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Abstract (english / german)

Abstract

This work contributes to a better understanding of Model Predictive Control (MPC) in
the context of the Fokker–Planck equation.

The Fokker–Planck equation is a partial differential equation (PDE) that describes
the evolution of a probability density function in time. One possible application is the
(optimal) control of stochastic processes described by stochastic differential equations
(SDEs). Here, a macroscopic perspective is taken and instead of, e.g., individual particles
(described by the SDE), all particles are controlled in terms of their density (described by
the Fokker–Planck equation). This results in a PDE-constrained optimal control problem.

Model Predictive Control is an established and widely used technique in industry and
academia to (approximately) solve optimal control problems. The idea of the “receding
horizon” is easy to understand, the implementation is simple, and above all: MPC works
very often in practice. The challenge, however, is to specify conditions under which this
can be guaranteed or to verify these conditions for concrete systems.

In this thesis it is analyzed in detail under which conditions the MPC closed loop is
provably (practically) asymptotically stable, i.e., under which conditions it converges to
the desired target or to a neighborhood thereof. For this purpose we first introduce the
Fokker–Planck framework and show the existence of optimal space- and time-dependent
controls under (weak) regularity assumptions. Subsequently, we consider both the case
of stabilizing MPC and economic MPC and include both space-independent and space-
dependent control functions in our analysis.

In the case of stabilizing MPC, we show asymptotic stability of the MPC closed loop for
a class of linear stochastic processes if the prediction horizon N is long enough. Moreover,
we specify the minimal stabilizing horizon for specific stochastic processes. In the course
of the analysis difficulties of the used L2 cost function come to light and the question
arises whether other cost functions allow an easier analysis.

In the case of the economic MPC, we thus fix a specific stochastic process but consider
different cost functions instead. Here, the crucial system property for the effective use
of the MPC controller is strict dissipativity. This property is verified for different cost
functions, where the main challenge is to find a suitable storage function. It turns out that
for the commonly used L2 cost it is much more difficult to find such a storage function
than for another cost function we propose.

Details of the numerical implementation with additional simulations and further re-
search questions conclude the work.



IV

Kurzfassung

Diese Arbeit trägt dazu bei, Modellprädiktive Regelung (MPC) im Zusammenhang mit
der Fokker–Planck Gleichung besser zu verstehen.

Die Fokker–Planck Gleichung ist eine partielle Differentialgleichung (PDE), die die
zeitliche Entwicklung einer Wahrscheinlichkeitsdichtefunktion beschreibt. Eine mögliche
Anwendung ist die (optimale) Steuerung stochastischer Prozesse, die durch stochastische
Differentialgleichungen (SDEs) beschrieben werden. Hierbei wird eine makroskopische
Perspektive eingenommen und anstelle von z.B. einzelnen Partikeln (beschrieben durch die
SDE) die Gesamtheit aller Partikel in Form ihrer Dichte (beschrieben durch die Fokker–
Planck Gleichung) gesteuert. Dadurch erhält man ein Optimalsteuerungsproblem mit
einer PDE als Nebenbedingung.

Modellprädiktive Regelung ist eine etablierte und in Industrie und Wissenschaft weit
verbreitete Technik, mit der Optimalsteuerungsprobleme (approximativ) gelöst werden.
Die Idee des “receding horizon” ist einfach zu verstehen, die Implementierung ist simpel
und vor allem: MPC funktioniert in der Praxis sehr oft. Die Herausforderung ist es
hingegen, Bedingungen, unter denen man dies garantieren kann, anzugeben bzw. diese
Bedingungen für konkrete Systeme zu verifizieren.

In dieser Arbeit wird genauer untersucht, unter welchen Bedingungen der geschlossene
MPC-Regelkreis garantiert (praktisch) asymptotisch stabil ist, d.h. zum gewünschten Ziel
bzw. in eine Umgebung des Ziels konvergiert. Hierzu stellen wir zunächst das Fokker–
Planck Framework vor und zeigen die Existenz von optimalen orts- und zeitabhängi-
gen Kontrollen unter (schwachen) Regularitätsannahmen. Anschließend betrachten wir
sowohl den Fall des stabilisierenden MPC als auch den des ökonomischen MPC und
berücksichtigen sowohl ortsunabhängige als auch ortsabhängige Kontrollfunktionen.

Im Falle des stabilisierenden MPC zeigen wir die asymptotische Stabilität des geschlos-
senen MPC-Regelkreises für eine Klasse von linearen stochastischen Prozessen, sofern
der Prädiktionshorizont N lang genug ist und spezifizieren den minimal nötigen Ho-
rizont für spezifische stochastische Prozesse. Im Laufe der Analyse kristallisieren sich
Schwierigkeiten der verwendeten L2-Kostenfunktion heraus und es stellt sich die Frage,
ob andere Kostenfunktionen eine einfachere Analyse ermöglichen.

Im Falle des ökonomischen MPC halten wir daher einen spezifischen stochastischen
Prozess fest und betrachten dafür verschiedene Kostenfunktionen. Die zentrale System-
eigenschaft für die effektive Nutzung des MPC-Reglers hier ist strikte Dissipativität. Für
verschiedene Kostenfunktionen wird diese Eigenschaft nachgewiesen, wobei hier die Her-
ausforderung darin besteht, eine passende Speicherfunktion zu finden. Hierbei stellt sich
heraus, dass es für die üblich verwendeten L2-Kosten erheblich schwieriger ist, eine solche
Speicherfunktion zu finden, als für eine andere Kostenfunktion, die wir vorstellen.

Details zur numerischen Implementierung mit zusätzlichen Simulationen und weiteren
Forschungsfragen schließen die Arbeit ab.
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1Introduction

Initiated by Kolmogorov’s work [63], the study of the Fokker–Planck (FP) equation, also
known as Kolmogorov forward equation, has received great and increasing attention,
since, for a large class of stochastic processes, it describes the evolution of the associated
probability density function (PDF). The FP equation is a parabolic partial differential
equation (PDE). Using the FP equation has proven to be a viable approach in several
physical, chemical, and biological applications that involve noise. A large amount of
literature has been developed on the FP equation in connection with transition PDFs
that are associated to stochastic processes; see, for example, [41, 58]. In recent years, the
well-posedness of the FP equation under low regularity assumptions on the coefficients has
been studied in connection with existence, uniqueness and stability of martingale solutions
to the related stochastic differential equation [65, 31]. Furthermore, control properties of
the FP equation have become of major interest in mean-field game theory; see [77].

Our focus is on the optimal control of the FP equation. It stems from a statistical
approach, which allows to recast an optimal control problem (OCP) subject to an Itô
stochastic differential equation into a deterministic optimization problem subject to a
FP equation. The idea behind this approach is that the state of a stochastic process
can be characterized by the associated PDF. The approach has similarities to solving
stochastic OCPs via the Hamilton-Jacobi-Bellman (HJB) approach, see [7], the difference
being that the optimal control is derived by optimizing the solution of a PDE (the FP
equation) rather than deriving the optimal control from the solution of a PDE (the HJB
equation).

Controlling the PDF is an interesting alternative to classical approaches in stochastic
optimization that optimize the mean or higher moments. It yields an accurate and flexible
control strategy, which can accommodate a wide class of objectives; see also [17, Sect. 4].
In this direction, in [19, 40, 60, 61, 99], PDF-control schemes were proposed, where the cost
functional depends on the PDF of the stochastic state variable. In this way, a deterministic
objective results. In particular, no average over all possible states of the stochastic process
appears in the objective functional, which is usually the case in stochastic OCPs; see, e.g.,
[39]. Still, in [40, 60, 61, 99], stochastic methods were adopted in order to approximate
the state variable of the random process. In contrast to this, in [4, 5] the authors approach
the problem of tracking the PDF associated with the stochastic process directly. Since
then, this approach was used in different contexts, e.g., in [16, 85, 86]. In the numerical
simulations in [4, 5, 36], Model Predictive Control (MPC) has proven to be an efficient
method for the control of PDFs of controlled stochastic processes. In this approach, the
distance of the actual PDF to the desired reference PDF, integrated or summed over
several time steps into the future, is minimized using the FP equation as a model for
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predicting the actual PDF. The first piece of the resulting optimal control function is
then applied to the stochastic system and the whole process is repeated iteratively.

The optimal control problem to be solved in each step of the MPC scheme belongs to
the class of tracking type OCPs governed by PDEs and the usual norm for measuring the
distance to a reference in PDE-based optimal tracking control is the L2-norm [95]. The
L2 norm is advantageous because L2 is a Hilbert space, which significantly simplifies, e.g.,
the computation of gradients, which in turn is crucial for the implementation of numerical
optimization algorithms. In a large part of this thesis, we thus follow the existing literature
and use the L2 norm as distance measure in our MPC optimal control problem.

So far, the efficiency of MPC for the Fokker–Planck equation was only verified by
means of numerical simulations. Particularly, it is not clear whether the process controlled
by MPC—the so-called MPC closed loop—will converge to the desired reference PDF. This
is the question about the stability of the closed loop at the reference PDF. Moreover, it is
not clear how large the time span into the future over which the distance is optimized—
the so-called optimization horizon—must be in order to obtain stability. For smaller time
spans the MPC closed loop might not converge to the desired reference PDF. On the
other hand, the shorter the optimization horizon, the less computationally demanding
the numerical solution of the OCP in each MPC step. Thus, one main goal of the thesis
is to establish rigorous mathematical results that guarantee stability and in some cases
also an upper bound on the necessary optimization horizon.

Unfortunately, although the Fokker–Planck MPC framework is in principle applicable
to arbitrary nonlinear stochastic control systems and arbitrary initial and reference PDFs,
a rigorous analysis of such a general setting appears out of reach to the moment. Therefore,
the analysis of the MPC closed loop will be carried out in a more limited setting, e.g.,
for linear stochastic dynamics and Gaussian PDFs. This class of systems often appears
in engineering problems and has the advantage that its controllability properties are well
understood due to the recent paper [22]. Yet, even with the availability of the results from
[22] the analysis of the MPC scheme is not straightforward, because the implications of
these controllability properties for the PDFs on the controllability of the L2 stage cost
are indirect and difficult to analyze. This is the point where the use of the otherwise very
convenient L2 stage cost turns out to be disadvantageous and a substantial part of this
thesis, particularly Chapter 5, is thus devoted to an in-depth analysis of this cost.

All the more justified is the question of alternative costs. Luckily, the Gaussian setting,
although limited, allows us to use the Wasserstein distance W 2—a metric that is well-
suited for measuring the distance between two PDFs [44]—much more comfortably due
to its simplified structure in this particular case. Moreover, we are able to suggest a
third stage cost that is suitable for the Gaussian setting and, although very similar to the
W 2 cost, is much easier to analyze. Furthermore, we believe that the insights from this
restricted setting are very valuable for the general nonlinear setting: Clearly, if certain
approaches do (provably) not work in the linear Gaussian setting, they will inevitably
also fail in more general settings.

In the remainder of this chapter we introduce the Fokker–Planck optimal control
framework in Section 1.1 and present the outline of the thesis and list the contributions
in Section 1.2.
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1.1 The Fokker–Planck Optimal Control Framework

Given a final time T > 0, let us consider a controlled continuous-time stochastic process
described by the (Itô) stochastic differential equation (SDE)

dXt = b(Xt, t;u(Xt, t))dt+ ã(Xt, t)dWt, t ∈ ]0, T [, (1.1)

with an initial condition X̊ ∈ Rd, d ≥ 1, where X̊ is a random variable that is distributed
according to some probability density function ρ̊. Here, Wt ∈ Rm is an m-dimensional
Wiener process, b = (b1, ..., bd) is the vector valued drift function, and the diffusion matrix
ã(Xt, t) ∈ Rd×m is assumed to have full rank. The control u(Xt, t), acting on (1.1) through
the drift term b, has to be chosen from a suitable space of control functions U .

Under appropriate assumptions on the coefficients ã and b, cf. [79, p. 227] and [80,
p. 297], and given the initial probability density function ρ̊, the evolution of probability
density functions ρ associated with (1.1) is modeled by the Fokker–Planck equation, also
called forward Kolmogorov equation:

∂tρ(x, t)−
d∑

i,j=1

∂2
ij (aij(x, t)ρ(x, t)) +

d∑
i=1

∂i (bi(x, t;u(x, t))ρ(x, t)) = 0 in Q, (1.2a)

ρ(·, 0) = ρ̊(·) in Ω. (1.2b)

In this parabolic PDE and throughout the work, we will denote by ∂i and ∂t the partial
derivative with respect to space xi and time t, respectively, where i = 1, ..., d. The domain
of interest is given by Q := Ω× ]0, T [, where, in this work, either Ω = Rd or Ω ⊂ Rd is a
bounded domain with C1 boundary. The diffusion coefficients aij : Q→ R are related to
ã from (1.1) via aij =

∑
k ãikãjk/2 for i, j = 1, ..., d. The drift coefficients bi : Q× U → R

are the respective components of the vector valued drift function b from (1.1). The control
u acting on the drift term may depend on time and/or space. The function ρ̊ : Ω→ R≥0

is a given initial PDF and ρ : Q → R≥0 is the unknown PDF. For an exhaustive theory
and more details on the connection between stochastic processes and the FP equation,
including several applications regarding the description of transitions of a system from a
macroscopic point of view, we refer to [84].

Since ρ is required to be a probability density function, it shall furthermore satisfy the
standard properties of a PDF, i.e., non-negativity and conservation of mass:

ρ(x, t) ≥ 0 ∀(x, t) ∈ Q and

∫
Ω

ρ(x, t) dx = 1 ∀t ∈ ]0, T [. (1.3)

If the FP equation evolves on a bounded domain Ω ⊂ Rd, e.g., in case of localized
SDEs [92], suitable boundary conditions on ∂Ω × ]0, T [ have to be employed. For a
complete characterization of possible boundary conditions in one space dimension, see
the work of Feller [30]. In the multidimensional case, one possible choice is the zero-flux
boundary condition n(x) · j(x, t) = 0 on ∂Ω× ]0, T [, where j denotes the probability flux1

and n(x) is the unit normal vector to the surface ∂Ω, see [5, 16]. With this so-called
reflecting boundary condition, the conservation of mass property in (1.3) holds. Another

1The probability flux describes the flow of probability in terms of probability per unit time per unit
area.
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possibility is to use absorbing boundary conditions [79, p. 231] as in [4, 5, 36], also known
as homogeneous Dirichlet boundary conditions:

ρ(x, t) = 0 on ∂Ω× ]0, T [. (1.4)

Absorbing boundary conditions are appropriate in some scenarios. For instance, when
considering the Shiryaev stochastic diffusion [74] on a bounded domain rather than on
[0,∞[, a particle hitting the boundary shall leave the domain (by being absorbed) instead
of being reflected back. Thus, for absorbing boundary conditions, conservation of mass in
space is not an appropriate requirement. Yet, if the objective is to keep the PDF within
a given compact subset of Ω and the probability to find Xt outside of Ω is negligible,
then this issue is mitigated for a large enough Ω, as numerical simulations show [4, 36].
See also [58, Ch. 5] for a comparison between the Gihman–Skorohod [43] and the Feller
classification of boundary conditions.

In the case Ω = Rd we want to focus on Gaussian distributions. As such, we consider
natural boundary conditions, i.e.,

ρ(x, t)→ 0 as ‖x‖ → ∞ for all t ∈ ]0, T [. (1.5)

Since Gaussian PDFs can be fully characterized by their mean and their covariance matrix,
we look at solutions of (1.2) of the form

ρ(x, t;u) := |2πΣ(t;u)|−1/2 exp

(
−1

2
(x− µ(t;u))>Σ(t;u)−1(x− µ(t;u))

)
, (1.6)

where µ(t;u) ∈ Rd is the (controlled) mean and Σ(t;u) ∈ Rd×d is the (controlled) covari-
ance matrix, which is symmetric and positive definite. For a matrix A ∈ Rd×d, throughout
this work, we write |A| := det(A).

One specific process that will often appear in the analysis is the so-called Ornstein–
Uhlenbeck process. Besides the geometric Brownian motion, it is one of the simplest
and most widely used processes defined by a stochastic differential equation. It originally
comes from physics and models the velocity of a massive Brownian particle under fric-
tion [96]. The multidimensional extension presented below is a special case of modeling
dispersion of particles in shallow water [56]. Moreover, it can be used to obtain an n-factor
Vasicek model [98, 69, 88] describing the evolution of interest rates.

We start with the one-dimensional case. For d = 1 and given parameters θ, ς > 0 and
ν ∈ R, the uncontrolled Ornstein–Uhlenbeck process is defined by

dXt = θ (ν −Xt) dt+ ςdWt, t ∈ ]0, T [,

with an initial condition X̊ ∈ Rd. The parameter θ is called mean reversion rate; it
models the “attraction level” to the so-called mean reversion level ν to which the process
tends to drift. Lastly, ς represents the impact of randomness.

Next, we add a control u that, as in (1.1), acts on the drift term.

dXt = [θ (ν −Xt) + u(Xt, t)] dt+ ςdWt, t ∈ ]0, T [.

The control u will not always depend on Xt, but we can always translate the control by
subtracting θν. Hence, we set ν = 0 without loss of generality and arrive at

dXt = [−θXt + u(Xt, t)] dt+ ςdWt, t ∈ ]0, T [. (1.7)
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An extension to the multi-dimensional setting is made by considering d equations of
type (1.7). In this case the parameters become vectors, i.e., θ = (θ1, ..., θd) with θi > 0,
i = 1, ..., d, and so on. In the Fokker–Planck equation (1.2) we thus have

a drift term bi(x, t;u(x, t)) = −θixi + ui(xi, t), (1.8a)

and a diffusion matrix a(x, t) = diag(ς1, ..., ςd). (1.8b)

For given dynamics (1.2) and suitable boundary conditions, we then consider optimal
control problems in which we want to minimize some state- and control-dependent cost
functional J̃ over some set of admissible controls Uad ⊂ U , i.e.,

min
u∈Uad,ρ

J̃(ρ, u) s.t. (1.2) and either (1.4) or (1.5). (1.9)

Note that, although the uncontrolled FP equation, i.e., (1.2) with u ≡ 0, is linear, due to
the control u appearing in the drift term we have to deal with a bilinear OCP, considerably
complicating the analysis, see, e.g., Chapter 2.

One particular objective is to steer to (and remain at) a given desired PDF ρ̄. In
continuous time, this can be formulated as an infinite-horizon OCP by setting

J̃(ρ, u) =

∫ ∞
0

`(ρ(x, t), u(t)) dt,

where ` is the so-called stage cost or running cost yet to be defined. It typically penalizes
the distance between the current and the desired PDF as well as the control. These
optimization problems are addressed using Model Predictive Control (MPC), by now a
standard method for controlling linear and nonlinear systems if constraints and/or optimal
behavior of the closed loop are important. It is introduced in Chapter 3.

In the OCP (1.9) we do not demand non-negativity and conservation of mass (1.3)
explicitly, for the following reasons. As will be shown in the subsequent chapters, the
former holds automatically if the initial state is non-negative. Regarding the latter, on
the one hand, in the above Shiryaev example, the loss of the conservation of mass property
is pertinent to the model. On the other hand, numerical results in [4, 5, 36] indicate that
requiring this property can, at least in practice, often be circumvented by choosing a large
enough domain Ω. However, under these conditions, the state is not necessarily a PDF.
For better differentiation, a solution to the FP equation that is not a PDF will be denoted
by y instead of ρ throughout the work.

1.2 Outline and Contribution

Chapter 2 – Optimal Control of the FP Equation with Space-Dependent Con-
trols This chapter is dedicated to the analysis of the bilinear optimal control problem
introduced in Section 1.1 from the perspective of PDE-constrained optimization. We
prove the well-posedness of the controlled Fokker–Planck equation and show that its
unique solution is non-negative provided the initial state is non-negative. The existence
of optimal controls is shown for a general class of objective functionals. Moreover, for
common quadratic cost functionals of tracking and terminal type, first order necessary op-
timality conditions are derived using the adjoint state. Furthermore, we provide pointwise
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conditions for the variational inequality occuring in the first order necessary optimality
conditions.

The bilinear structure of the OCP and the fact that the control function depends on
both time and space and moreover acts as a coefficient of the advection term greatly
restricts the use of many classical results found in, e.g., [95]. Even so, we are able to
avoid any differentiability requirements of the control function and only require suitable
integrability properties instead.

The results of this chapter have been presented in [37, 38].

Chapter 3 – Model Predictive Control In a series of papers [4, 5, 36], Model
Predictive Control of the Fokker–Planck equation has been established as a numerically
feasible way for controlling stochastic processes via their probability density functions.
To prove the effectiveness of MPC in this setting, we provide an introduction to MPC
and list existing results regarding the stability and performance of the MPC closed loop
in this chapter. These results are used subsequently.

Chapter 4 – Stabilizing MPC – Space-independent control This chapter marks
the beginning of the analysis of the MPC closed loop. We start with the case of stabilizing
MPC. Numerical simulations [4, 5] suggest that (in many cases) the MPC controller yields
an asymptotically stable closed-loop system for optimization horizons looking only one
time step into the future.

In this chapter a formal proof of this fact is provided for the Fokker–Planck equation
corresponding to the controlled Ornstein–Uhlenbeck process using an L2 stage cost and
control functions that are constant in space. The key step of the proof consists in the
verification of an exponential controllability property with respect to the stage cost. One
difficulty to overcome in this context is the increasing optimal value function at time t = 0
for some parameters, which prohibits to conclude stability of the closed-loop system for
the shortest possible horizon. An equivalent cost function that yields the same optimal
control sequence provides a remedy.

The results of this chapter have been presented in [33]. However, compared to [33], a
different and more general equivalent cost function is used in the case α > 1. Moreover, the
exponential controllability property in this case is verified more rigorously. Furthermore,
more exact numerical simulations were performed, yielding new and updated plots.

Chapter 5 – Stabilizing MPC – Linear Control The setting of Chapter 4 is ex-
tended to encompass a large class of (controllable) linear processes. Moreover, the control
is space-dependent (but limited to being linear in space). For this class of linear processes,
we show that asymptotic stability of the MPC closed-loop system can be guaranteed for
large enough horizon lengths N , proving rigorously that the MPC controller is a viable
choice for steering PDFs. Moreover, in case of the Ornstein–Uhlenbeck process we prove
asymptotic stability of the MPC closed-loop system for the shortest possible horizon, ex-
tending the results of Chapter 4 to linear control functions. As in the previous chapter,
an L2 stage cost is used.

The results of this chapter have been presented in [34]. Compared to [34], some proofs
and statements were added and/or updated.
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Chapter 6 – Economic MPC – Linear Control We extend our analysis of the MPC
closed loop to the case of economic MPC, in which the stage cost does not have to be
positive definite with respect to the desired equilibrium state. The pivotal property in
order to conclude (practical) stability of the MPC closed-loop system and to make state-
ments about its performance is strict dissipativity of the corresponding optimal control
problems. This fact was revealed in a series of recent papers, see, e.g., [25, 3, 46] or
the monographs and survey papers [81, 49, 29], and has triggered a renewed interest in
this classical systems theoretic property that goes back to [101]. Thus, the focus is on
verifying the strict dissipativity property. We focus on the Ornstein–Uhlenbeck process.
In addition to the L2 stage cost, we consider the quadratic Wasserstein cost, W 2, and an-
other quadratic stage cost, called 2F , which is specifically tailored to the linear Gaussian
setting and resembles commonly used cost functions in optimal control.

The main difficulty in proving strict dissipativity is to find a suitable storage function,
if it exists. Our results show that linear storage functions, which are easiest to find, can
only be used reliably for the 2F stage cost. For the L2 and the W 2 stage cost, we show
that for many model parameters no suitable linear storage function exists. Exemplarily,
we provide nonlinear storage functions that allow to conclude strict dissipativity in these
cases. We observe that the OCPs have to be looked at individually, depending on the
model parameters, in order to find a suitable storage function.

The results of this chapter have been presented in [32, 35].

Chapter 7 – Numerical Implementation and Simulations This chapter is ded-
icated to the numerical implementation and to numerical examples that might be of
interest, but were not discussed in the previous chapters.

Here we explain the main program, PDE-MPC, which is used to numerically solve optimal
control problems subject to the (d-dimensional) Fokker–Planck equation (1.2) using MPC.
We provide details about the used algorithms and explain the structure of the program.

Moreover, we introduce OU-MPC, a program that is used to solve optimal control prob-
lems in the case of the Ornstein–Uhlenbeck process with Gaussian PDFs. Numerical
errors in the discretization are eliminated by using the closed form solution that exists in
this case, which also speeds up the computation considerably compared to using PDE-MPC.

Furthermore, to return from the macroscopic perspective to the underlying stochas-
tic process at hand, we present SDEControl, a small program that numerically solves
stochastic ODEs with a given control using the Euler–Maruyama method. We use it to
verify the results obtained by the Fokker–Planck approach on the microscopic level.

We end this chapter with some numerical simulations that further demonstrate the
power of the Fokker–Planck optimal control framework.

Chapter 8 – Future Research In this chapter we present open questions and topics
that are particularly interesting for future research. This chapter concludes the thesis.





2Optimal Control of the
Fokker–Planck Equation with
Space-Dependent Controls

In the optimal control problems introduced in Section 1.1, the control acts through the
drift term. Hence, the evolution of the PDF is controlled through the advection term of
the FP equation. This is a rather weak action of the controller on the system, usually
called of bilinear type, since the control appears as a coefficient in the state equation.
Indeed, only few controllability results are known for such kind of control systems, for
instance in connection with quantum control systems and stochastic control [13] or in
relation to the planning problem for the mean-field game system [76]. Concerning the
existence of bilinear optimal controls for a parabolic system of fourth order, a first result
was given in [1], with a control function that only depends on time. This has been used
in [5] in order to show existence of optimal controls for a FP equation with constant
or time-dependent control functions. In this setting, however, due to the absence of
space-dependent controls, there is no mechanism to cope with the diffusion term in the
FP equation. Hence, unsurprisingly, acting on the space variable substantially improves
tracking performance, as demonstrated in the numerical simulations in [36] and illustrated
in Figure 2.1.

The aim of this chapter is to extend the theoretical study on the existence of bilinear
optimal controls of the FP equation by [5] to the case of more general control functions,
which depend on both time and space. We do not require any differentiability property
of the control, which is in accordance with the simulations in [36]. For this reason, a
careful analysis of the well-posedness of the FP equation is required. Indeed, suitable
integrability assumptions are needed on the coefficient of the advection term in order
to give meaning to the weak formulation of the equation. For this purpose, we use the
functional framework proposed in the works of Aronson [8] and Aronson-Serrin [9]. In
this setting, the advection coefficient belongs to a Bochner space that prevents us from
choosing the set of square-integrable functions as the space of controls. As a result, the
optimization problem is defined on a Banach space, a setting often considered whenever
the state variable is subject to a nonlinear PDE; see, for example, [20, 83]. In recent
works [65, 77], the well-posedness of the FP equation has been established even for drift
coefficients that are square-integrable in time and space, in the context of renormalized
solutions. These papers could describe the right framework for studying the optimal
control problem of the FP equation in a Hilbert setting.

The remainder of this chapter is organized as follows. In Section 2.1, we formulate
our optimal control problem and state general assumptions. In Section 2.2, we ensure the
existence and uniqueness of (non-negative) solutions to the state equation. Section 2.3 is
devoted to recast the FP equation in an abstract setting and to deduce a-priori estimates
of its solution. These are used to prove our main result (Theorem 2.7 and Corollary 2.9)
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(a) Initial PDF: (Smoothed) Dirac delta. (b) Desired state.

(c) State at t = 0.5 (space-independent control). (d) State at t = 0.5 (space-dependent control).

(e) State at t = 1.5 (space-independent control). (f) State at t = 1.5 (space-dependent control).

(g) State at t = 5 (space-independent control). (h) State at t = 5 (space-dependent control).

Figure 2.1: Comparison of space-independent (u(t)) and space-dependent (u(x, t)) control
of a PDF associated to a stochastic process modeling the dispersion of substance in shallow
water, cf. Example 7.1.
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on existence of solutions to the considered optimal control problem for a general class of
cost functionals. In Section 2.5, we deduce the system of first order necessary optimality
conditions for common quadratic cost functionals. Section 2.6 concludes this chapter.

2.1 Problem Formulation and Assumptions

As outlined in Section 1.1 the aim is to control the stochastic process (1.1) via the FP
equation (1.2) in an optimal way, i.e., by minimizing some state- and control-dependent
cost functional J̃ . More precisely, we consider the following optimal control problem:

min
u∈Uad,y

J̃(y, u) s.t.: ∂ty −
d∑

i,j=1

∂2
ij (aijy) +

d∑
i=1

∂i (bi(u)y) = 0 in Q,

y(·, 0) = ẙ(·) in Ω,

y = 0 on ∂Ω× ]0, T [,

(P)

where Ω ⊂ Rd is a bounded domain with C1 boundary and

Uad := {u ∈ U : ua ≤ u(x, t) ≤ ub for almost all (x, t) ∈ Q}, (2.1)

with ua, ub ∈ Rd and ua ≤ ub component-wise. The space of controls

U := Lq(0, T ;L∞(Ω;Rd)) ⊂ L2(0, T ;L∞(Ω;Rd)) (2.2)

with 2 < q ≤ ∞ is motivated by the integrability requirements in [8] to ensure well-
posedness of the state equation; see Section 2.2.

Recall that we denote the state by y instead of ρ since, in general, we cannot guarantee
the conservation of mass property in (1.3) due to the absorbing boundary conditions.
Likewise, the initial state is denoted by ẙ instead of ρ̊. The arguments (x, t) are omitted
here and throughout this chapter, whenever clear from the context. Similarly, we use
the notation bi(u) and bi(t;u(t)) in order to stress the action of the control u through
the coefficient bi and to underline the time dependence, respectively, omitting the other
arguments.

Unless stated otherwise, we will use the above spaces Uad and U throughout the chap-
ter. Moreover, we impose the following requirements.

Assumption 2.1. 1. ∀i, j = 1, ..., d : aij ∈ C1(Ω).

2. ∃θ > 0 such that ∀ξ ∈ Rd and for almost all x ∈ Ω :
∑d

i,j=1 aij(x)ξiξj ≥ θ|ξ|2.

3. The function b : Rd+1 × U → Rd, (x, t;u) 7→ b(x, t;u) satisfies the growth condition

d∑
i=1

|bi(x, t;u)|2 ≤M(1 + |u(x, t)|2) ∀x ∈ Rd , (2.3)

for every i = 1, ..., d, t ∈ [0, T ], u ∈ U , and some constant M > 0.



12 Chapter 2. Optimal Control of the FP Equation with Space-Dependent Controls

For simplicity, we assume the coefficients aij to be independent of time, which results
in an autonomous operator. In Sections 2.4 and 2.5, Assumption 2.1(3) is replaced by the
following, stronger requirement:

Assumption 2.2. ∃ri ∈ L∞(Ω) : bi(x, t;u) = ri(x) + ui(x, t), i = 1, ..., d.

The fact that b is affine in u is exploited in particular in the proofs of Theorem 2.7 and
Lemma 2.11, in order to prove the existence of optimal solutions and the differentiability
of the control-to-state operator, which will be introduced in Section 2.4.

2.2 Well-Posedness of the Fokker–Planck Equation

In this section, we establish the well-posedness of the FP equation in (P), where we add a
source term f : Q→ R on the right-hand side, which will be of use for the well-posedness
of the adjoint equation in Section 2.5.

Setting b̃j(u) :=
∑d

i=1 ∂iaij − bj(u), we can recast the FP equation in flux formulation

∂ty −
d∑
j=1

∂j

( d∑
i=1

aij∂iy + b̃j(u)y
)

= f in Q .

Together with the initial and boundary conditions in (P), we have the associated weak
formulation

∫∫
Q

fv dxdt =

∫∫
Q

∂tyv dxdt−
∫∫
Q

( d∑
j=1

∂j

( d∑
i=1

aij∂iy + b̃j(u)y
))
v dxdt

= −
∫∫
Q

y∂tv dxdt−
∫
Ω

y(·, 0)v(·, 0) dx+

∫∫
Q

d∑
j=1

( d∑
i=1

aij∂iy + b̃j(u)y
)
∂jv dxdt

for test functions v ∈ W 1,1
2 (Q) with v|∂Ω = 0 and v(·, T ) = 0.

We make use of this in the following theorem, which is a special case of [8, Thm. 1, p.
634] and guarantees the existence and uniqueness of (non-negative) solutions.

Theorem 2.3. Let ẙ ∈ L2(Ω). Additionally, let f ∈ Lq(0, T ;L∞(Ω)) or f = div(f̃)
for some f̃ : Q → Rd with f̃j ∈ L2(Q), j = 1, ..., d. Then, there exists a unique y ∈
L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) satisfying

∫∫
Q

−y∂tv +
d∑
j=1

( d∑
i=1

aij∂iy + b̃j(u)y
)
∂jv − fv dxdt =

∫
Ω

ẙv(·, 0) dx (2.4)

for every v ∈ W 1,1
2 (Q) with v|∂Ω = 0 and v(·, T ) = 0, i.e., y is the unique weak solution of

the Fokker–Planck initial boundary value problem defined in (P), including a right-hand
side f in the FP equation. Moreover, if f ≡ 0 and 0 ≤ ẙ ≤ m almost everywhere in Ω
for some m > 0, then y is bounded and y(x, t) ≥ 0 almost everywhere in Q.
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Note that, due to the choice of U in (2.2) and Assumption 2.1(3), b̃j(u) belongs to
Lq(0, T ;L∞(Ω)) for j = 1, ..., d, as required in [8].

The solution obtained by Theorem 2.3 is more regular; indeed, it belongs to the
W (0, T ) space. We recall that

W (0, T ) := {y ∈ L2(0, T ;V ) : ẏ ∈ L2(0, T ;V ′)} ⊂ C([0, T ];H) ,

where ẏ denotes the weak time derivative of y and H := L2(Ω), V := H1
0 (Ω), and

V ′ := H−1(Ω), the dual space of V , endowed with norms

‖y‖2
H :=

∫
Ω

y2 dx , ‖y‖2
V :=

∫
Ω

|∇y|2 dx , ‖L‖V ′ := sup
y∈V,‖y‖V =1

|〈L, y〉V ′,V | ,

respectively, form the Gelfand triple V ↪→ H ↪→ V ′. We denote by | · | the Euclidean
norm and by 〈·, ·〉V ′,V the duality map between V and V ′. This notation and these spaces
are used throughout the chapter.

Proposition 2.4. Under the assumptions of Theorem 2.3, the solution y in Theorem 2.3
belongs to W (0, T ), possibly after a modification on a set of measure zero.

Proof. The proof is analogous to the one of [95, Thm. 3.12], the only change being a
different functional F . The idea is to show that F belongs to L2(0, T ;V ′) and to rewrite
the variational formulation of the PDE in terms of F to show that ẏ = F in the sense of
vector-valued distributions. In our case, for any fixed t, the linear functional is given by
F (t) : V → R,

v 7→ −
d∑
j=1

( d∑
i=1

aij∂iy(t) + b̃j(t;u(t))y(t), ∂jv
)
H

+ (f(t), v)H .

We first assume f ∈ Lq(0, T ;L∞(Ω)) with 2 < q ≤ ∞. F (t) is bounded and thus
continuous for all t ∈ ]0, T [:

|F (t)v| =

∣∣∣∣∣∣−
d∑
j=1

∫
Ω

( d∑
i=1

aij∂iy(t) + b̃j(t;u(t))y(t)
)
∂jv dx+

∫
Ω

f(t)v dx

∣∣∣∣∣∣
≤

d∑
j=1

∫
Ω

d∑
i=1

|aij| |∂iy(t)| |∂jv| dx+

∫
Ω

|f(t)||v| dx

+
d∑
j=1

∫
Ω

|b̃j(t;u(t))| |y(t)| |∂jv| dx

≤
d∑

i,j=1

‖aij‖L∞(Ω)︸ ︷︷ ︸
=:C

‖y(t)‖V ‖v‖V + cΩ ‖f(t)‖H ‖v‖V

+
d∑
j=1

‖b̃j(t;u(t))‖L∞(Ω)‖y(t)‖H ‖v‖V ,
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where cΩ is such that ‖v‖H ≤ cΩ ‖v‖V for any v ∈ V = H1
0 (Ω). Therefore,

‖F (t)‖V ′ ≤ C ‖y(t)‖V +
d∑
j=1

‖b̃j(t;u(t))‖L∞(Ω)‖y(t)‖H + cΩ ‖f(t)‖H . (2.5)

Since ‖y(t)‖V ∈ L2(0, T ), ‖b̃j(t;u(t))‖L∞(Ω)∈ Lq(0, T ), ‖y(t)‖H ∈ L∞(0, T ), and ‖f(t)‖H ∈
Lq(0, T ) with q > 2, the right-hand side of (2.5) belongs to L2(0, T ), i.e., F ∈ L2(0, T ;V ′).
The remaining steps are the same as in the proof of [95, Thm. 3.12].

If f = div(f̃), the spatial derivatives are transferred to v, which results in a very
similar calculation and, in particular, also in F ∈ L2(0, T ;V ′).

Furthermore, note that we have
∫

Ω
ẙv dx = lim

t→0

∫
Ω
y(t)v dx =

∫
Ω
y(0)v dx for all

v ∈ V , where the first equality follows from (2.4) and the second holds because W (0, T ) ⊂
C([0, T ];H). Consequently, y(0) = ẙ in Ω.

2.3 A-priori Estimates

The purpose of this section is to deduce a-priori estimates of solutions to the Fokker–
Planck initial boundary value problem given in (P), including a right-hand side f ∈
L2(0, T ;V ′) in the FP equation. For the sake of clarity, we recast it in abstract form{

ẏ(t) + Ay(t) +B(u(t), y(t)) = f(t) in V ′ , t ∈ ]0, T [,
y(0) = ẙ ,

(2.6)

where ẙ ∈ H, A : V → V ′ is a linear and continuous operator such that

〈Az, ϕ〉V ′,V :=

∫
Ω

d∑
i,j=1

∂i(aijz) ∂jϕ dx ∀ϕ ∈ V ,

and the operator B : L∞(Ω;Rd)×H → V ′ is defined by

〈B(u, y), ϕ〉V ′,V := −
∫
Ω

d∑
i=1

bi(u)y ∂iϕ dx = −
∫
Ω

yb(u).∇ϕ dx ∀ϕ ∈ V .

In the following, E(ẙ, u, f) refers to (2.6) whenever we want to point out the data (ẙ, u, f).
To ease the notation, we will still denote byA andB the two operatorsA : L2(0, T ;V )→

L2(0, T ;V ′) and B : U × L∞(0, T ;H)→ Lq(0, T ;V ′) such that for all ϕ ∈ L2(0, T ;V ), we
have Az = −

∑d
i,j=1 ∂

2
ij (aijz) and∫ T

0

〈Az(t), ϕ(t)〉V ′,V dt =

∫∫
Q

d∑
i,j=1

∂i(aijz) ∂jϕ dxdt , (2.7)

and B(u, y) =
∑d

i=1 ∂i (bi(u)y) = div(b(u)y) such that∫ T

0

〈B(u(t), y(t)), ϕ(t)〉V ′,V dt = −
∫∫
Q

d∑
i=1

bi(u)y ∂iϕ dxdt (2.8)
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for all ϕ ∈ Lq
′
(0, T ;V ) with 1/q + 1/q′ = 1. Indeed, thanks to Assumption 2.1(3), we

have div(b(u)y) ∈ Lq(0, T ;V ′) and

‖B(u, y)‖Lq(0,T ;V ′) = ‖div(b(u)y)‖Lq(0,T ;V ′) ≤M(1 + ‖u‖U) ‖y‖L∞(0,T ;H) .

Note that the integral on the r.h.s. in (2.7) is not symmetric in z and ϕ, owing to the fact
that A is not self-adjoint. The bilinear form a : ]0, T [ × V × V → R associated with the
FP equation is defined by

a(t, ψ, ϕ) :=

∫
Ω

(
d∑

i,j=1

∂i(aijψ) ∂jϕ−
d∑
i=1

bi(t;u(t))ψ∂iϕ

)
dx

=

∫
Ω

(
d∑

i,j=1

aij∂iψ ∂jϕ+
d∑
j=1

b̃j(t, u(t))ψ∂jϕ

)
dx.

Thanks to the uniform ellipticity of A and Young’s inequality, for every ε > 0, t ∈ ]0, T [,
and every ϕ ∈ V , we have that

θ

∫
Ω

|∇ϕ|2 dx ≤
∫
Ω

d∑
i,j=1

aij∂iϕ∂jϕ dx = a(t, ϕ, ϕ)−
∫
Ω

d∑
j=1

b̃j(t;u(t))ϕ∂jϕ dx

≤ a(t, ϕ, ϕ) + ‖b̃(t;u(t))‖L∞(Ω;Rd)

(
ε

∫
Ω

|∇ϕ|2 dx+
1

4ε

∫
Ω

|ϕ|2 dx

)
.

