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The cover image illustrates selected plant individuals (from left to right): Paris quadrifolia (Melanthiaceae), 

Dianthus arenarius (Caryophyllaceae), Carex flacca (Cyperaceae), Lycopodiella inundata (Lycopodiaceae), Arum 

maculatum (Araceae), Equisetum arvense (Equisetaceae). They are inhabited by a variety of root fungal partners 

which may reflect a variety of symbiotic characteristics. Illustration by Katrin Giesemann.  
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Abstract 

The mycorrhizal symbiosis is widely accepted as a relationship for mutual carbon-for-nutrient trading. In 

contrast, hundreds of mycoheterotrophic plant species are identified subverting the usually mutual 

mycorrhizal symbiosis to utilize their fungal partner as an organic carbon and nitrogen source. Additionally, 

the focus on nutrient trading in plant-mycorrhizal fungal relationships underrates other common root fungi, 

such as dark septate endophytes (DSE) and fine root endophytes (FRE). The thesis hypothesizes  

(i) the existence of far more mycoheterotrophic plant species than currently estimated and 

(ii) a mycorrhiza-like nutritional role for DSE and FRE in plant-fungi relationships (Figure 1).   

Isotope applications of the elements carbon (C), nitrogen (N) and hydrogen (H) have proven to be a valuable 

tool to elucidate organic and inorganic nutrient fluxes between plants and fungi. Thus, the utilization on a 

fungal source is evident for achlorophyllous plant species belonging to 17 plant families on either arbuscular 

mycorrhizal (AM) and ectomycorrhizal (EcM) fungi or on litter-decomposing and wood-decomposing 

fungi. The presence of fully autotrophic plant species on the one hand and achlorophyllous, fully 

mycoheterotrophic plant species on the other hand obliges us to postulate an intermediate strategy for 

chlorophyllous plant species which obtain their C energy by means of photosynthesis (autotrophy) while 

simultaneously channeling off organic C and N from a fungal source (mycoheterotrophy). Evidence of 

partial mycoheterotrophy is commonly found but yet mostly restricted to only two plant families associated 

with EcM fungi (Orchidaceae and Ericaceae). Full mycoheterotrophy, indeed, appears most often with AM 

fungi while evidence of partial mycoheterotrophy on AM fungi is very scarce. Interestingly, the AM 

symbiosis appears with a continuum of different fungal morphotypes with intercellular Arum-morphotype 

AM and intracellular Paris-morphotype AM at the ends of the continuum. So far analyzed, all fully 

mycoheterotrophic AM plant species appear with intracellular Paris-morphotype AM, thus chlorophyllous 

Paris-morphotype AM plant species are candidates for partially mycoheterotrophic nutrition. Due to the 

overwhelming distribution of AM plant species, the presence of partial mycoheterotrophy on AM fungi 

could have far-reaching implications for our understanding of plant community functioning which we might 

have overlooked until now. Thus, a stable isotope natural abundance approach was realized to evaluate the 

extent of partial mycoheterotrophy on AM fungi. 

Furthermore, it is evident that the elusive DSE and FRE fungi are also commonly distributed across all 

plant clades while little is known about their nutritional role in plant-fungi relationships. Interestingly, DSE 

and FRE inhabit both mycorrhizal and non-mycorrhizal plant species. The latter might provide an 

opportunity to shed light onto the nutritional functions of DSE and FRE fungi in plant-fungi symbioses. 

In this thesis isotope applications were used to decipher a functional role in nutrient trading for the elusive 

DSE and FRE. Isotope tracer applications were performed to evaluate a carbon-for-nutrient trading while 

natural abundances were used to decipher whether either organic or inorganic soil compounds might be 

exchanged in the field.  
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In brief, the thesis consists of four manuscripts. Manuscript 1, 2 and 3 found plant species that were 

isotopically distinguished in 13C, 2H and frequently 15N appeared either with intercellular Arum-morphotype 

AM or intracellular Paris-morphotype AM. The stable isotope enrichment is most likely explained by a 

partially mycoheterotrophic nutrition on Paris-morphotype AM fungi. Thus, the Paris-morphotype appears 

to be a necessary prerequisite for partial mycoheterotrophy on AM fungi. Furthermore, Manuscript 3 and 4 

provide evidence for a functional role of the ubiquitous DSE and FRE fungi in terms of plant-fungi nutrient 

trading. For the dual symbiosis of DSE and Paris-morphotype AM fungi in Equisetaceae, isotopic evidence 

supports an organic soil N transfer from the former and organic C transfer from the latter. Thus, organic 

nutrient transfer in plant-fungi symbioses may not be limited to mycoheterotrophs. This suggests DSE and 

FRE fungi may occupy a previously under-recognized but ecologically relevant role similar to mycorrhizas. 

Summarizing, isotope natural abundance compositions supported a partially mycoheterotrophic nutrition 

for the Paris-morphotype AM-forming forest herbaceous species Paris quadrifolia (true lover’s knot, 

Melanthiaceae) and Anemone nemorosa (‘wood anemone’, Ranunculaceae) (Manuscript 1). A literature survey 

of isotope natural abundance compositions resulted in 135 plant species being either achlorophyllous 

forming Paris-morphotype (13 species), chlorophyllous forming Paris-morphotype (63 species) or 

chlorophyllous forming Arum-morphotype (59 species). Partial mycoheterotrophy appeared frequently 

among the chlorophyllous Paris-morphotype AM plant species (31 out of 63 species under study), especially 

herbaceous forest seed plants and pteridophytes (Manuscript 2 and 3). Isotope natural abundance 

compositions of non-mycorrhizal plant species belonging to the plant families Equisetaceae (horsetails), 

Cyperaceae (sedges) and Caryophyllaceae (carnation family) supported active or passive acquisition of 

organic soil N compounds via DSE fungi (Manuscript 3). Carbon-for-nutrient trading was deciphered for a 

non-mycorrhizal Lycopodiaceae plant species (club moss) (Manuscript 4). Lab-provided inorganic nutrient 

tracers applied to FRE fungi were transferred towards the plant partner while the plant partner provided C 

in exchange. Furthermore, the isotope natural abundance of the club moss supports a transfer of organic 

soil N compounds in field sites.  

 

Figure 1 The three main questions addressed in this thesis. Illustrations from left to right: partial mycoheterotrophy is addressed 

in Mansucript 1-3, DSE-plant symbiosis in Manuscript 3 and FRE-plant symbiosis in Manuscript 4.   

Abbreviations: AM, arbuscular mycorrhiza; DSE, dark septate endophyte; FRE, fine root endophyte; PMH, partial 

mycoheterotrophy. Drawing designed by Philipp Giesemann, produced by Katrin Giesemann. 

What drives PMH in 
AM symbiosis?

Which nutritional role 
do DSE fungi occupy?

What is the nutritional 
role of FRE fungi?
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Zusammenfassung 

Mykorrhizen sind weitgehend anerkannt als Pflanze-Pilz-Symbiosen zum vorteilhaften Handel von 

Kohlenstoff-für-Nährstoffe. Demgegenüber stehen hunderte von mykohetertrophen Pflanzen. Diese 

untergraben das für gewöhnlich vorteilhafte Netzwerk und benutzen stattdessen die Pilzpartner als 

organische Kohlenstoff- und Stickstoffquelle. Der starke Fokus auf vorteilhafte Mykorrhizen hatte zudem 

zur Folge, dass andere häufige pilzliche Wurzelendophyten, wie dunkel-septierte Wurzelendophyten (DSE) 

und Feinwurzel-Endophyten (FRE), oft unbeachtet blieben. Die Dissertation untersucht   

(i) ein häufigeres Auftreten mykoheterotropher Pflanzen als gegenwärtige Einschätzungen ergaben und  

(ii) eine Mykorrhiza-ähnliche Rolle im Pflanze-Pilz-Nährstoffhandel für DSE und FRE (Abbildung 1). 

Isotopenanwendungen der Elemente Kohlenstoff (C), Stickstoff (N) und Wasserstoff (H) haben sich als 

ein wertvolles Werkzeug etabliert, um organische und anorganische Nährstoffflüsse zwischen Pflanzen 

und Pilzen aufzuklären. Dabei wurden für chlorophyllfreie, vollständig mykoheterotrophe Pflanzen 

die Pilzpartner als organische C- und N-Quelle ausgemacht. Vollständige Mykoheterotrophie tritt 

in 17 Pflanzenfamilien auf. Dabei formen die Pilzpartner entweder eine arbuskuläre Mykorrhiza (AM) und 

Ektomykorrhiza (EcM) oder es handelt sich um streu- und holzzersetzende Pilze. Das Auftreten von 

einerseits vollständig photoautotrophen Pflanzen und andererseits von vollständig mykoheterotrophen 

Pflanzen zwingt uns, ein Zwischenstadium zu postulieren. Dieses Zwischenstadium zweigt organischen 

Kohlenstoff und Nährstoffe vom Pilz ab bei gleichzeitiger Fixierung von C über eigene Photosynthese. 

Diese partiell mykoheterotrophen Pflanzen wurden mithilfe von natürlichen Isotopenhäufigkeiten zahlreich 

aufgedeckt. Jedoch beschränkt sich deren kontinuierliche Dokumentation bislang auf nur zwei 

Pflanzenfamilien, beide sind mit EcM-Pilzen assoziiert (Orchidaceae und Ericaceae). Vollständige 

Mykoheterotrophie ist tatsächlich unter AM Pflanzen weitverbreitet, während die Dokumentation der 

partiellen Mykoheterotrophie bislang sehr selten war. Es ist zu beachten, dass die Symbiose der AM 

unterschiedliche morphologische Typen formt. Die Hyphenmorphologie erlaubt die Zuordnung des 

interzellulären Arum-Typ und des intrazellulären Paris-Typ. Diese beiden Typen stellen die Endpunkte eines 

ausgeprägten Kontinuums dar. Vollständige Mykoheterotrophie trat bislang ausschließlich mit dem Paris-

Typ der AM auf. Demzufolge sollte partielle Mykoheterotrophie auch unter Paris-Typ AM Pflanzen mithilfe 

von Isotopenanwendungen zu finden sein. Das Auftreten von partiell mykoheterotrophen AM Pflanzen 

hätte aufgrund der schieren Verbreitung von AM Pflanzen weitreichende Konsequenzen für unser 

Verständnis von Pflanzengesellschaften, die möglicherweise bislang übersehen wurden.  

DSE und FRE sind im Pflanzenreich weitverbreitet, dennoch ist bislang wenig über ihre Rolle im Pflanze-

Pilz-Nährstoffhandel bekannt. DSE und FRE Pilze kolonisieren sowohl die Wurzeln von Mykorrhiza-

pflanzen als auch von Pflanzenarten, die keine Mykorrhizapilze aufweisen. Die zuletzt genannten 

ermöglichen es, die Rolle der DSE und FRE im Pflanze-Pilz-Nährstoffhandel mithilfe von Isotopen-

anwendungen ans Licht zu bringen. Die Einordnung einer vom Pilz zur Verfügung gestellten organischen 
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oder anorganischen N-Quelle wurde mit natürlichen Isotopenhäufigkeiten aufgeklärt. Im Laborexperiment 

wurden Isotopen-Tracer angewandt, um den Handel von Kohlenstoff-für-Nährstoffe nachzuvollziehen.  

Die Dissertation umfasst vier Manuskripte. Manuskript 1, 2 und 3 bestätigen einen Unterschied in den 13C, 

2H und häufig in den 15N Isotopensignaturen zwischen AM Pflanzenarten, die den interzellulären Arum-

Typ oder den intrazellulären Paris-Typ aufweisen. Die Anreicherung im schweren 13C, 2H und häufig im 

15N Isotop ist am besten erklärt mit einer partiell mykoheterotrophen Ernährungsweise über Paris-Typ 

AM Pilze. Dies wurde in Manuskript 1 erstmalig für die Paris-Typ Waldbodenpflanzen Paris quadrifolia 

(Einbeere, Melanthiaceae) und Anemone nemorosa (Buschwindröschen, Ranunculaceae) nachgewiesen. Eine 

Literaturrecherche wurde vorgenommen, um 135 Arum-Typ oder Paris-Typ AM Pflanzenarten miteinander 

zu vergleichen. Neben den 13 vollständig mykoheterotrophen Paris-Typ Arten unterstützen die Ergebnisse 

eine partiell mykoheterotrophe Ernährungsweise für 31 der 63 untersuchten chlorophyllhaltigen Paris-Typ 

Arten der Waldbodenvegetation, vor allem für Farne und Schachtelhalme (Manuskript 2, 3). Die 59 Arum-

Typ Arten waren isotopisch unauffällig. Der Paris-Typ stellt somit eine notwendige Voraussetzung für 

partielle Mykoheterotrophie bei AM Pflanzen dar. Darüber hinaus wurde in den Manuskripten 3 und 4 eine 

funktionelle Rolle im Pflanze-Pilz-Nährstoffhandel für DSE und FRE aufgeschlüsselt. Die Isotopen-

signaturen ausgewählter Pflanzenarten der Equisetaceae (Schachtelhalme), Cyperaceae (Seggengewächse) 

und Caryophyllaceae (Nelkengewächse) unterstützen einen aktiven oder passiven Transfer von organischen 

Stickstoffverbindungen durch DSE (Manuskript 3), und für eine Art der Lycopodiaceae durch FRE 

(Manuskript 4). Ein Kohlenstoff-für-Nährstoff Handel wurde für das Bärlappgewächs im Laborexperiment 

gezeigt. Die Anreicherung in stabilen Isotopen legt für Equisetaceae, die sowohl mit DSE als auch mit Paris-

Typ AM assoziiert sind, einen Gewinn von organischen Bodenstickstoff über DSE als auch einen Gewinn 

von organischen Kohlenstoffverbindungen über Mykoheterotrophie nahe. Ein Transfer von organischen 

Verbindungen in Pflanze-Pilz-Symbiosen ist deshalb nicht auf mykoheterotrophe Pflanzen beschränkt, 

sondern tritt wahrscheinlich auch bei Symbiosen mit Wurzelendophyten der DSE und FRE auf. Eine 

ökologische Rolle, ähnlich der Mykorrhiza, ist für die häufig unbeachteten DSE und FRE anzunehmen.  

 

Abbildung 1 Die drei in der Doktorarbeit behandelten Hauptfragestellungen. Von links nach rechts: partielle 

Mykoheterotrophie wird von den Manuskripten 1-3 behandelt, die DSE-Pflanze Symbiose in Manuskript 3 und die FRE-Pflanze 

Symbiose in Manuskript 4.   

Abkürzungen: AM, arbuskuläre Mykorrhiza; DSE, pilzliche dunkel-septierte Wurzelendophyten; FRE, pilzliche Feinwurzel-

Endophyten; PMH, partielle Mykoheterotrophie. Design von Philipp Giesemann, Zeichnung von Katrin Giesemann.

Was bedingt PMH in 
der AM Symbiose?

Welchen Nährstoff-
handel gehen DSE ein?

Wie ist der Nährstoff-
handel von FRE?
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Motivation

For improving their respective thriving, manifold plant-fungi nutritional relationships have evolved over 

time. Isotope tools greatly supported the deciphering of these nutritional relationships. At the BayCEER 

- Laboratory of Isotope Biogeochemistry (Bayreuth University), the conquest of the deciphering of plant-

fungi nutritional relationships has resulted in a robust dataset. The database comprises stable isotope 

natural abundance compositions and leaf total nitrogen concentrations of thousands of putatively fully 

autotrophic chlorophyllous plant individuals (509 species, n = 4 647) accompanied by hundreds of 

partially (124 species, n = 2 123) and fully (46 species, n = 479) mycoheterotrophic specialists that partially 

or fully satisfy their organic carbon and nitrogen demands from a fungal source (status as of January 2020). 

This database provides a unique opportunity to advance our understanding on mycoheterotrophy as well 

as on the plant-fungi symbiosis in general. In assessing this data collection, two striking patterns emerged: 

(i) a huge lack of data about partially mycoheterotrophic plants on arbuscular mycorrhiza (AM) and  

(ii) unique isotopic patterns for autotrophic plants described as non-mycorrhizal.  

AM is the predominant mycorrhizal type globally with >80% terrestrial plant partner species (Tedersoo 

et al., 2020). Frequently, full mycoheterotrophs on AM have been documented (Merckx et al., 2013a) while 

records on partial mycoheterotrophy are almost completely lacking. However, analogous to 

achlorophyllous holoparasitic plants, which emerged from chlorophyllous hemiparasites (Westwood et al., 

2010), partial mycoheterotrophy as its transitional form towards fully mycoheterotrophic nutrition is 

expected. This transitional form is likely evolutionarily located between a fully mutualistic mycorrhiza and 

the full reliance on fungal carbon. Such an intermediate nutritional strategy has been regularly documented 

for plant species associated with ectomycorrhizal fungi (Hynson et al., 2013; Hynson et al., 2016). However, 

a profound literature search supported the assumption that partial mycoheterotrophs on AM were greatly 

overlooked until now. This evidence is sustained by the presence of distinct hyphal morphologies in AM 

plant roots and the evidence of little phylogenetic constraints for AM plants to tap into mycoheterotrophy 

(Excursus-1; Perez-Lamarque et al., 2020). Now, the pool of 509 putatively fully autotrophic plant species 

releases a robust basis for a fresh attempt to re-open a closed book. 

While a wealth of knowledge about plant-fungi nutritional feedbacks exists for the mutual AM symbiosis, 

which mainly occur at the endophytic root-to-hyphae interface, knowledge about such nutritional 

relationships of other common fungal endophytes remains sparse. Among the 509 putatively fully 

autotrophic plant species, the majority form mycorrhizal associations while some species belonging to 

non-mycorrhizal plant families are also repeatedly recorded. Importantly, non-mycorrhization does not 

imply a lack of any fungal root endophytes (Jumpponen, 2001; Mandyam & Jumpponen, 2005; Orchard 

et al., 2017b). Thus, these species enable a closer look at nutritional feedbacks by elusive root endophytes. 

Fungal root endophytes asymptomatically inhabit plant roots while a mycorrhiza-like role in nutrient 

trading was not shown yet in vascular plants. The robust databank serves as motivation to exemplarily 

study vascular plant lineages traditionally considered non-mycorrhizal to unveil a mycorrhiza-like role of 

their fungal root endophytes. 
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- “I hope ecologists have more consideration of plants’ heterotrophy, particularly, partial mycoheterotrophs,  

as well as on the nutritional role of the ubiquitous fungal root endophytes in the future.”
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- “What is the unifying theme which brings together lichenologists with coral experts, entomologists with those who 

study mycorrhizas? The simple answer is that they are all considered to be examples of symbiosis.” (D.C. Smith) 
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Introduction 

Plant-fungi symbiosis 

Autotrophy and heterotrophy are endmembers of fundamental 

processes on earth, represented by e.g. plants as autotrophs and fungi 

as heterotrophs (see Definitions). Fungi that inhabit plants have been 

termed fungal endophytes (Link, 1809; endon “within”, phyton “plant” 

from Greek), forming a symbiosis (Frank, 1877; de Bary, 1878; 

symbíōsis “living together” from Greek). Symbioses fall along the 

parasitism-to-mutualism continuum (Johnson et al., 1997).  

Many fungal root endophytes form a nutritionally beneficial 

symbiosis termed mycorrhiza (mykes, “fungus”, rhiza, “root” from 

Greek) (Frank, 1885; Smith & Read, 2008), and thus fall at one end 

of the continuum (with possibly some plasticity involved; 

Klironomos, 2003; Näsholm et al., 2013). However, the positioning 

along the parasitism-to-mutualism continuum of elusive fungal 

endophytes, such as dark septate endophytes (DSE) and fine root 

endophytes (FRE), remains puzzling.  

Indubitably, not all symbioses are cooperative and may instead appear 

exploitative. Exploiters (e.g. plant parasites) obtain a benefit without 

providing any advantage for the host. An extraordinary example is full 

mycoheterotrophy (mykes, “fungus”, heteros, “another”, trophe, 

“nutrition” from Greek). Fully mycoheterotrophic plants appear 

achlorophyllous and form exploitative mycorrhizas to cover their 

carbon and nutrient demands (Leake, 1994; Merckx, 2013).  

Mostly, chlorophyllous plant species are treated as full photo-

autotrophs. What often has not been sufficiently considered is that 

the plant kingdom spans the full spectrum of autotrophy, 

heterotrophy and intermediate stages (Těšitel et al., 2010; Merckx, 

2013). Recent advances were made for mycoheterotrophic plants, in 

particular ‘partial mycoheterotrophs’, which may represent 

underappreciated intermediate stages between full autotrophy and full 

mycoheterotrophy (Gebauer & Meyer, 2003). Still, this knowledge 

remained mostly restricted to plant species from the Orchidaceae and 

Ericaceae. Hence, this thesis presents novel evidence of a fungi-

derived carbon gain for chlorophyllous AM plant species, suggesting 

a substantial increase in the number of heterotrophic plants. 

Definitions 

Symbiosis the intimacy of organisms. 

Fungal root endophytes a (mostly) 

symptomless symbiosis between 

fungi and living plant roots.  

Mycorrhizas a (mostly) obligate 

symbiosis mainly for bidirectional 

nutrient trading between fungi and 

the living plant roots likely based on 

a harmonious development. 

Photoautotrophy a nutritional energy 

acquisition by fixing carbon-dioxide 

with light energy to energy-rich 

carbohydrates, e.g. chlorophyllous 

plant species and algae. 

Heterotrophy a nutritional energy 

acquisition by consumption of 

energy-rich substances ultimately 

originated from autotrophy, 

e.g. animals, fungi, animal-, plant- 

and fungi-feeding plants.  

Mycoheterotrophy plant nutritional 

strategy secretly interlinking into 

mycorrhizal networks or on sapro-

trophic fungi to utilize on fungal 

organic carbon and nutrients. 

Full Mycoheterotrophy achloro-

phyllous plants, that receive all their 

carbon and nutrient demand from 

fungal origin while devoid chloro-

phyll and photosynthetic abilities 

throughout their life span. 

Partial Mycoheterotrophy chloro-

phyllous plants, that receive a 

proportion of their carbon and 

nutrient demand from fungal origin 

while photosynthesis is inherent. 
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Most plant species form an intimate mycorrhizal symbiosis with their fungal partners for bidirectional 

nutrient exchange summarized by a carbon-for-nutrient trading (Tedersoo et al., 2020). This cooperation 

represents an ancestral steppingstone for the plants’ conquest of land (Smith & Read, 2008; Strullu-Derrien 

et al., 2018), estimated to have occurred half a billion years ago (Taylor et al., 2003; Morris et al., 2018). In 

the mycorrhizal symbiosis, the plant provides an essential carbohydrate (and frequently a lipid) source to 

the obligate biotrophic mycorrhizal fungi (Jakobsen & Rosendahl, 1990; Smith & Read, 2008; Wipf et al., 

2019). In return, the mycorrhizal fungi deliver a substantial amount of nitrogen, phosphorous and likely 

other mineral nutrients to the plant (Smith & Read, 2008; van der Heijden et al., 2017; Wipf et al., 2019). For 

this nutrient trading, mycorrhizas develop root-internal hyphal systems whereabout hyphae form interfaces 

considered for nutrient exchange. At the other hyphal end, the fungal extraradical mycelia scavenge the soil 

for mineral nutrients and might adhesively mobilize water (Smith & Read, 2008). Thus, the mycorrhizal 

fungi are capable of forming impressive belowground networks, and thereby serve to interconnect plant 

root systems (Finlay & Read, 1986; Kennedy et al., 2003; Klein et al., 2016; Wipf et al., 2019).  

