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Abstract: The effect of different catalysts on reactive compatibilization of 50/50 polycarbonate
(PC)/polymethylmethacrylate (PMMA) blends achieved via transesterification that occurs
during compounding in a twin-screw extruder was investigated on a phenomenological
(optical and mechanical properties), mesoscopic (phase morphology), and molecular level
(PC-graft(g)-PMMA-copolymer formation and polymer molecular weight degradation). Formation
of PC-(g)-PMMA-copolymer by transesterification resulting in transparent mono-phase PC/PMMA
blends with obviously improved compatibility of the two polymer constituents requires use of a
suitable catalyst. As a side-effect, PC-(g)-PMMA-copolymer formation by transesterification is always
accompanied by a significant simultaneous decomposition of the molecular weight (Mw) of the PC.
For the first time, a colorless, transparent (mono-phase) PC/PMMA 50/50 blend was achieved by
a twin-screw extrusion process that can be easily transferred into industrial scale. To achieve this
milestone, 0.05 wt% of a weakly acidic phosphonium salt catalyst had to be applied. As a result
of the decrease in Mw of the PC, the mechanical properties (e.g., tensile strain at break and impact
strength) of the obtained blends were significantly deteriorated rather than improved as targeted by
the polymer compatibilization; therefore, the produced transparent PC/PMMA blends are considered
not yet technically suitable for any industrial applications. Different manufacturing process strategies
that do not inherently result in PC degradation as a side effect of PC-graft(g)-PMMA-copolymer
formation have to be developed to potentially achieve transparent PC/PMMA blends with a useful
balance of properties. Based on the experimental observations of this study, a new mechanism of the
transesterification reaction occurring during reactive compounding of PC and PMMA in the presence
of the effective catalysts is proposed.

Keywords: transparency; PC; PMMA; blend; transesterification; PC-graft-PMMA copolymer; reactive
compounding; continuous reactive extrusion; compatibilization

1. Introduction

Blending of polymers is a simple, versatile, and economical tool for developing new polymer
materials with tailored properties. By combining the benefits of different polymers or even, in
favorable cases, leveraging property synergies of the blend partners, polymer blends can fulfill complex
requirements of many industrial applications [1–3]. For example, the automotive industry plays a key
user role in the polymer blend market [4]. Major advantages of tailoring polymer blends, as compared
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to developing new polymers, are the short time-to-market and typically no investment needed for
scale-up, so in essence lower hurdles for successful market introduction of new products.

In particular, polycarbonate (PC)-based blends are of great commercial interest. Beyond the
improvement of already industrially established PC blends like PC/acrylonitrile-butadiene-styrene
(ABS), PC/styrene-acrylonitrile (SAN), or PC/polybutylene terephthalate (PBT), the development of
novel PC blends with so far not yet exploited polymeric blends partners still has enormous scientific,
technical, and economic potential. For instance, blending of PC with polymethylmethacrylate (PMMA)
is believed to have the potential to allow some technical shortcomings of PC to be overcome, such
as scratch sensitivity, chemical resistance, or birefringence, while retaining the appreciated unique
benefits of PC, such as good heat and impact resistance. The main challenge of this blend system is the
loss of transparency that is typically observed during compounding and is caused by the immiscibility
of technical PC and PMMA grades at most composition ratios [5]. A change of the two well-separated
glass transition temperatures (Tg) of the individual polymers to a single Tg in the blend as well as
a change from an opaque to a transparent blend material has been used as experimental proof of
improved miscibility of the blend partners in PC/PMMA blends [6,7].

Different process strategies (e.g., solution casting or melt mixing) have been reported in the
literature to obtain transparent or translucent blends. As solution casting [8–12] is not really an
industrially relevant process, it will not be further elaborated in the context of the present study.
For melt mixing, three fundamentally different strategies have been described in the literature that
result in PC/PMMA blends with improved polymer compatibility, namely: a) addition of nanoparticles
that accumulate in the polymer interphase and affect interfacial surface tension [13,14], b) use of
presynthesized PC-block(b)-PMMA copolymers as an additive for the same purpose [15–17], and c)
reactive compatibilization by catalytic transesterification of PC and PMMA under in-situ formation of
PC-graft(g)-PMMA copolymers [6,7,13,18–22].

Reactive compatibilization by catalytic transesterification is a common strategy in blends
manufacturing and has already been described repeatedly for PC blends. For example, it has been
applied to PC blends such as PC/PBT [23–25] and PC/PET [26–28]. For PC/PMMA blends, prior art using
this methodology is already existing as well. The finding of a polymer interchange reaction at defined
conditions of melt mixing of PC and PMMA in the absence of a catalyst was mentioned for the first time
by Rabeony et al. in 1992 [29]. In 1998, Montaudo et al. [18] reported the transesterification of PC/PMMA
(70/30) blends via reactive extrusion with residence times from 5 to 60 min in the presence of dibutyltin
oxide (SnOBu2) as catalyst. Transparency was not achieved by this reactive extrusion process though.
Occurrence of a transesterification reaction was not explicitly proven in this study; rather results
just indicated a depolymerization of PMMA with a consequent further reaction. Penco et al. [19,20]
investigated tetrabutylammonium tetraphenylborate (TBATPB) as transesterification catalyst. Miscible
blends, having a single glass transition temperature (Tg), were achieved and evidence of an ester–ester
exchange reaction provided via FTIR analysis. However, still no transparent blends could be produced.
Singh et al. [6,21] achieved for the first time fully transparent blends of PC and PMMA by using
tin(II) chloride dihydrate (SnCl2·2H2O) and tin(II) ethyl hexanoate as transesterification catalysts.
They observed a single Tg and a high transparency for PC/PMMA blends with different polymer ratios.
Furthermore, they postulated the formation of a copolymer based on NMR and FTIR spectroscopy
results. Samarium acetyl acetonate was used as a novel catalyst by Bunleechai et al. in 2013 [22].
They proposed a more stable morphology and enhanced mechanical properties but could not support
their findings with any analytical characterization of the produced PC/PMMA materials. Recently,
two patent applications [30,31] were also published, claiming zinc acetate and dibutyl tin dilaurate as
suitable transesterification catalysts for reactive compatibilization of PC and PMMA.

The literature from Singh et al. as well as the two patent filings suggest that good transparency
can only be achieved with a quite high (and thus detrimental) amount of catalyst. However, both
studies could not demonstrate that a miscible and transparent PC/PMMA blend is achievable at a
ratio of 50/50 (wt%/wt%). Furthermore, none of the previous work reported material properties
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beyond transparency (e.g., mechanical performance), which are of utmost importance for industrial
application of any such material. Rather, they all focused on microscale melt mixing in discontinuous
compounding aggregates using large residence times. Transparent PC/PMMA blends produced in a
continuous extrusion process with much shorter residence times, typically in the range of 30–60 s, had
not been reported up to now although such processes are economically preferred and can be more
easily scaled-up.

