT, which Matsens SCFT does not
take into account. If defects cost very little energy a rather high density of defects might be
thermally excited in the system.

4.3.2 Surface reconstruction

We now turn to the question of what happens when interfaces are added to the system. On
varying the film thickness, H, and the strength of the surface field, em, we observe a complex
phase behavior. The presence of interfaces has several effects. One is a speed-up of the long
range order formation. In Fig. 3 two systems with different boundary conditions and otherwise
identical parameters are compared: an AzB12As melt with eag = 6.5 in the bulk [Fig. 3(a)] and
in a film with H = 54 [Fig. 3(b)]. The surface field was chosen to be gy = 6. In both systems,
the simulation time was 4000 time steps and both show cylinders. In the film, the temporal
evolution of structure formation is similar to that of a bulk system. In addition, however, the
cylinders start to align at the interfaces and the alignment propagates from the surface into the
film. This causes the cylinders in the film to orient parallel to the surface and to pack in a
neat hexagonal array [Fig. 3(b)]. In the bulk, however, the microdomain structure is still very
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Figure 3: Effect of the surface on the long range ordering process. Smulations for a cylinder
forming system with interaction parameter eag = 6.5 after 4000 time steps. (a) In the
bulk, ina 32 x 32 x 32 large simulation box. (b) In a confined film, where X =Y = 32
and H = 54, surfaces at z= 0 and 55, and the effective surface-polymer interaction
parameter gy = 6.

defective [Fig. 3(a)]. Although the simulation box of the film system is larger than that of the
bulk simulation it shows a higher degree of long-range order.

The most intriguing effect of the presence of interfaces are deviations from the bulk mi-
crodomain structure in the vicinity of the interface. This effect is called surface reconstruction
and it is best seen at large film thicknesses, for instance at H = 54 (Fig. 4). In such films the
interfaces are separated by approximately nine layers of cylinders and in the vicinity of one
interface the influence of the other one is negligible. In the middle of the film, in most cases the
microdomain structure remains hexagonally ordered cylinders aligned parallel to the film plane.
Depending on the strength of the surface field, considerable rearrangements of microdomains
near the interfaces, i.e., surface reconstructions, occur. For ey < 2, the Acomponent is preferen-
tially attracted to the interface and a wetting layer (W) is formed. When gy increases, cylinders
oriented perpendicular to the surface are stabilized for ey ~ 3. As &y is further increased, the A
component is weakly repelled from the interface and cylinders orient parallel to the surface in
the range ey ~ 4 — 9. For larger &\, surface reconstructions with noncylindrical microdomains
are induced: first, at ey = 10, a transition to a perforated lamellae (PL) occurs in the layer next
to the surface which transforms to a lamellae (L) at ey ~ 25.

For the surface structures shown in Fig. 4 we examined the density distribution of each com-
ponent. In Fig. 5(a) the (x,y) plane averaged A density <PA>x,y is plotted as function of the
distance z For all three gy values (5, 10, and 30), a modulation is observed, which corresponds
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Figure 4: Effect of the strength of the surface field ey on microdomain structures and surface
reconstructions. Smulation results for an A3B12A3 melt (eag = 6.5) in a rather thick
film (H = 54) with surfacesat z= 0 and 55 at ey = —4, 3, 7, 12, 30. Isodensity
surfaces (pa = 0.45) are shown for typical structures. Gray boxes indicate ey values
where simulations have been done.
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Figure 5: Effect of the strength of the surface field on the distribution of A density. (a) The
laterally averaged A density (pa)y, as function of the distance z from the surface
(depth profiles) for different surface fields and surface reconstructions: (circles) par-
allel cylinders, ey = 5; (triangles) perforated lamellae, ey = 10; (squares) lamellae,
em = 25. (b) Histograms of the lateral averaged A density (pa), at z= 3, approxi-
mately in the middle of the first A-rich microdomain next to the surface, for the surface
fields shownin (a).
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to a layered microdomain structure oriented parallel to the interface. In all three of the dis-
played cases the B component is attracted to the interface. This causes a depletion of the A
component at the interface and an increase of pa in the middle of the first A microdomain next
to the interface. The effect increases with increasing surface field gy and it is accompanied
with formation of different surface reconstructions. At z= 3, approximately in the middle of
the first A-rich microdomain next to the interface, pa increases with increasing surface field ey
from pa = 0.55 for cylinders (em = 5), to pa = 0.62 for the perforated lamella (g = 10), and
0.70 for the lamella surface reconstruction (ey = 30). In Fig. 5(b), the lateral distributions of
the A density at z= 3 are plotted as histograms for the same values of the surface field as in
Fig. 5(a). Results for ey = 5 show a broad density spectrum with two peaks, which correspond
to the presence of two microphase separated components: A-rich cylinders and the B matrix.
For ey = 12, the distribution is still broad and A is the majority component in this layer, the
isodensity surface is a perforated lamella. For gy = 30, the density distribution shows one nar-
row peak, as expected for a lamella. These results indicate that with increasing surface field
the density variations parallel to the interface are suppressed in the vicinity of the interface.
In these structures the averaged mean curvature is gradually decreased in order to adopt to the
planar symmetry of the interface.

4.3.3 One microdomain thick films

We now turn to the effect of the film thickness H. In thinner films two additional factors in-
fluence the microdomain structure in the film: the interference of the two surface fields (of the
bottom and the top interface) and the commensurability of the natural domain spacing with
the film thickness. First, we present the interference effect of surface fields for H = 6, which
corresponds to one layer of cylinders (Fig. 6). For this thickness we observe similar structures
as in thick films (H = 54) in the vicinity of the interface. For H = 6, however, the strength
of surface field needed to form noncylindrical microdomains is strongly reduced. We observe
the lamella phase already for gy = 7, compared to ey = 25 for H = 54. Also the perforated
lamella phase appears already at ey = 6 instead of &y = 10 and it has a much smaller existence
range. Perpendicular cylinders, which at H = 6 are very short and almost spheres, appear in
both cases at ey = 3. An additional feature of thin films is the presence of a disordered phase
with no well-defined microdomain structure, however, with the two components A and B being
still slightly segregated. Figure 7 shows depth profiles of the laterally averaged A density for
different structures in thin films of thickness H = 6. For ey < 1, the A block is preferentially
attracted to the surface and a wetting layer forms at each surface. For 1 < gy < 2 the disor-
dered phase forms and the A component is only weakly attracted to the interface. Interfaces
with ey = 3 appear as neutral. For this surface field value very short cylinders oriented perpen-
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Figure 6: Smulation results for a cylinder forming AzB12A3 melt (eag = 6.5) inthinfilms(H =
6) with different strength of the surface field €y . Isodensity profiles (p = 0.45) for
typical structures are shown. Gray boxes indicate parameters were simulations have
been done.
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Figure 7: Effect of the strength of the surface field on the depth profiles of the laterally averaged
A density <pA)X7y in thin films. Depth profiles are shown for: (open squares) a lamella
at ey =9, (open circles) a perforated lamella at ey = 7, (triangles) cylinders oriented
parallel to the surface at ey = 5, (filled circles) cylinders oriented perpendicular to
the surface at ey = 3, (stars) a disordered phase at ey = 2, and (filled squares) a
wetting layer at ey = —2.
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dicular to the surface are formed. The fact that the interface appears neutral at ey = 3 and not
at ey = 0 can be explained by an entropic attraction of the shorter A block to the interface.?!
For em > 3 the surface preferentially attracts the B block and A-rich microdomains form in the
middle of the film.

4.3.4 Phase diagrams of surface reconstructions

We have done simulations with eag = 6.3, 6.5, and 7.1 and have varied the strength of the
surface field, ev, and the film thickness, H. We have also calculated a phase diagram where
we varied eag and gy simultaneously while keeping eag = ev. Figures 8 and 9 show the
phase diagrams of surface reconstructions for eag = 6.5 and 6.3, respectively. For both values
cylinders are formed in the bulk (see Fig. 2) as well as in the middle of the films. Both phase
diagrams clearly show that microdomain structures oriented parallel to the surface are dominant.
Cylinders orient perpendicular to the surface for the neutral surfaces at ey ~ 3 and at certain
thicknesses (H = 9 and 15) which strongly deviate from an integer multiple of a natural layer
thickness. For hexagonally packed cylinders the natural thickness is co = a5v/3/2, where a,
is the distance between next-nearest cylinders in the bulk. In our case (see Sec. 4.1.3.A),
a, = 6.9+ 0.5 and the natural thickness of one layer of cylinders is ¢, = 6.

Interference of surface fields. The important feature of the thin film phase behavior is the
existence of surface reconstructions with noncylindrical morphologies: the wetting layer, the
perforated lamella, and the lamella. For thick films with H > 3c, the critical surface field
required to induce a surface reconstruction is independent of the thicknesses. For thinner films,
this threshold value decreases: for the perforated lamella, ey =~ 10, 8, 7, and 6 at H = 9¢,, 3¢y,
2Co , and ¢y, respectively. This indicates that surface fields extend into the bulk with a decay
length of about one microdomain spacing. Furthermore, they are additive and for very thin films
the effects of both surfaces combine. This explains why in thin films a weaker surface field is
sufficient to form a PL (or L) than in thick films. It also explains the formation of a PL beneath
a wetting layer for gy =0atH =12 and gy = —2 at H = 109.

Confinement effects modulate the stability regions of phase oriented parallel to the interfaces.
An integer multiple of a natural layer thickness is energetically favored. This causes easier de-
formable phases to occur at intermediate film thicknesses. For very small thicknesses (H < co)
and weak surface fields, confinement prevents microphase separation and stabilizes a disordered
phase.

The phase diagram for eag = 6.3 (Fig. 9) displays a very similar behavior to the one for eag =
6.5 (Fig. 8). The two main differences between the two phase diagrams is that for eag = 6.3 the
stability region of the disordered phase is larger and that the threshold values for the formation
of surface reconstruction are shifted to larger strengths of the surface field, in particular for the
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Figure 8: Phase diagram of surface reconstructions calculated for an A3B12Az melt with eag =
6.5 as function of film thickness H and surface field €y . Boxes indicate where sim-
ulations have been done. Boxes with two shades of gray indicate that two phases
coexist after the finite simulation time. Smooth phase boundaries have been drawn to
guide the eyes. Theright scale indicates the film thicknessin units of the natural layer
thickness ¢, = 6.
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Figure 9: Same as Fig. 7 but for eag = 6.3.
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lamella surface reconstruction.

Figure 10: Coexistence of parallel cylinders and perforated lamellae for an A3B12A3 melt with
eag = 6.5, ey = 6.0, and H = 7. Theisodensity level is pa = 0.45. The size of the
simulation box is64 x 64 x 8.

Order of phase transitions. An important feature of our simulations is the coexistence of
different phases in one layer. Figure 10 shows such a situation where parallel cylinders and a
perforated lamella coexist. This simulation was done until 11 000 time steps and after 5000
time steps no significant changes were observed. The coexistence of phases corresponds nicely
to the experimental observation [see Fig. 1(b) and Refs. 27 and 30]. The presence of coexistent
phase clearly indicates a first-order phase transition. The same is also valid for the PL to L
transition. The dashed lines in the phase diagrams denote continuous transitions between the W
and "dis”, and the "dis” and L phase.

4.3.5 Structured wetting layer

A result not displayed in the phase diagrams is the structure of the wetting layer. For thin
films (4 < H < 8), where the entire film consists only of two wetting layers, the wetting layer
has no lateral structure. However, in thicker films and for small values of the surface field
(—1 < &y < 2) the wetting layer has a structure which is complementary to the microdomain
structure next to it in the middle of the film (Fig. 11). The entire structure shown in Fig. 11(a)
is very similar to hexagonally packed cylinders.®’ In Fig. 12, histograms of the lateral density
distributions within the wetting layer are shown for different values of the surface field ey. For
em = 1 and 2, two peaks appear in the histogram which correspond to a lateral microphase
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Figure 11: Sructured wetting layers for an A3B12As melt, eag = 6.5 [simulation box 32 x 32 x
(H+1), after 2000 time steps]. (a) H = 12, ey = 2, and isodensity level pa = 0.45;
the wetting layer resembles half-cylinders. (b) H = 12, ey = 0, and isodensity level
pa = 0.45; the wetting layer consists of isolated dots. (c) A perforated wetting layer
atH =9, ey = —1, and isodensity level pa = 0.6.

€y =-2 €y =0 €y =1 €y =2

Figure 12: Effect of the strength of the surface field on the lateral density distribution in the
wetting layer. Histograms of the A density at the surface (z = 1) are shown for
different surface interactions ey. Smulations have been donein 32 x 32 x 13 large
simulation boxes with H = 12. With decreasing €y, the A blocks are more strongly
attracted to the surface and the lateral homogeneity of the wetting layer increases.

separation, for example, stripes of A and B density. For smaller values ey, the two peak merge,
which reflects the fact that the structure continuously transforms to a homogeneous wetting
layer. Its histogram is similar to that in the middle of a lamella at ey = 25 [see Fig. 5(b)] which
supports an interpretation as a half lamella.

4.4 Discussion

4.4.1 Mapping to the experimental phase diagram

Our simulations reproduce all essential features of the experimentally observed phase behav-
ior of thin films of polystyrene-block-butadiene-block-polystyrene (SBS) triblock copolymers
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studied by Knoll et al.2”%0 In particular, the sequence of phases as function of film thickness is
correctly modeled. This is nicely seen in Fig. 1 where a simulation done in a wedge-shaped ge-
ometry is shown. Also the phase diagrams shown in Figs. 8 and 9 nicely match the experimental
one (see Fig. 3 in Ref. 27), indicating that the experimental control parameter, the polymer con-
centration ®p, is directly related to the control parameter in the simulations, namely the surface
field gv.

In order to keep the model as simple as possible we chose to model the SBS/chloroform
solution as a melt of A3B12A3 block copolymer. As chloroform is a nonselective solvent it acts
as a plasticizer, which merely induces chain mobility.2”-3% The nonselective solvent chloroform
screens the interaction between the block copolymer components and the interfaces. This effect
is modeled by interaction parameters eag and gy, which depend on the polymer concentration
q)p.

The experimentally observed phase diagram (see Fig. 2 in Ref. 27) has three characteristic
features: (1) The disordered phase neighbors the C | phase for all polymer concentrations. (2)
Both regions of the PL phase have a limited range of polymer concentrations where they are
stable. (3) The thicker the film, the higher the critical polymer concentration where the PL
appears.

We investigate the range of parameters covered by our simulations [Fig.13(a)] which give
these three characteristic features. As a first reference point, the phases neighboring the disor-
dered phase are shown in Fig. 13(d). The critical phase boundary C, /C 5, which limits the
regime where simulations and experimental results are compatible, is shown as a bold dashed
line. Figures 13(c) and 13(b) show the phases occurring for H = ¢, and 2c, including the
characteristic phase boundaries C; ; /PL and C; ; /PL, respectively.

We look for paths in the parameter space which include all three characteristic features. This
can be done by projecting the surfaces shown in Figs. 13(b), 13(c), and 13(d) on each other,
which is done in Fig. 13(e). The paths have to fulfill the following three conditions: (1) They
should completely lay in the C region and should not cross the C, /C ; boundary. (2) They
should first cross the C; 1 /PL and (3) then the C; ,/PL boundary.

The gray region displayed in Fig. 13(e) centers at gy = 6.0 and corresponds to a region in
the experimental phase diagram centered at ®p = 0.59.%° Therefore, the most simple way to pa-
rameterize such a path is given by the linear relation ey = i ®p, with gt = 10+ 1, which
is displayed in Fig. 13(e) as arrow o.. The discrepancy with our previous publication?” is due
to the fact that the experimental phase diagram was presented in units of the chloroform vapor
pressure, whereas here we use the measured polymer concentration from Ref. 30. Neverthe-
less, both values are close and the physical picture remains the same. By adjusting a single
parameter the measured and calculated phase diagrams can be perfectly matched. In particular
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Figure 13: (a) Range of parameters covered by our simulations. The planes eag = 6.3 and 6.5
correspond to Figs. 8 and 9, respectively. The dark gray surfaces are displayed in
detail in (b)(d). (b) Surface reconstructions formed in filmswith H = 12 as function
of eag and ey. (c) Same as (b) for H = 6. (d) Surface reconstructions next to the
region of the disordered phase. This region is approximatively bounded by H = 4.
Lines indicate phase boundaries. (€) The phase boundariesC, »/PL, C; 1//PL, and
C,/Cy 1/ taken from (b), (c), and (d), respectively. The arrows o and 3 correspond
to two possible models of how the interaction parameters can change with changing
polymer concentration ®p . Both modelscrossthe gray region where a characteristic
sequence of phases observed in experiments and simulations coincides.
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the predicted ey values for the onset of the PL phase at H = 6 and 12 agree nicely with the
experiments. Remarkably, the experiments can be described by a parametrization where only
em changes with ®p while eag is constant. Other possibilities would be arrows like 3, where
both parameters, eag and ev, change with ®p. The choice of the path a is supported by the
experimental observation that the SBS/chloroform system studied by Knoll et al.3° forms cylin-
ders in the bulk in the whole range of accessed polymer concentrations. This suggests that the
influence of ®p on epg is rather weak. This is consistent with the fact that the gray region in
Fig. 13(e) has a considerable larger extent along the &y axis than along the eag axis.

4.4.2 Effect of the wetting layer

os, L WG

Figure 14: Depth profiles of the laterally averaged A density <pA> in thin films with H = 54
and eag = 6.5 for different surface fields. The depth proﬂl&sare shifted according to
Z =zfor C (em =6),Z =z—3 for W(em = —4), and Z = z—6 for L (em = 30).
The solid line is a spline through the L data.

In Fig. 14 depth profiles of the laterally averaged A density are compared. The profiles of
the film forming the lamella and wetting layer surface reconstruction coincide with that of the
film forming parallel cylinders when the profile corresponding to the lamella is shifted by c,
and that of the wetting layer is shifted by c,/2. This indicates that the wetting layer can be
regarded as a half lamella with thickness c,/2. Furthermore, both the lamella and the wetting
layer screen the surface field and the depth profile below them is that of a film forming cylinders
oriented parallel to the interface. Effectively, the A-wetting layer induces a B-rich layer at ¢, /2,
which corresponds to a situation at the interface of a film which preferentially attracts the B
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component. The lamella screens a strong surface field in a similar way.

