Neue Synthesewege zu hochfunktionalisierten bioaktiven Tetramsäuren: Caldoramid und JBIR-141/142

Dissertation

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) im Fach Chemie an der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth

> vorgelegt von Anja Christina Wunder geboren in Forchheim i. Ofr.

> > Bayreuth, 2020

Die vorliegende Arbeit wurde in der Zeit von Mai 2016 bis Juli 2020 in Bayreuth am Lehrstuhl Organische Chemie I unter der Leitung von Herrn Prof. Dr. Rainer Schobert angefertigt. Die Laborarbeiten wurden im Zeitraum von Mai 2016 bis Juni 2019 durchgeführt.

Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.).

Dissertation eingereicht am: 20.07.20 Zulassung durch die Promotionskommission: 29.07.20 Wissenschaftliches Kolloquium: 09.12.20

Amtierender Dekan: Prof. Dr. Matthias Breuning

Prüfungsausschuss

Prof. Dr. Rainer Schobert (Gutachter)Prof. Dr. Frank Hahn (Gutachter)Prof. Dr. Mukundan Thelakkat (Vorsitz)Prof. Dr. Birgit Weber

Inhaltsverzeichnis

Zusammenfassung	III
Summary	V
Abkürzungsverzeichnis	VII
1. Einleitung	1
2. Allgemeiner Teil	3
2.1 N-Acyl-4-methoxy-pyrrolin-2-one	3
2.1.1 Vorkommen und Eigenschaften	3
2.1.2 Caldoramid	12
2.2 N-Nitroso-Hydroxyamino-Verbindungen	13
2.2.1 Vorkommen und Eigenschaften	13
2.2.2 Naturstoffe mit N ₂ O ₂ -Motiv	14
2.2.3 JBIR-141/142	18
3. Spezieller Teil	19
3.1 Caldoramid	19
3.1.1 Synthesestrategie	19
3.1.2 Durchführung	21
3.2 JBIR-141/142	27
3.2.1 Synthesestrategie	27
3.2.2 Synthese des Oxazolin-Fragmentes 117	30
3.2.3 Synthese des β-Keto-Bausteins 119	36
3.2.4 Testsysteme	39
3.2.5 Synthese des Mittelbausteins via Reformatsky-Reaktion	51
3.2.6 Synthese des Mittelbausteins via Grignard-Reaktion	57
4. Résumé und Ausblick	67
5. Experimenteller Teil	79
5.1 Materialien & Methoden	79
5.2 Synthesevorschriften Caldoramid	81
5.3 Synthesevorschriften JBIR-141/142	
5.3.1 Vorschriften zu Abschnitt 3.2.2	
5.3.2 Vorschriften zu Abschnitt 3.2.3	106
5.3.3 Vorschriften zu Abschnitt 3.2.4	113
5.3.4 Vorschriften zu Abschnitt 3.2.5	129

5.3.5 Vorschriften zu Abschnitt 3.2.6	140
Literaturverzeichnis	165
Anhang	173
Publikationen	209
Eidesstattliche Versicherungen und Erklärungen	210

Zusammenfassung

Diese Arbeit befasst sich mit der Entwicklung neuer Synthesewege zu den Naturstoffen Caldoramid, JBIR-141 und JBIR-142, die neben vielversprechenden Bioaktivitäten synthetisch anspruchsvolle Naturstoffe darstellen, zum einen aufgrund der hohen Anzahl an *N*-methylierten Peptidbindungen und zum anderen aufgrund der hohen Dichte an unterschiedlichen funktionellen Gruppen.

Caldoramid ist ein Vertreter der Klasse der peptidischen 30-Methyltetramate. An anderen Verbindungen dieser Naturstoffklasse sind verschiedene Synthesewege in der Literatur beschrieben, die auf der Verknüpfung einzeln aufgebauter Fragmente basieren. Im Unterschied dazu wird in dieser Arbeit eine Strategie erarbeitet, bei der ähnlich einer Festphasenpeptidsynthese der Aufbau des Gesamtsystems direkt am Kern, dem 30-Methyltetramat, hin zur N-terminalen N,N-Dimethylalanin-Aminosäure stattfinden soll. An das deprotonierte Tetramat wurde N-Methyl-Boc-Isoleucin nach verschiedenen Versuchen der Aktivierung als Acyl-Imidazol geknüpft. Nach saurer Entschützung konnte die Kupplung der nächsten Aminosäure in Form von Fmoc- oder Boc-N-Methyl-Valin mittels verschiedener Aktivierungsreagenzien nicht erreicht werden, was eine Änderung der Schutzgruppenstrategie auf nosylierte Aminosäuren erforderlich machte. Diese wurden als Säurechlorid mit Ghosez Reagenz, 1-Chloro-(N,N,2-trimethyl)-1-propenylamin, aktiviert, gekoppelt und nachfolgend selektiv am N-Terminus in quantitativer Ausbeute methyliert. Die Zielverbindung konnte in 12 Schritten (längste lineare Kette) mit einer insgesamten Ausbeute von 16% erhalten werden. Aufgrund der leichten Abweichung der NMR-Signale zu höheren ppm und des abweichenden Drehwerts sollte mit einer Probe des natürlichen Isolats ein direkter Vergleich z.B. mittels NMR, CD/ORD oder HPLC durchgeführt werden. MTT-Assays der synthetischen Verbindung zeigten an menschlichen Dickdarmkarzinomzelllinien HT-29 und HCT-116^{wt} IC₅₀-Werte von 77.5 \pm 1.3 μ M und 43.8 \pm 3.7 μ M. An der Brustkrebszelllinie MCF-7 wurde ein IC₅₀-Wert von 33.9 \pm 1.3 μ M ermittelt.