In the present study, we thus targeted: (1) the identification of an optimized, more efficient
transesterification catalyst, (2) the transfer of the so far academic microscale discontinuous melt
mixing approach to an industrially more relevant, easily to scale-up continuous twin-screw extrusion
process and, in addition, (3) a better mechanistic understanding of the chemistry of the PC/PMMA
transesterification that occurs during reactive compounding of the two polymers in the presence of
effective catalysts. As the PC/PMMA 50/50 composition had not yet been reported in previous work to
result in transparent material and thus seems most challenging from the scientific point of view, we
decided to use this particular PC/PMMA ratio for our case study. Moreover, we aimed assessment of a
meaningful properties profile that allows more reliable conclusions than the previous scientific work
on the potential relevance of the obtained polymer blends for targeted industrial applications, e.g., in
the automotive industry.

2. Materials and Methods

2.1. Materials

PC (Makrolon® 2408) was obtained from Covestro Deutschland AG (Leverkusen, Germany),
and PMMA (Plexiglas® 8H) was purchased from Evonik Industries AG (Essen, Germany).
The molecular weights of these raw materials measured by gel permeation chromatography (GPC),
both with polystyrene standard, were Mw = 46,000 g/mol and Mn = 27,000 g/mol for the PC and
Mw = 130,000 g/mol and Mn = 74,500 g/mol for the PMMA. The PC and PMMA grades were chosen
based on a prescreening of commercially available grades of these polymer classes, such that the blend
partners under reactive compounding conditions (i.e., 260 ◦C and shear rates of about 100 s−1) exhibited
similar melt viscosities. This was done with the rationale that a viscosity ratio PC/PMMA of about 1
will result in a most efficient melt mixing. Both PC and PMMA raw materials were predried in vacuum
at 60 ◦C before compounding. The PC used for the blending experiments (Makrolon® 2408) exhibited a
negligible phenolic hydroxyl (pOH) group content, determined by 1H-NMR spectroscopy, of <100 ppm.
The applied catalysts are listed in Table 1. Based on the literature and patent survey, tin(II) chloride
dihydrate (SnCl2·2H2O) [6] and zinc acetate [30,31] were selected as state-of-the-art benchmarks.
Additionally, a weakly acidic phosphonium salt was investigated as a possible transesterification
catalyst (1 g of this catalyst dispersed under steady stirring in 150 mL deionized water of pH = 5.8
yielded an aqueous dispersion with a pH of 4.8).

Table 1. Used transesterification catalysts.

Catalyst Sample Denotation
(Number) Form Supplier

No catalyst
Tin(II) chloride dihydrate

(SnCl2·2H2O)

1
2 Powder Merck (Darmstadt, Germany)

Tin(II) chloride anhydrous 3 Powder Fisher Scienfic (Hampton, NH, USA)
Tin(II) acetate 4 Powder Alfa Aesar (Haverhill, MA, USA)

Tin(II) ethyl hexanoate 5 Liquid Alfa Aesar (Haverhill, MA, USA)
Tin(II) acetylacetonate 6 Liquid VWR International (Radnor, PA, USA)

Zinc acetate 7 Powder Merck (Darmstadt, Germany)
Phosphonium salt 8 Powder -

Zinc(II) acetylacetonate 9 Powder Sachem, Inc. (Austin, TX, USA)
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2.2. Experimental

2.2.1. Compounding

PC/PMMA 50/50 blends (50 wt% PC + 50 wt% PMMA) were prepared by melt extrusion
using different size twin-screw extruders. A discontinuously running micro compounder (MC)15
from Xplore (Sittard, Netherlands) was used with residence times in the range of 3 up to 30 min.
Compounding conditions were set at a melt temperature of 260 ◦C and a rotation speed of 100 rpm.
For the continuous reactive extrusion, a Process 11 parallel twin-screw extruder from Thermofisher
Scientific (Waltham, MA, USA) and a ZSK26 MC18 corotating twin-screw extruder from Coperion
(Stuttgart, Germany) were used at melt temperatures of 260 ◦C and residence times of about 90 s and
30 s, respectively. The blend components were grounded with a Retsch ZM 100 Ultra Mill (Haan,
Germany), and the resulting polymer powders were homogeneously mixed with the catalysts prior to
melt mixing. Catalyst contents were chosen in the range of 0.05 to 0.3 wt%.

2.2.2. Thermal Analysis

Differential scanning calorimetry (DSC) from Mettler Toledo (Columbus, OH, USA) was carried
out to investigate the change in glass transition temperatures (Tg) of the different PC/PMMA blends.
The measurements were done under nitrogen atmosphere at a heating/cooling rate of 10 K/min.
The samples were heated from 0 to 200 ◦C, held at 200 ◦C for 3 min, and then cooled down to 0 ◦C.
This depicted the first run. For the determination of the Tg the 2nd heating curves were used, which
consist of the same temperature program as the 1st run.

2.2.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

FTIR was done to proof and semiquantitatively estimate extent of formation of PC-g-PMMA
copolymer as a result of transesterification upon compounding of the PC/PMMA blend compositions.
For this purpose, 5 g of the compounded PC/PMMA blends were extracted in 100 mL of acetone under
stirring for 24 h at room temperature, followed by filtration with a Büchner funnel to separate the
acetone insoluble part of the blend (containing mostly PC) from the acetone soluble part (containing
mostly PMMA). Afterwards, the materials were dried to remove the residual acetone. The obtained
fractions of the products were analyzed separately by FTIR with an FTIR spectrometer Nexus 470
from Nicolet (Thermofisher Scientific) (Waltham, MA, USA) in attenuated total reflection (ATR) mode.
Spectra were recorded in the range of 400–4000 cm−1 with a resolution of 1 cm−1. As a methodology
validation, a physical mixture of PC/PMMA 50/50 produced by melt compounding in absence of any
catalyst was investigated by this procedure and a complete separation of the two blend components
demonstrated. I.e., the acetone soluble part only consisted of pure PMMA, and the acetone insoluble
part only consisted of pure PC.

2.2.4. Nuclear Magnetic Resonance Spectroscopy (NMR)

1H-NMR was used to quantify the content of PC-g-PMMA formation during reactive extrusion of
PC and PMMA in presence of 0.05 wt% of the phosphonium salt catalyst. For this purpose, 1H-NMR
spectra of the neat PC and PMMA raw materials as well as the acetone insoluble part of the PC/PMMA
50/50 blend were recorded. In each case, 30 mg of the investigated material was completely dissolved in
about 0.8 mL deuterated chloroform. The NMR spectra were recorded with a Bruker Avance (Billerica,
MA, USA) with 300 MHz at room temperature.

2.2.5. Gel permeation chromatography (GPC)

For molecular weight distribution determination gel permeation chromatography (GPC)
measurements of the neat PC and PMMA raw materials as well as of the acetone soluble and
insoluble parts of the compounded blends were performed on an instrument having four PSS-SDV gel
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columns (particle size = 5 µm) with a porosity range from 102 to 105 Å (PSS, Mainz, Germany) using a
nonselective refractive index detector (Shodex; Techlab, Japan). Tetrahydrofuran (THF) was used as
the solvent for the respective polymer fractions and as the eluting solvent. The sample was filtered
through a 0.22 µm PTFE filter after solving in THF and before GPC analysis. Eluent flow rate was set
at 1.0 mL/min. The calibration was done with narrowly distributed polystyrene (PS) homo-polymer.