In experiments with supported films the interactions at the air/film and the film/substrate in-
terface are in general different. In a situation where one interface attracts the A and the other
the B component, the formation of a wetting layer at one interface can lead to a situation where
the film can be treated as having effectively both interfaces attracting the B component. There-
fore, the phase diagram measured by Knoll et al.®% can be well described in simulations with
equal interfaces, although the experiments clearly indicate the presence of an A-wetting layer
at the film/substrate interface and the preferential attraction of the B component at the air/film
interface.

4.4.3 Comparison with cylinder forming diblock copolymers

The influence of the molecular architecture on the observered phenomena can be studied by
comparing our results on AzB12Ag triblock copolymers with the behavior of the corresponding
AzBg diblock copolymer studied by Huinink et al.?* The comparision is made easy since in both
studies the same parameters were used and we varied (in addition) the interaction parameter eag
only slightly. For both systems we are well in the part of the phase diagram where cylinders
form in the bulk.

At first glance, no utterly significant difference between the phase diagrams of the AzBg di-
block copolymer (Fig. 5 in Ref. 21 and Fig. 4 in Ref. 22) and our A3B12A3 triblock copolymers
is visible. Only the position of phase boundaries between different phases differs slightly. This
fact leads us to the important conclusion that the observed phenomena and mechanisms are
present in many cylinder-forming block copolymers. In particular, the molecular architecture
plays only a minor role and enters only via the specific values of the interaction parameters.
This is further corroborated by results of Wang et al.?* obtained with Monte Carlo simulations,
which also show a similar phase behavior for cylinder-forming systems in thin films.

4.4.4 Comparison with lamella-forming diblock copolymers

We note that the orientation behavior of the cylinders is analogous to the phase behavior of
lamella-forming diblock copolymers as both arc controlled by the interplay between the surface
field and confinement effects.*® Thus, the sequence C —C. —C, at steps between terraces
corresponds to the sequence Ly —L; —L .38 Second, in cases where the two confining surfaces
favor different orientations (L, L) the two orientations can coexist and a hybrid (or mixed)
structure (HY) forms3® which is similar to cylinders with necks.1® We note that in such a HY

48



Publications

structure the bulk microdomain structure is preserved and a grain boundary is stabilized in the
thin film by the antisymmetric surface field. Furthermore, a disordered phase has been reported
for ultrathin films of lamella-forming diblock copolymers®1° and is in nice agreement with our
findings and the experiments of Knoll et al.2”-3 In addition to the alignment effect, hexagonally
ordered cylinders can adopt to the planar surface by formation of surface reconstructions (W,
PL, L) which also dominate the phase behavior in thin films.

4.5 Conclussions

Though based on a rather simple microscopic model, our DDFT simulations correctly predict
a phase diagram with intriguing complexity. This close match with the experimental data to-
gether with the large range of parameters covered by both experiments and simulations, make
us believe that we have identified the relevant physical parameters and the mechanisms gov-
erning structure formation in the films cylinder forming block copolymers. In particular, the
large parameter space covered allows us to distinguish the effects of the two constraints being
simultaneously present in a thin film situation: the surface field and the film thickness. Our
results also reveal the mechanism of how both interplay.

We identified the deviations from the bulk structure, both in the vicinity of surfaces and
in thin films of cylinderforming block copolymers as surface reconstructions. Together with
what is known for lamella-forming systems our results give evidence for a general mechanism
governing the phase behavior in thin films of modulated phases: The strength of the surface
field and the deformability of the bulk structure determines how the system rearranges in the
vicinity of the surface. This causes either an orientation of the bulk structure or the formation of
surface reconstructions. The stability regions of the different phases are modulated by the film
thickness via interference and confinement effects.

This concept along with the presented method might provide the means to understand and
eventually control a wealth of thin film structures in a wide class of ordered fluids, such as
linear and star multiblock copolymers as well as surfactant based fluids.
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5 Phase behavior in thin films of
cylinder-forming ABA block

copolymers

Knoll A., Horvat A., Lyakhova K. S., Krausch G., Sevink G. J. A., Zvelindovsky A. V. and
Magerle R.
published in Phys.Rev.Lett., 2002, 89, 035501/1-4.

We have experimentally determined a phase diagram for cylinder-forming polystyrene-block-
polybutadien-block-polystyrene triblock copolymer in thin films. The phase behavior can be
modeled in great detail by dynamic density functional theory. Deviations from the bulk struc-
ture, such as wetting layer, perforated lamella, and lamella, are identified as surface recon-
structions. Their stability regions are determined by an interplay between surface fields and
confinement effects.

Ordered fluids are a fascinating class of matherials as they combine crystal-like order on
mesoscopic length scales with liquidlike disorder on microscopic scales. As a typical example,
amphiphilic block copolymers tend to self-assemble into ordered microstructures with charac-
teristic lengths determined by the molecular size, i.e., in the 10100 nm range. The microdomain
structure in the bulk is determined mainly by the molecular architecture, in particular the ratio
of block lengths and the interaction between the two components (blocks). At interfaces and
in thin films an additional driving force for structure formation exists, because one component
typically has a lower interfacial energy than the other. This phenomenon belongs to a class of
interfaces of modulated phases.22 Related phenomena of two-component systems are wetting
and surface enrichment, surface directed spinodal decomposition,* and surface-induced order-
ing and orientation.>® Recently, we have shown that in analogy to surface reconstructions of
crystal surfaces the near-surface structure can deviate from the bulk structure in block copoly-
mers as well.” In thin films, additional constraints exist. Here, the microdomain structure has
to adjust to two boundary surfaces and a certain film thickness, which can be a noninteger mul-
tiple of the ”natural” bulk repetition length. Both constraints together cause a complex and
interesting phase behavior.
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Based on the pioneering work by Anastasiadis et al.® numerous studies have dealt with thin
films of lamellar block copolymers and two major effects have been identified.2 The preferential
attraction of one type of block to the surface (the surface field) causes the lamella to align
parallel to the interfaces and the film form islands or holes (terraces) where the film thickness
is a (half) integer multiple of the bulk lamella size.

While any cross section parallel to a lamella exhibits the same symmetry as a planar sur-
face, the situation is more complex in the case of cylinder-forming systems. Here, a pla-
nar surface, regardless of its orientation, always breaks the symmetry of the bulk structure
and the microdomain structure has to adjust. Indeed, a variety of deviations from the bulk
structure have been observed near surfaces and in thin films such as a wetting layer,?, spher-
ical microdomains,'? a perforated lamella,'® cylinders with necks,!' and more complicated
structures.113 Although various models have been developed to describe this behavior4—17
(for summary, see Ref. 17), modeling and experimental results agree qualitatively only in parts.
It remains unclear which of the reported phenomena are specific to the particular system and/or
route of film preparation and which are general behavior. As a result, no general agreement is
reached about the underlying fundamentals.

In this Letter we present a unifying description of these phenomena. With experiments and
computer simulations based on dynamic density functional theory (DDFT) we show that the
phase behavior in thin films of cylinder-forming block copolymers is dominated by surface
reconstructions. Their stability regions are determined by the surface field and the film thickness
and we show how these two constraints interact.

As a model system we have chosen thin films of a cylinder-forming polystyrene-block-
polybutadiene-block-polystyrene (SBS) triblock copolymer swollen in chloroform vapor. SBS
was obtained from Polymer Source Inc. with molecular weights of blocks My, ps = 14k, My,pg =
73k, and My, ps = 15k (PS is polystyrene, PB is polybutadiene). Thin SBS films were spun cast
from toluene solution onto polished silicon substrates. In order to equilibrate (anneal) the mi-
crodomain structure, the films were exposed for 7 h to a controlled partial pressure p of chloro-
form vapor.!8 The total pressure was 1.3+0.1 atm and the temperature was kept at 25.0+0.1°C.
The resulting microdomain structures were quenched via fast solvent removal. During anneal-
ing, the nonselective solvent, CHCI3, acts as a plasticizer, which merely induces chain mobility.
Within the studied range of § = p/ps (ps is the partial pressure of saturated CHCI3 vapor at
25.0°C) the lateral spacing between two neighboring PS cylinders, ag, decreases with increasing
p from ag ~ 41 to 39 nm, similar to Ref. 19.

During vapor annealing the films form terraces with thicknesses smaller and larger than the
original thickness. We have determined the step heights using TappingMode ™ scanning force
microscopy (TM-SFM). TM-SFM phase images were recorded along with the height images to
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Figure 1: (a), (b) TM-SFM images of thin SBSfilmson S substrates after annealing in chloro-
formvapor at p = 0.62. The surfaceis everywhere covered with an ~ 10-nm-thick PB
layer. Bright (dark) corresponds to PS (PB) microdomains below this top PB layer.2!
Contour lines calculated from the corresponding height images are superimposed.
(c) Schematic height profile of the phase images shown in (a,b). (d) Smulation of an
AgB12A3 block copolymer filmin one large simulation box of [352 x 32 x H(x)] grid
points with increasing film thickness H (x), eag = 6.5, and ey = 6.0. Thelatter corre-
sponds to a preferential attraction ob B beads to the surface. The isodensity surface
pa = 0.5 isshown.

map (via the difference in modulus) the lateral distribution of PS and PB near the film surface.2°

Figures 1(a) and 1(b) show TM-SFM phase images of two annealed SBS films with differ-
ent initial film thicknesses. Both films have formed regions of well-defined film thickness as
indicated by the height profile shown in Fig. 1(c). At the same time well-defined microdomain
patterns have formed, which change systematically as a function of the gradually changing film
thickness (at steps between terraces). In particular, boundaries between different structures cor-
respond to height contour lines. A major fraction of the surface displays bright stripes, which
are indicative of PS cylinders oriented parallel to the surface (C, ). In thinner regions of the film
two additional patterns are found: One is characterized by hexagonally ordered dark spots, in-
dicative of PB microdomains in an otherwise continuous PS layer, i.e., a perforated PS lamella
(PL). The slopes between neighboring terraces display a hexagonal pattern of bright dots, in-
dicative of PS cylinders oriented perpendicular to the surface (C,). Finally, the thinnest parts
of the films display no lateral structure at all, indicative of either a disordered (dis) phase or a
lamellar wetting layer (W). In thicker films, the sloped regions between terraces display stripes
as well. Previous work has shown that the parallel orientation of PS cylinders continues through
the depth of the film to the substrate.1822 \We note that these phases were all reported earlier
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Figure 2: Phase diagram of thin SBS block copolymer films on S subtrates after annealing in
chloroformvapor. Data are given for equilibriumfilmthicknessesof C , (circles) and
dis (stars) and for upper and lower bounds (open and closed symbols, respectively) of
C, (sguares) and PL (triangles) phases. The latter correspond to contour lines such
asthose shown in Figs. 1(a) and 1(b). All lines and areas are drawn to guide the eye.

and for various experimental conditions and cylinder-forming block copolymers. In the present
experiments, however, all phases appear in a single system and under identical experimental
conditions. This finding indicates that the film thickness is an important control parameter.

In order to explore the role of the strength of the surface field, the above experiment was
repeated as a function of solvent vapor pressure p during annealing. With increasing f, the
total polymer concentration, ®p, in the film decreases, which effectively reduces the interaction
parameter between the two polymeric components and between the polymers and the confining
surfaces. The experimental results are summarized in a phase diagram (Fig. 2) displaying the
stability regions of the various phases as functions of p and film thickness (after drying). Note
that films annealed at larger p shrink more in the vertical z direction upon drying than films
prepared at smaller p.

The PL phase is predominantly observed in the lower terrace when the neighboring terrace
forms the C, , phase. With increasing {, the area fraction of the lower terrace forming a PL
decreases. For p = 0.64, 0.68, and 0.70 the area fraction is 9%, 80%, and 50%, respectively.
For p > 0.71, no PL is observed. In thicker films only for h =~ 60 nm and p = 0.66, a small
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fraction, 10%, of the terraces forms a PL.

The assignment of surface patterns to distinct phases is corroborated by DDFT simulations
of the complete thin film structure. We have used the MESODYN code?? to simulate a melt
of A3B12A3 molecules. Briefly, the block copolymer is modeled as a Gaussian chain with dif-
ferent beads A and B. For the bead-bead interaction potential a Gaussian kernel is used char-
acterized by eag. The film interfaces were treated as mask (M) with a corresponding bead-
mask interaction parameter ey = eam — €sm. The spatiotemporal evolution of bead densities
pi(T,t) is obtained using the complete free energy functional F [{p;}] and the chemical poten-
tials ui = 8F [{pi}| /Opi. The Langevin diffusion equation is solved numerically starting from
homogeneous densities. Appropriate noise is added to the dynamics. We have done simulations
with eag = 6.3, 6.5, and 7.1 (in kJ/mol) and varied systematically the strength of the poly-
mer/surface interaction &y and the film thickness H. We have used the parametrization of Ref.
15 and have followed the temporal evolution until significant changes no longer occurred. We
chose to model the swollen SBS film as a melt to keep the total number of parameters as small
as possible. The effect of the nonselective solvent CHCI3 is modeled as an effective interaction
parameter ey = el dp.

We find that modeling with eag = 6.5 matches our experimental data best. Figure 1(d) shows
the result of a simulation done in a wedge-shaped geometry. It exhibits exactly the same se-
quence of phases as the experimental data. Starting from a disordered phase (dis) for H = 3 grid
units, spheres or very short upright cylinders, C |, form (H = 4). These are followed by parallel
cylinders, C 1 (H =5), a perforated lamella, PL (H = 6), a PL coexisting with C; 1 (H =7),
cylinders with ripples or necks (H = 8), then upright cylinders, C, (H =9), and two layers
of parallel cylinders, C , (H =10, 11, and 12). The film thickness at which phase transitions
occur as well as the relative domain spacings are correctly predicted. The distance between
next-nearest holes of the PL is found to be 1.15 times larger than the distance between nextn-
earest cylinders, ag = 7.0+ 0.5 grid units, of the C; and the C, phase. We also observe this in
our experiments [Fig. 1(b)].

For a systematic study of the influence of &y and H on the thin film structure we have done
simulations in smaller boxes with [32 x 32 x (H 4 1)] grid points and a mask in the z= 0 plane.
The structures found for eag = 6.5 are summarized in a phase diagram shown in Fig. 3. The
middle part of the phase diagram resembles the one reported for A3Bg diblock copolymers®® but
covers a much larger parameter space.

The simulation results match nicely the experimental phase diagram shown in Fig. 2. For a
quantitative comparison of the two phase diagrams, one has to take into account that the film
thickness relevant for structure formation is the thickness in the swollen state. Furthermore, we
need to relate the vapor pressure, p, to the effective interaction parameter between the polymer
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Figure 3: Phase diagram of surface reconstructions of a A3B12Az block copolymer film cal cu-
lated with MESODYN for eag = 6.5. The boxes indicate where simulations have been
done. The boxes with two shades of grey indicate that two phases coexist after the
finite simulation time. Smooth phase boundaries have been drawn to guide the eye.
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blocks and the confining surface, gy. We assume that ey = e,{},‘e“dJP, where ®p can be estimated
from the amount of shrinkage during drying: ®p = hd"Y /h"e | The thickness after drying, hd"Y,
has been measured, whereas h"® has been calculated from the film structure assuming an ideal
hexagonal structure: hVC"lfz = agy/3 for C2- By choosing e,{}F’t = 6.5, the gy scale in Fig. 2 was
adjusted such that p = 0.68 corresponds to ey = 6.0. With this simple estimate the measured
and calculated phase diagrams can be perfectly matched by the adjustment of a single parameter.
In particular, the predicted gy value for the onset of the PL phase at H = 12 agrees nicely with
experiments.

Although based on a rather simple microscopic model, the DDFT simulations correctly pre-
dict a phase diagram with intriguing complexity. The large parameter space covered in both
simulations and experiments allows us to distinguish the effects of the two constraints being
simultaneously present in a thin film situation: the surface field and the film thickness. Our
results also reveal the mechanism which shows how both interplay.

Surface fields. The effect of a single surface is best seen at a large film thickness (H = 54).
The simulations show that the preferential attraction of one type of block to the surface (the sur-
face field) is sufficient to induce considerable rearrangements of microdomains near the surface,
i.e., surface reconstructions. In the middle of the simulation box, cylinders form in all cases.
Moving in Fig. 3 from left to right the following surface reconstructions occur for H = 54. For
em < 2, A-beads are effectively attracted to the surface and a thin A-wetting layer(W) forms
(which might also be viewed as a half lamella). At ey ~ 3, cylinders orient perpendicular to the
surface (C ). For ey ~ 4 —8, A-beads are weakly repelled from the surface, and cylinders align
parallel to the surface (C|). As em is further increased surface reconstructions with noncylin-
drical microdomains are induced; first a PL, then a lamella (L). In these structures the averaged
mean curvature is gradually decreased in order to adopt to the planar symmetry of the surface.

Interference of surface fields. Our results indicate that surface fields extend into the bulk
with a decay length of about one microdomain spacing. Furthermore, they are additive, and for
very thin films the effect of both surfaces combines. This explains why, in thin films, a weaker
surface field is sufficient to form a PL (or L) than in thick films. It also explains the formation
of a PL beneath a wetting layer (W + PL).

Confinement effects modulate the stability regions of phases oriented parallel to the surfaces.
An integer multiple of a natural layer thickness is energetically favored. This causes easier
deformable phases to occur at intermediate film thicknesses. For very small thicknesses (H <
microdomain size) and weak surface fields, confinement prevents microphase separation and
stabilizes a disordered phase (dis).

We note that the orientation behavior of the cylinders is analogous to the phase behavior of
lamella-forming diblock copolymers as both are controlled by the interplay between the surface
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field and confinement effects.2* Thus, the sequence C) — CL — C, at steps between terraces
corresponds to the sequence Ly — L — L||.25 Also, in cases where the two confining surfaces
favor different orientations (L, L), the two orientations can coexist and a hybrid (or mixed)
structure (HY) forms2® which is similar to cylinders with necks.! We note that in such a HY
structure, the bulk microdomain structure is preserved and a grain boundary is stabilized in the
thin film by the antisymmetric surface field. Furthermore, a disordered phase has been reported
for ultrathin films of lamella-forming diblock copolymers26 and is in good agreement with our
findings. In addition to the alignment effect, hexagonally ordered cylinders can adopt to the
planar surface by formation of surface reconstructions (W, PL, L) which also dominate the
phase behavior in thin films.