Thus, with ε = 3θ/(4‖b̃(t;u(t))‖L∞(Ω;Rd)), we conclude

θ

4
‖ϕ‖2

V ≤ a(t, ϕ, ϕ) + C1(t) ‖ϕ‖2
H , (2.9)

where
C1(t) := ‖b̃(t;u(t))‖2

L∞(Ω;Rd)/(3θ). (2.10)

We now derive some a-priori estimates on the solution of (2.6). We will need them in the
following sections. In this chapter, from this section on, we denote by M and C generic,
positive constants that might change from line to line.

Lemma 2.5. Let ẙ ∈ H, f ∈ L2(0, T ;V ′) and u ∈ U . Then a solution y of (2.6) satisfies
the estimates

‖y‖2
L∞(0,T ;H) ≤M(u)

(
‖y(0)‖2

H + ‖f‖2
L2(0,T ;V ′)

)
, (2.11)

‖y‖2
L2(0,T ;V ) ≤ (1 + ‖u‖2

U)M(u)
(
‖y(0)‖2

H + ‖f‖2
L2(0,T ;V ′)

)
, (2.12)

‖ẏ‖2
L2(0,T ;V ′) ≤ (1 + ‖u‖2

U)M(u)
(
‖y(0)‖2

H + ‖f‖2
L2(0,T ;V ′)

)
+ 2 ‖f‖2

L2(0,T ;V ′) , (2.13)

where M(u) := Cec(1+‖u‖2U ) for some positive constants c, C.

Proof. Let y be a solution of (2.6) and t ∈ ]0, T [. Multiplying (2.6) by y(t), we get

1

2

d

dt

(
‖y(t)‖2

H

)
+ a(t, y(t), y(t)) = 〈f(t), y(t)〉V ′,V , t ∈ ]0, T [,
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and thus

d

dt

(
‖y(t)‖2

H

)
+
θ

2
‖y(t)‖2

V ≤
d

dt

(
‖y(t)‖2

H

)
+ 2a(t, y(t), y(t)) + 2C1(t) ‖y(t)‖2

H

= 2〈f(t), y(t)〉V ′,V + 2C1(t) ‖y(t)‖2
H

≤ 2ε ‖y(t)‖2
V +

1

2ε
‖f(t)‖2

V ′ + 2C1(t) ‖y(t)‖2
H .

Fixing ε = θ/8, we deduce the relation

d

dt

(
‖y(t)‖2

H

)
+
θ

4
‖y(t)‖2

V ≤
4

θ
‖f(t)‖2

V ′ + 2C1(t) ‖y(t)‖2
H . (2.14)

Applying Gronwall’s inequality, we have that

‖y(t)‖2
H ≤ e

∫ t
0 2C1(τ)dτ

(
‖y(0)‖2

H +
4

θ

∫ t

0

‖f(τ)‖2
V ′ dτ

)
.

For u ∈ U , the inequality

‖u‖L2(0,T ;L∞(Ω;Rd)) ≤ T
q−2
2q ‖u‖U (2.15)

holds. With C1(t) from (2.10) and due to Assumption 2.1(3) and (2.15), we deduce that∫ T
0

2C1(t)dt ≤M(1 + ‖u‖2
U), and thus

‖y‖2
L∞(0,T ;H) ≤ Cec(1+‖u‖2U )

(
‖y(0)‖2

H + ‖f‖2
L2(0,T ;V ′)

)
.

Moreover, integrating (2.14) over ]0, T [, we conclude that

‖y‖2
L2(0,T ;V ) ≤ C

(
‖y(0)‖2

H + ‖f‖2
L2(0,T ;V ′)

)
+ C(1 + ‖u‖2

U) ‖y‖2
L∞(0,T ;H)

≤ C(1 + ‖u‖2
U)ec(1+‖u‖2U )

(
‖y(0)‖2

H + ‖f‖2
L2(0,T ;V ′)

)
.

We recall that C might change from line to line. Finally, multiplying (2.6) by ϕ ∈
L2(0, T ;V ) and integrating over ]0, T [ yields

∣∣∣∣∫ T

0

〈ẏ(t), ϕ(t)〉V ′,V dt

∣∣∣∣ ≤ ‖y‖L∞(0,T ;H) ‖u‖L2(0,T ;L∞(Ω;Rd)) ‖ϕ‖L2(0,T ;V )

+ Cα ‖y‖L2(0,T ;V ) ‖ϕ‖L2(0,T ;V ) + ‖f‖L2(0,T ;V ′) ‖ϕ‖L2(0,T ;V ) ,

where Cα > 0 is such that ‖Aξ‖V ′ ≤ Cα ‖ξ‖V for all ξ ∈ V . Thanks to (2.15),

‖ẏ‖L2(0,T ;V ′) ≤ Cα ‖y‖L2(0,T ;V ) + C ‖y‖L∞(0,T ;H) ‖u‖U + ‖f‖L2(0,T ;V ′) .

Using twice the estimate (a + b)2 ≤ 2a2 + 2b2, we derive (2.13) by the estimates on
‖y‖L∞(0,T ;H) and ‖y‖L2(0,T ;V ).
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2.4 Existence of Optimal Controls

This section contains our main result of this chapter: the existence of optimal controls
for (P), with Uad and U as in (2.1) and (2.2). Fixing ẙ ∈ H, we introduce the control-
to-state operator Θ: U → C([0, T ];H) such that u 7→ y ∈ C([0, T ];H) is a solution of
E(ẙ, u, 0). Thus, the optimization problem turns into minimizing the so-called reduced
cost functional J : U → R such that J(u) := J̃(Θ(u), u), which we assume to be bounded
from below, over the non-empty subset of admissible controls Uad ⊂ U . We recall that
Assumption 2.2 is used in this section.

In order to prove the main theorem, we will need the following compactness result (see
[10], [67, Thm. 5.1, p. 58] or [89]).

Theorem 2.6. Let I be an open and bounded interval of R, and let X, Y, Z be three
Banach spaces, with dense and continuous embeddings Y ↪→ X ↪→ Z, the first one being
compact. Then, for every p ∈ [0,∞[ and r > 1, we have the compact embeddings

Lp(I;Y ) ∩W 1,1(I;Z) ↪→ Lp(I;X)

and
L∞(I;Y ) ∩W 1,r(I;Z) ↪→ C(I;X).

Theorem 2.7. Let ẙ ∈ H. Consider the minimization of the reduced cost functional
J(u) = J̃(Θ(u), u) over Uad. Assume that J is bounded from below and (sequentially)
weakly-star lower semicontinuous. Then there exists a pair (ȳ, ū) ∈ C([0, T ];H) × Uad
such that ȳ solves E(ẙ, ū, 0) and ū minimizes J in Uad.
Proof. Let (un)n≥1 be a minimizing sequence, i.e., J(un)→ I := infu∈Uad J(u) as n→∞.
Since (un)n≥1 ⊂ Uad, we have ‖un‖U ≤ c‖un‖L∞(Q) ≤ C for some constants c, C > 0 and
any n ≥ 1. Moreover, the pair (un, yn) satisfies the state equation

ẏn(t) + Ayn(t) +B(un(t), yn(t)) = 0 , yn(0) = ẙ . (2.16)

The a-priori estimates of Lemma 2.5 ensure that there exists a positive constant, still
denoted by C, such that, for all n ∈ N,

‖yn‖L∞(0,T ;H) , ‖yn‖L2(0,T ;V ) , ‖ẏn‖L2(0,T ;V ′) ≤ C ,

and so we deduce that

‖Ayn‖L2(0,T ;V ′) ≤ Cα ‖yn‖L2(0,T ;V ) ≤ C ,

‖B(un, yn)‖L2(0,T ;V ′) ≤ c ‖B(un, yn)‖Lq(0,T ;V ′)

≤M(1 + ‖un‖U) ‖yn‖L∞(0,T ;H) ≤ C ,

where we recall that the constant Cα > 0, which appears in the proof of Lemma 2.5, is
such that ‖Aξ‖V ′ ≤ Cα ‖ξ‖V for all ξ ∈ V . Thus, there exist subsequences (still indexed
with the subscript n) such that

un
∗
⇀ ū weakly-star in U ,

yn
∗
⇀ ȳ weakly-star in L∞(0, T ;H) ,

yn ⇀ ȳ weakly in L2(0, T ;V ) ,
ẏn ⇀ ψ weakly in L2(0, T ;V ′) ,
Ayn ⇀ χ weakly in L2(0, T ;V ′) ,
B(un, yn) ⇀ Λ weakly in L2(0, T ;V ′) .



18 Chapter 2. Optimal Control of the FP Equation with Space-Dependent Controls

Since the Banach-Alaoglu theorem ensures that Uad is weakly-star closed [23], we deduce
that ū ∈ Uad . We now want to pass to the limit in the state equation (2.16). First of all,
we observe that ψ = ˙̄y, thanks to the convergence in the σ(D(0, T ;V ),D′(0, T ;V ′)) topol-
ogy. Thus, ȳ ∈ W (0, T ) ⊂ C([0, T ];H). Moreover, since the operator A : L2(0, T ;V ) →
L2(0, T ;V ′) is strongly continuous, and therefore weakly continuous, too, we deduce that
Aȳ = χ. Finally, we claim that B(ū, ȳ) = Λ, which, because of the bilinear action of the
control, is the most difficult part of the proof. Note that, thanks to the first relation in
Theorem 2.6 with Y := V , X := H, and Z := V ′, the embedding W (0, T ) ⊂ L2(0, T ;H)
is compact. Thus, (yn)n admits a subsequence strongly convergent to ȳ in L2(0, T ;H).
Therefore, for every ϕ ∈ L2(0, T ;V ),∫ T

0

〈B(ū(t), ȳ(t))− Λ(t), ϕ(t)〉V ′,V dt

=−
∫∫
Q

ȳb(ū).∇ϕ dxdt− lim
n→∞

∫ T

0

〈B(un(t), yn(t)), ϕ(t)〉V ′,V dt

=−
∫∫
Q

ȳb(ū).∇ϕ dxdt+ lim
n→∞

∫∫
Q

ynb(un).∇ϕ dxdt

=− lim
n→∞

∫∫
Q

(ȳb(ū)− ynb(un)).∇ϕ dxdt

=− lim
n→∞

∫∫
Q

ȳ(b(ū)− b(un)).∇ϕ dxdt− lim
n→∞

∫∫
Q

(ȳ − yn) b(un).∇ϕ dxdt ,

where ∇ denotes the gradient with respect to the space variable x ∈ Rd. We ob-
serve that ȳ ∈ L∞(0, T ;H) and ∂iϕ ∈ L2(0, T ;H) for all i = 1, ..., d, thus ȳ∂iϕ ∈
L2(0, T ;L1(Ω)) ⊂ Lq

′
(0, T ;L1(Ω)) with q′ such that 1/q + 1/q′ = 1 and Lq(0, T ;L∞(Ω)) =

[Lq
′
(0, T ;L1(Ω))]∗, since the Lebesgue measure is σ−finite. We recall that b is affine on u;

see Assumption 2.2. Therefore, b(ū)− b(un) = (ūi− un,i)i=1,...,d. Now un
∗
⇀ ū weakly-star

in U ensures that the first integral goes to 0 as n→ +∞. Furthermore, since the sequence
(b(un))n is uniformly bounded and yn → ȳ strongly in L2(0, T ;H),∣∣∣ ∫∫

Q

(ȳ − yn) b(un).∇ϕ dxdt
∣∣∣ ≤ C ‖ȳ − yn‖L2(0,T ;H) ‖ϕ‖L2(0,T ;V ) → 0

as n→ +∞. Additionally, we observe that ȳ(0) = ẙ, hence

˙̄y(t) + Aȳ(t) +B(ū(t), ȳ(t)) = 0 , ȳ(0) = ẙ .

Finally, owing to the weakly-star lower semicontinuity of J , we conclude that

J(ū) ≤ lim inf
n→∞

J(un) = I.

Thus, (ȳ, ū) is an optimal pair for the considered optimal control problem.

Theorem 2.7 clearly also holds for any Uad ⊂ U bounded and weakly-star closed.
However, observe that in the unconstrained case Uad ≡ U , asking only J(u) ≥ γ‖u‖U
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for some γ > 0 is not enough. Instead, one can modify the proof straightforwardly by
requiring J(u) ≥ γ‖u‖L∞(Q;Rd), which is not very practical. An alternative might be to
require more regularity on the state y and on the control u, in order to gain the same level
of compactness required to deduce that B(ū, ȳ) = Λ. Indeed, further regularity of y can
be ensured by standard improved regularity results; see, for example, [102, Thms. 27.2
and 27.5] and [64, Thm. 6.1 and Rem. 6.3]. However, these results require more regularity
of the coefficients in the PDE and hence, on the control. In particular, one would need
differentiability of u both in time and space. In comparison, requiring box constraints as
in (2.1) seems to be a less restrictive choice. Note that, in case of bilinear action of the
control into the system, even box constraints might not suffice to ensure the existence of
optimal controls in general; see, for example, [68, Sect. 15.3, p. 237].

Remark 2.8. We have shown in the previous proof that the control-to-state map Θ: Uad ⊂
U → C([0, T ];H) ⊂ L2(0, T ;H), u 7→ Θ(u) = y ∈ L2(0, T ;H), where y solves E(ẙ, u, 0), is
sequentially continuous from Uad (with the weak-star topology induced by U) to L2(0, T ;H)
(with the strong topology).

Corollary 2.9. Let yd ∈ L2(0, T ;H), yΩ ∈ H, and α, β, γ ≥ 0. Consider the final
time observation operator ST : W (0, T )→ H such that y 7→ y(T ). Then an optimal pair
(ȳ, ū) ∈ C([0, T ];H)× Uad exists for the reduced cost functional

J(u) :=
α

2
‖Θ(u)− yd‖2

L2(Q) +
β

2
‖STΘ(u)− yΩ‖2

L2(Ω) +
γ

2
‖u‖2

L2(Q;Rd) . (2.17)

Proof. The cost functional (2.17) is bounded from below by zero. Moreover, it is weakly
lower semicontinuous in L2(Q;Rd). This is due to Remark 2.8 and the fact that the embed-
ding W (0, T ) ⊂ C([0, T ];H) is continuous, that the operator ST is linear and continuous,
and that the norm functionals ‖·‖2

H and ‖·‖2
L2(Q;Rd)

are weakly lower semicontinuous on H

and L2(Q;Rd), respectively. Moreover, a minimizing sequence (un)n≥1 in Uad converging
to I is uniformly bounded both in U and in L2(Q;Rd). Since the weak-star convergence
in U implies the weak convergence in L2(Q;Rd), we do not need to require weakly-star
lower semicontinuity of J . Therefore, we can conclude the existence of an optimal pair
(ȳ, ū) ∈ C([0, T ];H)× Uad .

Remark 2.10. Corollary 2.9 applies analogously to the case of time-independent controls
u in the admissible space

Ũad := {u ∈ L∞(Ω;Rd) : ua ≤ u(x) ≤ ub for almost every x ∈ Ω} (2.18)

for the reduced cost functional

J2(u) :=
α

2
‖Θ(u)− yd‖2

L2(Q) +
β

2
‖Θ(u)(T )− yΩ‖2

L2(Ω) +
γ

2
‖u‖2

L2(Ω;Rd) .

2.5 Adjoint State and Optimality Conditions

For the optimal control problem (P), modified by using the reduced cost functionals
considered in Corollary 2.9 and Remark 2.10, we derive the first order necessary optimality
conditions in this section. Incidentally, let us point out that these quadratic objective
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functionals are commonly used in theory and practice; see, for example, [5, 36, 95]. As in
the previous section, we require Assumption 2.2. We start by denoting the operator

D(u, y) := B(u− r, y) = div(uy) ∀u ∈ U , y ∈ L∞(0, T ;H) ,

and proving the differentiability of the control-to-state operator.

Lemma 2.11. Let ẙ ∈ H. The control-to-state operator Θ from Section 2.4 is Fréchet-
differentiable and, for every ū, h ∈ U , the function Θ′(ū)h satisfies{

ż(t) + Az(t) +B(ū(t), z(t)) = −D(h(t), ȳ(t)) in V ′ , t ∈ ]0, T [,
z(0) = 0 ,

(2.19)

where ȳ = Θ(ū).

Note that Theorem 2.3 ensures the existence of a unique weak solution of (2.19).

Proof. Thanks to Assumption 2.2, the map L : U → C([0, T ];H), such that h 7→ z ∈
C([0, T ];H) is a solution of (2.19), is linear. Moreover, L is continuous; indeed, the
estimate (2.11) yields

‖z‖2
L∞(0,T ;H) ≤ Cec(1+‖ū‖2U ) ‖D(h, ȳ)‖2

L2(0,T ;V ′)

≤ Cec(1+‖ū‖2U ) ‖ȳ‖2
L∞(0,T ;H) ‖h‖

2
U ≤ C ‖h‖2

U .

Let us now introduce yh := Θ(ū + h), the solution of E(ẙ, ū + h, 0), and set y := yh − ȳ.
Thus, y satisfies{

ẏ(t) + Ay(t) +B(ū(t), y(t)) = −D(h(t), yh(t)) in V ′ , t ∈ ]0, T [,
y(0) = 0 .

Moreover, D(h, yh) ∈ Lq(0, T ;V ′) ⊂ L2(0, T ;V ′), and (2.11) ensures

‖y‖2
L∞(0,T ;H) ≤ Cec(1+‖ū‖2U ) ‖D(h, yh)‖2

L2(0,T ;V ′)

≤ Cec(1+‖ū‖2U ) ‖yh‖2
L∞(0,T ;H) ‖h‖

2
U ,

with ‖yh‖2
L∞(0,T ;H) ≤ Cec(1+‖ū+h‖2U ) ‖ẙ‖2

H , which is locally bounded in h. Finally, w := y−z
is a solution of E(0, ū,−D(h(t), y(t))) and satisfies

‖w‖2
L∞(0,T ;H) ≤ Cec(1+‖ū‖2U ) ‖D(h, y)‖2

L2(0,T ;V ′)

≤ Cec(1+‖ū‖2U ) ‖y‖2
L∞(0,T ;H) ‖h‖

2
U ,

that is,

‖Θ(ū+ h)−Θ(ū)− z‖2
L∞(0,T ;H) ≤ C ‖ẙ‖2

H e
c(1+‖ū+h‖2U ) ‖h‖4

U .

Therefore, Θ is Fréchet differentiable and, for all ū, h ∈ U , the operator Θ′(ū) : U →
C([0, T ];H) is defined by Θ′(ū)h := z, where z solves (2.19).
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Next, we introduce the two operators

A∗ : L2(0, T ;V )→ L2(0, T ;V ′) such that A∗z := −
d∑

i,j=1

aij∂
2
ijz,

B̃ : L2(0, T ;V )→ L2(0, T ;L2(Ω;Rd)) such that B̃(z) := ∇z,

where ∇ denotes the gradient with respect to x ∈ Rd. Observe that, for every v, ϕ ∈
L2(0, T ;V ), ∫ T

0

〈A∗v(t), ϕ(t)〉V ′,V dt =

∫ T

0

〈Aϕ(t), v(t)〉V ′,V dt

and for every u ∈ U , v ∈ L2(0, T ;V ) and w ∈ L∞(0, T ;H),

∫ T

0

(b(u). B̃(v), w)H dt =

∫∫
Q

d∑
i=1

bi(u)w ∂iv dxdt

= −
∫ T

0

〈B(u(t), w(t)), v(t)〉V ′,V dt, (2.20)

and the above integrals are well-defined.
With this in mind, we can provide an explicit representation formula for the derivative

of J as in Corollary 2.9.

Proposition 2.12. Consider J of the form (2.17) with yd ∈ Lq(0, T ;L∞(Ω)) and yΩ ∈ H.
Let ẙ ∈ L∞(Ω). Then, J is differentiable in U and, for all u, h ∈ U ,

dJ(u)h =
d∑
i=1

∫∫
Q

hi [y∂ip+ γui] dxdt (2.21)

holds, where y ∈ W (0, T ) ∩ L∞(Q) is the solution of E(ẙ, u, 0) and p ∈ W (0, T ) is the
solution of the adjoint equation{

−ṗ(t) + A∗p(t)− b(u(t)). B̃p(t) = α [y(t)− yd(t)] in V ′ , t ∈ ]0, T [,

p(T ) = β [y(T )− yΩ] .
(2.22)

Observe that, for all i = 1, ..., d, the function hi〈∂ip, y〉V ′,V : ]0, T [ → R belongs
to L1(0, T ), owing to hi ∈ Lq(0, T ;L∞(Ω)) with q > 2, y ∈ L2(0, T ;V ) and ∂ip ∈
L∞(0, T ;V ′). Existence and uniqueness of solutions for (2.22) are ensured by Aronson [8].
Indeed, ẙ ∈ L∞(Ω) implies y ∈ L∞(Q), and therefore y − yd ∈ Lq(0, T ;L∞(Ω)), as re-
quired by Theorem 2.3. Moreover, we have y(T )− yΩ ∈ L2(Ω). By the change of variable
q(t) = p(T − t), v(t) = u(T − t) and f(t) = α[y(T − t) − yd(T − t)], (2.22) is recast in
a form such that the same results as in Theorem 2.3 and Proposition 2.4 can be applied,
following the remark in [8, p. 621] concerning the adjoint operator.

Proof. Thanks to Lemma 2.11, the functional J is differentiable in U . Let z solve (2.19).
We set z = Θ′(u)h ∈ C([0, T ];H) and derive

dJ(u)h = 〈z, α[y − yd]〉L2(0,T ;H) + 〈z(T ), β[y(T )− yΩ]〉H + γ〈h, u〉L2(0,T ;L2(Ω;Rd))
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for all u, h ∈ U , where y is the solution of the state equation E(ẙ, u, 0). We now exploit
the adjoint state p in order to figure out the dependence of dJ(u)h on h. Indeed, owing
to relations (2.20) and (2.22), we have that∫ T

0

〈z(t), α[y(t)− yd(t)]〉H dt

=

∫ T

0

〈−ṗ(t) + A∗p(t)− b(u(t)). B̃p(t), z(t)〉V ′,V dt

=

∫ T

0

〈ż(t) + Az(t) +B(u(t), z(t)), p(t)〉V ′,V dt− 〈z(T ), p(T )〉H + 〈z(0), p(0)〉H

= − 〈z(T ), p(T )〉H −
∫ T

0

〈D(h(t), y(t)), p(t)〉V ′,V dt

= − 〈z(T ), p(T )〉H +

∫∫
Q

y(t)h(t).∇p(t) dxdt .

Since 〈z(T ), β[y(T )− yΩ]〉H = 〈z(T ), p(T )〉H , we conclude

dJ(u)h =

∫∫
Q

yh.∇p dxdt+ γ
d∑
i=1

〈hi, ui〉L2(Q) =
d∑
i=1

∫∫
Q

hi [y∂ip+ γui] dxdt,

which is the assertion.

A priori, dJ(u) is defined only in U , for every u ∈ U . However, thanks to the
representation formula (2.21), it admits an extension operator that is well-defined on
L2(0, T ;L2(Ω;Rd)).

With this, Proposition 2.12, and the variational inequality dJ(ū)(u− ū) ≥ 0, which
holds for any u ∈ Uad and locally optimal solution ū, we deduce the system of first
order necessary optimality conditions. Note that, since the control-to-state operator is
nonlinear, the reduced cost functional is non-convex even for standard quadratic costs
like (2.17). In particular, there may be controls that are not optimal, not even locally,
and nevertheless satisfy the necessary optimality conditions. Yet, this system plays an
important role in the development of efficient numerical methods for the FP optimal
control; see [4, 5]. Moreover, the simulations in [4, 5, 36] suggest that these conditions
are viable to be used in practice.

Corollary 2.13. Let ẙ ∈ L∞(Ω), yd ∈ Lq(0, T ;L∞(Ω)), and yΩ ∈ H. Consider the cost
functional J defined by (2.17) with α, β, γ ≥ 0. An optimal pair (ȳ, ū) ∈ C([0, T ];H)×Uad
for J with corresponding adjoint state p̄ satisfies the following necessary conditions:

∂tȳ −
d∑

i,j=1

∂2
ij(aij ȳ) +

d∑
i=1

∂i
(
(ri + ūi)ȳ

)
= 0 in Q ,

−∂tp̄−
d∑

i,j=1

aij∂
2
ij p̄−

d∑
i=1

(ri + ūi)∂ip̄ = α[ȳ − yd] in Q ,

ȳ = p̄ = 0 on ∂Ω× ]0, T [,
ȳ(·, 0) = ẙ(·) , p̄(·, T ) = β[ȳ(·, T )− yΩ(·)] in Ω ,∫∫
Q

[ȳ∂ip̄+ γūi] (ui − ūi) dxdt ≥ 0 ∀u ∈ Uad, i = 1, ..., d.

(2.23)
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Proof. The necessary optimality conditions (2.23) are derived by combining the state
equation E(ẙ, ū, 0) for ȳ, (2.22) for the adjoint p̄, and the variational inequality dJ(ū)(u−
ū) ≥ 0 for all u ∈ Uad and locally optimal ū. Thanks to (2.7), (2.8), and (2.20), which
define the operators A, B, and B̃, respectively, we deduce the desired system.

Following [95, Sect. 2.8], we can derive pointwise conditions for the variational in-
equality in (2.23). Indeed, if γ = 0, it follows for all i = 1, ..., d and almost all (x, t) ∈ Q
that,

ūi(x, t) =

{
uai , if ȳ(x, t)∂ip̄(x, t) > 0 ,
ubi , if ȳ(x, t)∂ip̄(x, t) < 0 ,

and no value can be assigned if ȳ(x, t)∂ip̄(x, t) = 0. If γ > 0, then we get the standard
projection formula for almost all (x, t) ∈ Q:

ūi(x, t) = P[uai ,ubi ]

{
−1

γ
ȳ(x, t)∂ip̄(x, t)

}
.

In case of time-independent controls considered in Remark 2.10, the only modification
needed in the optimality system (2.23) is the variational inequality, which, for Ũad given
by (2.18), changes to∫

Ω

[∫ T

0

ȳ∂ip̄ dt+ γūi

]
(ui − ūi) dx ≥ 0 ∀u ∈ Ũad, i = 1, ..., d.

2.6 Conclusion

In this chapter, we have considered a bilinear optimal control problem subject to the
Fokker–Planck equation with homogeneous Dirichlet boundary conditions and a time-
and space-dependent control. Without any differentiability requirements on the control
we have proved the existence of optimal controls associated with a non-negative state so-
lution and have derived the first order necessary optimality conditions rigorously, thereby
extending the results of [5]. Very recently, similar results have been established for zero-
flux boundary conditions in conjunction with a space-dependent control of specific struc-
ture in [16]. Thus, although finding sufficient conditions and proving uniqueness of the
optimal control are still open questions—the main difficulty being the non-convexity of the
problem due to the nonlinear control-to-state operator—the basis for solving the OCPs
introduced in Section 1.1 has been established. As such, we switch to solving these OCPs.
For this we use Model Predictive Control, which is introduced next.





3Model Predictive Control

Model predictive control has developed into a standard method for controlling linear and
nonlinear systems if constraints and/or optimal behavior of the closed loop are impor-
tant. In this chapter we briefly present the concept of (nonlinear) MPC, a technique to
solve optimal control problems of the type introduced in Section 1.1. A more detailed
introduction can be found in the monographs [49] and [81].

In this approach, the so-called running cost—usually the distance of the actual state
to the desired reference state—is integrated or summed over several time steps into the
future. The resulting objective function is then minimized using a given model for pre-
dicting the actual state. In our case, the states are PDFs and the model for predicting
the actual PDF is the Fokker–Planck equation. The first piece of the resulting optimal
control function is then applied to the stochastic system and the whole process is repeated
iteratively. This results in a closed-loop system—the so-called MPC closed loop.

To prove that MPC is an effective control method in our setting, we need to analyze
the qualitative (and quantitative) behavior of the MPC closed loop. Depending on the
structure of the running cost, the considered optimal control problem falls either into the
category of so-called stabilizing MPC or economic MPC. The tools to analyze the behav-
ior of the MPC closed loop are presented for both these frameworks in their respective
sections.

3.1 Preliminaries

As we will describe below, in MPC the control input is synthesized by iteratively solving
optimal control problems at discrete points in time. It is therefore convenient to consider
the dynamics in discrete time. Hence, suppose we have a process whose state z(k) is
measured at discrete times tk, k ∈ N0. Furthermore, suppose we can control it on the
time interval [tk, tk+1[ via a control signal u(k). Then we can consider nonlinear discrete-
time control systems

z(k + 1) = f(z(k), u(k)), z(0) = z̊, (3.1)

with state z(k) ∈ X ⊂ Z and control u(k) ∈ U ⊂ U , where Z and U are metric spaces.
State and control constraints are incorporated in X and U, respectively. Whenever clear
from the context, we might abbreviate the definition of the control system in (3.1) by

z+ = f(z, u).

Continuous-time models such as the one presented in Section 1.1 can be considered
in the discrete-time setting by sampling with a (constant) sampling time Ts > 0, i.e.,
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tk = t0 + kTs, or by replacing it with a numerical discretization. Given an initial state z̊
and an admissible control sequence u, either finite, i.e., u = (u(k))k=0,...,N−1 ∈ UN , or
infinite, i.e., u = (u(k))k∈N0 ∈ U∞, the solution trajectory is denoted by zu(·; z̊). Note
that we do not require the control u(k) to be constant on [tk, tk+1[—in general, u(k) can
be a time-dependent function on [tk, tk+1[.

As mentioned in Section 1.1, stabilization and tracking problems such as steering to a
desired state and remaining there can be recast as infinite-horizon OCPs. However, solving
OCPs governed by PDEs on large or even infinite horizons is, in general, computationally
hard. The idea behind MPC is to circumvent this issue by iteratively solving optimal
control problems on a shorter, finite time horizon and use the resulting (open-loop) optimal
control values to construct a feedback law F : X→ U for the MPC closed-loop system

zF(k + 1) = f(zF(k),F(zF(k))). (3.2)

Given a stage cost ` : Z × U → R, instead of solving the infinite-horizon OCP

J∞(̊z,u) :=
∞∑
k=0

`(zu(k; z̊), u(k))→ min
u∈U∞

!

s.t. zu(k + 1; z̊) = f(zu(k; z̊), u(k)), zu(0; z̊) = z̊,

zu(k; z̊) ∈ X for all k ∈ N0,

(OCP∞)

the feedback law F is constructed through the following MPC scheme:

Algorithm 3.1 (MPC scheme). 0. Given an initial value zF(0) ∈ X, fix the length of
the receding horizon N ≥ 2 and set n = 0.

1. Initialize the state z̊ = zF(n) and solve the following finite-horizon OCP:

JN (̊z,u) :=
N−1∑
k=0

`(zu(k; z̊), u(k))→ min
u∈UN

!

s.t. zu(k + 1; z̊) = f(zu(k; z̊), u(k)), zu(0; z̊) = z̊,

zu(k; z̊) ∈ X for all k ∈ {0, ..., N}.

(OCPN)

Apply the first value of the resulting optimal control sequence denoted by u∗ ∈ UN ,
i.e., set F(zF(n)) := u∗(0).

2. Evaluate zF(n+ 1) according to relation (3.2), set n := n+ 1 and go to step 1.

This scheme is illustrated in Figure 3.1. In connection with the above scheme, the
index n denotes the “global” time index, while k denotes the index in the open-loop
optimal control problem (OCPN), as illustrated in the figure. Whenever we want to point
out the importance of the horizon length N , we will denote the feedback by FN instead
of F .

For both the infinite and the finite-horizon OCP we introduce the optimal value func-
tion.

Definition 3.2 (Optimal value function). The functions

V∞(̊z) := inf
u
J∞(̊z,u) and VN (̊z) := inf

u
JN (̊z,u) (3.3)

are referred to as optimal value functions.
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(a) Discrete time n.
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(b) Discrete time n+ 1.

Figure 3.1: Illustration of the discrete-time MPC scheme for a tracking problem with
piecewise constant controls in time. The first part of the open-loop optimal control
sequence is applied, then the horizon is shifted and the procedure is repeated. Past
values are represented by dashes.

When passing from the infinite-horizon formulation to the MPC scheme, a priori it is
not clear, at all, whether we will obtain approximately optimal trajectories. In fact, it is
not even clear whether the closed-loop system is asymptotically stable.

One way to enforce stability is to add terminal conditions to (OCPN). In the PDE
setting, this approach has been investigated, e.g., in [59, 28, 27]. Terminal constraints are
added to the state constraints X, while terminal costs influence the cost functional JN .
However, constructing a suitable terminal region or finding an appropriate terminal cost
is a challenging task, cf. [49]. MPC schemes that do not rely on these methods are
much easier to set up and implement and are therefore often preferred in practice. In
this case, the choice of the horizon length N in step 0 of the MPC algorithm is crucial:
Longer horizons make the problem computationally harder; shorter horizon lengths may
lead to instability of the MPC closed loop. Therefore, the smallest horizon that yields a
stabilizing feedback is of particular interest, both from the theoretical and practical point
of view.
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A key difference for the analysis of MPC schemes lies in the stage cost `: Given some
equilibrium pair (z̄, ū) of (3.1), i.e., f(z̄, ū) = z̄, the question is whether ` is positive
definite with respect to (z̄, ū) or not. In the former case, we want to stabilize that desired
equilibrium, hence the name stabilizing MPC. A prime example is the stage cost

`(z(k), u(k)) =
1

2
‖z(k)− z̄‖2 +

γ

2
‖u(k)− ū‖2 , (3.4)

for some norm ‖·‖ and some weight γ > 0. This case is considered in Section 3.2.
The above stage cost, however, has a notable disadvantage: one needs to know the

corresponding ū for a desired z̄ beforehand, which may be cumbersome to compute. A
stage cost that is less complicated to design and thus easier to implement is

`(z(k), u(k)) =
1

2
‖z(k)− z̄‖2 +

γ

2
‖u(k)‖2 . (3.5)

This function is also more common in optimal-control literature and structurally similar
to the cost functional (2.9). Moreover, from a performance point of view it may be more
desirable to penalize the control effort, anyway. For ū 6= 0, the new stage cost ` is not
positive definite with respect to (z̄, ū) since `(z̄, ū) 6= 0.1 The specific stage cost (3.5)
models a so-called unreachable setpoint problem [82], which is a particular instance of an
economic MPC problem. This setting is considered in Section 3.3.

The conceptual difference between stabilizing and economic MPC is that, instead of
stabilizing a prescribed equilibrium pair (z̄, ū) via a stage cost that is positive definite
with respect to that pair, in economic MPC the interplay of the stage cost and dynamics
determines the optimal (long-term) behavior.

3.2 Stabilizing MPC

In this section we consider stage costs ` that are positive definite with respect to an
equilibrium pair (z̄, ū) that we want to attain. More specifically, we assume ` to be of
type (3.4). The goal of this section is to list known results and tools to prove asymptotic
stability of the MPC closed loop.

Similar to [2], in the case of stabilizing MPC we rely on a stability condition proposed
in [49] that, together with the exponential controllability property below, ensures a relaxed
Lyapunov inequality to hold, cf. [49, Thm. 6.15 and Prop. 6.18]. This inequality has been
introduced in [66] to guarantee stability of the MPC closed-loop solution.

Definition 3.3. The system (3.1) is called exponentially controllable with respect to the
stage cost ` :⇔ ∃C ≥ 1, δ ∈ ]0, 1[ such that for each state z̃ ∈ Z there exists a control
uz̃ ∈ U satisfying

`(zuz̃(k; z̃), uz̃(k)) ≤ Cδk min
u∈U

`(z̃, u) (3.6)

for all k ∈ N0.

Using the stability condition from [49], an upper bound for the minimal stabilizing
horizon can be deduced from the values of the overshoot bound C and the decay rate δ.

1Redefining `2(z, u) := `(z, u) − `(z̄, ū) usually does not help as it may lead to `2(z, u) < 0 for some
(z, u).
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For more details, see [2]. The most important difference in the influence of C and δ for our
study is that for fixed C, it is generally impossible to arbitrarily reduce the horizon N by
reducing δ. However, for C = 1, stability can be ensured even for the shortest meaningful
horizon N = 2.

The condition (3.6) depends on the stage cost `. In particular, ` being positive definite
with respect to an equilibrium pair (z̄, ū) is a necessary condition for the following theorem
resulting from [49, Thm. 6.20 and Sect. 6.6] to hold.

Theorem 3.4. Consider the MPC scheme with stage cost (3.4) satisfying the exponential
controllability property from Definition 3.3 with C ≥ 1 and δ ∈ ]0, 1[. Then the following
holds:

(a) There exists some optimization horizon N̄ ≥ 2 such that the equilibrium z̄ is globally
asymptotically stable for the MPC closed loop for each optimization horizon N ≥ N̄ .

(b) If C = 1 then N̄ = 2.

In both cases, the optimal value function VN to the optimization problem (OCPN) is a
Lyapunov function for the MPC closed loop, which in particular satisfies VN(zF(n+1)) <
VN(zF(n)) whenever VN(zF(n)) 6= 0.

This result states that the MPC closed loop (3.2) has the same qualitative stability
property as the solution of the infinite-horizon optimal control problem (OCP∞). Note
that the control uz̃ in Definition 3.3 does not have to be optimal. Thus, in order to
apply Theorem 3.4, the main task is to find a (suboptimal) control uz̃ that satisfies
condition (3.6), preferably with C = 1.

Theorem 3.4 requires the exponential controllability property to hold globally. How-
ever, even if it only holds in a neighborhood of the equilibrium z̄, the MPC algorithm yields
an asymptotically stable closed loop on suitable recursively feasible sets (outside areas of
“bad” behavior), provided the horizon is large enough [14]. Here, recursive feasibility is
defined in the sense of forward invariance with respect to the MPC feedback law F : A
set C ⊆ X is recursively feasible if for all z ∈ C we have F(z) ∈ U and f(z,F(z)) ∈ C.
The following result is a special case of [14, Thm. 6].

Theorem 3.5. Consider the MPC scheme with stage cost (3.4) satisfying the exponential
controllability property from Definition 3.3 with C ≥ 1 and δ ∈ ]0, 1[ on a neighborhood
M of z̄. Let C ⊂ V −1

∞ [0,+∞[ \ O be a compact set, where

O := lim
n→∞

V −1
∞ [n,+∞[ =

⋂
n∈N

V −1
∞ [n,+∞[ (3.7)

and V −1
∞ [n,+∞[ = {z ∈ X : n ≤ V∞(z) < ∞}. Then there exists some optimization

horizon N̄C ≥ 2 such that for every N ≥ N̄C the MPC closed loop is asymptotically stable
with basin of attraction S ⊇ C, and S is recursively feasible.

In addition to this qualitative stability property, the results from [49] also yield that the
MPC closed loop is approximately optimal for (OCP∞), i.e., that the MPC closed loop is
quantitatively similar to the solution of the infinite-horizon problem. A selection of these
performance results are introduced in the next section in the more general framework
of economic MPC. These results can also be applied in the stabilizing MPC case, see
Remark 3.9. Performance results tailored to the setting of stabilizing MPC, which yield
better quantitative results than the ones presented in the next section, can be found in
[49, Sect. 6].
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3.3 Economic MPC

In this section, we weaken the requirement on the stage cost ` from the previous section.
More specifically, we consider stage costs ` of type (3.5), which model an unreachable
setpoint problem. We concern ourselves with both stability and performance of the MPC
closed loop in this new setting.

Throughout this section, (ze, ue) denotes an equilibrium pair, i.e., f(ze, ue) = ze.
Whenever clear from the context, we might omit the word “pair”. Although we do
not stabilize a prescribed equilibrium, equilibria stay equally important. However, the
definition of the decisive optimal equilibrium changes.

Definition 3.6 (Optimal Equilibrium). An equilibrium (ze, ue) ∈ X×U is called optimal
:⇔ ∀(z, u) ∈ X× U with f(z, u) = z : `(ze, ue) ≤ `(z, u).

Assuming an equilibrium (ze, ue) exists and if f and ` are continuous and X × U
is compact, then an optimal equilibrium exists, see, e.g., [49, Lemma 8.4]. It can be
computed by solving the optimization problem

min
(z,u)∈X×U

`(z, u) s.t. z − f(z, u) = 0. (3.8)

The next question is under which circumstances—if at all—the optimal equilibrium
is asymptotically stable for the MPC closed loop. In [3, 53] it was shown that strict
dissipativity is the decisive property. In order to define it, we use the notation

|z1|z2 := dZ(z1, z2) (3.9)

for the distance from z1 ∈ Z to z2 ∈ Z and recall the notion of comparison functions,
which were introduced by Hahn in [55] and became increasingly popular since Sontag’s
work on input-to-state stability [90].