2.2.6. Optical Properties

Transparency and color were qualitatively assessed by visual inspection of 1 mm thick hot-melt
pressed specimens. Furthermore, haze and yellowness indexes were determined according to DIN6167
(1980 version) “Description of Yellowing of Nearly White or Nearly Colorless Materials” on test
specimens of dimension 60 mm × 40 mm × 4 mm that had been injection molded at a melt temperature
of 260 ◦C.

2.2.7. Mechanical and Rheological Properties

Tensile testing was performed at room temperature in accordance to ISO 527 (1996 version).
Injection molded dog-bone specimens (170 mm × 10 mm × 4.0 mm) were tested at a rate of 50 mm/min
and at 1 mm/min for Young’s modulus measurement. Impact testing was performed at room
temperature according to ISO 180/1U (2013 version) using injection molded specimens of dimension
80 mm × 10 mm × 4 mm. Heat resistance is reported as Vicat B/120 values, which were determined
on injection molded test specimens of dimension 80 mm × 10 mm × 4 mm according to ISO 306
(2014 version). Melt viscosity was determined in accordance to ISO 11443 (2014 version) at a melt
temperature of 260 ◦C. Melt viscosities have been recorded at various shear rates in the range of 50 to
5000 s−1. Test specimens were injection molded at a melt temperature of 260 ◦C.

2.2.8. Transmission electron microscopy (TEM)

The morphological characterization was performed via bright field transmission electron
microscopy (TEM) using a Zeiss EM922 OMEGA (Oberkochen, Germany) at an acceleration voltage of
200 kV. Ultrathin sections (~50 nm) were prepared from the compound pellets using an ultramicrotome
Leica EM UC7 (Wetzlar, Germany). The ultrathin sections were stained with ruthenium tetroxide
(RuO4) for 15 min in order to enhance the contrast of the constituent polymers.

3. Results and Discussion

3.1. Compounding in a Laboratory-Scale Discontinuous Extrusion Process

In the first experiments, we reproduced, for comparison reasons, the compounding process
as reported by Singh et al. [6] using the discontinuous micro compounder (sample size: 15 g) and
SnCl2·2H2O as the reference catalyst. In contrast to the work by Singh, the axial force of the extruder
housing was continuously monitored to investigate viscosity changes of the melt composition [32]
that can be indicative of any reactions (e.g., polymer decomposition and transesterification) occurring
during compounding.

The neat polymer components as well as the PC/PMMA 50/50 blend were melt mixed in absence of
catalyst (Figure 1a) and in presence of 0.3 wt% of SnCl2·2H2O (Figure 1b). The according axial force vs.
time curves are shown in Figure 1. The PC/PMMA 50/50 blend produced in absence of a catalyst was
opaque, while the according blend produced in presence of the catalyst was transparent but exhibited
a strongly brownish color. This is in contrast to the results by Singh et al. [6], who reported that blends
of this 50/50 composition were opaque.

Generally, axial force changes during the first up to 500 s (initial increase and temporary decrease
afterwards) are related to the filling of the extruder and melting of the polymer components (Figure 1).
In Figure 1b, in addition they can be potentially related to any instantaneous melt reaction and any
potential softening effect due to the used catalyst. Any further changes of the axial force occurring after
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the first 500 s have to be related to slower reactions (e.g., polymer degradation and/or transesterification).
In case of no such reaction, a steady state (constant axial force) is expected.Polymers 2019, 11, x FOR PEER REVIEW 6 of 22 
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Figure 1. Force vs. time curves of (a) neat polycarbonate (PC), neat polymethylmethacrylate (PMMA),
and PC/PMMA 50/50 in the absence of any catalyst and (b) of the same materials in presence of 0.3 wt%
SnCl2·2H2O catalyst.

The axial forces observed for the neat polymer components and the PC/PMMA 50/50 blend in
absence of a catalyst (Figure 1a) are pretty constant at > 500 s and at a similar level within repeatability
of this measurement for PC, PMMA, and the PC/PMMA 50/50 blend. This is expected based on the
similar melt viscosities of the chosen polymers.

While the axial force observed for the pure PMMA is hardly affected by the catalyst, the addition of
0.3 wt% of SnCl2·2H2O leads to an instantaneous decrease in the axial force of the pure PC and an even
more pronounced decrease in case of the PC/PMMA blend (compare Figure 1a,b). The latter finding
turns out reproducible as the two experiments with different residence times are showing. Interestingly,
as a consequence, the axial force observed for the PC/PMMA blend produced with the catalyst is even
lower than the axial forces of both neat blend partners when compounded with the catalyst (Figure 1b).
Our interpretation is that the catalyst likely degrades the PC molecular weight (Mw), and this polymer
degradation is even more pronounced if PMMA is present. This can be considered as a first potential
experimental indication of a transesterification reaction occurring between PC and PMMA in the
presence of SnCl2·2H2O as catalyst, as the transesterification according to the mechanism proposed by
Singh et al. [6] will always result in a chain scissoring of the PC.

However, based on this single experiment alone, the interpretation is still speculative.
An alternative possible explanation of this experimental observation (which, in our view of the
full picture of our further experimental findings to be presented in the following, is much less likely)
is that the SnCl2·2H2O is unequally distributed in the PC/PMMA blend and accumulates in the PC
phase. This could explain both the observed inactivity of the catalyst in terms of PMMA degradation
and also the stronger reduction of axial force in the PC/PMMA 50/50 blend compared to both the pure
PC and pure PMMA. The rationale is: if the catalyst was indeed accumulated in the PC phase, the
effective concentration in the PC would be higher (actually, in a PC/PMMA 50/50 composition, double
the amount), and thus PC degradation induced by that catalyst is expected to be more pronounced
than if the same amount of catalyst was added to pure PC.

3.2. Compounding in a Laboratory-Scale Continuous Extrusion Process

To the best of our knowledge, the reactive extrusion of PC/PMMA blends in presence of a
transesterification catalyst via a continuous extrusion process up to now has not yet been reported in
the scientific or patent literature. The differences of such continuous extrusion processes compared to
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the discontinuous experiments reported previously are lower residence times (30–90 s compared to
5–60 min) on the one hand and higher shear forces (superior mixing) during compounding on the other.
In the initial continuous extrusion experiments that targeted fundamental investigation of the effects of
the different catalysts on optical properties (Chapter 3.2.1), phase morphology (Chapter 3.2.2), as well
as transesterification and polymer degradation (Chapter 3.3.3), the small-scale twin-screw extruder
(Process 11) was used with a residence time of 90 s.

3.2.1. Influence of Catalysts on Optical Properties (Visually Phenomenological Effects)

First, we investigated the effect of the catalyst content on the achieved transparency of the polymer
blends, in order to define an optimum concentration of the catalyst to be used in the further catalyst
screening. For this purpose, we tested the benchmark catalyst SnCl2·2H2O [6] at concentrations at
0.01, 0.05, 0.1, and 0.3 wt%. Figure 2 shows 1 mm thick hot-melt pressed specimens of the produced
PC/PMMA 50/50 blends.
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Figure 2. Influence of SnCl2·2H2O catalyst content on the transparency and color of the PC/PMMA
50/50 blend produced in a continuous extrusion process (Process 11).