In conclusion, we have identified the deviations from the bulk structure, both in the vicinity
of surfaces and in thin films of cylinder-forming block copolymers as surface reconstructions.
Together with what is known for lamellaforming systems our results give evidence of a general
mechanism governing the phase behavior in thin films of modulated phases: The interplay
between the strength of the surface field and the deformability of the bulk structure determines
how the system rearranges in the vicinity of the surface. This causes either an orientation of the
bulk structure or the formation of surface reconstructions. The stability regions of the different
phases are modulated by the film thickness via interference and confinement effects.

This concept along with the presented methods might provide the means to understand and
eventually control a wealth of thin film structures in a wide class of ordered fluids, such as linear
and star multiblock copolymers as well as surfactant-based fluids.
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6 Specific features of defect structure
and dynamics in cylinder phase of

block copolymers

Horvat A., Sevink G. J. A., Zvelindovsky A. V., Krekhov A.and Tsarkova L.
published in ACS Nano 2008, 2, 1143-1152.

We present a systematic study of defects in thin films of cylinder-forming block copolymers
upon long-term thermal or solvent annealing. In particular, we consider in detail the peculiari-
ties of both classical and specific topological defects, and conclude that there is a strong defect
structure-chain mobility relationship in block copolymers. In the systems studied, representa-
tive defect configurations provide connectivity of the minority phase in the form of dislocations
with a closed cylinder end or classical disclinations with incorporated alternative, nonbulk struc-
tures with planar symmetry. In solvent-annealed films with enhanced chain mobility, the neck
defects (bridges between parallel cylinders) were observed. This type of nonsingular defect has
not been identified in block copolymer systems before. We argue that topological arguments
and 2D defect representation, sufficient for lamellar systems, are not sufficient to determine the
stability and mobility of defects in the cylindrical phase. In-situ scanning force microscopy
measurements are compared with the simulations based on the dynamic self-consistent mean
field theory. The close match between experimental measurements and simulation results sug-
gests that the lateral defect motion is diffusion-driven. In addition, 3D simulations demonstrated
that the bottom (wetting) layer is only weakly involved into the structure ordering at the free
surface. Finally, the morphological evolution is considered with the focus on the motion and
interaction of the representative defect configurations.

6.1 Introduction

Thin films of block copolymers have been intensively studied over the last decades to gain un-
derstanding and control of the parameters affecting the microdomains structure, orientation, and
order.1=3 Surface fields are important external potentials which influence the equilibrium struc-
tures and the dynamics of microdomains. Substrate modification by chemical or topographic
patterning is now widely used to control the selectivity and the strength of the polymer-substrate
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interactions and thus to guide the morphology and its orientation as well as long-range order in
nano-patterned films.4~*

It is recognized that topological defects in the local microdomain structure decrease the long
range periodicity and limit the technological performance of block copolymer materials. The
generation and annihilation of topological defects are the elementary processes by which long
range order evolves in microdomains under the influence of thermal energy®® and applica-
tion of external fields.1%1! Therefore, defect analysis is important for establishing the transport
mechanisms in nanostructured soft materials.

Several theoretical approaches have been developed to describe 2D defect configurations, 213
their interfacial properties,’41> and their role in microdomain reorientation.1® In experiments,
detailed information about structure and dynamics of individual defects in block copolymers
is accessed by non-destructive time-resolved real-space imaging techniques, such as scanning
force microscopy (SFM). The seminal work by Harrison et al. on defect evolution in stripped
surface pattern!’ and related studies,>®-20 convincingly demonstrated that classical defects
such as disclinations and dislocations, widely known from the solid crystals and nematic lig-
uid crystal phases, play an important role in the ordering dynamics of block copolymers mi-
crodomains. The observations of defects in sphere-forming diblock copolymer films allowed
conclusions to be drawn regarding the mechanisms of 2D crystal to hexatic transition, and
on further melting via continuous defect generation process.??? Also, grain coarsening in
hexagonally ordered dotlike structures which are composed of either of spheres2324 or standing
cylinders?® has been analyzed in detail.

The research mentioned above focused on the similarities of defect interaction and their mo-
tion in block copolymers and thermotropic nematics or smectics. Thermo-tropic liquid crystals,
however, are one-component homogeneous systems and are characterized by a nonconserved
orientational order parameter. In contrast, in block copolymers the local concentration differ-
ence between two components is essentially conserved. In this respect, the microphase sep-
arated structures in block copolymers are anticipated to have close similarities with lyotropic
systems which are composed from polar medium (water) and nonpolar medium (surfactant
structure). The phases of the lyotropic systems (such as lamella, cylinder or micellar phases)
are determined by the surfactant concentration. Similar to lyotropic phases, the morphology in
block copolymers is ascertained by the volume fraction of the components and their interac-
tion. Therefore, in lyotropic systems and in block copolymers the dynamics and annihilation
of structural defects require a change in the local concentration difference between components
as well as a change in the orientational order. Consequently, if single defect transformations
could be monitored in real time and space, block copolymers could be considered as suitable
model systems for studying transport mechanisms and phase transitions in two-dimensional
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fluid materials such as membranes,2%:27 lyotropic liquid crystals,2® and microemulsions.2?

In this work, we observe structural defects and their short- to long-term dynamics in block
copolymer films using SFM, including in-situ measurements at elevated temperatures with high
temporal resolution, and we compare the experimental findings to simulations based on the
dynamic self-consistent mean field theory (DSCFT). In the experiments we used polystyrene-
block-polybutadiene copolymer, designated here as SB and composed from the polystyrene (PS)
and polybutadiene (PB) blocks. In simulations, the molecular model is an A3B12A3 Gaussian
chain with A and B corresponding to the PS and to the PB components, respectively. We focus
on specific defects in the cylinder phase which are kinetically trapped in thermal equilibrium
during the lateral ordering of lying microdomains. The strength of our approach is that 2D
structures and defects visualized with SFM are directly compared with computational simula-
tions which give access to the bulk structure in the interior of the film. We distinguish between
classical, modified, specific, and grain boundary defect configurations. For each defect type,
we address its relative stability, interaction with the other defect types, and its role in the overall
structure development.

With this approach, we discovered the strong correlation between defect structure and chain
mobility, a feature which is specific to block copolymer materials due to the covalent bonding
between the blocks and their large molecular weight and a feature which is not common in
nematic thermotropic and lyotropic liquid crystals. The interconnectivity of the polymer chains
is then manifested in the lateral propagation of a complex 3T-junction-defect, which has been
captured both by in-situ SFM measurements and by DSCFT simulations. Finally, we discuss the
lateral migration of complex and specific structural defects which are involved in the coarsening
of surface patterns.

6.2 Results and Discussion

6.2.1 Phase Behavior in Thin Films.

As indicated in Figure 1 the bulk structure of SB diblock copolymer resides well in the cylin-
der regime within the mean-field-calculated phase diagram.2® However, it is well established
that confinement and surface fields effects in thin films of cylinder-forming block copolymers
can cause the microdomains to deviate from the corresponding structure in bulk.3! Simulated
images in Figure 1 are examples of surface structures3? which are also identified experimen-
tally in thin films of cylinder-forming di- and triblock copolymers. In particular, the nonbulk
perforated lamella (PL) and lamella (L) phases were reported for this type of block copolymers
under strong surface fields or thickness constraints.30:31:33:34 The PL structure can be viewed as
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Figure 1: Schematically represented phase diagram of AB diblock copolymer melt.3® SB-
Labeled point indicates the parameters of the SB block copolymer under the exper-
imental conditions reported in this study. The DSCFT simulations illustrate surface
structures that are predicted theoretically and observed experimentally in thin films
of cylinder-forming block copolymers under surface fields or thickness constraints:
disordered phase (dis), vertically oriented cylinders (C | ), cylinders aligned parallel
to the filmplane (C; ), lamella (L), and hexagonally perforated lamella (PL) phases.
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Figure 2: Schematic representation of classical topological defect configurations. (a) edge dis-
location; (b) + 1/2 disclination; (c) - 1/2 disclination; and (d) paired +1/2 disclina-
tions.

alternative layers of block copolymer components with hexagonally ordered perforations in the
minority phase and is tentatively similar to mesh-like liquid crystalline phase. Since to the best
of our knowledge the gyroid phase has not yet been reported for thin films of diblock copoly-
mers and of two-component triblock copolymers, the PL phase in the above systems presumably
represents a 2D analogue of the bicontinuous gyroid structure.

6.2.2 Classification of Characteristic Defects.

Classical Defects. The theory and classification of defects are well-developed for certain types
of materials such as solid crystals, nematic liquid crystals, and superfluids.3>36 In general,
a topological defect is characterized by a core region (point, line, or wall) where the order
parameter is destroyed and a far field region where it relaxes slowly in space. The most common
topological defects in block copolymers are generally analogous to that in liquid crystals, so the
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Figure 3: Smulated images (top panel) and S-M phase images (300 nm x 300 nm) presenting
classical topological defect configurations in lying cylinders. (a,e) cyl-dislocation;
(b,f) m-dislocation (see definition in text); (c,d) +1,/2 cyl-disclination and (g,h) —1/2
m-disclination. SB films have been annealed under 70% of the saturated vapor pres-
sure of chloroform. Here and in the following simulated/experimental images white
stripes correspond to the A minority phase/PS cylinders; dark stripes correspond to
B majority phase/PB matrix.

nomenclature classifying them is similar.3®

Figure 2 displays sketches of classical topological defects which are common to different
types of materials including block copolymers: an edge dislocation (a), +1/2 disclination (b),
-1/2 disclination (c) and a pair of oppositely charged disclinations (d). Such defects have been
considered in the earlier studies on microdomain ordering in cylinder- and lamella-forming
block copolymers.17—19

Figure 3 presents examples of simulated (top panel) and measured classical defects in tri-
block and diblock copolymers, respectively. In these pictures as well as in the following SFM
and simulated 2D images, the white color corresponds to PS cylinders (minority phase). In a
two-component system, topological defects can be formed by each phase. Images a,e and b,f in
Figure 3 display edge dislocations which are formed by white and dark compartments, respec-
tively. These defect configurations are topologically identical. Similarly, shown in Figure 3c,g,
+1/2 disclination can be transformed into +1/2 disclination in Figure 3d,h by color inversion.
Purely topological arguments are sufficient to describe defects in films with upstanding lamella;
here a topological defect always implies the abruption of one component. In contrast, in cylin-
der phase the majority dark-colored matrix (PB phase) is always interconnected, while the 2D
representation of topological defects conceals this important property.

To account for the real 3D structure of cylindrical microdomains, we denote the
configurations in Figure 2a,e and c,g as cylinder-phase defects (cyl-dislocation and +1/2 cyl-
disclination), and the configurations in Figure 2b,f and d,h as matrix defects (m-dislocation
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and m-disclination). In our systems, cyl-dislocations (Figure 2a,e) generally develop during
the early stages of film annealing when the overall defect density is high. In well-equilibrated
films, cyl-dislocations are less frequent as compared to m-dislocations (Figure 2b,f), a finding
that is in agreement with the earlier studies.1%2° The reduced stability of cyl-dislocation is likely
caused by the higher energy costs of an open-cylinder-end defect.

The lifetime of these defects depends on their surrounding. Edge dislocations are highly mo-
bile defects when they interact with an oppositely charged pair, or with disclinations. Isolated
dislocations, for example, in the middle of a large cylinder grain, are harder to annihilate. Their
relative immobility is attributed to the high energy costs to restructure the ordered surround-
ing. The same energetic arguments account for the trapping of +1/2 disclinations of both types
(Figure 3c,d) in well-ordered samples.

The motion of cyl- or m-dislocations perpendicular to the cylinder axis involves the consec-
utive opening and relinking of a cylinder connection. These elementary steps of dislocation
dynamics have been recently accessed with in-situ SFM imaging.3” The estimated typical time
for the rejoining of a dislocation was ~ 10 s. The related activation energy = 30 J/mol is several
orders of magnitude lower compared to the value obtained by SFM snap-shot experiments.?
Importantly, m-dislocations (Figure 3b,f) can propagate along the cylinder axis without diffu-
sion across the PS-PB interface.®’

Modified Classical Defects. The rich phase behavior of cylinder-forming block copolymers
is reflected in the modification of classical defects by incorporation of elements of nonbulk
structures. Defects in Figure 4a,d are tentatively attributed to +1/2 disclination with an incor-
porated PL ring. In this kind of defect, the PL cell often has a distorted shape and somewhat
large dimensions compared to a hexagonally ordered PL unit site. It is typically isolated from
other PL-like defect sites and appears to be position-trapped. The defect in Figure 4b,e can be
obtained by phase inversion in the previously described +1/2 disclination and is therefore topo-
logically equivalent to the above defect. However, the white dot in the middle (Figure 4b,e) can
be attributed to vertically oriented cylinders, spheres, or cylinders with upstanding necks. Such
defects are typically formed at early stages of structure equilibration; they stick to their original
position and annihilate rather slowly due to missing lateral connectivity in the minority phase.

Figure 4c,f displays another example of a representative specific defect. This configuration
is identified as a modified classical -1/2 disclinations with incorporated PL structure. Such
defects are typically paired with +1/2 disclinations and are trapped at three-cylinder-grain junc-
tions. The PL structure lacks the axial symmetry; therefore it effectively compensates large
disorientations of cylinder grains. Additionally, the appearance of the nonbulk PL phase as a
defect component in the cylinder phase can be justified by low interfacial tension between these
phases.8 Since the dimensions of the hexagonally ordered PL and cylinder phases are compat-
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Figure 4. Smulated images (top panel) and SFM phase images (300 nm times 300 nm) pre-
senting specific defect configurations: +1/2 disclination (a,d) and - 1/2 disclination
(c,f) with incorporated PL fragment; (b,e) +1/2 dot-disclination. SB films have been
annealed under 50% of the saturated vapor pressure of chloroform.

ible, the excess of the chain stretching/confinements at defect cylinder sites is released by the
local phase transition.

The modified -1/2 disclination can contain PL clusters of varied size (Figure 5). Generally,
the size and the lifetime of the PL-defects depend on the particular experimental conditions. On
one hand, they can be considered as a metastable transient phase which enhances the connec-
tivity of the minority component as compared to the cylinder phase, and therefore facilitates the
annihilation of defects. The lifetime of such temporal phases with a cluster size of ~ 1 — 10 PL
rings ranges from minutes to hours.3? On the other hand, these ring-like PL-defects may appear
as nuclei of a stable PL grain when a small thickness gradient promotes coexistence of PL/C
phases (Figures 5c,f and 11).32:34

Another example of a frequently observed position-trapped configuration denoted as the
horseshoe defect is presented in Figure 6. This defect can be viewed as a core region of +1/2
disclination next to a PL cluster. It is as well observed in DSCFT simulations which in some
instances reveal the connection of this defect to the bottom layer of microdomains (Figure 6c).
The annihilation of such defects through the formation of a transient nonbulk lamella phase
was captured by in-situ SFM (Figure 6d).3” The horseshoe defect is highly incompatible with
ordered in-plane structures, and the local transition to lamella phase provides higher in-plane
chain mobility as compared to that in the cylinder phase.

Soecific Defects. Figure 7 presents a specific neck defect which, to our knowledge, has
never been identified before in block copolymer films. This bridge-like connection between
neighboring parallel cylinders can be viewed as a closely interacting pair of m-dislocations
(Figure 7a and related sketch). Such necks provide connectivity of the minority phase and
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Figure 5: Smulated images (top panel) and S-FM phaseimages (300 nmtimes 300 nm) depicting
specific configurations of - 1/2 disclinations with different PL - cluster size. B films
have been annealed under 50% of the saturated vapor pressure of chloroform.

Figure 6: S-M phase image (a) (300 nm x 300 nm) and simulated images (b,c) presenting the
horseshoe defect. (d) Selected SFM phase images (250 nm x 250 nm) from the con-
secutively saved sequence illustrating the annihilation of a horseshoe defect (marked
by dashed lines in frame 1). Solid white lines and filled symbols mark lattice sites
which remain unchanged during the transformation. Empty symbols indicate lattice
sites at the boundary of the transient lamella phase. The previous position of moving
lattice sites is shown by dashed symbols. In frame 8, thick dashed lines mark cylinder
domains which replace the horseshoe defect (frame 1). In-situ SEFM imaging has been

done at 105 °C.
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Figure 7: SFM phase images of surface structures in SB films, which were equilibrated un-
der 70% of the chloroform-saturated atmosphere, showing specific neck defects (a,e)
(highlighted by white (yellow) circles); interaction of neck-defects with m-dislocations
(b,c), and with a single PL ring (d). Image f indicates the elementary steps of the lat-
eral defect motion and interaction.

thereby facilitate material transport without crossing the PS-PB interface. Since the annihilation
of a neck-defect does not require a discontinuous change of the order parameter, it is not a
singular defect. Necks are frequently observed in the ordered cylinder phase under conditions
which provide sufficient chain mobility (for example, in swollen SB films with the polymer
volume fraction below ~ 0.8, Figure 7e,f). Such necks can group with m-dislocations along or
across the cylinder axis (Figure 7 panels b and c, respectively) or with PL rings (Figure 7d).
Interestingly, in DSCFT simulations neck defects are not seen in the ordered cylinder phase.
This fact likely indicates a small energy difference between the neck defect and the defect-free
cylinders. Considering the experimental conditions when the necks between cylinders form, we
conclude that their origin is driven by local concentration fluctuations.
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Figure 8: Smulated images (top panel) and SFM phase images (300 nm x 300 nm) presenting
grain boundaries defects. (a,d) extended T-junctions configuration; (b,e) chain of PL
rings at grain boundary; (c,f) grain boundary defect between cylinder grains with a

disorientation angle of ~ 75°. SB films have been annealed under 70% (d,f) and 55%
(e) of the saturated vapor pressure of chloroform.
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The observed SB films neck defects are similar to those found in liotropic liquid crystals.
In particular, the important transport functions of the bridging connections in lyotropic lamella
phase have been recently reported.?® In this study, the abrupt increase of the diffusion coefficient
across the lamella upon approaching the lamella-isotropic phase transition has been interpreted
in terms of neck defects connecting the surfactant structure. Additionally, the formation of
nonsingular neck defects is tentatively similar to the initial stages of the membranes/vesicles
fusion.2® Note that in thermotropic liquid crystals such defects are prohibited due to a noncon-
served nature of the order parameter.