Many mycoheterotrophic plants are exploitative, turning the tables and tapping into plant root-fungal 

networks to channel off organic carbon and nutrients (Merckx, 2013). Thereby, mycoheterotrophs construct 

either a tripartite interconnection (mycoheterotrophic plant - fungal partner - autotrophic plant partner) or 

directly exploit wood- and litter-decomposing fungi (Merckx, 2013; Waterman et al., 2013). On an 

evolutionary timescale, this eventually allows mycoheterotrophs to drop endosperm production (initial 

mycoheterotrophy) or cease their photosynthetic activity for their entire life cycle (full mycoheterotrophy) 

(Merckx, 2013). Dust-like seeds, with small endosperm, do not provide sufficient endosperm energy 

resources to maintain the initial plant development, and are therefore dependent on fungal-derived carbon 

and nutrient sources (Eriksson & Kainulainen, 2011). Full mycoheterotrophy is suggested to be a point-

of-no-return due to a cascade of irreversible gene-losses required for plant photosynthesis (Graham et al., 

2017). The 880 achlorophyllous fully mycoheterotrophic plant species so far investigated belong to 17 plant 

families spanning basal moss, fern and clubmoss species to seed plants such as Burmanniaceae, Orchidaceae, 

Thismiaceae (monocotyledons) and Ericaceae, Gentianaceae, Polygalaceae (dicotyledons) (Leake, 1994; 

Merckx, 2013; Merckx et al., 2013a, 2013b). The evolution of full mycoheterotrophs that completely rely on 

a foreign carbon source suggests the existence of transitional stages. This transition can be comprehended 

by hemi- and holoparasitic plants relying partially or fully on carbon from neighboring plants (Westwood et 

al., 2010). Thus, a transitional stage towards full mycoheterotrophy must also be postulated; that is, partial 

mycoheterotrophy, i.e. chlorophyllous plants that obtain at some point of their life a proportion of their 

carbon and nitrogen nutrient demand from fungi while photosynthesis is still an inherent ability. 

In contrast to the profound knowledge on mutualistic AM nutritional interactions mainly happening at an 

root-internal plant-hyphae interface, the symbiosis of plants and common fungal endophytes, particularly 

DSE and FRE, remains insufficiently studied (Jumpponen, 2001; Hardoim et al., 2015; Field & Pressel, 2018; 

Hoysted et al., 2018). Similar to mycorrhizal fungi, fungal endophytes form intracellular fungal structures, 

while mycorrhiza-like nutrient trading has rarely been documented; examples include two vascular Antarctic 
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plant species associated with DSE (Hill et al., 2019) and a few early diverging liverworts associated with FRE 

(Field et al., 2015). As DSE and FRE are recognized saprotrophs and biotrophs that colonize an array of 

plant species globally (Jumpponen & Trappe, 1998; Orchard et al., 2017b; Rimington et al., 2020), their role 

in plant-fungi-nutritional relationships appears non-trivial, as illustrated by their potential to facilitate plant 

nutrient acquisition (Mandyam & Jumpponen, 2005; Newsham, 2011; Orchard et al., 2017b). 

Morphological features for nutrient trading 

The diversity of plant and fungal species can be simplified in a structural diversity covered by 

endomycorrhizas (AM: arbuscular mycorrhiza, ErM: ericoid mycorrhiza, OM: orchid mycorrhiza), 

ectomycorrhizas (EcM) and non-mycorrhizal (NM) plant species (Smith & Read, 2008). The terrestrial plant 

kingdom encompasses approximately 500 000 extant species. A number beyond 1.5 million species is 

assumed for fungi, whilst only 100 000 species have been described (Hawksworth, 1991; Taylor et al., 2003). 

The endomycorrhizal fungi form intracellular arbuscules, hyphal coils and pelotons while EcM fungi form 

a hyphal mantle around the plant root tips and an intercellular labyrinth-like ‘Hartig net’ (Smith & Read, 

2008; Field & Pressel, 2018; Tedersoo et al., 2020). 

AM fungi are characterized by distinct hyphal morphologies (Gallaud, 1905). The profound reviews from 

Smith & Smith (1997) and Dickson et al. (2007) summarize the knowledge collected on Arum- and Paris AM 

morphotypes (Excursus-1). Arum- and Paris- AM morphotypes were first described within the roots of the 

herbaceous species Arum maculatum (Araceae) and Paris quadrifolia (Melanthiaceae) commonly found in 

European forests. These morphotypes can be distinguished by the distinctive growth of the aseptate fungal 

hyphae. The Arum-morphotype is characterized by intercellular hyphal growth along the root cortical cells 

(Figure 2a), while the Paris-morphotype has intracellularly coiling hyphae (Figure 2b). The Arum- and Paris-

morphotype occupy the ends of a full continuum (Dickson, 2004). Mixed forms (intermediate types) and 

both types within the same plant root complete the Arum-to-Paris continuum (Dickson et al., 2007). The 

fungal partner of AM symbioses were found to be the monophyletic Glomeromycotina (Spatafora et al., 

2016). These fungi are suggested to be primitive or ancestral and might have saprotrophic, algae-associated 

or parasitic ancestors, but seem to have lost their saprotrophic repertoire during evolution (Brundrett, 2002). 

Their functional diversity is suggested to be greater than the current count of “species” (Brundrett, 2002).  

Excursus-1. Short summary of Arum- and Paris-morphotype arbuscular mycorrhiza (AM) 

(i) Yet, Arum-morphotype AM was in focus due to the prominence of arbuscules as diagnostic AM structures. The 

coiling Paris-morphotype was frequently ignored as atypical as the criteria of AM were the presence of arbuscules 

(Dickson et al., 2007). (ii) Arum-morphotype is dominant in early successional plants, in most herbaceous cultivars 

and crop plants while the Paris-morphotype is most dominant in late-successional stages and woodland plants (Ahulu 

et al., 2005). (iii) There are indices for a plant control over morphotype development, thus species of the same genus 

likely form the same AM morphotype (but, the fungal genome remains to be considered; Cavagnaro et al., 2001). 

(iv) Arum- and Paris-morphotype AM were recorded in mono- and dicotyledonous, woody and herbaceous plants. 

Almost all fern and fern-allies and all yet observed mycoheterotrophs on AM, including the achlorophyllous 

gametophytes of pteridophytes, share the feature of Paris-morphotype (Zhang et al., 2004; Imhof et al., 2013). (v) The 

coiling Paris-morphotype was once suggested as prerequisite of mycoheterotrophy on AM fungi (Imhof, 1999).  
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The phylogenetic sister of Glomeromycotina AM fungi, the Mucoromycotina FRE, include saprotrophic 

and biotrophic endogonales and Glomus tenue FRE (Orchard et al., 2017a; Hoysted et al., 2018; Walker et al., 

2019). Mucoromycotina FRE populate at least 40 vascular plant families (Orchard et al., 2017b). Their 

morphological features comprise small swellings along aseptate fine branching hyphae (0.4 to 4.0 µm, 

diameter) and arbuscule-like structures (Figure 2c). The fine hyphae grow intercellularly and intracellularly 

within the cortical root space while being distinctively finer relative to coarser hyphae of AM fungi. 

The ubiquitous DSE fungi have been recorded for at least 140 plant families globally from Antarctic to 

temperate, boreal and Arctic regions (Jumpponen & Trappe, 1998; Mandyam & Jumpponen, 2014). They 

enclose a polyphyletic group of saprotrophic ascomycotan fungi belonging mostly to the order of Helotiales 

(Jumpponen & Trappe, 1998; Mandyam & Jumpponen, 2014). DSE fungi morphologically form thick-

walled, irregularly lobed intracellular microsclerotia, intracellular hyphal coils or peloton-like hyphae and 

intercellular hyaline or melanized septate hyphae as characteristic of DSE (Figure 2d; Melin, 1922; 

Jumpponen & Trappe, 1998). Intracellular colonization is often formed by hyaline hyphae, which later 

become melanized (Barrow & Aaltonen, 2001; Barrow, 2003; Mandyam & Jumpponen, 2014). 

Distribution of AM, DSE and FRE fungal associations along the plant kingdom 

Resulting from their early evolution, the distribution of the AM symbiosis is dominant, occurring in almost 

all terrestrial ecosystems and in almost all plant clades of different plant life forms from herbaceous species 

to trees (Brundrett & Tedersoo, 2018). The basal clades of liverworts, hornworts and moss species consist 

of approximately 16 700 species (Konrat et al., 2010; Magill, 2010; Villarreal et al., 2010) and the basal 

lycophytes and ferns consist of approximately 11 300 species (Magill, 2010; Ranker & Sundue, 2015). 

Liverworts, hornworts, lycophytes and ferns are predominately populated by AM fungi (Brundrett, 2002), 

while FRE and DSE are also documented (Jumpponen & Trappe, 1998; Orchard et al., 2017b; Rimington 

et al., 2020). Interestingly, the Paris-morphotype AM was documented in most, if not all, of the 

achlorophyllous fully mycoheterotrophic gametophytes of ferns and lycophytes as well as their 

chlorophyllous sporophytes (Zhang et al., 2004; Imhof et al., 2013). Some of the plant species belonging to 

the basal clades are NM, e.g. moss species (Pressel et al., 2010), or facultative mycorrhizal, e.g. Equisetum and 

many ferns. The NM and facultative mycorrhizal plant species often appear with filigree, long hairs at roots 

or rhizoids that may contribute a similar function to that of the fine networks of extraradical fungal mycelia. 

The seed plant species of 1 000 gymnosperms (Christenhusz et al., 2011) and 450 000 angiosperms (Pimm 

& Joppa, 2015) predominately form AM symbiosis, while NM occur for instance in Brassicaceae, 

Caryophyllaceae, Cyperaceae, and Juncaceae. An EcM occurs in Pinaceae and Gnetum for gymnosperms, 

and Betulaceae, Fagaceae and Juglandaceae are prominent examples of EcM in angiosperms (Brundrett, 

2002). Among the gymnosperms and angiosperms forming AM, the distribution of Arum- and Paris-

morphotype AM plant species, so far analyzed, is well-balanced (Dickson et al., 2007). Conversely, according 

to recent works, full mycoheterotrophs on AM fungi appear with Paris-morphotype (Imhof et al., 2013). 

Imhof (1999) hypothesized the hyphal morphology of the Paris-coiling morphotype AM could be analogous 

to pelotons and hyphal pegs in mycoheterotrophs on EcM fungi. Thus, partial mycoheterotrophy could 
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occur for Paris-morphotype AM, as illustrated by its occurrence in chlorophyllous angiosperms (e.g. species 

belonging to the Apiaceae, Gentianaceae, Ranunculaceae and Sapindaceae). While fungal root endophytes 

usually colonize plant species that form mycorrhizal symbioses, several authors emphasized the widespread 

presence of DSE and FRE in plant species considered NM, such as Caryophyllaceae, Cyperaceae, 

Equisetaceae and Juncaceae (Jumpponen & Trappe, 1998; Orchard et al., 2017b). Plant species belonging to 

NM plant families may therefore represent an opportunity to study the nutritional role of DSE and FRE 

unbiased from mycorrhizal fungi. 

 

Figure 2 Plant root colonisation by fungal partners. Arbuscular mycorrhiza separated in Arum- (a) and Paris-morphotype (b), 

fine root endophytes (c) and dark septate endophytes (d) in a hypothetical plant root cross section.   

Abbreviations: A, arbuscule; AH, aseptate hyphae; Al, arbuscule-like; co, inner and outer cortex; en, endodermis;  

ep, epidermis; HC, hyphal coil; HS, hyphal swelling (arrow); MS, microsclerotia; SH, septate hyphae; SP, spore; st, stele.  

Designed by Philipp Giesemann, produced by Katrin Giesemann.  
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Isotope applications to trace plant fungi nutritional relationships 

The topics of (i) partial mycoheterotrophy on AM fungi and (ii) carbon-for-nutrient trading in DSE- and 

FRE-plant symbiosis addressed in this thesis can be elucidated with the powerful tool of stable isotope 

applications. Stable 13C/12C, 15N/14N and 2H/1H isotope abundance ratios demonstrate carbon and nutrient 

fluxes in mycorrhizal symbioses (Excursus-2; Hynson et al., 2013; Gebauer et al., 2016; Gomes et al., 2020). 

Additionally, isotope tracers successfully supported mycoheterotrophic nutrition (Excursus-3) and showed 

the bidirectional nutrient trading in plant-fungi symbioses (e.g. Finlay & Read, 1986; Field et al., 2015, 2016; 

Klein et al., 2016; Field & Pressel, 2018; Field et al., 2019).  

(i) Mycoheterotrophs cover their nutrient demand fully or partially from a carbon and nitrogen nutrient 

source in a completely different manner compared to that of putatively full autotrophs. As such, the stable 

isotope natural abundance composition of full autotrophs and both full and partial mycoheterotrophs are 

distinct (Excursus-2, Figure 3). The isotopic evidence of full mycoheterotrophs on EcM fungi was first 

shown by 13C and 15N enrichment (Gebauer & Meyer, 2003; Trudell et al., 2003) and later by 2H enrichment 

(Gebauer et al., 2016) relative to putatively full autotrophs (Excursus-2b,c). Most provocative, 13C, 15N and 

later 2H enrichment were also found for photosynthetically active C3 plant species belonging to Orchidaceae 

and Ericaceae obviously deviating from the more depleted isotope composition of accompanying 

mycorrhizal C3 plants (Excursus-2d). Thus, partial mycoheterotrophy was elucidated by an isotopically 

intermediate positioning between full autotrophs and full mycoheterotrophs. Partial mycoheterotrophs were 

neither visually nor morphologically distinguished from accompanying putatively full autotrophs, thus 

demanded an isotope approach. Similarly, Gomes et al. (2020) showed a 13C, 2H and frequently a 

15N enrichment for full mycoheterotrophs on Paris-morphotype AM belonging to Burmanniaceae, 

Gentianaceae, Polygalaceae, Thismiaceae and Triuridaceae spanned from Australia, New Zealand, Malaysia, 

and South America. The isotope enrichment was less pronounced than for mycoheterotrophs associated 

with EcM fungi. These findings are largely consistent with initial studies on very few species by Merckx et 

al. (2010) and Courty et al. (2011). Early attempts elucidating partial mycoheterotrophy on AM fungi were 

focused on chlorophyllous relatives of achlorophyllous full mycoheterotrophs. For instance, Merckx et al. 

(2010) focused on Burmannia capitata (Burmanniaceae), Cameron & Bolin (2010) focused on Bartonia virginica 

and Obolaria virginica (Gentianaceae) and Bolin et al. (2017) focused on B. coelestis (Burmanniaceae). So far 

analyzed, B. capitata, B. coelestis, B. virginica and O. virginica or their close relatives appear with Paris-

morphotype AM. When Cameron & Bolin (2010) sampled chlorophyllous Gentianaceae and Bolin et al. 

(2017) chlorophyllous Burmanniaceae they found almost no difference in 13C between the candidates of 

putatively partial mycoheterotrophs and their putatively full autotrophic reference plant species. However, 

by subsequently looking at the AM putatively full autotrophs it became obvious that the reference plants in 

Cameron & Bolin (2010) appeared mostly with Paris-morphotype AM and in Bolin et al. (2017) mostly with 

Arum-morphotype AM. Thus, the distribution of Paris-morphotype AM reference plants of B. virginica and 

O. virginica might have concealed the sharpness of 13C and 15N enrichments to elucidate partial 

mycoheterotrophy, as the references themselves might be partially mycoheterotrophic on Paris-morphotype 

AM fungi. A 13C and frequently 15N enrichment expected for partial mycoheterotrophy was clearer for 
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B. coelestis which appeared mostly with Arum-morphotype reference plants. Thus, partial mycoheterotrophy 

might have been overlooked frequently, and chlorophyllous Paris-morphotype AM plants should be the 

anchoring point to search for partial mycoheterotrophy on AM. Consequently, Paris-morphotype will be 

addressed as prerequisite for mycoheterotrophy in chlorophyllous AM plant species. 

(ii) As mentioned above, most plant species reciprocally exchange carbon-for-nutrients with mycorrhizal 

partners. A minority of plant species are traditionally considered non-mycorrhizal while frequently colonized 

by fungal root endophytes, such as DSE and FRE. Hill et al. (2019) and Field et al. (2015) demonstrated for 

DSE and FRE, respectively, a carbon-for-nutrient trading in a few plant species in a controlled environment. 

For that, nitrogen and phosphorous tracers were applied to the fungi and retraced in the plant tissue. 

Further, the plant was exposed to a 14CO2 carbon source which was retraced into the fungal tissue. In 

contrast to AM, the saprotrophic abilities of DSE and FRE might allow the access on 15N-enriched nutrients 

(Caldwell et al., 2000; Hoysted et al., 2018). Haselwandter & Read (1982) and Upson et al. (2009) found a 

significant increase in dry weight of DSE colonized plant partners, especially when organic N was provided. 

However, Peterson et al. (2008) argued the absence of specialized nutrient transfer interfaces, perifungal 

membrane and interfacial matrix material for DSE. Michelsen et al. (1996, 1998) found plant species 

inhabited by DSE (therein classified ‘AM/NM’) to frequently appear with a 15N enrichment. Thus, non-

mycorrhizal plant species inhabited by DSE fungi might generally appear with a 15N enrichment due to the 

access on 15N-enriched soil organic nutrient sources actively or passively provided by DSE fungi. In contrast, 

mycorrhizal fungi access isotopically inconspicuous nitrate and ammonium and might translocate them to 

the plant partner. Field et al. (2015) showed a carbon-for-nutrient exchange for a FRE-liverworts symbiosis. 

The FRE are also widely distributed among vascular plant species, suggesting a carbon-for-nutrient trading 

is also likely for them. Saprotrophic abilities have been suggested for FRE (Hoysted et al., 2018). Therefore, 

15N-enriched recalcitrant nitrogen forms might be translocated to the plant partner as well.  

Thesis’ Objectives 

• Partial mycoheterotrophy on AM fungi was evaluated for the plant species once serving as eponym for 

the Paris-morphotype, Paris quadrifolia (Manuscript 1). A literature survey was performed to decipher the 

extent of partial mycoheterotrophy on AM fungi. Paris-morphotype AM species were compared to 

Arum-morphotype counterparts (Manuscript 2). Given AM is an ancient symbiosis, partial 

mycoheterotrophy could be an ancient nutritional strategy. Therefore, mycoheterotrophy was 

addressed in Equisetaceae living fossils (Manuscript 3). 

• A literature survey and supplemental field sampling were performed to decipher the access of 15N-

enriched organic nitrogen via their DSE partners for non-mycorrhizal plant species (Manuscript 3).  

• The ancient vascular plant species Lycopodiella inundata is exclusively inhabited by FRE. Thus, L. inundata 

were analyzed for a bidirectional carbon-for-nutrient trading with FRE partners (tracer experiment). A 

stable isotope natural abundance approach was realized to evaluate mycoheterotrophy for Lycopodiella 

and the nitrogen nutrient form, either 15N-enriched organic or 15N-inconspcious inorganic nutrients, 

provided by FRE in field sites (Manuscript 4). 
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Excursus-2. Evidence for mycoheterotrophy from a natural stable isotope perspective 

Elements identically in the number of protons and dissimilar in neutrons are termed ‘isotopes’. Chemical and 

physical characteristics are considered almost equal while small atom mass differences are causative for ‘isotope effects’ in 

equilibrium and kinetic dynamics (Farquhar et al., 1989; Ehleringer & Rundel, 1989). The isotope abundance is  notated as 

yX = (RSample/RStandard – 1) * 1000 (‰) (yX: 13C, 15N, 2H, 18O), whereby R is the ratio of the heavy to the respective light isotope 

(McKinney et al., 1950). Site independency is achieved by conversion into enrichment factors  by yX = yXTarget – yXReference
 (‰) 

(Preiss & Gebauer, 2008). The target plant is a plant suspected to be dissimilar by some reason from the expected mean 

represented by the reference plants.   

(a) Plant stable 13C, 18O and 2H isotope abundance is mostly driven by the photosynthetic pathway (Sternberg et al., 1984; 

Farquhar et al., 1989), the isotope composition of the CO2 and H2O sources (Farquhar et al., 1982, 1989), different transpiration 

rates (Farquhar et al., 1982, 1989; Cernusak et al., 2004), microclimate (Dawson et al., 2002) and alternative carbon sources (Press 

et al., 1987; Gebauer & Meyer, 2003; Těšitel et al., 2010; Gebauer et al., 2016). The 15N pattern is likely fixed by the nitrogen 

nutrient source (Hobbie & Högberg, 2012) (Figure 3). (b) Fungi are composed of 2H-enriched secondary organic compounds 

that are enriched relative to autotrophic tissue (Yakir, 1992; Gebauer et al., 2016; Cormier et al., 2018, 2019); mycorrhizal fungi are 

fueled with 13C-enriched carbohydrates (Figure 3), saprotrophic fungi utilize on 13C-enriched cellulose, thus, they become 13C-

enriched. EcM and saprotrophic fungi release exoenzymes to access 15N-enriched recalcitrant soil organic matter, thus, they 

become 15N-enriched (Gebauer & Dietrich, 1993; Gleixner et al., 1993; Ziegler, 1995; Mayor et al., 2009; Schiebold et al., 2017; 

Figure 3). AM fungi lack lipids synthesis (Jiang et al., 2017; Keymer et al., 2017; Luginbuehl et al., 2017; Rich et al., 2017). The 

mixture of 13C-enriched carbohydrates and 13C-depleted lipids (Gleixner et al., 1993; Cormier et al., 2019) might counterbalance 

the 13C enrichment of AM fungi. Their 15N enrichment should be less pronounced than this of EcM fungi as they utilize on 

isotopically inconspicuous nitrate and ammonium while may occupy saprotrophic capabilities (Hodge et al., 2001).   

(c) Full mycoheterotrophs are almost constantly characterized by a stable 13C, 15N and 2H isotope enrichment (OM: Gebauer 

& Meyer, 2003; Trudell et al., 2003; Hynson et al., 2013; Hynson et al., 2016; Gebauer et al., 2016; ErM: Tedersoo et al., 2007; 

Zimmer et al., 2007, Andreas Makiola, unpublished; AM: Merckx et al., 2010; Courty et al., 2011; Gomes et al., 2020) which is 

attributed to the simultaneous stable 13C, 15N and 2H isotope enrichment found for many fruiting bodies (cf. literature above) and 

13C and 15N enrichment (although less pronounced) found for extraradical AM mycelia (Walder et al., 2012, Klink et al., unpublished) 

and intraradical AM hyphae (Klink et al., unpublished). The same applies to species that are fungal wood- or litter-decomposers 

(Ogura-Tsujita et al., 2009; Lee et al., 2015, Ogura-Tsujita et al., 2018) (Figure 3). (d) Partial mycoheterotrophs’ 13C and 15N 

enrichment in chlorophyllous orchid (Gebauer & Meyer, 2003), ericoid (Zimmer et al., 2007) and in AM plant species (Cameron 

& Bolin, 2010; Bolin et al.; 2017) found mostly its place intermediate between putatively full autotrophs and obviously full 

mycoheterotrophs. The 2H stable isotope natural abundance supports a partial mycoheterotrophy by its enrichment in orchid 

(Gebauer et al.; 2016) and ericoid mycorrhiza (Andreas Makiola, unpublished). Thus, partial mycoheterotrophs are suggested to 

simultaneously receive fungal-derived carbon and nutrients supplemented by photosynthesis by their own charge (Figure 3). 

 

Figure 3 The stable isotope natural abundance composition is influenced by several drivers (arrows) which might shift 

the isotope composition. Autotrophy (green, relative depletion); heterotrophy (red, relative enrichment). 
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Excursus-3. Evidence for mycoheterotrophy from an isotope tracer and 14C bomb carbon perspective 

Isotope tracer applications could be described by the phrase “Where does it [the tracer] come from, and where does it [the tracer] 

go”. The tracer-based tracking of nutrients is a popular application in research on plant-fungi symbiosis (Finlay & Read, 1986; 

Hynson et al., 2013; Field et al., 2015, 2016; Klein et al., 2016; Field & Pressel, 2018; Field et al., 2019; Hill et al., 2019), for instance:  

(a) Hypopitys monotropa (Ericaceae) – the first record of an exploitative mycorrhiza.  