The PC/PMMA 50/50 blend produced in absence of any catalyst turns out opaque. Already the
addition of only 0.01 wt% SnCl2·2H2O leads to a slightly translucent blend, which becomes transparent
at an increased catalyst concentration of 0.05 wt% and above. While transparency is not further
improved at catalyst contents above 0.05 wt%, the color of the blends turns increasingly brownish.
The steady-state torque of the extruder in the compounding process decreases with catalyst addition.
This is consistent with the results of the axial force changes previously observed in the discontinuous
microcompounder experiments upon catalyst addition.

As the increase in color at higher catalyst contents is undesired for industrial applications of the
blends, we decided to use a catalyst content of 0.05 wt%. At this content, the benchmark catalyst
provided the optimum balance of high transparency and lowest possible color for the further catalyst
screening study. In this screening study, we used SnCl2·2H2O and zinc acetate as reference catalysts
already reported in the scientific and patent literature, respectively, for transesterification of PC and
PMMA. Starting from these two references and considering other knowledge about substances that
are in principal useful transesterification catalysts for different purposes, we systematically varied
cation, anion, and hydration water content in the choice of the investigated catalysts in order to allow
assessment of the effects of those parameters (Table 1). In addition, a weakly acidic phosphonium salt
was added to the catalyst screening. Figure 3 shows 1 mm thick hot-melt pressed specimens of the
PC/PMMA 50/50 blends produced with the different catalysts.
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Figure 3. PC/PMMA 50/50 blends (1) without any and with 0.05 wt% of catalyst (2) SnCl2·2H2O,
(3) anhydrous SnCl2, (4) tin(II) acetate, (5) tin(II) ethyl hexanoate, (6) tin(II) acetylacetonate, (7) zinc
acetate, (8) phosphonium salt, and (9) zinc acetylacetonate produced by a continuous extrusion process
(Process 11).

Of the investigated catalysts only the SnCl2·2H2O reference catalyst (Figure 3(2)), the anhydrous
SnCl2 (Figure 3(3)), and the phosphonium salt (Figure 3(8)) resulted in transparent blends. However,
while the blends produced with both tin chloride catalysts show brownish color, only the phosphonium
salt resulted in a completely transparent and, at the same time, colorless blend. Torque of the extruder
was reduced for all the compositions resulting in transparent blends compared to the compositions
produced with catalysts resulting in opaque blends.

The second catalyst, namely tin(II) ethyl hexanoate, reported by Singh et al. [21] to result in
transparent PC/PMMA 80/20 blends when used at a content of 0.5 wt% in the discontinuous extrusion
process that he investigated, did not result in a transparent PC/PMMA 50/50 blend at the lower catalyst
content of 0.05 wt% in the continuous extrusion process used here (Figure 3(5)). Additionally, zinc
acetate disclosed as catalyst for transesterification of PC and PMMA in the patent literature [30,31] did
not result in transparent blends under our experimental conditions (Figure 3(7)). However, this is in
line with the fact that the claims of that patent did actually exclude the PC/PMMA ratio of 50/50 that is
used in our current study.

3.2.2. Influence of the Catalysts on Phase Morphology and Polymer Miscibility
(Mesoscopic Level Effects)

The transparency can be considered as an indicator for a fully miscible PC/PMMA blend. To proof
this interpretation, TEM and DSC investigations were performed. Figure 4 shows a comparison of the
TEM images of the PC/PMMA 50/50 blends produced in absence of a catalyst (Figure 4a, opaque) and
in presence of 0.05 wt% of the phosphonium salt (Figure 4b, transparent).
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Figure 4. Transmission electron microscopy (TEM) images of PC/PMMA 50/50 blends produced (a)
in absence of a catalyst (opaque) at two different magnifications and (b) in presence of 0.05 wt% of
phosphonium salt (transparent).

While the opaque blend produced in absence of any catalyst is showing phase separation of
PC and PMMA resulting in a cocontinuous morphology that is actually expected at the 50/50 ratio
of immiscible blend partners (phase domain sizes in the range of several microns), the transparent
blend produced with the phosphonium salt clearly shows only a single phase. Even at increased
magnification, no phase separation can be detected. We consider this finding as very strong indication
that complete miscibility of the two polymers has been achieved in this blend as a consequence of use of
this specific catalyst at the chosen concentration. If there was any potential remaining phase separation
that cannot be detected at the maximum magnification used in our TEM investigations, the resulting
phase domain sizes would have been at least dramatically decreased versus the blend produced in
absence of any catalyst (i.e., down to sizes <10 nm, which is below the half of the wavelength of visible
light and thus explains the observed transparency of the according blend).

The results of DSC of the transparent (Figure 5a) and opaque blends (Figure 5b) are in line with
this interpretation of the TEM images. The DSC curves of all transparent blends show only a single
Tg as is expected in case of a completely miscible polymer blend. In contrast, the DSC curves of the
opaque blends, with the exception of the blend produced with zinc acetate, show two well-separated
glass transitions in line with the presence of a two-phase blend system. The values of the single Tg’s
of the transparent PC/PMMA blends are; however, shifted towards lower temperatures compared to
the values expected at the 50/50 ratio of blend partners from Fox equation [33]. This can be explained
by degradation of the PC Mw (see GPC measurement below) during compounding in the presence
of those catalysts resulting in transparent blends, which results in a significant reduction of the glass
transition temperature of the PC component. Such PC degradation is indicated by lower axial force
(in the micro compounder experiments) and lower steady-state torque (in the continuous extrusion
experiments) observed during compounding of the transparent vs. the opaque PC/PMMA blends of
the same 50/50 ratio.

From the opacity of the blend produced with zinc acetate, it obviously has to be concluded that
this material exhibits a two-phase morphology. The single glass transition observed in the DSC in
this case is thus not a consequence of complete polymer miscibility but can be considered rather to be
related to a reduction of the Tg of the PC caused by PC degradation to a value that cannot anymore be
separated in the DSC from the Tg of the PMMA. An alternative interpretation is that there is still a
small percentage of immiscible blend partners in the material, which is not detectable by DSC (single
Tg) but still is detectable by light scattering (opacity).



Polymers 2019, 11, 2070 10 of 22
Polymers 2019, 11, x FOR PEER REVIEW 10 of 22 

 

  

(a) (b) 

Figure 5. (a) Differential scanning calorimetry (DSC) thermograms (2nd heating) of pure PC, pure 

PMMA, and of the transparent PC/PMMA 50/50 blends produced in presence of 0.05 wt% of catalysts 

SnCl2∙2H2O (2), anhydrous SnCl2 (3), and phosphonium salt (8); (b) DSC thermograms of pure PC, 

pure PMMA, and of the opaque PC/PMMA 50/50 blends produced in absence of any catalyst (1) and 

in presence of 0.05 wt% of catalysts tin(II) acetate (4), tin(II) ethyl hexanoate (5), tin(II) acetylacetonate 

(6), zinc acetate (7), and zinc acetylacetonate (9). 