Definition 3.7 (Comparison functions). (a) Let α : R≥0 → R≥0 be a continuous func-
tion. Then

� α ∈ K :⇔ α is strictly increasing and α(0) = 0,
� α ∈ K∞ :⇔ α ∈ K and α is unbounded,
� α ∈ L :⇔ α is strictly decreasing and lim

t→∞
α(t) = 0.

(b) A continuous function β : R≥0 × R≥0 → R≥0 is called a KL function :⇔ ∀t ≥ 0 :
β(·, t) ∈ K and ∀r > 0 : β(r, ·) ∈ L.

Similar to how the exponential controllability property from the stabilizing MPC case
was tied to the stage cost `, strict dissipativity depends on `:

Definition 3.8 ((Strict) Dissipativity, Storage Function, Modified Cost). (a) The opti-
mal control problem (OCPN) with stage cost ` is called strictly dissipative at an equi-
librium pair (ze, ue) ∈ X×U if there exist a function λ : X→ R that is bounded from
below and satisfies λ(ze) = 0 and a function % ∈ K∞ such that for all (z, u) ∈ X×U :

`(z, u)− `(ze, ue) + λ(z)− λ(f(z, u)) ≥ %(|z|ze). (3.10)

(b) If (a) holds with % ≡ 0 then the optimal control problem is called dissipative.
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(c) The function λ in (a) is called storage function.

(d) The left-hand side of (3.10), i.e.,

˜̀(z, u) := `(z, u)− `(ze, ue) + λ(z)− λ(f(z, u)), (3.11)

is called modified cost or rotated cost.

Remark 3.9. (a) Note that the requirement λ(ze) = 0 in Definition 3.8(a) can always
be satisfied by a constant translation of λ without influencing the inequality (3.10).

(b) The OCPs considered in the stabilizing MPC case in Section 3.2 are strictly dissi-
pative at the desired equilibrium (z̄, ū) with a storage function λ ≡ 0:

`(z, u)− `(z̄, ū) = `(z, u) =
1

2
‖z − z̄‖2 +

γ

2
‖u− ū‖2 ≥ 1

2
‖z − z̄‖2 =: %(|z|z̄).

(c) Although Definition 3.8 is formulated for general equilibria, if an OCP is strictly
dissipative at a particular equilibrium (ze, ue), then this equilibrium is optimal, cf.
[49, Prop. 8.9]. Hence, we only need to check strict dissipativity at optimal equilibria.
From the same proposition we get the so-called optimal operation at steady-state,
i.e., that for all z ∈ X and for all admissible u ∈ U∞,

lim sup
M→∞

1

M

M−1∑
k=0

`(zu(k; z), u(k)) ≥ `(ze, ue). (3.12)

Under additional controllability assumptions, this property implies (non-strict) dis-
sipativity, cf. [71].

In a classical interpretation of (3.10), λ(z) serves as a quantifier for the amount of
energy stored at state z, `(z, u) − `(ze, ue) can be viewed as a supply rate that tracks
the amount of energy supplied to or withdrawn from the system via the control u, and
%(|z|ze) is the amount of energy the system releases (or dissipates) to the environment in
each step. Note, however, that in the optimal control problems we discuss here there is
not necessarily a notion of “energy” in a physical sense.

Strict dissipativity is the main required property in the subsequent stability and per-
formance results. As such, the focus will be on that property. However, in addition,
we require appropriate continuity properties. For the sake of completeness, these more
technical requirements will be introduced next. To this end, analogous to the optimal
value functions from Definition 3.2, we define ṼN (̊z) := infu J̃N (̊z,u) where, similar to the
modified cost ˜̀, J̃N is given by

J̃N(z,u) := JN(z,u)−N`(ze, ue) + λ(z)− λ(zu(N ; z)). (3.13)

Assumption 3.10 (Continuity of λ, VN , ṼN , and V∞ at ze).

(a) ∃γλ ∈ K∞ ∀z ∈ X : |λ(z)− λ(ze)| ≤ γλ(|z|ze)
(b) ∃γV ∈ K∞, ω ∈ L ∀z ∈ X, N ∈ N : |VN(z)− VN(ze)| ≤ γV (|z|ze) + ω(N)

(c) ∃γṼ ∈ K∞ ∀z ∈ X, N ∈ N : |ṼN(z)− ṼN(ze)| ≤ γṼ (|z|ze)
(d) ∃γV∞ ∈ K∞ ∀z ∈ X : |V∞(z)− V∞(ze)| ≤ γV∞(|z|ze)
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Since, in general, neither VN , nor ṼN nor V∞ are known, the above continuity assump-
tions are difficult to verify. This problem can be circumvented by sufficient conditions for
Assumption 3.10 that may be easier to show.

Definition 3.11 (Local controllability). The system (3.1) is called locally controllable
at ze if there exist a neighborhood E of ze, a time s ∈ N and functions γz, γu, γc ∈ K∞
such that for any z0, z1 ∈ E there exists a control u ∈ Us satisfying

zu(s; z0) = z1,

‖zu(k; z0)− ze‖ ≤ γz(δ),

‖u(k)− ue‖ ≤ γu(δ),

‖`(zu(k; z0), u(k))− `(ze, ue)‖ ≤ γc(δ),

(3.14)

for δ := max{‖z0 − ze‖ , ‖z1 − ze‖} and all k = 0, . . . , s− 1.

The following proposition is taken from [47, Prop. 5.6] and is extended to ṼN .

Proposition 3.12. Assume (OCPN) is strictly dissipative at (ze, ue) with a bounded stor-
age function λ.

(a) If the system (3.1) is locally controllable at ze, then Assumptions 3.10(b) and (d)
hold.

(b) Let Assumption 3.10(a) hold. If the system (3.1) is locally controllable at ze with ˜̀

instead of ` in (3.14), then Assumption 3.10(c) holds.

The optimal value functions in Assumption 3.10 are used as Lyapunov functions in
order to conclude stability of the MPC closed loop. In the stabilizing MPC case, the
proof of Theorem 3.4 relies on using VN as a Lyapunov function. The argument can be
adapted to the economic MPC case by using ṼN as a practical Lyapunov function for the
modified cost ˜̀, cf. [49, Sect. 8.6].2 The drawback is that we only get semiglobal practical
stability.

Theorem 3.13 (Stability result). Consider the MPC scheme with an optimal control
problem (OCPN) that is strictly dissipative at (ze, ue) with a bounded storage function λ.
Moreover, let Assumption 3.10(a)-(c) hold. Then the equilibrium ze is semiglobally prac-
tically asymptotically stable on X with respect to the optimization horizon N , i.e., there
exists β ∈ KL such that the following holds: for each δ,∆ > 0 there exists Nδ,∆ ∈ N such
that for all N ≥ Nδ,∆ and all z̊ ∈ X with |̊z|ze ≤ ∆ the inequality

|zFN (k; z̊)|ze ≤ max{β(|̊z|ze , k), δ} (3.15)

holds for all k ∈ N0.

Semiglobal practical asymptotic stability is a relaxation of global asymptotic stability
in two ways: “Semiglobal”, because we are limiting the initial values to all z̊ ∈ X with
|̊z|ze ≤ ∆. “Practical”, because in (3.15) we only require asymptotic stability until the
trajectory reaches a δ-neighborhood of ze, see Figure 3.2. Both δ and ∆ can be made
arbitrarily small and large, respectively, but not for a fixed optimization horizon N .

2VN cannot be used since the optimal trajectories for ` and ˜̀ do not have to coincide due to the last,
u-dependent term in (3.13).
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Figure 3.2: Illustration of semiglobal practical asymptotic stability. The blue tube (first
solid, then dotted) is defined by β(|̊z|ze , k). The blue and black solid lines represent
max{β(|̊z|ze , k), δ}.

Under assumptions similar to Theorem 3.13, we can state results regarding the per-
formance of the MPC closed loop in the following theorem. For more details, we refer to
[49, Sects. 8.5–8.7].

Theorem 3.14 (Performance results). Consider the MPC scheme with a strictly dissi-
pative optimal control problem (OCPN) at (ze, ue) with a bounded storage function λ and
let Assumption 3.10(a)-(b) hold.

(a) Assume that `(ze, ue) = 0, that X is bounded and let Assumption 3.10(d) hold.3 Then
there exists δ1 ∈ L such that the non-averaged finite-horizon closed-loop performance

J clM (̊z,F) :=
M−1∑
k=0

`(zF(k; z̊),F(zF(k; z̊)))

satisfies the inequality

J clM(z,FN) + V∞(zFN (M ; z)) ≤ V∞(z) +Mδ1(N) (3.16)

for all z ∈ X, M ∈ N and sufficiently large N ∈ N.

(b) Assume that VN is bounded from below on X. Then there exists δ1 ∈ L such that for
any N ≥ 2 and any z ∈ X the averaged infinite-horizon closed-loop performance

J
cl

∞(̊z,F) := lim sup
M→∞

1

M
J clM (̊z,F)

satisfies the inequality

J
cl

∞(z,FN) ≤ `(ze, ue) + δ1(N). (3.17)

3One can always satisfy `(ze, ue) = 0 by translating `. This does not affect the optimal trajectory.
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(c) Let UM
κ (z) :=

{
u ∈ UM | zu(M ; z) ∈ Bκ(ze)

}
, where Bκ(ze) denotes the closed ball

around ze with radius κ. Assume that X is bounded and let Assumption 3.10(c)
hold. Then there exist δ1, δ2, δ3 ∈ L such that for all z ∈ X the inequality

J clM(z,FN) ≤ inf
u∈UMκ (z)

JM(z, u) + δ1(N) +Mδ2(N) + δ3(M) (3.18)

holds with κ ≥ 0, where κ depends on M,N (each monotonically decreasing), and
|z|ze (monotonically increasing).

Theorem 3.14(a) states that by following the MPC closed loop up until step M and
then switching to the infinite-horizon optimal control starting from that point, the error
made compared to using the infinite-horizon optimal control from the beginning can be
quantified by Mδ1(N) with δ1(N) → 0 as N → ∞. For fixed N and increasing M ,
this error increases. However, from Theorem 3.14(b) we infer that the MPC closed-loop
solution does not entirely deteriorate, as the average performance behaves well even for
M →∞. Finally, we remark that the assumptions of Theorem 3.14(a)-(c) imply those of
Theorem 3.13, i.e., the MPC closed loop is semiglobally practically asymptotically stable
with respect to N . The phase until the closed-loop system reaches the δ-neighborhood
of ze is called the transient phase. The conclusion from Theorem 3.14(c) is that—up to
some error terms—the MPC closed loop has the best transient performance.

In summary, strict dissipativity is the decisive structural property that makes MPC
work. This is the main motivation why we analyze it in Chapter 6. Thereby, its rela-
tion to another important property of optimal control problems, the so-called turnpike
property, will be utilized. This classical property in optimal control originated in mathe-
matical economy, cf. [26], and recently attracted significant attention in the PDE control
community, cf., e.g., [93]. It demands that there exists a function σ ∈ L such that for all
N,P ∈ N, z ∈ X, and the optimal trajectories z∗(k; z) with horizon N , the set

Q(z, u, P,N) := {k ∈ {0, . . . , N − 1} | |z∗(k; z)|ze ≥ σδ(P )} (3.19)

has at most P elements. In words, most of the time the finite-horizon optimal trajectories
stay close to the optimal equilibrium ze.4 This is exemplarily illustrated in Figure 3.3.

Under a boundedness condition on the optimal value function (known as cheap reacha-
bility, for which Assumption 3.10(b) is sufficient), it can be shown that strict dissipativity
implies the turnpike property and under a controllability condition, these two properties
are even equivalent [48]. Unsurprisingly, the turnpike property can be used to deduce
stability5 and performance results, see [47, 94]. Moreover, it is often a good indicator
for strict dissipativity. In contrast to strict dissipativity, the turnpike property is more
difficult to check analytically, because it involves the knowledge of optimal trajectories.
On the other hand, the turnpike property is more easily checked numerically by means of
simulating optimal trajectories. Hence, these two properties complement each other in a
nice way when analyzing strict dissipativity of optimal control problems. Figure 3.4 gives
an overview of the relations between strict dissipativity, the turnpike property and the
above-discussed desired properties of the MPC closed loop.

4There are several distinctions of turnpike behavior, see, e.g., [48, Def. 2.2] and [49, Props. 8.15, 8.18]
5under additional assumptions such as terminal constraints.
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Figure 3.3: Open-loop optimal trajectories for N = 2, 6, 11, 16, 21, ..., 61 (dashed), closed-
loop trajectory (black dots), and optimal equilibrium ze (red dash-dot) for Example 6.23.

performance

● transient

● averaged infinite horizon
● non-averaged finite horizon

● optimal operation at steady-state

Prop 3.12

+ cheap reachability

(More details on
equivalence: [47, 48])

easier to verify easier to observe

[47]

(technical)
assumptions

decisive
properties

results

continuity (Assump 3.10)

● storage function
● optimal value function

controllability
● local controllability (Def 3.11)

strict dissipativity
(Def 3.8)

turnpike property*

stability
● (practical) asymptotic stability

basics

+

optimal equilibria
● Definition (Def 3.6)
● Existence [49, Lemma 8.4]

+

Thm 3.14
[49, Prop 8.9]Thm 3.13

+

strict dissipativity
at optimal equilibria

(Rem 3.9)

+

only 
non-strict

+ additional technical assumptions, 
    see [71, Thms 3, 4]

as in (3.19). For more variants, see [48, Def 2.2] and [49, Props 8.15, 8.18].*

+
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performance of the MPC closed loop in the economic MPC setting.





4Stabilizing MPC –
Space-independent control

Having introduced MPC, we begin our study of the behavior of the MPC closed loop
corresponding to OCPs of type (1.9). In this chapter we consider the task of steering the
state, in this case the PDF, asymptotically to a desired equilibrium. Different classes of
control functions can be used in this setting. Those that do not depend on space in the
Fokker–Planck equation, i.e., control inputs that are independent of the current state of
the stochastic process, are particularly easy to implement. This class of functions was
used in [4, 5] and is also considered in this chapter, as a starting point.

In the MPC scheme, cf. Section 3.1, the length of the finite optimization horizon
directly influences the numerical effort required for solving these problems: the shorter
the horizon, the faster the numerical solution. On the other hand, long horizons may be
needed in order to obtain stability of the resulting MPC closed loop, cf. [49, 2]. While
numerical results in [4, 5, 36] indicate that for the Fokker–Planck equation very short
optimization horizons are sufficient for obtaining stability, a formal proof of this fact is to
the best of our knowledge missing up to now.

In this chapter, we close this gap for the Fokker–Planck equation corresponding to the
controlled Ornstein–Uhlenbeck process using an L2 cost and control functions that are
constant in space but may be time-dependent. We show that for normally distributed
PDFs, stability can always be achieved, even when looking only one time step into the
future, thus resulting in the simplest possible optimal control problem with a constant
control function in each MPC iteration. Our analysis relies on an exponential controlla-
bility condition for the considered stage cost, which is established for three different cases
depending on the ratio of the variance of the initial PDF to the variance of the desired
PDF. We employ a suitably chosen equivalent stage cost for one of the cases.

The remainder of the chapter is organized as follows. Section 4.1 defines the prob-
lem setting, particularly the Fokker–Planck equation we are going to control. Section 4.2
contains the main stability result, which is obtained by checking the exponential control-
lability condition from Section 3.2. Our results are illustrated by numerical examples in
Section 4.3 before we conclude this chapter in Section 4.4.

4.1 Problem Setting

In this chapter we consider the (d-dimensional extension of the) Ornstein–Uhlenbeck
process (1.7) introduced in Section 1.1. In contrast to Chapter 2, the control u is assumed
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to be only time-dependent. The associated Fokker–Planck equation (1.2) reads

∂tρ(x, t)− 1

2

d∑
i=1

ς2
i ∂

2
iiρ(x, t) +

d∑
i=1

∂i ([−θixi + ui(t)] ρ(x, t)) = 0 in Q, (4.1a)

ρ(·, 0) = ρ̊(·) in Ω. (4.1b)

We consider the Gaussian setting with Ω = Rd (and thus Q = Rd×]0, T [) and moreover
assume that the initial PDF ρ̊ is a (multivariate) Gaussian PDF with mean µ̊ ∈ Rd and
covariance matrix Σ̊ = diag(̊σ2

1, ..., σ̊
2
d) with σ̊i > 0, i = 1, ..., d, i.e.,

ρ̊(x) =

(
(2π)d

d∏
i=1

σ̊2
i

)−1/2

exp

(
−

d∑
i=1

(xi − µ̊i)2

2σ̊2
i

)
.

For constant controls ui(t) ≡ ūi ∈ R, the solution of the Fokker–Planck equation (4.1)
exists in closed form, cf. [4] for the 1D case, which can be straightforwardly extended to
the d-dimensional setting:

ρ(x, t; ū) =

(
(2π)d

d∏
i=1

σ2
i (t)

)−1/2

exp

(
−

d∑
i=1

(xi − µi(t; ūi))2

2σ2
i (t)

)
, (4.2)

where

µi(t; ūi) :=
ūi
θi

+

(
µ̊i −

ūi
θi

)
e−θit and σ2

i (t) :=
ς2
i

2θi
+

(
σ̊2
i −

ς2
i

2θi

)
e−2θit.

Note that since the control is space-independent, it only affects the mean of the distribu-
tion, not its variance. For i = 1, ..., d we define

µ̄i :=
ūi
θi

and σ̄2
i :=

ς2
i

2θi
.

Then as t→∞, ρ(x, t; ū) converges to

ρ̄(x; ū) :=

(
(2π)d

d∏
i=1

ς2
i

2θi

)−1/2

exp

− d∑
i=1

(
xi − ūi

θi

)2

ς2i
θi


=

(
(2π)d

d∏
i=1

σ̄2
i

)−1/2

exp

(
−

d∑
i=1

(xi − µ̄i)2

2σ̄2
i

)
.

In particular, given any constant control u ≡ ū ∈ Rd, the PDF ρ̄ is an equilibrium solution
of (4.1). We want to steer from some given initial PDF ρ̊ to such a target PDF ρ̄. Of
course, this can be achieved simply by applying the corresponding constant control ū.
However, our goal is to reach the target quicker and/or more cheaply with respect to
some cost function. To calculate a control that achieves this, we use MPC, cf. Chapter 3.
Thus, the problem we consider is, given ρ̊ and ρ̄, we want to solve (OCPN) for stage costs
of type (3.4). In this chapter, the stage cost is defined by

`(ρ(k), u(k)) =
1

2
‖ρ(k)− ρ̄‖2

L2(Rd) +
γ

2
|u(k)− ū|2, (4.3)
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where ρ(k) denotes the solution ρ to (4.1), sampled at discrete time step k ∈ N0, and | · |
is the Euclidean norm. Hence, we want to minimize

JN(ρ̊,u) :=
N−1∑
k=0

[
1

2
‖ρ(k)− ρ̄‖2

L2(Rd) +
γ

2
|u(k)− ū|2

]
.

For N = 2, the resulting objective function

J2(ρ̊,u) =
1

2
‖ρ(0)− ρ̄‖2

L2(Rd) +
γ

2
|u(0)− ū|2 +

1

2
‖ρ(1)− ρ̄‖2

L2(Rd) +
γ

2
|u(1)− ū|2 (4.4)

is equivalent to

Ĵ2(ρ̊,u) :=
1

2
‖ρ(1)− ρ̄‖2

L2(Rd) +
γ

2
|u(0)− ū|2, (4.5)

since the first term in (4.4) is a constant that cannot be influenced and the last term is
always zero.1

The objective function (4.5) with ū = 0 is the type of cost functional used in [4, 5],
albeit for general target probability density functions, which are not necessarily (equilib-
rium) solutions to the Ornstein–Uhlenbeck process. Often |u|2 is used in the objective
function rather than |u − ū|2. Due to `(ρ̄, ū) 6= 0, this case leads to economic MPC, see
Section 3.3. Investigating the MPC closed loop in the framework of economic MPC is the
topic of Chapter 6.

In this chapter, however, the question at hand is whether the MPC scheme yields a
stabilizing control and if so, how to choose the horizon length N to guarantee stability
of the MPC closed loop. The state space Z, cf. Section 3.1, is the space of normally
distributed PDFs. To simplify the presentation, we focus on the one-dimensional case.

4.2 Stability of the MPC Closed-Loop Solution

In this section we analyze exponential controllability with respect to the stage cost (4.3)
according to Definition 3.3 in order to estimate the minimal stabilizing horizon length
depending on the overshoot C and the decay rate δ in (3.6).

One promising candidate for an exponentially stabilizing control sequence in (3.6) is
the constant control ū. In this case, the second term in the stage cost (4.3) vanishes
and the left-hand side of (3.6), which is given by `(ρ(k), ū), can be calculated explicitly2

thanks to (4.2):

`(ρ(k), ū) =

√
θ

2
√

2πς2

(
1 +

1√
ζ(tk)

− 2
√

2 exp(−η(tk))√
ζ(tk) + 1

)
, (4.6)

where

ζ(t) := 1 + (α− 1)e−2θt > 0, α :=
2θσ̊2

ς2
=
σ̊2

σ̄2
> 0,

η(t) :=
βe−2θt

ζ(t) + 1
≥ 0, β :=

(µ̊− ū
θ
)2

ς2

θ

=
(µ̊− µ̄)2

2σ̄2
≥ 0.

1Since the control u(1) only influences the subsequent states, which are not included in the objective
function, choosing u(1) = ū is always the best option when minimizing J2.

2In this chapter, we rely on the explicit solution formula. The more general case, which is independent
of such formulas, is provided in Lemma 5.5.
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Figure 4.1: A sample desired PDF ρ̄(x) (dotted blue) and three initial PDFs ρ̊(x) for
α = 1 (solid orange), α < 1 (dashed green) and α > 1 (dot-dashed red).

On the right-hand side of (3.6) we have

Cδk min
u
`(ρ̊, u) = Cδk`(ρ̊, ū).

Thus, to prove the exponential controllability property (3.6), we show that

`(ρ(t), ū) ≤ Ce−κt`(ρ(0), ū) (4.7)

in continuous time for some κ > 0, C ≥ 1 and define δ := e−κTs , where Ts is the
MPC sampling time, to arrive at (3.6). The constant C is the overshoot bound from
Definition 3.3, δ is the decay rate. Since we can ignore the constant factor

√
θ/2
√

2πς2

in (4.6), this is equivalent to proving

Wα(t) ≤ Ce−κtWα(0), (4.8)

where

Wα(t) := 1 +
1√
ζ(t)
− 2
√

2 exp(−η(t))√
ζ(t) + 1

. (4.9)

Hence, in the following we show that (4.8) holds, and moreover with C = 1, as we then
get stability for the shortest meaningful horizon length N = 2.

Before that, however, we give an interpretation of the above parameters α and β.
These depend on the model parameters θ and ς2 as well as on the initial PDF, which is
characterized by (µ̊, σ̊2). The value of β indicates the distance between the initial mean µ̊
and the mean of the target equilibrium PDF ρ̄. Similarly, the former parameter, α, relates
the initial variance σ̊2 to that of the target equilibrium PDF ρ̄. If α = 1, the variance does
not change in time since σ̊2 = ς2/(2θ) in (4.2). For α < 1, the variance of the distribution
is increasing in time since σ̊2 < ς2/(2θ). Analogously, it shrinks in time if α > 1. All
cases are illustrated in Figure 4.1. We recall that we cannot control the variance, only
the mean, see (4.2).

In order to conclude stability of the MPC closed loop from the exponential control-
lability condition (3.6), an exponentially stabilizing control needs to exist for the initial
state z̊ = zF(n) = ρ(tn, ·) in every MPC iteration. Hence, the value of α may change from
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one step to the next, i.e., αn+1 6= αn, where αn denotes the value of α in the n-th MPC
iteration. It is important to note, however, that for space-independent control the sign of
αn − 1 does not change with n. This is due to the monotone convergence of αn to 1 that
we get from reformulating the change in the variance in (4.2),

σ̊2
n+1 =

ς2

2θ
+

(
σ̊2
n −

ς2

2θ

)
e−2θTs ,

to

αn+1 = 1 + (αn − 1)e−2θTs . (4.10)

In order to prove (4.8) we now consider the three cases α = 1, α < 1, and α > 1
separately.

The case α = 1:

In this case, the shape of the PDF stays the same since the space-independent control
can only move the PDF as a whole. We have

W1(t) = 2− 2e−βe
−2θt/2 (4.11)

and we can prove the following proposition.

Proposition 4.1. For W1(t), inequality (4.8) holds with C = 1 and κ = 2θe−β/2.

Proof. We show W ′
1(t) ≤ −κW1(t) to conclude our assertion. To this end, consider

W ′
1(t) + κW1(t) = −4θ

(
β

2
e−2θte−βe

−2θt/2 − e−β/2 + e
−β/2e−βe

−2θt/2

)
= −4θ

(
e−βe

−2θt/2

[
β

2
e−2θt + e

−β/2

]
− e−β/2

)
= −4θ

(
e−β̃τ

[
β̃τ + e−β̃

]
− e−β̃

)
,

where β̃ := β/2 ≥ 0 and τ := e−2θt ∈ ]0, 1]. For arbitrary but fixed β̃ we define the C∞

function

h1(τ) := e−β̃τ (β̃τ + e−β̃)− e−β̃.

It can easily be shown that h1(0) = 0 and h1(1) ≥ 0. By calculating h′1(τ), one can show

that h1(τ) is monotonously increasing on ]0, τ ∗[, with τ ∗ := (1− e−β̃)/β̃ being the unique
root of h′1(τ), and monotonously decreasing on ]τ ∗, 1]. Therefore, h1(τ) ≥ 0 on ]0, 1],
which concludes the proof.

Since C = 1, the MPC closed loop is asymptotically stable even for the shortest
possible horizon N .
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The case α < 1:

For α < 1, the shape of the PDF becomes wider in time. Due to the nature of the L2

cost (4.6), initially, the cost may be higher compared to α = 1, i.e., Wα(0) ≥ W1(0).
However, it also drops more quickly, i.e., W ′

α(t) ≤ W ′
1(t). The idea is to prove

h2(t) := W1(0)Wα(t)−Wα(0)W1(t) ≤ 0, (4.12)

since for W1(0) 6= 0, which we can assume w.l.o.g., we then use Proposition 4.1 to get

Wα(t) ≤ Wα(0)

W1(0)
W1(t) ≤ Wα(0)

W1(0)
e−κtW1(0) = e−κtWα(0)

for κ as in Proposition 4.1.
Obviously, h2(0) = 0 and limt→∞ h2(t) = 0. Analogously to the proof of Proposi-

tion 4.1, one can show there exists at most one root t∗ ∈ [0,∞[ of h′2(t) and that h2(t) is
monotonously decreasing on [0, t∗[ (or [0,∞[ in case there is no root of h′2(t) in [0,∞[) and
monotonously increasing on ]t∗,∞[. Hence, (4.12) holds and we have shown the following.

Proposition 4.2. For α < 1, Wα(t) satisfies (4.8) with C and κ from Proposition 4.1.

The case α > 1:

If α > 1, the shrinking variance of the distribution may lead to increasing stage costs at
the beginning, i.e., W ′

α(t) > 0 for t ∈ [0, t∗[ and some t∗ > 0. This occurs, for instance,
for θ = µ̊ = ς = 1, σ̊ = 100, and control ū = 2000, cf. Figure 4.2. It is due to the L2 norm
used in the stage cost (4.3). Obviously, condition (4.8) does not hold for C = 1.

To circumvent this issue, we can add (time-dependent) control-independent terms to
Wα(t). One possibility is to add

2
√

2|α− 1|e−2θt + 1− 1√
ζ(t)

to Wα(t), which results in

W̃α(t) := 2
√

2Ŵα(t) := 2
√

2

(
|α− 1|e−2θt +

1√
2
− exp(−η(t))√

ζ(t) + 1

)
. (4.13)

Just as Wα(t) from (4.9) stemmed from the stage cost ` from (4.3), there exists a
stage cost ˜̀ that, for u ≡ ū, yields W̃α(t) in the one-dimensional case. A short calculation
reveals that the terms added to Wα(t) can be formulated in terms of ρ and ρ̄:

˜̀(ρ, u) := `(ρ, u) +
1

2

(
‖ρ̄‖2

L2(R) − ‖ρ‖
2
L2(R)

)
+
√

2 ‖ρ̄‖2
L2(R)

∣∣∣∣∣‖ρ̄‖
4
L2(R)

‖ρ‖4
L2(R)

− 1

∣∣∣∣∣ . (4.14)

Note that ˜̀yields the same optimal control sequence as ` from (4.3) and thus Theorem 3.4
can be applied to ˜̀. This is because the added terms to ` do not depend on the control u.
At first glance, this might seem counterintuitive, as the PDF ρ of course does depend
on u. The L2(R) norm of ρ, however, does not. At second glance the reason is clear: All
the control u can do is shift the PDF ρ to the left or to the right. But moving a function
does not change its L2 norm on R.
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Figure 4.2: Wα(t) (solid red), W̃α(t) (dotted blue), and W̃α(0)e−κt (dashed green) with κ
from Proposition 4.3 for (θ, µ̊, ς2, σ̊2, ū) = (1, 0, 1, 25, 200) (left) and for (θ, µ̊, ς2, σ̊2, ū) =
(1, 0, 16, 1/10000, 1/4) (right), giving (α, β) = (25/4, 5000) and (α, β) = (4/625, 2), respectively.

Proposition 4.3. For W̃α(t) with α > 1, inequality (4.8) holds with C = 1 and κ = θe−β/2.

Proof. To prove that inequality (4.8) holds for W̃α(t) we can equivalently consider Ŵα(t)
from (4.13). Since α > 1 we may drop the absolute value in Ŵα(t). Then we can rewrite
Ŵα(t) due to (α− 1)e−2θt = ζ(t)− 1:

Ŵα(t) = ζ(t)− 1 +
1√
2
− exp(−η(t))√

ζ(t) + 1
.

As in the proof of Proposition 4.1 we show Ŵ ′
α(t) +κŴα(t) ≤ 0 to conclude our assertion.

To keep notation brief, we introduce the variables

τ := e−2θt ∈ ]0, 1], ω := ζ(t) + 1 > 2, κ̃ :=
κ

2θ
=
e−β/2

2
> 0.

This yields

ζ ′(t) = −2θ(α− 1)e−2θt = −2θ(ω − 2),

η(t) =
βe−2θt

ζ(t) + 1
=
βτ

ω
,

η′(t) = −2θβe−2θt

ζ(t) + 1
− ζ ′(t)βe−2θt

(ζ(t) + 1)2 = −2θβτ

ω
+

2θ(ω − 2)βτ

ω2
= −2θ

[
βτ

ω
− (ω − 2)βτ

ω2

]
= −2θ · 2βτ

ω2
.

We have

Ŵ ′
α(t) + κŴα(t)

= ζ ′(t) +
η′(t) exp(−η(t))√

ζ(t) + 1
+
ζ ′(t) exp(−η(t))

2 (ζ(t) + 1)
3/2

+ κ

[
ζ(t)− 1 +

1√
2
− exp(−η(t))√

ζ(t) + 1

]

= − 2θ

(
ω − 2 +

e−βτ/ω√
ω

[
2βτ

ω2
+
ω − 2

2ω

])
+ κ

[
ω − 2 +

1√
2
− e−βτ/ω√

ω

]
= − 2θ

(
ω − 2 +

e−βτ/ω√
ω

[
2βτ

ω2
+
ω − 2

2ω

]
− κ

2θ

[
ω − 2 +

1√
2
− e−βτ/ω√

ω

])
︸ ︷︷ ︸

=:h3
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and now need to show that h3 ≥ 0:

h3 = ω − 2 +
e−βτ/ω√

ω

[
2βτ

ω2
+
ω − 2

2ω

]
− κ

2θ

[
ω − 2 +

1√
2
− e−βτ/ω√

ω

]
= ω − 2 +

e−βτ/ω√
ω

[
2βτ

ω2
+
ω − 2

2ω

]
− κ̃

[
ω − 2 +

1√
2
− e−βτ/ω√

ω

]
= (ω − 2)(1− κ̃) +

e−βτ/ω√
ω

[
2βτ

ω2
+
ω − 2

2ω
+ κ̃

]
− κ̃√

2

= (ω − 2)︸ ︷︷ ︸
≥ 0

(1− 2κ̃)︸ ︷︷ ︸
= 1−exp(−β/2)≥ 0

+
e−βτ/ω√

ω

[
2βτ

ω2
+ κ̃

]
+
e−βτ/ω√

ω
· ω − 2

2ω︸ ︷︷ ︸
≥ 0

− κ̃√
2

+ (ω − 2)κ̃

≥ e−βτ/ω√
ω

[
2βτ

ω2
+ κ̃

]
+ κ̃

[
ω − 2− 1√

2

]
=: h4.

If ω ≥ 2 + 1/
√

2 then the assertion follows. Hence, it remains to show that h4 ≥ 0 for
2 < ω < 2 + 1/

√
2. To this end, we have

h4 =
e−βτ/ω√

ω

[
2βτ

ω2
+ κ̃

]
+ κ̃

[
ω − 2− 1√

2

]
= κ̃

(
e−βτ/ω√

ω

[
2βτ

κ̃ω2
+ 1

]
+ ω − 2− 1√

2

)
= κ̃︸︷︷︸

> 0

(
e−βτ/ω√

ω

[
4βτeβ/2

ω2
+ 1

]
+ ω − 2− 1√

2

)
︸ ︷︷ ︸

=:h5(β)

.

We assume 2 < ω < 2 + 1/
√

2. The idea now is to show h5(0) ≥ 0 as well as h′5(β) ≥ 0.3

First, we have

h5(0) =
1√
ω

+ ω − 2− 1

2
≥ 0.

Second, the derivative h′5(β) is given by

h′5(β) = − τ
ω

[
4βτeβ/2

ω2
+ 1

]
e−βτ/ω√

ω
+
e−βτ/ω√

ω

[
4τeβ/2

ω2
+

2βτeβ/2

ω2

]
= − τ

ω7/2
e−βτ/ω︸ ︷︷ ︸
≤ 0

(
4βτe

β/2 + ω2 − 4ωe
β/2 − 2βωe

β/2
)︸ ︷︷ ︸

=:h6

.

In the final step we show that h6 ≤ 0 for 2 < ω < 2 + 1/
√

2:

h6 = ω2 + 4βτe
β/2 − 2βωe

β/2 − 4ω e
β/2︸︷︷︸
≥ 1

≤ ω2 + 2βe
β/2 (2τ − ω)︸ ︷︷ ︸
≤ 2−ω≤ 0

−4ω

≤ ω(ω − 4) < 0.

In conclusion, we have shown Ŵ ′
α(t) + κŴα(t) ≤ 0 and thus the assertion.

3We recall that τ and ω are independent of β.
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To summarize, in all three cases we can apply Theorem 3.4 in order to conclude
asymptotic stability of the MPC closed loop for the shortest possible horizon N = 2.

Remark 4.4. (a) Figure 4.2 suggests that—at least in some cases—a much better decay
rate can be obtained. However, this is irrelevant if C = 1 and the goal is to show
asymptotic stability of the MPC closed loop for N = 2.

(b) It is possible to employ W̃α(t) for all three cases of α. For α = 1, W̃1(t) coincides
with W1(t). For α < 1, the proof is structurally similar to the one of Proposition 4.3.
Figure 4.2 (right) depicts exemplarily the case of α < 1.

(c) As we will see more clearly in Chapter 5, in the case of Gaussian PDFs we can
replace the PDF ρ in the stage costs ` and ˜̀, cf. (4.3) and (4.14), by its mean
µ and its covariance matrix Σ. In the one-dimensional case Σ corresponds to the
variance σ2. Figure 4.3 depicts the terms penalizing the state in both stage costs—
i.e., `(ρ, ū) and ˜̀(ρ, ū)—in terms of (µ,Σ), where the desired PDF ρ̄ is a Gaussian
PDF with (µ̄, Σ̄) = (0, 1). The exact formulas can be obtained from Lemma 5.5 and
the proof thereof.

4.3 Numerical Simulations

For our numerical study, we consider the Ornstein–Uhlenbeck process on Q := R× ]0, 5[.
We use the explicit solution formula (4.2) and solve the optimal control problem using
the program OU-MPC, cf. Section 7.2.4

We fix θ = 1, µ̊ = −3.5, and ū = 3.5. For α = 1, the remaining model parameters
are (ς, σ̊) = (1/

√
8, 1/4). The cases α < 1 and α > 1 are modeled by (ς, σ̊) = (0.5, 0.1)

and (ς, σ̊) = (0.1, 0.5), yielding (α, β) = (0.08, 196) and (α, β) = (50, 4900), respectively.
In the MPC algorithm, we only look one time step into the future. The sampling time
Ts is 0.1. We use the cost defined by (4.5) with γ = 0.25. The gradient of the cost was
computed analytically.

Figure 4.4 shows the PDF ρ(x, t) at various times, the desired equilibrium solution ρ̄,
and the corresponding controls for all three cases of α. The optimal control stays near
ū = 3.5 until the PDF ρ is close enough to ρ̄, when a higher control value helps reaching
the target faster at reasonable cost. Table 4.1 displays the total cost

∑49
n=0 Ĵ2(ρun(n),un)

for the constant control un ≡ ū as well as for un = u∗n, which denotes the optimal control
sequence u∗ calculated at the n-th MPC step. It shows the sub-optimality of ū.

α = 1 α < 1 α > 1
ū 32.43 21.57 136.15
u∗ 27.45 (-15.36%) 19.59 (-9.16%) 90.86 (-33.26%)

Table 4.1: Total cost for the constant control un ≡ ū and for un = u∗n.

The cost Ĵ2(ρu∗n(n),u∗n) in each MPC step n is illustrated in Figure 4.5 for all three
cases of α and develops as predicted. We note that for α > 1, even the optimal sequence

4It is also possible to numerically solve the Fokker–Planck equation directly, e.g., using the program
PDE-MPC, cf. Section 7.1. A sufficiently fine discretization in space and time yields the same results.
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Figure 4.3: State costs `(ρ, ū) = `(ρ, u)− γ
2
|u− ū|2 (left) and ˜̀(ρ, ū) = ˜̀(ρ, u)− γ

2
|u− ū|2

(right) from (4.3) and (4.14), respectively, in the one-dimensional case expressed in terms
of mean µ and covariance matrix Σ. The desired PDF ρ̄ is a Gaussian PDF with (µ̄, Σ̄) =
(0, 1). The orange dot in the bottom pictures at (µ,Σ) = (µ̄, Σ̄) marks the minimum.

leads to an increasing cost at the beginning. Since for the optimal control sequence u∗ =
(u∗(0), ..., u∗(N − 1)) we have J2(ρ̊,u∗) = V2(ρ̊), cf. Theorem 3.4, this also shows that
the optimal value function V2 grows. In particular, V2 cannot be a Lyapunov function for
N = 2. Thus, based on this numerical evidence, Theorem 3.4 implies that exponential
controllability with C = 1 cannot hold for the running cost (4.3). This further highlights
the need of an equivalent stage cost in the proof since clearly, in the numerical simulations,
the equilibrium solution ρ̄ is asymptotically stable for the MPC closed loop, even for the
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Figure 4.4: PDFs ρ(x, 0) (solid blue), ρ(x, 1) (dashed blue), ρ(x, 2) (dotted blue) and
ρ̄(x) (dot-dashed red) on the left and the corresponding optimal MPC control u∗(t) on
the right for α < 1, α = 1, and α > 1 (from top to bottom).

shortest possible optimization horizon. If we consider the stage cost ˜̀and use an objective
function Ĵ

˜̀
2 that is derived analogously to how Ĵ2 was derived from J2, cf. (4.4) and (4.5),

but with ˜̀ instead of `, then we do see the exponential decay, see Figure 4.6. In conclusion,
the numerical simulations coincide with our theoretical findings.

4.4 Conclusion

This chapter provides first insights and results regarding the stability of the MPC closed
loop in the Fokker–Planck optimal control framework. For the Fokker–Planck equation
associated with the Ornstein–Uhlenbeck process we can conclude asymptotic stability of
the MPC closed loop even for the shortest possible horizon N = 2, if the control u does
not depend on space. These findings coincide with our numerical simulations.
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Figure 4.5: Objective functions Ĵ2(ρu∗n(n),u∗n) from (4.5) (left) and J2(ρu∗n(n),u∗n) from
(4.4) (right) for α = 1 (solid red), α < 1 (dotted green) and α > 1 (dashed blue).

Figure 4.6: Objective function Ĵ
˜̀
2(ρu∗n(n),u∗n) for α = 1 (solid red), α < 1 (dotted green)

and α > 1 (dashed blue), normalized to 1 at the beginning for better comparison.