The carbon source of H. monotropa was puzzling as parasitic structures, such as haustoria, were not observed (Curtis & Hooker, 

1826; Kamienski, 1881). Kamienski (1881) hypothesized a carbon source from an ectomycorrhizal fungus which was confirmed 

when Björkman (1960) injected a 14C-labeled glucose and 32P-labeled phosphate radioisotope tracer into the phloem of spruce 

and pine trees. The tracer was retrieved through a mycorrhizal network in H. monotropa while not in accompanying heathland 

plants. A repetition of similar approaches confirmed the early finding by Björkman (1960) for Corallorhiza trifida (Orchidaceae, 

McKendrick et al., 2000), Aneura mirabilis (Aneuraceae, Bidartondo et al., 2003) and Rhizanthella gardneri (Orchidaceae, Bougoure 

et al., 2010). Molecular approaches supported the tripartite interaction when the same fungal ribosomal DNA, as its entity, inside 

of tree roots and simultaneously in accompanying mycoheterotrophs was found (Taylor & Bruns, 1997; Selosse et al., 2002). 

(b) Bomb carbon: an elegant tool discloses the carbon source of mycoheterotrophs on saprotrophic fungi  

The carbon isotopes 12C, 13C and 14C are naturally fixed into plant biomass through photosynthesis and then potentially transferred 

to mycorrhizal partners. Since the mid 60th, atmospheric 14C patterns decline, resulting in almost unique signatures per year. 

Suetsugu et al. (2020c) found for mycoheterotrophs on saprotrophic fungi a 14C pattern of wood once synthesized decades ago 

(Figure 4) while mycoheterotrophs on ectomycorrhizal fungi obtained fresh carbon. 

 

Figure 4 Bomb carbon approach. Mycoheterotrophic orchids on wood-decaying fungi were sampled from 2009 to 2016 

(green box). The orchids’ 14C pattern was compared with the mean atmospheric 14CO2 based on tree-ring analysis. The graphic 

indicates mycoheterotrophs on saprotrophs received a carbon source fixed in the 60th (yellow symbols, when assuming carbon 

utilization before the 14CO2 peak) and 80th (red symbols, when assuming carbon utilization after the 14CO2 peak). Data obtained 

from Suetsugu et al. (2020c). 
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- “This is not so much a disappointment as a challenge to ecologists and biologists of the future. Much of the 

fascination of ecology and biology lies in the fact that many problems are blatant and obvious for everybody to see,  

while the solutions have as yet eluded us.”  

 

Mike Begon, Colin Townsend and John Harper (1990) extracted  

from Sieber and Grünig Microbial root endophytes (2006) as  

their concluding remarks about dark septate endophytes.  
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Synthesis 

The belowground plant-fungi symbiosis attracted attention by its mutual exchange of carbon-for-nutrients 

omnipresent in the plant kingdom. Much was learned about the bidirectional nutrient transfers in 

mycorrhizas, for instance in mutual Arum-morphotype AM symbioses (Figure 5). Unfortunately, the 

arbusculo-centric concept of AM might have previously blinded us from the nutritional concepts hidden behind 

their morpho-counterpart, that is Paris-morphotype AM. Also, a deep focus on mycorrhizal fungi has 

blinded us so far from the nutritional concepts hidden behind common fungal endophytes, such as FRE 

and DSE. The thesis provides evidence for: 

(i) Frequently, Paris-morphotype plant species are turning the tables of the mutual mycorrhizal life 

towards a gain of carbon from a fungal source. A continuum of Paris-morphotype AM plant species 

is evidentially deciphered, ranging from chlorophyllous fully autotrophic to chlorophyllous partially 

mycoheterotrophic to achlorophyllous fully mycoheterotrophic plants (Figure 5, Manuscript 1-3).  

(ii) DSE and FRE are actively or passively involved in a carbon-for-nutrient exchange just like 

mycorrhizal fungi. In striking contrast, DSE and FRE facilitate the acquisition of soil organic nutrient 

sources (Figure 5, Manuscript 3-4).  

 

Figure 5 Nutrient flows in plant-fungi symbiosis.   

Abbreviations: AM, arbuscular mycorrhiza; Arum- and Paris- represent morphotypes of AM; DSE, dark septate endophytes;  

FRE, fine root endophytes; N, either organic or inorganic nutrients; dashed line, could not be checked.  

Designed by Philipp Giesemann, produced by Katrin Giesemann 
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Manuscript 1, 2 and 3 elucidate plants that are partially mycoheterotrophic on Paris-coiling morphotype AM. 

The organic carbon and nutrient supply from a fungal source was deciphered by a conspicuous 13C, 2H and 

frequently 15N isotope enrichment for chlorophyllous Paris-coiling morphotype AM plant species (Figure 6). 

This is consistent with previous studies where a 13C, 2H and 15N isotope enrichment was commonly found 

for Orchidaceae and Ericaceae forming partial or full mycoheterotrophy on EcM fungi. Further, the isotope 

enrichment suits the pattern found for many fungi (Excursus 2). The 13C, 2H and frequently 15N isotope 

enrichment of chlorophyllous Paris-morphotype AM is positioned intermediate between achlorophyllous 

full mycoheterotrophs on AM and plant species forming the morpho-counterpart, that is Arum-morphotype 

AM (Figure 6). Partial mycoheterotrophy on Paris-morphotype AM plant species was found for forest 

ground herbaceous species of seed plants (Manuscript 1, 2), ferns (Manuscript 2) and horsetails (Manuscript 2, 3). 

Additionally, small tree saplings and hebaceous open-land meadow species potentially also benefit from a 

partially mycoheterotrophic nutrition at least for a distinct period in their development (Manuscript 2). 

The mean proportional carbon gain forms a continuum ranging from 7-93% and follows the sequence 

of fern > horsetail > seed plants (Figure 7). 

Paris quadrifolia (Paris-morphotype) and A. maculatum (Arum-morphotype) are chlorophyllous forest 

herbaceous species common in European forests and were isotopically confronted in Manuscript 1. The 13C, 

2H and frequently 15N isotope enrichment of P. quadrifolia approaches towards an isotope enrichment known 

from fully mycoheterotrophic AM plants (Merckx et al., 2010; Courty et al., 2011; Gomes et al., 2020). 

Additionally, Anemone nemorosa (Paris-morphotype) followed the trend in 13C and 2H enrichments. Following 

the assumption that full mycoheterotrophs meet their complete carbon demand from a fungal source, which 

is then mirrored by the full mycoheterotrophs 13C enrichment; then approximately 50% and 24% of the 

carbon demand is covered from a fungal source of the here investigated individuals of P. quadrifolia and 

A. nemorosa, respectively (Figure 7). Thus, P. quadrifolia and A. nemorosa represent a first starting point to 

assume both the Paris-morphotype as a prerequisite for partial mycoheterotrophy and a continuum of 

partially mycoheterotrophic nutrition. In contrast, the Arum-morphotype AM reference plant species, 

Fraxinus excelsior, Hedera helix, A. maculatum and Allium ursinum, did not appear conspicuous in stable 13C, 2H 

and 15N isotope enrichments; thus, their carbon demand assumedly is entirely derived from photosynthesis. 

Intriguingly, the Paris-morphotype does not exclusively occur in P. quadrifolia and A. nemorosa, whilst it is, 

indeed, documented for at least 40% of the 861 plant species summarized in Dickson et al. (2007) 

(intermediate forms omitted). Thereafter, more than 25 publications recorded the AM morphotypes in 

approximately 500 plant species (intermediate forms omitted). The data on morphotype development were 

synthesized with stable isotope natural abundance compositions of 509 (n = 4 647) putatively autotrophic 

plant species (status as of January 2020). The Manuscript 2 isotopically confronts 13 species forming full 
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mycoheterotrophy on Paris-morphotype, 63 chlorophyllous Paris-morphotype plant species, and 

59 chlorophyllous Arum-morphotype plant species (Figure 6). Chlorophyllous Paris-morphotype plant 

species were hypothesized to have partially mycoheterotrophic nutrition. Thirty one of the 63 

chlorophyllous Paris-morphotype AM plant species come along with a 13C enrichment and frequently 2H 

and 15N enrichment positioned intermediate between Paris-morphotype full mycoheterotrophs and Arum-

morphotype full autotrophs (Figure 6). Thus, about half of the Paris-morphotype plant species under study 

enqueue in the steadily increasing list of 124 so far known partially mycoheterotrophic plant species on EcM 

 

Figure 6 (a) Carbon and nitrogen enrichment factors (13C, 15N) and (b) carbon and hydrogen enrichment factors (13C, 

2H) for chlorophyllous Arum-type arbuscular mycorrhizal (AM) plant species (grey frame, SD), chlorophyllous Paris-

type AM plant species (brownish tones, brown frame, SD) and achlorophyllous, full mycoheterotrophs on AM fungi 

(blue, blue frame, SD) (obtained from Manuscript 2 ). AM morphotype assignment was obtained from literature (cf. Material 

and Methods section). Each species is represented by mean values. Standard deviations (SD) are omitted for clarity reasons. Symbol 

size reflects the sample size of the Paris-type species (n = 1 – 31, see Supplementary data Table S3). Each chlorophyllous Paris-type 

AM plant species was tested for significance of differences in 13C, 15N and 2H to co-occurring chlorophyllous Arum-type AM 

plant species (see Supplementary data Table S3). Chlorophyllous Paris-type AM plant species shown in coloured symbols are 

significant in at least one trait (13C enrichment, light gold; 13C+2H enrichment, light brown; 13C+15N enrichment, dark brown, 

13C+2H+15N enrichment, dark gold; no significant enrichment, white). Achlorophyllous plant species were not included in the test 

procedure (see Gomes et al., 2020). The data comprise for 13C/15N: 13 achlorophyllous Paris-type species (n = 99), 63 chlorophyllous 

Paris-type species (n = 520) and 59 chlorophyllous Arum-type species (n = 530). The data comprise for 2H: three achlorophyllous 

species (n = 14), 18 chlorophyllous Paris-type species (n = 100) and 15 chlorophyllous Arum-type species (n = 104).  
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and rhizoctonia fungi (cf. Hynson et al., 2013; Hynson et al., 2016; Schweiger et al., 2019; 

status as of January 2020). Recently, the chlorophyllous gentian Pterygocalyx volubilis (Suetsugu et al., 2020a) 

and sporophytes of Ophioglossum species (Suetsugu et al., 2020b) where found partially mycoheterotrophic 

which strengthen the findings as well. Consequently, mycoheterotrophy is commonly distributed among 

chlorophyllous AM plant species. The 13C relative enrichment suggests various degrees of partial 

mycoheterotrophy, thus a continuum of full autotrophic Arum- and Paris-morphotype AM species towards 

effective partial mycoheterotrophy on Paris-morphotype AM species is likely. This agrees with previous 

investigations on orchid and ericoid mycoheterotrophs (Hynson et al., 2013). The driver for the presence of 

partial mycoheterotrophy might be (a) the intracellular nature of fungal hyphae and (b) the light regime.  

(a) Intracellular hyphae are a common hallmark for mycoheterotrophic plants (Imhof, 1999; Imhof et al., 

2013), like OM forming intracellular fungal coiled ‘pelotons’, ErM forming intracellular ‘hyphal pegs’ and 

AM forming intracellular Paris-morphotype hyphal coils. To the contrary, partial or full mycoheterotrophy 

was not yet observed for intercellular hyphal growth, such as in Arum-morphotype AM (Imhof et al., 2013). 

(b) The light regime of the forest understory may be highly variable. So far investigated, in early-seasonal 

stages many Arum-morphotype AM plant species flourish as sunlight is pouring the forest ground, e.g. 

Allium, Bellis, Daphne, Muscari, Petasites, Prunus, Pulmonaria, and Rubus (however, some Paris-morphotype plants 

thrive in early-seasonal forests as well, for instance Anemone). This is consistent with Arum-morphotype AM 

plant species preferentially occuring in early-successional stages shaped by scattered sun flecks (Ahulu et al., 

2005; Dickson et al., 2007). In contrast, apparently the later the season and the later the successional stage 

the more Paris-morphotype plants thrieve in shaded habitats (Ahulu et al., 2005; Dickson et al., 2007). Thus, 

the additional carbon source from partial mycoheterotrophy might be profitable. Paris-morphotype AM 

forest understory species thriving under the shaded, closed canopy are e.g. forest ground species (Geranium, 

Mercurialis, Oxalis), Acer and Liriodendron tree saplings and ferns (Athyrium, Dryopteris, Polypodium) and horsetails 

(Equisetum). Many of the aforementioned Paris-morphotype AM plant species follow the hypothesized 13C, 

2H and frequently 15N enrichment, and thus likely are partial mycoheterotrophs, whilst Arum-morphotype 

plants remain isotopically inconspicuous. This is consistent with limited photosynthesis and lower 

photosynthetic rates of Paris-morphotype AM forest plants (Ludlow & Wolf, 1975; Wright et al., 2004; Gago 

et al., 2013; Dalke et al., 2018). Most intriguing, the proportional C gain via partial mycoheterotrophy of ferns 

and horsetails was significantly correlated with Ellenberg light regime (Manuscript 2). Irradiance as a driver for 

mycoheterotrophy is in agreement with mycoheterotrophs on EcM and rhizoctonia fungi (Preiss et al., 2010; 

Matsuda et al., 2012; Schweiger et al., 2019) However, the light regime might not represent the sole driver of 

partial mycoheterotrophy, as for instance Apiaceae, Ranunculaceae and Gentianaceae from meadow habitats 

also follow a partially mycoheterotrophic appearance (cf. consistent with rhizoctonia-associated open-land 

orchids, Schiebold et al. 2018). Summarzing, partial mycoheterotrophy is common among the group of Paris-

morphotype AM pteridophytes and seed plant species and could serve to compensate for light-limited 

environments in addition to other yet unknown drivers. Partial mycoheterotrophy may have profound 

effects on C and N cycling and may manipulate the biodiversity and the occurrence of plant species in their 

habitat just as chlorophyllous hemiparasites (Quested et al., 2003; Quested, 2008; Hartley et al., 2015). 
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Recently, Perez-Lamarque et al. (2020) showed low phylogenetic constraints for plants to feel delighted by 

the downside of mycorrhizal life, i.e. mycoheterotrophic nutrition on AM fungi. This might support the 

here discovered appearance of partially mycoheterotrophic nutrition on AM fungi in most pteridophytes 

and 13 seed plant families, both mono- and dicotyledons. Now, we must consider a significant proportion 

of the AM plant species that reveal the morphological prerequisite (Paris-morphotype AM) to efficiently gain 

carbon from a fungal source. This could potentially affect up to one-third of the more than 450 000 plant 

species developing varying degrees of mycoheterotrophy. However, we must admit that the Paris-

morphotype AM is not a sufficient precondition (cf. continuum).  

 

 

Figure 7 The mycoheterotrophic degree [%] forms a continuum for mycoheterotrophs on arbuscular mycorrhiza (AM). 

The full autotrophs are represented by the chlorophyllous plant species forming Arum-morphotype AM. Full mycoheterotrophy is 

represented by achlorophyllous AM species obtained from Merckx et al. (2010) and Gomes et al. (2020). The chlorophyllous partial 

mycoheterotrophs on Paris-morphotype AM are located intermediate. The positioning between the two-sources of full  

autotrophy and full mycoheterotrophy suggests a continuum of carbon acquisitions from a fungal source, exemplified by  

Dryopteris filix-mas (70±24%, n = 5), Gentiana lutea (70±20%, n = 5), Equisetum arvense (62±10%, n = 5), E. sylvaticum (61±13%, n = 4), 

Paris quadrifolia (45±25%, n = 13), Trollius europaeus (33±21%, n = 5), Mercurialis perennis (32±19%, n = 31), 

Anemone nemorosa (24±17%, n = 10) and Oxalis acetosella (20±20%, n = 10). Details outlined in Manuscript 1 and 2.  

Picture credits: horsetails © Philipp Giesemann; others © Schmeil-Fitschen flora mobil. 
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Manuscript 3 and 4 advance the current discussion on fungal root endophytes being involved in carbon-for-

nutrient trading (Jumpponen, 2001; Mandyam & Jumpponen, 2005; Field & Pressel, 2018; Hoysted et al., 

2018). The literature survey of C, N and H isotope abundances, which fundamentally contributed to 

Manuscript 2, brought also a 15N enrichment for non-mycorrhizal plant species to light (Figure 8). 

Interestingly, many non-mycorrhizal plant species appear with fungal root endophytes, such as DSE and 

FRE (Jumpponen & Trappe, 1998; Orchard et al., 2017b). A 15N enrichment in mycoheterotrophic plants 

was explained by a gain of 15N-enriched organic nutrients (Hynson et al., 2013; Schiebold et al., 2017), and 

thus might be equivalent to access of 15N-enriched soil organic compounds in non-mycorrhizal plants via 

fungal root endophytes. Plant species belonging to the Equisetaceae, Cyperaceae and Caryophyllaceae are 

densely colonized by DSE fungi (Jumpponen & Trappe, 1998) and selected species belonging to the 

Lycopodiaceae are densely colonized by FRE fungi (Rimington et al., 2016). Interestingly, Equisetaceae were 

involved in a dual symbiosis with DSE and Paris-morphotype AM (Fernández et al., 2008; Manuscript 3) and 

Juncaceae were involved in a dual symbiosis with FRE and AM (Manuscript 4). A nutritional role of DSE 

and FRE, that is a carbon-for-nutrient trading and, most intriguing, the facilitation of acquiring 15N-enriched 

soil nutrients was deciphered in Manuscript 3 and 4 (Figure 8). The 15N enrichment found in Cyperaceae and 

Caryophyllaceae obviously provides evidence for an actively or passively translocated 15N-enriched source 

towards the plant partner by its DSE fungi (Manuscript 3). The provided soil organic nitrogen source is 

probably rewarded in exchange for organic carbon compounds from photosynthesis. For Equisetaceae 

sporophytes the 13C, 2H and strongly pronounced 15N enrichments likely support the passive or active 

acquisition of 15N-enriched nutrients via DSE fungi while simultaneously support the acquisition of 13C-

enriched organic carbon via partial mycoheterotrophy from AM fungi (Manuscript 3). Interestingly, the 

isotope pattern found for full mycoheterotrophs on AM was mirrored by the achlorophyllous life form of 

E. arvense. Furthermore, in Manuscript 4 the club moss Lycopodiella inundata and the rush Juncus bulbosus, 

belonging to the plant families of Lycopodiaceae and Juncaceae, respectively, were significantly 15N-

enriched. Thus, FRE also facilitate the acquisition of 15N-enriched soil organic nitrogen compounds. 

Intriguingly, plant species belonging to the plant family of Juncaceae might either form separated symbioses 

with either FRE, AM and DSE or complex multi-symbioses (Jumpponen & Trappe, 1998; Orchard et al., 

2017b; Manuscript 4). Relative to accompanying mycorrhizal plant species, Juncaceae form a continuum of 

15N inconspicuous individuals (e.g., Motomura et al., 2010; Lallemand et al., 2017; Klink et al., 2019) to most 

15N-enriched individuals (e.g., Liebel et al., 2010; Gebauer et al., 2016; Schiebold et al., 2018; Klink et al., 2019; 

Manuscript 4). This might be addressed with the nitrogen regime the fungal partners offer. A dual symbiosis 

of FRE-AM in liverworts efficiently translocated both nitrogen and phosphorous, respectively (Field et al., 

2016; Field et al., 2019), thus a similar phenomenon is likely for L. inundata and perhaps Juncaceae which 

needs to be considered in future analysis. 
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The carbon-for-nutrient trading was evaluated for L. inundata. Tracer applications previously confirmed a 

mutual bidirectional nutrient exchange in liverworts associated with FRE (Field et al., 2015, 2016; Field et al., 

2019). Lycopodiella inundata was exposed to a 14CO2 tracer which was then retrieved in an ingrowth core 

colonized with FRE (Figure 9a). A small pore size mesh prevented root ingrowth. Furthermore, 

15N-ammonium chloride and 33P-labeled orthophosphate tracers were injected into the core and later 

retrieved from L. inundata aboveground plant material (Figure 9b). Most likely, FRE linked the soil and 

nutrients within the core (therein, the 15N and 33P tracers) to the root. The tracer application provides 

evidence of a mutual carbon translocation from L. inundata to FRE, while in exchange nutrients were 

translocated from fungi to plant (Figure 9c,d). The bidirectional nutrient transfer is similar to that for non-

vascular liverworts engaged with FRE (Field et al., 2015, 2016), yet the exchange is 189- and 145-times more 

effective for carbon and nitrogen, respectively, in L. inundata. In contrast, a greater quantity of phosphorous 

was translocated when the plant was engaged with AM fungi compared to FRE (Field et al., 2015, 2016; 

Field et al., 2019). A similar tracer approach is recommended for plant species colonized with DSE fungi.  

 

Figure 8 Carbon and nitrogen stable isotope enrichment factors (13C and 15N) in leaves of 37 plant species belonging to 

Lycopodiaceae (dark yellow triangle, n = 6), Equisetaceae (dark yellow pyramid, n = 44), Cyperaceae (dark yellow 

diamond, n = 217) and Caryophyllaceae (dark yellow circle, n = 48) associated with Mucoromycotina fine root 

endophytes (FRE) and dark septate endophytes (DSE). Equisetaceae were additionally colonized by Paris-morphotype 

arbuscular mycorrhiza (AM). The reference plants comprise arbuscular mycorrhizal (AM, green triangle), ectomycorrhizal (EcM, 

green circle), ericoid mycorrhizal (ErM, green square) and non-mycorrhizal (NM, green diamond, Brassicaceae) plant species 

(n = 789). Juncaceae (dark yellow rectangle, n = 6) were initially sampled to contribute to the reference plants (Manuscript 4) but also 

appear with DSE fungi according to Jumpponen & Trappe (1998) and with AM and FRE according to Manuscript 4. All data are 

shown with mean values and 95% confidence interval. 
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In sum, the ubiquitous fungal root endophytes likely facilitate the acquisition of 15N-enriched soil organic 

compounds in selected species belonging to the plant families of Caryophyllaceae, Cyperaceae, Equisetaceae, 

Juncaceae and Lycopodiaceae and potentially in numerous further plant families and species (Orchard et al., 

2017b). In contrast, mycorrhizal fungi might preferentially translocate isotopically inconspicuous soil 

ammonium and nitrate to their plant partner (Smith & Read, 2008; Field & Pressel, 2018) (Figure 8). An 

ecologically relevant function for the mostly underappreciated fungal root endophytes (DSE, FRE) is very 

likely. A possible DSE-plant mutualism supports the early investigations by Haselwandter & Read (1982) 

and Upson et al. (2009), and the recent carbon-for-nutrient tracer approach by Hill et al. (2019) as well as the 

meta-analysis of Mandyam & Jumpponen (2005) and Newsham (2011). The likely FRE-plant mutualism 

supports early investigations by Greenall (1963), Crush (1973a, 1973b) and Johnson (1977) (cf. Orchard et al., 

2017b) and contrasts with the weak parasitism occasionally found (cf. Orchard et al., 2017b).  