3.2.3. Influence of the Catalysts on Transesterification and Polymer Degradation (Molecular Level 

Effects) 

Complete polymer miscibility that results in transparent PC/PMMA blends when selected 

catalysts are used in the compounding process can be the consequence of PC-g-PMMA copolymer 

formation by transesterification. Such copolymer acting as compatibilizer was proposed by Singh et 

al. [6]. Alternatively, however, polymer miscibility can also be the consequence of degradation of one 

or both polymer blend partners during compounding using such selected catalysts or a consequence 

of a combination of both polymer degradation and PC-g-PMMA copolymer formation. That is 

because blends of semimiscible polymers A and B are known to transit from two-phase to one-phase 

morphology if 1/NA + 1/NB exceeds a threshold value [34]. This threshold is a constant for a given 

polymer pair and temperature. NA and NB are the weight average numbers of monomer units in 

polymers A and B, respectively. In other words, two semimiscible polymers A and B become fully 

miscible if the molecular weights of polymers A and/or B are small enough. The disadvantage of 

miscible blends resulting from reduced molecular weight of either blend partner is that the low Mw 

of the polymer(s) will typically result in negative impacts on the mechanical material performance of 

the blend. As the next step, we thus investigated both PC-g-PMMA copolymer formation and 

polymer degradation occurring during continuous compounding of PC/PMMA 50/50 blends in the 

presence of the various catalysts. The target was to identify the actual root cause of the polymer 

miscibility in the transparent blends obtained with selected catalysts. 

To prove formation of and quantify any PC-g-PMMA copolymer resulting from 

transesterification reaction during PC/PMMA compounding, the acetone insoluble portions of the 

produced blends were investigated by FTIR and 1H-NMR measurements. The collected FTIR spectra 

are shown in Figure 6. 

Figure 5. (a) Differential scanning calorimetry (DSC) thermograms (2nd heating) of pure PC, pure
PMMA, and of the transparent PC/PMMA 50/50 blends produced in presence of 0.05 wt% of catalysts
SnCl2·2H2O (2), anhydrous SnCl2 (3), and phosphonium salt (8); (b) DSC thermograms of pure PC,
pure PMMA, and of the opaque PC/PMMA 50/50 blends produced in absence of any catalyst (1) and in
presence of 0.05 wt% of catalysts tin(II) acetate (4), tin(II) ethyl hexanoate (5), tin(II) acetylacetonate (6),
zinc acetate (7), and zinc acetylacetonate (9).

3.2.3. Influence of the Catalysts on Transesterification and Polymer Degradation
(Molecular Level Effects)

Complete polymer miscibility that results in transparent PC/PMMA blends when selected catalysts
are used in the compounding process can be the consequence of PC-g-PMMA copolymer formation
by transesterification. Such copolymer acting as compatibilizer was proposed by Singh et al. [6].
Alternatively, however, polymer miscibility can also be the consequence of degradation of one or both
polymer blend partners during compounding using such selected catalysts or a consequence of a
combination of both polymer degradation and PC-g-PMMA copolymer formation. That is because
blends of semimiscible polymers A and B are known to transit from two-phase to one-phase morphology
if 1/NA + 1/NB exceeds a threshold value [34]. This threshold is a constant for a given polymer pair
and temperature. NA and NB are the weight average numbers of monomer units in polymers A and
B, respectively. In other words, two semimiscible polymers A and B become fully miscible if the
molecular weights of polymers A and/or B are small enough. The disadvantage of miscible blends
resulting from reduced molecular weight of either blend partner is that the low Mw of the polymer(s)
will typically result in negative impacts on the mechanical material performance of the blend. As the
next step, we thus investigated both PC-g-PMMA copolymer formation and polymer degradation
occurring during continuous compounding of PC/PMMA 50/50 blends in the presence of the various
catalysts. The target was to identify the actual root cause of the polymer miscibility in the transparent
blends obtained with selected catalysts.

To prove formation of and quantify any PC-g-PMMA copolymer resulting from transesterification
reaction during PC/PMMA compounding, the acetone insoluble portions of the produced blends were
investigated by FTIR and 1H-NMR measurements. The collected FTIR spectra are shown in Figure 6.
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Figure 6. (a) FTIR spectra of pure PC, pure PMMA, and the acetone insoluble portions of the transparent
PC/PMMA 50/50 blends produced in presence of 0.05 wt% of catalysts SnCl2·2H2O (2), anhydrous SnCl2
(3), and phosphonium salt (8); (b) FTIR spectra of pure PC, pure PMMA, and the acetone insoluble
portions of the opaque PC/PMMA 50/50 blends produced in absence of any catalyst (1) and in presence
of 0.05 wt% of catalysts tin(II) acetate (4), tin(II) ethyl hexanoate (5), tin(II) acetylacetonate (6), zinc
acetate (7), and zinc acetylacetonate (9).

In the FTIR spectra of the acetone insoluble portions of all transparent blends, two clearly distinct
carbonyl stretching vibration bends at 1720 cm−1 (assigned to PMMA) and at 1770 cm−1 (assigned to
PC) are observed. A blend fraction that is not soluble in acetone, but nevertheless contains a significant
amount of PMMA is strong indication for formation of a PC-g-PMMA copolymer by transesterification
in these materials. PMMA that is not chemically bonded to PC had been proven to be completely
soluble in acetone under the applied conditions (see experimental part above). On the other hand, the
FTIR spectra of the acetone insoluble fractions of the opaque blends (Figure 6b) show essentially only
the bend at 1770 cm−1, i.e., this fraction of the opaque blends contains essentially only polycarbonate.
Our conclusion is that the opaque PC/PMMA blends actually do not contain any significant amounts
of PC-g-PMMA copolymer, i.e., practically no transesterification occurred during their compounding.
As a proof of this interpretation, FTIR investigations have also been performed on the acetone soluble
fractions of the opaque PC/PMMA blends. All spectra exhibited only a single carbonyl stretching
vibration bend at 1720 cm−1 related to PMMA, so did not provide any indication for presence of
PC-g-PMMA copolymer with potentially lower block length of the PC that could be imagined to be
soluble in acetone. The opaque material produced with zinc acetylacetonate as catalyst (Figure 6b(9))
likely contains a minor fraction of PC-g-PMMA copolymer as indicated by the small shoulder at
1720 cm−1 in the respective FTIR spectrum of its acetone insoluble fraction. Obviously, the amount of
the PC-g-PMMA copolymer generated via transesterification in the presence of zinc acetylacetonate is;
however, insufficient to result in a transparent blend—at least at the molecular weights of the PC and
PMMA resulting in this particular blend upon compounding.

FTIR is easy and comfortable to provide semiquantitative proof of PC-g-PMMA copolymer
formation because it can be applied on a solid, i.e., solving of the sample prior to investigation is not
required. However, FTIR is not the best method for quantification of the extent of the PC-g-PMMA
copolymer formation since it requires a calibration and is not very precise due to overlapping IR bends
related to PC and PMMA (see Figure 6). We thus decided to do, in addition, quantitative 1H-NMR
spectroscopy on the acetone insoluble part of the PC/PMMA 50/50 blend produced in the presence
of 0.05 wt% of the phosphonium salt catalyst. This sample was chosen as an example because it
had displayed the best performance regarding transparency and color (Figure 3). Figure 7 shows the
recorded NMR spectrum of this sample as compared to the NMR reference spectra of the neat PC and
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PMMA feedstock polymers. For the quantitative analysis, the NMR signals at 7.1–7.3 ppm attributed
to the eight aromatic protons of the bisphenol-A units in the PC and at 3.6 ppm attributed to the three
methyl ester protons of the PMMA were integrated. A content of 10 mol% of PMMA repetition units,
corresponding to 4 wt% of PMMA as part of a PC-g-PMMA copolymer was calculated to be present in
the acetone insoluble part of the investigated PC/PMMA 50/50 blend. No significant bend at 1770 cm−1

attributed to PC had been observed in the acetone soluble part of this blend, so we conclude that
no PC-g-PMMA copolymer was extracted by the acetone. We thus estimate that the total content of
PC-g-PMMA copolymer that has formed upon reactive compounding in the original PC/PMMA 50/50
blend via transesterification with the phosphonium salt catalyst is in the order of about 2 wt%.

