
Vol.:(0123456789)1 3

Biomechanics and Modeling in Mechanobiology 
https://doi.org/10.1007/s10237-020-01397-2

ORIGINAL PAPER

A hyperelastic model for simulating cells in flow

Sebastian J. Müller1  · Franziska Weigl2 · Carina Bezold1 · Christian Bächer1 · Krystyna Albrecht2 · Stephan Gekle1 

Received: 12 February 2020 / Accepted: 14 October 2020 
© The Author(s) 2020

Abstract
In the emerging field of 3D bioprinting, cell damage due to large deformations is considered a main cause for cell death 
and loss of functionality inside the printed construct. Those deformations, in turn, strongly depend on the mechano-elastic 
response of the cell to the hydrodynamic stresses experienced during printing. In this work, we present a numerical model to 
simulate the deformation of biological cells in arbitrary three-dimensional flows. We consider cells as an elastic continuum 
according to the hyperelastic Mooney–Rivlin model. We then employ force calculations on a tetrahedralized volume mesh. 
To calibrate our model, we perform a series of FluidFMⓇ compression experiments with REF52 cells demonstrating that 
all three parameters of the Mooney–Rivlin model are required for a good description of the experimental data at very large 
deformations up to 80%. In addition, we validate the model by comparing to previous AFM experiments on bovine endothe-
lial cells and artificial hydrogel particles. To investigate cell deformation in flow, we incorporate our model into Lattice 
Boltzmann simulations via an Immersed-Boundary algorithm. In linear shear flows, our model shows excellent agreement 
with analytical calculations and previous simulation data.
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1 Introduction

The dynamic behavior of flowing cells is central to the func-
tioning of organisms and forms the base for a variety of bio-
medical applications. Technological systems that make use 
of the elastic behavior of cells are, for example, cell sorting 
(Shen et al. 2019), real-time deformability cytometry (Otto 
et al. 2015; Fregin et al. 2019) or probing techniques for 
cytoskeletal mechanics (Kollmannsberger and Fabry 2011; 

Gonzalez-Cruz et al. 2012; Huber et al. 2013; Bongiorno 
et al. 2014; Fischer-Friedrich et al. 2014; Lange et al. 2015; 
Fischer-Friedrich et al. 2016; Nyberg et al. 2017; Lange 
et al. 2017; Kubitschke et al. 2017; Jaiswal et al. 2017; Mulla 
et al. 2019). In most, but not all, of these applications, cell 
deformations typically remain rather small. A specific exam-
ple where large deformations become important is 3D bio-
printing. Bioprinting is a technology which, analogously to 
common 3D printing, pushes a suspension of cells in highly 
viscous hydrogels—so-called bioink—through a fine nozzle 
to create three-dimensional tissue structures. A major chal-
lenge in this process lies in the control of large cell defor-
mations and cell damage during printing. Those deforma-
tions arise from hydrodynamic stresses in the printer nozzle 
and ultimately affect the viability and functionality of the 
cells in the printed construct (Snyder et al. 2015; Blaeser 
et al. 2015; Zhao et al. 2015; Paxton et al. 2017; Müller 
et al. 2020). How exactly these hydrodynamic forces cor-
relate with cell deformation, however, strongly depends on 
the elastic behavior of the cell and its interaction with the 
flowing liquid. Theoretical and computational modeling 
efforts in this area have thus far been restricted to pure fluid 
simulations without actually incorporating the cells (Khalil 
and Sun 2007; Aguado et al. 2012; Blaeser et al. 2015) or 
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simple 2D geometries (Tirella et al. 2011; Li et al. 2015). 
The complexity of cell mechanics and the diversity of pos-
sible applications make theoretical modeling of cell mechan-
ics in flow a challenge which, to start with, requires reliable 
experimental data for large cell deformations.