The FRE symbiosis enables new insights into early plant terrestrialisation 500 million years ago (Field & 

Pressel, 2018; Hoysted et al., 2018). Manuscript 4 suggests FRE are, indeed, serious symbiotic candidates 

facilitating early plant terrestrialisation by the advantages provided to the plant (Bidartondo et al., 2011; Field 

& Pressel, 2018; Strullu-Derrien et al., 2018). Mineral nutrient and organic nutrient acquisition by the elusive 

DSE and FRE could shed new perspectives on early vascular plant development as well as that of more 

recently evolved plants spanning from mosses to seed plants. Further, the living fossils of Equisetum spp. 

and L. inundata are the last recent representatives of early vascular plant species. Equisetaceae (Manuscript 3) 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Experimental design (a, b) and isotope tracer results (c, d) (obtained from Manuscript 4). 14C allocation from 

plant to fungus (c) and 15N and 33P allocation from fungus to plant (d). The tracer application elucidated the symbiosis between 

Lycopodiella indudata and Mucoromycotina fine root endophytes as nutritionally mutualistic. During the labelling period L. inundata 

transferred approximately 79±49 µg plant-fixed carbon and received 0.6-1% and 3-9% of the supplied 15N and 33P tracer, 

respectively. In absolute quantities more 15N than 33P were transferred. All data are shown with mean value and standard error.  
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turned the tables of mycorrhizal life towards a partially mycoheterotrophic nutrition, while partial 

mycoheterotrophy was not elucidated for L. inundata (Manuscript 4). This might open speculation about their 

thriving in the Carboniferous coal forests. The arborescent Equisetopsida were dominant in abundance and in 

species richness during the carboniferous era (approximately 300 million years ago) and emerged during the 

late Devionian (approximately 380 million years ago) (Burrill & Parker 1994; Feng et al., 2012). The ancestors 

of the recent herbaceous Equisetaceae impressed with gigantism (approximately 20 m height, 25 cm in 

diameter; Feng et al., 2012). Despite such remarkable size, they were likely literally overshadowed by 

gymnospermous trunks and arborescent lycopods (20- to 40 m height, 100 cm in diameter) (e.g. Gastaldo 

et al., 2004, Krings et al., 2011, Feng et al., 2012). Partial mycoheterotrophy might have opened a lucrative 

option to thrive in shady habitats millions of years ago.  

This thesis successfully addressed three research questions (Figure 1). Evidences for partial 

mycoheterotrophy, indeed, appears in chlorophyllous Paris-morphotype AM plant species. DSE and FRE 

actively or passively facilitate the acquisition of soil organic nutrients. FRE live in a bidirectional nutrient 

exchange with vascular plant species (Figure 10). Future outlooks might include: 

• The factor of irradiance in partially mycoheterotrophic plants on AM needs to be investigated in the 

future. The role of 15N isotope enrichment in mycoheterotrophs on AM needs to be deciphered as it 

might be linked to the functional diversity of Glomeromycotina fungi. 

• The possibility of a carbon reward for the DSE fungal partner needs to be analyzed.  

• The nutritional effects in FRE symbiosis on seed plant species from the monocotyledons and 

dicotyledons needs to be evaluated. 

• If the nutritional benefits provided by DSE and FRE are further supported by additional studies, it 

would be worth discussing whether their status as nutritional passive root endophyte is better 

described, instead, by active (facultative) mycorrhizal fungi?  

 

Figure 10 The three main results of this thesis. Illustrations from left to right: partial mycoheterotrophy is addressed in 

Manuscript 1-3, DSE-plant symbiosis in Manuscript 3 and FRE-plant symbiosis in Manuscript 4.   

Abbreviations: AM, arbuscular mycorrhiza; C, carbon; DSE, dark septate endophyte; FRE, fine root endophyte; N, nutrient; 

PMH, partial mycoheterotrophy. Drawing designed by Philipp Giesemann, produced by Katrin Giesemann.  
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CHAPTER 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- “I think, unfortunately, the Paris-morphotype was wrongfully understudied for a significant amount of time.  

If there is ongoing support for partial mycoheterotrophy on Paris-morphotype AM fungi, we might have  

overlooked important mechanisms in carbon trading until now. Also, mycorrhiza-like fungal  

endophytes, such as DSE and FRE might play an important role in the future” 
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Discreet heterotrophs: Green plants that receive fungal carbon trhough 

Paris-type arbuscular mycorrhiza 

Philipp Giesemann, Hanne N. Rasmussen, Heiko T. Liebel, Gerhard Gebauer 

 

The following Supporting Information is available for this article: 

Table S1 The mycorrhizal type and arbuscular mycorrhizal subtype of target plant species A. maculatum, 

P. quadrifolia and their respective reference plants separated by sampling location.  

Table S2 Equipment and substances related to stable isotope measurements and their reproducibility. 

Table S3 Statistical test procedure on stable isotope enrichment factors .   

Table S4 Root staining procedure and microphoto-documentation of hyphal structures.   

Table S5 Stable isotope natural abundances in -values [‰] and leaf total nitrogen concentrations  

[mmol g-1 dry weight] of the target plant species A. maculatum, P. quadrifolia and their respective reference 

plants. 

Respective references 
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Table S1 The mycorrhizal type and arbuscular mycorrhizal subtype of target plant species Arum maculatum 

and Paris quadrifolia and their respective reference plants separated by sampling location both carbonate-

rich forest sites but in North (49.6397 N, 11.2472 E, decimal WGS84) with 850 mm annual precipitation 

and the other in South Bavaria (47.6330 N, 11.1603 E) with 1300 mm annual precipitation (Deutscher 

Wetterdienst, 2019). Mycorrhizal types and AM-subtypes were classified based on literature as indicated and 

confirmed by own microscopic observations. 

Site Species N Mycorrhizal type 
AM-subtype based on 

Genus* or species# 

N
o

rt
h

 B
a
va

ri
a
 

Arum maculatum L. 5 AM1 Arum-type2,3,# 

Paris quadrifolia L. 5 AM1 Paris-type2,3,# 

Alliaria petiolata (M. Bieb.) Cavara & 

Grande 
5 NM1 - 

Hedera helix L. 5 AM1 Arum-type3,# 

Anemone nemorosa L. 5 AM1 Paris-type3,# 

S
o

u
th

 B
a
va

ri
a
 

Arum maculatum L. 5 AM1 Arum-type2,3,# 

Paris quadrifolia L. 5 AM1 Paris-type2,3,# 

Allium ursinum L. 5 AM1 Arum-type3,* 

Fraxinus excelsior L. 5 AM1 Arum-type3,# 

Galium odoratum (L.) Scop. 5 various1,3-6,* 

AM: arbuscular mycorrhizal, NM: non-mycorrhizal, 1: Brundrett & Tedersoo (2019), 2: Gallaud (1905),  

3: Dickson et al. (2007), 4: Wang & Qui (2006), 5: Fraccia et al. (2009); 6: Shah et al. (2009). Deutscher Wetterdienst 

(DWD). 2019. Climate Data Center. https://cdc.dwd.de/portal/ (15 May 2019). 
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Table S2 Equipment and substances in order to apply the stable isotope measurements and their 

reproducibility. 

Drying temperature 105 °C 

Ball mill Retsch Schwingmühle MM2, Haan, Germany 

  

Elemental analyzer (EA) coupled to an Isotope ratio mass spectrometer (IRMS) 

EA 1108; Carlo Erba Instruments, Milano, Italy 

IRMS delta S, Finnigan MAT, Bremen, Germany 

ConFlo III interface Thermo Fisher Scientific, Bremen, Germany 

  

Thermal conversion (TC) coupled to an Isotope ratio mass spectrometer (IRMS) 

Thermal Conversion device (pyrolysis 

oven) 

HTO, HEKAtech, Wegberg, Germany 

IRMS delta V advantage, Thermo Fisher Scientific, Bremen, Germany 

ConFlo IV interface Thermo Fisher Scientific, Bremen, Germany 

  

Standard gases (Riessner, Lichtenfels, Germany) calibrated acc. to international standards  

CO2 vs. V-PDB ANU sucrose and NBS19 for the C isotopes 

N2 vs. N2 in air N1 and N2 for the N isotopes 

H2 vs. V-SMOW CH7, V-SMOW and SLAP for H isotopes 

CO vs. V-SMOW IAEA601 and IAEA602 for the O isotopes 

 

Provider: International Atomic Energy Agency Vienna, Austria 

Acetanilide (MERCK KGaA, Darmstadt, Germany) was used to calibrate the C/N concentrations. 

  

Reproducibility of isotope measurements  

δ13C < 0.2 ‰ 

δ15N < 0.2 ‰ 

δ2H < 4.0 ‰ 

δ18O < 0.6 ‰ 

 



Manuscripts of this thesis 

63 

Table S3 Statistical test procedure on stable isotope enrichment factors . 

Step 1 Normal distribution                                             ➔ Shapiro-Wilk test 

 Homogeneity of variance                                     ➔ Levene test 

   

Most data were not normal distributed, thus non-parametric tests were applied. 

  

Step 2 Arum maculatum (n = 10) vs.  

Paris quadrifolia (n = 10) vs.                                  ➔  

Reference plants (n = 30)       

One-tailed Kruskal 

Wallis (H) 

Step 3 Significant differences between the groups?        ➔ Dunn’s post hoc tests (Z) 

   

The P-values were adjusted with Holm-Bonferroni correction.  

The significance level of  = 0.05 was set. 

Applied Software for statistics and graphs: RStudio 1.1 (R Core Development Team, Vienna, Austria) and SigmaPlot 

11.0 (Systat Software, San Jose, CA, USA) 
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Table S4 Root staining procedure and microphoto-documentation of hyphal structures. 

 Wash out ethanol in VE-water  

 

Clearing: 

 

10 % (w/v) KOH 

 

30 min, 70 °C 

   

Acidification: 1 % (v/v) HCl 1-3 min, RT 

   

Stain: 1 % (w/v) trypan blue stain consisted of stain powder,  

33 % (v/v) lactic acid and 33% (v/v) glycerol 

 

overnight, RT 

 

Microphoto-

documentation 

 

 

BA210LED trino, Motic, Wetzlar, Germany 

3MP Moticam 3+  

 

4x, 10x, 40x and 100x 

magnification 

RT: room temperature 
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Table S5 Stable isotope natural abundances in -values [‰] and leaf total nitrogen concentrations  

[mmol g-1 dry weight] of the target plant species Arum maculatum and Paris quadrifolia and their respective 

reference plants separated by sampling location (North and South Bavaria). 

Site Species (N) 13C 15N 2H 18O Total N 

N
o

rt
h

 B
a
va

ri
a
 

Arum maculatum (5) -29.8 ±0.3 -2.6 ±0.5 -118.8 ±3.2 24.3 ±0.4 2.8 ±0.3 

Paris quadrifolia (5) -27.6 ±0.8 -1.9 ±0.3 -100.9 ±2.3 24.6 ±0.5 2.3 ±0.1 

Alliaria petiolata (5) -31.2 ±0.3 -0.1 ±0.8 -133.0 ±2.3 24.0 ±0.6 3.7 ±0.4 

Hedera helix (5) -31.0 ±0.4 -2.9 ±0.9 -119.8 ±1.6 26.0 ±0.7 1.5 ±0.3 

Anemone nemorosa (5) -28.9 ±0.4 -2.9 ±0.7 -113.7 ±2.5 24.0 ±0.6 2.0 ±0.2 

S
o

u
th

 B
a
va

ri
a
 

Arum maculatum (5) -30.7 ±0.3 -4.2 ±0.7 -110.6 ±3.0 23.5 ±0.3 2.3 ±0.4 

Paris quadrifolia (5) -28.7 ±0.6 -3.4 ±0.5 -100.5 ±3.3 23.4 ±0.3 2.0 ±0.2 

Allium ursinum (5) -30.2 ±0.3 -3.3 ±0.4 -113.5 ±1.9 22.8 ±0.5 2.2 ±0.1 

Fraxinus excelsior (5) -31.0 ±0.4 -4.2 ±0.6 -101.3 ±6.2 24.7 ±0.5 2.2 ±0.3 

Galium odoratum (5) -32.5 ±0.8 -3.3 ±0.4 -103.0 ±0.3 23.1±0.5 1.9 ±0.1 
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Annals of Botany Supporting Information  

 

Partial mycoheterotrophy is common among chlorophyllous plants with 

Paris-type arbuscular mycorrhiza 

Philipp Giesemann, Hanne N. Rasmussen, Gerhard Gebauer 

 

The following Supporting Information is available for this article: 

Figure S1 Ellenberg Indicator Value (EIV) for light availability and temperature between Arum- (grey) and 

Paris-type (dark gold) arbuscular mycorrhizal (AM) plant species. 

Table S1 Stable isotope enrichment factors  (‰) with SD, leaf total N concentrations (N, mmol g-1dry wt) 

with SD and the arbuscular mycorrhizal type (AM).  

Table S2 Pairwise Dunn’s post hoc test (Z) for significance of differences between chlorophyllous Arum- and 

Paris-type arbuscular mycorrhizal plant species separated by groups of horsetails, ferns and seed plants in 

enrichment factors 13C, 15N, 2H. 

Table S3 Mann-Whitney U test for significance of differences between chlorophyllous Paris-type species 

and their respective chlorophyllous Arum-type reference plant species in stable isotope enrichment factors 

13C, 15N, 2H. 

Respective references
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Figure S1 Ellenberg Indicator Value (EIV) for light availability and temperature between Arum- (grey) and 

Paris-type (dark gold) arbuscular mycorrhizal (AM) plant species. EIV and AM morphotype were obtained 

from literature (cf. Materials and Methods section). In both traits a significant difference was observed, Paris-

type AM plant species occurring tendentially under lower light and temperature than Arum-type AM plant 

species (U(148, 94) = 5416, PLight Availability = 0.003, Cohen’s d = 0.4; U(111, 66) = 2605, PTemperature < 0.001, 

Cohen’s d = 0.5). The range of the boxes illustrate the first and third quartile, the horizontal solid lines 

represent the medians, the whiskers enclose data within the 1.5x interquartile range, colorless circles are data 

extremes. 
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Table S1 Stable isotope enrichment factors   (‰) with SD, leaf total N concentrations (N, mmol g-1dry wt) 

with SD and the arbuscular mycorrhizal type (AM). PT, Paris-type AM; AT, Arum-type AM; NA, not 

available.  

Species (n) AM-type/ literature 13C [‰] 15N [‰] 2H [‰] 18O [‰] N  Isotope Literature 

Acer campestre 
(2) 

PT †, 1 1.7±1 1.1±1.7 NA NA 1.4±0 Liebel et al.(2010) 

Acer platanoides 
(9) 

PT †, 1 0.2±0.8 -0.8±1.5 NA NA 2.1±0.6 
Gebauer and Meyer 
(2003), Giesemann et 
al.(2020a)  

Acer 
pseudoplatanus 

(25) 
PT *, 1 -1±1.2 0.2±1.3 19.9±9.9 2.5±4.6 1.3±0.3 

Zimmer et al. (2007), 

Student course (2008) 
unpublished, Zimmer et 

al. (2008), Preiss et al. 
(2010), Schiebold et al. 
(2018) 

Alchemilla alpina 

(10) 
PT †, 2,3 0.3±0.6 -0.1±1.7 3.1±11 1.3±0.5 1.8±0.4 

Student course (2008) 
unpublished, Student 
course (2018) 
unpublished 

Alchemilla sp. (6) PT †, 2,3 0.4±2.4 0.6±1 NA NA 1.6±0.3 
Student course (2008) 

unpublished 

Alchemilla vulgaris 

(4) 
PT †, 2,3 1.4±0.4 0.1±1 NA NA 1.4±0.2 

Gebauer and Meyer 
(2003) 

Allium ursinum (5) AT *, 1,4,5,6 0.4±0.3 0.6±0.1 -5±2 -0.9±0.3 2.2±0.1 
Giesemann et al. 
(2020b) 

Anagallis foemina 

(15) 
AT †, 1,5 0±0 0±0 NA NA NA Liebel et al. (2010) 

Anemone 

nemorosa (10) 
PT *, 1,‡ 1.2±0.8 -0.8±1.3 5.6±2.4 -1.1±0.6 2.1±0.2 

Giesemann et 
al.(2020a), Giesemann 

et al. (2020b)  

Aquilegia atrata 
(15) 

PT †, 7 0.1±0.8 -0.3±2.2 14.8±6.3 -0.1±1.2 1.8±0.7 
Student course (2008) 
unpublished, Schiebold 

et al. (2018) 

Arum maculatum 
(10) 

AT *, 1,‡ 0.3±0.4 -0.1±0.5 -0.8±3 -0.5±0.5 2.5±0.5 
Giesemann et al. 
(2020b) 

Arum pictum (5) AT †, 1 0±0 0±0 NA NA 1.9±0.3 Liebel et al. (2010) 

Asarum 

europaeum (5) 
PT *, 1 -2.8±0.8 -1.3±1 12.6±8.3 -0.7±0.7 1.4±0.2 Schiebold et al. (2018) 

Asphodelus 
aestivus (25) 

PT †, 1 0.9±1.3 0.2±1.2 NA NA NA Liebel et al. (2010) 

Asplenium ruta-
muraria (5) 

PT , ‡ 1.1±1.4 -3.9±1.1 NA NA 2±0.1 
Giesemann et al. 
(2020a)  

Astrantia major 
(25) 

PT , ‡ 0.8±0.9 -0.5±1 6.5±6 0.5±1.7 2±0.4 
Schiebold et al. (2018), 
Student course (2018) 
unpublished 

Athyrium filix-

femina (5) 
PT †, 1,‡ 4.5±1.4 0.6±3.4 NA NA 1.4±0.3 

Giesemann et al. 
(2020a) 

Athyrium 
japonicum (5) 

PT †, 1 0.7±0.8 0±1.4 NA NA 2.7±0.2 Lee et al. (2015) 

Bellis perennis (5) AT *, 1,‡ 0±0 0±0 0±0 0±0 1.9±0.2 
Student course (2018) 
unpublished 

Blechnum sp. (2) PT †, 3 2.5±1.9 0.5±1.5 NA NA 0.9±0.1 Gomes et al. (2020) 

Botrychium lunaria 

(6) 
PT *, 1 -0.1±1.5 5.9±0.7 NA NA 2.5±0.5 

Student course (2008) 
unpublished 

Brachypodium 
pinnatum (5) 

PT *, 8 -0.2±1.4 -1.3±1.2 NA NA NA Liebel et al. (2010) 

Brachypodium 
sylvaticum (6) 

PT †, 8 -0.8±0.8 1.4±1.1 NA NA 1.6±0.5 
Giesemann et al. 
(2020a) 

Bromus erectus 

(29) 
PT †, 5,8,‡ 0.9±0.7 0.4±1.1 NA NA NA 

Girlanda et al. (2011), 
Liebel et al. (2010) 

Bromus sp. (21) PT †, 5,8 0.5±1.1 -0.4±1.7 NA NA 1.8±0.6 Ercole et al. (2015) 

Buphthalmum 
salicifolium (1) 

AT , ‡ 0 0 NA NA 1.9 
Student course (2016) 
unpublished 
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Table S1 
continued. 

       

Species (n) AM-type/ literature 13C [‰] 15N [‰] 2H [‰] 18O [‰] N  Isotope Literature 

Centaurea jacea 
(14) 

AT †, 1,5,‡ -0.1±0.3 0.5±0.6 -1.8±4.2 -0.1±0.4 1.9±0.4 Schiebold et al. (2018) 

Chrysanthemum 
leucanthemum 

(11) 
AT †, 9,‡ -0.1±0.2 0.1±0.5 NA NA 2.2±0.3 Gebauer & Meyer 2003 

Colchicum 

autumnale (14) 
PT *, 1 -1.2±1 0±1.6 NA NA 1.6±0.1 

Gebauer and Meyer 
(2003) 

Commelina 
communis (9) 

AT *, 1 0±0 0±0 NA NA 3.8±0.2 
Bidartondo et al. (2004), 
Giesemann et al. 
(2020a) 

Convallaria majalis 
(27) 

AT *, 1,10 0.1 -0.1 NA NA 1.6 
Lee et al. (2015), 
Suetsugu et al. (2017) 

Cornus 

controversa (1) 
PT †, 1 0.8 0.2 NA NA NA 

Zimmer et al. (2007), 
Zimmer et al. (2008), 

Gebauer and Meyer 
(2003), Preiss et al. 
(2010), Hynson et al. 
(2015), Liebel et al. 
(2015) 

Crepis vesicaria 
(10) 

AT †, 5 0±0 0±0 NA NA NA 
Girlanda et al. (2011), 
Liebel et al. (2010) 

Daphne 

mezereum (3) 
AT †, 1 0±0.1 0.3±0.7 NA NA 2.3±0.1 

Gebauer and Meyer 
(2003) 

Diplazium 
sandwichianum (6) 

PT †, 1 4.4±1.4 0.1±0.6 NA NA 3±0.4 Hynson (2016) 

Disporum 
smilacinum (1) 

PT *, 1 -0.5 1.6 NA NA NA Shutoh et al. (2016) 

Dryopteris filix-

mas (5) 
PT , ‡ 3.5±1.2 -0.1±1.8 NA NA 1.5±0.1 

Giesemann et al. 
(2020a) 

Equisetum 
arvense (5) 

PT *.†, 1 3.1±0.5 2.2±1 NA NA 2.5±0.3 
Giesemann et al. 
(2020a) 

Equisetum 
fluviatile (5) 

PT *.†, 1 0.4±0.1 4.4±1.3 NA NA 1.9±0.2 
Giesemann et al. 
(2020a) 

Equisetum 
palustre (5) 

PT *.†, 1 0.8±0.4 7.7±3.2 18.6±3 4.6±1.5 3.1±0.4 
Giesemann et al. 
(2020a) 

Equisetum 
sylvaticum (4) 

PT *.†, 1 3.1±0.7 7.4±3 14±5.2 2.7±0.8 1.9±0.2 
Giesemann et al. 
(2020a) 

Equisetum 
telmateia (5) 

PT *.†, 1 2±1.1 3.3±1.9 NA NA 1.4±0.2 
Giesemann et al. 
(2020a) 

Erodium 
cicutarium (5) 

AT †, 1 0±0 0±0 NA NA 1.6±0.1 
Giesemann et al. 
(2020a) 

Fragaria vesca 
(35) 

AT *, 1 0.2±0.4 0±0.8 -3±4.8 0.1±0.2 1.4±0.3 

Student course (2008) 
unpublished, Zimmer et 

al. (2008), Student 
course (2016) 
unpublished, Schiebold 
et al. (2017), Schiebold 

et al. (2018), Giesemann 
et al. (2020a) 

Fraxinus excelsior 
(6) 

AT *, 1 -0.3±0.3 -0.2±0.4 7.1±3.5 1.1±0.3 1.9±0.8 
Student course (2008) 
unpublished, Giesemann 
et al. (2020b) 

Galium aparine (5) AT *, 5 -0.9±0.3 0.3±0.4 NA NA 3±0.6 
Giesemann et al. 
(2020a) 
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Species (n) AM-type/ literature 13C [‰] 15N [‰] 2H [‰] 18O [‰] N  Isotope Literature 

Gentiana 

asclepiadeae (5) 
PT *, 1 1±1.1 4±1 -7.1±5 0.8±1 2.2±0.2 

Student course (2018) 
unpublished 

Gentiana bavaria 
(5) 

PT †, 1 0.2±1.3 2.9±0.7 -15.5±7.8 -5.5±10.3 1.4±0.1 
Student course (2018) 
unpublished 

Gentiana lutea (5) PT *, 1 3.5±1 1.9±0.5 -12.9±4.7 1.7±1.6 1.6±0.2 
Student course (2018) 
unpublished 

Geranium 

robertianum (5) 
PT †, 1,11,however 5 -1.1±0.5 -2.7±2.5 NA NA 2.6±0.5 Liebel et al. (2010) 

Geranium 

sylvaticum (5) 
PT †, 1,11,however 5 2.5±0.5 -0.9±1.1 NA NA 1.8±0.1 

Gebauer and Meyer 
(2003) 

Hedera helix (17) AT *, 1 0±0.6 -0.1±0.6 -0.5±2.2 0.8±0.3 1.5±0.3 
Liebel et al. (2010), 
Giesemann et al. 
(2020b) 

Hieracium pilosella 
(1) 

AT *, 1,8 0 0 NA NA 2.1 
Gebauer and Meyer 

(2003) 

Holcus mollis (5) AT †, 1 0±0 0±0 NA NA 1.9±0.1 
Giesemann et al. 
(2020a) 

Homogyne alpina 
(5) 

AT , ‡ 0±0 0±0 NA NA 1.6±0.3 
Student course (2008) 
unpublished 

Ilex macropoda (1) PT †, 1 0.1 4.6 NA NA NA Shutoh et al. (2016) 