Depending on the model parameters and the target PDF (more specifically, the relation
between the initial and the target variance as well as the distance between the initial and
the target mean), an adjustment of the stage cost ` is required in order to prove asymptotic
stability. This is particularly apparent in Figure 4.5, where for α > 1 the cost increases
even for the optimal control u∗, providing strong numerical evidence that (4.8) with C = 1
cannot be concluded with `. The workaround is to use an equivalent stage cost ˜̀, where
the intuition is to remove problematic parts from the stage cost that cannot be controlled.
Note that ˜̀ is only required in the proof. Since ˜̀yields the same optimal control sequence
as `, one can still use the original stage cost ` in the numerical simulations.

In this chapter, the equivalent stage cost was obtained by adding terms related to the
(evolution of the) variance, which cannot be influenced by a control that acts on the drift
term and does not depend on space. This specific strategy does not work if the control
does influence the variance, e.g., with a space-dependent control. However, unsurprisingly,
much better tracking results are obtained with a space-dependent control, see Figure 2.1.
Hence, in the subsequent chapter, we study a more general setting, where we consider a
whole class of stochastic processes and (a class of) space-dependent controls in particular.
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In this chapter we continue the stability analysis of Model Predictive Control schemes
applied to the Fokker–Planck equation for tracking probability density functions in the
stabilizing MPC case, cf. Section 3.2. The analysis is carried out for linear dynamics
and Gaussian distributions, where, as in the previous chapter, the distance to the de-
sired reference is measured in the L2 norm. We present results for general such systems
with and without control penalization. Refined results are given for the special case of
the Ornstein–Uhlenbeck process—this time with a space-dependent control—, where we
establish stability for the shortest possible optimization horizon N = 2.

As before, the results in this chapter are based on general MPC stability and perfor-
mance guarantees from [45, 50] and [49, Ch. 6], which rely on appropriate controllability
properties of the stage cost along the controlled dynamics, i.e., the L2 distance to the
reference PDF along the solutions of the Fokker–Planck PDE. More specifically, we rely
on the exponential controllability property from Definition 3.3. However, we will see that
even in the simplifying linear and Gaussian setting of this chapter, the assumptions from
[45, 50] and [49, Ch. 6] are not always satisfied. Hence, for some of our results, we need
to develop new arguments for proving stability of the MPC closed loop, cf. Section 5.3.2.

The remainder of this chapter is structured as follows. The precise problem formulation
and assumptions are presented in Section 5.1. Section 5.2 collects important auxiliary
results for the L2 stage cost used in this chapter. The main results are presented in
Section 5.3, which is divided into results for general linear stochastic control systems in
Subsection 5.3.1 and results for the Ornstein–Uhlenbeck process in Subsection 5.3.2. The
latter results demonstrate in which sense the general results can be further improved for
a particular form of the stochastic dynamics. Section 5.4 concludes this chapter.

5.1 Problem Formulation and Assumptions

The problem setting in this section is a generalization of the one in Chapter 4: Instead
of one specific stochastic process, we look at a whole class of stochastic processes. Again,
we want to focus on Gaussian distributions. More precisely, we look at solutions of the
Fokker–Planck equation (1.2) that have the form (1.6).

While it is entirely possible to work directly with the Fokker–Planck equation, see,
for example, [85, 36], in general, it is hard to find conditions on the diffusion matrix (aij)
and drift coefficients b as well as conditions on the structure of the control u(x, t) that
guarantee solutions of the form (1.6). Therefore, as a special case, let us consider linear
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stochastic systems of the form

dXt = AXtdt+Bu(t)dt+DdWt, t ∈ ]0, T [, (5.1)

with an initial condition X̊ ∈ Rd and where A ∈ Rd×d, B ∈ Rd×l, D ∈ Rd×m, and the
control u(t) is defined by

u(t) := −K(t)Xt + c(t) (5.2)

for functions K : R≥0 → Rl×d and c : R≥0 → Rl. This results in

dXt = (A−BK(t))Xtdt+Bc(t)dt+DdWt, t ∈ ]0, T [, (5.3)

i.e., a stochastic process (1.1) with constant diffusion ã(Xt, t) ≡ D and a linear drift
term b(Xt, t;u) = (A− BK(t))Xt + Bc(t), from which the coefficients for the associated
Fokker–Planck equation (1.2) can be derived.

As before, for a matrix A ∈ Rd×d, we write |A| := det(A). If X̊ ∼ N (µ̊, Σ̊) with mean
µ̊ ∈ Rd and covariance matrix Σ̊ ∈ Rd×d > 0, then the corresponding initial PDF in (1.2b)
is given by

ρ̊(x) := |2πΣ̊|−1/2 exp

(
−1

2
(x− µ̊)>Σ̊−1(x− µ̊)

)
. (5.4)

Then, due to linearity of the process, the solution of the corresponding Fokker–Planck
equation (1.2), ρ(x, t), is also a Gaussian PDF of form (1.6), cf. [80, 22, 18]. The same holds
if A, B, and D are time-dependent, cf. [84, Sect. 6.5]. In particular, for linear processes,
the control structure (5.2) is the appropriate choice to preserve Gaussian density functions.

In the rest of this chapter, we consider linear stochastic systems of type (5.3) with
corresponding initial PDF (5.4). While it is entirely possible to work in the PDE setting
with a control that is linear in space, i.e., u(x, t) = −K(t)x + c(t), we can alternatively
characterize these processes via the following ODE system for the corresponding mean µ(t)
and covariance matrix Σ(t), see [18, p. 117]:

µ̇(t) = (A−BK(t))µ(t) +Bc(t), µ(0) = µ̊,

Σ̇(t) = (A−BK(t))Σ(t) + Σ(t)(A−BK(t))> +DD>, Σ(0) = Σ̊.
(5.5)

Note that even though the control (5.2) enters through the drift term, cf. (5.1), since it is
linear in space, both mean and covariance matrix are affected. Moreover, since K(t) and
c(t) are to be optimized, we remind that the resulting OCP is bilinear.

Due to the fixed form of the control, (5.2), in the following, we will use the term
“control” for both u(x, t) and the pair of coefficients (K(t), c(t)), depending on the context.
Likewise, our objective to steer the solution ρ(x, t;u) to a Gaussian PDF

ρ̄(x) := |2πΣ̄|−1/2 exp

(
−1

2
(x− µ̄)>Σ̄−1(x− µ̄)

)
(5.6)

and remain there is equivalent to steer the pair (µ(t),Σ(t)) to (µ̄, Σ̄) and maintain that
state.

One particular process of type (5.5) is the already known (controlled) Ornstein–
Uhlenbeck process, which we briefly reintroduce due to the new linear control structure.
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Example 5.1 (Ornstein–Uhlenbeck). (a) For given parameters θ, ς > 0 and a control
of type (5.2), the controlled Ornstein–Uhlenbeck process (1.7) reads:

dXt = [− (θ +K(t))Xt + c(t)] dt+ ςdWt, t ∈ ]0, T [, (5.7)

i.e., (5.3) with A = −θ, B = 1, and D = ς. To keep the properties of the process,
we require θ + K(t) > 0 for all t ≥ 0. We do not (need to) impose any constraints
on c(t).

(b) An easy extension to the d-dimensional case is made by considering

A = diag(−θ1, . . . ,−θd),
B = I,

D = diag(ς1, . . . , ςd),

K(t) = diag(k1(t), . . . , kd(t)),

c(t) = (c1(t), . . . , cd(t)),

(5.8)

where, analogously, we require that ki(t) > −θi for all t ≥ 0, i = 1, ..., d.

Let us assume that ρ̊ is a Gaussian PDF with mean µ̊ ∈ Rd and covariance matrix
Σ̊ = diag(̊σ2

1, ..., σ̊
2
d) with σ̊i > 0, i = 1, ..., d. Furthermore, let us view the control

coefficients (K(t), c(t)) as parameters for the moment and assume that they are
constant, i.e., ki(t) ≡ k̄i and ci(t) ≡ c̄i, i = 1, . . . , d. Then, analogously to the
space-independent control case in Section 4.1, the ODE system (5.5) can be solved
analytically, with the mean given by

µi(t) =
c̄i

θi + k̄i
+

(
µ̊i −

c̄i
θi + k̄i

)
e−(θi+k̄i)t (5.9)

and covariance matrix
Σ(t) = diag(σ2

1(t), ..., σ2
d(t)), (5.10)

where

σ2
i (t) :=

ς2
i

2(θi + k̄i)
+

(
σ̊2
i −

ς2
i

2(θi + k̄i)

)
e−2(θi+k̄i)t, (5.11)

for i = 1, ..., d. We define µ̄ := (µ̄1, ..., µ̄d) and Σ̄ := diag(σ̄2
1, ..., σ̄

2
d), where

lim
t→∞

µi(t) =
c̄i

θi + k̄i
=: µ̄i and lim

t→∞
σ2
i (t) =

ς2
i

2(θi + k̄i)
=: σ̄2

i . (5.12)

While in Example 5.1 it is easy to see that any desired state of type (5.6) can be
reached by choosing appropriate functions (K(t), c(t)) and stabilized with constant (K̄, c̄),
in general, this is not the case. To ensure the existence of controls (K(t), c(t)) such that
at some given time T > 0, ρ̄ is reached, it is necessary and sufficient to require (A,B)
to be a controllable pair, see [22, Sects. II and III] or [18, Theorems 2.10.5 and 2.10.6].
After having reached ρ̄, the aim is to stay there. In this chapter, we want to focus
on stationary states that can be stabilized by applying static-state feedback, i.e., (5.2)
with some constant (K̄, c̄). In general, not every desired PDF ρ̄ can be stabilized in this
manner. To this end, some conditions on Σ̄ and the dynamics were derived in [22, Sect. III-
B]. Overall, we end up with the following conditions, which we assume throughout the
chapter:
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Assumption 5.2. (a) The pair (A,B) is controllable.

(b) The covariance matrix of the desired Gaussian PDF ρ̄, Σ̄, is such that the equation

0 = AΣ̄ + Σ̄A> +BX> +XB> +DD> (5.13)

can be solved for X.

(c) A−BK̄ is a Hurwitz matrix for K̄ = −X>Σ̄−1 and X the solution of (5.13).

(d) The equation
0 = (A−BK̄)µ̄+Bc̄

has a solution (K̄, c̄) with K̄ as in (c).

As mentioned above, the first condition guarantees the existence of controls (K(t), c(t))
such that a given Gaussian PDF ρ̄, characterized by the pair (µ̄, Σ̄), can be reached.
From (5.5) we see that Assumption 5.2(b) is a necessary condition such that Σ̄ can be
stabilized using a constant K̄. On the other hand, if it holds, then it is possible to choose
K̄ = −X>Σ̄−1, which satisfies the algebraic Lyapunov equation

(A−BK̄)Σ̄ + Σ̄(A−BK̄)> = −DD>. (5.14)

Hence, if, additionally, Assumption 5.2(c) holds, then Σ̄ is an admissible stationary state
covariance in the sense that it can be stabilized using a constant control K̄. In order to
stabilize a desired mean µ̄ as well, in addition to the previous assumptions, we require
Assumption 5.2(d) to hold. This condition is sufficient due to (5.5) and the fact that
A−BK̄ is Hurwitz according to Assumption 5.2(c). For more details, see [22].

Remark 5.3. (a) The solvability of (5.13) is equivalent to the rank condition

rank

(
AΣ̄ + Σ̄A> +DD> B

B 0

)
= rank

(
0 B
B 0

)
,

cf. [22] or [42, Prop. 1].

(b) Since Σ̄ is positive definite, if the symmetric matrix DD> is positive definite, too,
then Assumption 5.2(c) is guaranteed. In the general case, in which DD> is only
positive semi-definite, however, this is not true, cf. Example 5.4. Yet, a sufficient
condition for Assumption 5.2(c) to hold is that the range of B is a subset of the
range of D, i.e., R(B) ⊆ R(D), which one can verify without knowing K̄, cf. [22].

(c) If one ignores the mean or considers the case where it is constant for all times, then
one can drop Assumption 5.2(d).

Example 5.4. Consider

A :=

(
−13

2
−11

4

13
4

7
8

)
, B :=

(
0 3
1 −3

)
, D :=

(
1
−1

2

)
, Σ̄ = I, X :=

(
3 2
2 1

)
,

for which (5.13) holds.1 However, the matrix A−BK̄ with K̄ = −X>Σ̄−1 is not Hurwitz
since one of the Eigenvalues of A−BK̄ is zero.

1Note also that D has full rank.
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To summarize, we consider stochastic processes (5.3) with corresponding initial PDF
(5.4). Our objective is to steer to and remain at a certain stationary PDF ρ̄ from (5.6),
which can be characterized by its mean µ̄ and covariance matrix Σ̄. Therefore, we can
equivalently study the dynamics (5.5). With Assumption 5.2 we ensure the feasibility of
the problem.

In a next step, we want to solve this problem using Model Predictive Control, cf.
Chapter 3. Formulated in the MPC setting, we want to solve (OCPN) subject to dynamics
that are sampled from (5.5) and where the stage cost ` in the cost function JN((µ̊, Σ̊),u)
is yet to be defined. We consider stabilizing MPC, cf. Section 3.2, i.e., a positive definite `
with respect to a stationary Gaussian PDF (5.6) that is characterized by (µ̄, Σ̄). As in
Chapter 4, we are mainly interested in the stability of the MPC closed loop. Since the
choice of the stage cost ` is crucial, we take a closer look at designing a suitable stage
cost ` in the next section before we turn to the analysis of the MPC closed loop.

5.2 Design and Properties of the Stage Cost `

In light of Section 3.2, the standard choice of using quadratic costs in the state and the
control penalization as in (3.4) appears to be viable. As before, we use the L2 norm for
the term penalizing the state. Applying the L2 norm to the control penalization term as
well—which we did in Chapter 2—is a common choice in PDE-constrained optimization,
cf. [95]. However, since here the control (5.2) acts on the whole domain Ω = Rd and is
linear in space, using, e.g., ‖u(t)− ū‖2

L2(Rd) is not meaningful. Here, ū is of form (5.2) and

can be characterized by its coefficients (K̄, c̄) that satisfy Assumption 5.2. Therefore, we
penalize the deviation of the control coefficients (K(t), c(t)) from (K̄, c̄), which results in

`(ρ, u) :=
1

2
‖ρ− ρ̄‖2

L2(Rd) +
γ

2

∥∥BK −BK̄∥∥2

F
+
γ

2
‖Bc−Bc̄‖2

2 (5.15)

for some weight γ ≥ 0 and where ‖·‖F denotes the Frobenius norm. Using the Frobenius
norm for K ∈ Rl×d fits well with the Euclidian norm used for c ∈ Rl. We will use the
appearing B in (5.15) in the following. Yet, for the Ornstein–Uhlenbeck process presented
in Example 5.1 it does not matter since B = I in that case.

In our setting, ρ = ρ(x, t;u) is a Gaussian PDF of form (1.6) with mean µ(t) and
covariance matrix Σ(t). If we turn our focus from the Fokker–Planck equation (1.2) to
the associated dynamics (5.5), it is sensible to rewrite the term penalizing the state in
(5.15) in terms of µ and Σ. In the following, we may drop the argument u in ρ(x, t;u),
Σ(t;u), and µ(t;u) for better readability.

Lemma 5.5. Let ρ(x, t;u) and ρ̄(x) be given by (1.6) and (5.6), respectively. Then for
all t ≥ 0:

‖ρ(·, t)− ρ̄(·)‖2
L2(Rd) = 2−dπ

−d/2
[
|Σ(t)|−1/2 + |Σ̄|−1/2

−2

∣∣∣∣12(Σ(t) + Σ̄)

∣∣∣∣−1/2

exp

(
−1

2
(µ(t)− µ̄)> (Σ(t) + Σ̄)−1 (µ(t)− µ̄)

)]
. (5.16)

We recall that |A| = det(A) for A ∈ Rd×d.
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Proof. We split the L2 norm into

‖ρ(t)− ρ̄‖2
L2(Rd) = ‖ρ(t)‖2

L2(Rd) + ‖ρ̄‖2
L2(Rd) − 2

∫
Rd
ρ(t)ρ̄ dx (5.17)

and consider the three terms separately. Since only spatial integrals are involved while
the time t remains fixed, in the following, we may drop the argument whenever it is clear
from the context, i.e., instead of ρ(x, t) we write ρ(x).

We can apply standard results regarding integrals of Gaussians, cf. [75, Sect. 8.1.1], to

ρ(x)2 = |2πΣ|−1 exp
(
−(x− µ)>Σ−1(x− µ)

)
to get

‖ρ‖2
L2(Rd) = |2πΣ|−1

∣∣∣∣2π(1

2
Σ

)∣∣∣∣1/2 = 2−dπ
−d/2|Σ|−1/2.

Analogously, we have
‖ρ̄‖2

L2(Rd) = 2−dπ
−d/2|Σ̄|−1/2.

The last term in (5.17) is a bit more involved. First, we note that

ρρ̄ = |2πΣ|−1/2|2πΣ̄|−1/2 exp

[
−1

2
(x− µ)>Σ−1(x− µ)− 1

2
(x− µ̄>)Σ̄−1(x− µ̄)

]
= |2πΣ|−1/2|2πΣ̄|−1/2eC exp

[
−1

2
(x− µc)>Σ−1

c (x− µc)
]
,

(5.18)

where the second equality holds with

Σ−1
c := Σ−1 + Σ̄−1,

µc := (Σ−1 + Σ̄−1)−1(Σ−1µ+ Σ̄−1µ̄),

C :=
1

2
(µ>Σ−1 + µ̄>Σ̄−1)(Σ−1 + Σ̄−1)−1(Σ−1µ+ Σ̄−1µ̄)− 1

2
(µ>Σ−1µ+ µ̄>Σ̄−1µ̄),

cf. [75, Sect. 8.1.7]. Now we can apply the standard results from above to (5.18) in order
to get ∫

Rd
ρρ̄ dx = |2πΣ|−1/2|2πΣ̄|−1/2|2πΣc|1/2eC

= (2π)
−d/2|Σ|−1/2|Σ̄|−1/2

∣∣∣(Σ−1 + Σ̄−1
)−1
∣∣∣1/2 eC

= (2π)
−d/2|Σ|−1/2|Σ̄|−1/2

∣∣Σ−1 + Σ̄−1
∣∣−1/2

eC

= (2π)
−d/2
∣∣Σ (Σ−1 + Σ̄−1

)
Σ̄
∣∣−1/2

eC

= (2π)
−d/2|Σ̄ + Σ|−1/2eC

= 2−dπ
−d/2

∣∣∣∣12 (Σ + Σ̄
)∣∣∣∣−1/2

eC .

Therefore, it is left to show that

C = −1

2
(µ− µ̄)>(Σ + Σ̄)−1(µ− µ̄).
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To this end, we note that, since both Σ and Σ̄ are symmetric positive definite and in
particular invertible,

Σ̄−1
(
Σ−1 + Σ̄−1

)−1
Σ−1 =

(
Σ
(
Σ−1 + Σ̄−1

)
Σ̄
)−1

=
(
Σ̄ + Σ

)−1
. (5.19)

Furthermore, we have that

Σ−1
(
Σ−1 + Σ̄−1

)−1
Σ−1 − Σ−1 = −

(
Σ + Σ̄

)−1

due to

Σ−1
(
Σ−1 + Σ̄−1

)−1
Σ−1 − Σ−1 +

(
Σ + Σ̄

)−1

(5.19)
= Σ−1

(
Σ−1 + Σ̄−1

)−1
Σ−1 − Σ−1 + Σ̄−1

(
Σ−1 + Σ̄−1

)−1
Σ−1

=
[(

Σ−1 + Σ̄−1
) (

Σ−1 + Σ̄−1
)−1 − I

]
Σ−1 = 0.

These two results allow us to calculate C. We have

C =
1

2
(µ>Σ−1 + µ̄>Σ̄−1)(Σ−1 + Σ̄−1)−1(Σ−1µ+ Σ̄−1µ̄)− 1

2
(µ>Σ−1µ+ µ̄>Σ̄−1µ̄)

=
1

2
µ>Σ−1(Σ−1 + Σ̄−1)−1Σ−1µ+

1

2
µ̄>Σ̄−1(Σ−1 + Σ̄−1)−1Σ̄−1µ̄

− 1

2
(µ>Σ−1µ+ µ̄>Σ̄−1µ̄) +

1

2
µ>Σ−1(Σ−1 + Σ̄−1)−1Σ̄−1︸ ︷︷ ︸

=(Σ+Σ̄)−1

µ̄

+
1

2
µ̄> Σ̄−1(Σ−1 + Σ̄−1)−1Σ−1︸ ︷︷ ︸

=(Σ+Σ̄)−1

µ

=
1

2
µ>
[
Σ−1

(
Σ−1 + Σ̄−1

)−1
Σ−1 − Σ−1

]
︸ ︷︷ ︸

=−(Σ+Σ̄)−1

µ

+
1

2
µ̄>
[
Σ̄−1

(
Σ−1 + Σ̄−1

)−1
Σ̄−1 − Σ̄−1

]
︸ ︷︷ ︸

=−(Σ+Σ̄)−1

µ̄+ µ>(Σ + Σ̄)−1µ̄

= − 1

2
µ>(Σ + Σ̄)−1µ− 1

2
µ̄>(Σ + Σ̄)−1µ̄+ µ>(Σ + Σ̄)−1µ̄

= − 1

2
(µ− µ̄)>(Σ + Σ̄)−1(µ− µ̄),

which concludes the proof.

In the course of this chapter, it will be useful to restrict the target PDF ρ̄ of form
(5.6) to

ρ̄(x) = (2π)
−d/2 exp

(
−1

2
x>x

)
, (5.20)

i.e., to set µ̄ = 0 ∈ Rd and Σ̄ = I ∈ Rd×d. Then, due to Assumption 5.2(d), we have that
Bc̄ = 0, cf. (5.5). In this case, expressing the stage cost (5.15) in terms of the state (µ,Σ)
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and control (K, c) using Lemma 5.5 leads to

`((µ,Σ), (K, c)) = 2−dπ
−d/2

[
|Σ|−1/2 + 1− 2

∣∣∣∣12(Σ + I)

∣∣∣∣−1/2

exp

(
−1

2
µ>(Σ + I)−1µ

)]
+
γ

2

∥∥BK −BK̄∥∥2

F
+
γ

2
‖Bc‖2

2 .

(5.21)
This restriction on ρ̄ in (5.20), i.e., assuming (µ̄, Σ̄) = (0, I), does not affect the generality
of this chapter, as the following lemma shows.

Lemma 5.6. Consider the optimal control problem (OCPN) subject to dynamics that
are sampled from (5.5). The problem of steering to a general target (µ̄, Σ̄) can be trans-
formed into a problem of steering to the target (0, I). Using the stage cost (5.15) in the
transformed problem yields the same cost as using the modified stage cost

`2(ρ, u) :=
1

2
|Σ̄|1/2 ‖ρ− ρ̄‖2

L2(Rd) +
γ

2

∥∥Σ̄
−1/2
(
BK −BK̄

)
Σ̄

1/2
∥∥2

F

+
γ

2

∥∥Σ̄
−1/2 [(A−BK) µ̄+Bc]

∥∥2

2

(5.22)

in the original problem.

The idea of the proof is to first consider (5.20) and work with the corresponding stage
cost (5.15) and then encompass arbitrary target normal distributions ρ̄—characterized
by some mean µ̄ and some covariance matrix Σ̄—by transforming the system dynamics
and modifying the stage cost (5.15) in a suitable way. For example, it should make no
difference in cost and in the control sequence whether we steer the expected value of a
normal distribution from 10 to zero or from 11 to 1 in the one-dimensional case.

Proof. Starting from the SDE (5.3) and some arbitrary target normal distribution ρ̄ char-
acterized by its mean µ̄ and covariance matrix Σ̄, we introduce a new random variable
Yt := Σ̄−1/2 (Xt − µ̄). Then, due to linearity of the expected value, we get

µY (t) = E [Yt] = E
[
Σ̄
−1/2 (Xt − µ̄)

]
= Σ̄

−1/2 (E [Xt]− µ̄) = Σ̄
−1/2 (µ(t)− µ̄)

and with
Yt − µY (t) = Σ̄

−1/2 (Xt − µ̄)− µY (t) = Σ̄
−1/2 (Xt − µ(t))

we get

ΣY (t) = E
[
(Yt − µY (t)) (Yt − µY (t))>

]
= E

[
Σ̄
−1/2 (Xt − µ(t)) (Xt − µ(t))> Σ̄

−1/2
]

= Σ̄
−1/2E

[
(Xt − µ(t)) (Xt − µ(t))>

]
Σ̄
−1/2 = Σ̄

−1/2Σ(t)Σ̄
−1/2.

Transforming (5.5) into the new variables (µY ,ΣY ) yields

µ̇Y (t) = Σ̄
−1/2(A−BK(t))Σ̄

1/2µY (t) + Σ̄
−1/2 [(A−BK(t))µ̄+Bc(t)] ,

µY (0) = Σ̄
−1/2 (µ̊− µ̄) ,

Σ̇Y (t) = Σ̄
−1/2(A−BK(t))Σ̄

1/2ΣY (t) + ΣY (t)Σ̄
1/2(A−BK(t))>Σ̄

−1/2

+ Σ̄
−1/2DD>Σ̄

−1/2,

ΣY (0) = Σ̄
−1/2Σ̊Σ̄

−1/2.

(5.23)
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Therefore, steering the system (5.23) to (µ̄Y , Σ̄Y ) = (0, I) is equivalent to steering (5.5)
to (µ̄, Σ̄). In particular, if Assumption 5.2 holds for (5.5), then (5.23) can be steered
towards (0, I).

For the moment, let us assume that (µ̄, Σ̄) = (0, I). Then the stage cost (5.15) results
in (5.21). The idea now is to compare the system (5.5) in the special case (µ̄, Σ̄) = (0, I) to
(5.23) and adjust the stage cost accordingly. For instance, Σ̄−1/2(A−BK(t))Σ̄1/2 takes the
role of (A−BK(t)).2 Instead of Bc(t), we have Σ̄−1/2 [(A−BK(t))µ̄+Bc(t)]. Therefore,
we adjust the stage cost (5.21) accordingly:

‖Bc‖2
2  

∥∥Σ̄
−1/2 [(A−BK)µ̄+Bc]

∥∥2

2

and ∥∥BK −BK̄∥∥2

F
=
∥∥(A−BK)− (A−BK̄)

∥∥2

F

 
∥∥Σ̄

−1/2 (A−BK) Σ̄
1/2 − Σ̄

−1/2
(
A−BK̄

)
Σ̄

1/2
∥∥2

F
=
∥∥Σ̄

−1/2
(
BK −BK̄

)
Σ̄

1/2
∥∥2

F
.

The only term left to adjust is ‖ρ− ρ̄‖2
L2(Rd). Since Σ(t) = Σ̄1/2ΣY (t)Σ̄1/2 and Σ(t) + Σ̄ =

Σ̄1/2 (ΣY (t) + I) Σ̄1/2, we have

|Σ(t)|−1/2 = |Σ̄1/2ΣY (t)Σ̄
1/2|−1/2 = |Σ̄|−1/2|ΣY (t)|−1/2,∣∣∣∣12(Σ(t) + Σ̄)

∣∣∣∣−1/2

=

∣∣∣∣12(Σ̄
1/2 (ΣY (t) + I) Σ̄

1/2)

∣∣∣∣−1/2

= |Σ̄|−1/2

∣∣∣∣12(ΣY (t) + I)

∣∣∣∣−1/2

.

Furthermore, since µ̄ = 0 and therefore µY (t) = Σ̄−1/2(µ(t)− µ̄) = Σ̄−1/2µ(t), we have

|Σ(t)|−1/2 + |Σ̄|−1/2 − 2

∣∣∣∣12(Σ(t) + Σ̄)

∣∣∣∣−1/2

exp

(
−1

2
µ(t)>(Σ(t) + Σ̄)−1µ(t)

)
= |Σ̄|−1/2

[
|ΣY (t)|−1/2 + 1− 2

∣∣∣∣12(ΣY (t) + I)

∣∣∣∣−1/2

exp

(
−1

2
µY (t)>(ΣY (t) + I)−1µY (t)

)]
.

This, together with (5.21), explains the last necessary adjustment, namely the factor |Σ̄|1/2
in front of the term penalizing the state in (5.22).

In the special case of µ(t) ≡ µ̄, i.e., if the state has reached the target mean and stays
at that target, the restriction to Σ̄ = I gives rise to the following result.

Lemma 5.7. Let µ(t) ≡ µ̄ and Σ̄ = I. Define Φ(t) := diag(φ1(t), . . . , φd(t)), where φi(t),
i = 1, . . . , d, are the Eigenvalues of Σ(t). Furthermore, we define

g(Φ) := 1 + |Φ|−1/2 − 2

∣∣∣∣12(Φ + I)

∣∣∣∣−1/2

= 1 +

(
d∏
i=1

φi

)−1/2

− 21+d/2

d∏
i=1

(φi + 1)
−1/2. (5.24)

Then

‖ρ(·, t)− ρ̄(·)‖2
L2(Rd) = 2−dπ

−d/2g(Φ(t)).

2To see this in the equation for Σ̇Y (t), it is helpful to use (5.14), which holds due to Assumption 5.2(b).
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Proof. Since Σ̄ = I and µ(t) ≡ µ̄, the state cost (5.16) becomes

‖ρ(·, t)− ρ̄(·)‖2
L2(Rd) = 2−dπ

−d/2

[
|Σ(t)|−1/2 + 1− 2

∣∣∣∣12(Σ(t) + I)

∣∣∣∣−1/2
]
.

If φ1(t), . . . , φd(t) are the Eigenvalues of Σ(t), then φi(t)+1, i = 1, . . . , d, are the Eigenval-
ues of Σ(t) + I. Since |Σ(t)| = |Φ(t)| and |Σ(t) + I| = |Φ(t) + I|, the assertion follows.

5.3 Minimal Stabilizing Horizon Estimates

In this section, we want to study the behavior of the MPC closed loop. More precisely, we
are interested in estimating minimal horizon lengthsN such that our desired equilibrium ρ̄,
respectively (µ̄, Σ̄), is asymptotically stable for the MPC closed loop.

Whether we consider the Fokker–Planck equation (1.2) with state ρ(x, t) or, equiv-
alently, the dynamics (5.5) with state (µ(t),Σ(t)), they are always sampled in order
to obtain the discrete-time system described in Section 3.1. That is, if (µ(t),Σ(t)) is
the solution trajectory of (5.5), then we denote by Σ(n) the evaluation of Σ(t) at time
t = tn := t0 + nTs, where Ts > 0 is the sampling rate and n ∈ N0. Similarly, we will
write Σ(k), where the difference between k and n is the same as in the MPC scheme in
Section 3.1: The “global” time will be denoted by n, while k will indicate the “local”
time, i.e., the time in the open-loop optimal control problem (OCPN) that needs to be
solved in every MPC step. We will use the same notation for µ(n) and µ(k).

In order to prove asymptotic stability, we can use the exponential controllability prop-
erty, cf. Theorem 3.4. A suitable stage cost ` is given by (5.15) or (5.22). In both cases, the
state ρ is penalized in the L2 norm, which, as already mentioned before, is well suited for
PDE-constrained optimization. However, expressing the stage cost (5.15) in terms of the
state (µ(t),Σ(t)) instead of ρ(x, t) leads to rather uncommon expressions, cf. Lemma 5.5.
Yet, we strive to show that MPC does cope with these types of cost in this setting.

To this end, in Subsection 5.3.1, we present results for general stochastic processes
(5.3) with X̊ ∼ N (µ̊, Σ̊), i.e., general dynamics of type (5.5). Then, in Subsection 5.3.2,
we try to improve these results for a special case, namely the Ornstein–Uhlenbeck process
that was introduced in Example 5.1.

5.3.1 General Dynamics of Type (5.3)

In this section, we consider general dynamics given by (5.1) with control (5.2), leading
to the controlled linear dynamics (5.3) and the equivalent dynamics (5.5) for the Fokker–
Planck equation (1.2). We start with the most simple case, in which there are no state
constraints, no control constraints, and no control costs.

Theorem 5.8. Consider the system (5.5) associated to a linear stochastic process defined
by (5.3) with a Gaussian initial condition (5.4) and a desired PDF ρ̄ given by (5.6). Let
the stage cost be given by `(ρ) := 1

2
‖ρ− ρ̄‖2

L2(Rd), which corresponds to (5.15) with γ = 0.
Then the equilibrium ρ̄ is globally asymptotically stable for the MPC closed loop for each
optimization horizon N ≥ 2.

Proof. In absence of state or control constraints, it is obvious that any system of type (5.5)
that satisfies Assumption 5.2(a) can reach any desired state ρ̄, which is characterized by
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some mean µ̄ and some covariance matrix Σ̄, in an arbitrarily short time T̃ . In particular,
in the continuous-time setting, one can choose a control coefficient K̃(t) such that the
desired covariance Σ̄ is reached in T̃ /2 time units. At that point in time, we switch to K̄
and use an appropriate control coefficient c̃(t) to arrive at the desired mean µ̄.

In the sampled system, in order to arrive at the desired state within one MPC time
step, the control (K̃(t), c̃(t)) from the continuous time needs to be discretized adequately,
i.e., every element in the open-loop control sequence (K(k), c(k))k=0,...,N−1 of the first MPC
time step may be a time-dependent function on [tk, tk+1[. In particular, the first element of
that sequence, (K(0), c(0)), may be a time-dependent function on [t0, t1[. Having reached
the desired state ρ̄ in the first MPC time step, we then switch the control to (K̄, c̄), thus
staying at ρ̄ due to Assumptions 5.2(b)-(d) and invoking zero cost from then on.

Remark 5.9. While non-constant coefficients (K(0), c(0)) are no issue in theory, in prac-
tice the discretization of the control sequence u(k) is often coupled with the discretization
of the dynamics, leading to control sequences that are constant in every MPC time step.
If the system cannot be steered towards the desired state within one discrete step using
constant (K(0), c(0)), then one should adjust the discretization of the control in time.

Now we turn to the more interesting case where γ > 0 and/or control constraints are
present. In this case, in general, we cannot guarantee that the target ρ̄ is asymptotically
stable for N = 2. Yet, we can recover the asymptotic stability by choosing N ≥ 2
sufficiently large, cf. Theorem 5.11. In the proof thereof, we will need the following result.

Lemma 5.10. Consider (5.5) for K(t) ≡ K̄. Then∥∥Σ(t)− Σ̄
∥∥
F
≤ Ce−κt

∥∥Σ(0)− Σ̄
∥∥
F

(5.25)

for some constants C, κ > 0.

Proof. Due to Assumption 5.2, A−BK̄ is a Hurwitz matrix and (5.14) holds. Therefore,

Σ̇(t) = (A−BK̄)Σ(t) + Σ(t)(A−BK̄)> +DD>

(5.14)
= (A−BK̄)(Σ(t)− Σ̄) + (Σ(t)− Σ̄)(A−BK̄)>.

Defining M := A−BK̄ and S(t) := Σ(t)− Σ̄, we can rewrite the above equation to

Ṡ(t) = MS(t) + S(t)M>.

Then we vectorize this equation by going through the matrix S(t) row by row, i.e., for

S(t) =

 s11(t) . . . s1d(t)
...

...
sd1(t) . . . sdd(t)

 ,

we define yet another variable

sv(t) := (s11(t), . . . , s1d(t), s21(t), . . . , s2d(t), . . . , sd1(t), . . . , sdd(t))

and arrive at
ṡv(t) = Ãsv(t), (5.26)
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with Ã ∈ Rd2×d2 defined by

Ã :=

 m11(t)I . . . m1d(t)I
...

...
md1(t)I . . . mdd(t)I

+

 M
. . .

M

 .

Let ε(M) be the set of all Eigenvalues of M . Then one can calculate that the set of all
Eigenvalues of Ã, ε(Ã), consists of all possible sums φm1 + φm2 , where φm1 , φ

m
2 ∈ ε(M).

In particular, ε(Ã) ⊂ C− since ε(M) ⊂ C−. For the linear system (5.26) this implies
exponential stability, and thus

‖sv(t)‖2 ≤ Ce−κt ‖sv(0)‖2

for some constants C, κ > 0. Since ‖sv(t)‖2 = ‖S(t)‖F =
∥∥Σ(t)− Σ̄

∥∥
F

, we arrive at (5.25).

Theorem 5.11. Consider the dynamic system (5.5) associated to a linear stochastic pro-
cess defined by (5.3) with a Gaussian initial condition (5.4) and a desired PDF ρ̄ given
by (5.20). Let the stage cost be given by (5.15) with γ ≥ 0. Then there exists some
N̄ ≥ 2 such that the equilibrium ρ̄ is asymptotically stable for the MPC closed loop for
each optimization horizon N ≥ N̄ on recursively feasible sets that contain a neighborhood
of ρ̄. These sets are characterized in Remark 5.12 below.

Proof. We want to prove exponential controllability of the system (5.5) with respect to
the stage cost defined by (5.15), cf. Definition 3.3, at least locally. Then our assertion
follows from Theorem 3.5.

Having Assumption 5.2 in mind, a natural control candidate to prove exponential
controllability is (K̄, c̄). In this case, our stage cost reduces to 1

2
‖ρ− ρ̄‖2

L2(Rd), i.e., the

term penalizing the state. We will use the control candidate (K̄, c̄) throughout the proof.
To prove local exponential controllability, we will show that

‖ρ(t)− ρ̄‖2
L2(Rd) ≤ Ce−κt ‖ρ(0)− ρ̄‖2

L2(Rd) (5.27)

holds in continuous time for some C, κ > 0 and for initial PDFs ρ(0) close to ρ̄. Then
with δ := e−κTs we arrive at (3.6). With

V (µ,Σ) := |Σ|−1/2 + 1− 2

∣∣∣∣12(Σ + I)

∣∣∣∣−1/2

exp

(
−1

2
µ>(Σ + I)−1µ

)
, (5.28)

due to (5.16), proving (5.27) is equivalent to showing

V (µ(t),Σ(t)) ≤ Ce−κtV (µ(0),Σ(0)). (5.29)

To this end, we take a closer look at the control (K̄, c̄). Since A − BK̄ is a Hurwitz
matrix and µ̄ = 0, Bc̄ equals zero, cf. Assumption 5.2(d). Therefore, it is easy to see from
the dynamics (5.5) that there exist some constants C1, κ1 > 0 such that

‖µ(t)‖2 ≤ C1e
−κ1t ‖µ(0)‖2 . (5.30)

Furthermore, let φi(t), i = 1, . . . , d, be the Eigenvalues of Σ(t) that we collect in the
vector φ := (φ1, . . . , φd) as well as in the matrix Φ := diag (φ1, . . . , φd). Since the initial
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condition is Gaussian, the positivity of φi(t) is preserved, i.e., φi(t) > 0 for all i = 1, ..., d
and all t ≥ 0. Moreover, due to Lemma 5.10 we have ‖Σ(t)− I‖F ≤ C2e

−κ2t ‖Σ(0)− I‖F
for some C2, κ2 > 0. This can be expressed in terms of the Eigenvalues: Denoting by ~1 the
d-dimensional vector of ones, we have ‖Σ(t)− I‖F = ‖Φ(t)− I‖F = ‖φ(t) − ~1‖2, where
the first equation holds because Σ(t) − I is a real and symmetric and therefore normal
matrix3 and the Eigenvalues of Σ(t)− I coincide with those of Φ(t)− I, and the second
equality holds since Φ is diagonal. Consequently,

‖φ(t)−~1‖2 ≤ C2e
−κ2t‖φ(0)−~1‖2. (5.31)

In the following, we want to use (5.30) and (5.31) to deduce (5.29).
Since C2 is independent of the initial value φ(0), by limiting φ(0) to a (small enough)

neighborhood of the target ~1 we can bound supt≥0‖φ(t) − ~1‖2 to an arbitrarily small
positive number. The analogous is true for ‖µ(t)‖2. Thus, we denote by Br(x) a ball
of radius r > 0 around x ∈ Rd. Then from (5.30) and (5.31) we deduce that, for a
given ε ∈ ]0, 1[, there exist rµ, rφ ∈ ]0, ε[ such that for any (µ(0), φ(0)) ∈ Brµ(0)× Brφ(~1)
we have −ε ≤ φi(t)− 1 ≤ ε and −ε ≤ µi(t) ≤ ε for all t ≥ 0 and all i = 1, ..., d.

If φi(t), i = 1, . . . , d, are the Eigenvalues of Σ(t), then φi(t) + 1 are the Eigenvalues of
Σ(t)+I and (φi(t)+1)−1 are the Eigenvalues of (Σ(t)+I)−1. Since 0 < 1−ε ≤ φi(t) ≤ 1+ε,
we have

1 >
1

φi(t) + 1
≥ 1

2 + ε
.

Then we can bound the exponential term of V in (5.28):

1

2 + ε
‖µ(t)‖2

2 ≤ µ(t)>(Σ(t) + I)−1µ(t) ≤ ‖µ(t)‖2
2 .