The most appropriate tool to measure cellular response 
at large deformations is atomic force microscopy (AFM) 
(Lulevich et al. 2003; Lulevich et al. 2006; Ladjal et al. 
2009; Kiss 2011; Fischer-Friedrich et al. 2014; Hecht et al. 
2015; Ghaemi et al. 2016; Sancho et al. 2017; Efremov et al. 
2017; Ladjal et al. 2018; Chim et al. 2018). AFM cantile-
vers with pyramidal tips, colloidal probes, or flat geometries 
are used to indent or compress cells. Therefore, a common 
approach to characterize the elasticity of cells utilizes the 
Hertzian theory, which describes the contact between two 
linear elastic solids [(Johnson 2003), p. 90–104], but is lim-
ited to the range of small deformations (Dintwa et al. 2008). 
Experimental measurements with medium-to-large deforma-
tions typically show significant deviations from the Hertz 
prediction, e.g., for cells or hydrogel particles (Neubauer 
et al. 2019). Instead of linear elasticity, a suitable description 
of cell mechanics for bioprinting applications requires more 
advanced hyperelastic material properties. While for sim-
ple anucleate fluid-filled cells such as, e.g., red blood cells, 
theoretical models abound (Freund 2014; Závodszky et al. 
2017; Mauer et al. 2018; Guckenberger et al. 2018; Kotsalos 
et al. 2019), the availability of models for cells including 
a complex cytoskeleton is rather limited. In axisymmetric 
geometries, Caille et al. (2002) and Mokbel et al. (2017) 
used an axisymmetric finite element model with neo-
Hookean hyperelasticity to model AFM and microchannel 
experiments on biological cells. In shear flow, approximate 
analytical treatments are possible (Roscoe 1967; Gao and 
Hu 2009; Gao et al. 2011; Gao et al. 2012). Computation-
ally, Gao and Hu (2009) carried out 2D simulations while 
in 3D Lykov et al. (2017) utilized a DPD technique based 
on a bead-spring model. Furthermore, Villone et al. (2014, 
2015) presented an arbitrary Lagrangian-Eulerian approach 
for elastic particles in viscoelastic fluids. Finally, Rosti et al. 
(2018) and Saadat et al. (2018) considered viscoelastic and 
neo-Hookean finite element models, respectively, in shear 
flow.

In this work, we introduce and calibrate a computational 
model for fully three-dimensional simulations of cells in 
arbitrary flows. Our approach uses a Lattice-Boltzmann 
solver for the fluid and a direct force formulation for the 
elastic equations. In contrast to earlier works (Caille et al. 
2002; Gao et  al. 2011; Mokbel et  al. 2017; Rosti et  al. 
2018; Saadat et al. 2018), our model uses a three-parameter 
Mooney–Rivlin elastic energy functional. To demonstrate 
the need for this more complex elastic model, we carry out 
extensive FluidFMⓇ indentation experiments for REF52 
(rat embryonic fibroblast) cells at large deformation up 

to 80% (Alexandrova et al. 2008). In addition, our model 
compares favorably with previous AFM experiments on 
bovine endothelial cells (Caille et al. 2002) as well as arti-
ficial hydrogel particles (Neubauer et al. 2019). Our model 
provides a much more realistic force-deformation behavior 
compared to the small-deformation Hertz approximation, 
but is still simple and fast enough to allow the simulation of 
dense cell suspensions in reasonable time. Particularly, our 
approach is less computationally demanding than conven-
tional finite-element methods which usually require large 
matrix operations. Furthermore, it is easily extensible and 
allows, e.g., the inclusion of a cell nucleus by the choice of 
different elastic moduli for different parts of the volume.

We finally present simulations of our cell model in differ-
ent flow scenarios using an Immersed-Boundary algorithm 
to couple our model with Lattice Boltzmann fluid calcu-
lations. In a plane Couette (linear shear) flow, we investi-
gate the shear stress dependency of single cell deformation, 
which we compare to the average cell deformation in sus-
pensions with higher volume fractions and show that our 
results in the neo-Hookean limit are in accordance with ear-
lier elastic cell models (Gao et al. 2011; Rosti et al. 2018; 
Saadat et al. 2018).

2  Theory

In general, hyperelastic models are used to describe materi-
als that respond elastically to large deformations [(Bower 
2010), p. 93]. Many cell types can be subjected to large 
reversible shape changes. This section provides a brief over-
view of the hyperelastic Mooney–Rivlin model implemented 
in this work.

The displacement of a point is given by

where xi ( i = 1, 2, 3 ) refers to the undeformed configuration 
(material frame) and yi to the deformed coordinates (spatial 
frame). We define the deformation gradient tensor and its 
inverse as [(Bower 2010), p. 14, 18]

Together with the right Cauchy-Green deformation tensor, 
� = �

⊺
� (material description), we can define the following 

invariants which are needed for the strain energy density 
calculation below:

(1)ui = yi − xi ,

(2)�ij =
�yi

�xj
=

�ui

�xj
+ �ij and �

−1
ij

=
�xi

�yj
.