Impatiens 

parviflora (5) 
AT †, 1,5 0±0 0±0 NA NA 1.8±0.2 Schiebold et al. (2017) 

Juniperus 
communis (2) 

AT †, 1 0±0 0±0 NA NA 1±0 Bidartondo et al. (2004) 

Knautia sylvatica 

(10) 
AT †, 9 0±0 0±0 NA NA 1.1±0.1 

Student course (2007) 
unpublished, Hynson et 

al. (2009) 

Lamium 
galeobdolon (5) 

AT , ‡ -0.5±0.9 1.5±1.5 NA NA 2.4±0.3 
Giesemann et al. 
(2020a) 

Leontodon 

tuberosus (5) 
AT †, 1 0±0 0±0 NA NA NA Liebel et al. (2010) 

Leptospermum sp. 
(2) 

AT †, 1 -1.2±1.2 3.3±0.1 NA NA 0.3±0.1 Gomes et al. (2020) 

Ligusticum 
mutellina (5) 

PT , ‡ 0.8±0.2 1.7±1.1 13.8±4.4 0.3±0.7 2.4±0.1 
Student course (2018) 
unpublished 

Ligustrum vulgare 
(5) 

AT *, 1 -0.3±0.4 0.4±0.3 NA NA NA Liebel et al. (2010) 

Lindera benzoin 

(1) 
AT †, 1 0 0 NA NA NA 

Cameron and Bolin 
(2010) 

Lindera umbellata 
(1) 

AT *, 1 0 0 NA NA NA Shutoh et al. (2016) 

Liriodendron 
tulipifera (1) 

PT *, 1 0 -1.6 NA NA NA 
Cameron and Bolin 
(2010) 

Lysimachia 
nummularia (5) 

PT *, 12 1.1±0.5 0.9±1.7 2.7±4.6 0.3±1.1 1.2±0.2 
Giesemann et al. 
(2020a) 

Lysimachia 
vulgaris (19) 

AT *, 1 0.1±0.9 0.7±1.2 NA NA 1.6±0.3 
Bidartondo et al. (2004), 
Giesemann et al. 
(2020a) 

Matteuccia 
struthiopteris (5) 

PT , ‡ 0.3±0.8 0.4±2.4 NA NA 1.4±0.2 
Giesemann et al. 
(2020a) 

Melica nutans (4) PT †, ‡,however 8 0.8±0.8 -0.2±1 NA NA 2.1±0.1 
Gebauer and Meyer 
(2003) 

Mercurialis 
perennis (31) 

PT *, 13,‡ 1.6±1.1 1.1±1.4 21.4±6.4 0.2±1 2±0.5 

Student course (2007) 
unpublished, Student 

course (2008) 
unpublished, Hynson et 

al. (2009), Student 
course (2016) 
unpublished, Student 
course (2018) 
unpublished 
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Species (n) AM-type/ literature 13C [‰] 15N [‰] 2H [‰] 18O [‰] N  Isotope Literature 

Meum 
athamanticum (10) 

PT , ‡ 2.2±0.8 -0.7±2.8 NA NA 2.5±0.2 
Gebauer and Meyer 
(2003) 

Molinia caerulea 
(7) 

PT †, 1 0.3±1.3 0.7±0.8 NA NA 2.1±0.3 
Schiebold et al. (2018), 
Giesemann et al. 
(2020a) 

Myrsine seguinii 
(5) 

PT †, 1 1.3±1.1 -1.2±1.2 NA NA 0.9±0.2 
Ogura-Tsujita et al. 
(2018), Ogura-Tsujita et 
al. unpublished 

Olearia sp. (3) AT †, 1 0.4±0.2 -1±0.7 NA NA 0.9±0.1 Gomes et al. (2020) 

Oplismenus 
undulatifolius (1) 

AT *, 1 0 0 NA NA NA Suetsugu et al. (2017) 

Origanum vulgaris 
(5) 

AT *, 14,however 1 -1.3±0.5 -0.1±1 -7.2±4.4 1.6±0.3 1.3±0.2 
Student course (2018) 
unpublished 

Oxalis acetosella 

(10) 
PT †, 

1,5, ‡,however 

1,15 
1±1 -0.7±1.9 11.1±4.8 6.5±3 1.7±0.4 

Liebel et al. (2015), 
Schiebold et al. (2018), 
Giesemann et al. 
(2020a) 

Paederia 

scandens (5) 
PT *, 1 -0.2±0.9 -0.9±1.9 NA NA NA Suetsugu et al. (2017) 

Paris quadrifolia 
(13) 

PT *, 1,‡ 2.3±0.8 0.7±0.6 8.6±4.2 -0.4±0.4 2.1±0.3 
Hynson et al. (2015), 
Giesemann et al. 
(2020b) 

Pimpinella 
saxifraga (15) 

PT †, 1,10 0.3±0.6 1.6±1.6 NA NA NA 
Girlanda et al. (2011), 

Liebel et al. (2010) 

Plantago 
lanceolata (76) 

AT *, 1,5,‡ 0±0.6 -0.3±1 1.7±4.1 0.1±0.4 1.4±0.4 

Gebauer and Meyer 
(2003), Girlanda et al. 
(2011), Liebel et al. 
(2010), Ercole et al. 
(2015), Schiebold et al. 
(2018), Giesemann et al. 
(2020a) 

Plantago media 

(5) 
AT *, 8 1.3±0.5 0.1±1 7.2±4.4 -1.6±0.3 1.2±0.2 

Student course (2018) 
unpublished 

Plantago sp. (3) AT †, 1,5 0±0 0±0 NA NA NA 
Student Course (2008) 
unpublished 

Poa sp. (5) AT †, 
15,‡,however 

1,3,5 
0±0 0±0 NA NA 1.9±0.3 

Giesemann et al. 
(2020a) 

Polygala 

chamaebuxus (4) 
AT †, 1,‡ 0±0 0±0 NA NA 1.8±0.2 

Gebauer and Meyer 
(2003) 

Polygonatum sp. 
(5) 

AT †, 1 0.2±0.3 -0.8±0.8 NA NA 2.6±0.2 
Student course (2018) 
unpublished 

Polypodium 
vulgare (5) 

PT , ‡ 2.3±0.8 -2.8±0.8 NA NA 1.8±0.3 
Giesemann et al. 
(2020a) 

Polystichum sp. 

(16) 
PT †, 3 3.1±1.5 -0.3±1.8 NA NA 1.1±0.4 Gomes et al. (2020) 

Pomaderris sp. 

(14) 
AT †, 1 0.2±0.9 -0.5±1.7 NA NA 1.1±0.4 Gomes et al. (2020) 

Potentilla erecta 

(32) 
AT *, 10 0±0.6 -0.1±0.4 1.3±2.4 0.4±0.8 1.8±0.3 

Student course (2008) 

unpublished, Student 
course (2016) 
unpublished, Schiebold 
et al. (2018), Student 
course (2018) 
unpublished, Giesemann 

et al. (2020a) 

Potentilla 

neumanniana (5) 
AT †, 4,6,8,10 1±0.2 0.7±0.1 NA NA NA Liebel et al. (2010) 

Potentilla sp. (5) AT †, 4,6,8,10 0.3±0.7 1.1±3.6 NA NA 1.7±0.3 Ercole et al. (2015) 

Prenanthes 
purpurea (6) 

AT , ‡ -0.2±0.2 0.6±0.8 NA NA 2.2±0.4 
Schiebold et al. (2018), 
Student course (2018) 
unpublished 
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Species (n) AM-type/ literature 13C [‰] 15N [‰] 2H [‰] 18O [‰] N  Isotope Literature 

Prunella vulgaris 

(5) 
AT *, 10,‡ -1±1.1 -0.1±0.3 -3.6±2.8 -1±1 1.6±0.1 Schiebold et al. (2018) 

Prunus spinosa (7) AT †, 1,however 15 -0.1±0.8 0.6±1.2 NA NA NA Liebel et al. (2010) 

Psychotria 
serpens (5) 

AT †, 1 0±0 0±0 NA NA 1.3±0.1 
Ogura-Tsujita et al. 
(2018), Ogura-Tsujita et 

al. unpublished 

Pteridium sp. (2) PT †, 1 3.3±0.3 0.9±1.3 NA NA 1.6±0.7 Gomes et al. (2020) 

Ranunculus sp.  
(23) 

PT †, 1,11,however 9 0.3±1 0.2±3.2 NA NA 2±0.5 Ercole et al. (2015) 

Rubus argutus (4) AT †, 1 0±0.6 0±1.4 NA NA 2.2±0.3 Hynson (2016) 

Rubus idaeus (14) AT †, 1 0±0 0±0 NA NA 1.4±0.2 
Giesemann et al. 
(2020a) 

Salvia pratensis 

(21) 
AT †, 5,7,8,10,16 0.1±0.6 -0.1±0.9 NA NA 1.7±0.4 

Liebel et al. (2010), 
Ercole et al. (2015) 

Sanguisorba minor 
(5) 

AT †, 6,10 -0.3±0.2 -1.1±0.3 NA NA NA Liebel et al. (2010) 

Sanguisorba sp. 
(10) 

AT †, 6,10 -0.2±0.7 -0.1±2.7 NA NA 1.6±0.3 Ercole et al. (2015) 

Scandix pecten-
veneris (10) 

PT *, 5 1.1±0.8 -1.5±0.6 NA NA NA Liebel et al. (2010) 

Sesleria albicans 
(6) 

PT †, 9 1.4±1.9 -0.9±1.1 NA NA 1.2±0.4 
Gebauer and Meyer 
(2003), Bidartondo et al. 
(2004) 

Smilax aspera (5) PT *, 1 1.3±0.9 1.5±2.3 NA NA 1±0.3 Liebel et al. (2010) 

Solidago virgaurea 

(3) 
AT *, 1 -1.6±0.2 0.5±0.1 NA NA 2.2±0.1 Hynson et al. (2015) 

Sorbus aucuparia 
(11) 

PT †, 1 0.2±0.9 -0.6±0.9 10.5 -2.8 1±0.2 
Zimmer et al. (2007), 
Zimmer et al. (2008), 
Schiebold et al. (2018) 

Tamus communis 
(5) 

PT *, 1 0.9±1.1 1.6±0.9 NA NA NA Liebel et al. (2010) 

Taraxacum 
officinalis (10) 

AT *, 1,10,‡ -0.3±0.6 0.1±1.3 5.3±5.4 -0.1±0.3 1.9±0.8 
Giesemann et al. 
(2020a) 

Teucrium botrys 

(5) 
AT *, 10 0±0 0±0 NA NA NA Liebel et al. (2010) 

Teucrium marum 
(5) 

AT †, 10 0±0 0±0 NA NA NA Liebel et al. (2010) 

Teucrium polium 
(5) 

AT †, 10 -1±0.2 -0.7±0.1 NA NA NA Liebel et al. (2010) 

Tripterospermum 
japonicum (1) 

PT *, 1 0.8 1.8 NA NA NA Shutoh et al. (2016) 

Trollius europaeus 

(5) 
PT , ‡ 1.7±1 0.4±1.8 21.3±5.6 0.3±1 1.8±0.5 Schiebold et al. (2018) 

Urtica dioica (5) AT *, 1,5 0.9±0.3 -0.3±0.4 NA NA 2.8±0.5 
Giesemann et al. 

(2020a) 

Veronica urticifolia 
(1) 

AT †, 1 0 0 0 0 1.7 Schiebold et al. (2018) 

Viburnum 
dilatatum (1) 

PT *, 1 -0.9 3.8 NA NA NA Shutoh et al. (2016) 

Viola arvensis (5) PT †, 
1,4,however 

7,16 
-0.1±1.1 0.3±1.1 NA NA 1.3±0.3 

Giesemann et al. 
(2020a) 

Viola sp. (10) PT †, 
1,4,however 

7,16 -0.8±1.2 -0.3±1.7 NA NA 1.3±0.2 Schiebold et al. (2017) 
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The arbuscular mycorrhizal subtype was obtained from 1 Dickson et al. (2007), 2 Becerra et al. (2007), 3 Menoyo et al. (2007), 4 Nobis 

et al. (2015), 5 Shah et al. (2009), 6 Shi et al. (2013), 7 Zubek et al. (2011b), 8 Turnau et al. (2008), 9 Zubek et al. (2008), 10 Zubek et 

al. (2011a), 11 Druva-Lusite and Ievinsh (2010), 12 Kołaczek et al. (2013), 13 Diallo et al. (2001), 14 Burni and Hussain (2011), 

15 Velázquez et al. (2010), 16 Zubek and Błaszkowski (2009). Subtype classification on the level of species “*”, and on genera “†” 

(cf. morphotype is in most cases consistent across species of the same genus; Dickson et al., 2007), ‡ personal observation. 
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Table S2 Pairwise Dunn’s post hoc test (Z) for significance of differences between chlorophyllous Arum- and 

Paris-type arbuscular mycorrhizal plant species separated by groups of horsetails, ferns and seed plants in 

enrichment factors 13C, 15N, 2H. Significances are highlighted in bold. NA, not available.  

 13C 15N 2H 

 
Test  

statistics 
P 

Test 
statistics 

P 
Test  

statistics 
P 

Arum-type seed plants vs 
Paris-type seed plants 

Z = -8.661 < 0.001 Z = -1.808 = 0.071 Z = -5.873 < 0.001 

Paris-type ferns vs 
Arum-type seed plants 

Z = 10.321 < 0.001 Z = -1.170 = 0.121 NA  

Paris-type horsetails vs 
Arum-type seed plants 

Z = 6.942 < 0.001 Z = 7.853 < 0.001 Z = 5.076 < 0.001 

Paris-type fern vs 
Paris-type seed plants 

Z = 6.040 < 0.001 Z = -2.025 = 0.064 NA  

Paris-type horsetails vs 
Paris-type seed plants 

Z = 4.233 < 0.001 Z = 7.256 < 0.001 Z = 2.634 = 0.004 

Paris-type horsetails vs 
Paris-type ferns 

Z = 0.305 = 0.380 Z = 7.482 < 0.001 NA  

The groups were significantly distinguished in 13C (H(3) = 179.42, P = 0), 15N (H(3) = 65.80, P = 0), 2H (H(2) = 50.64, 

P = 0). The data comprised for 13C/15N 47 species (n = 433) of Paris-type seed plants and 11 species (n = 63) of Paris-

type ferns, 5 species (n = 24) of Paris-type horsetails, and 59 species (n = 530) of Arum-type seed plants The sample 

sizes for 2H were 16 species (n = 91) of Paris-type seed plants and 2 species (n = 9) of Paris-type horsetails, and 

15 species (n = 104) of Arum-type seed plants. 
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Table S3 Mann-Whitney U test for significance of differences between chlorophyllous Paris-type species 

and their respective chlorophyllous Arum-type reference plant species in stable isotope enrichment factors 

13C, 15N, 2H.  Stable isotope enrichments were calculated relative to neighboring Arum-type arbuscular 

mycorrhizal reference plants. Significances are highlighted in bold. Nomenclature follows the sources APG 

IV (2016) and PPG1 (2016). Family sequence according to PPG1 (2016) (pteridophytes), Haston et al. (2009) 

and APG IV (2016) (angiosperms). 

  
Species  Family 

ntarget, 
nreference 

13C 15N ntarget, 
nreference 

2H 

  U P U P U P 

H,o 
Equisetum 
arvense  

Equisetaceae 5 , 5 25 0.004 25 0.004 0 , 0 NA   

H,f 
Equisetum 
fluviatile  

Equisetaceae 5 , 5 25 0.004 25 0.004 0 , 0 NA   

H,f 
Equisetum 
palustre  

Equisetaceae 5 , 10 38 0.063 50 0.001 5 , 10 50 0.001 

H,f 
Equisetum 
sylvaticum  

Equisetaceae 4 , 8 32 0.004 32 0.004 4 , 8 30 0.011 

H,f 
Equisetum 
telmateia  

Equisetaceae 5 , 10 45 0.008 45 0.001 0 , 0 NA   

                              

F,o 
Botrychium 
lunaria  

Ophioglossaceae 7 , 3 12 0.409 21 0.011 0 , 0 NA   

F,f Pteridium sp.  Dennstaedtiaceae 2 , 9 18 0.023 11 0.362 0 , 0 NA   

F,f 
Asplenium ruta-
muraria  

Aspleniaceae 5 , 5 20 0.059 0 0.998 0 , 0 NA   

F,f 
Matteuccia 
struthiopteris  

Onocleaceae 5 , 5 15 0.328 10 0.748 0 , 0 NA   

F,f Blechnum sp.  Blechnaceae 2 , 19 36 0.024 23 0.338 0 , 0 NA   

F,f 
Athyrium filix-
femina  

Athyriaceae 5 , 5 25 0.004 10 0.748 0 , 0 NA   

F,f 
Athyrium 
japonicum  

Athyriaceae 5 , 5 20 0.059 10 0.748 0 , 0 NA   

F,f 
Diplazium 
sandwichianum  

Athyriaceae 6 , 4 24 0.007 13 0.458 0 , 0 NA   

F,f 
Dryopteris filix-
mas  

Dryopteridaceae 5 , 5 25 0.004 5 0.963 0 , 0 NA   

F,f Polystichum sp.  Dryopteridaceae 16 , 19 283 < 0.001 150 0.533 0 , 0 NA   

F,f 
Polypodium 
vulgare  

Polypodiaceae 5 , 5 25 0.004 0 0.998 0 , 0 NA   

                              

S,f 
Asarum 
europaeum  

Aristolochiaceae 5 , 5 0 0.508 0 0.508 5 , 5 25 0.004 

S,f 
Liriodendron 
tulipifera  

Magnoliaceae 1 , 1 1 0.5 0 0.977 0 , 0 NA   

                              

S,f Tamus communis  Dioscoreaceae 5 , 10 39 0.049 48 0.003 0 , 0 NA   

S,f Paris quadrifolia  Melanthiaceae 13 , 31 395 < 0.001 330 < 0.001 10 , 25 223 < 0.001 

S,f 
Colchicum 
autumnale  

Colchicaceae 14 , 24 69 0.999 204 0.141 0 , 0 NA   

S,f 
Disporum 
smilacinum  

Colchicaceae 1 , 1 0 0.977 1 0.5 0 , 0 NA   

S,f Smilax aspera  Smilacaceae 5 , 5 25 0.004 15 0.328 0 , 0 NA   
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  Species 
 

Family 
ntarget, 

nreference 

13C 15N ntarget, 
nreference 

2H 

  U P U P U P 

S,o 
Asphodelus 
aestivus  

Asphodelaceae 25 , 25 450 0.002 350 0.221 0 , 0 NA   

S,o 
Brachypodium 
pinnatum  

Poaceae 5 , 5 10 0.748 5 0.963 0 , 0 NA   

S,f 
Brachypodium 
sylvaticum  

Poaceae 5 , 5 0 0.998 21 0.042 0 , 0 NA   

S,o Bromus erectus  Poaceae 29 , 39 909 < 0.001 697 0.05 0 , 0 NA   

S,o Bromus sp.   Poaceae 21 , 41 596 0.007 345 0.9 0 , 0 NA   

S,f Melica nutans  Poaceae 4 , 6 24 0.007 11 0.626 0 , 0 NA   

S,o Molinia caerulea  Poaceae 7 , 7 42 0.707 42 0.01 1 , 1 1 0.5 

S,f Sesleria albicans  Poaceae 6 , 6 24 0.174 6 0.984 0 , 0 NA   

                              

S,f 
Anemone 
nemorosa  

Ranunculaceae 10 , 15 135 < 0.001 25 0.998 5 , 10 47 0.001 

S,o Aquilegia atrata  Ranunculaceae 16 , 16 128 1 128 1 5 , 5 25 0.007 

S,o Ranunculus sp.   Ranunculaceae 23 , 51 759 0.022 560 0.624 0 , 0 NA   

S,o Trollius europaeus  Ranunculaceae 5 , 10 38 0.063 30 0.291 5 , 10 50 0.003 

S,o Alchemilla alpina  Rosaceae 10 , 10 60 0.222 60 0.222 4 , 5 10 0.553 

S,o Alchemilla sp.  Rosaceae 6 , 5 25 0.034 25 0.034 0 , 0 NA   

S,o 
Alchemilla 
vulgaris  

Rosaceae 4 , 8 32 0.004 16 0.534 0 , 0 NA   

S,f Sorbus aucuparia  Rosaceae 11 , 10 44 0.81 66 0.212 1 , 1 1 0.5 

S,f Oxalis acetosella  Oxalidaceae 9 , 9 72 0.001 18 0.985 4 , 4 16 0.011 

S,f 
Mercurialis 
perennis  

Euphorbiaceae 31 , 39 1152 < 0.001 981 < 0.001 5 , 5 25 0.004 

S,o Viola arvensis  Violaceae 5 , 5 10 0.748 15 0.328 0 , 0 NA   

S,f Viola sp.  Violaceae 10 , 10 10 1 50 0.516 0 , 0 NA   

S,f 
Geranium 
robertianum  

Geraniaceae 5 , 5 0 0.998 0 0.998 0 , 0 NA   

S,f 
Geranium 
sylvaticum  

Geraniaceae 5 , 10 50 0.001 10 0.971 0 , 0 NA   

S,f Acer campestre  Sapindaceae 2 , 4 7 0.124 6 0.244 0 , 0 NA   

S,f Acer platanoides  Sapindaceae 9 , 11 20 0.181 12 0.991 0 , 0 NA   

S,f 
Acer 
pseudoplatanus  

Sapindaceae 29 , 33 179 1 641 0.009 3 , 3 9 0.032 

S,f 
Cornus 
controversa  

Cornaceae 1 , 1 1 0.5 1 0.5 0 , 0 NA   

S,f 
Lysimachia 
nummularia  

Primulaceae 5 , 10 43 0.016 32 0.213 5 , 10 29 0.334 

S,o Myrsine seguinii  Primulaceae 5 , 5 20 0.059 5 0.963 0 , 0 NA   

S,f 
Paederia 
scandens  

Rubiaceae 5 , 5 10 0.748 5 0.963 0 , 0 NA   

S,o 
Gentiana 
asclepiadeae  

Gentianaceae 5 , 5 20 0.059 25 0.004 5 , 5 0 0.998 

S,o Gentiana bavarica  Gentianaceae 5 , 5 10 0.748 25 0.004 4 , 5 0 0.998 

S,o Gentiana lutea  Gentianaceae 5 , 10 50 0.001 50 0.001 5 , 10 4 0.996 
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Table S3  
continued. 

             

  
Species Family 

ntarget, 
nreference 

13C 15N ntarget, 
nreference 

2H 

  U P U P U P 

S,o 
Tripterospermum 
japonicum  

Gentianaceae 1 , 1 1 0.5 1 0.5 0 , 0 NA   

S,f Ilex macropoda  Aquifoliaceae 1 , 1 1 0.5 1 0.5 0 , 0 NA   

S,o 
Viburnum 
dilatatum  

Adoxaceae 1 , 1 0 0.977 1 0.5 0 , 0 NA   

S,o 
Meum 
athamanticum  

Apiaceae 10 , 15 150 < 0.001 47 0.944 0 , 0 NA   

S,o 
Pimpinella 
saxifraga  

Apiaceae 15 , 15 150 0.05 195 < 0.001 0 , 0 NA   

S,o 
Scandix pecten-
veneris  

Apiaceae 10 , 10 80 0.009 0 1 0 , 0 NA   

S,o Astrantia major  Apiaceae 25 , 49 980 < 0.001 413 0.989 20 , 39 608 < 0.001 

S,o 
Ligusticum 
mutellina  

Apiaceae 5 , 5 25 0.004 25 0.004 4 , 5 20 0.005 

F, fern; H, horsetail; S, seed plant; f, forest; o, open-land; NA, not available 
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Figure S1 Pie charts of dark septate fungal endophytes and Glomeromycotina in the three plant species 

belonging to the Equisetaceae. 
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Figure S2 Total root endophyte colonization (%) in five Equisetaceae species from May to November.  
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Figure S3 Leaf total N concentrations [mmol/gdw] of six plant species belonging to Equisetaceae (n = 34), 

22 plant species belonging to Cyperaceae (n = 194) and seven plant species belonging to Caryophyllaceae 

(n = 48) relative to their reference plants (n = 734, in total). The capital letters illustrate significance of 

difference between the target plant species belonging to Equisetaceae, Cyperaceae and Caryophyllaceae 

(arrow). The lower-case letters indicate significance of difference between the target plant families and their 

respective reference plants Equisetum leaf material includes the lateral shoot and thereon the scale leaves. 