Grain Boundary Defects. Figure 8 presents examples of extended grain boundary defects.
The T-junction defect (Figure 8a,d) is one of the most stable defect configurations and forms
at large angles of disorientation (=~ 80 — 90°) between two cylinder or lamella®® grains. In
the cylinder phase, T-junctions compensate for strong disorientation of grains and at the same
time provide connectivity of PS cylinders (white stripes) between neighboring grains while
the majority PB matrix (dark stripes) remains interconnected. We note that the connectivity
function of a T-junction in most cases can not be realized in the lamella phase as it always
abruptly terminates one component (mostly, the minority component“?). In the following, we
describe the lateral mobility of such complex T-junction defects.

The extended defect in Figure 8b,e is represented by a chain of PL cells along the grain
boundary and can be considered as a modified T-junction defect. Such configuration indicates
the tendency of the system to undergo the cylinder-to-PL phase transition. The boundary de-
fect in Figure 8c,f presents the case where two cylinder grains meet at a disorientation angle
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Figure 9: Dynamics of the 3T-junction defect. (a) SFM phase images from in-situ SFM movie
(image size, 350 nm x 350 nm; the phase scale, 3°). Frame numbers and elapsed
time of the SFM movie are indicated next to each frame. Configurations A, B, and
C highlight the stages of the movement of the T-junction defect (marked with a white
(yellow) sguare) relative to the indicated position-trapped defects. (b) Plot shows the
evolution of temporal/excited configurations, which are sorted and grouped along the
configuration coordinate according to the number of open ends. SFM images (250
nm x 200 nm) in the upper panel are selected frames from SFM movie and present
intermediate defect configurations.
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Figure 10: Temporal evolution of the 3T-junction defect in DSCFT simulations. Data are plot-
ted according to the same criteria asin Figure 9b. Selected frames from the simula-
tion movie show characteristic (A and B) and intermediate stages of the 3T-junction
movement. Solid arrows (red) mark the left edge of the 3T-junction upon propaga-
tion.

of 70 — 75°. This grain boundary is characterized by considerable distortion of microdomain
dimensions in the junction sites; at the same time, the connectivity of the minority PS phase
between the neighboring grains is preserved. However, we note that in most cases grain bound-
aries with such disorientation angles are marked by a narrow region with high density of classic
and specific defects described above.

6.2.3 Dynamics of Complex Defects.

Experiment. With in-situ SFM we followed the lateral movement of a 3T-junction defect which
consists of four parallel cylinders connected to an orthogonally-oriented cylinder (Figure 9a).
The SFM movie can be found as Supporting Information.*! Selected frames from this movie
and the respective sketches below each image (Figure 9a) present the characteristic steps of the
defect propagation. As a guide for the eye, white (yellow) dots mark the open cylinder end.
The position of this +1/2 disclination remains stable during imaging. Another characteristic
reference point is a white-dot defect which is indicated by the arrow in frame 32 of Figure 9a.
In Frame 32, the 3T-junction is positioned next to the marked +1/2 disclination (configuration
A). About 9 minutes later, the 3T-junction appears to be separated by one cylinder from the
disclination (frame 46 and configuration B). Finally, in frame 77 it is separated by two cylinders
from the indicated disclination, still preserving its complex structure.

The details of these transformations are captured in the SFM-movie which covers more than
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70 minutes of the continuous imaging. Since we have done the measurements with high tem-
poral resolution, we plotted in Figure 9b a temporal pathway of this defect. Here the temporal
and excited defect configurations are sorted along the vertical axis according to the number of
cylinder open ends. Each type of symbol indicates the presence of a certain defect configuration
such as the A, B, or C type as in Figure 9a, such as the intermediate 4T-junction configuration
in frame 41 (inset in Figure 9b), or a quite stable +1/2 disclination as in frame 56 (Figure 9Db).
When a configuration does not contain an open cylinder end (such as in frames 56 and 93 in
Figure 9b) or a shape undulation (as the sock-like undulation in frame 31 of Figure 9b), then
the symbols are placed on the horizontal dashed line. Any open cylinder end is configured as
higher energy defect structure and the respective data-point is shifted up along the y-axis.

Figure 9b indicates that each of the configurations A, B, and C has a different lifetime. Con-
figuration A was present for about 40 minutes with a short-lived break-up of the cylinder con-
nections and shape undulations (excited configurations). The transition to configuration B was
achieved via an intermediate 4T-junction defect. Configuration B was relatively short-lived, and
changed quickly into a long-lived defect with +1/2 disclination (frame 56 in Figure 9b). The
final step to configuration C proceeded with the consumption of the PL ring from the modified
-1/2 disclination (as in Figure 4f). Configuration C appeared to be quite stable with almost no
fluctuations. Importantly, in configuration C the 3T-junction now appears closer to the small
PL patch (a nonbulk transient phase). Thus on a mesoscale level, the captured motion can be
viewed as an elementary step towards the lateral separation of coexisting morphologies (see
Figure 11).

During the captured lateral transformations, the complex 3T-junction defect has moved on
a distance of two microdomain spacings (a~ 70 nm) in t &~ 70 minutes. A simple estimation
using the Einstein relation a = (Dt)1/2 gives a diffusion constant of D ~ 1016 cm?/s. This
result indicates that the lateral diffusion of a complex stable defect configuration is 3-4 orders of
magnitude smaller compared to the self-diffusion constant determined earlier for this system.3’

Smulations. A lateral migration of the similar 3T-junction defect was followed with DSCFT
simulations and is presented in Figure 4.10. Like in Figure 9b, defects are sorted along the
Y-axis according to the number of cylinder open ends. Selected frames from the simulation
movie*? display characteristic (A and B) and intermediate stages of the 3T-junction movement.
In simulations, the defect moved on one cylinder spacing to the right relative to the initial
position A. Similar to the experimental observations, the movement of the complex 3T-junction
defect proceeds via long-living intermediate structures with +1/2 disclination (marked by yellow
(gray) squares in Figures 9b and 10). Moreover, the movement of the defect is directed towards
the developing PL phase (right image in Figure 10). From the good agreement between the
simulations and the experimental observations we conclude that DSCFT on a long time scale
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correctly describes defect dynamics in block copolymer films. From the above results, a single
simulation step can be identified with a real experimental time of ~ 1 —2 s. This value is in
a good agreement with the earlier experimental and theoretical studies which are based on the
comparison of the morphological phase transitions3843 rather than on the analysis of the lateral
defect motion.

Another important conclusion which we have derived from the dynamic simulations of a film
with a wetting layer is only the weak involvement of this bottom layer in the ordering of the
structures at the free surface. Slight perturbations in the volume density at the wetting layer
are seen exclusively below excited defect configurations such as open-cylinder-ends (see 3D
simulation movie*?).

Lateral Separation of Morphologies under Coexistence Conditions. Earlier theoretical and
experimental studies have pointed to a relationship between the microdomain structures and
transport mechanisms in block copolymer films. In particular, it is known that topological de-
fects with open cylinder ends (such as vertically oriented cylinders, cylinders with necks, open-
end dislocations) are indicative of the material transport perpendicular to the surface.19:43:44
Such open-end structures appear during the early stages of terrace formation,*® during the di-
rectional orientation of cylinders perpendicular to the surface by external fields,22:4%:46 and in
thermal equilibrium at incompatible film thickness.3! Here we focus on the specific defects
which are associated with the lateral ordering of lying cylinder microdomains.

In the earlier studies on the phase behavior in SB films, we established conditions in which
the cylinder phase is in thermal equilibrium with the PL structures.34#” At particular surface
fields and segregation power, the slight thickness variation within the first layer of cylinders is
reflected in the coexistence of two morphologies. Further, we noticed that the degree of the
lateral separation of cylinder and PL phases essentially depends on the annealing conditions.
Figure 11 presents SFM phase images of the surface structures in ~ 1 1/2-layer thick SB films
which have been annealed (a) in vacuum at elevated temperature and (b) in the atmosphere of the
chloroform vapor. Both images reveal coexistence of morphologies, however with drastically
differing degree of the lateral separation (different grain sizes).

Figure 11a displays coexisting PL and cylinder grains of small sizes with a high defect den-
sity in the cylinder phase. In contrast, after solvent annealing the two morphologies are well
separated and exhibit a high degree of long-range order. Since in both systems the ¥N pa-
rameter is estimated to be ~ 35 and thus the segregation power is assumed to be similar, the
difference in the degree of the structure equilibration can be attributed to the chain mobility
under given annealing conditions. Obviously, the efficiency of the microdomain equilibration is
higher under solvent annealing conditions. Further comparison of images in Figure 11a,b sug-
gests that both the density of defects and their relative lifetimes depend on the chain mobility.
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Figure 11: SFM phase images presenting coexisting PL and cylinder morphologiesin SB films
annealed for 18 hours (a) in vacuum at 120 C on carbon coated silicon and (b) on
silicon substrate under the atmosphere of 50% of the saturated chloroform vapor
pressure.
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In thermally annealed films, all types of described above classic and modified defects (Figures
3-6 and 8) appear to be kinetically trapped. In swollen films, specific neck defects obviously
dominate over other defect types which presumably have short life-times under these conditions
(Figures 7e,f and 11b).

We believe that in thermally annealed films, the lateral coarsening of the PL grains proceeds
predominantly through the lateral movement of PL-modified or clustered complex defect con-
figurations such as PL-patches and T-junctions (Figures 810). In solvent-containing systems
with considerable interfacial fluctuations, the neck-defects are involved in the grain coarsening
at late stages of structure equilibration. It is likely that motion of neck defects, doubled necks
(which are structurally similar to a single PL ring) along the cylinder axis, and their interaction
with other defects or with existing grains of nonbulk phases can be considered as elementary
steps of the lateral separation of morphologies in thermal coexistence (Figures 7f and 11b).

6.3 Summary

In this work, we focus on specific defects in the cylinder phase which are kinetically trapped in
thermal equilibrium during the lateral ordering of lying microdomains. Using SFM measure-
ments complemented by DSCFT simulations we show that structural defects and their interac-
tions in cylinder-forming block copolymers can not always be described with the approaches
and knowledge gained from defect studies in nematic thermotropic and lyotropic liquid crystals.
In particular, the systems studied here showed a strong correlation between the defect structure
and chain mobility both on short and on long-term time scales.

We have shown that purely topological arguments and 2D representation are not sufficient to
elucidate the stability and mobility of defects in cylinder morphology where specific and rep-
resentative classic defects provide connectivity of cylinders (of the minority component). Gen-
erally, dislocations with a closed cylinder end are more stable than configurations with an open
cylinder end which are typically short-lived elementary steps of defect reconstruction. Classical
+1/2 disclinations in the cylinder phase incorporate alternative structures, such as the nonbulk
perforated lamella phase which has planar symmetry and thus a higher degree of connectiv-
ity of the minority component. Observation of nonsingular neck defects suggests similarities
of transport mechanisms in block copolymers with considerable interfacial fluctuations and in
other types of soft matter such as lyotropic liquid crystals and membranes.

Good agreement between the experiment and simulations on the details of the lateral propa-
gation of a complex 3T-junction defect suggests diffusion-driven lateral transport and correlated
defect motion due to the interconnectivity of the polymer chains. Additionally, simulation re-
sults show that the bottom (wetting) layer is only weakly involved in the development of the
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structures at the free surface. The estimates of the motion velocity of the clustered defect config-
urations give insight into the molecular mechanisms of the chain transport in block copolymer
materials.

The degree of lateral separation of coexisting PL and cylinder phases and related represen-
tative defects depend on the mobility of chains under given annealing conditions. Our results
suggest that the chain mobility is an important factor that guides the pathways of defect annihi-
lation and thus the transport mechanisms in block copolymer films.

6.4 Experimental Details

6.4.1 Polymer

We used polystyrene-block-polybutadiene copolymer (SB) (Polymer Source Inc.) with molec-
ular weights of the polystyrene (PS) and polybutadiene (PB) blocks of 13.6 and 33.7 kg/mol,
respectively, with a PS volume fraction of 25.5% and a polydispersity of 1.02. The glass transi-
tion temperatures of the SB components are Ty pg = —60°C and Ty ps = 80— 100°C. In bulk, SB
forms glassy PS cylinders embedded in a soft PB matrix with a characteristic distance of 33.6
nm between the next-nearest cylinders (SAXS measurements).3* SB films were prepared by
spincoating a toluene solution on carbon-coated silicon wafers and further annealing either un-
der chloroform (nearly neutral solvent) at controlled vapor pressure or at elevated temperatures
in vacuum.

6.4.2 Scanning Force Microscopy

The microdomain morphology in quenched films was measured with a Dimension 3100 SFM
(Veeco Instruments Inc.) operated in TappingMode using silicon tips with a spring constant of
ca. 40 N/m, and a resonance frequency ranging from 200 to 300 kHz.

In-situ imaging was performed in the hot-stage of a MultiMode SFM (DI1/\Veeco Metrology
Group) under a flow of dry nitrogen, with an amplitude setpoint of ~ 0.96 and a scanning
frequency of 9 Hz, resulting in an acquisition time of 46 s/image. An 50 nm thick SB film on
carbon coating was first annealed at 140 °C to induce terrace formation and lateral ordering of
the microdomains and then quenched to 105 °C for SFM imaging. At the temperature range
105-120 °C, the combined Flory-Huggins parameter yN is about 35, which corresponds to the
intermediate segregation regime.

To estimate the possible impact of the sample degradation due to the loose seal of the heat-
ing chamber, we performed separate snapshot measurements under the above temperature and
nitrogen flow conditions. The first signs of the partial cross-linking of the PB component were
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detected after 20 hours of annealing, which considerably exceeds the typical times of the in-situ
measurements.

6.4.3 Simulation

Thin film behavior of a cylinder-forming block copolymer was modeled using the dynamic
variant of self consistent field theory (DSCFT).*® Earlier this method was successfully used
to study equilibrium structures, 31324 dynamics of phase transitions,3® and structure evolu-
tion in supported films.*® Since the governing equation for structure evolution in DSCFT is a
stochastic differential equation, where the stochastic term represents the thermal fluctuations,
the morphology of thin film as well as the appearance and connectivity of structural defects is
not predefined.

For the analysis of defects in one-layer-thick films of cylinder-forming block copolymers,
we have considered three systems which phase behavior has been described in detail in earlier
publications.324° Systems A and B from ref. 32 both have symmetric wetting conditions, with
a film height of 7 grid units (+2 grid units for the mask) and the interaction parameter between
the polymer beads eag = 6.5. The interaction parameters of the polymer beads with the surfaces
(or with the mask) are eas =5, egs= 0, and eas = 6; egs = 0 for systems A and B, respectively.
System C from ref. 49 has asymmetric wetting conditions, a film height of 10 grid units (+2
grid units for mask); eag = 6.5, and the interaction parameters of the polymer beads with the
lower interface eas = 6, egs = 0, and with the upper interface eaqt = —1, egst = 0. For the
present study the above systems have been simulated in large boxes with lateral sizes of 128 x
128 grids to exclude the influence of the boundary conditions on single defects; the examples
of classical and specific defects in Figures 36, 8 are cuts (in time and position) from these
simulations. For each system simulations have been done for more than 50 000 simulation
steps. We note that the simulation results cannot be used for the independent statistical analysis
of the representative defect configurations as even the largest simulation boxes contain not more
than 20 microdomains. Here simulations are used to support experimental observations, which
give access to a statistically valuable number of defect configurations.

The dynamics of a complex 3T-junction defect was followed in system C in the simulation
box with lateral sizes of 64 x 64 grid units (Figure 10).
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Supporting information available:

SFM movie: Tapping-mode scanning force microscopy movie of the surface structures in a
fluid SB film at 105 C. Bright color corresponds to PS microdomains. The size of the area is
350 x 350 nm2. The frame rate is 46 s/frame, and the total imaging time is ~ 92 min. Sim-
ulational movie: Dynamic self-consistent mean-field simulations of the structure evolution in
cylinder-forming block copolymer melt modeled by A3B12A3 Gaussian chains. The dimensions
of the simulation box are 64 x 64 x 12 grid units. The displayed A-component (isodensity level
pa = 0.5) forms one structured layer on the top of wetting layer. The surface fields are set to
em 1 = —1 kd/mol and &y » = 5 kd/mol. The structure dynamics is plotted every 50th time step
in the simulation range from 3000 to 10000 time steps. This material is available free of charge
via the Internet at http://pubs.acs.org.
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7.1 Introduction

Block copolymers are complex materials which form periodic nanostructures. Expanding appli-
cations of ordered microdomains in nanotechnologies' 2 are strong incentives for developing
an improved understanding of the block copolymer dynamics and control over the ordering of
nanopatterned surfaces.

While topological defects in polymer thin films resemble those commonly observed in liquid
crystalline*=8 or even solid crystalline materials,® block copolymers exhibit a wide spectrum
of morphological and dynamic properties that are related to their polymeric nature. It is now
well established that cylinder forming block copolymers in confined geometries frequently ex-
hibit non-bulk structures or hybrid morphologies in response to thickness and surface fields
constraints.19-12 Recently has in-situ scanning force microscopy (SFM) been used to image
the phase transition from the cylinder to the perforated lamella (PL) phase in a thin film of a
concentrated block copolymer solution.!® This work has shown that on large time scales the mi-
crodomain dynamics can be described in great detail with a mean-field approach and dynamic
density functional theory (DDFT). Furthermore, quantitative analysis of defect motion led to an
estimate of the interfacial energy between the cylinder and the perforated lamella (PL) phases.