(3)J = det �

(4)I =T
�
J−2∕3
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Here,

are the trace of the right Cauchy-Green deformation ten-
sor and its square, respectively. The nonlinear strain energy 
density of the Mooney–Rivlin model is given by (Mooney 
1940; Rivlin 1948)

where �1 , �2 , and � are material properties. They corre-
spond—for consistency with linear elasticity in the range of 
small deformations—to the shear modulus � = �1 + �2 and 
bulk modulus � of the material and are therefore related to 
the Young’s modulus E and the Poisson ratio � via [(Bower 
2010), p. 74]

Through the choice �2 = 0 in (7), we recover the simpler 
and frequently used (Gao et al. 2011; Saadat et al. 2018) 
neo-Hookean strain energy density:

As we show later, this can be a sufficient description for 
some cell types. To control the strength of the second term 
and quickly switch between neo-Hookean and Mooney–Riv-
lin strain energy density calculation, we introduce a factor 
w ∈ [0, 1] and set

(5)K =
1

2

(

T2

�
− T

�2

)

J−4∕3

(6)T
�
= tr� and T

�2 = tr
(

�
2
)

(7)U =
[�1

2
(I − 3) +

�2

2
(K − 3) +

�

2
(J − 1)2

]

,

(8)� =
E

2(1 + �)
and � =

E

3(1 − 2�)
.

(9)UNH =
[

�

2
(I − 3) +

�

2
(J − 1)2

]

(10)�1 = w� and �2 = (1 − w)�

such that w = 1 , which equals setting �2 = 0 in (7), corre-
sponds to the purely neo-Hookean description in (9), while 
w < 1 increases the influence of the �2-term and thus leads to 
a more pronounced strain hardening as shown in figure S-6 
of the Supporting Information.

3  Tetrahedralized cell model

In this section, we apply the hyperelastic theory of Sect. 2 
to a tetrahedralized mesh as shown in Fig. 1.

3.1  Calculation of elastic forces

We consider a mesh consisting of tetrahedral elements as 
depicted in Fig. 1. The superscript � refers to the four verti-
ces of the tetrahedron. The elastic force acting on vertex � in 
direction i is obtained from (7) by differentiating the strain 
energy density U with respect to the vertex displacement as

where V0 is the reference volume of the tetrahedron. In con-
trast to Saadat et al. (2018), the numerical calculation of the 
force in our model does not rely on the integration of the 
stress tensor, but on a differentiation where the calculation of 
all resulting terms involves only simple arithmetics. Apply-
ing the chain rule for differentiation yields:

(11)f �
i
= −V0

�U

�u�
i

,

(12)

f �
i
= − V0

[(

�U

�I

�I

�T
�

+
�U

�K

�K

�T
�

)

�T
�

��kl

+
(

�U

�I

�I

�J
+

�U

�K

�K

�J
+

�U

�J

)

�J

��kl

+
�U

�K

�K

�T
�2

�T
�2

��kl

]

��kl

�u�
i

Fig. 1  a The four noded tetra-
hedron as mesh element within 
a local dimensionless coordi-
nate system 

{

�1, �2, �3
}

 . b The 
spherical cell model with its 
triangulated surface. c Its inner 
tetrahedralized mesh

(a) (b) (c)
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The evaluation of (12) requires the calculation of the defor-
mation gradient tensor � , which is achieved by linear inter-
polation of the coordinates and displacements inside each 
tetrahedral mesh element as detailed in the next section. We 
note that our elastic force calculation is purely local mak-
ing it straightforward to employ different elastic models in 
different regions of the cell and/or to combine it with elas-
tic shell models. This flexibility can be used to describe, 
e.g., the cell nucleus (Caille et al. 2002) or an actin cortex 
(Bächer and Gekle 2019) surrounding the cell interior.