Therefore,

1− exp

(
− 1

2(2 + ε)
‖µ(t)‖2

2

)
≤ 1− exp

(
−1

2
µ(t)>(Σ(t) + I)−1µ(t)

)
≤ 1− exp

(
−1

2
‖µ(t)‖2

2

)
.

Since

V (µ,Σ) = |Σ|−1/2 + 1− 2

∣∣∣∣12(Σ + I)

∣∣∣∣−1/2

+ 2

∣∣∣∣12(Σ + I)

∣∣∣∣−1/2 [
1− exp

(
−1

2
µ>(Σ + I)−1µ

)]
,

we can bound V (µ(t),Σ(t)):

Vl(µ(t),Σ(t)) ≤ V (µ(t),Σ(t)) ≤ Vu(µ(t),Σ(t)), (5.32)

where

Vl(µ,Σ) := |Σ|−1/2 + 1− 2

∣∣∣∣12(Σ + I)

∣∣∣∣−1/2

+ 2

∣∣∣∣12(Σ + I)

∣∣∣∣−1/2 [
1− exp

(
− 1

2(2 + ε)
‖µ‖2

2

)]
,

Vu(µ,Σ) := |Σ|−1/2 + 1− 2

∣∣∣∣12(Σ + I)

∣∣∣∣−1/2

+ 2

∣∣∣∣12(Σ + I)

∣∣∣∣−1/2 [
1− exp

(
−1

2
‖µ‖2

2

)]
.

3A normal matrix A is unitarily diagonalizable, i.e., has a factorization A = UΛUT , where U>U = I.
Λ is a diagonal matrix consisting of the Eigenvalues of A. Then ‖A‖2F = tr(A>A) = tr(UΛ>U>UΛU>) =

tr(UΛ>ΛU>) = tr(Λ>Λ) = ‖Λ‖2F . Thus, the Frobenius norm of normal matrices only depends on their
Eigenvalues.
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Note that Vl(µ,Σ) ≥ 0. With Φ = diag (φ1, . . . , φd) we have Vl(µ,Σ) = Vl(µ,Φ) and
Vu(µ,Σ) = Vu(µ,Φ). Moreover, since

|Σ| = |Φ| =
d∏
i=1

φi and

∣∣∣∣12(Σ + I)

∣∣∣∣ =

∣∣∣∣12(Φ + I)

∣∣∣∣ =
d∏
i=1

φi + 1

2
,

we can view the functions Vl and Vu as functions of the vector φ = (φ1, . . . , φd) instead of
the matrix Φ and calculate for all j = 1, . . . , d:

∂φjVl(µ, φ) =
1

2

( d∏
i=1

φi + 1

2

)−1/2(
φj + 1

2

)−1

exp

(
− 1

2(2 + ε)
‖µ‖2

2

)
−

(
d∏
i=1

φi

)−1/2

φ−1
j

,
∂µjVl(µ, φ) =

(
d∏
i=1

φi + 1

2

)−1/2

1

2 + ε
µj exp

(
− 1

2(2 + ε)
‖µ‖2

2

)
.

This yields

Vl(0,~1) = 0, ∂φjVl(0,~1) = 0, ∂µjVl(0,~1) = 0

and, analogously,

Vu(0,~1) = 0, ∂φjVu(0,~1) = 0, ∂µjVu(0,~1) = 0.

As a consequence, no constant or linear terms appear in the Taylor expansion of either
Vl(µ, φ) or Vu(µ, φ) around (0,~1). Moreover, one can easily verify that the respective
Hessian matrices at (0,~1), i.e., ∇2Vl(0,~1) and∇2Vu(0,~1), are positive definite. Thus, there
are symmetric positive definite matrices P1, P2 ∈ R2d×2d such that for all −ε ≤ µi ≤ ε
and 0 < 1− ε ≤ φi ≤ 1 + ε:

(µ, φ−~1)>P1(µ, φ−~1) ≤ Vl(µ, φ),

(µ, φ−~1)>P2(µ, φ−~1) ≥ Vu(µ, φ).

All in all, then, we have:

(µ, φ−~1)>P1(µ, φ−~1) ≤ Vl(µ, φ)
(5.32)

≤ V (µ,Σ)
(5.32)

≤ Vu(µ, φ) ≤ (µ, φ−~1)>P2(µ, φ−~1).
(5.33)

Due to equivalence of norms, there are constants C3, C4 > 0 such that

‖(µ, φ−~1)‖2
2 ≤

1

C3

(µ, φ−~1)>P1(µ, φ−~1), (5.34)

(µ, φ−~1)>P2(µ, φ−~1) ≤ C4‖(µ, φ−~1)‖2
2. (5.35)

Recalling the constants from (5.30) and (5.31), we define C5 := max {C1, C2} and κ :=
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min {κ1, κ2}. Then with C := C4

C3
C2

5 , we finally have that

V (µ(t),Σ(t))
(5.33)

≤ (µ(t), φ(t)−~1)>P2(µ(t), φ(t)−~1)
(5.35)

≤ C4‖(µ(t), φ(t)−~1)‖2
2

= C4

(
‖µ(t)‖2

2 + ‖φ(t)−~1‖2
2

)
(5.30),(5.31)

≤ C4

(
C2

1e
−2κ1t‖µ(0)‖2

2 + C2
2e
−2κ2t‖φ(0)−~1‖2

2

)
≤ C4C

2
5e
−2κt

(
‖µ(0)‖2

2 + ‖φ(0)−~1‖2
2

)
= C4C

2
5e
−2κt‖(µ(0), φ(0)−~1)‖2

2

(5.34)

≤ C4

C3

C2
5e
−2κt(µ(0), φ(0)−~1)>P1(µ(0), φ(0)−~1)

(5.33)

≤ Ce−2κtV (µ(0),Σ(0))

for all (µ(0), φ(0)) ∈ Brµ(0)×Brφ(~1) with rµ, rφ ∈ ]0, ε[ such that −ε ≤ φi(t)− 1 ≤ ε and
−ε ≤ µi(t) ≤ ε for all t ≥ 0 and all i = 1, ..., d.

Remark 5.12. In the proof of Theorem 5.11 we have shown that for a given ε ∈ ]0, 1[
there exist rµ, rφ ∈ ]0, ε[ such that for any (µ(0), φ(0)) ∈ Brµ(0) × Brφ(~1) =: I we have
−ε ≤ φi(t) − 1 ≤ ε and −ε ≤ µi(t) ≤ ε for all t ≥ 0 and all i = 1, ..., d. For this
set of initial states, i.e., for (µ(0), φ(0)) ∈ I, the optimal value function V∞(µ(0), φ(0))
is finite due to the exponential decay of the stage cost, see (5.29). Thus, the use of
Theorem 3.5 in the proof of Theorem 5.11 implies that MPC “works” for initial values
in I and a sufficiently large horizon N (in the sense that the desired equilibrium ρ̄ is
asymptotically stable for the MPC closed loop and that the closed loop trajectory stays in
a recursively feasible set). The set I seems rather limited, but can be (greatly) extended:
Given any (large) bound Γ > 0, any set Ĩ ⊇ I in which all initial values (µ(0), φ(0))
can be steered inside I with total costs less than Γ is not a subset of the problematic
set O from Theorem 3.5 because we can bound the value function uniformly on Ĩ. Hence,
we can find a compact set C ⊂ Ĩ as required in Theorem 3.5, which gives us a basin of
attraction S ⊇ C on which MPC “works”.

Remark 5.13. If Σ(t) in Theorem 5.11 is a diagonal matrix for all t ≥ 0, then the
function V (µ,Σ) from (5.28) can be viewed as a function of the vector φ = (φ1, ..., φd) =
(Σ11, ...,Σdd). Then in the Taylor expansion of V (µ, φ) around (0,~1) no constant or linear
terms appear. As such, with the same arguments as in the proof of Theorem 5.11, we arrive
at (5.29) without needing the bounds Vl and Vu. Consequently, we do not need to impose
bounds on φi or µi (as long as Σ(t) is positive definite) and hence get the exponential
controllability property globally.

5.3.2 The Ornstein–Uhlenbeck Process

For more specific dynamics, the results of Theorem 5.11 can be improved by determin-
ing the constants C and κ or at least (tighter) estimates of those. To this end, we look
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more closely at the Ornstein–Uhlenbeck process introduced in Example 5.1, i.e., we con-
sider (5.5) with A,B,D,K(t), c(t) as in (5.8). We recall that, as in Example 5.1, we
impose control constraints ki(t) > −θi, i = 1, ..., d.

Due to Lemma 5.6, we assume that the target probability density function is char-
acterized by (µ̄, Σ̄) = (0, I), i.e., ρ̄ is given by (5.20). The stage cost is given by (5.15).
Numerical simulations suggest that (µ̄, Σ̄) = (0, I) is globally asymptotically stable for
the MPC closed loop for the shortest possible horizon N = 2 also for γ > 0. Although
performance degrades with shorter N and depends on the sampling time Ts, the stability
property is maintained for various initial conditions ρ̊, sampling times Ts, and weights
γ ≥ 0, cf. the examples in this section. If we could prove exponential controllability of the
system with respect to stage cost (5.15) with C = 1 independent of the weight γ, then
Theorem 3.4 would confirm our conjecture drawn from numerical findings. A canonical
control candidate in this matter is (K̄, c̄) because it induces no control cost. However, as
shown in the following, this simple solution often does not work.

The rest of this section is divided into two parts. In the first, we state results for
general weights γ ≥ 0. In particular, for the one-dimensional Ornstein–Uhlenbeck process,
we prove that (µ̄, Σ̄) = (0, 1) is globally asymptotically stable for the MPC closed loop for
N ≥ 2. The multi-dimensional case is more involved and thus, we consider the special case
γ = 0 in the second part. Note that although control costs are eliminated, this scenario
is not covered by Theorem 5.8 due to the control constraints ki(t) > −θi, i = 1, ..., d.

The Case of γ ≥ 0

To simplify the notation, in this part we focus on control sequences that are piecewise
constant in time, i.e., for fixed k ∈ N0, K(k) and c(k) are constant. These piecewise
constant control sequences fit well with the notation of Σ(k) introduced in the beginning
of Section 5.3. All simulations were carried out with such controls. Otherwise one should
specify how to evaluate the stage cost (5.15) in every discrete time step. For instance,

one could integrate over time, e.g., use
∫ tk+1

tk

∥∥BK(t)−BK̄
∥∥2

F
dt or a discretized version

thereof. The results presented in this part extend to controls that are not piecewise
constant if the above integral is used.

We start by illustrating the problems when using the canonical control candidate
(K̄, c̄), see the following example.

Example 5.14. Consider the 1D Ornstein–Uhlenbeck process with (model) parameters

A = −θ = −4, B = 1, D = ς =
√

6, (µ̊, Σ̊) = (14, 12), (µ̄, Σ̄) = (0, 1)

and some γ > 0. From (5.9), (5.11), and (5.12) we can calculate the “equilibrium control”

(K̄, c̄) = (ς2/(2Σ̄)− θ, 0) = (ς2/2− θ, 0) = (−1, 0)

that can be used to asymptotically stabilize (µ̄, Σ̄). We set the MPC horizon N to 2,
the sampling rate Ts to 0.1, and use the stage cost (5.15), which, in this case, coincides
with (5.21). In Figure 5.1 (left), we illustrate the incurring cost J2((µun(n),Σun(n)),un)
in every MPC step n = 0, ..., 14, where un denotes the (open-loop) control sequence in the
n-th MPC step. We consider the equilibrium control un ≡ (K̄, c̄) =: ū (blue circle) as
well as optimal open-loop control sequences u∗n for γ = 0.015 (red cross) and for γ = 10−5

(green diamond). For a high enough weight γ > 0, even the optimal sequence leads
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to temporarily increasing cost. Since for the optimal open-loop control sequence u∗ we
have J2((µ̊, Σ̊),u∗) = V2((µ̊, Σ̊)), cf. Definition 3.2, the figure also shows that the optimal
value function V2 grows. In particular, this function cannot be a Lyapunov function for
N = 2. Hence, based on this numerical evidence, Theorem 3.4 implies that exponential
controllability with C = 1 cannot hold.

Yet, from Figure 5.1 (right), which depicts the normalized Euclidean distances

∆(µ) := ‖µ− µ̄‖2
2 / ‖µ̊− µ̄‖

2
2 and ∆(Σ) :=

∥∥Σ− Σ̄
∥∥2

F
/‖Σ̊− Σ̄‖2

F (5.36)

of the mean µ(n) (filled) and the variance Σ(n) (empty) from the target (µ̄, Σ̄) in every
MPC step for the equilibrium control (K̄, c̄) (blue circle) and for the optimal open-loop
control sequences u∗n for γ = 0.015 (red square) and for γ = 10−5 (green diamond), we
see that the target is reached in all cases.

Figure 5.1: Objective function J2 with the stage cost given by (5.15) (left) and normalized
differences (5.36) (right) for Example 5.14.

In light of Example 5.14 it is apt to explore other means of proving (global) asymptotic
stability of the MPC closed loop (for N = 2). Already in the proof of Theorem 5.11
we needed to treat the mean µ(t) and the covariance matrix Σ(t) separately. For the
dynamics given by the Ornstein–Uhlenbeck process, we can indeed decouple these two.
Note that the (d-dimensional) Ornstein–Uhlenbeck process from Example 5.1 satisfies the
requirements of the following proposition due to the constraints on K(t), i.e., ki(t) > −θi
for i = 1, . . . , d.

Proposition 5.15. Consider the system (5.5) associated to a linear stochastic process de-
fined by (5.3) with a Gaussian initial condition (5.4) and a desired PDF ρ̄ given by (5.20).
Assume that A − BK(t) is a negative definite diagonal matrix for all t ≥ 0 and that B
is a square and invertible matrix. Furthermore, let the stage cost be given by (5.15) with
γ ≥ 0. Then each component of the mean µi(t) converges exponentially towards µ̄i = 0 in
the MPC closed loop for each optimization horizon N ≥ 2.

Proof. Let N ≥ 2. If we express the stage cost (5.15) in terms of (µ,Σ), cf. (5.16), then
the objective function JN , cf. (OCPN), can be written as

JN((µ̊, Σ̊),u) = JN((µ̊, Σ̊), (K, c)) =
N−1∑
k=0

`((µ(k),Σ(k), (K(k), c(k))) (5.37)
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with
`((µ(k),Σ(k), (K(k), c(k))) = 2−dπ

−d/2`Σ,µ(k) +
γ

2
`K,c(k),

where

`Σ,µ(k) := |Σ(k)|−1/2 + 1− 2

∣∣∣∣12(Σ(k) + I)

∣∣∣∣−1/2

exp

(
−1

2
µ(k)>(Σ(k) + I)−1µ(k)

)
, (5.38a)

`K,c(k) :=
∥∥BK(k)−BK̄

∥∥2

F
+ ‖Bc(k)‖2

2 , (5.38b)

cf. (5.21). Let (K∗, c∗) := (K∗(k), c∗(k))k=0,...,N−1 be the optimal control sequence that,
together with the corresponding state trajectory (µ∗(k),Σ∗(k))k=0,...,N−1, minimizes (5.37)

given some initial value (µ̊, Σ̊).
Looking at the continuous-time dynamics (5.5), we note that K(t) influences both

the mean µ(t) and the covariance matrix Σ(t), while c(t) has an impact on µ(t) only.
Therefore, we are able to control the mean µ(t) independently of the covariance ma-
trix Σ(t). Moreover, since A − BK(t) =: M(t) is a (negative definite) diagonal matrix,
i.e., M(t) = diag(m1(t), . . . ,md(t)), defining c̃(t) := Bc(t) yields

µ̇i(t) = mi(t)µi(t) + c̃i(t), µi(0) = µ̊i

for i = 1, . . . , d. This ODE can be solved to obtain the sampled system

µi(k + 1) = exp

 tk+1∫
tk

mi(s) ds


︸ ︷︷ ︸

∈]0,1[

[
µi(k) +

tk+1∫
tk

c̃i(s) exp

− s∫
tk

mi(δ) dδ


︸ ︷︷ ︸

>1

ds

]

for i = 1, . . . , d. In the case of piecewise constant controls, this simplifies to

µi(k + 1) = exp (mi(k)Ts)

[
µi(k) +

c̃i(k)

mi(k)
(1− exp (−mi(k)Ts))

]
= emi(k)Ts︸ ︷︷ ︸

∈]0,1[

µi(k) + c̃i(k)
emi(k)Ts − 1

mi(k)︸ ︷︷ ︸
>0

,
(5.39)

where we remind that Ts = tk+1 − tk.
To prove our assertion, it is sufficient to exclude two things in the sampled system:

1. It is optimal to not approach or to deviate from the target zero in any component
of the mean at any time, i.e., ∃k̃ ∈ {1, . . . , N − 1}, j ∈ {1, . . . , d}:

µ∗j(k̃) ≥ µ∗j(k̃ − 1) if µ∗j(k̃ − 1) > 0, (5.40a)

µ∗j(k̃) ≤ µ∗j(k̃ − 1) if µ∗j(k̃ − 1) < 0, (5.40b)

µ∗j(k̃) 6= µ∗j(k̃ − 1) if µ∗j(k̃ − 1) = 0. (5.40c)

2. It is optimal to overshoot the target zero in any component of the mean at any time,
i.e., ∃k̃ ∈ {1, . . . , N − 1}, j ∈ {1, . . . , d}:{

µ∗j(k̃) < 0 if µ∗j(k̃ − 1) > 0, (5.41a)

µ∗j(k̃) > 0 if µ∗j(k̃ − 1) < 0. (5.41b)
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We now prove that none of these two points occur in the sampled system. Due to (5.39),
we may look at one component µj at a time. For a given j ∈ {1, . . . , d}, let k̃ be the
smallest k ∈ {1, . . . , N − 1} for which either (5.40) or (5.41) holds. Analogous to c̃(t),
we define c̃∗(k) := Bc∗(k). Due to mj(k) < 0 we see from (5.39) that with c̃j(k) = 0
we always get |µj(k̃)| ≤ |µj(k̃ − 1)|, with equality if and only if µj(k̃ − 1) = 0. For any
given Σ(k), a lower |µj(k)| yields a lower state cost `Σ,µ(k), cf. (5.38). Moreover, for any
given M(k) (and thus K(k)), choosing c̃j(k) = 0 is optimal with respect to the control
cost `K,c(k).

With these preliminary considerations in mind, let us first assume that (5.41) holds
for k̃. In the following, we construct a control sequence that performs strictly better,
contradicting optimality of the current control sequence and thus excluding (5.41). To
this end, we note that there exists some c̃j(k̃ − 1) =: c̃0

j(k̃ − 1) such that µj(k̃) = 0, cf.
(5.39). Since |B| 6= 0, there is a sequence c∗∗ := (c∗∗(k))k=0,...,N−1 such that

c̃∗∗i (k) :=


c̃0
j(k̃ − 1), i = j ∧ k = k̃ − 1,

0, i = j ∧ k ≥ k̃,

c̃∗i (k), otherwise,

i = 1, . . . , d, k = 0, . . . , N − 1. (5.42)

From (5.39) we see that |c̃0
j(k̃ − 1)| < |c̃∗j(k̃ − 1)|. Thus, the new control sequence

(K∗(k), c∗∗(k))k=0,...,N−1 outperforms the optimal control sequence in terms of (total) con-
trol cost:

`K∗,c∗∗(k)


= `K∗,c∗(k), k = 0, . . . , k̃ − 2,

< `K∗,c∗(k), k = k̃ − 1,

≤ `K∗,c∗(k), k = k̃, . . . , N − 1.

For the corresponding state trajectory (µ∗∗(k),Σ∗∗(k))k=0,...,N−1 and all k ∈ {0, . . . , N−1},
we have Σ∗∗(k) = Σ∗(k) and

µ∗∗i (k) =

{
0, i = j ∧ k ≥ k̃,

µ∗i (k), otherwise.

Therefore, we have reduced the (total) state cost as well:

`Σ∗∗,µ∗∗(k)


= `Σ∗,µ∗(k), k = 0, . . . , k̃ − 1,

< `Σ∗,µ∗(k), k = k̃,

≤ `Σ∗,µ∗(k), k = k̃ + 1, . . . , N − 1.

In conclusion,
JN((µ̊, Σ̊), (K∗, c∗∗)) < JN((µ̊, Σ̊), (K∗, c∗)), (5.43)

which contradicts optimality of (K∗(k), c∗(k))k=0,...,N−1 and thus excludes (5.41).
To exclude (5.40), we proceed in a similar manner. Assuming (5.40) holds for k̃, we

can find a sequence c∗∗ := (c∗∗(k))k=0,...,N−1 such that

c̃∗∗i (k) :=

{
0, i = j ∧ k = k̃ − 1,

c̃∗i (k), otherwise,
i = 1, . . . , d, k = 0, . . . , N − 1.

From the preliminary considerations above we know that (5.40) does not occur with
c̃∗∗j (k̃) = 0, i.e., c̃∗j(k̃) 6= 0. Thus, the new control sequence exhibits a lower (total) control
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cost. As above, we denote the corresponding state trajectory by (µ∗∗(k),Σ∗∗(k))k=0,...,N−1

and once again Σ∗∗(k) = Σ∗(k). Clearly we have µ∗∗j (k) = µ∗j(k) for k = 0, . . . , k̃ − 1 and

|µ∗∗j (k̃)| < |µ∗j(k̃)|, which results in

`Σ∗∗,µ∗∗(k)

{
= `Σ∗,µ∗(k), k = 0, . . . , k̃ − 1,

< `Σ∗,µ∗(k), k = k̃.

In addition, we can make sure that `Σ∗∗,µ∗∗(k) ≤ `Σ∗,µ∗(k) for k = k̃ + 1, . . . , N − 1:
Using the new control sequence, there are three distinct cases that can occur in the next
time step k̃ + 1 for the j-th component. If (5.40) holds, then we repeat this procedure,
reducing the cost also for k̃+1. If (5.41) holds, then we construct another control sequence
analogous to (5.42), arriving at a lower cost overall. If neither (5.40) nor (5.41) hold, then
|µ∗∗j (k̃ + 1)| < |µ∗j(k̃ + 1)| since |µ∗∗j (k̃)| < |µ∗j(k̃)|, cf. (5.39), which again results in a

reduced state cost for k̃ + 1. This can be done iteratively until we arrive at (5.43), thus
excluding (5.40).

Therefore, we have shown monotone convergence of µi(t) to µ̄i. Since the ODE for
µ(t) in (5.5) is linear, the convergence is indeed exponential.

We note that the proof of Proposition 5.15 is the same if we include box constraints on
c̃(t) = Bc(t), i.e., c̃1 ≤ c̃(t) ≤ c̃u with c̃l ≤ 0 ≤ c̃u. Furthermore, Proposition 5.15 extends
to other stochastic processes where the dynamics are given by (5.5) provided that

� each component of the mean can be controlled separately and

� we can approach the target (in each component) invoking zero control cost (with
respect to Bc(k)) regardless of how K(k) is chosen.

While it is debatable whether the first ingredient is really necessary, Example 5.16 illus-
trates what happens if the second property is violated.

Example 5.16. Consider a shifted version of Example 5.14: instead of (µ̄, µ̊) = (0, 14),
we consider (µ̄, µ̊) = (1, 15). The other model parameters remain the same. In order to
take the control constraint K(t) > −θ into account, we set K(t) + θ ≥ ε with ε = 10−8

in our numerical simulation. Due to (5.12), we have (K̄, c̄) = (−1, 3). In this example,
we specifically use the original stage cost (5.15), not the modified cost (5.22). Looking
at Figure 5.1 from Example 5.14, for low enough values of γ we expect the variance to
increase at the beginning when using the calculated optimal control, which indeed is the
case for γ = 10−5, cf. Table 5.1. However, the mean µ also grows in time, which is due
to (5.9): with c̄ = 3, the mean does not converge to its target for all admissible K, and
deviating from c̄ = 3 enough to make a difference seems too expensive. This results in a
PDF that is drifting away from its target rather than converging towards it, as desired.

Remark 5.17. The effect of drifting away from the target as in Example 5.16 did not oc-
cur in Chapter 4 since the variance could not be controlled. In particular, it was impossible
to choose “unsuitable” values for K.

Of course, using the modified stage cost (5.22) restores the second key property: we
can again approach the target mean (in each component) while invoking zero control cost
with respect to Bc(k) for any admissible K(k). Needless to say, rerunning the numerical
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n 0 1 2 3 4 5 6 7 . . . 199

µ(n) 15 15.23 15.47 15.7 15.93 16.15 16.38 16.61 . . . 72.38
Σ(n) 12 12.6 13.2 13.8 14.4 15 15.6 16.2 . . . 131.4
K∗(0) ε− 4 ε− 4 ε− 4 ε− 4 ε− 4 ε− 4 ε− 4 ε− 4 . . . ε− 4
c∗(0) 2.34 2.32 2.3 2.29 2.28 2.27 2.27 2.26 . . . 3
V2(n) .362 .361 .359 .357 .356 .354 .353 .351 . . . .307

Table 5.1: State, associated feedback control (the first value of the optimal control se-
quence u∗n, cf. Algorithm 3.1), and optimal value function V2((µ(n),Σ(n))) =: V2(n) in
each MPC step for Example 5.16 with γ = 10−5.

simulation of Example 5.16 with the modified stage cost, we end up with the exact same
behavior as in Example 5.14 (with µ shifted by 1).

Having established exponential convergence of the mean in Proposition 5.15, we can
confirm our numerical findings in the one-dimensional case.

Proposition 5.18. Consider the one-dimensional Ornstein–Uhlenbeck process from Ex-
ample 5.1, i.e., (5.5) with A = −θ < 0, B = 1, D = ς > 0, K(t) > −θ and c(t) ∈ R.
Assume that the desired PDF ρ̄ is given by (5.20). Furthermore, let the stage cost be given
by (5.15) with γ ≥ 0. Then the MPC closed loop converges to the equilibrium ρ̄ for each
optimization horizon N ≥ 2 and each initial condition.

Even though the process in Proposition 5.18 is one-dimensional, the proof is very
technical without providing more insight and can therefore be found in the Appendix. In
the multi-dimensional case, however, even if µ̊ = µ̄, we face again the issue of increasing
cost, see the following example.

Example 5.19. Consider the 2D Ornstein–Uhlenbeck process with (model) parameters
A = −diag(3.1, 11), B = I, D = diag(0.2,

√
20), µ̊ = 0 = µ̄, Σ̊ = diag(0.02, 200),

Σ̄ = I, and some γ > 0. We set the MPC horizon N to 2, the sampling rate Ts to 0.2,
and use the stage cost (5.15). As in Example 5.14, in Figure 5.2 (left) we depict the
cost J2((µun(n),Σun(n)),un), where un denotes the control sequence in the n-th MPC
step. We consider the equilibrium control un ≡ (K̄, c̄) =: ū (blue dash-dot) as well as
optimal control sequences u∗n for γ = 0.0005 (red dash) and for γ = 10−5 (green dot). As
above, Figure 5.2 (left) also shows that the optimal value function V2 grows, implying that
exponential controllability with C = 1 cannot hold. Yet, as in Example 5.14, the target is
reached in all cases, as Figure 5.2 (right) shows.4

As a consequence, similar to Example 5.14, for a sufficiently large weight γ > 0, the
exponential controllability property does not hold with C = 1. Moreover, in contrast to
the mean, cf. Proposition 5.15, numerical simulations illustrate that we can neither expect
monotone convergence of each component Σii to 1, i = 1, ..., d, nor monotone convergence
of ‖Σ(t)− I‖F to zero.

In order to get more insight on how to develop alternative methods to circumvent this
issue, we focus on the state cost (5.16) by setting γ = 0.

4In Figure 5.2 (right) we have depicted the normalized differences (5.36) only for the first 10 MPC
steps as there are no visual changes afterwards.
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Figure 5.2: Objective function J2 with the stage cost given by (5.15) (left) and normalized
differences (5.36) (right) for Example 5.19.

The Case of γ = 0

Setting γ = 0 allows us to focus on the state cost (5.16). We recall that we still impose the
control constraints ki(t) > −θi, cf. Example 5.1. These restrictions affect the dynamics:
Assuming Σ̊ = diag(̊σ2

1, ..., σ̊
2
d) as in Example 5.1, one can show from (5.10) and (5.11)

that, while Σii(t) can be decreased to an arbitrarily smaller positive value in one time
step, there is an upper bound. More precisely, with Ts = tk+1 − tk one can show that

0 < Σii(tk+1) ≤ Σii(tk) + 2Tsς
2
i , (5.44)

i = 1, ..., d. In particular, the target variance cannot always be reached within one MPC
time step, even if we allowed non-constant control coefficients as in Theorem 5.8.

In light of Example 5.19, we want to focus on steering this variance. Hence, in this
part we assume that the target mean µ̄ is already reached, i.e., that µ(t) ≡ µ̄. Moreover,
to keep the connection to the previous part, we consider control sequences that are piece-
wise constant in time. In the case of the Ornstein–Uhlenbeck process considered here,
both assumptions are sensible; if the target mean is not reached initially, i.e., µ̊ 6= µ̄,
then the mean converges exponentially (with piecewise constant control sequences), see
Proposition 5.15. However, most of the content in this section extends naturally to general
dynamics (5.5) with (µ̄, Σ̄) = (0, I) if we assume that the target mean µ̄ is already reached
or, alternatively, that it can be reached within one MPC step. This is due to Lemma 5.7,
which depicts the state cost (5.16) in terms of the Eigenvalues φi(t) of Σ(t). Therefore,
in order to keep this generality, instead of looking at Σ(t), we look at its Eigenvalues
φi(t) collected in the matrix Φ(t) = diag(φi(t), . . . , φd(t)). Likewise, instead of (5.16), we
consider only the relevant part of the state cost, namely (5.24).

The goal of this section is to understand better the L2 cost and to show that for γ = 0
the MPC closed loop is stable with N = 2, cf. Corollary 5.23. Regarding the former, we
will look at the level sets of (5.24). Regarding the latter, we proceed as follows. First,
we show in Proposition 5.20 that heading towards the target Σ̄ = I leads to a lower cost.
Second, since there might be other directions that yield an even lower cost in the short
term—and with N = 2 we only look one step ahead—we need to rule out that we drift
away from the target indefinitely like we did in Example 5.16.
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Figure 5.3: Level sets and gradient of g(φ) in the two-dimensional setting (left) and the
trajectory (blue dash) from Example 5.19 (right).

We start by studying the equivalent state cost (5.24). As in the proof of Theorem 5.11
we can interpret the matrix Φ = diag(φ1, . . . , φd) as a vector φ = (φ1, . . . , φd). In this
case, we write g(φ) instead of g(Φ). Then the gradient of g(φ) is given by

∇g(φ) =
1

2

( d∏
i=1

φi + 1

2

)−1/2(
φj + 1

2

)−1

−

(
d∏
i=1

φi

)−1/2

φ−1
j


j=1,...,d

.

Figure 5.3 gives an impression of the level sets and gradients of g(φ) in the two-
dimensional case and illustrates the problem that occurs in Example 5.19. First, we
note that in the Ornstein–Uhlenbeck process under consideration, Σ(t) is diagonal and
therefore Φii(t) = Σii(t). Then, due to (5.11) and (5.12), each component Σii respective
φi converges monotonously to 1 when using K̄. In particular, if φ1 and φ2 are both greater
than 1 or both smaller than 1, the costs do not rise when using K̄ and one can prove
exponential controllability with C = 1 by applying the proof of the one-dimensional
case, cf. Proposition 5.18, to each component. However, we may run into problems if
sign(φ1 − 1) 6= sign(φ2 − 1) as in Example 5.19.5 Moreover, as can be seen by the
arrows representing the gradient of g(φ) in Figure 5.3 (left), the optimal control sequence
calculated in one MPC iteration might drive the state into the problematic region even if
starting from, e.g., φ̊i > 0, i = 1, 2. Therefore, the sets {φ ∈ Rd | ∀i = 1, . . . , d : φi > 1}

5This is connected to the value of α in Chapter 4, describing the relation of current and equilibrium
variance. The difference to the situation here is that in Chapter 4 the cost increase stemmed from the
mean being too far away from the target. Here, the target mean is already reached, and the cost increase
stems from “shifting the mass of the PDF” too fast in some components compared to others, which may
occur if (at least) one Eigenvalue is greater than 1 and at least one Eigenvalue is smaller than 1.
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and {φ ∈ Rd | ∀i = 1, . . . , d : φi < 1} are not forward-invariant. Hence, showing the
exponential controllability property only for these sets is not fruitful.

In the following, we therefore follow a different path to prove that with N = 2, a stable
MPC closed loop is obtained.

Proposition 5.20. Let Φ 6= I. Then, for g defined in (5.24), I−Φ is a descent direction,
i.e., Dg(Φ)(I − Φ) < 0 for all Φ 6= I.

Proof. Let A,H ∈ Rd×d. Due to

D(detA)H = det(A)tr(A−1H) = |A|tr(A−1H),

cf. [75, Sect. 2], we have

Dg(Φ)H = − 1

2
|Φ|−3/2D (det(Φ))H +

∣∣∣∣12(Φ + I)

∣∣∣∣−3/2

D

(
det

(
1

2
(Φ + I)

))
H · 1

2

= − 1

2
|Φ|−3/2|Φ|tr(Φ−1H) +

1

2

∣∣∣∣12(Φ + I)

∣∣∣∣−3/2 ∣∣∣∣12(Φ + I)

∣∣∣∣ tr
((

1

2
(Φ + I)

)−1

H

)
︸ ︷︷ ︸

=2tr((Φ+I)−1H)

= − 1

2
|Φ|−1/2tr(Φ−1H) +

∣∣∣∣12(Φ + I)

∣∣∣∣−1/2

tr((Φ + I)−1H).

Therefore,

Dg(Φ)(I − Φ) = −1

2
|Φ|−1/2tr(Φ−1(I − Φ)) +

∣∣∣∣12 (Φ + I)

∣∣∣∣−1/2

tr((Φ + I)−1(I − Φ))

=
1

2
|Φ|−1/2

[
−tr(Φ−1 − I) + 2

∣∣∣∣12 (I + Φ−1
)∣∣∣∣−1/2

tr((I + Φ−1)−1(Φ−1 − I))

]
.

Defining Θ := 1
2
(I + Φ−1) = diag(ϑ1, . . . , ϑd) with ϑi ≥ 1

2
, we have that

Dg(Φ)(I − Φ) < 0

⇔ − tr(Φ−1 − I) + 2

∣∣∣∣12(I + Φ−1)

∣∣∣∣−1/2

tr((I + Φ−1)−1(Φ−1 − I)) < 0

⇔ − 2tr(Θ − I) + 2|Θ|−1/2tr((2Θ)−1(2Θ − 2I)) < 0

⇔ |Θ|1/2tr(Θ − I) > tr(Θ−1(Θ − I))

⇔

(
d∏
i=1

ϑi

)1/2 d∑
i=1

(ϑi − 1) >
d∑
i=1

(
1− 1

ϑi

)
.

For each i = 1, . . . , d, the inequality ϑi − 1 ≥ 1 − 1
ϑi

holds, with equality if and only if

ϑi = 1. In particular,
∑

(ϑi − 1) ≤ 0 implies
∑(

1− 1
ϑi

)
≤ 0. It is therefore sufficient to

show that

(a)
∏
ϑi ≤ 1, if

∑
(ϑi − 1) ≤ 0 and
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(b)
∏
ϑi ≥ 1, if

∑(
1− 1

ϑi

)
≥ 0.

First, we show (a). To this end, we have

d∑
i=1

(ϑi − 1) ≤ 0 ⇔
d∑
i=1

ϑi ≤ d ⇔
d∑
i=1

ϑi
d
≤ 1.

Due to ϑi > 0, by using the inequality of arithmetic and geometric means we get(
d∏
i=1

ϑi

)1/d

≤
d∑
i=1

ϑi
d
≤ 1,

from which the assertion
∏
ϑi ≤ 1 follows, again due to ϑi > 0.

To show (b), we recognize that∑(
1− 1

ϑi

)
≥ 0 ⇔

∑ 1

ϑi
≤ d.

In particular, due to (a), we get
∏

1
ϑi
≤ 1, from which the assertion in (b) follows.

Corollary 5.21. The equivalent state cost g defined in (5.24) has the unique stationary
point I, which is the global minimum with g(I) = 0. Moreover, the sublevel sets Lc := {Φ :
g(Φ) ≤ c}, where Φ = diag(φ1, . . . , φd) with φi > 0 for each i = 1, . . . , d, are connected.

Note that g defined in (5.24) is not convex, not even in 1D. Moreover, Proposition 5.20
and Corollary 5.21 are not enough to prevent effects similar to the ones observed in
Example 5.16, i.e., we cannot exclude that the MPC closed-loop solution drifts away
indefinitely (albeit with monotonously decreasing cost), not even for γ = 0. This is due
to possibly unbounded level sets, which we characterize in the following lemma.

Lemma 5.22. The sublevel sets Lc from Corollary 5.21 are bounded for c < 1 and
unbounded otherwise.

Proof. We first show that the sublevel sets are unbounded for c ≥ 1:

g(Φ) ≤ 1⇔ |Φ|−1/2 − 2

∣∣∣∣12(Φ + I)

∣∣∣∣−1/2

≤ 0

⇔
∣∣∣∣12(Φ + I)

∣∣∣∣ ≤ 4|Φ|

⇔ |(Φ + I)| ≤ 2d+2|Φ|

⇔ 2d+2 ≥
d∏
i=1

φi + 1

φi
=

(
1 +

1

φ1

) d∏
i=2

φi + 1

φi

⇔ φ1 ≥

(
2d+2

d∏
i=2

φi
φi + 1

− 1

)−1

.

In particular, we can find some φ1 > 0 such that g(Φ) = 1 even as φi →∞, i = 2, . . . , d.
Clearly, the indexes are interchangeable, i.e., we have lower bounds on each φi, but no
upper bound.
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As for the other claim, we have

g(Φ) = 1 + |Φ|−1/2 − 2

∣∣∣∣12(Φ + I)

∣∣∣∣−1/2

> 1 + |Φ + I|−1/2 − 2

∣∣∣∣12(Φ + I)

∣∣∣∣−1/2

= 1 +
(
1− 21+d/2

)
|Φ + I|−1/2 =: h(Φ).

In particular, the sublevel sets of g are contained in those of h, i.e.,

{Φ | g(Φ) ≤ c} ⊂ {Φ | h(Φ) ≤ c} .

Moreover, for 0 ≤ c < 1, we have

h(Φ) ≤ c⇔
(
1− 21+d/2

)
|Φ + I|−1/2 ≤ c− 1

⇔ 1− 21+d/2

c− 1
≥ |Φ + I|1/2

⇔
(

1− 21+d/2

c− 1

)2

≥ |Φ + I| =
d∏
i=1

(φi + 1),

(5.45)

which results in upper bounds φi ≤
(

1−21+d/2

c−1

)2

− 1 =: r, i = 1, . . . , d. Note that the

last equivalence in (5.45) holds due to both sides being positive. Moreover, r ∈ ]0,∞[ for
fixed c ∈ [0, 1[. Since φi > 0, the (sub)level sets of h and, consequently, those of g, are
contained in the d-dimensional hypercube [0, r]d.

Combining the last three results yields the following result. We recall that the state
cost (5.16) that appears in the stage cost (5.15) can be expressed in terms of Eigenvalues
φi(t) of Σ(t), which we collect in the matrix Φ(t) = diag(φi(t), . . . , φd(t)). In the case
of the (multi-dimensional) Ornstein–Uhlenbeck process from Example 5.1 the covariance
matrix Σ(t) is diagonal and hence Σ(t) = Φ(t).

Corollary 5.23. Consider the (multi-dimensional) Ornstein–Uhlenbeck process from Ex-
ample 5.1, i.e., (5.5) with A,B,D,K(t), c(t) as in (5.8) and a desired PDF ρ̄ given by
(5.20). Furthermore, let the stage cost be given by (5.15) with γ = 0. Consider all initial
values for which the target mean is already reached, i.e., µ̊ = µ̄ = 0 and for which

(a) g(Φ̊) < 1, for g defined in (5.24), or

(b) there exists some ε ∈ ]0, 1[ such that φi(t) ≤ 1
ε

for all i = 1, ..., d and all t ≥ 0.

Then for these initial conditions the equilibrium ρ̄, characterized by (0, I), is asymptoti-
cally stable for the MPC closed loop for N = 2.

Proof. First of all, for any fixed admissible Φ, it is always most beneficial (in terms of
cost) to have µ(t) ≡ µ̄, cf. (5.16). Since µ̊ = µ̄ = 0 and since we can control the mean
independently of Φ, we can and will always stay at µ̄ = 0 (since MPC chooses the optimal
control c = 0), regardless of how the control K is chosen, cf. (5.5). Hence, we will only
consider the dynamics of Φ and the control K in the following.
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With N = 2 we only look one time step into the future. Hence, when computing
the optimal control sequence u∗n = K∗n = (K∗n(0), K∗n(1)) in the n-th MPC time step,
we are looking for a control value K∗n(0) that minimizes the stage cost (5.15) after one
(discrete) time step.6 Due to γ = 0 and µ̊ = µ̄, the stage cost (5.15) can be expressed
as 2−dπ−d/2g(Φ), see Lemma 5.7. Hence, we are effectively minimizing g(Φ(tn+1)) in the
n-th MPC step and will thus focus on the behavior of g(Φ).