Here we report on an in-situ investigation of microdomain ordering in a cylinder forming
block-copolymer melt. The time resolution of SFM allows the observation of elementary pro-
cesses of defect motion on a large range of time scales: density undulations on a time scale
below a second, collective deformation of microdomains on a timescale of tens of seconds, and
temporal morphological structures with the lifetimes ranging from a minute to hours. Computer
simulations based on the dynamic density functional theory (DDFT) reproduce the observed
temporal phase transitions as a pathway of structural evolution.
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7.2 Experimental

7.2.1 Polymer

The material was a polystyrene (PS)-blockpolybutadiene (PB) diblock copolymer (SB) with
molecular weights of the PS and PB blocks as 13.6 and 33.7 kg/mol respectively, and a poly-
dispersity of 1.02. The volume fraction of the PS (25.5%) corresponds to bulk morphology
of hexagonally ordered cylinders. This was confirmed with SAXS measurements on a bulk
specimen: SB forms PS cylinders embedded in a PB matrix with a characteristic distance
of 32.9 + 0.3 nm between the next-nearest cylinders (at 120°C). The glass transition tem-
perature of the homopolymers PB and PS is Tgpg = -83 to -107°C and Tgps = 80 - 100°C
correspondingly.4

7.2.2 Scanning Force Microscopy (SFM)

In-situ thermal annealing and scanning were performed under a flow of dry nitrogen in a SFM
heating stage (MultiMode, DI/Veeco Metrology Group) allowing for precise control of both the
sample and the tip temperature. Standard silicon cantilevers (with the resonance frequency in
the range of 200-300 kHz) have been used for the tapping mode scanning under an amplitude
setpoint of ~ 0.96. No measurable effect of the tip on the structural evolution has been de-
tected. With custom built software®® the continuously saved SFM phase images were flattened,
registered and compiled into a movie.

7.2.3 Experimental conditions

SB film with a thickness of about 50 nm was prepared by spincoating of a 1.2 wt% SB solu-
tion in toluene on a carbon coated silicon substrate. Stabilizer was added in amount 0,03% of
the polymer weight to prevent cross linking of the PB block during the thermal annealing. A
6 +1 nm carbon layer was evaporated onto a silicon wafer using a Cressington 208HR sputter
coater. The sample was mounted into the Multimode heating stage, first annealed at 140°C for
40 minutes and then quenched to 105°C for SFM imaging. At these temperatures the com-
bined Flory-Huggins parameter ¥N is about 30-358:17 which corresponds to the intermediate
segregation regime.18

7.2.4 Simulations

We have modeled the thin film behavior of cylinder forming block copolymer using the Meso-
Dyn code which is based on mean-field dynamic density functional theory (DDFT). A melt
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Figure 1: Selected frames from a continuously saved sequence of SFM phaseimages. The labels
indicate the number of the frame and the elapsed time of the imaging. The frames
show the annihilation of a small elongated grain (Frame 152) which isreplaced on a
time-scale of ~ 70 minutes by another small grain with the perpendicular orientation
(Frame 240). The transient dotlike structures are indicated by arrows in Frame 162.
The temporal PL phase (marked by a circle in Frame 161) with a lifetime of ~ 60 min
can be seen in the following frames with shape undulations (Frames 163 and 166) or
different number of connected cylinders (Frames163 and 189).

of AzB12A3 Gaussian chains was used as a model system. A and B correspond to PS and PB
in experiments, correspondingly. For the bead-bead interaction potential a Gaussian kernel is
used, which is characterized by eag and related to Flory-Huggins parameter yN. The value of
eag Was set to 6.5 kd/mol in order to have cylinders as the bulk structure.® It corresponds to
xN ~ 35, analogous to the experiment (see above). A substrate supported thin film (with one
free surface) was modeled as in Ref.20 Here the interaction with the hard wall (substrate) was
set to be -3 kJ/mol. The interactions with the void component were set to eya = 16 kJ/mol and
evg = 10 kJ/mol. The film has the possibility to change its height. All other parameters are
same as in Ref.19

7.3 Results

7.3.1 Transient perforated lamella phase (experiment)

In-situ imaging reveals small patches of non bulk PL phase that appear during structural re-
arrangements. Few examples of transient PL structures with different life-times and different
cluster size are presented in Figures 1 and 2.

Often we observe structural defects in the cylinder phase such as a single PL ring (see an
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Figure 2: Crops from selected frames showing the transient PL phase at the boundary between
the cylinder grains. In Frame 48, an array of PL rings is aligned along the grain
boundary and grouped around a horse-shoe defect. In Frame 249 the transient phase
isannihilated into the +1,/2 disclination. The total evolution of the PL phaseis about
four hours.

example in Frame 161 of Figure 1). Such single PL rings generally originate from three-arms
connections between cylinders and can be considered as a minimal nucleus of the PL phase
during the cylinder to PL phase transition.t® In our case, the formation of the single PL ring
appears to be an elementary process of annihilation of the small elongated grain (shown in
Frame 152). This local PL cell existed over a time period of ~ 60 minutes, however with
different numbers of connected cylinders (compare Frames 161 and 189) and periodic breaks
in its structure prior to the annihilation of this defect.

Figure 2 presents the four hours lasting evolution of a cluster of the PL rings at the boundary
between the cylinder grains. Initially, an array of PL rings was aligned along the grain boundary
and grouped around a horse-shoe defect (Frame 48). The elementary processes of the PL phase
evolution, such as additional connections between cylinders (Frame 137), the movement of
kinks parallel to the cylinder/PL border (Frame 233) are very similar to that observed earlier
during the cylinder to PL phase transition in a swollen film of a triblock copolymer.12 The final
annihilation into the +1/2 disclination (Frame 249) proceeded in less then 5 minutes, much
faster than the life-time of this temporal phase.

7.3.2 Transient perforated lamella phase (simulations)

Figure 3 captures the reorientation of a cylindrical grain via the formation and annihilation of
the PL phase. The initial film thickness was chosen to be 1.5 microdomain spacing in order
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Figure 3: Shapshots of the MesoDyn simulations, which model a thin supported film of a
A3B12A3 cylinder forming block copolymer ina 128 x 32 x 26 simulation box. Crops
of the middle layer, visualizing the reorientation of cylinders via the transient PL
phase are shown after a) 56 000, b) 57 200, c) 58 400 and d) 59 600 time steps.
The thin film morphology is shown by the isodensity surface of A component for a
threshold value of pa = 0.33.

to accelerate terrace formation in a natural way similar to the experiment. In the simulation,
the initially flat film shows perpendicular cylinders and cylinders with necks facing the wetting
layer. After 8000 time steps the film starts to roughen. Simultaneously, in the lower terrace
the structures transform into lying cylinders. After 30 000 simulation steps the second layer of
lying cylinders starts to form via interconnection of necks. At 56 000 time steps the film shows
two layers of cylinders on top of the wetting layer. Remarkably, on a small patch the cylinder
orientation of the top layer and that of the bottom layer do not match each other. The relative
disorientation is about 60°. The following adjustment of the bottom layer to the orientation of
the cylinder layer above it is captured in Figure 3. First, the undulations of interfacial walls
and developing dislocation are visible (Figure 3a). The newly forming connections between
neighboring cylinders serve as nucleation centers for the PL domains (Figure 3b). The PL
patch grows via the undulations in cylindrical domains which eventually connect to form the
PL lattice sites (Figure 3c). Presumably, the domains of the PL phase support redistribution of
local densities. Finally, the microdomains reorganize into new cylinder orientation (Figure 3d).

From earlier in-situ experiments we know, that the real experimental time of ~ 1 s can be
assigned to one simulation step.!® This estimate suggest that in this particular simulation the
reorganization of cylinders proceeds on a time scale of tens of minutes (3 600 time steps),
which is in a good agreement with experimental observations.
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7.4 Discussion

Our studies of the phase behavior in SB films demonstrated that on carbon coated substrates
the PL phase is stabilized at transition film thickness, either at the bottom of a step or in ar-
eas with minor thickness variation.'? The characteristic spacing of the PL phase was shown to
be ~ 10% larger compared to that of the cylinder phase. The morphological phase transition
from the cylinder to the PL phase provides a local adjustment of the microdomain structures
under the thickness constraint. In-situ dynamic measurements in similar SB films melts demon-
strate that annihilation of topological defects in many instances proceeds via local temporal
phase transitions. The low interfacial tension of ~ 2.5 uNm~! between the cylinder and the PL
phase!? is likely to account for the energetically favorable pathway of structural rearrangements
via temporal phase transitions and explains the stabilization of PL patches under long term an-
nealing in highly defective areas of the cylinder phase. We remark, that the phase transitions
from metastable to equilibrium morphologies as well as thermally reversible order-order tran-
sitions have been extensively studied before.?2~24 Here we describe local exited states in the
equilibrium phase that are induced by energetically unfavorable defect configurations.

The simulations conceptually match the experimentally observed ordering and growth of
grains of cylinders via temporal phase transitions. We emphasize that the simulation method is
not biased to any particular microdomain structure and has no a priory knowledge of the macro-
scopic mechanisms of structural transitions. All structures from spontaneously from an initially
homogeneous polymer mixture and the structural evolution proceeds through the pathways de-
termined by its natural diffusion dynamics.
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8 Time evolution of surface relief
structures in thin block copolymer

films

Horvat A., Knoll A., Krausch G., Tsarkova L., Lyakhova K. S., Sevink G. J. A, Zvelindovsky
A. V. and Magerle R.
puslished in Macromolecules, 2007, 40, 6930-6939.

The dynamics of early stage of terrace formation in thin supported films of cylinder forming
triblock copolymers was studied both theoretically using self-consistent-field theory (DSCFT)
and experimentally by insitu scanning force microscopy (SFM). In experiment, an initially flat
film of incommensurable thickness was imaged continuously, and the evolution of a vertical
orientation of cylinders into a parallel one as well as the respective development of thickness
gradient (terrace formation) was captured in detail. On the grounds of these experimental ob-
servations, the parameters of the computational model A3B12A3 were determined to match the
structures in experiment. Both systems show excellent agreement in details of structural phase
transitions and in the dynamics of the step development, suggesting that the underlying transport
mechanisms are governed by diffusion. The early stage of terrace formation is characterized by
the development of the step height up to 80% of its equilibrium value and associated reorienta-
tion of cylindrical domains.

8.1 Introduction

Block copolymers belong to the class of ordered fluids, which self-assemble into microdomains
with characteristic lengths ranging from 10 to 100 nm. The morphology type and the charac-
teristic dimensions are controlled by the block copolymer composition, the interaction between
the blocks, and by the total chain length N.%

The specific behavior of block copolymers in thin films is primarily dictated by the enhanced
role of surface/interfacial energetics, as well as by the interplay between the characteristic block
copolymer spacings and the film thickness.2—°. Preferential attraction of one of the blocks to
the surface breaks the symmetry of the structure and favors layering of microdomains parallel
to the surface plane through the entire film thickness. As a result the energetically favored film
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thicknesses are then quantized with the characteristic structure period in the bulk (denoted here
as ¢y for cylinder-forming block copolymers). The surface topography depends on the initial
film thickness hy of as-cast substrate-supported film. When hy deviates from ncy (for sym-
metric wetting conditions), topographical features of macroscopic size such as islands, holes
or bicontinuous patterns with two distinct thicknesses ncy and (n+ 1)cq are formed to satisfy
the thickness constraint. Experimentally, nucleation and subsequent growth of surface relief
structures, also called terrace formation, have been investigated mostly for lamellar systems
as a function of surface fields,®~8 molecular architecture,® film thickness,1%'! and annealing
conditions.%11:12

The coarsening of the surface macrodomains is typically followed by time-resolved optical
micrographs or surface force microscopy (SFM) topographs, and the averaged macrodomain
radius as a function of annealing conditions is determined. The development of surface rough-
ness on an initially smooth film starts already during the early stages of annealing. The terrace
heights continuously change with time until the commensurable thicknesses are achieved. The
difference in the neighboring terraces heights up to 80% of its equilibrium value was shown
to develop already during the early stage of terrace formation.’® On a longer time scale, the
pattern of terraces is still coarsening. This process is due to the effective line tension of the
two-dimensional islands (holes) which tends to minimize the total length of the terrace edges
with time. However, on a smaller length scale (a few microdomain spacings), the film thickness
and the step profile can be considered constant. An extended summary of these studies can be
found in recent reviews,>14-16

It is now well established that a cylinder-forming block copolymer under confinement and
strong surface fields forms microstructures that deviate from that of the corresponding bulk
material. Surface structures like lamella (L), perforated lamella (PL), perpendicular cylinders
(C.), cylinders with necks (CC ), spheres on a top of a perforated lamella (PL-S) are examples
of simulated’ 1% and experimentally observed morphologies?°~2° that are formed in thin films
of bulk cylinder-forming block copolymers. While the equilibrium structures in thin films of
block copolymer have widely been investigated, the dynamics of nanostructured fluids in thin
films are an issue of a recent interest.?’-28

The modelling part of this paper was inspired by unique in-situ SFM measurements of terrace
formation, where both the macroscale development of the thickness gradient and the related
microscale phase transitions were resolved. The calculational method based on the Dynamic
Self-Consistent Field Theory (DSCFT), originally proposed by Fraaije,?° has been previously
used to model the pattern formation in confined environment. The calculations matched the
SFM experiments in great detail. The computational method provides decisive understanding
of the experimental results as it allows more extensive variation of the system parameters than
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one could achieve in experiments. In our earlier work we identified deviations from the cylinder
bulk morphology as surface reconstructions®* and constructed phase diagrams which allow to
distinguish between surface field and confinement effects.181%24 |n recent study we found that
the dynamics of elementary structural transition in experiment and simulation well accord. We
demonstrated that DSCFT describes the microdomain dynamics on long time scales in great
detail.2” Furthermore, quantitative analysis of defect motion led to an estimate of the interfacial
energy between the cylinder and the PL phases.

In our previous work3® we have introduced a DSCFT-based model of a block copolymer film
with a free surface, and considered the dynamics of terrace development. Here, we rationalize
the parametrization choice of this earlier study and focus on a detailed quantitative comparison
of the early stage of terrace formation with the actual experiment. The paper is organized as fol-
lows: First, we introduce the computational model of free surface and related parameters. Next
we describe continuous in-situ SFM measurements of the dynamics of the surface relief struc-
tures and phase transitions in thin triblock copolymer film under solvent annealing. Then we
present the results of the parametrization of the model system aiming to match the experimen-
tally observed structures. Finally, we analyze and compare the development of the thickness
variation (terrace formation) and the related phase transitions in computational simulation and
in in-situ experiment and discuss the underlying mechanisms.

8.2 Method

8.2.1 Theoretical model

The mesoscopic DSCFT employs a coarse-grained field description of the polymer system.
The free energy, however, is based on a microscopic Hamiltonian and therefore explicitly in-
corporates the specificity of the polymer chain. Furthermore, we use a separation of scales and
consider a time scale at which, for given fields, the polymer chains are fully relaxed. The field
dynamics is then given by a standard set of stochastic Langevin equations, where the stochas-
tic terms represent mesoscopic fluctuations, according to the fluctuation-dissipation theorem.
An overview, and details of this type of method, can be found in refs 29 and 31. The chain
conformations at each point in time are specified by fields, and the dynamic equations for the
fields describe the collective diffusive dynamics of the polymer system; hydrodynamic effects
are neglegted. We remark that hydrodynamic phenomena are known to play only a minor role
in the evolution of many systems, in particular in dense block copolymer systems.

In the following we shortly review the DSCFT that was also used in our earlier experimen-
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tal/computational studies?*273045 and discuss the coarse-grained variables and parameters we
have chosen for the model.

Molecular model and the free energy functional

An ideal Gaussian chain is used as molecular model in the microscopic Hamiltonian. The
chemical composition of the polymer molecule is reflected by beads of different types,labelled
by the index I. On a coarse grained level, the microstructure patterns of polymeric systems
are described by the density fields p; (r). We consider a system of volume VV which contains n
molecules of the length N. The free energy for such a system can be expressed as:

Fp] = —KTIN¥"/n! — z/v Uy (r)pr (r)dr +F"4[p] 8.1)
|

Here W is the partition function for the ideal Gaussian chain of the length N in the external
fields U;. The external potentials U; and the density fields p; are bijectively related®? in a self-
consistent way via a density functional for the Gaussian chain.3® F"4 js the contribution due to
the non-ideal mean-field interactions. For the cohesive interaction between the beads a Gaussian
kernel is used:

P 2a2
2ma?

s(r ¥ o( 3 )3/26_3(rr/)2.

The strength of the interaction, sPJ (in k3/mol) is directly related to the Flory-Huggins pa-
rameter (yi13 = 1OOOEPJ/NakT). The input to the free energy functional is:

Foohly //gu r—1r')pi (r)ps(r')drdr’ (8.2)

The compressibility of the system is included via:

— > / 2V| p| Zdr (83)

Here ky is Helfand coefficient, p{ is the average concentration of the component |, and v; is
the bead volume.
Solid substrate

The solid surfaces are treated like hard walls also called "mask fields”, which constrain a thin
film by keeping the flux perpendicular to the substrate equal zero.343 In the unconstrained
directions, periodic boundary conditions are used. The interactions with the masks are taken
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into account in the same way as the interaction between the beads. The surface field induced
term in F"d js:

P2 pl= 3 3 [, [ ewallr =¥ Dpiriow, (o (54)

where pwm,, (') describes the position of the mask (powm,, (r’) is equal 1 if r’ belongs to the mask,
or 0 if r’ belongs to the polymer film).

The free surface

Epm void

I - , film

Figure 1: Schematic representation of the ssmulation setup. The corresponding interactions
between system components are indicated by arrows. Block copolymer molecule is
represented by the beads-and-springs model. An AsB4 molecule is shown for simplic-

ity.

The free surface is created via introducing a void component. The void component is treated
as a single-bead bad solvent.3%:3¢ |nitially, the block copolymer film is macroscopically phase
separated from the void component. The interactions with this void component are taken into
account in the same way as the interaction between the polymer beads (via additional interaction
parameters g ).

Input configuration

The numerical schemes explicitly consider the external potential fields U; 3 instead of the
density fields. Therefore the input densities p,inIDUt can not be imported directly. They are
generated by iterative optimization of U, (r) with initial values U, (r) = 0 prior to the application
of the dynamic scheme. An update of the external potentials is accepted when the difference

between the input densities plinIOUt and py (Uy) is smaller than some preset value § << 1.
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Dynamic equations

The thermodynamic forces, that drive the phase separation and the structure formation, are
local gradients in the intrinsic chemical potential. The chemical potentials are derived from the
functional differentiation of the free energy

(r) = <o
Spi(r)
We assume a diffusive dynamics of the density fields and solve the Langevin diffusion equa-
tions numerically:

(8.5)

d
% =MV-pVu +n (8.6)

where M, is a constant mobility of bead I (diffusion coefficient) and n, is a thermal noise,
distributed according to the fluctuation-dissipation theorem.