3.2  Interpolation of the displacement field

Following standard methods, e.g., Bower (2010), we start 
by interpolating a point xi inside a single tetrahedron using 
the vertex positions x�

i
 ( � = 1, 2, 3, 4 ). The interpolation uses 

an inscribed, dimensionless coordinate system, denoted by 
(

�1, �2, �3
)

 with 0 ≤ �i ≤ 11, as depicted in Fig. 1a. One ver-
tex defines the origin while the remaining three indicate the 
coordinate axes. A set of shape functions, i.e., interpolation 
functions, N�

(

�1, �2, �3
)

 is employed to interpolate positions 
inside the tetrahedron volume. An arbitrary point xi inside 
the element is interpolated as

where the shape functions are defined as [(Bower 
2010), p. 483]:

According to (1), the displacement of vertex � in i-direction 
is given by

Therefore similar to (13), the displacement at an arbitrary 
point in the volume can also be expressed in terms of the 
shape functions and the vertex displacements as

(13)xi =

4
∑

�=1

N�
(

�1, �2, �3
)

x�
i
,

(14)N1
(

�1, �2, �3
)

=�1

(15)N2
(

�1, �2, �3
)

=�2

(16)N3
(

�1, �2, �3
)

=�3

(17)N4
(

�1, �2, �3
)

=1 − �1 − �2 − �3

(18)u�
i
= y�

i
− x�

i
.

The calculation of the deformation gradient tensor according 
to (2) requires the spatial derivative of the displacement:

By inserting (19) into (20) and evaluating the shape func-
tions, the components of the matrix � are easily determined 
to be the difference of the displacements between the origin 
(vertex 4) and the remaining vertices 1, 2 and 3:

Note that due to the linear interpolation �ik is constant inside 
a given tetrahedron. The matrix � = �

−1 is the inverse of the 
Jacobian matrix, obtained similarly to (21) as

Since xi refers to the reference coordinates, the calculation 
of the matrices � and � has to be performed only once at the 
beginning of a simulation. With the interpolation of the dis-
placement in each tetrahedron, we can write all derivatives 
occurring in (12), as listed in the following:

3.3  Taylor deformation parameter

As a measure for the cell deformation, we use the Taylor 
deformation parameter (Ramanujan and Pozrikidis 1998; 
Clausen and Aidun 2010; Guckenberger et al. 2016; Saadat 
et al. 2018)

(19)ui =

4
∑

�=1

N�
(

�1, �2, �3
)

u�
i
.

(20)�ij − �ij =
�ui

�xj
=

�ui

��k

��k

�xj
= �ik�kj

(21)�ik = uk
i
− u4

i

(22)�ik =
�xi

��k
= xk

i
− x4

i
.
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=
�1

2
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�
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�K
=
�2

2

�K

�T
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�
J
−

4

3
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2
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T
�
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−

5

3
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�
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�2

)

J
−

7
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�J

��il
=J�−1

li

�K

�T
�2

= −
1

2
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3
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= �ki�ml

(

�m� − �4�
)

(23)D =
a3 − a1

a3 + a1
,

1 (Bower 2010),  p.  481, 483] erroneously states a range of 
−1 ≤ �

i
≤ 1 for the tetrahedral element.
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where a1 and a3 are, respectively, the minor and major semi-
axis of an ellipsoid corresponding to the inertia tensor of the 
cell. The Taylor deformation is a good measure for approxi-
mately elliptic cell deformations, as they occur in shear flow 
(cf. Sect. 6).

To calculate D , first the components of the inertia tensor

where � is a vector inside the volume V  , are calculated using 
our discretized cell with Ntet tetrahedra as

The vector � l denotes the center of mass of the lth tetrahedron 
and Vl is its current volume. The eigenvalues 𝜃1 > 𝜃2 > 𝜃3 
of  can be used to fit the semi axes a1 < a2 < a3 of the cor-
responding ellipsoid:

The prefactor contains the mass M of the ellipsoid (consider-
ing uniform mass density) and drops out in the calculation 
of D.

4  Comparison of the numerical model 
to FluidFMⓇ measurements on REF52 cells

In this section, we validate compression simulations of our 
cell model with FluidFMⓇ compression experiments of 
REF52 cells stably expressing paxillin-YFP (Alexandrova 
et al. 2008). These experiments provide as an output the 
required force to produce a certain deformation of the cell, 
which can be directly compared to our model. We start with 
a detailed description of the experiments and show the suita-
bility of our model to describe the elastic behavior of REF52 
cells afterwards.