For all admissible Φ = diag(φ1, ..., φd) we have g(Φ) ≥ 0 and g(Φ) = 0 ⇔ Φ = I.
Moreover, every component φi, i = 1, ..., d, will stay away from zero: if some φi ↘ 0, then
g(Φ)→∞. Thus, to arrive at the assertion, in the following we show that with the MPC
feedback law, g(Φ(tn))↘ 0 for n→∞.

If an admissible control value exists such that g(Φ(tn+1)) < g(Φ(tn)), then the optimal
control value K∗n(0) will be chosen such that the stage cost decreases as much as possible.
Such an admissible control does exist for all n ∈ N0 as long as g(Φ(tn)) > 0, since
the descent direction from Proposition 5.20 is always feasible (for both requirements (a)
and (b)).7 Hence, g(Φ(tn)) is bounded from below by 0 and is strictly monotonically
decreasing in n as long as g(Φ(tn)) > 0. To conclude that g(Φ(tn)) ↘ 0 for n → ∞
we show that for any ε > 0 there exists a δ > 0 such that for any g(Φ(tn)) > ε we
get g(Φ(tn+1)) − g(Φ(tn)) < −δ with the MPC feedback. To this end, we prove that all
Φ(tn) belong to a compact set and that the mapping Φ(tn) 7→ g(Φ(tn+1))− g(Φ(tn)) has
a continuous negative upper bound for Φ 6= I.

Regarding the former, we first consider (a). Then according to Corollary 5.21 and
Lemma 5.22 the sublevel set L̊ = {Φ : g(Φ) ≤ g(Φ̊)} is connected and bounded. Moreover,
L̊ is closed and thus compact. Hence, all Φ(tn) belong to the compact set L̊. Next, we
consider (b). We note that (a) is more restrictive than (b): If (a) is satisfied, then we
can always find some ε ∈ ]0, 1[ such that (b) is satisfied as well. Hence, we assume that
1 ≤ g(Φ̊) <∞, i.e., a closed but unbounded sublevel set L̊. However, the set L̊ ∩ [0, 1/ε]d,
which includes I, is closed and bounded, thus compact, and all Φ(tn) stay in that set.

Regarding the latter, let Φ 6= I. Then according to Proposition 5.20 I−Φ is a descent
direction. In particular, there exists some ᾱ > 0 such that

g(Φ + α(I − Φ)) < g(Φ) for all α ∈ ]0, ᾱ[.

Since g is twice differentiable, cf. (5.24), from the Taylor expansion of g we can choose ᾱ
continuously dependent on Φ. This continuity carries over to α̃ := min{ᾱ, 1/ε} and we do
not lose this property if we reduce α̃ further (which might be required in order to adhere
to (5.44), i.e., to guarantee the existence of a control K that yields the state Φ+α̃(I−Φ)).
Then F (Φ) := Φ + α̃(I −Φ) is continuous in Φ. Moreover, g(F (Φ))− g(Φ) < 0 for Φ 6= I
and in particular, F (Φ) is admissible in both cases (a) (since the cost declines) and (b)
(by construction of α̃). Hence, F is a continuous negative upper bound for the mapping
Φ(tn) 7→ g(Φ(tn+1))− g(Φ(tn)). This concludes the proof.

Since the properties of g(Φ) were derived regardless of the dynamics of the system,
Corollary 5.23 can be extended to other systems (5.5), with one caveat: In each MPC

6We recall that the control value K∗n(1) only influences subsequent states. However, these are not
included in the objective function for N = 2 and hence K∗n(1) does not have an impact on the objective
function; see also the end of Section 4.1.

7Given any fixed sampling time Ts > 0, from any state Φ(tn) we can find a control such that Φ(tn+1)
is in a neighborhood of Φ(tn), cf. (5.44). Note that the descent direction from Proposition 5.20 always
adheres to the respective requirements (a) or (b) (for suitably chosen step sizes).
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time step n ∈ N0 we need to be able to reduce the state cost, i.e., there must exist some
admissible control such that g(Φ(tn+1)) < g(Φ(tn)).

5.4 Conclusion

In this chapter, we have analyzed the stability of the closed loop generated by Model
Predictive Control schemes applied to tracking problems involving the Fokker–Planck
equation. We have considered a setting involving linear dynamics and Gaussian PDFs.
Even in this relatively simple setting, the use of the L2 cost, which is standard in PDE
tracking problems, leads to a rather involved analysis. Particularly, stability does not
always hold for the shortest possible horizon N = 2. Even in some cases where it does
hold, the usual exponential controllability condition without overshoot (i.e., with C = 1)
is not satisfied and a different technique for the stability analysis had to be developed.

This raises the question whether distances other than L2 could facilitate the analy-
sis. One alternative is to use the Wasserstein metric, which is specifically designed to
measure the distance between two PDFs. To the best of our knowledge, in the general
PDE setting this metric lacks a sound existence theory regarding optimal controls, in
contrast to the L2 cost, see Chapter 2. By changing the perspective from the Fokker–
Planck equation (1.2) (infinite-dimensional) to the ODE system (5.5) (finite-dimensional),
however, the Wasserstein cost function simplifies considerably and is even convex, see the
subsequent chapter.

Hence, in the following chapter we compare various alternative cost functions in the
setting of linear stochastic processes. Moreover, we switch our focus from stabilizing MPC
to the more general economic MPC case, cf. Section 3.3.

Appendix

Proof of Proposition 5.18. Due to Proposition 5.15, we can assume that µ̊ is arbitrarily
close to µ̄ = 0. For |̊µ| sufficiently small, we argue below that the exponential controlla-
bility condition (3.6) with respect to stage cost (5.15) holds with C = 1 for the control
candidate (K̄, c̄). Then we apply Theorem 3.4 to conclude the assertion.

First, due to µ̄ = 0, we have that c̄ = 0. Then, due to Σ̄ = 1 we see from (5.9), (5.11),
and (5.12) that applying (K̄, c̄) results in

µ(t) = µ̊e−2(θ+K̄)t and Σ(t) = 1 + (Σ̊− 1)e−2(θ+K̄)t > 0.

We define
θ̄ := θ + K̄ > 0.

Then with Lemma 5.5 the stage cost (5.15) can be written as

Ṽ (t) := 1 +
[
1 + (Σ̊− 1)e−2θ̄t

]−1/2

− 2

[
2 + (Σ̊− 1)e−2θ̄t

2

]−1/2

exp

(
− µ̊2e−2θ̄t

2(2 + (Σ̊− 1)e−2θ̄t)

)
.

Our aim is to show Ṽ (t) ≤ e−κtṼ (0) for some κ > 0 (for sufficiently small µ̊2). Then
(3.6) holds with overshoot bound C = 1 and decay rate δ = e−κTs . We claim that
Ṽ (t) ≤ e−κtṼ (0) with

κ :=
θ̄

Σ̊ + 1
> 0.
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To this end, we prove Ṽ ′(t) + κṼ (t) ≤ 0. First, to shorten the notation, we introduce

a := Σ̊− 1 ∈ ]−1,∞[, τ := e−2θ̄t ∈ ]0, 1], χ :=
µ̊2τ

(aτ + 2)
≥ 0,

a1 := 2
√

2e
−χ/2 −

(
aτ + 2

aτ + 1

)3/2

, and a2 := 1− 1

(aτ + 1)3/2
− 4
√

2χe−χ/2(a+ 2)

(aτ + 2)3/2
.

Then we can express 1
θ̄
(Ṽ ′(t) + κṼ (t)) by − h(τ)

(aτ+2)
3/2(a+2)

, where

h(τ) := a1 (aτ(a+ 2) + aτ + 2)− a2(aτ + 2)
3/2,

which means we have to show that h(τ) ≥ 0. We consider the two cases Σ̊ > 1 respective
a > 0 and Σ̊ < 1 respective a < 0. The case Σ̊ = 1 is trivial.

First, let us assume a > 0. In this case, we set µ̊2 = εa for some ε ≥ 0. Then

h(τ) = a1 (aτ(a+ 2) + aτ + 2)− a2(aτ + 2)
3/2

≥ a1 (aτ(a+ 2) + aτ + 2)− a3(aτ + 2)
3/2

with

a3 := 1− 1

(aτ + 1)3/2
− 4
√

2χe−χ/2

(aτ + 2)1/2
≥ a2

due to a+ 2 ≥ aτ + 2. If a1 ≥ 0, which we prove below, then

h(τ) ≥ a1 (aτ + 2) + a1aτ(a+ 2)︸ ︷︷ ︸
≥a1aτ(aτ+2)

−a3(aτ + 2)
3/2

≥ (aτ + 2)︸ ︷︷ ︸
>0

(a1 + a1aτ − a3

√
aτ + 2)

= (aτ + 2)(a1(aτ + 1)− a3

√
aτ + 2),

i.e., it is left to show that a1(aτ + 1)− a2

√
aτ + 2 ≥ 0. Furthermore, if a3 ≥ 0, then

a1(aτ + 1)− a3

√
aτ + 2 ≥ a1(aτ + 1)− a3

(
aτ

2
√

2
+
√

2

)
= a1(aτ + 1)−

√
2a3

(aτ
4

+ 1
)

= a1(aτ + 1)−
√

2a3 (aτ + 1) +
3

4

√
2a3aτ

≥ (aτ + 1)(a1 −
√

2a3),

reducing the problem further to
a1 −

√
2a3 ≥ 0. (5.46)

Since a1 ≥ 0 follows from (5.46), we only need to prove (5.46) and a3 ≥ 0. Regarding the
latter, with ā := aτ ∈ [0,∞[ and for ε ∈ [0, 1

2
], we have

a3 = 1− 1

(aτ + 1)3/2
− 4
√

2χe−χ/2

(aτ + 2)1/2

= 1− 1

(ā+ 1)3/2
− 4

√
2εā

(ā+ 2)3/2
exp

(
− εā

2(ā+ 2)

)
≥ 1− 1

(ā+ 1)3/2
− 2

√
2ā

(ā+ 2)3/2
exp

(
− ā

4(ā+ 2)

)
≥ 0,
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where the first inequality follows since a3 is monotonically decreasing in ε for ε ∈ [0, 1
2
]:

∂a3

∂ε
=

2
√

2ā

(ā+ 2)5/2
exp

(
− εā

2(ā+ 2)

)
︸ ︷︷ ︸

≥0

[εā− 2(ā+ 2)]︸ ︷︷ ︸
<0

≤ 0.

Now, we can turn our attention to (5.46), which we claim holds for ε ∈ [0, 1
4
]. With ā = aτ

as above, we get

a1−
√

2a3 = 2
√

2 exp

(
− εā

2(ā+ 2)

)(
1 +

2
√

2εā

(2 + ā)3/2

)
−
(
ā+ 2

ā+ 1

)3/2

−
√

2

(
1− 1

(ā+ 1)3/2

)
,

which unfortunately is not monotone with respect to ε. We know, however, that

(a1 −
√

2a3)|ā=0 = 0 and (a1 −
√

2a3)→ 2
√

2√
eε
− (
√

2 + 1) as ā→∞, (5.47)

where the limit is positive for ε ∈ [0, 1
4
]. Moreover, in the special case ε = 0, we see that

d(a1 −
√

2a3)

dā
=

3

2(ā+ 1)2

(√
1 +

1

ā+ 1
−
√

2√
ā+ 1

)
≥ 0⇔ ā

ā+ 1
≥ 0⇔ ā ≥ 0, (5.48)

which, together with (5.47), proves that h(τ) ≥ 0 for ε = 0. In general, we have

d(a1 −
√

2a2)

dā |ā=0
=

3√
2
ε. (5.49)

A similar but more involved argument can be made to show that the derivative has at
most one root for ā > 0 and arbitrary but fixed ε ∈ [0, 1

4
]. Then from (5.47) and (5.49)

follows that h(τ) ≥ 0 for ε ∈ [0, 1
4
] and a > 0.

For a ∈ ]−1, 0[, we cannot choose µ̊2 = εa. Instead, we set µ̊2 = ε ∈ [0, 1] and note
that aτ ∈ ]−1, 0[. Then

h(τ) = a1 (aτ(a+ 2) + aτ + 2)− a2(aτ + 2)
3/2

≥ a1 (aτ(a+ 2) + aτ + 2)− a4(aτ + 2)
3/2

with

a4 := 1− 1

(aτ + 1)3/2
− 4
√

2χe−χ/2

(aτ + 2)3/2

due to a < 1. If a1, a4 ≤ 0, then due to aτ ∈ ]−1, 0[, we have

a1 (aτ + 2) + a1aτ︸︷︷︸
≥0

(a+ 2)︸ ︷︷ ︸
≥1

−a4(aτ + 2)
3/2 ≥ a1 (aτ + 2) + a1aτ − a4(aτ + 2)

3/2

= 2a1(aτ + 1)−a4︸︷︷︸
≥0

(aτ + 2)
3/2︸ ︷︷ ︸

≥2
√

2(aτ+1)

≥ 2(aτ + 1)
(
a1 −

√
2a4

)
.
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Note that (aτ+2)3/2 ≥ 2
√

2(aτ+1) only holds for aτ ∈ ]−1, 0[. We only show a1−
√

2a4 ≥ 0
and a1 ≤ 0, since a4 ≤ 0 then follows. Regarding the latter, with µ̊2 = ε, we have

a1 = 2
√

2e
−χ/2 −

(
aτ + 2

aτ + 1

)3/2

= 2
√

2 exp

(
− ετ

2(aτ + 2)

)
−
(
aτ + 2

aτ + 1

)3/2

≤ 2
√

2−
(
aτ + 2

aτ + 1

)3/2

≤ 0.

In the last step, we prove a1 −
√

2a4 ≥ 0:

a1 −
√

2a4 =

2
√

2 exp

(
− ετ

2(aτ + 2)

)(
1 +

2
√

2ετ

(2 + aτ)5/2

)
−
(
aτ + 2

aτ + 1

)3/2

−
√

2

(
1− 1

(aτ + 1)3/2

)
.

One can set ε = −a ∈ ]0, 1[ and use ā = aτ to obtain a function depending only on
one variable and prove the assertion directly. An alternative approach is to show that
a1 −

√
2a4 is monotonously decreasing in ε for ε ∈ ]0, 1[, which is easy to show. Recall

that this property did not hold in case of a > 1. Consequently, it suffices to consider
ε = 0, for which

(a1 −
√

2a4)|ε=0 = (a1 −
√

2a3)|ε=0.

In particular, we can use (5.48). Since the derivative is negative for ā < 0 and the first
equation in (5.47) holds, we have h(τ) ≥ 0 for a < 0.
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The results of the comprehensive analysis in the last two chapters were limited to stabi-
lizing MPC, cf. Section 3.2. The stage cost had the structure of (3.4), i.e., we penalized
the distance of the state to a desired equilibrium and of the control to the corresponding
control value. In this chapter we consider the more general stage cost (3.5), in which
the effort of the control rather than its distance to the—in general difficult to compute—
equilibrium control value is penalized. As a result, the closed-loop system should converge
to an equilibrium that gives the best trade-off between minimizing the tracking error and
the control effort. This is a particular instance of an economic MPC scheme, for which
we have argued in Section 3.3 that strict dissipativity of the underlying optimal control
problem is the key property for stability and near optimal performance of the closed loop.

For this reason, in this chapter we investigate strict dissipativity for a class of optimal
control problems for probability density functions. In order to make the analysis feasible,
we again restrict ourselves to linear SDE dynamics governed by the Ornstein–Uhlenbeck
process, linear feedback controllers, and Gaussian PDFs. For this setting, motivated by
[25, 24], we first explore the opportunities and limitations of obtaining strict dissipativity
with a linear storage function, before proposing a nonlinear storage function, which also
works for parameter values in which the linear storage function approach fails.

In order to keep the PDE aspect of the problem and make the setting extendable to
more complicated dynamics, we first keep the L2 norm in the cost function. We then
extend the analysis to alternative cost functions including the Wasserstein distance W 2.
The linear Gaussian setting allows us to compare our results with general purpose cost
functions—such as the L2 or the W 2 cost—to results for a cost function that is particularly
tailored to the linear Gaussian setting. In the latter cost function we combine the 2-norm
for the mean and the Frobenius norm for the covariance matrix of the Gaussian PDF and
thus term it 2F cost. Despite its similarity to theW 2 cost, the results on strict dissipativity
are strikingly different for these two cost functions, which is just one important result of
this chapter.

This chapter is organized as follows. Section 6.1 introduces the problem and the cost
functions under consideration. Section 6.2 collects a few auxiliary results. Our main
results concerning strict dissipativity for the L2 cost, the W 2 cost, and the 2F cost are
presented in Section 6.3. We end the chapter—and our analysis of the MPC closed loop—
with concluding remarks in Section 6.4.
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6.1 Problem Setting

Similar to Chapter 5 we study linear controlled stochastic processes

dXt = (A−BK(t))Xtdt+Bc(t)dt+DdWt, t ∈ ]0, T [,

with an initial condition X̊ ∈ Rd that is normally distributed, i.e., X̊ ∼ N (µ̊, Σ̊) with
initial mean µ̊ ∈ Rd and covariance matrix Σ̊ ∈ Rd×d > 0. As before, we replace the
Fokker–Planck equation by the following system of ODEs for µ and Σ:

µ̇(t) = (A−BK(t))µ(t) +Bc(t), µ(0) = µ̊,

Σ̇(t) = (A−BK(t))Σ(t) + Σ(t)(A−BK(t))> +DD>, Σ(0) = Σ̊.
(6.1)

Using this ODE system will enable us to analyze strict dissipativity for the optimal
control problem we will introduce soon. Particularly, we will carry out the analysis in this
chapter for the linearly controlled Ornstein–Uhlenbeck process, which, as in Chapter 5,
is defined by

dXt = − (θ +K(t))Xtdt+ c(t)dt+ ςdWt, t ∈ ]0, T [, (6.2)

with an initial condition X̊ ∼ N (µ̊, Σ̊), parameters θ, ς > 0 and control constraints

0 < θ +K(t) =: Kθ(t), t ≥ 0. (6.3)

Plugging A−BK(t) = −Kθ(t) ∈ R>0 and D = ς ∈ R>0 into (6.1) results in

µ̇(t) = −Kθ(t)µ(t) + c(t), µ(0) = µ̊, (6.4a)

Σ̇(t) = −2Kθ(t)Σ(t) + ς2, Σ(0) = Σ̊. (6.4b)

The reason to further consider this particular process is its simple, but bilinear struc-
ture. The considered systems (6.1) and (6.4) in particular represent a small fraction of
problem classes for which MPC is known to yield good numerical results. However, fol-
lowing the common practice in systems and control theory, we first look at these arguably
simpler systems, which are more amenable to a rigorous mathematical analysis. Although
simplified, we expect several benefits from our study for more general settings: cost func-
tions that turn out to work well for the bilinear problem might also perform well for more
general nonlinear problems. Conversely, cost functions that do not perform well for these
simpler systems are likely to perform poorly for more general nonlinear problems, as well.
Finally, the results for the bilinear case provide the basis for obtaining local nonlinear
results via bilinearization.

For the sake of better comparability to [25, 24], in which dissipativity of linear discrete-
time dynamics was considered, we would like to keep the bilinear structure in the discrete
time setting. Moreover, in any numerical implementation of MPC the dynamics must
be approximated by a numerical scheme. In order to allow for a fast computation of
the optimal open-loop trajectories, in MPC implementations simple but less accurate
schemes are often preferred to more expensive high-order methods. For these reasons,
we perform our analysis for the forward Euler approximation of the ODE system (6.4).
This discretization both maintains the bilinear structure and defines a scheme that is
frequently used in practice. It is given by

µ+ = µ+ Ts (−Kθµ+ c) , µ(0) = µ̊, (6.5a)

Σ+ = Σ + Ts
(
−2KθΣ + ς2

)
, Σ(0) = Σ̊. (6.5b)
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Remark 6.1. Note that the state constraint Σ > 0 automatically holds for (6.1) and (6.4).
However, when switching to the Euler approximation (6.5), we have to impose Σ(k) > 0
as a constraint for all k ∈ N0. In conjunction with Kθ(k) > 0, cf. (6.3), this can be
incorporated as control constraints

0 < Kθ(k) < (Σ(k) + Tsς
2)/(2TsΣ(k)). (6.6)

The optimal control problem (OCPN) that is solved in the MPC algorithm then is

JµN((µ̊, Σ̊), (K, c)) :=
N−1∑
k=0

`((µ(k),Σ(k)), (K(k), c(k)))→ min!

subject to (6.5), (6.6),

(6.7)

where, as usual, we denote the control sequence—(K, c) in this case—in bold. The stage
cost ` is of type (3.5) and is specified next.

For the control cost, similar to Chapter 5, we use the Frobenius norm for K and
the Euclidean norm for c, which fit well together. For the state cost we consider three
options. The first possibility is to penalize the distance between the current probability
density function ρ and the desired PDF ρ̄ in the L2 norm, i.e., 1

2
‖ρ− ρ̄‖2

L2(Rd). This
is the standard norm used in costs for optimal control problems governed by parabolic
PDEs [95]. In terms of Σ and µ, this yields

`µL2(µ,Σ, K, c) := 2−d−1π
−d/2
[
|Σ|−1/2 + |Σ̄|−1/2

−2

∣∣∣∣12(Σ + Σ̄)

∣∣∣∣−1/2

exp

(
−1

2
(µ− µ̄)> (Σ + Σ̄)−1 (µ− µ̄)

)]
+
γ

2
‖K‖2

F +
γ

2
‖c‖2

2 , (6.8)

cf. Lemma 5.5. Looking at the cost from the ODE perspective, the L2 penalization does
not seem standard or intuitive at all. One alternative is to use the Wasserstein metric,
which is specifically designed to measure the distance between two PDFs. For the general
definition of this metric we refer to [44]. Here we only use the formula for the Wasserstein
metric for normal distributions derived in [44]. In case Σ and Σ̄ commute—which does not
limit our analysis since w.l.o.g. we can restrict ourselves to Σ̄ = I, see Section 6.2—this
formula yields the following stage cost:

`µW 2(µ,Σ, K, c) :=
1

2
‖µ− µ̄‖2

2 +
1

2

∥∥Σ
1/2 − Σ̄

1/2
∥∥2

F
+
γ

2
‖K‖2

F +
γ

2
‖c‖2

2 . (6.9)

The third option we discuss in this chapter is very similar to the Wasserstein distance
from (6.9). The only difference is to consider Σ and Σ̄ instead of Σ1/2 and Σ̄1/2, respectively.
Thus, we end up with

`µ2F (µ,Σ, K, c) :=
1

2
‖µ− µ̄‖2

2 +
1

2

∥∥Σ− Σ̄
∥∥2

F
+
γ

2
‖K‖2

F +
γ

2
‖c‖2

2 . (6.10)

This form of the cost function is commonly used in optimization of systems governed
by ODE systems. The index used in the notation for this cost, 2F, indicates the com-
bination of Euclidean and Frobenius norm in the state penalization (and, coincidentally
also the control penalization). In the special case Σ̄ = I we have that `µW 2(µ,Σ

2, K, c) =
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(a) L2 cost. (b) W 2 cost.

(c) 2F cost.

Figure 6.1: The state cost parts of the three stage costs `µL2(µ,Σ, K, c), `
µ
W 2(µ,Σ, K, c),

and `µ2F (µ,Σ, K, c), i.e., (6.8), (6.9), and (6.10) for γ = 0, respectively. The desired state
was set to (µ̄, Σ̄) = (0, 1). The orange dot in the respective plots marks the minimum.

`µ2F (µ,Σ, K, c), i.e., considering the squared covariance matrix Σ2 instead of Σ in the W 2

cost leads to the 2F cost. All three stage costs—minus the control cost—are illustrated
in Figure 6.1.

To prove that (6.7) is strictly dissipative, we need to find a suitable storage function λ
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for which the inequality (3.10) in Definition 3.8 holds. In general, it is not easy to find
such a function. However, for OCPs with linear discrete-time dynamics

z+ = Az +Bu+ c =: f l(z, u),

a convex constraint set, and strictly convex stage cost `, it is known [25] that the linear
function

λl(z) := λ̄>z (6.11)

is a suitable storage function; for a proof, see, e.g., [24].1 Here, λ̄ ∈ Rd is the Lagrange mul-
tiplier in the optimization problem consisting of finding the optimal equilibrium (ze, ue):

min
(z,u)

`(z, u) s.t. z = f l(z, u). (6.12)

The reason for this linear storage function is the close connection between the Lagrange
function L(z, u, λ) associated to (6.12) and the resulting modified cost ˜̀, cf. Definition 3.8:

˜̀(z, u) = `(z, u)− `(ze, ue) + λl(z)− λl(f l(z, u))

= `(z, u)− `(ze, ue) + λ̄>
(
z − f l(z, u)

)
= L(z, u, λ̄)− `(ze, ue).

(6.13)

In this particular form of dissipativity, also known as strict duality in optimization theory,
the (strict) convexity of ` carries over to L and therefore to ˜̀, with the global minimum
being attained at (ze, ue). In the final step, due to L(ze, ue, λ̄) = `(ze, ue), we have that
˜̀ is positive definite with respect to the optimal equilibrium (ze, ue), which allows to
conclude (3.10), i.e., strict dissipativity.

Although this is, in general, not true for nonlinear f(z, u), in the following, we analyze
how far the approach of a linear storage function can be successfully extended to bilinear
OCPs, such as (6.7) with stage cost ` given by (6.8) or (6.9) or (6.10). To this end, in the
next section, we state some auxiliary results.

6.2 Auxiliary Results Regarding Dissipativity

In a first step, we characterize equilibria of the one-dimensional (discretized) Ornstein–
Uhlenbeck process. We recall that the imposed constraints (6.6) ensure K̄θ = θ+ K̄ > 0.

Lemma 6.2. The set of equilibria is identical for (6.4) and (6.5) and is given by

E :=

{
(µ̄, Σ̄, K̄, c̄) | µ̄ =

c̄

K̄θ

, Σ̄ =
ς2

2K̄θ

}
. (6.14)

The proof is obvious; we merely note that the additional constraint (6.6) holds for
Σ̄ = ς2/(2K̄θ).

Without loss of generality, we assume that (µ̄, Σ̄) = (0, 1). Otherwise we introduce
a new random variable Yt := Σ̄−1/2(Xt − µ̄) and get a new ODE system similar to (6.4).
With this assumption, due to (6.14), we have c̄ = 0, which allows us to further simplify
the dynamics under consideration for the chosen cost criteria.

1One can ensure the boundedness from below that is required in Definition 3.8 by state constraints.
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Lemma 6.3. Assume that (µ̄, Σ̄) = (0, 1). Then the OCP (6.7) with ` given by (6.8),
or (6.9) or (6.10) is strictly dissipative at the equilibrium (0, Σ̄, K̄, 0) if and only if the
OCP

JN(Σ̊,K) :=
N−1∑
k=0

`((0,Σ(k)), (K(k), 0))→ min!

subject to (6.5b), (6.6),

(6.15)

with the same ` is strictly dissipative at the equilibrium (Σ̄, K̄).

Proof. First, if (Σ̄, K̄) is an equilibrium of (6.5b), then (0, Σ̄, K̄, 0) is an equilibrium of
(6.5) and vice versa.

Assuming strict dissipativity of (6.15) at (Σ̄, K̄) with ` given by (6.8), (6.9), or (6.10)
and defining λ̃(z1, z2) := λ(z2), we get

%(|Σ|Σ̄) ≤ `(0,Σ, K, 0)− `(0, Σ̄, K̄, 0) + λ(Σ)− λ(Σ+)

≤ `(µ,Σ, K, c)− `(0, Σ̄, K̄, 0) + λ(Σ)− λ(Σ+)

= `(µ,Σ, K, c)− `(0, Σ̄, K̄, 0) + λ̃(µ,Σ)− λ̃(µ+,Σ+).

Thus, (6.7) is strictly dissipative at (0, Σ̄, K̄, 0) with storage function λ̃.
Conversely, assuming that (6.7) is strictly dissipative at an equilibrium (0, Σ̄, K̄, 0),

%(|(µ,Σ)|(0,Σ̄)) ≤ `(µ,Σ, K, c)− `(0, Σ̄, K̄, 0) + λ(µ,Σ)− λ(µ+,Σ+)

holds for all admissible (µ,Σ, K, c) and some storage function λ. In particular, it holds
for (µ, c) = (0, 0), i.e.,

`(0,Σ, K, 0)− `(0, Σ̄, K̄, 0) + λ(0,Σ)− λ(f(0,Σ, K, 0))

= `(0,Σ, K, 0)− `(0, Σ̄, K̄, 0) + λ(0,Σ)− λ(0,Σ+) ≥ %(|(0,Σ)|(0,Σ̄)) = %(|Σ|Σ̄),

where f(µ,Σ, K, c) is defined by µ+ and Σ+ in (6.5).

Thus, in the following, we only need to examine whether (6.15) is strictly dissipative
with the respective stage cost. In this setting the three different stage cost functions under
consideration—(6.8), (6.9), and (6.10)—can be simplified to

`L2(Σ, K) := `µL2(0,Σ, K, 0) =
1

4
√
π

[
Σ
−1/2 + 1− 2

√
2(Σ + 1)

−1/2
]

+
γ

2
K2, (6.16)

`W 2(Σ, K) := `µW 2(0,Σ, K, 0) =
1

2

(√
Σ− 1

)2

+
γ

2
K2, (6.17)

`2F (Σ, K) := `µ2F (0,Σ, K, 0) =
1

2
(Σ− 1)2 +

γ

2
K2, (6.18)

respectively. We conclude this section with some auxiliary statements about optimal
equilibria.

Lemma 6.4. Let (Σe, Ke) be an optimal equilibrium for one of the stage cost functions
`L2(Σ, K), `W 2(Σ, K), or `2F (Σ, K). Then

Ke ∈ [0, ς
2

2
− θ] and Σe ∈ [1, ς

2

2θ
], if ς2/2− θ > 0,

Ke ∈ [ ς
2

2
− θ, 0] and Σe ∈ [ ς

2

2θ
, 1], if ς2/2− θ < 0,

Ke = 0 and Σe = 1, if ς2/2− θ = 0.

(6.19)
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Proof. From (6.14) we know that

Σe =
ς2

2(θ +Ke)
, (6.20)

which is monotonically decreasing in Ke. Moreover,

Σe = 1 ⇔ Ke =
ς2

2
− θ, (6.21)

which proves the assertion in the case ς2/2 − θ = 0. For the remaining two cases, we
first note that all three stage costs `L2(Σ, K), `2F (Σ, K), and `W 2(Σ, K) are minimal with
respect to Σ at Σ = 1 and increase the further away Σ is from the target value 1. While
obvious for the two convex functions `2F (Σ, K) and `W 2(Σ, K), the same holds for the
non-convex stage cost `L2(Σ, K):

∂Σ`L2(Σ, K) =
(2Σ)3/2 − (Σ + 1)3/2

2Σ3/2(Σ + 1)3/2


> 0, if Σ > 1,

= 0, if Σ = 1,

< 0, if Σ < 1.

Let us now assume that ς2

2
− θ > 0. Then Ke ≥ 0, since any K1 < 0 is more expensive

than K2 = 0 due to K2
1 > K2

2 and Σ1 = ς2

2(θ+K1)
> Σ2 = ς2

2θ
> 1, i.e., Σ1 induces a higher

cost than Σ2. Moreover, Ke ≤ ς2

2
− θ since some K3 >

ς2

2
− θ is always more costly than

K4 := ς2

2
− θ due to K2

3 > K2
4 and the corresponding state Σ3 = ς2

2(θ+K3)
6= 1 inducing

additional cost while Σ4 = 1 does not.
The case ς2

2
− θ < 0 is analogous.

We note that for the three stage costs `L2(Σ, K), `W 2(Σ, K), and `2F (Σ, K) considered
here, parameters satisfying ς2/2− θ = 0 correspond to stabilizing MPC. In this case, the
respective OCPs are strictly dissipative with storage function λ ≡ 0, cf. Remark 3.9.
Hence, that case is excluded in the ensuing analysis.

6.3 Results on Strict Dissipativity

In Section 6.2 we simplified the OCP under consideration, (6.7), by finding an equivalent
formulation, (6.15), which is sufficient for analyzing dissipativity. This section is dedicated
to the dissipativity analysis of the OCP (6.15) for the L2 cost (6.16), the W 2 cost (6.17),
and the 2F cost (6.18). Throughout this section, the pair (Σe, Ke) denotes an optimal
equilibrium, cf. Definition 3.6, i.e., a solution of

min
(Σ,K)

`(Σ, K) s.t. Σ− f(Σ, K) = 0, (6.22)

where `(Σ, K) is one of the three stage costs `L2(Σ, K), `W 2(Σ, K), or `2F (Σ, K), depend-
ing on the respective subsection.

As mentioned at the end of Section 6.1, we cannot directly apply the dissipativity
results from [25, 24] because our dynamics are not linear but bilinear. In particular, con-
vexity of the stage cost ` does not necessarily carry over to the modified cost ˜̀, cf. Defi-
nition 3.8. Hence, approaches that rely on linearity and/or on convexity in general yield
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only local results regarding strict dissipativity in our setting. One such approach that is
currently gaining popularity [78, 94, 93, 51, 52] relies on Pontryagin’s Maximum Princi-
ple and the corresponding Hamiltonian optimality system or the corresponding Riccati
equation. In these references, instead of showing strict dissipativity, the authors prove
certain stability properties of the optimally controlled system, typically in the form of the
so-called turnpike property that is mentioned at the end of Section 3.3. We recall that
the turnpike property and strict dissipativity are closely related, see Figure 3.4. However,
again, due to bilinearity and not necessarily convex objective functions, in our setting we
would only get this property locally. Yet, for the analysis of MPC schemes we require
these properties to hold globally, i.e., global strict dissipativity. Thus, we will perform an
ad-hoc analysis for the three different stage costs, which includes a convexity analysis of
the respective modified stage costs ˜̀ and—if ˜̀ is not convex—a closer look at stationary
points and boundary values of ˜̀. With the structural insight we gain from these compu-
tations we are not only able to identify settings where strict dissipativity with a linear
storage function can be shown, but also to provide alternative, nonlinear storage functions
to prove strict dissipativity in settings where a linear storage function cannot be used for
that purpose.

6.3.1 L2 cost

In this section, we consider the OCP (6.15) to which we have reduced the original prob-
lem (6.7). Overall, the optimization problem is given by

JN(Σ̊,K) :=
N−1∑
k=0

`L2(Σ(k), K(k))

=
N−1∑
k=0

[
1

4
√
π

[
Σ(k)

−1/2 + 1− 2
√

2(Σ(k) + 1)
−1/2
]

+
γ

2
K(k)2

]
→ min

K
!

s.t. Σ+ = Σ + Ts
(
−2KθΣ + ς2

)
=: f(Σ, K),

Σ(0) = Σ̊,

0 < Kθ(k) < (Σ(k) + Tsς
2)/(2TsΣ(k)), k ∈ {0, ..., N − 1}.

(6.23)

For the linear storage function λl(z), the modified cost ˜̀
L2(Σ, K), cf. Definition 3.8, reads

˜̀
L2(Σ, K) :=

1

4
√
π

[
Σ
−1/2 + 1− 2

√
2(Σ + 1)

−1/2
]

+
γ

2
K2

− `L2(Σe, Ke) + λ̄
(
−Ts(−2(θ +K)Σ + ς2)

)
,

where we recall that K + θ = Kθ. The Lagrange function associated to the problem of
finding the optimal equilibrium, (6.22), reads

LL2(Σ, K, λ) := `L2(Σ, K) + λ · (Σ− f(Σ, K)) (6.24)

=
1

4
√
π

[
Σ
−1/2 + 1− 2

√
2(Σ + 1)

−1/2
]

+
γ

2
K2 + λ

(
−Ts(−2(θ +K)Σ + ς2)

)
.

In this manner, one obtains the Lagrange multiplier λ̄ ∈ R that corresponds to an optimal
equilibrium (Σe, Ke). The multiplier λ̄ ∈ R is unique since

∇ (Σ− f(Σ, K)) = 2Ts

(
Kθ

Σ

)
6= 0
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due to Ts, Kθ,Σ > 0. Note the connection between the Lagrange function LL2 and the
modified cost ˜̀

L2 , cf. (6.13). In particular, for the uniquely defined λ̄ ∈ R, (Σe, Ke) is a
stationary point of ˜̀

L2 . However, ˜̀
L2 might exhibit additional stationary points, which will

be of interest in the following, since a necessary condition for strict dissipativity at (Σe, Ke)
is that this equilibrium is the unique global minimum of the modified cost ˜̀

L2(Σ, K).
These additional stationary points need to be checked for admissibility, i.e., whether
they satisfy the state and control constraints, while for optimal equilibria (Σe, Ke), these
constraints are always automatically satisfied, see Lemma 6.4. We count the stationary
points of ˜̀

L2 for a fixed λ̄ next. To this end, we introduce the notation

Z := 2λ̄Ts,

which we will use throughout this section. The gradient ∇˜̀
L2(Σ, K) is then given by

∇˜̀
L2(Σ, K) =

((
−Σ−3/2 + 2

√
2(Σ + 1)−3/2

)
/(8
√
π)

γK

)
+ Z

(
θ +K

Σ

)
. (6.25)

Proposition 6.5. For a fixed λ̄ and thus fixed Z the modified cost ˜̀
L2(Σ, K) has at most

two admissible stationary points. If Z = 0, then only one admissible stationary point of
˜̀
L2(Σ, K) exists and it is given by (Σe, Ke) = (1, 0).

Proof. From ∇˜̀
L2(Σ, K) = 0, cf. (6.25), we get K = −ZΣ/γ. Thus,

0 =
1

8
√
π

(
− 1

Σ3/2
+

2
√

2

(Σ + 1)3/2

)
+ Z

(
θ − ZΣ

γ

)
=: h(Σ).

If Z = 0, then K = 0 = Ke and hence h(Σ) = 0 ⇔ Σ = 1 = Σe, i.e., (Σe, Ke) = (1, 0) is
the unique admissible stationary point of ˜̀

L2(Σ, K).
Let Z 6= 0. If h(Σ) has a unique admissible stationary point, then only up to two

admissible solutions for h(Σ) = 0 can exist, i.e., the assertion follows. To this end, we
look at the first two derivatives of h:

h′(Σ) = 3/
(
16
√
π
) (

Σ
−5/2 − 2

√
2(Σ + 1)

−5/2
)
− Z2/γ,

h′′(Σ) = 15/
(
32
√
π
) (
−Σ

−7/2 + 2
√

2(Σ + 1)
−7/2
)
.

It is easily seen that

h′′(Σ)


< 0, Σ < Σ∗∗

= 0, Σ = Σ∗∗

> 0, Σ > Σ∗∗
and h′(Σ)


> −Z2/γ, Σ < Σ∗

= −Z2/γ, Σ = Σ∗

< −Z2/γ, Σ > Σ∗
,

where Σ∗∗ := 2
4/7

2−24/7
≈ 2.89 and Σ∗ := 2

2/5

2−22/5
≈ 1.94. In particular, h′(Σ) < 0 for Σ > Σ∗.

Therefore, stationary points of h(Σ) can only exist for Σ ∈ ]0,Σ∗[. Since h′′(Σ) < 0 for
Σ ≤ Σ∗ < Σ∗∗, at most one stationary point of h(Σ) can exist (and it is a local maximum).
Due to h′(Σ)→∞ for Σ↘ 0, h′(Σ) < 0 for Σ > Σ∗, and the intermediate value theorem,
a stationary point does exist. Thus, there always exists a unique stationary point of h(Σ),
concluding the proof.
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From the Hessian

∇2 ˜̀
L2(Σ, K) =

(
3

16
√
π

(
1

Σ5/2 − 2
√

2

(Σ+1)5/2

)
Z

Z γ

)
(6.26)

it is obvious that for any fixed Z 6= 0, ˜̀
L2 is not convex for sufficiently large Σ. This

prevents us from easily deducing strict dissipativity, as opposed to the case of linear
dynamics, in which case the Hessian ∇2 ˜̀ is constant. The Hessian (6.26), however, is
not constant. Hence, even if ∇2 ˜̀(Σe, Ke) is positive definite, then we can only conclude
local convexity near (Σe, Ke), which implies strict dissipativity if state and control are
constrained to a neighborhood of (Σe, Ke). To make statements about global strict dissi-
pativity, we take a closer look at the structure of ˜̀

L2 . Based on Lemma 6.4 we consider
the two cases ς2/2− θ > 0 and ς2/2− θ < 0 separately.