The range of the boxes illustrate the first and third quartile, the horizontal solid lines represent the medians, 

the whiskers enclose data within the 1.5x interquartile range, white circles are data extremes.  
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Table S1 Test for pairwise comparison between Equisetum sylvaticum (Equi), moss (Polytrichum commune) and 

reference plants (Ref) in enrichment factors ε of 13C [‰], 15N [‰] for leaf samples and leaf total N 

concentrations [mmol/gdw]. Dunn post hoc test (Z). Significances are highlighted in bold. 

Species (N) 13C 15N Total N 

 TS P TS P TS P 

Equi (5) vs. Moss (5) Z = 0 = 0.008 Z = 0 = 0.016 Z = 1 = 0.032 

Equi (5) vs. Ref (15) Z = 0 = 0.003 Z = 0 < 0.001 Z = 0 < 0.001 

Ref (15) vs. Moss (5) Z = 3 = 0.006 Z = 27 = 0.383 Z = 22 = 0.190 

TS: Test statistic. Equisetum leaf material includes the lateral shoot and thereon the scale leaves.  
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Table S2 Stable isotope natural abundances in -values [‰] and leaf total N concentrations [mmol/gdw] of six 

species belonging to the Equisetaceae and their respective reference plants as mean value per plant organ. The 

relative enrichment  [‰] to the mean of reference plants was calculated. Data are shown in mean ± SD. 

Species Organ Carbon 13C isotope abundance [‰] Nitrogen 15N isotope abundance [‰] N [mmol gdw-1] 

  
 (NEqui

, 

N
Ref

) 
Equisetaceae Reference  Equisetaceae Reference  Equisetaceae Reference 

Equisetum 
arvense 

L (5,25) -26.6 ± 0.3 -29.8 ± 0.7 3.2 ± 0.2 3.9 ± 0.8 2.7 ± 1.2 1.2 ± 1.0 2.5 ± 0.3 1.5 ± 0.3 

49.8902°N, 11.6139°E S (5,25) -25.3 ± 0.2 -29.5 ± 0.7 4.2 ± 0.1 3.1 ± 0.8 2.1 ± 1.3 1.0 ± 1.0 1.7 ± 0.2 1.0 ± 0.1 

  R (5,20) -24.9 ± 0.2 -29.0 ± 0.4 4.1 ± 0.3 2.1 ± 0.9 0.3 ± 1.6 1.8 ± 1.0 1.4 ± 0.4 0.5 ± 0.2 

E. arvense 
(fertile) 

- - - - - - - - - - - - - - - - - - - - - - - - - 

49.8902°N, 11.6139°E S (5,25) -24.3 ± 0.6 -29.5 ± 0.7 5.2 ± 0.5 3.0 ± 1.5 2.1 ± 1.3 0.9 ± 1.0 2.2 ± 0.4 1.0 ± 0.1 

  R (5,25) -24.9 ± 0.5 -28.9 ± 0.4 4.1 ± 0.5 -0.3 ± 1.2 0.1 ± 1.6 -0.4 ± 0.7 1.6 ± 0.2 0.6 ± 0.2 

E. fluviatile L (5,15) -28.9 ± 0.4 -31.3 ± 1.5 2.5 ± 0.4 2.9 ± 1.1 -1.3 ± 1.2 4.4 ± 1.2 1.9 ± 0.2 1.3 ± 0.5 

49.8806°N, 11.6089°E S (5,15) -27.7 ± 0.2 -30.1 ± 1.6 2.4 ± 2.3 1.2 ± 0.8 -1.1 ± 1.1 2.3 ± 0.6 1.1 ± 0.1 0.5 ± 0.1 

  R (5,15) -26.6 ± 0.2 -29.9 ± 2.6 4.0 ± 0.5 0.8 ± 1.4 -1.6 ± 1.7 2.3 ± 1.4 1.1 ± 0.2 0.6 ± 0.2 

E. hyemale - - - - - - - - - - - - - - - - - - - - - - - - - 

49.7658°N, 11.4643°E S (5,15) -28.6 ± 0.3 -32.0 ± 0.7 3.4 ± 0.3 1.5 ± 0.4 -2.3 ± 1.1 3.7 ± 1.1 0.7 ± 0.1 1.3 ± 0.3 

  R (5,20) -28.2 ± 0.4 -31.9 ± 0.8 3.8 ± 0.5 -0.9 ± 1.5 -2.8 ± 1.0 2.1 ± 1.6 1.0 ± 0.1 1.5 ± 0.2 

E. palustre L (5,20) -29.4 ± 0.3 -29.8 ± 1.0 0.5 ± 0.3 3.0 ± 2.2 -4.5 ± 1.7 7.5 ± 2.6 3.1 ± 0.4 1.2 ± 0.2 

49.8739°N, 11.6057°E S (5,15) -29.3 ± 0.4 -28.8 ± 0.9 -0.5 ± 0.6 2.1 ± 2.5 -5.2 ± 1.2 7.3 ± 2.5 1.6 ± 0.1 0.7 ± 0.2 

  R (3,19) -29.0 ± 0.5 -29.7 ± 1.1 0.9 ± 0.4 1.9 ± 1.5 -3.8 ± 1.8 5.3 ± 1.7 1.7 ± 0.1 0.5 ± 0.1 

E. sylvaticum L (4,20) -27.2 ± 0.5 -29.8 ± 1.0 2.8 ± 0.6 3.2 ± 2.0 -4.5 ± 1.7 7.3 ± 2.3 1.9 ± 0.2 1.2 ± 0.2 

49.8739°N, 11.6057°E S (4, 15) -25.8 ± 0.4 -28.8 ± 0.9 3.3 ± 0.6 2.3 ± 1.9 -5.2 ± 1.2 7.1 ± 1.5 0.9 ± 0.2 0.7 ± 0.2 

  R (2,19) -25.2     -29.7 ± 1.1 5.0     3.5     -3.8 ± 1.8 6.7     1.7     0.5 ± 0.1 

E. sylvaticum L (5,25) -28.8 ± 0.6 -32.1 ± 1.3 3.4 ± 0.2 -2.1 ± 1.8 -4.6 ± 2.2 2.5 ± 2.5 2.2 ± 0.3 1.7 ± 0.5 

49.8739°N, 11.6057°E S (5, 20) -28.4 ± 0.4 -32.1 ± 1.5 3.7 ± 0.3 -3.1 ± 2.1 -4.6 ± 1.8 1.5 ± 2.2 0.9 ± 0.1 0.8 ± 0.2 

  - - - - - - - - - - - - - - - - - - - - - - - - - 

E. sylvaticum L (5,20) -27.2 ± 0.5 -31.9 ± 1.1 3.6 ± 0.5 -6.2 ± 2.2 3.2 ± 2.3 7.6 ± 0.6 1.0 ± 0.1 1.0 ± 0.1 

49.9234°N, 11.5495°E                                                   

E. telmateia L (5,15) -28.4 ± 0.9 -30.0 ± 1.0 1.6 ± 1.0 3.1 ± 1.5 0.0 ± 0.9 3.0 ± 1.8 1.4 ± 0.2 2.4 ± 0.8 

49.9488°N, 11.6539°E S (5,10) -26.1 ± 0.9 -29.9 ± 0.6 3.8 ± 1.0 0.9 ± 1.3 -1.3 ± 1.5 2.1 ± 1.6 0.3 ± 0.1 1.6 ± 0.4 

  R (5,15) -26.4 ± 0.9 -29.6 ± 0.9 3.2 ± 1.0 0.9 ± 1.8 -1.2 ± 1.2 2.2 ± 2.1 0.6 ± 0.2 1.3 ± 0.6 

L: lateral shoots and thereon the scale leaves (n = 34,125), S: stem (n = 39,125), R: root (n = 30,135). Reference plants were 

Aegopodium podagraria (AM), Ajuga reptans (AM), Brassica napus (NM), Capsella bursa-pastoris (NM), Cirsium palustre (AM), Erodium 

cicutarium (AM), Filipendula ulmaria (AM), Fragaria vesca (AM),Galium aparine (AM), Lycopus europaeus (AM), Lysimachia nummularia 

(AM), Lysimachia vulgaris (AM), Oxalis acetosella (AM), Picea abies (ECM), Sorbus aucuparia (ECM), Stellaria media (NM), Taraxacum 

officinale (AM), Trientalis europaea (AM), Urtica dioica (AM), Vaccinium myrtillus (ErM), Viola arvensis (AM), Viola sp. (AM). AM 

arbuscular mycorrhiza, ECM Ectomycorrhiza, ErM ericoid mycorrhiza, NM non-mycorrhiza 
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Table S3 Test for differences between six species belonging to the Equisetaceae and their respective 

reference plants in enrichment factors  of 13C [‰] and 15N [‰], and total N concentrations [mmol/gdw] 

per plant organ. Mann-Whitney-U test. Significances are bold marked. 

Species Organ   
ε13C ε15N Total N 

  
(NEqui, NRef.) 

  TS P TS P TS P 

E. arvense L (5,25)   U = 0 < 0.001 U = 20 = 0.019 U = 1 < 0.001 

49.8902°N, 11.6139°E S (5,25)   U = 0 < 0.001 U = 26 = 0.045 U = 0 < 0.001 

  R (5,20)   U = 0 < 0.001 U = 14 = 0.016 U = 1 < 0.001 

E. arvense 

(fertile) 
- 

 
- - - - - - 

49.8902°N, 11.6139°E S (5,25)  U = 0 < 0.001 U = 35 = 0.133 U = 0 < 0.001 

 R (5,25)  U = 0 < 0.001 U = 47 = 0404 U = 0 < 0.001 

E. fluviatile L (5,15)   U= 5 = 0.005 U = 0 = 0.001 U = 16 = 0.067 

49.8806°N, 11.6089°E S (5,15)   U = 11 = 0.023 U = 2 = 0.002 U = 0 = 0.001 

  R (5,15)   U = 0 = 0.001 U = 8 = 0.011 U = 2 = 0.002 

E. hyemale -   - - - - - - 

49.7658°N, 11.4643°E S (5,15)   U = 0 = 0.001 U = 0 = 0.001 U = 0 = 0.001 

  R (5,20)   U = 0 < 0.001 U = 13 = 0.040 U = 1 < 0.001 

E. palustre L (5,20)   U = 38 = 0.440 U = 0 < 0.001 U = 0 < 0.001 

49.8739°N, 11.6057°E S (5,15)   U = 24 = 0.260 U = 0 = 0.001 U = 0 = 0.001 

  R (3,19)   U = 14 = 0.180 U = 1 = 0.010 U = 0 = 0.007 

E. sylvaticum L (4,20)   U = 0 = 0.002 U = 0 = 0.002 U = 0 < 0.002 

49.8739°N, 11.6057°E S (4, 15)   U = 0 = 0.003 U = 0 = 0.003 U = 14 = 0.121 

  R (2,19)   U = 0 = 0.027 U = 1 = 0.036 U = 0 = 0.027 

E. sylvaticum L (5,25)   U = 0 < 0.001 U = 30 = 0.075 U = 22 = 0.026 

49.8739°N, 11.6057°E S (5, 20)   U = 0 < 0.001 U = 26 = 0.110 U = 28 = 0.144 

  -   - - - - - - 

E. sylvaticum L (5,20)  U = 0 < 0.001 U = 0 < 0.001 U = 1 < 0.001 

49.9234°N, 11.5495°E         

E. telmateia L (5,15)   U = 5 = 0.005 U = 6 < 0.006 U = 6 = 0.007 

49.9488°N, 11.6539°E S (5,10)   U = 0 = 0.003 U = 7 = 0.032 U = 0 = 0.003 

  R (5,15)   U = 0 = 0.001 U = 13 = 0.036 U = 7 = 0.009 

TS: Test statistic, L: lateral shoots and thereon the scale leaves, S: stem, R: root. Reference plants were Aegopodium 

podagraria (AM), Ajuga reptans (AM), Brassica napus (NM), Capsella bursa-pastoris (NM), Cirsium palustre (AM), Erodium 

cicutarium (AM), Filipendula ulmaria (AM), Fragaria vesca (AM), Galium aparine (AM), Lycopus europaeus (AM), Lysimachia 

nummularia (AM), Lysimachia vulgaris (AM), Oxalis acetosella (AM), Picea abies (ECM), Sorbus aucuparia (ECM), Stellaria media 

(NM), Taraxacum officinale (AM), Trientalis europaea (AM), Urtica dioica (AM), Vaccinium myrtillus (ErM), Viola arvensis (AM), 

Viola sp. (AM). AM arbuscular mycorrhiza, ECM Ectomycorrhiza, ErM ericoid mycorrhiza, NM non-mycorrhiza 
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Table S4 Stable isotope natural abundances in -values [‰] and leaf total N concentrations [mmol/gdw] of 23 

species belonging to the Cyperaceae (n = 209) and their respective reference plants (n = 499) as mean value. The 

relative enrichment  [‰] to the mean value of accompanying reference plants was calculated for isotope data. 

Data are shown in mean ± SD. 

Species 
NCype, 
NRef. 

  Leaf carbon 13C isotope abundance [‰] Leaf nitrogen 15N isotope abundance [‰] N [mmol gdw-1] 

  Cyperaceae Reference  Cyperaceae Reference  Cyperaceae Reference 

Carex 
caryophyllea 

5,15 1  -27.6 ±  0.6 -28.5 ±  0.8 0.8 ±  0.5 -1.3 ±  1.0 -3.2 ±  0.9 2.0 ±  1.1 0.8 ±  0.1 1.0 ±  0.2 

50.1210°N, 11.8621°E                            

C. conica 2,97 2  -32.3    -33.0 ±  1.6 0.6   -3.3   -4.0 ± 1.5 0.7   1.1   1.4 ± 0.5 

35.0561°N, 140.0264°E                            

C. digitata 5,15 1  -30.8 ±  0.3 -30.7 ± 0.6 -0.1 ±  0.2 -2.6 ±  1.8 -4.6 ±  1.6 2.0 ±  2.1 1.1 ±  0.2 1.5 ±  0.4 

49.6850°N, 11.3207°E                            

C. digitata 5,21 1  -28.9 ±  1.3 -29.5 ±  1.5 1.7 ±  1.5 -4.0 ±  1.4 -6.0 ±  1.4 0.6 ±  1.1 0.9 ±  0.2 1.7 ±  0.3 

49.6187°N, 11.4200°E                            

C. disticha 5,30 1  -28.2 ±  0.6 -29.0 ±  1.2 0.8 ±  0.9 -0.9 ±  1.6 -2.4 ±  2.3 2.2 ±  1.9 1.6 ±  0.1 1.6 ±  0.3 

35.0561°N, 140.0264°E                            

C. disticha 1,26 1  -29.3   -29.3 ± 0.9 -0.2   3.5   1.0 ± 1.7 2.8   0.9    1.5 ±  0.3 

49.9065°N, 11.6210°E                            

C. distachya 5,10 3  -34.0 ±  0.5 -32.0 ±  0.8 -2.1 ±  0.8 0.3 ±  3.3 -1.3 ±  1.3 1.6 ±  2.7 1.1 ±  0.2 0.9 ±  0.2 

39.7405°N, 9.5729°E                            

C. flacca 5,30 1  -29.6 ±  0.9 -29.0 ±  1.2 -0.6 ±  0.9 -1.2 ± 1.6 -2.4 ±  2.3 0.6 ± 2.6 1.5 ± 0.2 1.6 ±  0.3 

35.0561°N, 140.0264°E                            

C. flacca 5,15 1  -31.6 ±  0.6 -30.7 ± 0.6 -0.9 ±  0.7 -2.0 ±  1.9 -4.6 ±  1.6 2.6 ±  1.3 1.3 ±  0.3 1.5 ±  0.4 

49.6850°N, 11.3207°E                            

C. flacca 5,21 1  -29.9 ±  1.0 -29.5 ±  1.5 1.0 ±  0.8 -1.9 ±  0.9 -6.0 ±  1.4 3.6 ±  1.9 0.8 ±  0.1 1.7 ±  0.3 

49.6187°N, 11.4200°E                            

C. flacca 10,20 4  -31.2 ±  1.2 -32.1 ±  1.1 1.2 ±  1.0 0.6 ±  4.8 -3.4 ±  2.8 4.1 ±  2.7 1.5 ±  0.3 1.8 ±  0.5 

49.6715°N, 11.3893°E                            

C. flacca 27,57 5  -32.5 ±  0.7 -32.4 ±  1.2 0.2 ±  0.7 -1.4 ±  1.2 -5.2 ±  1.7 3.8 ±  1.4 1.5 ±  0.1 1.7 ±  0.5 

49.6667° N, 11.3833°E                            

C. flacca 27,20 6  -32.3 ±  0.7 -33.0 ±  1.2 0.6 ±  0.4 -1.2 ±  1.1 -5.8 ±  1.4 4.6 ±  1.1 1.5 ±  0.1 1.3 ±  0.2 

49.6715°N, 11.3893°E                            

C. flacca 19,64 7  -28.5 ±  1.0 -30.1 ±  1.2 1.6 ±  0.9 2.4 ±  1.8 -1.5 ±  2.1 4.0 ±  1.8 1.0 ±  0.3 1.3 ±  0.3 

58.3333° N, 22.3000°E                            

C. flava 5,34 8  -26.8 ±  0.6 -26.4 ±  0.8 -0.4 ±  0.5 1.2 ±  1.9 -4.3 ±  2.6 4.6 ±  2.0 1.1 ±  0.3 1.3 ±  0.4 

47.1500°N, 9.800°E                            

C. hallerana 5,20 3  -28.9 ±  0.8 -29.7 ±  1.4 0.9 ±  1.0 -4.4 ±  0.8 -8.2 ±  1.4 NA   NA   0.9 ±  0.2 

39.7405°N, 9.5729°E                            

C. hirta 5,26 1  -30.0 ±  0.4 -29.3 ± 0.9 -0.7 ±  0.2 4.9 ±  0.8 1.0 ± 1.7 3.5 ±  2.1 1.2 ±  0.2 1.5 ±  0.3 

49.9065°N, 11.6210°E                            

C. hirta 1,30 1  -28.8    -29.0 ±  1.2 0.2    -1.2    -2.4 ±  2.3 1.4    1.6   1.6 ±  0.3 

35.0561°N, 140.0264°E                            

C. hirta 5,20 3  -28.9 ±  0.6 -29.1 ±  0.6 0.3 ±  0.8 1.1 ±  0.6 -1.2 ±  2.3 NA   NA   0.9 ±  0.2 

44.38256°N, 8.2562°E                            
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Table S4 
continued. 

                          

Species 
NCype, 
NRef. 

  Leaf carbon 13C isotope abundance [‰] Leaf nitrogen 15N isotope abundance [‰] N [mmol gdw-1] 

  Cyperaceae Reference  Cyperaceae Reference   Cyperaceae Reference 

C. hirta 5,10 9  -29.5 ±  0.6 -29.8 ±  0.6 0.3 ±  0.8 1.1 ±  0.6 -1.4 ±  2.2 NA   NA    ±   

44.3800°N, 8.2600°E                            

C. nigra 5,30 1  -28.6 ±  0.7 -29.0 ±  1.2 0.4 ±  0.8 -0.4 ±  0.6 -2.4 ±  2.3 2.5 ±  0.8 1.4 ±  0.1 1.6 ±  0.3 

35.0561°N, 140.0264°E                            

C. nigra 5,34 1  -28.8 ±  0.7 -28.8 ±  0.7 0.3 ±  0.8 -0.3 ±  2.3 -1.4 ±  2.5 2.1 ±  2.2 1.5 ±  0.1 1.7 ±  0.3 

50.0522°N, 11.0097°E                            

Carex sp. 8,10 11 -32.1 ±  0.5 -32.3 ±  0.5 0.2 ±  0.4 -0.6 ±  0.4 -4.2 ±  1.3 3.5 ±  1.2 1.2 ±  0.1 0.9 ±  0.3 

49.9500° N, 11.6500°E                            

C. pallescens 5,30 1  -28.7 ±  0.6 -29.0 ±  1.2 0.3 ±  0.5 -0.7 ±  0.8 -2.4 ±  2.3 2.2 ±  1.2 1.5 ±  0.1 1.6 ±  0.3 

35.0561°N, 140.0264°E                            

C. panicea 5,30 1  -29.9 ±  0.6 -29.0 ±  1.2 -0.9 ±  0.4 0.4 ±  1.1 -2.4 ±  2.3 3.3 ±  1.4 1.5 ±  0.5 1.6 ±  0.3 

35.0561°N, 140.0264°E                            

C. remota 5,10 10 -28.6 ±  0.7 -27.8 ±  0.8 -0.8 ±  1.1 1.5 ±  1.3 -2.1 ±  1.5 3.6 ±  1.4 1.0 ±  0.3 0.9 ±  0.4 

49.9523° N, 11.6239°E                            

C. 
siderosticta 

3,97 2  -33.5 ±  0.2 -33.0 ±  1.6 -0.6 ±  0.2 -4.2 ±  0.1 -4.0 ±  1.5 -0.2 ±  0.1 2.9 ±  0.2 1.4 ±  0.5 

35.0561°N,  

140.0264°E 
                           

C. vesicaria 5,34 1  -28.7 ±  0.3 -28.8 ±  0.7 0.2 ±  0.5 1.8 ±  1.6 -1.4 ±  2.5 5.0 ±  1.7 1.5 ±  0.1 1.7 ±  0.3 

50.0522°N, 11.0097°E                            

C. vulpina 3,26 1  -28.3 ±  0.4 -29.3 ± 0.9 1.3 ±  0.5 3.3 ±  1.2 1.0 ± 1.7 2.7 ±  0.5 1.0 ±  0.1 1.5 ±  0.3 

49.9065°N, 11.6210°E                            

Eriophorum 
vaginatum 

4,34 1  -28.0 ±  0.4 -28.8 ±  0.7 1.0 ±  0.2 1.3 ±  1.9 -1.4 ±  2.5 4.4 ±  1.6 1.3 ±  0.1 1.7 ±  0.3 

50.0522°N, 11.0097°E                            

Machaerina 
sp. 

3,6 12  -29.1 ±  1.3 -29.2 ±  1.5 0.1 ±  1.3 2.8 ±  0.5 -0.5 ±  2.4 3.3 ±  0.5 0.6 ±  0.1 1.0 ±  0.3 

21.9747°N,  

-159.4948°E 
                           

Rynchospora 
alba 

3,34 8  -27.2 ±  0.9 -26.4 ±  0.8 -0.6 ±  0.2 0.7 ±  1.3 -4.3 ±  2.6 4.9 ±  1.4 1.1 ±  0.3 1.3 ±  0.4 

47.1500°N, 9.800°E                            

Rynchospora 
sp. 