4.1  FluidFMⓇ indentation measurements

We perform a series of compression measurements of 
REF52 cells with a Flex FPM (Nanosurf GmbH, Ger-
many) system that combines the AFM with the FluidFMⓇ 
technology (Cytosurge AG, Switzerland). In contrast to 
conventional AFM techniques, FluidFMⓇ uses flat canti-
levers that possess a microchannel connected to a pressure 

(24)ij =
∫

V

xkxk�ij − xixjdV ,

(25)ij =

Ntet
∑

l=1

Vl

(

rl
k
rl
k
�ij − rl

i
rl
j

)

.

(26)

a1 =
5

2M

(

−�1 + �2 + �3
)

a2 =
5

2M

(

�1 − �2 + �3
)

a3 =
5

2M

(

�1 + �2 − �3
)

system. By applying a suction pressure, cells can be aspi-
rated and retained at the aperture of the cantilever’s tip. A 
more detailed description of the setup and its functionality 
is already reported in Sancho et al. (2017). All experi-
ments are based on a cantilever with an aperture of 8 �m 
diameter and a nominal spring constant of 2 Nm−1 . In order 
to measure the cellular deformation, a cell was sucked 
onto the tip and compressed between the cantilever and 
the substrate until a setpoint of 100nN was reached. Imme-
diately before the experiment, the cells were detached by 
using Accutase (Sigma Aldrich) and were therefore in 
suspension at the time of indentation. In this way, it can 
be ensured that only a single cell is deformed during each 
measurement.

An example micrograph of the experiment before com-
pression is shown in Fig. 2. Analogously to AFM, primary 
data in form of cantilever position (in m ) and deflection (in 
V ) has to be converted to force and deformation through 
the deflection sensitivity (in m V

−1 ) and the cantilevers’ 
spring constant. The cellular deformation further requires 
the determination of the contact point, which we choose as 
the cantilever position where the measured force starts to 
increase. The undeformed cell size is obtained as mean from 
a horizontal and vertical diameter measurement using the 
software imageJ.

4.2  Simulation setup

The experimental setup of the previous section is easily 
transferred and implemented for our cell model: The unde-
formed spherical cell rests on a fixed plate while a second 
plate approaches from above to compress the cell as depicted 
in Fig. 3a and b. In Sect. 5.2, we will also use a slightly 
modified version where a sphere indents the cell as shown 

Fig. 2  Example micrograph showing the FluidFMⓇ cantilever and a 
cell viewed from the top. Scale bar is 30�m
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in Fig. 3c and d. A repulsive force prevents the cell verti-
ces from penetrating the plates or the spherical indenter. 
The elastic restoring forces (cf. Sect. 3) acting against this 
imposed compression are transmitted throughout the whole 
mesh, deforming the cell.

We use meshes consisting of 2000 to 5000 vertices 
and about 10000 to 30000 tetrahedra to build up a spheri-
cal structure. More details of the mesh and its generation 
(Sect. S-2.4) as well as the algorithm (Sect. S-3) are pro-
vided in the SI. 

4.3  Results

In our FluidFMⓇ experiment series with REF52 cells, the 
cell radii lie between 7.1�m and 10.4�m with an over-
all average of 8.6±0.7�m . In Fig. 4, we depict the force 
as function of the non-dimensionalized deformation, i.e., 
the absolute compression divided by the cell diameter. The 
experimental data curves share general characteristics: The 
force increases slowly in the range of small deformations up 
to roughly 40%, while a rapidly increasing force is observed 
for larger deformations. Although the variation of the cell 
radius in the different measurements is already taken into 
account in the deformation, the point of the force upturn 

differs significantly which indicates a certain variability in 
the elastic parameters of the individual cells.