Although the results of the FTIR and 1H-NMR investigations confirm presence of PC-g-PMMA
copolymer in the transparent PC/PMMA blends, this does not necessarily mean that this copolymer
is (exclusively) responsible for the observed transparency. The mechanism of transesterification
as proposed by Singh et al. [6] results in scissoring of one PC chain per formed PC-g-PMMA
copolymer molecule. Although Singh did not explicitly report according experimental results, such
transesterification, hence, must result in a significant reduction of PC Mw as a side effect, which actually
might be the real root cause, or at least a secondary prerequisite beyond the PC-g-PMMA copolymer
formation, for obtaining transparent PC/PMMA blends.

In order to allow judgement about the real root cause of the transparency, we thus performed
GPC measurements. Molecular weight distributions determined on the acetone insoluble parts of the
transparent PC/PMMA blends are shown in Figure 8. Furthermore, the molecular weights at the peak
(maximum) position of the molecular weight distribution, Mpeak determined for the acetone insoluble
parts of both the transparent and opaque PC/PMMA 50/50 compounds are summarized in Table 2.
Molecular weight distributions determined on the acetone soluble parts of the transparent blends
were essentially identical with the molecular weight distribution of the pure PMMA raw material.
This acetone soluble part of a PC/PMMA blend, based on our previous investigation on a physical
PC/PMMA mixture compounded in the absence of any catalyst (see experimental part), can be assigned
to the unreacted PMMA portions within the reactively compounded products. It thus can be concluded
that no degradation of the PMMA polymer has occurred during the compounding process.
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Figure 7. 1H-NMR spectra of the pure PC (a) and PMMA (b) raw materials as comparison and of the
acetone insoluble part of the transparent PC/PMMA 50/50 blend produced in presence of 0.05 wt% of
phosphonium salt (8) (c).
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Figure 8. Molecular weight distribution curves measured by GPC of the pure PC raw material as
comparison and of the acetone insoluble parts of the transparent PC/PMMA 50/50 blends produced in
presence of 0.05 wt% of catalysts SnCl2·2H2O (2), anhydrous SnCl2 (3), and phosphonium salt (8).
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Table 2. Molecular weights at the peak position of the Mw distribution (Mpeak) of the acetone insoluble
parts of the transparent and opaque PC/PMMA 50/50 compounds.

Sample Catalyst Mpeak [kg/mol]

Reference -

PC raw material 46

Transparent compounds

Sample 2 SnCl2·2H2O 10
Sample 3 SnCl2 26
Sample 8 phosphonium salt 26

Opaque Compounds -

Sample 1 46
Sample 4 Tin(II) acetate 40
Sample 5 Tin(II) ethyl hexanoate 45
Sample 6 Tin(II) acetylacetonate 41
Sample 7 Zinc acetate 28
Sample 9 Zinc(II) acetylacetonate 35

In contrast to what is observed for the vast majority of the opaque PC/PMMA blends, in case
of the transparent blends the molecular weight distributions of the acetone insoluble parts, i.e., of
the fractions consisting of PC and any potentially formed PC-g-PMMA copolymer, in general show
strong shifts towards lower molecular weights compared to the pure PC raw material used in the
preparation of the blends (Figure 8 and Table 2). This PC molecular weight decrease is particularly
severe with SnCl2·2H2O. It can be explained by chain scissoring during transesterification according to
the mechanism of Singh et al. [6], who proposed a cross-transesterification of a carbonate group in the
PC polymer chain with the methyl ester groups in the PMMA side groups. As a consequence of such
reaction, the PC molecules involved will be divided into two parts of lower molecular weights that
add up to the molecular weight of the initial PC molecule. Only one part will be chemically bonded to
a PMMA molecule during the transesterification, while the other will remain as a part of the free PC
phase and thus reduce its average molecular weight. However, molecular weight decrease could also
be, at least partially, due to hydrolytic degradation of the PC via reaction with residual moisture that
was not completely removed by the predrying of the polymer raw materials and/or is introduced by
the catalyst (SnCl2·2H2O). Our observation that PC molecular weight degradation measured by GPC
is also observed upon compounding of the pure PC with the respective catalysts even in the absence of
any PMMA, but not to the same extent as observed in the PC/PMMA 50/50 blends (also see Figure 1b),
proves that actually both types of reactions likely contribute to the observed total molecular weight
decreases. This can also explain why the PC molecular weight decrease is less severe when anhydrous
SnCl2 is used as catalyst instead of SnCl2·2H2O. The latter introduces some additional water into the
blend mixture and thus can increase the contribution of hydrolysis reaction to the total decrease of PC
molecular weight. The shoulders/second peak at high molecular weight that are observed in the GPC
of the acetone insoluble fraction of the transparent PC/PMMA blends are most likely related to the
PC-g-PMMA copolymer formed during reactive extrusion (containing both contributions of the PMMA
with Mw=130.000 g/mol and of the PC with Mw = 46.000 g/mol). While these GPC contributions of the
PC-g-PMMA copolymer in samples (3) and (8) are visible as shoulders, in sample (2) it appears as a
well resolved second peak because of the more severe degradation of the PC in this case.

The Mpeak values of the acetone insoluble fractions of the opaque PC/PMMA blends (Table 2)
show no or significantly smaller shifts towards lower levels compared to the transparent blends.
The only exception in this context is the blend produced with zinc acetate, which results in a similar
molecular weight reduction as the phosphonium salt with which a transparent blend was achieved.
The exceptionally severe PC degradation observed with zinc acetate can explain the also exceptional
observation of only a single Tg in the DSC of this blend (see above). Obviously, the zinc acetate does
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catalyze the hydrolytic cleavage of the PC by residual water, but not the transesterification of the PC
with PMMA. Thus, the blend produced with zinc acetate is opaque due to absence of PC-g-PMMA
copolymer, but the Tg of the PC is reduced to a value similar to that of the PMMA, so that both glass
transitions cannot anymore be resolved in the DSC experiment.