8,8 13 -29.9 ±  0.3 -31.1 ±  0.4 1.1 ±  0.5 1.1 ±  0.6 -1.7 ±  1.5 2.8 ±  1.4 0.8 ±  0.1 1.4 ±  0.1 

4.1963°N, -52.1491°E                            

Scirpus 
sylvaticus 

8,26 1  -27.5 ±  0.9 -29.3 ± 0.9 0.8 ± 0.5 5.1 ±  0.9 1.0 ± 1.7 2.7 ±  0.7 0.8 ±  0.4 1.5 ±  0.3 

49.9065°N, 11.6210°E                            

Trichophorum 
cespitosum 

9,34 8  -25.8 ±  0.8 -26.4 ±  0.8 -0.6 ±  0.2 0.3 ±  1.7 -4.3 ±  2.6 4.9 ±  1.4 1.4 ±  0.2 1.3 ±  0.4 

47.1500°N, 9.800°E                                 

1This study (samples were collected in the area of NE-Bavaria), 2 Motomura et al. (2010), 3 Liebel et al. (2010), 4 Preiss, Adam 

& Gebauer (2010), 5 Gebauer, Preiss & Gebauer (2016), 6 Gerhard Gebauer, unpublished, 7 Fay et al. (2018), 8 Schiebold et 

al. (2018), 9 Girlanda et al. (2011), 10 Michael Schwanfelder, unpublished, 11 Schweiger et al. (2018), 12 Hynson (2016), 13 Merckx 

et al. (2010). Some plots include more than one Cyperaceae species, thus the reference plants are doubled mentioned but 

with same mean values. Reference plants were Acer pseudoplatanus (AM), Anthericum ramosum (AM), Ardisia japonica (AM), 

Arisaema aequinoctiale (AM), Aucuba japonica (AM), Brachypodium sylvaticum (AM), Caltha palustris (AM), Castanea crenata (ECM), 
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Table S4  
continued. 

Castanopsis sieboldii (ECM), Centaurea cyanus (AM), Centaurea nigra (AM),  Cephalotaxus harringtonia (AM), Chamaecyparis obtusa 

(AM), Cinnamomum tenuifolium (AM), Clidemia hirta (AM), Colchicum autumnale (AM), Convallaria majalis (AM), Crataegus monogyna 

(ECM), Cryptomeria japonica (AM), Damnacanthus indicus (AM), Dendropanax trifidus (AM), Deutzia scabra (AM), Dioscorea japonica 

(AM), Dryopteris pacifica (AM), Elaeagnus macrophylla (AM), Eriobotrya japonica (AM), Euphorbia cyparissias (AM), Eurya japonica 

(AM), Fagus sylvatica (ECM), Ficus erecta (AM), Filipendula ulmaria (AM), Filipendula vulgaris (AM), Fragaria vesca (AM), Fraxinus 

excelsior (AM), Hedera rhombea (AM), Helianthemum nummularium (ECM), Holcus lanatus (AM), Holcus mollis (AM), Ilex serrata 

(AM), Ipomoea leprieurii (NM), Leontodon hispidus (AM), Lilium auratum (AM), Lithocarpus edulis (ECM), Lysimachia vulgaris (AM), 

Machilus thunbergii (AM), Molinia caerulea (AM), Nardus stricta (AM), Neolitsea sericea (AM), Ophiopogon japonicus (AM), Oplismenus 

undulatifolius (AM), Padus grayana (AM), Peperomia sp. (AM), Picea abies (ECM), Pilosella officinarum (AM), Pinus nigra (ECM), Piper 

kadsura (AM), Plantago lanceolatum (AM), Pleioblastus chino (AM), Polygala chamaebuxus (AM), Polygonatum odoratum (AM), 

Polygonum lapathifolium (NM), Potentilla erecta (AM), Pteris cretica (AM), Quercus ilex (ECM), Quercus infectoria (ECM), Ranunculus 

acris (AM), Ranunculus bulbosus (AM), Ranunculus flammula (AM), Sanguisorba officinalis (AM), Smilax china (AM), Stegnogramma 

pozoi (AM), Teucrium polium (AM), Thymus vulgaris (AM), Trachelospermum asiaticum (AM), Vaccinium uliginosum (ErM), Viburnum 

tinus (AM). AM arbuscular mycorrhiza, ECM Ectomycorrhiza, ErM ericoid mycorrhiza, NM non-mycorrhiza 
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Table S5 Test for differences between 23 species belonging to the Cyperaceae and their respective reference 

plants in enrichment factors  of 13C [‰] and 15N [‰], and leaf total N concentrations [mmol/gdw]. Mann-

Whitney-U test. Significances are bold marked.   

Species 
NCype, 

NRef. 

  ε13C ε15N Total N 

  TS P TS P TS P 

Carex caryophyllea 5,15 1  U = 13 = 0.036 U = 6 = 0.007 U = 6 = 0.007 
50.0522°N, 11.0097°E          

C. conica 2,97 2  U = 60 = 0.364 U = 62 = 0.384 U = 7 = 0.391 
35.0561°N, 140.0264°E          

C. digitata 5,15 1  U = 30 = 0.541 U = 15 = 0.050 U = 12 = 0.029 
49.6850°N, 11.3207°E          

C. digitata 5,21 1  U = 28 = 0.117 U = 33 = 0.215 U = 1 = 0.000 
49.6187°N, 11.4200°E          

C. disticha 5,30 1  U = 45 = 0.164 U = 34 = 0.050 U = 67 = 0.724 
35.0561°N, 140.0264°E          

C. disticha 1,26 1  U = 10 = 0.748 U = 0 = 0.109 U = 1 = 0.140 
49.9065°N, 11.6210°E          

C. distachya 5,10 3  U = 2 = 0.006 U = 16 = 0.298 U = 18 = 0.426 
39.7405°N, 9.5729°E          

C. flacca 5,30 1  U = 53 = 0.311 U = 51 = 0.268 U = 55 = 0.358 
35.0561°N, 140.0264°E          

C. flacca 5,15 1  U = 10 = 0.018 U = 3 = 0.003 U = 26 = 0.337 
49.6850°N, 11.3207°E          

C. flacca 5,21 1  U = 28 = 0.117 U = 0 = 0.001 U = 0 = 0.000 
49.6187°N, 11.4200°E          

C. flacca 10,20 4  U = 29 = 0.002 U = 18 = 0.001 U = 73 = 0.244 
49.6715°N, 11.3893°E          

C. flacca 27,57 5  U = 664 = 0.314 U = 35 = 0.001 U = 668 = 0.333 
49.6667° N, 11.3833°E          

C. flacca 27,20 6  U = 46 = 0.040 U = 0 = 0.001 U = 36 = 0.011 
49.6715°N, 11.3893°E          

C. flacca 19,64 7  U = 168 = 0.001 U = 41 = 0.001 U = 351 = 0.005 
58.3333° N, 22.3000°E          

C. flava 5,34 8  U = 50 = 0.147 U = 1 = 0.001 U = 48 = 0.125 
47.1500°N, 9.800°E          

C. hallerana 5,20 3  U = 24 = 0.083 U = 0 = 0.001 NA  
44.3825°N, 8.2562°E          

C. hirta 5,26 1  U = 29 = 0.057 U = 8 = 0.002 U = 24 = 0.030 
49.9065°N, 11.6210°E         

C. hirta 1,30 1  U = 12 = 0.780 U = 4 = 0.240 U = 15 = 0.955 
35.0561°N, 140.0264°E         



Manuscripts of this thesis 

119 

Table S5 

continued. 
        

Species 
NCype, 

NRef. 

  ε13C ε15N Total N 

  TS P TS P TS P 

C. hirta 5,20 3  U = 43 = 0.659 U = 13 = 0.013 NA  
44.3825°N, 8.2562°E          

C. hirta 5,10 9  U = 22 = 0.759 U = 6 = 0.023 NA  
44.3800°N, 8.2600°E          

C. nigra 5,30 1  U = 57 = 0.409 U = 15 = 0.005 U = 24 = 0.195 
35.0561°N, 140.0264°E         

C. nigra 5,34 1  U = 41 = 0.564 U = 12 = 0.011 U = 7 = 0.004 
50.1210°N, 11.8621°E         

Carex sp. 8,10 11 U = 15 = 0.245 U = 0 = 0.003 U = 7 = 0.098 
49.9500° N, 11.6500°E         

C. pallescens 5,30 1  U = 54 = 0.334 U = 16 = 0.006 U = 61 = 0.525 
35.0561°N, 140.0264°E         

C. panicea 5,30 1  U = 41 = 0.114 U = 11 = 0.003 U = 51 = 0.268 
35.0561°N, 140.0264°E         

C. remota 5,10 10 U = 12 = 0.216 U = 0 = 0.003 U = 20 = 0.582 
49.9523° N, 11.6239°E         

C. siderosticta 3,97 2  U = 113 = 0.518 U = 134 = 0.824 U = 9 = 0.006 
35.0561°N, 140.0264°E         

C. vesicaria 5,34 1  U = 40 = 0.519 U = 0 = 0.001 U = 7 = 0.004 
50.1210°N, 11.8621°E         

C. vulpina 3,26 1  U = 6 = 0.020 U = 3 = 0.011 U = 7 = 0.024 
49.9065°N, 11.6210°E         

Eriophorum 

vaginatum 4,34 1  U = 8 = 0.015 U = 0 = 0.002 U = 0 = 0.002 

50.1210°N, 11.8621°E         

Machaerina sp. 3,6 12  U = 9 = 1.000 U = 0 = 0.024 U = 2 = 0.095 
21.9747°N, -159.4948°E         

Rynchospora alba 3,34 8  U = 17 = 0.062 U = 1 = 0.006 U = 30 = 0.254 
47.1500°N, 9.800°E          

Rynchospora sp. 8,8 13 U = 0 = 0.001 U = 0 = 0.001 U = 0 = 0.001 
4.1963°N, -52.1491°E         

Scirpus sylvaticus 8,26 1  U = 26 = 0.120 U = 2 = 0.003 U = 17 = 0.035 
49.9065°N, 11.6210°E         

Trichophorum 

cespitosum 9,34 8  U = 74 = 0.019 U = 24 = 0.001 U = 17 = 0.893 

47.1500°N, 9.800°E          
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Table S5 
continued. 

TS: Test statistic; 1This study (samples were collected in the area of NE-Bavaria), 2 Motomura et al. (2010), 3 Liebel et al. 

(2010), 4 Preiss, Adam & Gebauer (2010), 5 Gebauer, Preiss & Gebauer (2016), 6 Gerhard Gebauer, unpublished, 7 Fay et 

al. (2018), 8 Schiebold et al. (2018), 9 Girlanda et al. (2011), 10 Michael Schwanfelder, unpublished, 11 Schweiger, Bidartondo 

& Gebauer (2018), 12 Hynson (2016), 13 Merckx et al. (2010). Some plots include more than one Cyperaceae species, thus 

the reference plants are doubled mentioned but with same mean values. Reference plants were Acer pseudoplatanus (AM), 

Anthericum ramosum (AM), Arachniodes standishii (AM), Ardisia japonica (AM), Arisaema aequinoctiale (AM), Aucuba japonica 

(AM), Brachypodium sylvaticum (AM), Caltha palustris (AM), Castanea crenata (ECM), Castanopsis sieboldii  (ECM), Centaurea 

cyanus (AM), Centaurea nigra (AM), Cephalotaxus harringtonia (AM), Chamaecyparis obtusa (AM), Cinnamomum tenuifolium   (AM), 

Clidemia   hirta (AM),  Colchicum   autumnale (AM),   Convallaria  majalis (AM),  Crataegus monogyna (ECM), Cryptomeria japonica 

(AM), Damnacanthus indicus (AM), Dendropanax trifidus (AM), Deutzia scabra (AM), Dioscorea japonica (AM), Dryopteris pacifica 

(AM), Elaeagnus macrophylla (AM), Eriobotrya japonica (AM), Euphorbia cyparissias (AM), Eurya japonica (AM), Fagus sylvatica 

(ECM), Ficus erecta (AM), Filipendula ulmaria (AM), Filipendula vulgaris (AM), Fragaria vesca (AM), Fraxinus excelsior (AM), 

Hedera rhombea (AM), Helianthemum nummularium (ECM), Holcus lanatus (AM), Holcus mollis (AM), Ilex serrata (AM), Ipomoea 

leprieurii (NM), Leontodon hispidus (AM), Lilium auratum (AM), Lithocarpus edulis (ECM), Lysimachia vulgaris (AM), Machilus 

thunbergii (AM), Molinia caerulea (AM), Nardus stricta (AM), Neolitsea sericea (AM), Ophiopogon japonicus (AM), Oplismenus 

undulatifolius (AM), Padus grayana (AM), Peperomia sp. (AM), Picea abies (ECM), Pilosella officinarum (AM), Pinus nigra (ECM), 

Piper kadsura (AM), Plantago lanceolatum (AM), Pleioblastus chino (AM), Polygala chamaebuxus (AM), Polygonatum odoratum (AM), 

Polygonum lapathifolium (NM), Potentilla erecta (AM), Pteris cretica (AM), Quercus ilex (ECM), Quercus infectoria (ECM), Ranunculus 

acris (AM), Ranunculus bulbosus (AM), Ranunculus flammula (AM), Sanguisorba officinalis (AM), Smilax china (AM), Stegnogramma 

pozoi (AM), Teucrium polium (AM), Thymus vulgaris (AM), Trachelospermum asiaticum (AM), Vaccinium uliginosum (ErM), 

Viburnum tinus (AM). AM arbuscular mycorrhiza, ECM Ectomycorrhiza, ErM ericoid mycorrhiza, NM non-mycorrhiza 
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Table S6 Stable isotope natural abundances in -values [‰] and leaf total N concentrations [mmol/gdw] of 

seven plant species belonging to the Caryophyllaceae (n = 48) and their respective reference plants (n = 165) 

as mean value. The relative enrichment  [‰] to the mean value of accompanying reference plants was 

calculated for isotope data. Data are shown in mean ± SD. 

Species 
NCary, 
NRef. 

  Leaf carbon 13C isotope abundance [‰] Leaf nitrogen 15N isotope abundance [‰] N [mmol gdw-1] 

  
Caryophylla-

ceae 
Reference  

Caryophylla-
ceae 

Reference  
Caryophylla-

ceae 
Reference 

Cerastium 
fontanum 

5,15 1  -29.8 ± 0.9 -29.5 ± 1.5 -0.3 ± 0.8 0.9 ± 0.6 -0.1 ± 0.9 0.9 ± 0.6 1.7 ± 0.6 1.4 ± 0.2 

49.9205°N, 

11.6366°E 
                           

Dianthus 
arenarius 

3,38 2  -28.8 ± 0.3 -30.5 ± 1.4 1.7 ± 0.3 1.5 ± 2.0 -2.7 ± 3.2 4.1 ± 2.0 0.8 ± 0.2 1.0 ± 0.3 

58.2122°N, 

22.2103°E 
                           

Lychnis 
viscaria 

5,15 1  -28.4 ± 0.7 -29.6 ± 0.5 1.2 ± 0.8 0.0 ± 1.4 -1.7 ± 1.0 1.7 ± 1.0 1.2 ± 0.1 1.8 ± 0.4 

49.9207°N, 

11.6352°E 
                           

Lychnis 
viscaria 

5,15 3  -26.9 ± 0.4 -27.8 ± 0.9 0.9 ± 0.5 -2.6 ± 0.3 -4.0 ± 1.6 1.5 ± 0.3 1.5 ± 0.3 1.8 ± 0.3 

49.6500° N, 

11.4417°E 
                           

Saponaria 
officinalis 

5,15 1  -28.4 ± 0.4 -29.4 ± 0.7 1.0 ± 0.9 3.4 ± 0.7 1.0 ± 1.6 2.3 ± 1.6 1.7 ± 0.1 1.8 ± 0.4 

49.9212° N, 

11.6366°E 
                           

Stellaria 
media 

5,17 1  -27.6 ± 0.6 -29.1 ± 0.8 0.7 ± 1.4 3.9 ± 1.7 2.2 ± 1.7 0.8 ± 1.5 1.5 ± 0.4 1.8 ± 0.5 

49.9294° N, 

11.6366°E 
                           

Stellaria 
media 

5,20 4 -30.3 ± 0.3 -29.7 ± 0.7 -0.6 ± 0.4 3.6 ± 1.2 2.5 ± 1.2 1.2 ± 0.6 1.3 ± 0.1 1.7 ± 0.3 

49.8902°N, 

11.6139°E 
                           

Stellaria 
holostea 

5,15 1  -27.8 ± 0.9 -29.1 ± 1.1 1.2 ± 1.3 -0.6 ± 2.6 0.5 ± 2.4 1.1 ± 3.6 2.0 ± 0.5 3.2 ± 1.2 

49.9523° N, 

11.6239°E 
                           

Stellaria 
holostea 

5,15 1  -28.3 ± 1.0 -28.0 ± 0.8 -0.2 ± 0.9 -3.7 ± 1.3 -4.4 ± 1.1 0.7 ± 1.2 1.6 ± 0.3 2.4 ± 0.3 

49.9486° N, 

11.6366°E 
                           

Silene 
dioica 

5,15 1  -27.6 ± 0.4 -29.1 ± 1.1 1.5 ± 0.5 3.9 ± 2.6 0.5 ± 2.4 0.6 ± 2.6 2.7 ± 0.2 3.2 ± 1.2 

49.9523° N, 

11.6239°E 
                                       

1 This study (samples were collected in the area of NE-Bavaria), 2 Lallemand et al. (2017) 3 Gebauer & Meyer 

(2003),4 unpublished field work. Reference plants were Acer platanoides (AM), Achillea millefolium (AM), Ajuga reptans (AM), 

Alliaria petiolata (NM), Anemone nemorosa (AM), Berberis vulgaris (AM), Capsella bursa-pastoris (NM), Eridium cicutarium (AM), 

Fragaria vesca (AM), Frangula alnus (ECM), Galium album (AM), Galium aparine (NM), Galium boreale (AM), Galium pomeranicum 

(AM), Galium verum (AM), Glechoma hederacea (AM), Hieracium umbellatum (AM), Humulus lupulus (AM), Lamium galeobdolon 

(AM), Lamium purpurea (AM), Leucanthemum vulgare (AM), Luzula pilosa (AM), Plantago lanceolata (AM), Polygala vulgaris (AM), 

Potentilla reptans (AM), Quercus robur (ECM), Rumex acetosa (NM), Sanguisorba minor (AM), Sorbus aucuparia (ECM), 

Taraxacum officinale (AM), Thymus serpyllum (AM), Vaccinium vitis-idaea (ErM), Viola arvensis (AM), Viola rupestris (AM). AM 

arbuscular mycorrhiza, ECM Ectomycorrhiza, ErM ericoid mycorrhiza, NM non-mycorrhiza 
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Table S7 Test for differences between seven plant species belonging to the Caryophyllaceae and their 

respective reference plants in enrichment factors  of 13C [‰] and 15N [‰], and leaf total N concentrations 

[mmol/gdw]. Mann-Whitney-U test. Significances are bold marked.  

Species 
NCary, 

NRef. 
  

ε13C ε15N Total N 

  TS P TS P TS P 

Cerastium fontanum  5,15 1  U = 32 = 0.663 U = 23 = 0.036 U = 23 = 0.222 
49.9205°N, 11.6366°E          

Dianthus arenarius  3,38 2  U = 15 = 0.038 U = 21 = 0.059 U = 29 = 0.169 
49.9206°N, 11.6352°E          

Lychnis viscaria  5,15 1  U = 6 = 0.007 U = 1 = 0.002 U = 4 = 0.004 
49.9207°N, 11.6352°E          

Lychnis viscaria  5,15 3  U = 11 = 0.023 U = 11 = 0.023 U = 11 = 0.023 
49.9205° N, 11.6366°E          

Saponaria officinalis  5,15 1  U = 10 = 0.018 U = 5 = 0.005 U = 26 = 0.337 
49.9212° N, 11.6366°E          

Stellaria media  5,17 1  U = 7 = 0.006 U = 12 = 0.019 U = 3 = 0.002 
49.9294° N, 11.6366°E          

Stellaria media 5,20 4 U = 18 = 0.032 U = 13 = 0.159 U = 19 = 0.001 
49.8902°N, 11.6139°E         

Stellaria holostea  5,15 1  U = 22 = 0.190 U = 28 = 0.432 U = 11 = 0.023 
49.9523° N, 11.6281°E          

Stellaria holostea  5,15 1  U = 28 = 0.432 U = 22 = 0.190 U = 1 = 0.002 
49.9486° N, 11.6366°E          

Silene dioica  5,15 1  U = 8 = 0.011 U = 30 = 0.541 U = 29 = 0.485 
49.9523° N, 11.6239°E          

TS: Test statistic, 1 This study (samples were collected in the area of NE-Bavaria), 2 Lallemand et al. (2017) 3 Gebauer 

& Meyer (2003),4 unpublished field work. Reference plants were Acer platanoides (AM), Achillea millefolium (AM), Ajuga 

reptans (AM), Alliaria petiolata (NM), Anemone nemorosa (AM), Berberis vulgaris (AM), Capsella bursa-pastoris (NM), Eridium 

cicutarium (AM), Fragaria vesca (AM), Frangula alnus (ECM), Galium album (AM), Galium aparine (NM), Galium boreale 

(AM), Galium pomeranicum (AM), Galium verum (AM), Glechoma hederacea (AM), Hieracium umbellatum (AM), Humulus lupulus 

(AM), Lamium galeobdolon (AM), Lamium purpurea (AM), Leucanthemum vulgare (AM), Luzula pilosa (AM), Plantago lanceolata 

(AM), Polygala vulgaris (AM), Potentilla reptans (AM), Quercus robur (ECM), Rumex acetosa (NM), Sanguisorba minor (AM), 

Sorbus aucuparia (ECM), Taraxacum officinale (AM), Thymus serpyllum (AM), Vaccinium vitis-idaea (ErM), Viola arvensis 

(AM), Viola rupestris (AM). AM arbuscular mycorrhiza, ECM Ectomycorrhiza, ErM ericoid mycorrhiza, NM non-

mycorrhiza 
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Table S8 Fungal endophytes in three plant species belonging to the Equisetaceae based on a molecular 

approach (183 zOTU in total; 93,883 reads in total). A complete list can be obtained from the repository. 

zOTU E. arvense E. sylvaticum E. palustre GenBank align Identification acc to 
BestHit 

Comment 

 reads reads reads  length  

zOTU104 0 70 0 KJ827902 280 Helotiales sp. 96.4 

putative 

root 

endophyte3 

zOTU12 2035 0 0 UDB020374 238 
Phialocephala 

fortinii 
98.3 DSE1 

zOTU121 51 0 0 KF359558 305 
Cladophialophora 

chaetospira 
100 DSE2 

zOTU133 34 0 0 KF359558 305 
Cladophialophora 

chaetospira 
99.7 DSE2 

zOTU14 1819 0 0 EU046055 281 Helotiales sp. 99.6 

putative 

root 

endophyte3 

zOTU165 26 0 0 EU035406 305 
Cladophialophora 

chaetospira 
99.7 DSE2 

zOTU174 23 0 0 EU035406 305 
Cladophialophora 

chaetospira 
99.3 DSE2 

zOTU177 0 16 0 DQ294955 341 
Glomeromycotina 

sp. 
81.5 AM 

zOTU179 16 0 0 UDB020374 239 
Phialocephala 

fortinii 
98.7 DSE1 

zOTU180 26 0 0 UDB020374 239 
Phialocephala 

fortinii 
98.7 DSE1 

zOTU185 0 16 0 DQ294955 341 
Glomeromycotina 

sp. 
81.2 AM 

zOTU19 0 145 1010 EF644169 279 Helotiales sp. 99.6 
putative 
root 

endophyte3 

zOTU2 0 125 6341 KC965195 277 Helotiales sp. 99.3 

putative 

root 

endophyte3 

zOTU21 0 1046 0 KJ827529 279 Helotiales sp. 100 

putative 

root 

endophyte3 

zOTU22 1178 0 0 EU046055 281 Helotiales sp. 100 

putative 

root 

endophyte3 

zOTU24 0 115 793 EF644169 279 Helotiales sp. 100 
putative 
root 

endophyte3 

zOTU27 874 0 0 LT608540 200 Helotiales sp. 100 

putative 

root 

endophyte3 

zOTU3 0 5127 7 MF487029 276 Helotiales sp. 98.9 

putative 

root 

endophyte3 

zOTU30 0 744 0 FJ000375 280 
Tetracladium 

furcatum 
100 DSE4 

zOTU32 0 160 453 MF487029 276 Helotiales sp. 98.9 
putative 
root 

endophyte3 

zOTU33 648 0 0 LT608540 200 Helotiales sp. 100 

putative 

root 

endophyte3 
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Table S8  
continued. 