We use the compression simulation setup as detailed in 
Sect. 4.2 to calculate force-deformation curves of our cell 
model. The Poisson ratio is chosen as � = 0.48 . In sec-
tion S-2.7 of the Supporting Information, we show that 
variations of � do not strongly affect the results. A best fit 
approach is used to determine the Young’s modulus and the 
ratio of shear moduli w and leads to very good agreement 
between model prediction and experimental data as shown 
in Fig. 4 as well as section S-1 of the SI. While the general 
range of force values is controlled using the Young’s modu-
lus, the Mooney–Rivlin ratio w especially defines the point 
of the force upturn. We find Young’s moduli in the range 
110Pa to 160Pa and w = 0.25 , 0.5, and 1. For very small 
deformations, our hyperelastic model produces the same 
results as would be expected from a linear elastic model 
according to the Hertz theory. See the SI (section S-2.5) for 
further details on the calculation of the force-deformation 
according to the Hertzian theory. For large deformations, the 
force rapidly increases due to its nonlinear character, show-
ing strain-hardening behavior and huge deviations from the 
Hertz theory. Overall, we find an excellent match between 
simulation and our FluidFMⓇ measurements with REF52 
cells.

5  Comparison of our numerical model 
to other micromechanical setups

In this section, we compare our simulations to axisymmet-
ric calculations using the commercial software Abaqus and 
validate our cell model with further experimental data for 
bovine endothelial cells from (Caille et al. 2002) and very 
recent data for hydrogel particles from (Neubauer et al. 
2019).

Fig. 3  a  and b Cell compression simulations: The cell is compressed between a lower, resting, and an upper, moving, plate. c and d Colloidal 
probe cell indentation simulations: The cell rests on a plate, while being indented with a sphere

Fig. 4  Our numerical model in comparison to our FluidFMⓇ meas-
urements on REF52 cells. The labels give the two fit parameters E 
and w . We find Young’s moduli in the range of 110Pa to 160Pa. The 
Hertz theory is shown for a Young’s modulus of 180Pa
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5.1  Validation with axisymmetric simulations

To validate our model numerically, we compare our simu-
lated force—deformation curves to calculations using the 
commercial software Abaqus (Smith 2009) (version 6.14).

In Abaqus, we use a rotationally symmetric setup con-
sisting of a two-dimensional semicircle, which is com-
pressed between two planes, similar to our simulation 
setup in Sect. 4.2 and the finite element model utilized in 
(Caille et al. 2002). The semicircle has a radius r = 15�m , 
a Young’s modulus of E = 2.25kPa and a Poisson ratio 
of � = 0.48 . We choose a triangular mesh and the built-in 
implementation of the hyperelastic neo-Hookean model. In 
Fig. 5, we see very good agreement between the results of 
the two different numerical methods.

5.2  Validation with AFM experiments

To compare with the AFM experiments of Caille et al. 
(2002), we simulate a cell with radius 15�m using the 
setup of Sect. 4.2. For the hydrogel particle indentation 
(Neubauer et al. 2019) we use the setup depicted in Fig. 3c 
and d with a particle radius of 40�m  and a radius of the 
colloidal probe of 26.5�m . The Poisson ratio is chosen as 
0.48 in all simulations and the Young’s modulus is deter-
mined using a best fit to the experimental data points. 
Since the neo-Hookean description appears to be sufficient 
for these data sets, we further set w = 1.

In Fig.  6a, we show the experimental data for sus-
pended, round, bovine endothelial cells of five separate 
measurements from (Caille et al. 2002) together with the 
prediction of the Hertz theory for a Young’s modulus of 
1000Pa. Fitting our data with Young’s moduli in the range 

Fig. 5  Comparison of force-deformation curves obtained from our 
model (red line) with the linear elastic Hertz theory (black line) and 
the two-dimensional simulation with Abaqus (red squares), showing 
good agreement between our three-dimensional and the axisymmetric 
model

(a)

(b)

Fig. 6  a Our numerical model in comparison to experimental meas-
urements of bovine endothelial cells from (Caille et  al. 2002). The 
black line depicts the prediction of the Hertz theory for a Young’s 
modulus of 1000Pa. b Our numerical model in comparison to experi-
mental measurements of hydrogel particles from (Neubauer et  al. 
2019). The indicated range corresponds to the experimentally found 
range of ± 100Pa for the Young’s modulus according to the depicted 
Hertz model

Fig. 7  Schematic of the single cell in shear flow. The cell sits in the 
center of the box and shows an approximately elliptic deformation 
as well as tank-treading, i.e., a rotation of the membrane around the 
steady shape in the x-y-plane
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of 550Pa to 2400Pa, we find good agreement between 
our calculations and the experimental data. We note that 
Caille et al. (2002) observed similarly good agreement 
for their axisymmetric incompressible neo-Hookean FEM 
simulations which, however, cannot be coupled to external 
flows in contrast to the approach presented here. The same 
procedure is applied to the colloidal probe indentation 
data of hydrogel particles from (Neubauer et al. 2019), 
showing in Fig. 6b the experimental data and the predic-
tion of the Hertz theory from (Neubauer et al. 2019). We 
find excellent agreement between our model calculations 
for Young’s moduli in the range of 580 ± 100 Pa and the 
experimental data. For both systems, Fig. 6 shows large 
deviations between the Hertzian theory and the experi-
mental data for medium-to-large deformations. Our model 
provides a significant improvement in this range.