8.2.2 Simulation parameters of the free surface model
General considerations

To model the behavior of supported block copolymer films we use the following starting con-
figuration. Two masks Mg and M; confine the simulation box from top and from bottom, re-
spectively. The lower half of the box is occupied by the block copolymer film, while the upper
half is the void component. Initially, the copolymer film is flat. The boundary between the void
phase and the polymer film corresponds to a free surface and is expected to show undulation
instabilities.3® The model system is schematically represented in Figure 1. The simulation pa-
rameters of choice are the initial height of the film and the pairwise interaction parameters (see
Figure 1). There are altogether nine interaction parameters: the interaction parameter between
the polymer beads eag, the interaction parameters of the polymer beads with the void compo-
nent eas and egs, the interaction parameters of the polymer beads with the lower (eamv, and
€BM,) and with the upper mask (eam;,, €8m,), and the interactions between the void component
and the two masks (egv,, €sv,). In the following part we describe the determined choice of each
parameter.

Molecular model

Both the Gaussian chain topology (A3zB12A3) and the interaction parameter between the poly-
mer beads eag (6.5 kJ/mol) are the same as in our earlier comparative theoretical*®1°:3 and
experimental studies.?42527
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Interaction of the polymer beads with the substrate

In the earlier works!®24 on thin films we have shown that the calculated structures with the
effective surface interaction ey = eam, — €am, 0f 6 — 7 kd/mol match in great detail the experi-
mentally observed structures.

Interaction of the polymer beads with the void component

The values of eas and egs determine the interaction of the polymer beads with the void com-
ponent and are analogous to the surface tension of the block copolymer components in exper-
iments. They can be calculated directly from the surface tension values of the polymers.3’—3°
However, due to the extra constrains resulting from the periodic boundary conditions this ap-
proach is not effective, as it was shown in our previous publication.3® Therefore, we determine
the values of easand egs by a parametrization procedure (see section 8.3.2). As a starting point,
we assume the difference eas— egs to be similar to the effective surface interaction in a slit
(6 — 7 kd/mol).18

Simulation box

We set the initial thickness to the incommensurable situation corresponding to 1.5 layers of
cylinders, analogous to the experiment. The height of the simulation box is set to be twice
the film thickness and, additionally, two grid units are occupied by the mask fields. Lateral
dimensions of 128 x 32 grid units are chosen to keep the computational time within reasonable
limits.

Film setup

In order to avoid floatening of the film from the substrate, we set the void-upper mask M1
interaction to a negative value (attractive) and the void-bottom mask Mg interaction to a positive
value (repulsive). Additionally, the polymer beads are repelled from the upper mask. For this
purpose we set equ, = —4 kJ/mol and eam, = €am; = €, = 8 kJ/moal.

Time scale

In our previous paper?’ one simulation step was calculated to be about 6 seconds of the exper-
imental measurement time. We assume the time scaling to be of the same order of magnitude
in the present setup with the void component. Under this assumption, calculations over 30000
time steps are comparable to an experimental annealing of the SBS film for several hours, when
well developed terraces are observed.
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Notation

Structure notations used in the present study are similar to that in our previous works3° and are
summarized in Table 1.

sructure notation
perpendicular cylinders C,
short perpendicular cylinders, spheres S
one layer of parallel cylinders Ci1
two layers of parallel cylinders Cj2
three layers of parallel cylinders Ci3
parallel cylinders with necks to the polymer-air interface  C;C,.
parallel cylinders with necks to the substrate C.C
wetting layer

perforated lamellae PL
lamellae L
coexistence of structures in one layer * [ %
coexistence of separate layers with different structures * — %

Table 8.1: Structure notation

8.2.3 Experiment
Sample preparation

As an experimental reference system we studied a thin film of a polystyrene-block-poly-
butadiene-block-polystyrene (SBS) triblock copolymer (from Polymer Source Inc.) with weight
averaged molecular weights of the polystyrene (PS) blocks of My, ps = 14 kg/mol and My ps =
15 kg/mol and of the polybutadiene (PB) block of My pg = 73 kg/mol. The glass-transition
temperatures of the respective homopolymers range from —83 to —107 °C for PB and from 80
to 100 °C for PS.*? The surface tension of PB, Ype) = 31 MN/m, is considerably smaller than
the surface tension of PS, ypg = 41 mN/m.4% A 70 & 2 nm thick film was spin cast from a
toluene solution onto a silicon substrate. The sample was placed in a fluid cell of a Multimode
SFM (Digital Instruments, Veeco Group) and exposed to a controlled chloroform vapor.2> The
chloroform vapor pressure was adjusted to set the polymer volume concentration in the film to
¢ = 0.73. In bulk, at this concentration SBS forms cylinders with a characteristic spacing of
39.04+0.5 nm.?°
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SFM imaging and movie

The changes in the surface topography and in the microdomain structure have been followed
with in-situ scanning force microscopy (SFM) using standard silicon cantilevers (with a reso-
nance frequency of 300-kHz; Nanosensors) in tapping mode. Light tapping conditions resulted
in a phase contrast of 2°. The acquisition rate for a 4 x 4 um?-image (512 x 512 pixels) was
2.5 min per image. The resulting SFM images were flattened, registered, corrected for image
distortion and compiled into an SEM-movie*! using a home made software. Because of a rather
large thermal drift, the analysis of the same spot of the sample is possible only by picking a
small area of one frame and tracking it into earlier and later frames. The movie*! covers 6.75
h of annealing the SBS film under controlled vapor pressure and captures the early stage of
terrace formation. For further experimental details see Ref. 13, 25 and 27.

Comparative dimensions

Experiment Simulation
optical
microscopy SFM DSCFT
sample | \
b = \
~10%10 mm? 4X4 ym 128%32 grid units
~100x100 ) )
domain spacings ~18%5 domain spacings

Figure 2: Schematic comparison of typical lateral scalesthat are covered in experimental mea-
surements (optical microscopy and surface force microscopy) and in our simulation
box.

Figure 2 compares the sample dimensions of the experiment with that of the computational
simulation. In experiments a typical film surface area available for the optical microscopy or
SFM measurements is about a square centimeter with an averaged terrace size of about several
um?. In SBS films, each terrace accommodates in the lateral direction up to several hundreds
of microdomains.

8.3 Results

8.3.1 Film evolution in experiment

The detailed phase behavior in SBS films after annealing in a neutral solvent has recently been
studied at varied thickness and polymer content in a swollen film.2% The initial dry film thickness
(~ 70 nm) and annealing vapor pressure were chosen in accordance with the phase diagram of
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Figure 3: Shapshots of the in-situ SFM movie (0.675 x 2.625 um) illustrating the dynamics of
terrace formation at (a) 0.5 h, (b) 4 h, and (c) 6.75 h of annealing in solvent vapor.
3D pictures are constructed by using the height image as a topography and the phase
image as a texture. The SFM movie can be found in supporting information [ 40]

this polymer such as to make the thickness of the swollen film (at polymer volume fraction ¢, =
0.73) equal to 1.5 layers of cylindrical structures. These films of incommensurable thickness
are not stable upon annealing and form terraces with one and two layers of structures. As it was
shown earlier in Ref.25 the PL structure is expected within the lower terrace, while the second
terrace shows a cylindrical structure (C; 5). Perpendicular cylinders (C, ) are stabilized at the
transition region between these terraces.

In the dynamic measurements described below, we start with the initially smooth spin-coated
film. The associated microstructure (a random coexistence of white stripes, lying polystyrene
cylinders C; and white dots without a long-range order, presumably perpendicular cylinders
C, 2% is formed during the spin-coating procedure by the fast removal of the solvent. The
initial stage of the surface-relief-structure development upon annealing was imaged with in-
situ SFM, and the data was processed into a SFM-movie*!. Below we describe in detail the
observed evolution of the local thickness gradient (terrace formation) and the accompanying
phase transitions.

Figure 3 displays the SFM movie snapshots which correspond to 0.5 h (a), 4 h (b), and 6.75
h (c) of annealing. At the initial stage of annealing the swollen SBS film already shows a slight
height modulation (Figure 3(a)). As can be followed in the SFM movie*! the microstructure
development proceeds first via ordering of dots into a hexagonally-ordered pattern. During the
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time interval between 3 h and 5 h the bright PS dots rearrange into bright PS stripes (C, ) within
the lower terrace (see Figure 3(b)). Afterward, the PS-rich cylinders transform into PL (dark
dots in bright matrix) (Figure 3(c)). The C; to PL phase transition takes about 10 hours and
has been described recently in great detail for constrained film thickness.2’ Here we focus on
the first 7 h of the structure development upon annealing, where the thickness gradient develops
gradually and the step height reaches about 80% of its equilibrium value.

It should be noted that the interpretation of the structures in the SFM phase images can not
be done unequivocal. In particular, the bright dots can be associated with the C structure,
as well as with the hybrid structures, such as CC with the necks facing the free surface.
Structure information provided by the SFM technique is limited to information of the upper film
layer. Computational modeling, however, provides direct structural information throughout the
polymer film and thereby complements and extends the SFM experiment. On the other side, the
experimental data can be used to coordinate and parameterize the theoretical model. Moreover,
searching in the parameter space allows to study the effect of the system parameters at a much
wider range than is typically available in experiments.

8.3.2 Simulation setup versus Experiment

We performed a number of simulation runs in order to match the structures and transitions ob-
served in the experiment.*! In particular, we varied the interaction of the blocks with the surface
and with the void component. The choice of the parameter range is based on the considerations
presented earlier in the parametrization section 8.2. The studied systems are summarized in
Table 8.2.

run  &sp €sB EAMO £BMO H
kJ/mol  kJ/mol kJ/mol kJ/mol grid units

A 17 10 3 —4 9

B 16 10 2 —4 9

C 16 9.5 3 —4.5 9

D 16 9.5 12 0 9

E 16 9.5 0 3 12

Table 8.2: Parameter sets of simulations

Figure 4(b) presents a structure analysis of the calculation results after 30000 time steps
for these particular systems. For comparison, we have included data for a wedge shaped slit
(symmetric case ey = 6, first column in Figure 4(b))'8, which we had found to match the
equilibrium behavior of SBS films in great detail®*. In these simulations, a thickness gradient is
imposed and the structure adjusts to this varying height. For the parameter set A (Table 8.2) the
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Figure 4: (&) S-M phase image of a slope between the first and the second terraces in SBS
film which have been equilibrated in the solvent vapor during 7 h [24]. The sketch
below the image illustrate the observed sequence of the morphol ogies at the commen-
surable and intermediate thicknesses. (b) Calculated diagram of the system structure
vs. height (thickness) for the systems A-D (Table 8.2) after 30000 time steps. The
systemin a dlit from Ref. [ 18] is shown as a reference only. (c) Smulated structures
for the systems A-D shown in (b). Gray structureis the A-component (isodensity level
pa = 0.42); transparent gray volume indicates the film topography (isodensity level
of polymer islarger than 0.9)
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void/polymer interface (the free surface of the film) remains flat after 30000 time steps. C;C .
structures are stable for this thickness. For the slit system an equivalent surface structure (C )
is found for this particular film thickness. At a slightly reduced interaction of the bead A with
the void component (esa = 16 instead of 17) and with the substrate (eav, = 2 instead of 3)
(parameter set B) the film shows pronounced surface roughening. A depression associated with
one layer of parallel cylinders (C 1) is formed in the middle of the simulation box. For the other
thicknesses in the box the C/C is found. In the parameter set C (Table 8.2) the selectivity of
the surface and of the substrate to the blocks are slightly increased, still yielding the structures
similar to that in system B. However, the formation of a second layer of cylinders is promoted
by the joining necks (Figure 4(c), parameter set C). Additionally, defects appear in the lower
terrace. These T-junctions are known to serve as nucleation centers for the PL-phase.?’

For the parameter set D (where the surface field value eamo — €smo IS increased) the free
surface of the film also shows roughening. At the lowest thickness a C ; structure appears.
At intermediate thickness, the film shows a mixture of CC, and of one layer of a perforated
lamella with weakly segregated drops on top of it (PL-S). At the largest thickness, a small
amount of C; , develops.

Although systems B to D reproduce the experimental results reasonably well (Fig 4(c)), the
structures formed in the case of the parameter set C after 30000 time steps fit the experimental
heights and the slope structures (Fig 4(a)) the best. Moreover, the parameter set C is comparable
to the matching simulation in the earlier slit study.?*

Earlier, height measurements in SBS films suggested an additional layer of material under-
neath the film, which corroborated the existence of a wetting layer everywhere at the film sub-
strate interface.2> Further development of the computational model was done by introducing a
wetting layer next to the substrate (parameter set E). The interactions with the void component
are the same as in the system C. The interactions with the substrate are set to eya = 0 and
ems = 3 in order to get wetting layer.*® In addition, the initial height of the polymer film is in-
creased to 12 grid units (box size 128 x 32 x 26). Due to the wetting layer, this initial thickness
corresponds to 1.5 layers of cylinders. System E shows structures similar to the system C in the
presence of an A-rich wetting layer. The comparison of these two systems provides insight into
the possible role of the wetting layer on structure formation and microdomain dynamics. In the
remainder we refer to the calculation with parameter set C as "the simulation without wetting
layer”, and the simulation with parameter set E "the simulation with wetting layer”.

8.3.3 Film evolution in simulation

Both systems were simulated up to 100 000 time steps. Within the first 200 — 1000 time steps,
the formation of A- and B-rich layers is initiated by the solid surface in the initially flat and
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homogeneous film. Next, the in-plane separation takes place. In the system without wetting
layer the film forms parallel cylinders near the substrate and droplets of the A-rich phase next to
the free surface. The droplets connect with cylinders, and thus a transition to C;C . takes place.
In the system with the wetting layer the A component preferentially covers the surface causing
an unstructured wetting layer. The two layers above this wetting layer interconnect and form
C ., rather than C;C, as in the system without wetting layer. Since the dynamics of structure
formation immediately after microphase separation can not be compared with our in-situ SFM
experiment, where the structure is affected by the spin-coating process, we will not focus on the
very first stages (below 5000 time steps). We note that the early stage of structure formation has
been recently described for a system analogous to the system D (Table 8.2).%0

Simulation without wetting layer

The dynamics of thickness gradient formation and structure development for the system C is
captured as a movie*?, and analyzed in Figure 5. The simulated structures and heights are an-
alyzed from the same region in the middle and along the longest axis of the simulation box
each 5000 steps. Gray levels indicate different structures. The borders between the structures
are determined by visual analysis, and therefore are drawn arbitrarily. As a reference we also
present iso-height*® lines (in black). Examples of the structural evolution are shown as simula-
tion snapshots at the indicated time steps.

With time, the amplitude of the thickness fluctuations becomes sufficient to induce terrace
formation. After 8000-9000 time steps we observe in the thinnest region a structural transition
to one layer of cylinders. In the regions with higher film thickness after 20000 time steps two
layers of parallel cylinders are formed. Together with a small decrease of the film thickness,
the PL phase appears at the lower terrace of the film (after 40000 time steps). As the thickness
of the lower terrace decreases further, the PL phase first changes to one layer of defect-free
cylinders and later to a disordered layer. The height lines on the graph (Figure 5) accord with
the contour lines of the phase regions. The approximate boarders are 10.5 grid units for the
transition between C; , and C;C_ ; 8.5 grid units for C;C, to C 1; 4.5 grid units for the C ; to
disordered phase. The structures below 4.5 grid units can be divided into two regions. Between
4.5 and 2.5 grids the film is unstructured (phase separated material with no symmetry) and
below 2.5 grids the system is disordered/mixed. The PL structure and the C, ; structure coexist
at a certain film thicknesses and time conditions, like in the experiment.

105



Publications

_——12,5

8x10°]

cII.Z

6x10°

6,5
4x10* PL

Time, simulation steps

0,5
2%10° C||,1

C.C.

0.5%10° T T
0 32 64

X, grid units

Figure 5: Graphic representation of the film structure and corresponding heights as a function
of time for the system without wetting layer. Different tints of gray correspond to
indicated structures; the black lines are the isoheight lines. Right-hand pictures are
representative examples of simulation snapshots as indicated by arrows. The movie*?
can be found in Supporting Information.

Simulation with wetting layer

Generally, transitions in the system with wetting layer (asymmetric wetting conditions) are sim-
ilar to the system described above (see ref 44). However, in the presence of the wetting layer,
the C_ structure is formed initially, in contrast to the C; C__structure in the system without wet-
ting layer. Indeed, after the transition to C ; in the lower terrace has taken place, the remaining
C_ interconnect to form C C , structures. When increasing the local thickness after 30000 time
steps the C;C_ changes to C; ,. At the same time the order of the cylinders in the thinner part
of the film (in the first terrace) is improved. As the difference in local heights increases, necks
start to form on the top of C, ,, indicating a transition to C; 3 (90000 time steps). The C ;
phase becomes thinner and less phase separated. Importantly, the PL phase was not observed.
This result is in a good agreement with the experiments on thin films of SB diblock copolymer,
which is a structural analogue of SBS triblock copolymer. In this study the PL phase was sta-
bilized under symmetric wetting conditions and was not observed in SB films with a wetting
layer.28
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Figure 6: The difference between the maximum and the minimum heights on the free surface
in simulations [ open symbols] (right-hand axis) and in experiment [black triangles)
(left-hand axis) plotted as a function of the simulation time (bottom axis) and anneal -
ing time (top axis), respectively.

8.4 Discussion

We focus on the evolution of local morphology and its relationship to thickness and terrace
formation in block copolymer films of incommensurate height. The time-elapsed SFM mea-
surements are compared to the numerical modeling using DSCFT. It should be noted that the
latter approach does not directly explore the microscopic dynamics of chain motion. As men-
tioned before, DSCFT rather describes the evolution of density fields, under the conditions that
diffusion/relaxation of single (coarse-grained) chains within the field is rapid compared to the
coordinated motion of many chains. The good match between the film development in simula-
tions and in the experimental annealing suggests that the kinetic model in DSCFT is applicable.
In particular, on time scales beyond single chain relaxation, where this coarse-grained approach
is valid, this model adequately describes the microdomain dynamics in the experimental sys-
tem. Moreover, the computational method allows for a time-resolved study of the morphology
of the film beyond the surface layer to which the experimental studies are limited.