       

zOTU- E. arvense E. sylvaticum E. palustre GenBank align Identification acc to 
BestHit 

Comment 

 reads reads reads  length  

zOTU4 0 106 4843 KC965195 277 Helotiales sp. 99.6 

putative 

root 

endophyte3 

zOTU42 0 113 343 MF487029 276 Helotiales sp. 99.3 

putative 

root 

endophyte3 

zOTU6 0 3650 6 MF487029 276 Helotiales sp. 99.3 
putative 
root 

endophyte3 

zOTU72 181 0 0 UDB020374 239 
Phialocephala 

fortinii 
97.9 DSE1 

zOTU79 0 117 0 EU516942 280 Tetracladium sp. 99.3 DSE4 

zOTU8 2860 1 0 UDB020374 238 
Phialocephala 

fortinii 
98.3 DSE1 

zOTU80 0 0 119 HG937139 277 Helotiales sp. 99.3 
putative 
root 

endophyte3 

zOTU81 128 0 0 UDB020374 239 
Phialocephala 

fortinii 
97.9 DSE1 

zOTU84 0 0 98 HG937139 277 Helotiales sp. 99.6 

putative 

root 

endophyte3 

zOTU88 0 112 0 EU516942 280 Tetracladium sp. 99.6 DSE4 

Roots of Equisetum individuals (n = 3 per species) were pooled for DNA analyses. In all species septate hyphae and 

microsclerotia as well as Paris-like coils and few aseptate hyphae were microscopically documented. 1 Surono & Narisawa 

(2017), 2 Usui, Takashima & Narisawa (2016), 3 Tedersoo et al. (2009), 4 Raviraja, Sridhar & Barlocher (1996). Doubles 

in GenBank ID are grey marked. 
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Plant Physiology Supporting Information  

 

Mucoromycotina fine root endophyte fungi form nutritional mutualisms with 

vascular plants. 

Grace A. Hoysted, Alison S. Jacob, Jill Kowal, Philipp Giesemann, Martin I. Bidartondo, Jeffrey G. Duckett, 

Gerhard Gebauer, William R. Rimington, Sebastian Schornack, Silvia Pressel and Katie J. Field 

 

The following Supporting Information is available for this article: 

Supplemental text specific details on methods (mesh-covered core construction, equations, molecular 

methods for fungal identification). 

Figure S1 Schematic diagram of mesh-covered core showing dimensions of window  

Figure S2 Experimental microcosm showing (a) 15N and 33P and (b) 14C isotope tracing. 

Figure S3-S9 Phylogenetic relationships.  

Figure S10-S11 Scanning electron micrograph and light micrographs of trypan blue stained roots.  

Table S1 Plant samples with their origin. 

Table S2 A summary of Mucoromycotina OUTs associated with plant samples at four UK sites.  

Table S3 A summary of the amounts of carbon, 15N and 33P detected in static and rotated cores of 

microcosms.  

Respective references 
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Supplementary Information Text 

Summary 

This file provides specific details on methods referred to in the main text of the above article, including 

mesh-covered core construction, equations for calculation of carbon and nutrient fluxes between symbionts 

and molecular methods for fungal identification. Cytological analyses of resin-embedded plant material are 

also included. Figures S1 and S2 illustrate experimental systems; Figures S3 to S9 are phylogenetic trees of 

Endogonales (Mucoromycotina) detected in plants. Figures S10 and S11 provide additional light and 

scanning electron micrographs of targeted plant species colonized by Mucoromycotina fine root endophytes 

(FRE), which complement those in the main text. Table S1 refers to the lycophytes, liverworts and 

angiosperms used throughout this study and their original location, Table S2 includes a summary of 

Mucoromycotina OTUs in lycophytes, liverworts and angiosperms and Table S3 includes a summary of the 

amounts of carbon, 15N, 33P in static and rotated cores within experimental microcosms used during the 

carbon-for-nutrient exchange experiments.  

 

Materials and Methods 

Plant growth conditions 

Lycopodiella inundata plants were maintained in controlled environment chambers (Micro Clima 1200, Snijders 

Labs, Netherlands) with settings chosen to simulate the plant’s natural environment: 70% RH, 16 hr/8 hr 

day/night, 20C day/ 15C night, 100.1 µmol m-2 s-1 irradiance. 

 

Cytological analysis 

For trypan blue staining, plant tissues were cleared in 5% KOH at 90oC for 3 h, acidified in 2% HCl for 1-

2 min, stained in 0.05% trypan blue, de-stained in 50% glycerin for 24 h before viewing under a light 

microscope. For SEM, tissues were fixed in 3% glutaraldehyde, dehydrated through an ethanol series, 

critical-point dried using CO2 as transfusion fluid, sputter coated with 390 nm palladium-gold and viewed 

using a FEI Quanta scanning electron microscope (FEI, Hillsboro, OR, USA). 

For light microscopy, L. inundata gametophytes and the protocorms of young sporophytes were processed 

according to Ligrone and Duckett (1994). Briefly, specimens were fixed in 3% glutaraldehyde, 1% freshly 

prepared formaldehyde and 0.75% tannic acid in 0.05 M Na–cacodylate buffer, pH 7, for 3 h at room 

temperature. After several rinses in 0.1 M buffer, samples were post-fixed in buffered (0.1 M, pH 6.8) 1% 

osmium tetroxide overnight at 48o C, dehydrated in an ethanol series and embedded in Spurr’s resin via 

ethanol, and 0.5 mm thick sections were cut with a diamond histo-knife, stained with 0.5% toluidine blue 

and photographed under a Zeiss Axioscope light microscope equipped with an MRc digital camera 
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33P sample analysis 

After harvest and freeze-drying, 10-50 mg of homogenised plant and soil materials were digested in 500 µl 

of concentrated H2SO4. These were heated to 365°C for 15 min, and 50 µl H2O2 were added to each sample 

when cool. Samples were reheated to 365°C for one minute, producing a clear digest solution which was 

then cooled and diluted to 5 ml with distilled water. One ml of each diluted digest was then added to 10 ml 

of the scintillation cocktail Emulsify-safe (Perkin Elmer, Beaconsfield, UK) before liquid scintillation 

counting.  

 

14C sample analysis 

Approximately 10-20 mg of scintillation of sample was weighed into Combusto-cones (Perkin Elmer) which 

were then oxidised. CO2 released through oxidation was trapped in 10 ml Carbosorb (Perkin Elmer, UK) 

prior to mixing with the scintillation cocktail 10 ml Permaflour (Perkin Elmer, UK). Total carbon (12C + 

14C) fixed by the plant and transferred to the fungal network was calculated as a function of the total volume 

and CO2 content of the labelling chamber and the proportion of the supplied 14CO2 label fixed by plants. 

The difference in carbon between the static and rotated cores is considered equivalent to the total C 

transferred from plant to symbiotic fungus within the soil core, noting that a small proportion will be lost 

through soil microbial respiration. The total carbon budget for each experimental pot was calculated using 

equations from Cameron et al. (2007) (see below). 

 

Stable isotope signatures of neighbouring plants 

Leaf and root samples were washed, dried to constant weight at 105C and ground to a fine powder in a 

ball mill (Retsch Schwingmühle MM2, Haan, Germany). Relative C and N isotope natural abundances of 

the leaf and root samples were measured in a dual element analysis mode with an elemental analyser (Carlo 

Erba Instruments 1108, Milan, Italy) coupled to a continuous flow isotope ratio mass spectrometer (delta 

S, Finnigan MAT, Bremen, Germany) via a ConFlo III open-split interface (Thermo Fisher Scientific, 

Bremen, Germany) as described in Bidartondo et al. (2004). Relative isotope abundances are denoted as δ 

values calculated according to the following equation: δ13C or δ15N = (Rsample/Rstandard – 1) x 1000 [‰], where 

Rsample and Rstandard are the ratios of heavy to light isotope of the samples and the respective standard. 

Standard gases were calibrated with respect to international standards (CO2 vs PDB, N2 vs N2 in air) with 

the reference substances ANU sucrose and NBS18 for the carbon isotopes and N1 and N2 for the nitrogen 

isotopes (International Atomic Energy Agency, Vienna, Austria). Reproducibility and accuracy of the C and 

N isotope abundance measurements were routinely controlled by measuring the laboratory standard 

acetanilide. In relative C and N isotope natural abundance analyses, acetanilide was routinely analyzed with 

variable sample weight at least six times within a batch of 50 samples. The maximum variation of δ13C and 

δ15N was always below 0.2‰. 
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Construction of mesh-covered cores 

Based on the methods of Field et al. (2012) two windows (20 mm x 50 mm, Supplementary Figure S1) were 

cut into the below-ground portion of each core. The windows and base were covered with nylon mesh (10 

µm pore size) and sealed with a fast-setting acrylic adhesive (Tensol 12, Bostok Limited, UK). This mesh 

size is fine enough to exclude lycophyte roots but allows the ingrowth of fungal hyphae. We perforated a 

fine-bore capillary tube using a needle and installed it to run the full-length of each of the cores (100 mm in 

length, 1.02 mm internal diameter; Portex, UK). The tubing ensured isotope solution was introduced and 

distributed evenly throughout the core volume. We sealed the capillary tube using acrylic adhesive 5 mm 

from the bottom of the core in order to prevent excess isotope leaching from the bottom of the core.  

 

Sampling of lycophytes, liverworts and angiosperms 

Sampling sites for Lycopodiella inundata and adjacent liverworts and angiosperms are listed in Supplementary 

Table 1 (S1). 

 

Plant harvest and sample analyses 

Upon detection of maximal belowground 14C flux following release of 14CO2, 3ml of 2 M KOH was 

introduced to each chamber to trap residual 14CO2 gas in the chamber headspace. One ml of each ‘used’ 

KOH trap was transferred to vials containing 10 ml of the scintillation cocktail Ultima Gold (Perkin Elmer, 

Beaconsfield, UK) and the radioactivity of each sample determined through liquid scintillation. These data 

were used to calculate carbon budgets for each experimental pot (see below for equations).  

Plant and soil materials were separated, freeze-dried, weighed and homogenised using a Tissue Lyser LT 

(Qiagen, UK). 
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33P transfer from fungus to plant 

The 33P transferred from fungus to plant was determined using equation 1 (Cameron et al., 2007): 

M33P = {[
𝐴

𝑆Act
]𝑀wt} 𝐷𝑓 

Where M33P = Mass of 33P, A = radioactivity of the tissue sample (Bq), SAct = specific activity of the source 

(Bq mmol-1), Df = dilution factor and Mwt = molecular mass of P.  

 

Carbon transfer from plant to fungus 

The difference in carbon between the static and rotated cores is taken to be equivalent to the total C 

transferred from plant to symbiotic fungus within the soil core. Total carbon transferred by the plant to the 

fungus was calculated using equation 2:  

MC = (( 𝐴

𝑆Act
)𝑀14𝐶) + (𝑃𝑟 𝑥 𝑀wt𝑐) 

Where MC = Mass of carbon transferred from plant to fungus, A = radioactivity of the tissue sample (Bq); 

SAct = specific activity of the source (Bq Mol-1), M14C = atomic mass of 14C, Pr = proportion of the total 

14C label supplied present in the tissue; MwtC = mass of C in the CO2 present in the labelling chamber (g) 

(from the ideal gas law; Equation 3): 

mcd = Mcd (
𝑃𝑉𝐶𝐷

𝑅𝑇
) ∴ 𝑚𝑐 =  𝑚𝑐𝑑 x 0.27292 

Where mcd = mass of CO2 (g), Mcd = molecular mass of CO2 (44.01 g mol-1) P = total pressure (kPa); Vcd = 

volume of CO2 in the chamber (0.003 m3); R = universal gas constant (J K-1 mol-1); T, absolute temperature 

(K); mc, mass of C in the CO2 present in the labelling chamber (g), where 0.27292 is the proportion of C in 

CO2 on a mass fraction basis (Cameron et al., 2006).  

 

Suppliers and addresses 

Petersfield no.2 compost, Leicester, UK; Snijder Labs, Netherlands; Vaisala, Birmingham, UK; Zeiss, 

Germany; Sigma, UK; Hartmann Analytics, Germany; Isotech, Chesterfield, UK; Sercon Ltd., Crewe, UK; 

Carlo Erba Instruments, Milan, Italy; delta S, Finnigan MAT, Bremen, Germany; Thermo Fisher Scientific, 

Bremen, Germany; IBM Analytics, New York, USA 
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Supplementary figures 

 

 

Figure S1 Schematic diagram of mesh-covered core showing dimensions of window (not drawn to scale). 

 

          

Figure S2 Experimental microcosm showing (a) 15N and 33P and (b) 14C isotope tracing. 

(a)                                                                                (b) 
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Figure S3 Phylogenetic relationships of Mucoromycotina OTUs associated with Lycopodiella inundata grown 

for isotope tracing and cytology experiments in controlled environment growth chambers. The final 

alignment consisted of 24 taxa and 397 characters. The TN93 + G model was used for analysis. The ML 

tree is shown. The values adjacent to each node correspond to the bootstrap support and posterior 

probabilities, respectively. An asterisk denotes a bootstrap value <50% or posterior probability <0.5. 



Manuscripts of this thesis 

148 

 



Manuscripts of this thesis 

149 

Figure S4 An overview of phylogenetic relationships of Mucoromycotina OTUs associated with 

bryophytes, lycophytes and angiosperms from various UK locations based on partial 18S gene sequences. 

Only the subset of representative OTUs relevant to this study are shown. Genbank accession numbers 

(MK673773-MK673803) of selected sequences from this study are shown in parentheses, Codes after plant 

names refer to the clone identity. Our sequences lie within the Densosporaceae which is sister to the 

Endogonaceae (Desirò et al. 2013). The final alignment consisted of 94 taxa and 693 characters. Sequences 

shorter than 690 bp were excluded from the analysis. The model selected for analysis was TN93 + G + I.  

The tree shown is that inferred from the ML analysis. The values adjacent to each node correspond to the 

bootstrap support and posterior probabilities, respectively. An asterisk denotes a bootstrap value <50% or 

posterior probability <0.5. 
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Figure S5 Phylogenetic relationships of partial 18S DNA sequences classified as OTU 2, corresponding to 

“group A” in Desirò et al. (2013). Black dots indicate identical sequences isolated from different plant 

species. The ML tree is shown. Values at nodes refer to ML/Bayesian inference. The final alignment 

consisted of 731 characters and analysis was conducted using the TN93 + G + I substitution model. 

  



Manuscripts of this thesis 

151 

 

Figure S6 Phylogenetic relationships of partial 18S DNA sequences classified as OTU 1,3 and 4. The ML 

tree is shown. Black dots indicate identical sequences isolated from different plant species or locations. The 

final alignment consists of 681 characters and phylogenetic analysis was conducted using the best fit model, 

TN93 + G + I, as explained in materials and methods except that 2,000,000 generations were run for 

Bayesian analysis. The values adjacent to each node correspond to the bootstrap support and posterior 

probabilities, respectively. An asterisk denotes a bootstrap value <50% or posterior probability <0.5. 



Manuscripts of this thesis 

152 

 

Figure S7 Phylogenetic relationships of partial 18S DNA sequences clustering within OTU 5. The final 

alignment comprised 649 characters and used the TN93 +G + I substitution model. The ML tree is featured. 

The values adjacent to each node correspond to the bootstrap support and posterior probabilities, 

respectively. An asterisk denotes a bootstrap value <50% or posterior probability <0.5. 
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Figure S8 Phylogenetic relationships of partial 18S DNA sequences classified as OTU 6, corresponding to 

“group B” in Desirò et al. (2013). The ML tree is displayed. Black dots indicate identical sequences isolated 

from different plant species or locations. The final dataset consisted of 622 characters and was analysed 

using the TN93 + G + I substitution model. Values at the nodes indicate ML/Bayesian inference values. 

An asterisk denotes a bootstrap value <50% or posterior probability <0.5. 
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Figure S9 Phylogenetic relationships of partial 18S DNA sequences clustering with OTU 7, corresponding 

to “group I” in Desirò et al. (2013). The ML tree is shown. The final alignment comprised 580 characters 

and the substitution model used for the analysis was TN93 + G + I. Values at the nodes indicate 

ML/Bayesian inference values. An asterisk denotes a bootstrap value <50% or posterior probability <0.5. 
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Figure S10 (a) Scanning electron micrograph of Fossombronia foveolata thallus (from Thursley Common) 

showing coil of fine hyphae (arrowhead) and coarse hyphae in surrounding cells; (b) Light micrograph of 

trypan blue stained root of Holcus lanatus (from Lynn Crafnant) showing fine hyphae and an arbuscule-like 

structure (arrowhead). Scale bars: (b) 50 µm, (a) 20 µm.   
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Figure S11 Scanning electron micrographs, except (g) light micrograph of toluidine blue stained semi-thin 

sections. Gametophyte morphologies in Lycopodiella inundata (from Thursley Common) (a, b), (b, c) 

zonation of fungal colonization in a gametophyte: intracellular in the outer cortical layers (arrowheads) and 

surrounding tissue (*), and strictly intercellular in the central region characterized by large, mucilage-filled, 

intercellular spaces (arrows); (d) hyphal coils (arrowheads) and vesicles (*) in the outer cortical layers; (e, f) 

centrally, the fungus colonizes the system of large intercellular spaces between the host cells (* in f); here 

the fine hyphae (arrows) (e) eventually become swollen, reaching diameters of > 3 µm (arrows) (f); (g) 

intercellular fungal proliferation (*), note the non-colonized, living host cells in this zone; (h) young 

sporophyte (S) attached to gametophyte (G), arrowheads point to the sporophyte-gametophyte junction, 

enlarged in (i). Note that the gametophyte fungus, which is intracellular at the S-G junction and consists of 

fine hyphae (arrows) and small vesicles (*) does not cross the placenta identifiable by its numerous wall 

ingrowths (arrowhead).  Scale bars: (a, b, h) 500 µm, (c) 200 µm, (d, g) 50 µm, (e, f, i) 20 µm. 
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Table S1 Samples of lycophytes, liverworts and angiosperms analysed with their origin.  

Sample species Samples analysed Origin 

Lycophytes  

 

Lycopodiella inundata (L.) Holub 24 Thursley Common, Surrey; 

England   

Lycopodiella inundata (L.) Holub 16 Studland Heath, Dorset; 

England 

Lycopodiella inundata (L.) Holub 4 confidential site, Norfolk; 

England 

Liverworts  

Fossombronia foveolata Lindb. 1 Thursley Common, Surrey; 

England   

Fossombronia foveolata Lindb. 3 confidential location, Norfolk; 

England 

Fossombronia foveolata Lindb. 6 Lynn Crafnant; Wales 

 

Angiosperms 

 

Molinia caerulea (L.) Moench 28 Thursley Common, Surrey; 

England   

Juncus bulbosus L. 30 Thursley Common, Surrey; 

England   

Juncus bulbosus L.  3 confidential location, Norfolk; 

England 

Holcus lanatus L. 3 Lynn Crafnant; Wales 
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Table S2 A summary of Mucoromycotina OTUs associated with liverworts, lycophytes and angiosperms 

at four UK sites. The numbers within each column represent the number of partial 18S sequences that 

cluster within each OTU. 

Species Location OTU  

1 

OUT 

2 

OUT 

3 

OUT 

4 

OUT 

5 

OUT 

6 

OUT 

7 

ND1 

Lycopodiella inundata  

(n = 4) 

Dorset 2 0 4 0 0 0 3 0 

Fossombronia foveolata 

(n = 2) 

Norfolk 0 4 0 0 0 1 0 0 

Juncus bulbosus 

(n = 2) 

Norfolk 0 0 0 5 0 0 0 0 

Lycopodiella inundata 

 (n = 1) 

Norfolk 0 0 0 0 0 0 0 1 

Lycopodiella inundata 

 (n = 6) 

Surrey 13 0 7 0 0 0 4 0 

Juncus bulbosus 

(n = 12) 

Surrey 0 1 4 13 31 0 16 0 

Molinia caerulea 

(n = 8) 

Surrey 0 0 0 9 19 0 12 0 

Fossombronia foveolata 

(n = 2) 

Wales 0 0 0 0 0 4 0 0 

Holcus lanatus 

 (n = 2) 

Wales 0 6 0 0 0 8 0 0 

1ND = not determined, singleton OTU. 
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Table S3 A summary of the amounts of carbon, 15N and 33P detected in static and rotated core of 

microcosms used during carbon-for-nutrient experiments between Lycopodiella inundata and 

Mucoromycotina FRE fungi. SEM = standard error of the mean.   

 Static Core Rotated Core 

 % SEM % SEM 

Carbon allocated 

to fungus 

1.13 0.74 0.65 0.59 

 ng SEM ng/g-1 SEM ng SEM ng/g-1 SEM 

Carbon in fungus 4481 2019.30 680.20 410.49 1549.23 968.53 94.14 30.64 

15N in plant tissue 1434.62 480.76 1077.47 329.93 294.39 177.49 360.50 149.08 

33P in plant tissue 0.022 0.007 0.015 0.004 0.003 0.001 0.009 0.005 

 

 



Manuscripts of this thesis 

160 

Respective references 

Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: 

isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc Biol 

Sci 271: 1799-1806. 

Cameron DD, Johnson I, Leake JR, Read DJ (2007) Mycorrhizal acquisition of inorganic phosphorus 

by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99: 831-834. 

Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant–fungus 

carbon and nitrogen transfers in the green‐leaved terrestrial orchid Goodyera repens. New Phytol 171: 405-

416. 

Desirò A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI (2013) Fungal symbioses in hornworts: 

a chequered history. Proc Biol Sci 280: 20130207. 

Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ (2012) Contrasting arbuscular 

mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nat 

Commun 3: 835. 

Ligrone R, Duckett JG (1994) Cytoplasmic polarity and endoplasmic microtubules associated with the 

nucleus and organelles are ubiquitous features of food‐conducting cells in bryoid mosses (Bryophyta). 

New Phytol 127: 601-614. 

 



Understanding plant-fungal nutritional strategies using stable isotopes 

161 



Understanding plant-fungal nutritional strategies using stable isotopes 

162 

Declaration 

(Eidesstattliche) Versicherungen und Erklärung 

 

(§ 9 Satz 2 Nr. 3 PromO BayNAT)  

Hiermit versichere ich eidesstattlich, dass ich die Arbeit selbstständig verfasst und keine anderen als die von mir angegebenen 

Quellen und Hilfsmittel benutzt habe (vgl. Art. 64 Abs. 1 Satz 6 BayHSchG).  

 

(§ 9 Satz 2 Nr. 3 PromO BayNAT)  

Hiermit erkläre ich, dass ich die Dissertation nicht bereits zur Erlangung eines akademischen Grades eingereicht habe und 

dass ich nicht bereits diese oder eine gleichartige Doktorprüfung endgültig nicht bestanden habe.  

 

(§ 9 Satz 2 Nr. 4 PromO BayNAT)  

Hiermit erkläre ich, dass ich Hilfe von gewerblichen Promotionsberatern bzw. -vermittlern oder ähnlichen Dienstleistern weder 

bisher in Anspruch genommen habe noch künftig in Anspruch nehmen werde.  

 

(§ 9 Satz 2 Nr. 7 PromO BayNAT)  

Hiermit erkläre ich mein Einverständnis, dass die elektronische Fassung meiner Dissertation unter Wahrung meiner 

Urheberrechte und des Datenschutzes einer gesonderten Überprüfung unterzogen werden kann.  

 

(§ 9 Satz 2 Nr. 8 PromO BayNAT)  

Hiermit erkläre ich mein Einverständnis, dass bei Verdacht wissenschaftlichen Fehlverhaltens Ermittlungen durch 

universitätsinterne Organe der wissenschaftlichen Selbstkontrolle stattfinden können. 

 

 

 

  

Ort, Datum, Unterschrift 



Understanding plant-fungal nutritional strategies using stable isotopes 

163 

 