6  Application in shear flow

We now apply our model to study the behavior of cells in 
a plane Couette (linear shear) flow setup and compare the 
steady cell deformation to other numerical and analyti-
cal cell models of Gao et al. (2011), Rosti et al. (2018) 
and Saadat et al. (2018). A sketch of the simulation setup 
is shown in Fig. 7. For simplicity, we choose w = 1 to 
reduce the Mooney–Rivlin description (7) to two free 
parameters � and � (or E and � ), obtaining a compressible 
neo-Hookean form. We use the Lattice Boltzmann imple-
mentation of the open source software package ESPResSo 
(Limbach et al. 2006; Roehm and Arnold 2012). Coupling 
between fluid and cell is achieved via the immersed-
boundary algorithm (Devendran and Peskin 2012; Saadat 
et  al. 2018) which we implemented into ESPResSo 
(Bächer et al. 2017; Bächer and Gekle 2019). We note here 
that, in contrast to Saadat et al. (2018), we do not subtract 
the fluid stress within the particle interior. This leads to 
a small viscous response of the cell material in addition 
to its elasticity. To obtain (approximately) the limit of a 
purely elastic particle, we exploit a recently developed 
method by Lehmann et al. (2020) to discriminate between 
the cell interior and exterior during the simulation. Using 
this technique, we can tune the ratio between inner and 
outer viscosity � with � → 0 representing a purely elastic 
particle. For simplicity, we will nevertheless set � = 1 in 
the following, except where otherwise noted. Details of the 
method are provided in the SI (section S-4.1). As measure 
for the deformation, we investigate the Taylor parameter 
D (23) of our initially spherical cell model in shear flow 
at different shear rates �̇�.

6.1  Single cell simulation

The first simulation setup, a single cell in infinite shear flow, 
is realized by choosing a simulation box of the dimensions 
10 × 15 × 5 ( x × y × z ) in units of the cell radius. The infinite 
shear flow is approximated by applying a tangential veloc-
ity uwall on the x-z-planes at y = 0 in negative and at y = 15 
in positive x-direction, as depicted in Fig. 7. The tangential 

(a)

(b)

(c)

Fig. 8  a Converged shapes of a single cell in a 10 × 15 × 5 ( x × y × z ) 
simulation box (in units of the cell radius) with a shear flow in 
x-direction as function of the capillary number Ca . b Comparison 
of our model predictions for a single cell in shear flow to the ana-
lytical 3D calculations in Fig. 7 of Gao et al. (2011) in the range of 
Ca ∈ [0.01, 2.0] . c The relative stretch Δ� of our cell model as func-
tion of the capillary number Ca . A linear behavior is found for small 
capillary numbers up to Ca = 0.3 , while increasing stress is required 
for larger deformations due to the strain-hardening quality of the neo-
Hookean model. Lines are a guide to the eye
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wall velocity is calculated using the distance H of the paral-
lel planes and the constant shear rate �̇� via

The box is periodic in x and z. A single cell is placed at 
the center of the simulation box corresponding to a volume 
fraction of � = 0.0003 . We choose the following param-
eters: fluid mass density � = 103kgm−3 , dynamic viscosity 
� = 10−3Pas, and shear rate �̇� = 4s−1 . The capillary number 
is defined by (Gao and Hu 2009)

and is used to set the shear modulus � of our cell relative 
to the fluid shear stress 𝜂�̇� . Simulation snapshots of the 
steady-state deformation of a single cell in shear flow are 
depicted in dependency of the capillary number in Fig. 8a. 
We compare the Taylor deformation parameter D to previ-
ous approximate analytical calculations of Gao et al. (2011) 
for a three-dimensional elastic solid in infinite shear flow in 
Fig. 8b and see reasonable agreement for our standard case 
of � = 1 . Reducing the inner viscosity by setting � = 0.05 , 
i.e., close to the limit of a purely elastic solid, the agreement 
is nearly perfect. Finally, we demonstrate that the elastic 
particle exhibits a tank-treading motion in section S-4.2.