The case ς2/2− θ > 0

For a large set of parameters, (strict) dissipativity does not hold with a linear storage
function, see the following proposition.

Proposition 6.6. If ς2/2 − θ > 0, then for large enough Σ the OCP (6.23) cannot be
dissipative with a linear storage function.

Proof. The idea of the proof is to show that the modified cost ˜̀
L2 can assume negative

values, which violates (3.10).
As Σ → ∞, ˜̀

L2(Σ, K) → sgn(Z(K + θ)) · ∞. Hence, if sgn(Z(K + θ)) < 0, then
(Σe, Ke) cannot be a global minimum, contradicting dissipativity. Since K + θ > 0, only
the sign of Z is of importance. Thus, in the rest of the proof, we show that Z < 0. From

∂KLL2(Σ, K, λ̄) = ∂K ˜̀
L2(Σ, K) = γK + ZΣ

we deduce that

∂KLL2(Σ, K, λ̄) = 0 ⇔

{
Σ = −γK/Z, Z 6= 0

K = 0, Z = 0
.

Due to ∂KLL2(Σe, Ke, λ̄) = 0, we can exclude Z = 0: If Z = 0, then Ke = 0 and thus
Σe = 1 because of ∂ΣLL2(Σe, Ke, λ̄) = ∂Σ

˜̀
L2(Σe, Ke) = 0, cf. (6.25). But this contradicts

(6.21) since ς2/2 − θ > 0. Thus, Z 6= 0 and we have Σe = −γKe/Z and Ke 6= 0, which,
together with Lemma 6.4, results in Ke > 0. Then due to γ > 0 and Σe > 0 we arrive at
Z < 0, concluding the proof.

One might conjecture that strict dissipativity can be recovered by restricting the
set of admissible states Σ > 0. This seems like a promising direction, as we need to
restrict the state domain, anyway, to obtain boundedness from below for λl. Yet, if
Σe > 22/5/

(
2− 22/5

)
≈ 1.94, then from ∇2 ˜̀

L2(Σe, Ke)11 < 0 and γ > 0 we infer that
(strict) dissipativity does not hold since the optimal equilibrium (Σe, Ke) is not a (lo-
cal) minimum of ˜̀

L2 . Instead, a descent direction exists in (Σe, Ke), i.e., ˜̀
L2 can attain

negative values since ˜̀(Σe, Ke) = 0 always holds. Thus, for a large parameter set, this
problem persists.
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The case ς2/2− θ < 0

For ς2/2 − θ < 0, the asymptotic behavior of ˜̀
L2(Σ, K) for Σ → ∞ is not a problem

since Z > 0.2 However, in addition to a potential second stationary state, cf. Proposi-
tion 6.5, one needs to check the boundaries Σ↘ 0 and K ↘ −θ (the asymptotic behavior
of ˜̀

L2(Σ, K) for K →∞ is never a problem), see the following example.

Example 6.7. Consider (6.23) with the parameters

ς = 9/20, θ = 13/20, γ = 3/5, and Ts = 1/10.

The optimal equilibrium and the corresponding Lagrangian multiplier are calculated nu-
merically, yielding Σe ≈ 0.42117895, Ke ≈ −0.40960337 and Z ≈ 0.5835097. The Hes-
sian ∇2 ˜̀

L2 evaluated at (Σe, Ke),

∇2 ˜̀
L2(Σe, Ke) ≈

(
0.7946167 Z

Z γ

)
,

is positive definite since |∇2 ˜̀
L2(Σe, Ke)| ≈ 0.136 > 0. However, at the boundary we find

that ˜̀
L2(1,−θ) ≈ −0.00640024 < 0. Thus, due to continuity of ˜̀

L2, strict dissipativity
with a linear storage function does not hold.

Based on this structural insight, we can identify situations in which a linear storage
function does work, cf. Example 6.8.

Example 6.8. Consider (6.23) with the parameters

ς = 1/3, θ = 7/2, γ = 1/4, and Ts = 1/10.

Then numerical computations yield Σe ≈ 0.0199205, Ke ≈ −0.7111341, and Z ≈ 8.9246597.
The second stationary point of ˜̀

L2 is found at approximately

(0.0904564,−3.2291691) =: (Σs, Ks),

with ˜̀
L2(Σs, Ks) ≈ 0.45 > 0. At the boundary, since Z > 0, ˜̀

L2(Σ, K) → ∞ for Σ → ∞
as well as for K → ∞. Also, ˜̀

L2(Σ, K) → ∞ as Σ ↘ 0 for any fixed admissible K. At
the remaining boundary K = −θ we have

˜̀
L2(Σ,−θ) =

(
Σ
−1/2 + 1− 2

√
2(Σ + 1)

−1/2
)
/(4
√
π) +

γ

2
θ2 − `L2(Σe, Ke)− Z ς

2

2
,

which is minimal at Σ = 1 with

˜̀
L2(1,−θ) =

γ

2
θ2 − `L2(Σe, Ke)− Z ς

2

2
.

For the parameters in this example, this results in ˜̀
L2(1,−θ) ≈ 0.2268570 > 0. Thus, we

can find a function % ∈ K∞ such that the dissipativity inequality (3.10) holds.

Examples 6.7 and 6.8 reveal that a case-by-case analysis is needed in order to decide
whether strict dissipativity can be established using a linear storage function in the case
ς2/2− θ < 0.

2The proof is analogous to the one of Proposition 6.6.
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Modifications to the stage cost `L2

In this part we propose two modifications to the stage cost `L2 and discuss whether they
facilitate the analysis. The first proposal is a scaling of the stage cost.

Remark 6.9 (Scaling of the stage cost). One could argue that, due to the forward Euler
approximation (6.5), the dynamics are effectively scaled by the sampling time Ts, and this
scaling should also be applied to the stage cost, i.e., use Ts · `L2 instead of `L2. In that
case, instead of (6.24), the Lagrange function reads

LL2(Σ, K, λ) = Ts`L2(Σ, K) + λ · (Σ− f(Σ, K)) = TsL
c
L2(Σ, K, λc),

where

LcL2(Σ, K, λc) :=
1

4
√
π

[
Σ
−1/2 + 1− 2

√
2(Σ + 1)

−1/2
]

+
γ

2
K2 − λc

(
−2(θ +K)Σ + ς2

)
is the Lagrange function associated to the problem of finding the optimal equilibrium for the
(original unscaled) stage cost `L2(Σ, K) and continuous dynamics (6.4b). The Lagrange
multiplier λ̄c is unique and independent of the sampling time Ts. The connection to (6.24)
is easily established via

λ̄c = λ̄Ts.

Thus, while the Lagrange multiplier λ̄ from (6.24) changes with Ts, the product λ̄Ts and
the optimal equilibria (Σe, Ke) are independent of Ts. Since in this subsection only the
product λ̄Ts is of relevance, scaling the stage cost `L2 yields no benefit.

The second proposal concerns the control cost γ
2
K2 in the stage cost `L2 .

Remark 6.10 (Penalizing (θ + K)2 instead of K2 in `L2). When switching from linear
to bilinear systems, it appears reasonable to replace the term penalizing the control effort,
K2, with (θ + K)2 in `L2(Σ, K) because this removes the discrepancy between the control
term K2 in the stage cost and the bilinear term (θ+K)Σ in the dynamics. However, the
new cost yields the same optimal equilibria as formally setting θ to zero in the original
stage cost. In particular, the case ς2/2 − θ < 0 does not occur anymore and only the
problematic case ς2/2− θ > 0 remains.

A nonlinear storage function

Even though the OCP in Example 6.7 is not strictly dissipative with a linear storage func-
tion, numerical simulations indicate that the turnpike property holds for these parameters,
see Figure 6.2. Due to the close connection of the turnpike property to dissipativity, see
the end of Section 3.3, this strongly suggests that the OCP is indeed strictly dissipative,
but with a nonlinear storage function. Thus, in the remainder of this subsection, we
propose the nonlinear storage function

λs(z) := α(z + 1)
−1/2,

where α ∈ R is chosen such that the optimal equilibrium (Σe, Ke) is a stationary point of
the new modified cost

˜̀s
L2(Σ, K) := `L2(Σ, K)− `L2(Σe, Ke) + λs(Σ)− λs(Σ+).



6.3. Results on Strict Dissipativity 93

Figure 6.2: Open-loop optimal trajectories for various horizons N between 2 and 61 and
MPC closed-loop trajectories for two initial conditions, indicating turnpike behavior in
Example 6.7; Σ (left) and K (right).

Note that λs(Σ+) is well-defined since Σ+ > 0, cf. (6.6).
In the case of Example 6.7, the level sets in Figure 6.3 (right) illustrate that the lowest

value is attained at the optimal equilibrium (Σe, Ke), suggesting that strict dissipativity
holds with the new storage function λs. In contrast, the white area in Figure 6.3 (left)
shows that with a linear storage function, ˜̀

L2 attains negative values.

Figure 6.3: Modified costs ˜̀
L2(Σ, K) (left) and ˜̀s

L2(Σ, K) (right) for Example 6.7. The
optimal equilibrium (Σe, Ke) is illustrated by the orange circle. In the left plot, the white
area on the left represents negative values; the black diamond at the left boundary marks
the minimum of the depicted area.

Our final example suggests that λs also works for parameter values for which Propo-
sition 6.6 rules out strict dissipativity with a linear storage function.
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Example 6.11. Consider (6.23) with the parameters

ς = 10, θ = 2, γ = 1/4, and Ts = 1/10.

The optimal equilibrium (Σe, Ke) is given by Σe ≈ 24.4333301 and Ke ≈ 0.04638499; with
Z ≈ −0.00237304. Figure 6.4 and the level sets therein indicate that strict dissipativity
holds with λs, however not with λl.

Figure 6.4: Modified costs ˜̀
L2(Σ, K) (left) and ˜̀s

L2(Σ, K) (right) for Example 6.11. The
optimal equilibrium (Σe, Ke) is illustrated by the orange circle. In the left plot, the white
area on the left represents negative values; the black diamond at the bottom marks the
minimum of the depicted area.

The storage function λs(z) “fixes” the asymptotic behavior of the modified cost ˜̀
L2(Σ, K)

for Σ→∞ and admissible controls, at least to a certain extent:

lim
Σ→∞

˜̀s
L2(Σ, K) =

1

4
√
π

+
γ

2
K2 − `L2(Σe, Ke) ≥ 1

4
√
π
− `L2(Σe, Ke).

This storage function is unsuitable if 1
4
√
π
− `L2(Σe, Ke) < 0 since K = 0 is admissible.

One possible extension to overcome this problem is to add a linear term βz with β > 0
to λs(z), i.e.,

λs2(z) := α(z + 1)
−1/2 + βz.

Then for the corresponding modified cost ˜̀s2
L2(Σ, K) we get ˜̀s2

L2(Σ, K) → ∞ as Σ → ∞
for admissible controls. Moreover, the additional degree of freedom makes it easier to
deal with boundary values Σ ↘ 0 and K ↘ −θ. However, the parameters α ∈ R and
β > 0 still need to be chosen such that (Σe, Ke) is a stationary state of the modified
cost. Furthermore, the problem of possibly multiple stationary states remains. Ideally,
the storage function should be chosen such that the stationary states of the modified cost
can be calculated analytically, or at least allow a statement about the maximum number
of stationary states, such as Proposition 6.5.
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Summary

The different cases in Lemma 6.4 were decisive for the analysis:

� For ς2/2− θ > 0, strict dissipativity cannot hold with a linear storage function.

� In the case ς2/2− θ < 0, strict dissipativity with a linear storage function has to be
checked on a case-by-case basis.

� For both ς2/2 − θ > 0 and ς2/2 − θ < 0, we have constructed a nonlinear storage
function for which numerical evidence strongly suggests that strict dissipativity
holds for certain values of θ and ς.

� Numerical verification of the turnpike property suggests that strict dissipativity
holds for many parameters for which the analytical verification is not (yet) possible.

6.3.2 2F cost

In this subsection we consider (6.15) with the 2F stage cost (6.18). In the one-dimensional
case, this amounts to penalizing the quadratic deviation of the variance in addition to the
control effort. Overall, the optimization problem in this section is given by

JN(Σ̊,K) :=
N−1∑
k=0

`2F (Σ(k), K(k)) =
N−1∑
k=0

[
1

2
(Σ(k)− 1)2 +

γ

2
K(k)2

]
→ min

K
!

s.t. Σ+ = Σ + Ts
(
−2KθΣ + ς2

)
= f(Σ, K),

Σ(0) = Σ̊,

0 < Kθ(k) < (Σ(k) + Tsς
2)/(2TsΣ(k)), k ∈ {0, ..., N − 1}.

(6.27)

For the linear storage function λl(z), the corresponding modified cost ˜̀
2F (Σ, K) reads

˜̀
2F (Σ, K) :=

1

2
(Σ− 1)2 +

γ

2
K2 − `2F (Σe, Ke)− λ̄Ts

(
−2 (θ +K) Σ + ς2

)
. (6.28)

Analogous to Subsection 6.3.1, the unique Lagrange multiplier λ̄ ∈ R is obtained from
the Lagrange function

L2F (Σ, K, λ) :=
1

2
(Σ− 1)2 +

γ

2
K2 + λ

[
−Ts

(
−2(θ +K)Σ + ς2

)]
, (6.29)

which is closely connected to the modified cost ˜̀
2F . As in Subsection 6.3.1, we first

characterize the stationary points of ˜̀
2F for a fixed λ̄. Using the notation Z = 2λ̄Ts, the

gradient of ˜̀
2F is given by

∇˜̀
2F (Σ, K) =

(
Σ− 1
γK

)
+ Z

(
θ +K

Σ

)
, (6.30)

and it holds

∇˜̀
2F (Σ, K) = ∇Σ,KL2F (Σ, K, λ̄). (6.31)
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Lemma 6.12. For a fixed λ̄ ∈ R and thus fixed Z, the stationary points of ˜̀
2F (Σ, K) are

given by either

Σ = −γ(Zθ − 1)

γ − Z2
, K =

Z(Zθ − 1)

γ − Z2
(6.32)

if γ − Z2 6= 0 or by

Σ = −K
θ

(6.33)

for arbitrary K in case γ − Z2 = 0.

Proof. Solving ∂Σ
˜̀
2F (Σ, K) = 0 for Σ yields

Σ = 1− Z(θ +K), (6.34)

cf. (6.30). Plugging this into ∂K ˜̀
2F (Σ, K) = 0 results in

0 = γK + Z (1− Z(θ +K)) =
(
γ − Z2

)
K + Z(1− Zθ). (6.35)

Assuming that γ − Z2 6= 0, one can solve for K, which results in the equation for K
in (6.32). Plugging this K into (6.34) gives the equation for Σ in (6.32).

If γ − Z2 = 0, then Z 6= 0 since γ > 0. Since an optimal equilibrium (Σe, Ke) is
always a stationary point of ˜̀

2F (Σ, K) due to ∇˜̀
2F (Σe, Ke) = ∇Σ,KL2F (Σe, Ke, λ̄) = 0,

cf. (6.31), we infer from (6.35) that 1 − Zθ = 0, i.e., Z = 1/θ. In this case, from (6.34)
we get (6.33) for arbitrary K.

Remark 6.13. (a) The set of possible stationary points in Lemma 6.12 is restricted
by the constraints K > −θ and Σ > 0. More importantly, however, in the case
of γ − Z2 6= 0, the stationary point is unique and coincides with (Σe, Ke), whereas
there can be infinitely many stationary points if γ − Z2 = 0.

(b) From the proof of Lemma 6.12 we see that γ − Z2 = 0 can only occur if γ = 1/θ2.

As indicated in the proof of Lemma 6.12, the sign of γ − Z2 is indeed crucial for the
rest of this subsection: Since the Hessian

∇2 ˜̀
2F (Σ, K) =

(
1 Z
Z γ

)
(6.36)

is constant, the necessary condition for strict dissipativity that the optimal equilibrium
is a (strict) global minimum of the modified cost ˜̀

2F is indeed sufficient, thus equivalent.
This requirement is met if and only if γ−Z2 > 0, i.e., if the modified cost ˜̀

2F is strongly
convex. Hence, strict dissipativity with the linear storage function λl(z) is equivalent to
strong convexity of the modified cost ˜̀

2F .
This is in contrast to the L2 cost from Subsection 6.3.1, where the modified cost ˜̀

L2

is not convex for sufficiently large Σ and strong convexity (and also strict convexity) of
the modified cost is only sufficient for strict dissipativity. Instead, the 2F cost is more
similar to the linear setting considered in [24], where strict convexity of the stage cost `
is sufficient for strict dissipativity. The difference, of course, lies in the bilinear terms in
the dynamics f , which cause non-zero entries on the off-diagonal of the Hessian (6.36).
Because of this, convexity of the stage cost `2F does not necessarily carry over to the
modified cost ˜̀

2F . Hence, we check the convexity of ˜̀
2F directly. To this end, the decisive

factor is the sign of γ−Z2. Thus, in the following, we focus on finding sets of parameters
for which a certain sign of γ−Z2 can be guaranteed. As in Subsection 6.3.1, we consider
the two cases ς2/2− θ > 0 and ς2/2− θ < 0 separately.
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The case ς2/2− θ > 0

In contrast to the L2 cost, where for ς2/2−θ > 0 and large enough Σ (strict) dissipativity
does not hold with a linear storage function (see Proposition 6.6), with the 2F cost (strict)
dissipativity does hold with a linear storage function, see the following proposition.

Proposition 6.14. If ς2/2 − θ > 0, then (6.27) is strictly dissipative with the linear
storage function λl(z) from (6.11).

Proof. The assertion follows from the fact that for ς2/2− θ > 0 the Hessian ∇2 ˜̀
2F (Σ, K)

is positive definite. Indeed, in this case the modified cost ˜̀
2F is strongly convex, which

immediately implies the existence of a quadratic lower bound % ∈ K∞ in the dissipativity
inequality (3.10).

It is thus sufficient to prove that the Hessian is positive definite, which holds if and only
if γ −Z2 > 0. To prove this, we need some information about the Lagrange multiplier λ̄,
which we get by taking a closer look at the Lagrange function (6.29). Since (Σe, Ke) is
an optimal equilibrium, ∇L2F (Σe, Ke, λ̄) = 0. In particular, we can use the results of
Lemma 6.12 due to (6.31).

First, we show that γ−Z2 6= 0: If we assume the opposite, then from Lemma 6.12 we
see that the optimal equilibrium (Σe, Ke) satisfies (6.33), i.e., Σe = −Ke/θ for some Ke.
However, from Lemma 6.4 we know that Ke ∈ [0, ς

2

2
− θ] and Σe ∈ [1, ς

2

2θ
]. In particular,

Σe ≥ 1 and Ke ≥ 0, which contradicts (6.33).
Knowing that γ − Z2 6= 0, we now show that γ − Z2 > 0: Since Σe > 0, (6.32) can

only be satisfied in the following two cases:

Case 1: Zθ − 1 < 0 ∧ γ − Z2 > 0,

Case 2: Zθ − 1 > 0 ∧ γ − Z2 < 0.

Since Ke + θ > 0 and Σe ∈ [1, ς
2

2θ
], from (6.34) we conclude that Z ≤ 0. Then due to

θ > 0 case 2 can be excluded, which concludes the proof.

The case ς2/2− θ = 0 is of no particular interest as it corresponds to the case of sta-
bilizing MPC, cf. Lemma 6.4. Therefore, the natural follow-up question is what happens
in case of ς2/2− θ < 0.

The case ς2/2− θ < 0

Analogously to the proof of Proposition 6.14 one can show that Z ≥ 0 if ς2/2−θ < 0. Still,
we can prove strong convexity of ˜̀

2F also for ς2/2− θ < 0, by adjusting the regularization
parameter γ.

Proposition 6.15. Let ς2/2− θ < 0 and γ > 1/(4ς4). Then (6.27) is strictly dissipative
with the linear storage function λl(z).

Proof. From (6.19) we know that Σe ≤ 1. Then from (6.34) and θ +Ke > 0 we conclude
that Z ≥ 0. If Z = 0 then the assertion follows (γ − Z2 = γ > 0). Thus, we consider
Z > 0. It holds that

Σe = 1− Z(θ +Ke)
!

=
ς2

2(θ +Ke)
⇔ Ke + θ =

1

2Z
(1±

√
1− 2Zς2).
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In particular, 1− 2Zς2 ≥ 0, which, due to Z, ς2 > 0, is equivalent to Z2 ≤ 1
4ς4

. Thus, for

γ > 1
4ς4

, we have

Z2 ≤ 1

4ς4
< γ,

i.e., γ − Z2 > 0, which concludes the proof.

Without the restriction on γ there is one problematic case, in which we indeed lose
strict dissipativity due to γ − Z2 = 0. According to Remark 6.13(b), for this to happen
it is necessary that γ = 1/θ2. The following proposition deals with this special case.

Proposition 6.16. Let γ = 1/θ2.

(a) If 2ς2 − θ < 0, then the optimal equilibrium (Σe, Ke) is not unique. In particu-
lar, (6.27) is not strictly dissipative (irrespective of the storage function λ). How-
ever, it is dissipative with the linear storage function λl(z).

(b) If 2ς2 − θ = 0, then (6.27) is dissipative with λl(z) but not strictly dissipative.

(c) If 2ς2 − θ > 0, then (6.27) is strictly dissipative with λl(z).

Proof. We first calculate the stationary points that are equilibria. To this end, we use

0 = Σ− f(Σ, K) ⇔ Σ =
ς2

2(θ +K)
(6.37)

and plug this state into the cost function `2F , i.e.,

`2F

(
ς2

2(θ +K)
, K

)
=

1

2

[(
ς2

2(θ +K)
− 1

)2

+ γK2

]
=: ˆ̀

2F (K). (6.38)

Then we compute the stationary points of the reduced cost function ˆ̀
2F (K) in the special

case γ = 1
θ2

:

ˆ̀′
2F (K) = − 2ς2

(2(θ +K))2

(
ς2

2(θ +K)
− 1

)
+
K

θ2
= 0 ⇔ K = Ki, i = 1, . . . , 4

with

K1/2 := −θ
2
±
√
θ
√
θ − 2ς2

2
and K3/4 := −θ ±

√
2θς2

2
.

Since K4 = −θ−
√

2θς2

2
violates the constraint K > −θ, we ignore this solution. Moreover,

we only care about real solutions. Therefore, we have three distinct solutions if and only
if 2ς2 − θ < 0.3 Now we consider the three different cases in the Proposition.

(a) Let 2ς2−θ < 0. Then the controls K1, K2, and K3 satisfy (6.6) with Σ as in (6.37).
The respective cost is given by

ˆ̀
2F (K1) =

(ς2 − θ)
(
ς2 − θ −

√
−2ς2θ + θ2

)(
θ +
√
−2ς2θ + θ2

)2 =
θ − ς2

2θ
= ˆ̀

2F (K2)

3For 2ς2 − θ = 0 we have that K1 = K2 = K3, i.e., only one stationary point.
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and

ˆ̀
2F (K3) =

ς2 − 2
√

2ς2θ + 2θ

2θ
.

We can exclude a minimum of ˆ̀
2F (K) on the boundary since ˆ̀

2F (K) → ∞ for K ↘ −θ
and for K →∞. Since

ˆ̀
2F (K3)− ˆ̀

2F (K1) =
2ς2 − 2

√
2ς2θ + θ

2θ
=

(
√

2ς2 −
√
θ)2

2θ
> 0,

there are two optimal equilibria, characterized by K1 and K2. Thus, strict dissipativity is
out of the question. However, we argue that dissipativity with λl(z) does hold. For this,
we show that γ − Z2 = 0, i.e., that ˜̀

2F (Σ, K) is convex but not strictly (and thus not
strongly) convex. With the corresponding states

Σ1 =
ς2

θ +
√
θ
√
θ − 2ς2

and Σ2 =
ς2

θ −
√
θ
√
θ − 2ς2

,

a short calculation using

0 = ∂KL2F (Σe, Ke, λ̄) = γKe + ZΣe

yields the associated Lagrange multipliers Z1 = 1
θ

= Z2. In particular, we have

γ − Z2
1 = 0 = γ − Z2

2 .

(b) For 2ς2−θ = 0, we get the same result, i.e., dissipativity but not strict dissipativity.

(c) Lastly, if 2ς2 − θ > 0, then (Σ3, K3) with Σ3 =
√

ς2

2θ
is the unique optimal equilib-

rium and an analogous calculation reveals that γ − Z2
3 > 0, i.e., strong convexity of ˜̀

2F

and thus strict dissipativity.

The three cases of Proposition 6.16 are exemplarily illustrated in Figure 6.5a.

Remark 6.17. Coinciding with the requirement on γ in Proposition 6.15, the reduced
cost ˆ̀

2F (K) from (6.38) is convex if and only if γ ≥ 1/(4ς4), cf. Figure 6.5b. However,
in general, convexity of the reduced cost ˆ̀ does not transfer to the modified cost ˜̀.

We briefly summarize the case ς2/2−θ < 0. Instead of a case-by-case analysis that was
required for the L2 cost in Subsection 6.3.1, we have shown strict dissipativity provided
that γ > 1/(4ς4). Furthermore, we have identified cases in which strict dissipativity does
not hold due to the existence of two optimal equilibria, which can only happen if γ = 1/θ2.
Even for ς2/2 − θ < 0 and γ ≤ 1/(4ς4), as long as γ 6= 1/θ2, our numerous simulations
indicate that γ − Z2 > 0. Thus, we conjecture that strict dissipativity (with a linear
storage function) holds for the 2F cost provided that γ 6= 1/θ2. To prove this rigorously,
one could solve ∇L2F (Σ, K, λ̄) = 0 for arbitrary γ > 0. Ultimately, as (6.38) indicates,
this requires finding the roots of a fourth-order polynomial. We avoid from carrying out
this computation here for the sake of brevity.
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(a) ˆ̀
2F (K) for θ = 3, γ = 1/θ2 and various

values of ς2 with the respective minima.
(b) ˆ̀

2F (K) for ς = 1, θ = 3, and various values
of γ.

Figure 6.5: (Non-)Convexity of the reduced cost ˆ̀
2F (Σ, K) depending on ς2 (left) and

on γ (right).

Modifications to the stage cost `2F

In this part we discuss two modifications to the stage cost `2F , both of which have been
considered for the L2 cost, see Remarks 6.9 and 6.10.

Remark 6.18 (Scaling of the stage cost). Analogously to the L2 cost, cf. Remark 6.9, we
do not scale the stage cost `2F since, throughout this subsection, only the product λ̄Ts is
of relevance.

Proposition 6.19 (Penalizing (θ + K)2 instead of K2 in `2F ). If, instead of `2F (Σ, K),
the stage cost (6.18) in the OCP (6.27) is defined by

`2F,θ(Σ, K) :=
1

2
(Σ− 1)2 +

γ

2
(K + θ)2, (6.39)

then (6.27) is strictly dissipative with the linear storage function λl(z).

Proof. To conclude strict dissipativity, we prove that ˜̀
2F,θ(Σ, K), defined analogously

to (6.28), is strongly convex. To this end, we define L2F,θ(Σ, K, λ) analogously to (6.29).
Then

∂ΣL2F,θ(Σ, K, λ̄) = Σ− 1 + 2λ̄Ts(θ +K) (6.40)

and

∂KL2F,θ(Σ, K, λ̄) = γ(θ +K) + 2λ̄TsΣ. (6.41)

With Z = 2λ̄Ts, solving ∂ΣL2F,θ(Σ, K, λ̄) = 0 for Σ yields

Σ = 1− Z(θ +K). (6.42)
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Plugging this into ∂KL2F,θ(Σ, K, λ̄) = 0 results in

0 = γ(θ +K) + Z (1− Z(θ +K)) =
(
γ − Z2

)
(θ +K) + Z. (6.43)

From (6.43) we can exclude the case γ − Z2 = 0 since γ > 0 and we know that at least
one optimal equilibrium exists, i.e., (6.43) has at least one admissible solution. Thus,
γ − Z2 6= 0, in which case

θ +K = − Z

γ − Z2
(6.44)

and therefore, according to (6.42),

Σ = 1 +
Z2

γ − Z2
=

γ

γ − Z2
. (6.45)

Since Σ > 0 and γ > 0, from (6.45) we infer that γ − Z2 > 0, i.e., ˜̀
2F,θ(Σ, K) is strongly

convex.

Note that (6.44)-(6.45) coincides with (6.32) in the case θ = 0. For θ = 0 the require-
ments of Proposition 6.14 are met and thus the result of Proposition 6.19 is not surprising.
Although the stage cost `2F,θ(Σ, K) is much easier to handle, the price to pay is the loss

of optimal equilibria with Σe ∈ [0, 1]: we can see from (6.45) that Σe = 1+ Z2

γ−Z2 > 1 since

γ − Z2 > 0.

Summary

We summarize our results for the 2F cost in a similar form as for the L2 cost:

� For ς2/2− θ > 0, strict dissipativity holds with a linear storage function.

� For ς2/2 − θ < 0 and γ > 1/(4ς2), strict dissipativity holds with a linear storage
function.

� For ς2/2−θ < 0 and γ ≤ 1/(4ς2), strict dissipativity fails to hold for some parameter
values if γ = 1/θ2. Numerical evidence suggests that strict dissipativity always holds
if γ 6= 1/θ2.

� If `2F is replaced by `2F,θ from (6.39), then strict dissipativity holds for all parameter
values.

We emphasize once more that for the 2F stage cost considered in this subsection,
proving strict dissipativity with a linear storage function is equivalent to proving strong
convexity of ˜̀

2F (Σ, K). This is in contrast to the L2 cost (6.8), where the modified cost
was never convex, but for some parameters the OCP was nevertheless strictly dissipative
with a linear storage function, cf. Example 6.8. In this sense, the W 2 cost considered in
the following subsection is more similar to the L2 cost than to the 2F cost.
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6.3.3 W 2 cost

The W 2 cost is designed to measure the distance between two PDFs. In our case, it
differs only slightly from the 2F cost in Subsection 6.3.2: Instead of (Σ− 1)2, the square
root of the current and the desired state is taken and a quadratic cost is inflicted on the
distance thereof, i.e., (

√
Σ− 1)2. In this one-dimensional case, this amounts to penalizing

the difference in the standard deviation instead of in the variance. Surprisingly, this small
difference changes the dissipativity analysis considerably.

Overall, the optimization problem in this section is given by

JN(Σ̊,K) :=
N−1∑
k=0

`W 2(Σ(k), K(k)) =
N−1∑
k=0

[
1

2

(√
Σ(k)− 1

)2

+
γ

2
K(k)2

]
→ min

K
!

s.t. Σ+ = Σ + Ts
(
−2KθΣ + ς2

)
= f(Σ, K),

Σ(0) = Σ̊,

0 < Kθ(k) < (Σ(k) + Tsς
2)/(2TsΣ(k)), k ∈ {0, ..., N − 1}.

(6.46)

For the linear storage function λl(z), the corresponding modified cost ˜̀
W 2(Σ, K) reads

˜̀
W 2(Σ, K) :=

1

2

(√
Σ− 1

)2

+
γ

2
K2 − `W 2(Σe, Ke) + λ̄

(
−Ts(−2(θ +K)Σ + ς2)

)
.

Analogous to Subsections 6.3.1 and 6.3.2, the Lagrange multiplier λ̄ ∈ R obtained from
the Lagrange function

LW 2(Σ, K, λ) :=
1

2

(√
Σ− 1

)2

+
γ

2
K2 + λ

[
−Ts

(
−2(θ +K)Σ + ς2

)]
(6.47)

is unique. We begin as in Subsections 6.3.1 and 6.3.2, i.e., by counting the stationary
points of ˜̀

W 2 . With Z = 2λ̄Ts, the gradient reads

∇˜̀
W 2(Σ, K) =

(√
Σ−1

2
√

Σ

γK

)
+ Z

(
θ +K

Σ

)
(6.48)

and we arrive at the same result as for the L2 cost, cf. Proposition 6.5.

Proposition 6.20. For a fixed λ̄ and thus fixed Z the modified cost ˜̀
W 2(Σ, K) has at

most two admissible stationary points. If Z = 0, then only one admissible stationary
point of ˜̀

W 2(Σ, K) exists and it is given by (Σe, Ke) = (1, 0).

Proof. From the gradient (6.48) we infer that for stationary points K = −ZΣ/γ and
therefore,

0 =

√
Σ− 1

2
√

Σ
+ Z(θ +K) =

√
Σ− 1

2
√

Σ
+ Zθ − Z2Σ

γ
=: h(Σ). (6.49)

If Z = 0, then K = 0 = Ke and hence h(Σ) = 0 ⇔ Σ = 1 = Σe, i.e., (Σe, Ke) = (1, 0) is
the unique admissible stationary point of ˜̀

W 2(Σ, K).
Let Z 6= 0. If h(Σ) has a unique admissible stationary point, then at most two

admissible solutions for (6.49) can exist. To this end, we look at h′(Σ):

h′(Σ) =
1

4Σ3/2
− Z2

γ
= 0 ⇔ Σ =

( γ

4Z2

)2/3

=: Σs
W 2 .

Since Σs
W 2 is admissible due to Z 6= 0, the assertion follows.
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The result of Proposition 6.20 is in contrast to the 2F cost: Apart from the degenerate
case γ = 1/θ2, in which infinitely many stationary points of ˜̀

2F exist, ˜̀
2F exhibits a unique

stationary point for a fixed Z, cf. Lemma 6.12. Hence, concerning stationary points of
the modified cost, the W 2 cost is more similar to the L2 cost than to the 2F cost.

The similarity of the W 2 cost to the L2 cost appears in the Hessian as well: For any
fixed Z 6= 0, it is obvious from the Hessian

∇2 ˜̀
W 2(Σ, K) =

(
1

4Σ3/2 Z

Z γ

)
(6.50)

that ˜̀
W 2 is not convex for sufficiently large Σ. This is in contrast to Subsection 6.3.2, where

the constant Hessian considerably simplified the analysis. Of course strong convexity of
˜̀
W 2 is only a sufficient condition for strict dissipativity. A requirement, however, is that

the optimal equilibrium (Σe, Ke) is the unique global minimum of the modified cost ˜̀
W 2 .

Hence, in the following, we will take a closer look at the structure of ˜̀
W 2 . As before, cf.

Subsections 6.3.1 and 6.3.2, we separate the two cases ς2/2− θ > 0 and ς2/2− θ < 0.

The case ς2/2− θ > 0

Similar to the L2 cost and in contrast to the 2F cost, cf. Propositions 6.6 and 6.14, in
case of the W 2 cost, for a large set of parameters (strict) dissipativity does not hold with
a linear storage function.

Proposition 6.21. If ς2/2 − θ > 0, then for sufficiently small sampling times Ts > 0,
(6.46) is not dissipative with a linear storage function λl(z) = λ̄z.

Proof. The idea of the proof is the same as in the proof of Proposition 6.6, i.e., to show
that the modified cost ˜̀

W 2 can assume negative values, which violates (3.10). To this end,
we first note that

lim
Σ→∞

˜̀
W 2(Σ, K) = sgn

(
(K + θ)Z +

1

2

)
· ∞. (6.51)

The next step is to show that Z < 0, which is completely analogous to the proof of
Proposition 6.6 and will thus not be repeated here.

Due to Z < 0, the term (K + θ)Z from (6.51) decreases as K increases. Taking into
account the control constraint (6.6), we consider the limiting case of

K ↗ Σ + Tsς
2

2TsΣ
− θ,

which, for Σ→∞, results in

K ↗ 1

2Ts
− θ.

Hence,

(K + θ)Z +
1

2
↘ Z

2Ts
+

1

2
as K → 1

2Ts
− θ.

Thus, if Z
2Ts

+ 1
2
< 0, then sgn

(
(K + θ)Z + 1

2

)
= −1 for large enough admissible K. In

this case, (Σe, Ke) cannot be a global minimum, contradicting dissipativity. Analogously
to the L2 and the 2F cost, cf. Remarks 6.9 and 6.18, the product λ̄Ts and thus Z is
constant in Ts. Hence, due to Z < 0, one can always achieve Z

2Ts
+ 1

2
< 0 for small enough

Ts > 0.
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The result of Proposition 6.21 is very similar to the L2 case, see Proposition 6.6. For
the W 2 cost, however, the statement depends on the sampling time Ts > 0. For instance,
one can verify that the OCP (6.46) with parameters

ς = 5, θ = 2, γ = 1/4, and Ts = 1

is indeed strictly dissipative with λl(z).

Of course this does not mean that increasing the sampling time always helps. Consider
the following example.

Example 6.22. Consider (6.46) with the parameters

ς = 10, θ = 2, γ = 1/4, and Ts = 1/100.

We want to construct the modified cost ˜̀
W 2(Σ, K). First, we determine the optimal equi-

librium (Σe, Ke) and the corresponding Lagrange multiplier λ̄. We formulate the Lagrange
function associated to (6.22) with the W 2 stage cost `W 2(Σ, K) and solve the problem nu-
merically. Note from (6.48) and (6.50) that the interest is in Z = 2λ̄Ts rather than in λ̄.
In particular, the optimal equilibrium is independent of the sampling time Ts. We get:

Σe ≈ 10.2393012, Ke ≈ 2.8831457, Z ≈ −0.070394104.

With this, we can construct the modified cost ˜̀
W 2(Σ, K), which is depicted in Figure 6.6.

All pairs (Σ, K) illustrated in this figure satisfy the constraints (6.6). The white area
depicts negative values, i.e., pairs (Σ, K) in which (3.10) is violated. Thus, (strict) dissi-
pativity does not hold with a linear storage function.

Figure 6.6: Modified cost ˜̀
L2(Σ, K) for Example 6.22. The optimal equilibrium (Σe, Ke)

is illustrated by the orange circle. The white area represents negative values; the black
diamond marks the minimum of the depicted area.
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Example 6.22 and the corresponding Figure 6.6 illustrate two reasons why strict dis-
sipativity with λl(z) does not hold in this example. The first is the asymptotic behavior
for Σ→∞, which might be fixed for large enough sampling times Ts. The second reason
is the second stationary point of ˜̀

W 2 , cf. Proposition 6.20. In Example 6.22, it is given
by

(Σs, Ks) ≈ (2.6621866, 0.749609).

It is important to see that the stationary points of ˜̀
W 2(Σ, K) depend not on Ts but on Z

(see (6.48)), and Z is unaffected by a change in Ts (since λ̄ also changes accordingly).
Likewise, the modified cost ˜̀

W 2(Σ, K) itself is unaffected by a change in Ts. Hence, the
problem of a second stationary point attaining negative values persists independently
of Ts. Moreover, note that in Example 6.22, γ is such that the reduced cost

ˆ̀
W 2(K) := `W 2

(
ς2

2(θ +K)
, K

)
=

1

2

(√ ς2

2(θ +K)
− 1

)2

+ γK2

 (6.52)

is strictly convex.4

In short, the properties that were used for the 2F cost in Subsection 6.3.2 (see Propo-
sitions 6.14 and 6.15 and Remark 6.17) to guarantee strict dissipativity of (6.27) are
not appropriate to prove strict dissipativity of (6.46). Instead, a case-by-case analysis is
required if ς2/2− θ > 0.

The case ς2/2− θ < 0

If ς2/2 − θ < 0, then as in the previous subsections one can show that Z > 0. Hence,
limΣ→∞ ˜̀

W 2(Σ, K) = ∞, cf. (6.51). Moreover, limK→∞ ˜̀
W 2(Σ, K) = ∞. However, the

two boundaries Σ ↘ 0 and K ↘ −θ and the potential second stationary state from
Proposition 6.20 need to be checked in order to verify strict dissipativity with a linear
storage function. This is the same procedure as for the L2 cost, cf. Examples 6.7 and 6.8,
and requires a case-by-case analysis, as the following two examples demonstrate.

Example 6.23. Consider (6.46) with the parameters

ς = 3/4, θ = 3/2, γ = 1/5, and Ts = 1/10.

As in Example 6.22, we determine the optimal equilibrium (Σe, Ke) and the associated Z
numerically:

Σe ≈ 0.4679159, Ke ≈ −0.8989304, Z ≈ 0.3842274.

The reduced cost ˆ̀
W 2, cf. (6.52), is convex, since 55

216ς4
= 55

2834
< 1

5
= γ. Furthermore, the

Hessian of the modified cost ˜̀
W 2 evaluated at (Σe, Ke) is positive definite:

∇2 ˜̀
W 2(Σe, Ke) ≈

(
0.7810671 Z

Z γ

)
⇒

∣∣∣∇2 ˜̀
W 2(Σe, Ke)

∣∣∣ ≈ 0.00858275 > 0.