8.4.1 Comparison of simulation and experiment
Dynamics of surface relief structures

Both in experiment and in simulations, the structural transition is accompanied by a change in
local height of the film. In Figure 6 we compare the step height, the difference between the
maximum height on the top of the island and minimum height inside the hole, as a function of
time in experiment and in simulations for the systems with and without wetting layer. At the
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Smulation snapshots showing system C (a) and system E (b) from Table 8.2 at in-
dicated time steps. The surface structures are calculated as the average density of
A-component over the top two layers. Plotted heights are determined as described
in Ref.43. (c) Shapshots from the SFM movie showing the surface structures (phase
image of Taping mode SFM) and surface topography of the same spot on the terrace
slope at indicated annealing time.
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early stage of terrace formation the two simulation systems show structural transitions similar
to that in the experiment. The relation between the experimental heights and grid units was de-
termined beforehand from the comparison of bulk spacings in experiment and in the calculation
(1 grid unit corresponds to 5.6 nm).18

The time axis was scaled by matching the simulation and the experimental graphs. The best
fit is found for 1 computational time step = 0.8 — 1 s of real experimental time (on the graph we
use 1 step equaling 1 s). Our comparison merely focusses on the early stage of terrace formation
where phase transitions are the same in the experiment and in the simulations.

The results of structure calculation are shown after 5000 and 25000 time steps in Figure 7(a-
b) in a form of surface structures imaged with SFM.30 In Figure 7(c) the same spot on the slope
between the neighboring terraces in the experimental system is shown after 0.5 h and 6.75 h
of annealing. The height difference after 6.75 h of annealing is ~ 27 nm corresponding to
about 80% of the equlibrium step height. Along the pathway the initial bright dots transform
to bright stripes and small patches of dark dots at thinner regions. They can be interpreted as a
PL phase.?* At intermediate thickness, bright dots are the dominating structures. At the largest
thickness white stripes are formed. The comparison of surface structures in Figure 7(a-b) and
(c) suggests that the initial white-dots pattern as well as the dots-and-stripes pattern after 25000
time steps in the simulations (see Fig 7(a-b)) are similar to the experimental images after 0.5
and 6.75 h of vapor treatment Fig 7(c)).

The dots-to-stripes transition represents the transition from C,; and C;C_ to C ; in the lower
terrace or to C;| » in the upper terrace. The details of these transitions in the experiment and in
the simulations are considered below.

C./C|C_-to-C ; transition

The pathway of the experimental dots-to-stripes transition in the lower terrace is shown in Fig-
ure 8(a). The details of the underlying structure transition, away from the air-polymer interface
can be extracted from the simulation results.

In the system without the wetting layer, the CC transforms into modulated or elongated
cylinders. A further decrease of the film thickness in the middle of the hole leads to the de-
velopment of C ;. The distance between the lying cylinders in C;C, and in C; ; is the same,
therefore large scale reorientation is redundant for matching the natural lateral domain spacing.
The spacing between the dots (necks) is about 15% larger (%ao) than the spacing of lying
cylinders ag (due to the hexagonal packing).2® The necks can form a perfect hexagonal matrix
even if the underlying cylinders form separate grains which orient 60° (or 120°) to each other.

For the system with wetting layer the upright cylinders (C ) first elongate in the plane of
the film toward the neighboring cylinders and finally coalesce. They form lying cylinders ei-
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Figure 8: (a) Experimental snapshotsat indicated times of solvent vapor annealing showing the
dots-to-stripes phase transition. (b) Smulation snapshots of the surface structures
(see Figure 7) for the system with wetting layer from Figure6 showing the C | -to-
C; phase transition. The time steps are indicated at the bottom of the images. In
(a) and (b) white bars are drawn parallel to the cylinders in the last image of each
sequence and are superimposed onto the earlier images as a guideto eye toillustrate
the structure devel opment

ther directly or via intermediate structure of modulated cylinders (cylinders with necks). The
connection between C; cylinders initially appears preferentially at grain boundaries in the C |
structure (or at defects), and serves as a nucleus of the new C, ; structure. The top view of this
transition is shown in Figure 8(b). Comparing the directions of the grains in the C phase to
the direction of the grains in the earlier C | phase we detect a rotation of the cylinders. The
whole grain of parallel cylinders rotate by an angle of approximately 10°. The final grain size
is typically no larger than 3 to 4 cylinder spacings.

We find that the initial structure (C or CC_) strongly influences the resulting C; phase. If
the transition proceeds by interconnecting perpendicular cylinders, the spacing of the in-plane
cylinders will only be cp = 73a0. The initial grains of the C; phase are therefore formed with an
unfavorably reduced spacing of the cylinders. This affects the further growth of the C ; phase.
The C structure cannot simply transform into the C; structure by interconnecting cylinders
without inducing strain. Therefore the transition is slow (compared to C;C, -to-C), and starts
from several nuclei close to each other. The outcome is a much smaller grain size of the C
phase in comparison to the C | grain size before transition. The grains try to relax their spacing
by rotating the cylinders in the plane of the film. The rotation in the system with wetting layer
is similar to the mechanism observed in the experiment (Figure 8); therefore we concluded,
that white dots in SFM images correspond to perpendicular oriented cylinders rather than to
cylinders with necks.

The structural transition shown in Figure 8 takes place in about two hours of the experimental
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Figure 9: (a) Schematic representation of the C;C, -to-C; , transition shown as a side view (top
row) and as a front view (bottom row); (b) simulation snapshots of the system C
(Table 1) after 19000, 22000 and 30000 time steps (from left to right); (c) simulation
snapshots of the system E (Table 1) after 43600, 47000 and 60000 time steps (from
left to right).

time and in ~ 6000 simulation steps. Therefore the time scale is the same as the time scale
obtained from terrace growth (1 simulation step ~ 1 s of real time), showing good consistency
with the dynamics of surface topography.

CJ_/CHCJ_-tO-C”z transition

Another type of dots-to-stripes transition is a transition to two layers of lying cylinders. In
the simulation, the formation of the second layer proceeds only from the C;C, phase. The
schematic details of this transition are shown in Figure 9(a). When the film height reaches 11
grid units (14 grid units in the system with wetting layer), the deformed necks interconnect and
a ladder-like structure is formed (see the second sketch in Figure 9(a)). The interconnection
of C;C_ to C , starts either parallel to the cylinders in the bottom layer(Figure 9(b)) or under
an angle of 60° (Figure 9(c)). As the structure evolves, the connections between the necks
can be broken and formed again. The lifespan of this process is 1000 simulation steps, which
corresponds to 10 minutes of the experimental time. This meets the experimental observation
of the same phenomena, where fluctuations are visible at successive SFM scans (which also
takes some minutes between reconnections). Cylinders in the layers adjust their position in the
space to achieve hexagonal packing. The transformation requires translational (Figure 9(b)) or
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rotational (Figure 9(c)) rearrangement of cylinders on a large scale. In the example shown on
Figure 9(c) the reorientation takes place via formation of a transient perforated lamella phase.*

At the late stage of the terrace development the C structure has disappeared, and the C;C
persists only at the intermediate thicknesses between one and two layers of cylinders.

8.4.2 Mechanisms of transitions, early and late stages

It was experimentally demonstrated that the behavior of supported thin films of block copoly-
mers involve multiple time and length scales. On the one hand the microphase separation and
structure formation in the block copolymer phase occur on a short time scale (typically seconds
or minutes) and cover distances of some tens of nanometers.*®4¢ Terrace formation is a much
slower process (typically hours) involving material transport over micrometer range. In this
work we focus on the early stage of terrace formation. In the studied cylinder-forming systems
this stage is associated with considerable development of the height difference (up to 80% of
the equilibrium step height) and related structure transitions.

We observe a spontaneous splitting of the initially homogeneous film thickness into contin-
uously developing terraces with different heights. Height change and structural transitions are
inseparable. Moreover, the pathways of the C,/CC, -to-C; , and C,/C|C_ -to-C; ; transitions
suggest the diffusion of block copolymer chains along the structure interface. We distinguish
phase transitions which occur at constant height: (C-to-PL and PL-to-Cj). The formation
of an intermediate PL phase enhances the connectivity and enables the defect annihilation or
reorientation of whole domains (C -to-PL-to-C).*®

We conclude that in the early stage of terrace formation interconnected structures/defects in
domain-edges are of great importance. In contrast to lamella forming block copolymers,1° in
cylinder forming systems the C, C_ structures are natural channels for the material transport
between the lower and the upper terraces.

The late stages of terrace formation have recently been investigated.’2847 In particular, the
kinetics of the late-stage islands growth was described as Ostwald ripening process. Three
mechanisms were suggested to describe the kinetics of surface relief development (the move-
ment of individual islands)’: diffusional movement of whole islands, tunneling of individ-
ual block copolymer chains between layers (for the lamellar system) and flow of individual
chains through defects in the structure. It was concluded that the flow of block copolymer
chains through the defect structures is the primary mechanism for the late stages of island
development.” Recently, the material transport mechanisms between terraces in cylinder form-
ing block copolymer film were investigated theoretically and experimentally,*® and the time
dependence of the flow at later stages was found to be diffusion-like. For the systems studied
here it was shown earlier that the terrace formation at later stage is dominated by coalescence
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of surface structures and microdomains ordering.?’

Finally, we remark that the development of an ultrathin disordered layer in the simulation
movie 2 (system C) at late time steps resembles the droplet formation (or authophobic dewet-
ting). In experimental systems with high chain mobility undesired dewetting leads to the rup-
ture of block copolymer films already at very short experimental time scales (few minutes of
annealing). As a result, the formation of the equilibrium microstructures cannot be followed ex-
perimentally. To our knowledge, there are no published studies which compare the kinetics of
the competitive dynamic processes (terrace formation and dewetting) in block copolymer films.
We can only state that both the macrodomain spacings and the orientational order are affected
by the shear fields in dewetting rims.>4° Understanding the film stability toward dewetting re-
quires a detailed analysis of several factors, including surface tension and surface field strength.
Since the definition of surface tension for nanopatterned surfaces is ambiguous, there is a severe
lack of theoretical guidance. The parameter set in system C could serve as a starting point for a
detailed computational study on film stability, which is beyond the scope of the present work.

8.5 Conclusions

We have studied terrace formation in a thin film of a cylinder forming block copolymers by a
computational DSCFT method and have compared the results with the dynamic SFM measure-
ments of the SBS block copolymer thin films. The complex dynamics exhibited by this system
enriches the fundamental understanding self-assembly in block copolymers, highlighting the
special relationship between morphology and dynamic processes in thin films.

Apart from the introduction of a free surface via a void component (and relevant new pa-
rameters for the free surface interactions) we have chosen a simulational system equal to the
one considered in earlier publications.'81%2427 \We have focused on the early stage of terrace
formation, where 80% of height changes occur. On the very early stage, not accessible in the
experiment, we observe microphase separation and structure formation in the block copolymer
film. The formation of the microstructure starts at the substrate. Subsequently, the initially flat
film develops terraces. Experimental and simulation results agree that the change of the local
height is strongly connected to the changes in the local microstructure. The detailed pathways
of the structural transitions, as revealed by simulations, suggest a diffusion of block copoly-
mer chains along the microstructure interfaces and indicate an important role of C;C (necks)
structure as material-transport-channel between neighboring terraces in thin cylinder forming
films.

Kinetics of both the terrace height growth and the structural transition was found to be quan-
titatively similar in experiment and in simulations; 1 time step equals 1 s. The accordance
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between the simulation and the experiment supports the assumption that the early stage of ter-
race formation is governed by diffusion.

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 481, TP B7 and A9).
A.H. thanks the support of the State of Bavaria (HWP-Program).

Supporting Information Available:

SFM movie: In-situ tapping mode SFM movie showing the development of the surface to-
pography and the microdomain structures at early stage of terrace formation in a swollen SBS
film with a polymer volume fraction of ¢ = 0.73. The SFM images were rendered into 3D pic-
tures with Pov-RayTM. The SFM topography images were used as a height field, while the SFM
phase signal is represented as a texture. Bright structures correspond to polystyrene component.
The movie starts after 5 min of equilibration of the spin-coated SBS film in chloroform vapor
pressure. The displayed area is (2.625 x 0.675 x 0.06) um?®. The frame rate is 152 s/frame, total
capture time is 6 h 45 min.

Simulational movie, system C:Computer simulation (DSCFT method) of the early stage of
the surface topography and microstructure development in the system with parameter set C (Ta-
ble 8.2).For each displayed time step, grey structures represent the microstructure A-component
(isodensity level pa = 0.42). In addition transparent grey volumes show the film topography
(isodensity level of polymer is larger than 0.9). The structure evolution is plotted every 200th
time step, for 100000 time steps in total. The dimention of the simulation box is 128 x 32 x 20
grid elements.

Simulational movie, system E: Detailed structural evolution obtained with the computa-
tional DSCFT method. The movie shows the early stage of the surface topography and mi-
crostructure development in the system with parameter set E (Table 8.2). Grey structures rep-
resent the A-component (isodensity level pa = 0.42); transparent grey volumes show the film
topography (isodensity level of polymer is larger than 0.9). The structure evolution is plotted
every 200th time step, for 100000 time steps in total. The dimention of the simulation box is
128 x 32 x 26 grid units.

114



Publications

References and Notes

10.

11.

12.

13.

14.

15.

16.

17.

Bates, F. S.; Fredrickson, G. H. Ann.Rev.Phys.Chem., 1990, 41, 525-557.

Fredrickson, G. H. Macromolecules, 1987, 20, 2535-2542.

. Anastasiadis, S. H.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. Phys.Rev.Lett., 1987, 62,

1852-1855.

Fasolka, M. J.; Banerjee, P.; Mayes, A. M.; Pickett, G.; Balazs, A. C. Macromolecules,
2000, 33, 5702-5712.

. Tsarkova, L. In Nanostructured Soft Matter: Experiment, Theory, Smulation and Per-

spectives, Zvelindovsky, A. V.; Ed.; Springer Verlag: Heidelberg, 2007; p. 226-261.
Peters, R. D.; Yang, X. M.; Nealey, P. F. Macromolecules, 2002, 35, 1822-1834.

Heier, J.; Kramer, E. J.; Groenewold, J.; Fredrickson, G. H. Macromolecules, 2000, 33,
6060-6067.

Heier, J.; Sivaniah, E.; Kramer, E. J. Macromolecules, 1999, 32, 9007-9012.

. Liu, Y.; Zhao, W.; Zheng, X.; King, A.; Singh, A.; Rafailovich, M. H.; Sokolov, J.; Dai,

K. H.; Kramer, E. J.; Schwarz, S. A.; Gebizlioglu, O.; Sinha, S. K. Macromolecules,
1994, 27, 4000-4010.

Carvalho, B. L.; Thomas, E. L. Phys.Rev.Lett., 1994, 73, 3321-3324.

Menelle, A.; Russell, T. P.; Anastasiadis, S. H.; Satija, S. K.; Majkrzak, C. F. Phys. Rev.
Lett., 1992, 68, 67-70.

Maaloum, M.; Ausserre, D.; Chatenay, D.; Coulon, G.; Gallot, Y. Phys.Rev.Lett., 1992,
68, 1575-1578.

Knoll, A. Ph.D. thesis, Universitdt Bayreuth, Bayreuth, Germany, 2003.

Segalman, R. A. Materials Science & Engineering, R: Reports, 2005, R48, 191-226.
Fasolka, M. J.; Mayes, A. M. Ann. Rev. Mater. Res., 2001, 31, 323-355.

Green, P. F.; Limary, R. Adv. Coll. & Int. Sci., 2001, 94, 53-81.

Huinink, H. P.; van Dijk, M. A.; Brokken-Zijp, J. C. M.; Sevink, G. J. A. Macromolecules,
2001, 34, 5325-5330.

115



Publications

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Horvat, A.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. J. Chem.
Phys., 2004, 120, 1117-1126.

Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Horvat, A.; Magerle, R. J. Chem.
Phys., 2004, 120, 1127-1137.

Henkee, C. S.; Thomas, E. L.; Fetters, L. J. J. Mater. Sci., 1988, 23, 1685-1694.

Radzilowski, L. H.; Carvalho, B. L.; Thomas, E. L. J. Polym. Sci. Part B, 1996, 34,
3081-3093.

Kim, G.; Libera, M. Macromolecules, 1998, 31, 2569-2577; 1998, 31, 2670-2672
Konrad, M.; Knoll, A.; Krausch, G.; Magerle, R. Macromolecules, 2000, 33, 5518-5523.

Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A.
V.; Magerle, R. Phys. Rev. Lett., 2002, 89, 035501/1-4.

Knoll, A.; Magerle, R.; Krausch, G. J. Chem. Phys., 2004, 120, 1105-1116.

Tsarkova, L.; Knoll, A.; Krausch, G.; Magerle, R. Macromolecules, 2006, 39, 3608-
3615.

Knoll, A.; Lyakhova, K. S.; Horvat, A.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A.
V.; Magerle, R. Nature Materials, 2004, 3, 886-891.

Segalman, R. A.; Schaefer, K. E.; Fredrickson, G. H.; Kramer, E.; Magonov, S. Macro-
molecules, 2003, 36, 4498-4506.

Fraaije, J. G. E. M. J. Chem. Phys.,, 1993, 99, 9202-9212.

Lyakhova, K. S.; Horvat, A.; Zvelindovsky, A. V.; Sevink, G. J. A. Langmuir, 2006, 22,
5848-5855.

Mermin, N. D. Physical Review, 1965, 137, 1441.

Fraaije, J. G. E. M.; van Vlimmeren, B. A. C.; Maurits, N. M.; Postma, M.; Evers, O. A.;
Hoffmann, C.; Altevogt, P.; GoldbeckWood, G. J. Chem. Phys., 1997, 106, 4260-4269.

Sevink, G. J. A.; Zvelindovsky, A. V.; van Vlimmeren, B. A. C.; Maurits, N. M.; Fraaije,
J. G. E. M. J. Chem. Phys., 1999, 110, 2250-2256.