A possibly even more intuitive way to measure cell defor-
mation is the net strain of the cell which we define as

It describes the relative stretching of the cell using the maxi-
mum elongation dmax , i.e., the maximum distance of two cell 
vertices, and its reference diameter dref = 2R . A strain of 
Δ� = 1 thus corresponds to an elongation of the cell by an 
additional 100% of its original size. In Fig. 8c, we depict the 
Δ� as function of Ca . For small capillary numbers, i.e., small 
shear stresses, a linear stress-strain dependency is observed. 
Above Ca ≈ 0.3 , the strain-hardening, nonlinear behavior of 
the neo-Hookean model can be seen. By stretching the cell 
up to 280% of its initial size, this plot demonstrates again the 
capability of our model to smoothly treat large deformations.

6.2  Multiple cell simulations

The second simulation setup, implemented to investigate the 
multiple particle aspect of our model, consists of 4 (8) cells 
in a 5 × 8 × 4 simulation box (in units of the cell radius), 
corresponding to a volume fraction of � = 0.11 ( � = 0.22 ) 
occupied by cells. The cells are inserted at random initial 
positions in the box and the flow parameters are the same as 
in the first setup (cf. Sect. 6.1).

(27)uwall =
1

2
H�̇� .

(28)Ca =
𝜂�̇�

𝜇
,

(29)Δ� =

(

dmax − dref
)

dref
.

Figure 9a shows simulation snapshots of the cells in 
suspensions with volume fraction � = 0.11 and � = 0.22 
for Ca = 0.2 . The Taylor deformation of the suspensions, 
depicted in Fig. 9b, is calculated as an average over all cells 
and over time after an initial transient timespan. We find 
good agreement when comparing the averaged cell defor-
mation in suspension with Rosti et al. (2018), Saadat et al. 
(2018).

7  Conclusion

We presented a simple but accurate numerical model for 
cells and other microscopic particles for the use in compu-
tational fluid-particle dynamics simulations.

The elastic behavior of the cells is modeled by apply-
ing Mooney–Rivlin strain energy calculations on a uni-
formly tetrahedralized spherical mesh. We performed a 

(a)

(b)

Fig. 9  a Multiple cells in a 5 × 8 × 4 ( x × y × z ) simulation box (in 
units of the cell radius) with a confined shear flow in x-direction for 
a capillary number of Ca = 0.2 and 4 cells corresponding to a vol-
ume fraction of � = 0.11 , and 8 cells corresponding to � = 0.22 . b 
Averaged deformation of multiple cell simulations with � = 0.11 and 
� = 0.22 in comparison to data from Fig. 3 of Rosti et al. (2018) and 
Fig. 13 of Saadat et al. (2018)
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series of FluidFMⓇ compression experiments with REF52 
cells as an example for cells used in bioprinting processes 
and found excellent agreement between our numeri-
cal model and the measurements if all three parameters 
of the Mooney–Rivlin model are used. In addition, we 
showed that the model compares very favorably to force 
versus deformation data from previous AFM compression 
experiments on bovine endothelial cells (Caille et al. 2002) 
as well as colloidal probe AFM indentation of artificial 
hydrogel particles (Neubauer et al. 2019). At large defor-
mations, a clear improvement compared to Hertzian con-
tact theory has been observed.

By coupling our model to Lattice Boltzmann fluid cal-
culations via the Immersed-Boundary method, the cell 
deformation in linear shear flow as function of the capil-
lary number was found in good agreement with analytical 
calculations by Gao et al. (2011) on isolated cells as well as 
previous simulations of neo-Hookean and viscoelastic sol-
ids (Rosti et al. 2018; Saadat et al. 2018) at various volume 
fractions.

The presented method together with the precise determi-
nation of model parameters by FluidFMⓇ /AFM experiments 
may provide an improved set of tools to predict cell deforma-
tion— and ultimately cell viability—in strong hydrodynamic 
flows as occurring, e.g., in bioprinting applications.
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