4One can show that ˆ̀
W 2 is strictly convex for γ > 55

216ς4 . However, as this fact is not crucial for the
subsequent statements we refrain from giving a rigorous proof.
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Moreover, the second stationary point of ˜̀
W 2 at approximately

(0.5044150447,−0.9690503190) =: (Σs, Ks)

is not an issue, since ˜̀
W 2(Σs, Ks) ≈ 9.2315 · 10−6 > 0. However, we face problems when

looking at the boundary K = −θ respective Σ = 0:

˜̀
W 2(0, K) =

1

2
+
K2

2
− `W 2(Σe, Ke)− Zς2

2
,

which is minimal at K = 0 with

˜̀
W 2(0, 0) =

1

2
− `W 2(Σe, Ke)− Zς2

2
.

Analogously, at the boundary K = −θ, we have:

˜̀
W 2(Σ,−θ) =

1

2

(√
Σ− 1

)2

+
γ

2
θ2 − `W 2(Σe, Ke)− Zς2

2
,

which is minimal at Σ = 1 with

˜̀
W 2(1,−θ) =

γ

2
θ2 − `W 2(Σe, Ke)− Zς2

2
.

In total, we require that

min

{
1

2
,
γ

2
θ2

}
− `W 2(Σe, Ke)− Zς2

2
≥ 0. (6.53)

Otherwise, due to continuity of ˜̀
W 2, strict dissipativity with this storage function does not

hold. Indeed, in this example, we have

min

{
1

2
,
γ

2
θ2

}
− `W 2(Σe, Ke)− Zς2

2
≈ −0.0137857 < 0,

see Figure 6.7, and thus, no strict dissipativity with λl(z).

Example 6.24. Consider (6.46) with the parameters

ς = 2/3, θ = 3/2, γ = 1/3, and Ts = 1/10.

We identify the optimal equilibrium and the corresponding value for Z numerically:

Σe ≈ 0.1865912, Ke ≈ −0.3090422, Z ≈ 0.5520844.

We also determine the second stationary point of ˜̀
W 2 numerically:

(0.8642951,−1.4314914) =: (Σs, Ks).

We get ˜̀
W 2(Σs, Ks) ≈ 0.07675 > 0 and min

{
1
2
, γ

2
θ2
}
−`W 2(Σe, Ke)− Zς2

2
≈ 0.075063 > 0,

cf. (6.53). Hence, both the second stationary point and the boundary yield positive values.
Due to Z > 0, ˜̀

W 2(Σ, K)→∞ for Σ→∞ or K →∞. Since no other stationary point
exists, we can find a function % ∈ K∞ such that the dissipativity inequality (3.10) holds
with λl(z). Figure 6.8 depicts the corresponding modified cost ˜̀

W 2(Σ, K).
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Figure 6.7: Modified cost ˜̀
L2(Σ, K) for Example 6.23. The optimal equilibrium (Σe, Ke)

is illustrated by the orange circle. The white area represents negative values; the black
diamond marks the minimum of the depicted area.

Figure 6.8: Modified cost ˜̀
W 2(Σ, K) for Example 6.24 zoomed in (left) and zoomed out

(right). The optimal equilibrium (Σe, Ke) is illustrated by the orange circle. The white
area on the right plot is due to control constraints (6.6).

Modifications to the stage cost `W 2

In this part we discuss the two modifications to the stage cost `W 2 that were discussed in
the previous two Subsections 6.3.1 and 6.3.2.

Remark 6.25 (Scaling of the stage cost). For the W 2 cost, scaling the stage cost by a
factor Ts as mentioned in Remarks 6.9 and 6.18 could help in verifying strict dissipativity
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using linear storage functions in the case of ς2

2
− θ > 0, at least for some parameters. Yet,

this scaling does not help if a stationary point with a negative function value exists, since
it exists independently of Ts, requiring a case-by-case analysis still. Hence, analogously to
the L2 and the 2F cost, we do not scale the stage cost `W 2(Σ, K) in this subsection.

Remark 6.26 (Penalizing (θ + K)2 instead of K2 in `W 2). Modifying the cost function
`W 2 by penalizing (θ + K)2 instead of K2 does not guarantee strict dissipativity with a
linear storage function: Since the modified cost function yields the same optimal equilibria
as considering θ = 0, in particular, ς2/2 − θ > 0 holds. However, this property does
neither guarantee strict dissipativity5 (in contrast to the 2F cost), cf. Example 6.22, nor
does it rule out strict dissipativity (in contrast to the L2 cost).

A nonlinear storage function

Despite the similarity of the two cost functions `W 2 and `2F , the results are very different.
In fact, regarding dissipativity with the linear storage function λl(z), the Wasserstein
cost `W 2 has more in common with the L2 cost considered in Subsection 6.3.1. This
includes that, when running numerical simulations, the MPC closed loop converges to
the optimal equilibrium (Σe, Ke)—even for the parameters in Examples 6.22 and 6.23,
see Figures 6.9 and 6.10. These figures indicate that the turnpike property holds even in
cases where the linear storage function fails.

Figure 6.9: Open-loop optimal trajectories for various horizons N between 2 and 61
and MPC closed-loop trajectories for two different initial conditions, indicating turnpike
behavior in Example 6.22; state Σ (left) and control K (right).

Due to the close relationship between dissipativity and the turnpike property, see
the end of Section 3.3, this strongly suggests that strict dissipativity does indeed hold,
but with a nonlinear storage function. Thus, in the rest of this section, we revisit these

5Neither does the condition ς2/2− θ < 0, see Example 6.23.
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Figure 6.10: Open-loop optimal trajectories for various horizons N between 2 and 61
and MPC closed-loop trajectories for two different initial conditions, indicating turnpike
behavior in Example 6.23; state Σ (left) and control K (right).

examples with the nonlinear storage function

λs(z) := α
√
z + 1. (6.54)

The parameter α ∈ R is chosen such that the optimal equilibrium (Σe, Ke) is a stationary
point of the new modified cost

˜̀s
W 2(Σ, K) := `W 2(Σ, K)− `W 2(Σe, Ke) + λs(Σ)− λs(Σ+).

One notable advantage of λs(z) over λl(z) is the asymptotic behavior of the modified cost:
While

lim
Σ→∞

˜̀
W 2(Σ, K) = sgn

(
(K + θ)Z +

1

2

)
· ∞

depends on the value of Z, the nonlinear storage function λs(z) yields ˜̀s
W 2(Σ, K) → ∞

as Σ→∞ or K →∞ irrespective of the value of α for admissible controls. Thus, when
looking for a suitable/promising storage function λ(z), the asymptotic behavior of λ(z)
should be compared to that of the cost `(Σ, K).

Ideally, the storage function should be chosen such that the Hessian ∇2 ˜̀(Σ, K) is con-
stant. Then one can avoid checking everything by foot, i.e., the boundary values and the
stationary points of the modified cost function. Unfortunately, the Hessian ∇2 ˜̀s

W 2(Σ, K)
is not constant. However, the level sets in Figure 6.11 clearly suggest that strict dissipa-
tivity holds for both Examples 6.22 and 6.23. We take a closer look at these.

Let us first consider Example 6.22. Our numerical calculations yield α ≈ −23.5996705
and three stationary states of ˜̀s

W 2(Σ, K), of which one violates K > −θ. The remaining
two are (Σe, Ke) and (Σs, Ks) ≈ (265.4413283, 41.51437144). The second one is admissible
but not a problem since ˜̀s

W 2(Σs, Ks) ≈ 86.1249768 > 0. At the boundary Σ = 0, the
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Figure 6.11: New modified cost ˜̀s
W 2(Σ, K) for Examples 6.22 (left) and 6.23 (right). The

optimal equilibrium (Σe, Ke) is illustrated by the orange circle. The white area on the
right plot is due to the control constraints (6.6).

minimum is attained at K = 0, with a value of ˜̀s
W 2(0, 0) ≈ 6.816477628 > 0. For K = −θ,

a minimum of approximately 2.40236824 > 0 is attained at Σ ≈ 5.897079388. Thus, we
can find a function % ∈ K∞ such that the dissipativity inequality (3.10) holds with λs(z).

Next, we look at Example 6.23. In this case, from numerical calculations we get
α ≈ 4.6552057. In addition to (Σe, Ke), the new modified cost ˜̀s

W 2(Σ, K) exhibits
a second admissible stationary point at (Σs, Ks) ≈ (0.8398851754,−1.424465947) with
˜̀s
W 2(Σs, Ks) ≈ 0.00136419 > 0. A third one exists but violates the constraint K > −θ.

At the boundary Σ = 0, the minimum is attained at K = 0, with a value of ˜̀s
W 2(0, 0) ≈

0.2401417173 > 0. Lastly, for K = −θ, the minimum value is attained at approximately
Σθ := 0.9095436678, with a value of ˜̀s

W 2(Σθ,−θ) ≈ 0.005474005283 > 0. Thus, again, we
can find a function % ∈ K∞ such that the dissipativity inequality (3.10) holds with λs(z).

Summary

As in the previous two Subsections 6.3.1 and 6.3.2 we end our analysis by summarizing
our main results in short form:

� For ς2/2−θ > 0 and small enough sampling times Ts > 0, strict dissipativity cannot
hold with a linear storage function. For large enough Ts > 0 strict dissipativity may
hold, but has to be checked on a case-by-case basis.

� In the case ς2/2 − θ < 0, strict dissipativity with a linear storage function is inde-
pendent of the sampling time Ts, but has to be checked on a case-by-case basis.

� For various values of θ and ς strict dissipativity holds with the nonlinear storage
function (6.54). However, the verification is tedious and must be done on a case-
by-case basis.
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� Numerical verification of the turnpike property suggests that strict dissipativity
holds for many parameters for which the analytical verification is not (yet) possible.

The above examples show that the W 2 cost is more difficult to manage than the
2F stage cost. The most striking difference is that positive definiteness of the Hessian
∇2 ˜̀

W 2(Σe, Ke) is not sufficient for strict dissipativity with a linear storage function since
∇2 ˜̀

W 2(Σ, K) is not constant. Although this property can be used to conclude local con-
vexity in a neighborhood of (Σe, Ke) (which implies strict dissipativity if state and control
are constrained to that region), in general it will not yield global convexity. Another dif-
ficulty arises due to the second stationary state of ˜̀

W 2 (see Proposition 6.20), for which,
on top of that, there is no analytic formula, as opposed to the 2F cost, cf. Lemma 6.12.
Moreover, one needs to take into account the boundary, which was unnecessary for the 2F
cost due to the constant Hessian ∇2 ˜̀

2F (Σ, K), cf. (6.36). All in all, even though the W 2

cost `W 2(Σ, K) from (6.17) looks more similar to the 2F cost `2F (Σ, K) from (6.18) than
to the L2 cost `L2(Σ, K) from (6.16), the W 2 cost behaves more like the L2 cost than like
the 2F cost when it comes to analyzing strict dissipativity.

Concluding, the Wasserstein metric, which is in many aspects very suitable for measur-
ing distances of PDFs, does not allow for a simple analysis of strict dissipativity, although
our results give strong indication that strict dissipativity holds for many parameter values.

6.3.4 Quick Comparison of L2, 2F, and W 2 Stage Costs

We summarize and compare the results of the three stage costs from the three previous
subsections in Table 6.1.

6.4 Conclusion

In this chapter we have analyzed whether a particular optimal control problem with
bilinear dynamics connected to the Fokker–Planck equation is strictly dissipative. We
have compared three different cost functions, the L2 and the W 2 cost, which are suited
for being used in a nonlinear setting for general PDFs, and the 2F cost, which is based
on quadratic cost functions commonly used in tracking objectives but adjusted to the
Gaussian setting.

We have found that for the 2F cost, a linear storage function can be used to prove
strict dissipativity for a large parameter set. The linear storage function is convenient due
to its close connection to the Lagrange function associated with the problem of finding
optimal equilibria. We have also demonstrated that for large sets of parameters, a linear
storage function is unsuitable if the L2 or the W 2 cost are used. To show that the
optimal control problems are strictly dissipative in these situations, we have introduced
appropriate classes of nonlinear storage functions.

Unfortunately, the 2F cost is the only one that is not derived from a metric for general
PDFs, and thus it is only applicable to the Gaussian setting. It will be an interesting
question for further research to see whether it is possible to extend this cost and the
associated strict dissipativity results beyond the Gaussian case, or whether a class of
nonlinear storage functions that captures a large parameter set exists.
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L2 cost 2F cost W 2 cost

State cost (`− γ
2
K2) 1

4
√
π

[
Σ−1/2 + 1

−2
√

2(Σ + 1)−1/2
] 1

2
(Σ− 1)2 1

2
(
√

Σ− 1)2

Hessian ∇2 ˜̀ not constant; in-
definite for Σ >
22/5/(2− 22/5)

constant; posi-
tive definite in
all tested non-
degenerate cases;
positive semi-
definite otherwise

not constant; indef-
inite for sufficiently
large Σ

The case ς2/2−θ > 0 not strictly dissipa-
tive with λl(z)

strictly dissipative
with λl(z)

not strictly dissi-
pative with λl(z)
for sufficiently
small Ts; otherwise
requires case-by-
case analysis

The case ς2/2−θ < 0 requires case-by-
case analysis

strictly dissipa-
tive with λl(z)
for γ > 1/(4ς4);
presumably strictly
dissipative in
general if γ 6= 1/θ2

requires case-by-
case analysis

Stationary points of ˜̀ no explicit formula;
up to two

explicit formula;
unique if Z 6= 0,
infinitely many
otherwise (degen-
erate case)

no explicit formula;
up to two

Scaling of ` with Ts does not affect re-
sults

does not affect re-
sults

may affect results
in the case ς2/2 −
θ > 0

Penalizing (θ + K)2

instead of K2 in `
leads to the case
ς2/2− θ > 0

leads to the case
ς2/2− θ > 0

leads to the case
ς2/2− θ > 0

Nonlinear storage
function λs(z)

can be used to
prove strict dissi-
pativity for certain
parameters in cases
where λl(z) fails;
λs(z) = (z+1)−1/2α
or λs(z) = (z +
1)−1/2α + βz

presumably not
required due to
preliminary sup-
porting evidence

can be used to
prove strict dissi-
pativity for certain
parameters in cases
where λl(z) fails;
λs(z) = (z + 1)1/2α

Table 6.1: Summary and comparison of the results of Subsections 6.3.1, 6.3.2, and 6.3.3.



7Numerical Implementation and
Simulations

The numerical implementation is written mainly in C++ [91] and consists of the three
parts, PDE-MPC, OU-MPC, and SDEControl, which are described in their respective sections
below. In addition, Python [97] scripts were used to create plots (e.g., in Chapter 6)
and Maple [70] scripts were used for plots and symbolic computation. At the end of
this chapter, in Section 7.4, we present additional numerical examples that might be of
interest, but were not discussed in the previous chapters.

7.1 PDE-MPC

The C++ program PDE-MPC was written to numerically solve PDE-constrained optimal
control problems via MPC. It is able to deal with the Fokker–Planck equation (1.2)
including zero-flux boundary conditions. The discretization of the Fokker–Planck equation
is written in a way that does not limit the spatial dimension d, i.e., an arbitrarily large
system of stochastic processes can be considered from the macroscopic point of view via the
associated PDF—the limiting factor is the computer memory and the computation time.
This program does not rely on any external libraries. Moreover, its modular structure
allows to easily consider other PDEs and different solvers within the MPC framework.

In the following, the emphasis is on the structure of PDE-MPC and on the program
flow. More low-level details can be found in the documentation provided together with
the source code. An overview of the program structure is shown in Figure 7.1. All
currently existing classes and their subclasses in the program are listed on the left, with
their main purpose(s) on the right.

At the top is the MPC class, which implements the MPC Algorithm 3.1. In every
MPC step we have to solve (OCPN), an optimal control problem subject to (discrete-
time) dynamics, on a certain time interval. This is the main task of the Optimizer class.
It being an abstract class allows the user to choose any desired nonlinear programming
(NLP) solver without changing the MPC code, i.e, at run time. Currently, the Projected
Gradient descent algorithm [95] as well as the BFGS algorithm [73] are implemented
in ProjectedGradient and BFGS, both subclasses of Optimizer. Both methods require
information about the gradient of the (reduced) cost functional, which, in the PDE setting,
is usually obtained by solving the associated adjoint PDE (see the derivation of the first
order necessary optimality conditions in Section 2.5).

One possible approach to solve these PDEs is to first discretize the spatial domain, e.g.,
by Finite Differences, while the time is kept continuous. This is the approach we follow
in the implementation. For the spatial discretization of the Fokker–Planck equation with
zero-flux boundary conditions we implemented the Chang–Cooper scheme [21], a Finite
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MPC

Optimizer

- ProjectedGradient

- BFGS

Model
- FokkerPlanck

LesSolver
- CGMethod

- PCGMethod

OdeSolver
- ImplEuler

- BDF2

MPC Algorithm

solve (OCPN)

solve the ODE system

- spatial discretization

- cost functional

- gradient information

- control and state constraints

solve systems of linear equations

FPMPCConfig manage parameters and settings

Figure 7.1: Program structure.

Difference scheme that, by design, guarantees non-negativity and conservation of mass,
the two crucial properties of a PDF. This is done in the FokkerPlanck class, a subclass of
the abstract Model class, and results in a (large) system of ordinary differential equations.

The OdeSolver class is responsible for solving these ODE systems. Like Optimizer

and Model it is an abstract class. Currently, the implicit (backward) Euler method and the
BDF2 algorithm [87] are implemented in ImplEuler and BDF2, respectively. In particular,
we can combine the Chang–Cooper scheme and the BDF2 scheme to discretize the Fokker–
Planck equation in space and time, respectively, which yields an approximation of second
order, cf. [72]. The adjoint PDE is discretized in time with the same method as the
forward Fokker–Planck equation. For the discretization in space we follow the discretize-
before-optimize approach from [5, p. 497f], i.e., the matrix that represents the spatial
discretization of the forward Fokker–Planck equation is being transposed for the backward
(adjoint) equation.

The BDF2, the implicit Euler, and the BFGS algorithms require solving systems of
linear equations, for which the LesSolver abstract class exists. Currently, the Conjugate
Gradient (CG) method [57] is implemented in CGMethod. Additionally, PCGMethod, a
preconditioned version of the CG method, is added for testing purposes, where, given
a linear system Ax = b with A ∈ Rd×d, the preconditioner matrix equals the diagonal
matrix D−1 with Dii = Aii, i = 1, ..., d.

In addition to the spatial discretization, the Model class respective the FokkerPlanck

class encompasses the evaluation of the cost functional, associated gradient information,
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and control and state constraints. All occurring L2 norms and all integrals are computed
by either trapezoidal or rectangle formulas.

Lastly, slightly separated from the other classes is the FPMPCConfig class at the bottom
since, strictly speaking, it is not necessary for the computations. Yet, it is provided for
convenience and acts as a central access point to set the parameters and settings that
are needed by the currently implemented classes, e.g., model parameters, MPC settings,
discretization step sizes, error tolerances, and many more. Only few “expert” parameters,
e.g., the step size in the optimization algorithm, need to be adjusted directly in the
respective class.

The program generates several files, in which it stores the results, e.g., the state y, the
control u, the adjoint state p, and the costs. For more details we refer to Table 7.1.

Filename Description

adjTrajectory.txt/.vtr Contains the values of the adjoint state p on the mesh.
For d ≥ 2 a sequence of vtr files is generated, one file per
MPC time step.

config-detailed.txt Stores the relevant configuration parameters in a more
readable form.

config-multidim.txt Stores the relevant configuration parameters for further
use.

control.txt/.vtr Contains the control values u on the mesh. For d ≥ 2 a
sequence of vtr files is generated, one file per control and
per MPC time step.

controlBounds.txt Contains the lower and upper control bounds.
controlcosts.txt Stores the control costs, which are a part of the stage costs,

for each implemented MPC step.
desiredTrajectory.txt/.vtr Contains the values of the desired state on the mesh. For

d ≥ 2 a sequence of vtr files is generated, one file per
MPC time step.

stagecosts.txt Stores the stage costs for each implemented MPC step.
statecosts.txt Stores the state costs, which are a part of the stage costs,

for each implemented MPC step.
totalcosts.txt Contains the (weighted) sum of all implemented state-,

control-, and stage costs.
trajectory.txt/.vtr Contains the values of the state y on the mesh. For d ≥ 2

a sequence of vtr files is generated, one file per MPC time
step.

xCoords.txt This file is only created in the one-dimensional case and
contains the spatial discretization of Ω ⊂ R. For d ≥ 2
this information is stored in the respective vtr files.

Table 7.1: Files generated by PDE-MPC.
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7.2 OU-MPC

A recurrent stochastic process in this thesis is the Ornstein–Uhlenbeck process. If the con-
trol is space-independent (Chapter 4) or linear in space (Chapters 5 and 6) and assuming
the initial PDF is Gaussian, then the associated PDF stays Gaussian and its evolution
is entirely prescribed by the evolution of the mean and the covariance matrix, i.e., by
the ODE system (5.5). Moreover, assuming the control is piecewise constant in time, the
solution of the Fokker–Planck equation associated with the Ornstein–Uhlenbeck process
exists in closed form, cf. Section 4.1 and Example 5.1.

The C++ program OU-MPC takes advantage of this, i.e., numerical errors in the dis-
cretization are eliminated by using the closed form solution. In addition, the user can
switch to the discrete-time dynamics (6.5), a forward Euler approximation of the ODE
system (5.5), which is implemented to numerically solve the OCPs considered in Chap-
ter 6. Both the closed form solution and the Euler approximation are implemented to
handle arbitrary dimensions d ∈ N. A boolean variable euler is used to switch between
the two dynamics. Additional boolean switches, e.g., economicCost and wasserstein,
allow the user to choose which stage cost function to use, i.e., switch between the stabi-
lizing MPC case (Chapters 4 and 5) and the economic MPC case (Chapter 6), and switch
between the L2 and the W 2 cost in the state penalization terms, cf. (6.8) and (6.9).

The program relies on the header-only library CppOptimizationLibrary [100], which
in turn relies on Eigen, a “C++ template library for linear algebra” [54]. The optimiza-
tion library CppOptimizationLibrary was slightly modified to incorporate the projected
gradient descent solver. The gradient of the objective function can be approximated nu-
merically by the optimization library. However, for the L2 stage cost and the shortest
possible MPC horizon we implemented the exact gradient to get more accurate solutions.

In addition to optimization via MPC, it is possible to run simulations with a given
control, e.g., with the equilibrium control ū in Examples 5.14, 5.16 and 5.19, or to com-
pute and store open-loop optimal trajectories, e.g., to illustrate the turnpike property
in Figures 6.2, 6.9, and 6.10. The settings for the aforementioned examples and for the
numerical simulations in Section 4.3 are provided in the source code for convenience. The
results are stored in several files; for more details we refer to Table 7.2.

7.3 SDEControl

The C++ program SDEControl was written to return from the macroscopic perspective to
the underlying stochastic process at hand. It numerically solves stochastic ODEs with a
given control/input u using the Euler–Maruyama method [62]. The main purpose is to
verify the results obtained by the Fokker–Planck approach on the microscopic level. This
program does not rely on any external libraries.

The control and the configuration details (such as the stochastic process at hand,
the parameters for the initial distribution, and the control dimension) are read from the
corresponding files generated by PDE-MPC, cf. Table 7.1. The output is a sequence of csv
files, one per time step, that contains the state (the position) of all simulated “particles”
subject to the stochastic process at hand.
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Filename Description

<u> outControl.txt Contains the control value u = (K, c) for each imple-
mented MPC step.

<u> outCosts.txt Contains the stage costs for each implemented MPC
step.

<u> outMeanVarianceDiff.txt Contains the differences ‖µ− µ̄‖2
2 and

∥∥Σ− Σ̄
∥∥2

F
for

each implemented MPC step. These are used, e.g., in
Figures 5.1 and 5.2.

<u> outMu0.txt Contains the state µ (mean) for each implemented
MPC step.

<u> outSigmaSq0.txt Contains the state Σ (covariance matrix) for each im-
plemented MPC step.

outParams.txt Stores the relevant configuration parameters in a more
readable form.

outParamsMaple.txt Stores the relevant configuration parameters for fur-
ther use in Maple.

Table 7.2: Files generated by OU-MPC. The prefix <u> is used to distinguish between the
optimal control u∗ (uOpt) and the equilibrium control ū (uTarget).

7.4 Additional Numerical Examples

In this section we present some additional numerical examples where, to our knowledge,
there is no known closed form solution. The Fokker–Planck optimal control problems
were solved in PDE-MPC. We verified the results of the Fokker–Planck approach on the mi-
croscopic level by solving the SDE numerically in SDEControl with the (optimal) controls
calculated by PDE-MPC. The plots in this section were created in ParaView [11].

Example 7.1 (Shallow Water). The following two-dimensional stochastic process models
the dispersion of substance in shallow water [56]: Consider (1.1) with

ã(x, t) :=

(√
2h(x) 0

0
√

2h(x)

)
and b(x, t;u) :=

(
u1(x, t)− x1/32 + 1/40

u2(x, t)− x2/32 + 1/40

)
and the associated Fokker–Planck equation on Q := Ω × [0, 5] with Ω := ]0, 8[2, where
h(x) := − 1

64
((x1 − 4)2 + (x2 − 4)2) + 3

5
≥ 0 in Ω. The spatial domain Ω is discretized

using a 321× 321 grid, which results in 2 · 102720 control variables in the case of space-
dependent control.

To experiment with non-Gaussian PDFs and how well they can be attained with space-
dependent controls in various settings, the initial PDF is a (smoothed) delta-Dirac located
at the center (4, 4) and we choose the target PDF

ρ̄(x) := m

[
1

x1

exp

(
2C1

σ2
log(x1)

)
− 2

σ2
(x1 − 1)

] [
1

x2

exp

(
2C2

σ2
log(x2)

)
− 2

σ2
(x2 − 1)

]
with C1 = 2.625, C2 = 2.125, σ = 0.5, and m ≈ 0.00004591595108, which is an equilib-
rium PDF of a stochastic Lotka-Volterra two-species prey-predator model [103].
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We employ control constraints u1, u2 ∈ [−10, 10] and solve the optimal control problem
using MPC with the shortest possible horizon N = 2, a sampling time of Ts = 0.5, and
the L2 stage cost

`(ρ(k), u(k)) =
1

2
‖ρ(k)− ρ̄‖2

L2(R2) +
γ

2
‖u(k)‖2

L2(R2;R2) ,

where γ = 0.001. The solution and the evolution of the stochastic process on a micro-
scopic level (100000 paths) are depicted in Figure 7.2, with the corresponding controls in
Figure 7.3.

In the case of space-independent control (u1(t), u2(t)), such as illustrated in Figure 2.1,
the stage cost is given by

`(ρ(k), u(k)) =
1

2
‖ρ(k)− ρ̄‖2

L2(R2) +
γ

2
|u(k)|2 .

Example 7.2 (Bimodal Target). Consider a 2D Ornstein–Uhlenbeck process, i.e., (1.1)
with

ã(x, t) :=

(
1/2 0
0 1/2

)
and b(x, t;u) :=

(
u1(x, t)− νx1

u2(x, t)− νx2

)
with ν :=

3

4
,

and the associated Fokker–Planck equation on Q := Ω × [0, 5] with Ω := ]−5, 5[2. The
spatial domain Ω is discretized using a 301 × 301 grid, which results in 2 · 90300 control
variables.

We consider bimodal PDFs of the form

ρ̃(x; η) :=
1

2

exp
(
− (x1+2η)2

2σ̄2
1
− (x2−2η)2

2σ̄2
2

)
2πσ̄1σ̄2

+
1

2

exp
(
− (x1−2η)2

2σ̄2
3
− (x2+2η)2

2σ̄2
4

)
2πσ̄3σ̄4

,

where σ̄ := (0.4, 0.4, 0.6, 0.6). Starting from the initial PDF ρ̊(x) := ρ̃(x; 0), we want the
PDF ρ(x, t) to attain the target PDF ρ̄(x) := ρ̃(x; 1).

We employ control constraints u1, u2 ∈ [−10, 10] and we solve the optimal control
problem using MPC with the shortest possible horizon N = 2, a sampling time of Ts = 0.5,
and the L2 stage cost

`(ρ(k), u(k)) =
1

2
‖ρ(k)− ρ̄‖2

L2(R2) +
γ

2
‖u(k)‖2

L2(R2;R2) ,

where γ = 0.001. The solution and the evolution of the stochastic process on a micro-
scopic level (100000 paths) are depicted in Figure 7.4, with the corresponding controls in
Figure 7.5.

Example 7.3 (Moving Bimodal Target). Consider Example 7.2 with the only change
being a moving bimodal target PDF

ρ̄(x, t) :=
1

2

exp
(
− [x1+2 sin(πt/5)]2

2σ̄2
1

− [x2−2 sin(πt/5)]2

2σ̄2
2

)
2πσ̄1σ̄2

+
1

2

exp
(
− [x1−2 sin(πt/5)]2

2σ̄2
3

− [x2+2 sin(πt/5)]2

2σ̄2
4

)
2πσ̄3σ̄4

,



7.4. Additional Numerical Examples 119

where σ̄ := (0.4, 0.4, 0.6, 0.6).
The solution is depicted in Figure 7.6, with the corresponding controls in Figure 7.7.

Figure 7.8 illustrates the evolution of the stochastic process on a microscopic level (100000
paths).

Example 7.4 (Bimodal Uniform Target). Consider the 2D Ornstein–Uhlenbeck process
from Example 7.2, i.e.,

ã(x, t) :=

(
1/2 0
0 1/2

)
and b(x, t;u) :=

(
u1(x, t)− νx1

u2(x, t)− νx2

)
with ν :=

3

4
,

and the associated Fokker–Planck equation on Q := Ω × [0, 1] with Ω := ]−3, 3[2. The
spatial domain Ω is discretized using a 121 × 121 grid, which results in 2 · 14520 control
variables.

Starting from the initial Gaussian PDF

ρ̊(x) :=

(
(2π)2

2∏
i=1

σ̊2
i

)−1/2

exp

(
−

2∑
i=1

x2
i

2σ̊2
i

)

with σ̊2
1 = σ̊2

2 = 1/6, we want the PDF ρ(x, t) to attain the uniform target PDF

ρ̄(x) :=

{
1, x ∈ [−1, 0]2 ∪ [0, 1]2,

0, otherwise.

We solve the optimal control problem using MPC with the shortest possible horizon
N = 2, a sampling time of Ts = 0.1, and the L2 stage cost

`(ρ(k), u(k)) =
α

2
‖ρ(k)− ρ̄‖2

L2(R2) +
γ

2
‖u(k)‖2

L2(R2;R2) ,

where α = 2 and γ is either 0.01 or 0.001. The solutions are depicted in Figure 7.9,
with the corresponding controls in Figure 7.10. Figure 7.11 illustrates the evolution of the
stochastic process on a microscopic level.
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(a) Initial PDF (concentration at (4, 4)). (b) Desired PDF.

(c) Controlled PDF at t = 0.5. (d) Controlled SDE at t = 0.5.

(e) Controlled PDF at t = 1.5. (f) Controlled SDE at t = 1.5.

(g) Controlled PDF at t = 5. (h) Controlled SDE at t = 5.

Figure 7.2: Desired and controlled PDF (using space-dependent control) for Example 7.1
(Shallow Water) and the evolution of the stochastic process on a microscopic level.
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(a) Control u1(x, 0). (b) Control u2(x, 0).

(c) Control u1(x, 0.5). (d) Control u2(x, 0.5).

(e) Control u1(x, 1). (f) Control u2(x, 1).

(g) Control u1(x, 4.5). (h) Control u2(x, 4.5).

Figure 7.3: Controls u1(x, t) and u2(x, t) for Example 7.1 (Shallow Water). Note the
different scales at t = 0.
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(a) Initial PDF. (b) Desired PDF.

(c) Controlled PDF at t = 0.5. (d) Controlled SDE at t = 0.5.

(e) Controlled PDF at t = 1. (f) Controlled SDE at t = 1.

(g) Controlled PDF at t = 5. (h) Controlled SDE at t = 5.

Figure 7.4: Desired and controlled PDF for Example 7.2 (Bimodal Target) and the evo-
lution of the stochastic process on a microscopic level.
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(a) Control u1(x, 0). (b) Control u2(x, 0).

(c) Control u1(x, 0.5). (d) Control u2(x, 0.5).

(e) Control u1(x, 2.5). (f) Control u2(x, 2.5).

(g) Control u1(x, 4.5). (h) Control u2(x, 4.5).

Figure 7.5: Controls u1(x, t) and u2(x, t) for Example 7.2 (Bimodal Target). Note the
different scales at t = 0.
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(a) Controlled PDF at t = 0.5. (b) Desired PDF at t = 0.5.

(c) Controlled PDF at t = 2.5. (d) Desired PDF at t = 2.5.

(e) Controlled PDF at t = 4. (f) Desired PDF at t = 4.

(g) Controlled PDF at t = 5. (h) Desired PDF at t = 5.

Figure 7.6: Desired and controlled PDF for Example 7.3 (Moving Bimodal Target).
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(a) Control u1(x, 0). (b) Control u2(x, 0).

(c) Control u1(x, 2). (d) Control u2(x, 2).

(e) Control u1(x, 3.5). (f) Control u2(x, 3.5).

(g) Control u1(x, 4.5). (h) Control u2(x, 4.5).

Figure 7.7: Controls u1(x, t) and u2(x, t) for Example 7.3 (Moving Bimodal Target).
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(a) Controlled SDE at t = 0. (b) Controlled SDE at t = 0.5.

(c) Controlled SDE at t = 1.5. (d) Controlled SDE at t = 2.5.

(e) Controlled SDE at t = 3.5. (f) Controlled SDE at t = 4.

(g) Controlled SDE at t = 4.5. (h) Controlled SDE at t = 5.

Figure 7.8: Controlled SDE for Example 7.3 (Moving Bimodal Target); 100000 paths.
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(a) Initial PDF. (b) Desired PDF.

(c) Controlled PDF at t = 0.1 (γ = 0.01). (d) Controlled PDF at t = 0.1 (γ = 0.001).

(e) Controlled PDF at t = 1 (γ = 0.01). (f) Controlled PDF at t = 1 (γ = 0.001).

(g) Controlled PDF at t = 1 (γ = 0.01; grid
points).

(h) Controlled PDF at t = 1 (γ = 0.001; grid
points).

Figure 7.9: Desired and controlled PDF for Example 7.4 (Bimodal Uniform Target) and
various regularization parameters γ.
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(a) Control u1(x, 0) for γ = 0.01. (b) Control u2(x, 0) for γ = 0.01.

(c) Control u1(x, 4.5) for γ = 0.01. (d) Control u2(x, 4.5) for γ = 0.01.

(e) Control u1(x, 0) for γ = 0.001. (f) Control u2(x, 0) for γ = 0.001.

(g) Control u1(x, 4.5) for γ = 0.001. (h) Control u2(x, 4.5) for γ = 0.001.

Figure 7.10: Controls u1(x, t) and u2(x, t) for Example 7.4 (Bimodal Uniform Target) and
various regularization parameters γ. Note the different scales for the different values of γ.
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(a) Controlled SDE at t = 0 (γ = 0.01). (b) Controlled SDE at t = 0 (γ = 0.001).

(c) Controlled SDE at t = 0.1 (γ = 0.01). (d) Controlled SDE at t = 0.1 (γ = 0.001).

(e) Controlled SDE at t = 0.2 (γ = 0.01). (f) Controlled SDE at t = 0.2 (γ = 0.001).

(g) Controlled SDE at t = 1 (γ = 0.01). (h) Controlled SDE at t = 1 (γ = 0.001).

Figure 7.11: SDE simulation for Example 7.4 (Moving Uniform Target) and various reg-
ularization parameters γ; 100000 paths.





8Future Research

In this concluding chapter we outline various extensions and possibilities for future re-
search.

8.1 Generalization of existing results

One way to deepen the understanding to what extent Model Predictive Control works
well in the Fokker–Planck optimal control framework (cf. Section 1.1) is to generalize the
existing results in both the stabilizing MPC case (cf. Section 3.2) and the economic MPC
case (cf. Section 3.3).

8.1.1 Minimal Stabilizing Horizon

In the case of stabilizing MPC we have shown that the MPC approach we employ “works”
for linear stochastic processes and Gaussian PDFs, cf. Theorem 5.11, provided the horizon
is sufficiently large. It would be interesting to generalize this result on the Fokker–Planck
PDE level and to incorporate nonlinear stochastic processes or linear processes with a
nonlinear control, cf. Section 7.4.

Another challenge is to determine or at least approximate the minimal stabilizing
horizon. In this context, we have studied the Ornstein–Uhlenbeck process in more detail,
cf. Section 4.2, where the control is space-independent and Section 5.3.2, where the space-
dependent control is linear in space. A common trait we encountered is that the minimal
stabilizing horizon is N = 2, i.e., the shortest possible horizon, although the optimal
value function grows, cf. Example 5.14 or Section 4.3 and Figure 4.5. For nonlinear as
well as for other linear processes, strategies have to be developed to cope with this. One
such strategy—which was persued in Section 4.2—is to suitably modify the stage cost
without affecting the resulting optimal control sequence, such that Theorem 3.4 can still
be employed.

8.1.2 Strict Dissipativity

In the case of economic MPC we have investigated the strict dissipativity of optimal
control problems subject to a bilinear discrete-time dynamics that approximates the
Ornstein–Uhlenbeck process. While various stage costs were considered, it would be
very desirable to extend this analysis to more complicated dynamics, ideally to a class
of stochastic processes through a combination of a stage cost ` and a suitable storage
function λ such that the modified cost ˜̀ is (strongly) convex.
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Another open question, although minor compared to the previous one, is whether
the conditions in Assumption 3.10 hold, which is necessary in order to apply the sta-
bility result from Theorem 3.13. While the continuity of the storage function is usually
directly provable, the remaining properties likely need to be shown indirectly, via local
controllability, cf. Definition 3.11.

8.2 New Fields of Application

A different research direction, which is possibly more promising in terms of more readily
available results, is to study Model Predictive Control in connection with the Fokker–
Planck equation in the context of new fields of application, e.g., mean-field games and
mean-field type control problems [12].

8.2.1 Mean-Field Games

One related problem to steering the PDF via control of the Fokker–Planck equation is
the planning problem in the context of mean-field games, considered in [76]. In mean-
field games one considers strategic decision making of an agent in the case of a (large)
population of (indistinguishable) players. In the case of an infinite number of players,
the Fokker–Planck equation is coupled with a Hamilton–Jacobi–Bellman equation and
models the evolution of the density of players, who are characterized by their strategy
[76, 77]. The strategy of an individual agent depends on that density, i.e., on the behavior
of other players, but it is treated as an external parameter that cannot be influenced by
the agent [12]. The goal of the planning problem is to steer an initial density (of players)
to a desired one “through the optimal decisions of the agents” [76]. It would be interesting
to see to what extent Model Predictive Control can be applied in this context.

8.2.2 Mean-Field Type Control Problems

Similar to mean-field games, mean-field type control problems can be formulated in the
Fokker–Planck optimal control framework, where the Fokker–Planck equation is coupled
with a Hamilton–Jacobi–Bellman equation. For more details, see, e.g., the monograph [12]
or the survey [6]. The difference to mean-field games is that the mean-field term, i.e., the
density, can be influenced by the agent, resulting in a coupled system of McKean-Vlasov
type [12].

Although nowadays powerful numerical solution techniques exist, solving this control
problem on long or variable horizons is computationally hard. In this context, Model
Predictive Control seems to be a viable approach, as first results in [15] indicate.
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[36] A. Fleig, L. Grüne, and R. Guglielmi. Some results on Model Predictive Control for
the Fokker-Planck equation. In MTNS 2014: 21st International Symposium on Math-
ematical Theory of Networks and Systems, July 7-11, 2014, University of Groningen,
The Netherlands, pages 1203–1206, 2014.

[37] A. Fleig and R. Guglielmi. Bilinear optimal control of the Fokker-Planck equation.
IFAC-PapersOnLine, 49(8):254–259, 2016. 2nd IFAC Workshop on Control of Systems
Governed by Partial Differential Equations CPDE 2016.

[38] A. Fleig and R. Guglielmi. Optimal control of the Fokker-Planck equation with
space-dependent controls. J. Optim. Theory Appl., 174(2):408–427, 2017.

[39] W. H. Fleming and R. W. Rishel. Deterministic and stochastic optimal control.
Springer-Verlag, Berlin-New York, 1975. Applications of Mathematics, No. 1.

[40] M. G. Forbes, J. F. Forbes, and M. Guay. Regulating discrete-time stochastic systems:
focusing on the probability density function. Dyn. Contin. Discrete Impuls. Syst. Ser.
B Appl. Algorithms, 11(1-2):81–100, 2004.

[41] C. Gardiner. Stochastic methods. Springer Series in Synergetics. Springer-Verlag,
Berlin, fourth edition, 2009. A handbook for the natural and social sciences.



142 Bibliography

[42] T. T. Georgiou. The structure of state covariances and its relation to the power
spectrum of the input. IEEE Transactions on Automatic Control, 47(7):1056–1066,
2002.
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