3.2.4. Mechanical Performance of the Reactively Compatibilized PC/PMMA Blends

Because effective reactive compatibilization of PC/PMMA blends resulted not only in the targeted
formation of PC-g-PMMA copolymer, but inherently also in PC Mw degradation as an undesired
side-effect, we assessed the mechanical properties of the produced blends to investigate the impact
of the combination of both effects on the overall technical performance of the materials. While the
formation of PC-g-PMMA copolymer is hoped to result in improved mechanical properties due to
phase morphology stabilization, the PC degradation is expected to drive performance in the opposite
direction. Previous investigations so far had not reported any mechanical properties of the produced
transparent PC/PMMA blends, because the discontinuous lab-scale compounding did not provide
sufficient material to do so. In order to allow testing of material properties in accordance with
industrially relevant DIN EN ISO standards, we had to scale up the reactive extrusion process to a
technical scale to allow production of material quantities sufficient for injection molding of standardized
test specimens. For this purpose, a 26 mm twin-screw extruder (ZSK26 MC-18) with a throughput of
20 kg/h and a residence time of 30 s was used to produce PC/PMMA blends in absence of a catalyst as
well as in presence of 0.05 wt% SnCl2·2H2O, zinc acetate (previously reported benchmarks) and the
phosphonium salt. All property data determined on the constituent PC and PMMA raw materials as
well as the three produced PC/PMMA 50/50 blends are summarized in Table 3. The different visual
phenomenological behaviors of the three blends (level of transparency and color) previously observed
on these blends when produced on a laboratory-scale extruder were 1:1 reproduced in this scale-up.

Table 3. Technical properties of the constituent PC and PMMA polymers as well as of the PC/PMMA
(50/50) blends produced therewith in absence of a catalyst and in presence of 0.05 wt% of phosphonium
salt, SnCl2·2H2O and zinc acetate (all blends produced on a technical scale extruder ZSK26 MC18).

Material Property PC neat PMMA neat PC/PMMA
50/50 PC/PMMA 50/50 PC/PMMA 50/50 PC/PMMA 50/50

- - - Phosphonium
Salt 0.05 wt%

SnCl2·2H2O
0.05 wt%

Zinc Acetate
0.05 wt%

Haze [%] 0.3 0.4 99.4 0.5 11.4 98.7
Yellowness index 2.4 0.4 40 1.8 8.2 48

Tensile modulus [MPa] 2175 3167 2748 2838 2875 2799
Tensile strength [N/mm2]
Tensile strain at yield [%]
Tensile strain at break [%]

63
6.5
109

91
5.9
6

82
6.6
57

52
n.y. **

2

52
n.y. **

2

80
6.5
55

Impact strength [kJ/m2] n.b.* 19 37 18 21 29
Vicat B/120 [◦C] 149 111 125 120 121 123
Melt viscosity

(260◦C/1000s−1) [Pas] 606 232 296 137 147 230

* n.b. = no break; ** n.y. = no yield.

The mechanical, thermal, and rheological properties of the PC/PMMA 50/50 blend produced
in absence of any catalyst as expected are all in between the according properties of the constituent
polymers. Most of these properties, however, are more or less shifted from the numeric average of
both polymer blend constituents to the level observed for PMMA, i.e., the blend behaves more similar
to PMMA than might be expected at the 50/50 polymer ratio. The only exception is the tensile strain at
yield, which, within accuracy of the measurement, for the PC/PMMA blend is at the same level as
for the PC raw material. The blend produced with zinc acetate as catalyst, not only with respect to
the visual (optical) properties, but also with regards to the other technical properties, behaves quite
similar to the blend produced in absence of any catalyst. The minor differences in terms of melt
viscosity and Vicat B/120 are related to the PC Mw degradation observed with use of this catalyst (see
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above). The high haze values of the blends produced in absence of a catalyst (99.4%) and in presence
of zinc acetate (98.7%) confirm the visual impression of complete opacity of these materials. The haze
determined for the two blends produced with transesterification-effective catalysts also confirm the
visual impression of transparency. But moreover, it shows that the phosphonium catalyst results in
a more optically clear material compared to the reference catalyst SnCl2·2H2O, which, based on this
optical measurement, rather has to be considered a translucent than a transparent material. The optical
measurements (yellowness index) also confirm the superior color of the transparent blend produced
with the phosphonium salt.

Both transparent blends unfortunately show a dramatic deterioration of the mechanical
performance in terms of toughness related properties (impact strength, tensile strain at break, tensile
strain at yield, and tensile strength) versus the opaque blend of same polymer composition produced
in absence of any catalyst. Impact strengths of these two blends fall down to a level that is similar
to the pure PMMA as the more brittle blend partner. Tensile strengths, strains at break, and strains
at yield fall even below the values of both constituent blend partners. The same is true for the melt
viscosity. The heat resistance (Vicat B/120) is negatively affected by the addition of the two catalysts as
well. The effects on melt viscosity, heat resistance, and mechanical performance can all be regarded as a
direct consequence of the PC Mw degradation. Obviously, the detrimental effect of PC Mw degradation
overcompensates any potentially positive effect of the PC-g-PMMA copolymer formation, which is thus
masked. PC/PMMA blends of that low ductility, as observed for the transparent materials obtained via
reactive compatibilization, for sure have to be regarded as technically unsuitable for any industrial
applications. Thus, different manufacturing process strategies that do not inherently result in PC
degradation as a side effect of PC-g-PMMA copolymer formation have to be developed to potentially
achieve transparent PC/PMMA blends with a useful balance of properties.

3.2.5. Structure–Properties Relationships—The Root Cause of Transparency of PC/PMMA Blends

Figure 9 recaps in form of a graphical illustration the correlation between transparency (haze)
and the number averaged PC molecular weight (Mn) of the acetone insoluble portions of selected
PC/PMMA 50/50 blends produced in absence of any catalyst (opaque), and in presence of 0.05 wt% of
catalysts zinc acetate (opaque), phosphonium salt (transparent), and SnCl2·2H2O (transparent).
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Figure 9. Illustration of the correlation of the haze and the molecular weights (numbers above the
columns represent the according values of Mn) of the acetone insoluble fraction of PC/PMMA 50/50
blends produced in absence of a catalysts (neat) or in presence of 0.05 wt% of zinc acetate, phosphonium
salt, and SnCl2·2H2O. FTIR investigation of the acetone insoluble fractions of the blends produced
with phosphonium salt and SnCl2·2H2O had proven the presence of PC-g-PMMA copolymer in these
materials, while all other blends shown here did not contain any such potential compatibilizer. The grey
bar represents a PC/PMMA 50/50 blend produced in absence of a catalyst with the same PMMA as
used in the other blends, but with a PC raw material of lower molecular weight.
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The PC molecular weights of all transparent PC/PMMA 50/50 blends obviously fall below a
certain threshold limit of around 15,000 g/mol and, at the same time, contain PC-g-PMMA copolymer
that could act as a phase compatibilizer. The opaque blend produced with zinc acetate as catalyst
exhibits about the same PC molecular weight as the blend produced with phosphonium salt, but
due to the ineffectiveness of the zinc acetate for transesterification does not contain any PC-g-PMMA
copolymer. This finding shows that the PC molecular weight reduction alone is not sufficient to result
in transparent PC/PMMA blends and thus supports the interpretation that the low PC molecular
weight resulting from transesterification is not the root cause (at least not the sole root cause) of the
transparency. In order to confirm this conclusion, we designed an additional experiment targeting
production of a PC/PMMA blend with a very low molecular weight PC that definitely does not
contain any PC-g-PMMA copolymer. For this experiment, a tailor-made polycarbonate feedstock was
synthesized that exhibited a molecular weight (Mw = 16,700 g/mol, Mn = 7000 g/mol) comparable to
the lowest level achieved in the reactively compatibilized PC/PMMA compounds (i.e., in presence
of SnCl2·2H2O as catalyst) and, like the standard Makrolon® 2408 polycarbonate feedstock used in
the other experiments, exhibited a negligible phenolic hydroxyl (pOH) group content, as determined
by 1H-NMR spectroscopy, of <100 ppm. This tailor-made low molecular weight PC feedstock was
compounded with the standard PMMA grade (Plexiglas® 8H)—both were thoroughly predried in
vacuum at 60 ◦C—in the absence of any catalyst to produce a purely physical PC/PMMA 50/50 blend
(gray column in Figure 9). The blend turned out opaque, proving our previous conclusion that
transparency cannot be exclusively the consequence of the PC Mw degradation, i.e., presence of the
PC-g-PMMA copolymer which, in our case is the result of a transesterification, is at least a necessary
requirement to achieve transparent blends. The question if transparency of PC/PMMA blends can be
also achieved in presence of higher molecular weight PC in the resulting blend, or rather transparency
requires a combination of both presence of PC-g-PMMA copolymer and a low Mw PC cannot be clearly
answered based on the results of our current study. This is because with the currently investigated
catalytic reactive compatibilization approach, we have not yet succeeded to produce any PC/PMMA
blend in which PC-g-PMMA copolymer had been formed to any significant extent and in which
the PC molecular weight was significantly higher than the Mn = 15,000 g/mol threshold. Starting
from Makrolon® 3108 PC feedstock with higher molecular weight than Makrolon® 2408 failed to
achieve this target. However, a reliable answer on the above question is crucial to allow a conclusion
if transparent PC/PMMA blends with useful mechanical performance are at all technically feasible.
Different manufacturing process strategies that do not inherently result in PC degradation as a side
effect of PC-g-PMMA-copolymer formation therefore have to be developed and assessed to eventually
conclude on this topic.