Huinink, H. P.; Brokken-Zijp, J. C. M.; van Dijk, M. A.; Sevink, G. J. A. J. Chem. Phys.,
2000, 112, 2452-2462.

116



Publications

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

Morita, H.; Kawakatsu, T.; Doi, M. Macromolecules, 2001, 34, 8777-8783.
Helfand, E.; Tagami, Y. J. Chem. Phys,, 1972, 56, 3592-3601.

Broseta, D.; Fredrickson, G. H.; Helfand, E.; Leibler, L. Macromolecules, 1990, 23,
132-139.

Linse, P.; Hatton, T. A. Langmuir, 1997, 13, 4066-4078.

Brandrup, J.; Immergut, E.H.; Grulke, E. A. Polymer Handbook, Wiley: New York,
1989.

SFM movie. Supporting information is available via the Internet at http://pubs.acs.org

Simulational movie, system C. Supporting information is available via the Internet at
http://pubs.acs.org

The density field values are only known at the lattice positions (although the calculations
themselves are not restricted to the lattice). And we have a steep density gradient between
the void component and polymer film. The mixture of these two phases appear only on
the boundary. We use the following definition for the interface between void and polymer:
H(x,y) =z— (ps)/(pa+ ps+ ps) ~ z— ps, here zis the height where the mixture of void
and polymer appears. The height profiles for different y after 5000 simulation steps are
similar, the calculated deviations were below 0.5 grid units.

Simulational movie, system E. Supporting information is available via the Internet at
http://pubs.acs.org

Tsarkova, L.; Horvat, A.; Krausch, G.; Zvelindovsky, A. V.; Sevink, G. J. A.; Magerle, R.
Langmuir, 2006, 22, 8089-8095.

Tsarkova, L.; Knoll, A.; Magerle, R. Nano Letters, 2006, 6, 1574-1577.

Grim, P. C. M.; Nyrkova, I. A.; Semenov, A. N.; Tenbrinke, G.; Hadziioannou, G. Macro-
molecules, 1995, 28, 7501-7513.

Belyi, V.; Witten, T. J.Chem.Phys., 2004, 120, 5476-5485.

117



9 Summary

In this thesis modeling results on structure formation in thin films of cylinder-forming block
copolymers are presented and discussed. The computational study of the equilibrium phase
behavior in thin films is complemented by detailed comparison with a real experimental sys-
tem. Additionally, the dynamics in such films at various length and time scales (the dynamics
of individual defects and the dynamics of surface relief structures) is studied. The strength of
the presented thesis is the comparison of thin block copolymer film equilibrium and dynamic
behavior in experiments and in computer simulations. This comparison supplies an in-depth
understanding of the processes in thin films and near the surfaces in thick films and allows to
identify the important control parameters of nanopattern formation.

Chapters 4 and 5 report on the phase behavior of thin films of asymmetric block copolymers.
In addition to the surface induced alignment of hexagonally ordered cylinders, an adjustment to
the planar symmetry of the surface by formation of surface reconstructions is found to dominate
the phase behavior in thin films. The large parameter space covered by the simulations allows
to distinguish the effects of the two constraints characteristic for thin films: the surface field
and the film thickness. The deviations from the bulk cylinder structure, both in the vicinity of
surfaces and in thin films are identified as surface reconstructions. The stability regions of dif-
ferent phases are modulated by the film thickness via interference and confinement effects. The
results give evidence of a general mechanism that govern the phase behavior in thin films of
modulated phases: The interplay between the strength of the surface field and the deformability
of the bulk structure determines how the system rearranges in the vicinity of the surface.

Chapters 6 and 7 present a systematic study of defects in thin films of cylinder-forming block
copolymers. In particular, the peculiarities of both classical and specific topological are consid-
ered in detail, and a strong relationship between the defect structures and the chain mobility in
block copolymers is observed. In the systems studied, representative defect configurations pro-
vide connectivity of the minority phase in the form of dislocations with a closed cylinder end or
classical disclinations with incorporated alternative, nonbulk structures with planar symmetry.
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In solvent-annealed films with enhanced chain mobility, the neck defects (bridges between par-
allel cylinders) were observed. This type of nonsingular defect has not been identified in block
copolymer systems before. It is shown, that topological arguments and 2D defect representa-
tion, sufficient for lamellar systems, are not sufficient to determine the stability and mobility of
defects in the cylindrical phase. In-situ scanning force microscopy measurements are compared
with the simulations based on DDFT. The close match between experimental measurements
and simulation results suggests that the lateral defect motion is diffusion-driven. Finally, the
morphological evolution is considered with the focus on the motion and interaction of the rep-
resentative defect configurations.

Chapter 7 reveals dynamic simulations and in-situ SFM measurements of defect annihilation.
Along with the lateral movement of defects, the annihilation frequently proceeds through local
structural transitions. The role of the observed structural evolution is discussed in the context
of the equilibrium phase behavior of cylinder-forming thin films, studied in chapters 4 and 5.

Chapter 8 presents a study of terrace formation in thin films of a cylinder-forming block
copolymers by a computational DDFT method. The results are compared with in situ SFM
measurements of SBS block copolymer thin films. This chapter focuses on the early stage of
terrace formation, where 80% of height changes occur. Experimental and simulation results
agree that the change of the local height is strongly connected to the changes in the local mi-
crostructure. The detailed pathways of the structural transitions, as revealed by simulations,
suggest a diffusion of block copolymer chains along the microstructure interfaces and indicate
an important role of cylinders with necks as a material-transport-channel between neighboring
terraces in thin cylinder-forming films. Both systems (in experiment and in simulations) show
excellent quantitative agreement in detail of structural phase transitions and in the dynamics
of the step development, suggesting that the underlying transport mechanisms are governed by
diffusion.
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Zusammenfassung

In einer Vielzahl von synthetischen und biologischen Materialien fiihren Selbstordnungspro-
zesse zu mesoskopischen Strukturen, die die makroskopischen Eigenschaften und, daher auch
die Einsatzmoglichkeiten der Materialien entscheidend beeinflussen. Ein Beispiel daftr sind
Blockcopolymere. Hier bilden sich als Folge des Wechselspiels zwischen der Phasenseparation
und der Konnektivitét der Blocke regelméaRige mesoskopische Strukturen mit Langenperioden
zwischen 5 und 100 nm aus. Fur diese Nanostrukturen wurden in den letzten Jahren eine Rei-
he von neuen Anwendungsmdoglichkeiten aufgezeigt. Besondere Beachtung haben dabei diinne
Filme gefunden, in denen die Wechselwirkung mit den Grenzflachen nicht nur zu einer Aus-
richtung der Doménen fiihrt, sondern auch das Phasenverhalten bereichert. Diinne Filme sind
einerseits von Interesse fur die Anwendung (zum Beispiel als photonische Kristalle oder fir die
Lithographie). Andererseits sind sie aber auch hervorragende Modellsysteme fiir die Grundla-
genforschung im Bereich der Oberflachenphysik, da sich die Mikrostruktur in diinnen Filmen
und die Dynamik des Strukturbildungsprozesses direkt (im Realraum) visualisieren lassen.

Fur eine gezielte Herstellung oder Manipulation von nanometergroRen Strukturen aus Block-
copolymeren ist deren theoretische Beschreibung unabdingbar. Theoretische Beschreibungen
bringen Einsicht in den Selbstorganisationprozess und ermoglichen die wichtigen Kontrollpara-
meter der Strukturbildung zu bestimmen. Dies fuihrt zur Rationalisierung der Experimente durch
gezielte Auswahl von molekularen Parametern und/oder externer Einfliisse. Andererseits, kann
eine theoretische Beschreibung nur durch Experimente auf ihre Gultigkeit Gberprift werden.

Im Rahmen dieser Doktorarbeit wurde das Verhalten von Blockcopolymeren mit zylindri-
scher Volumenmikrodomanenstruktur in diinnen Filmen mit Hilfe einer mesoskopischen Mo-
dellierung untersucht. Die Computersimulationen basieren auf einer dynamischen Dichtefunk-
tionaltheorie, mit der sowohl das Gleichgewichtsphasenverhalten als auch die Dynamik im Sy-
stem untersucht werden kann. Als wichtiger Bestandteil der Arbeit wurde ein direkter \Ver-
gleich mit den Ergebnissen einer experimentelle Untersuchung eines realen Dinnfilmsystems —
der Charakterisierung der Oberflaichenmorphologie per Rasterkraftmikroskop (SFM) — durch-
gefuhrt. Die gute Ubereinstimmungen zwischen Simulationen und Experimenten im Gleich-
gewichtsphasenverhalten sowie erste Simulationsergebnisse zur Dynamik gaben dabei Anstol3
in-situ SFM-Messungen zu etablieren, so dass der Vergleich zwischen Simulationen und Expe-
rimenten auch auf die Systemdynamik ausgedehnt werden konnte.

Der erste Teil der Arbeit befasst sich mit Gleichgewichtsstrukturen. Kapitel 4 und 5 enthal-
ten eine systematische Untersuchung des Einflusses der Filmdicke, der Grenzflachen und der
Wechselwirkung zwischen den einzelnen Polymerkomponenten auf das Phasenverhalten von
Blockcopolymeren in diinnen Filmen. Als Gleichgewichtsstrukturen zeigen sich Zylinder, die
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parallel oder senkrecht zur Filmebene ausgerichtet sind, aber auch — in der Nahe der Ober-
flache — nicht-zylindrische Morphologien, wie zum Beispiel eine Lamelle oder eine perforierte
Lamelle. Diese Abweichungen von der Volumenstruktur werden als Oberflachenrekonstruktion
identifiziert. Der Stabilitatsbereich einer jeden Struktur ist durch die Filmdicke und die Wech-
selwirkung zwischen den Polymerkomponenten und den Grenzflachen bestimmt. Der groRe Pa-
rameterraum, der durch die Simulationen abgedeckt wird, erlaubt es, den Effekt dieser beiden
Parameter zu trennen. Die gute Ubereinstimmung zwischen Simulation und experimentellen
Ergebnissen deutet auf ein allgemeines Verhalten in allen Blockcopolymeren mit zylindrischer
\Volumenmikrodomanenstruktur hin.

AnschlieBend, wurden die Kinetik der Strukturbildung und entsprechende Transportmecha-
nismen untersucht. Am Beispiel von Defekten und deren Annihilation (Kapitel 6 und 7) wird ein
starker Zusammenhang zwischen der Struktur von Defekten und der Kettenmobilitat beobach-
tet. Neben den klassischen Defekten kommen auch die besonderen Eigenschaften der diinnen
Polymerfilme zur Geltung: manche Defekte enthalten als Fragmente auch Nicht-Volumen-
strukturen, so dass sich die Verbundenheit der Minoritatsphase erhoht. Lokale Abweichungen
von der Volumenstruktur konnen nicht nur durch Oberflachenrekonstruktion verursacht werden,
sie dienen auch als temporare Ubergangsstrukturen bei der Annihilation von Defekten.

SchlieBlich wurde die Anfangsphase der Terrassenentwicklung untersucht (Kapitel 8). Dabei
wurde gezeigt, dass Veranderungen der lokalen Hohen mit Phaseniibergangen in der lokalen Mi-
krostruktur verbunden sind. Die genaue Betrachtung des Ubergangspfades in den Simulationen
lasst darauf schliel3en, dass sich die Blockcopolymerketten entlang der Strukturgrenzflachen be-
wegen. Dabei spielt die “Zylinder-mit-Hals"-Morphologie eine wichtige Rolle fir den Materi-
altransport zwischen den Terrassen. Die quantitative Ubereinstimmung zwischen Simulationen
und experimentellen Ergebnissen deuten darauf hin, dass sowohl die Strukturbildung als auch
die Ausrichtung von Domanen durch Diffusion erfolgen.

Die Ergebnisse zeigen, dass die vorgestellte Kombination aus dynamischen Simulationen
und in-situ SFM-Messungen geeignet ist, das Phasenverhalten von Blockcopolymeren in Real-
zeit und im dreidimensionalen Realraum zu analysieren. Damit kann diese Kombination als
Alternative oder zu mindestens als Ergéanzung zu lblichen Streumethoden dienen.

Zusammenfassend betrachtet bietet diese Arbeit einen wichtigen Beitrag zum Verstandnis der
Strukturbildung und Transportmechanismen in diinnen Filmen phasenseparierter Flussigkeiten.
Die Erkenntnisse konnen helfen maligeschneiderte, nanostrukturierte Filme herzustellen.

121



List of publications

10.

Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky,
A. V.; Magerle, R. Phase behavior in thin films of cylinder-forming block copolymers,
Phys.Rev.Lett., 2002, 89, 035501/1-4.

Horvat, A.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase
behavior in thin films of cylinder-forming ABA block copolymers: mesoscale modeling,
J.Chem.Phys., 2004, 120, 1117-1126.

Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Horvat, A.; Magerle, R. Role of
dissmilar interfaces in thin films of cylinder-forming block copolymers, J.Chem.Phys.,
2004, 120, 1127-1137.

Knoll, A.; Lyakhova, K. S.; Horvat, A.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A.
V.; Magerle, R. Direct imaging and modeling of phase transitions in a nanostructured
fluid, Nature Materials, 2004, 3, 886-891.

. Tsarkova, L.; Horvat, A.; Krausch, G.; Zvelindovsky, A. V.; Sevink, G. J. A.; Magerle, R.

Defect evolution in block copolymer thin filmsvia temporal phasetransitions, Langmuir,
2006, 22, 8089-8095.

. Lyakhova, K. S.; Horvat, A.; Zvelindovsky, A. V.; Sevink, G. J. A. Dynamics of terrace

formation in a nanostructured thin block copolymer film, Langmuir, 2006, 22, 5848-
5855.

. Tsarkova, L.; Horvat, A.; Krausch, G.; Magerle, R. Structural ordering in thin films of

cylinder forming block copolymers, PMSE preprint, 232nd ACS National Meeting, San
Francisco, 2006, 95.

Horvat, A.; Knoll, A.; Krausch, G.; Tsarkova, L.; Lyakhova, K. S.; Sevink, G. J. A;
Zvelindovsky, A. V.; Magerle, R. Time evolution of surface relief structuresin thin block
copolymer films, Macromolecules, 2007, 40, 6930-6939.

Horvat, A.; Sevink, G. J. A.; Zvelindovsky, A. V.; Krekhov, A.; Tsarkova, L. Specific
features of defect structure and dynamics in cylinder phase of block copolymers, ACS
Nano, 2008, 2, 1143-1452.

Horvat, A.; Sevink, G. J. A.; Zvelindovsky, A. V.; Tsarkova, L. Defect structure and
dynamics in cylinder phase of block copolymers, PMSE preprint, 236nd ACS National
Meeting, Philadelphia, 2008, 99.



Danksagung

Ich mdchte mich ganz herzlich bei all denjenigen bedanken, die zum Gelingen dieser Arbeit
beigetragen haben:

An erster Stelle danke ich Herrn Prof. Dr. Georg Krausch (z.Z. Universitdt Mainz) fiir das in
mich gesetzte Vertrauen und fir die Mdglichkeit, an seinem Lehrstuhl diese Arbeit anfertigen
zu konnen. Diese Arbeit wére nicht moglich gewesen ohne seine Unterstiitzung in vielen, auch
nicht-wissenschaftlichen Angelegenheiten.

Ich danke Prof. Dr. Ballauff dafiir, dass er fir mich das Erstgutachten tibernahm.

Prof. Dr. Robert Magerle (z.Z. Universitat Chemnitz) hat mein Interesse an diinnen Block-
copolymerfilmen geweckt und deren Modellierung als Thema vorgeschlagen. Er hat die Arbeit
wahrend der Anfangsphase betreut und stand mir mit Rat und Tat zu Seite. Mehrere Teile dieser
Arbeit sind als Ergebnis zahlreicher gemeinsamer Diskussionen mit ihm entstanden.

Auch Frau Dr. Larisa Tsarkova bin ich in vielerlei Hinsicht zur Dank verpflichtet: Dadurch
dass sie die Betreuung der Doktorarbeit ibernommen hat, hat sie mir den Wiedereinstieg nach
einer langeren Kinderbetreuungspause ermoglicht. Ihre aufmunternde Worte, ihre Zuversicht
und Unterstiitzung gaben mir Kraft in der Endphase. Larisa Tsarkova hat auch durch das Kor-
rekturlesen der Dissertation wesentlich zu deren Verbesserung beigetragen.

Ich danke Agur Sevink und Andrej Zvelindovski fur die Bereitstellung und das Anpassen
des MesoDyn Codes, aber auch besonders fiur die Geduld, mit der sie immer meine Fragen
beantwortet haben.

Ein groRer Dank geht an Armin Knoll fiir die Bereitstellung von experimentellen Ergebnissen
zum Vergleich mit Simulationen und seine standige Diskussions- und Hilfsbereitschaft.

Ich danke Markus Hund, Helmut Hansel, Frank Schubert, Kristin Schmidt, Heiko Schobert
fiir eine exzellente Systemadministration und Unterstiitzung beztglich aller auftretender Com-
puterprobleme.

Ein besonderer Dank gilt Frau Sybille Zimmermann fir die Hilfsbereitschaft in birokrati-
schen und organisatorischen Belangen und fiir leckere SiiRigkeiten zum Naschen.

Einen riesengrofRen Dank gilt allen oben noch nicht erwahnten Leuten die mich wahrend mei-
ner Promotion in der einen oder anderen Weise unterstiitzt haben und ich hoffe keinen vergessen
zu haben: Katya Lyakhova, Alexander Boker, Wolfgang Hafner, Marina Knoll (Lysetska), Nico
und Sabine Rehse, Heiko und Ute Zettl, Rasa Beinoraviciute-Kellner, Olga und Thomas Durr-
schmidt, Olena Shafransyka und Andrej Voronov, Carmen Kunert, Sabine Ludwigs, Tracy Chun
Wang und Gustav Sauer.

Nicht zuletzt danke ich meiner Familie: meinen Eltern fur ihre standige liebevolle Unter-
stutzung; und Hubert, Anna und Stefan fur ihre Liebe, Geduld und Verstandnis.



Diese Arbeit wurde unter anderem von der DFG Uber den SFB 481 (Teilprojekte A9 und B7)
und uber ein Stipendium des HWP-Programms des Freistaates Bayern finanziert.