3.3. Mechanism of Transesterification

Two different mechanisms for transesterification during reactive extrusion for PC/PMMA blends
are mentioned in literature. The first one was proposed by Montaudo et al. [18] and assumes an
initial depolymerization of the PMMA [18]. The second one has been proposed by Singh et al. [6]
more recently and postulates a one-step cross-transesterification reaction of a carbonate group in the
PC polymer chain with the methyl ester groups in the PMMA side groups (Figure 10a). Based on
our findings of a severe PC Mw degradation observed in the presence of the active catalysts even in
the absence of any PMMA, we were driven to speculate about a rather two-step transesterification
mechanism. In the first step, a hydrolytic chain scissoring of the polycarbonate by residual moisture
results in lower Mw polycarbonate molecules with phenolic OH end groups. In the second step, a
transesterification reaction occurs in which the phenolic hydroxyl end groups of the hydrolyzed PC
undergo a nucleophilic attack of the methyl ester side groups of the PMMA (Figure 10b).
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Targeting verification of this hypothesized transesterification mechanism, we performed additional
compounding experiments on the ZSK26 MC18. PC/PMMA 50/50 blends were produced in presence of
0.05 wt% of phosphonium salt starting from PC and PMMA raw materials that, in the first experiment,
were used without prior treatment (i.e., equilibrated in ambient air) and in a second experiment
were predried in vacuum at 60 ◦C for 4 h. The FTIR spectra of the acetone insoluble portions of the
produced PC/PMMA blends prove that a higher content of PC-g-PMMA copolymer has formed in the
experiment in which the raw materials have not been dried prior to compounding, i.e., have contained
a higher content of residual moisture (Figure 11). This finding cannot be explained by the one-step
cross-transesterification mechanism as proposed by Singh et al. [6] and thus is strong support of the
two-step mechanism depicted in Figure 10b postulated here.
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Figure 10. (a) One-step cross-transesterification mechanism resulting in PC-g-PMMA copolymer
formation as proposed by Singh et al. [6]. (b) Two-step hydrolytic scissoring-transesterification
mechanism resulting in PC-g-PMMA copolymer formation proposed based on the results of the
current study.
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Figure 11. FTIR spectra of the acetone insoluble parts of the PC/PMMA 50/50 blends produced with
non-pre-dried polymers in absence of a catalyst (a) as comparison and of the acetone insoluble portions
of the PC/PMMA 50/50 blends produced in presence of 0.05 wt% of phosphonium salt (8) based on
vacuum-pre-dried (b) and non-pre-dried polymer raw materials (c) (all blends produced on a technical
scale extruder ZSK26 MC18).

4. Conclusions

In this study, using a weakly acidic phosphonium salt catalyst, a fully transparent, colorless
PC/PMMA 50/50 blend could be produced via catalytic reactive compatibilization of the constituent
polymers during compounding in a technical scale twin-screw extrusion process, which can be easily
transferred into industrial scale. By doing so, for the first time sufficient material was produced
to allow, in accordance with industrially relevant DIN EN ISO standards, assessment of technical
properties that are regarded of importance for targeted industrial applications of the blend materials.
Extensive characterization of the produced materials at molecular level provided evidence of formation
of PC-g-PMMA copolymer as a result of a transesterification reaction occurring during compounding
in the presence of those catalysts that resulted in transparent PC/PMMA blends. However, it also
demonstrated significant degradation of the polycarbonate molecular weight as an undesired inherent
side effect of this transesterification reaction.

Based on compounding experiments using raw materials that contained different levels of residual
humidity, the molecular mechanism of this transesterification was refined. In contrast to the previously
postulated one-step cross-transesterification of a carbonate group in the PC polymer chain with the
methyl ester groups in the PMMA side groups, our results rather propose a two-step mechanism. In a
first step the polycarbonate is reacting with residual water under formation of lower Mw polycarbonate
molecules with phenolic hydroxyl end group (hydrolytic chain scissoring). In a second step, these
hydroxyl end groups enter into a transesterification with the methyl ester side groups of the PMMA.
Our investigations show that presence of PC-g-PMMA copolymer is required to obtain transparent
PC/PMMA blends. Still unclear is if the degradation of the polycarbonate is a secondary necessary
requirement for achieving such transparency, since the currently investigated transesterification
strategy always resulted in a combination of both Mw decrease and copolymer formation. Due to
detrimental influences of the PC Mw degradation over-compensating any potentially positive impact of
the PC-g-PMMA copolymer formation, the reactive compatibilization results in a dramatic deterioration
of the toughness related mechanical properties of the produced transparent blends, which makes them
technically unsuitable for any industrial applications. Within ongoing activities, we are investigating
different approaches of PC-g-PMMA copolymer formation that do not result in PC degradation in
order to allow a conclusion if transparent PC/PMMA blends with a useful balance of properties are
technically feasible.
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5. Patents

A patent application has been filed on April 18, 2019 regarding use of the proprietary, weakly acidic
phosphonium salt that has been investigated in this study in reactive extrusion processes in a twin-screw
extruder involving polycarbonate. Because the patent application has not yet been published at the
time of submission of this paper we cannot disclose the exact nature of the phosphonium salt, since this
would potentially interfere with the interests of the patent applicant. For future reference, please see:

A. Seidel, T. Bubmann (inventors), Covestro Deutschland AG (applicant), EP patent registration
(filing number: 19170040.0) “Katalysator für Reaktivextrusion in einem Doppelwellenextruder unter
Einsatz von Polycarbonat”.
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