Als zweites Ziel der Arbeit sollen die Grundlagen für einen synthetischen Zugang zu den FoxO3a-Inhibitoren JBIR-141/142 erarbeitet werden, da FoxO3a in Zusammenhang mit einigen Krankheit steht und ein wichtiges Target darstellt. Neben der Tetramsäure- sowie der Oxazolin-Einheit enthalten diese Naturstoffe eine *N*-Nitroso hydroxyaminofunktion, welche bis dato nur in Totalsynthesen strukturell einfacherer Verwandter hergestellt worden ist. In Form von Testsystemen sollte der Aufbau und die Verknüpfung der Funktionalitäten hier erarbeitet werden und der Grundstein für eine spätere Totalsynthese gelegt werden. Die Synthese der Oxazolin-Einheit erfolgte über L-*allo*-Threonin, da die meisten Oxazolin-Ringschlussmethoden unter Inversion des Stereozentrums am β -Kohlenstoff erfolgen. Das Dipeptid wird in Form des Methylesters unter EDCI-Kupplung erzeugt und zum *trans*-Oxazolin umgesetzt.

Zur Synthese der 3-Acyltetramsäure via Dieckmann-Cyclisierung wurde das entsprechende β -Ketosystem hergestellt. Ausgehend von (*S*)-2-Hydroxy-3-methyl-buttersäure wurde über drei Stufen die Benzyl-geschützte Verbindung hergestellt und an Meldrumsäure acyliert, welches anschließend mit Ethyl-*N*-methyl-alaninat unter Abspaltung von CO₂ zur β -Ketoverbindung umgesetzt wurde.

Neben dieser Tetramsäurevorstufe und dem fertigen Oxazolin-Baustein wurde für Kupplungsversuche ein vereinfachter Testbaustein mit *N*-Nitroso hydroxyamino-Funktion aufgebaut. Ausgehend von L-Glutaminsäure wurde in der Seitenkette über die Stufe des Aldehyds eine benzylgeschützte Hydroxyaminofunktion erzeugt, die mit Butylnitrit nitrosyliert wurde. Unter Ausschluss von Licht konnte diese Verbindung unter Kühlung über einen längeren Zeitraum ohne erkennbare Zersetzung gelagert werden, jedoch trat im sauren Medium sofortige Zersetzung ein. Durch Umschützung der N₂O₂-Funktion wurde das stabilere benzylierte Diimid-*N*-Oxid erhalten, das weitere Transformationen wie eine Boc-Abspaltung mit *p*TsOH am Baustein erlaubte. Auch eine Kupplung mit dem *in situ* hergestellten Caesium-Salz des Oxazolins konnte erzielt werden. Dies bekräftigt die gewählte Synthesestrategie und die weiteren Stufen, die zur Verknüpfung aller Bausteine nötig wären, wurden in einer formalen Synthese beschrieben. Daneben wurde die Synthese des Mittelbausteins zum einen mit einer Reformatsky-Reaktion als Schlüsselschritt, zum anderen ausgehend von Pantolacton mit einer Grignard-Reaktion als Kerntransformation untersucht.

V

Summary

The aim of this study is to find new ways for the synthesis the natural products Caldoramide, JBIR-141 and JBIR-142. In addition to promising bio-activities these compounds represent synthetically challenging structures due to the high number of *N*-methylated peptide bonds and due to the high-density functionalization.

The natural product Caldoramide is a member of the class of peptidic 30-Methyltetramates. For structurally related natural products some synthetical approaches are known in the literture, which are based on the coupling of separately synthesised fragments. In contrast, this work deals with the development of a strategy to synthesise the system directly from the core, the 30-Methyl tetramate, to the N-terminal amino acid N,N-Dimethyl alanine. After several attempts N-Methyl-Boc-Isoleucine was activated as Acyl-imidazole and coupled to the deprotonated tetramate. The coupling of the next amino acids in form of Fmoc- or Boc-N-methyl-valine could not be achieved by means of various activation reagents, which made it necessary to change the protective group strategy to nosylated amino acids. These were activated as acid chloride with Ghosez's reagent (1-Chloro-(N,N,2-trimethyl)-1-propenylamine), coupled and subsequently methylated at the *N*-terminus in quantitative yield. The target compound could be obtained in 12 steps (longest linear chain) with a total yield of 16%. Due to the slight shift of the signals to higher ppm and the deviation of the optical rotation, a direct comparison with a sample of the natural isolate should be made e.g. by means of NMR, CD/ORD or HPLC. MTT assays of the synthetic compound showed IC₅₀ values of 77.5 \pm 1.3 μ M and 43.8 \pm 3.7 μ M on human colon carcinoma cells HT-29 and HCT-116^{wt}. An IC₅₀ value of 33.9 \pm 1.3 μM was determined on the breast cancer cell line MCF-7.

The second aim of this study was to develop the basis for the synthetical access to the FoxO3a-inhibitors JBIR-141/142 because FoxO3a is associated with some disease and makes regulation a prospective target. These natural products contain a tetramic acid, an oxazolin unit as well as a N-Nitroso hydroxyamino function, which has so far only been synthesised in structurally simple related compounds. By using test systems the construction and assignment of the functionalities should be developed and should work as a basis for the future total synthesis.

The oxazoline unit was synthesized usind L-*allo*-threonine, since most oxazoline ring-closing methods are carried out with inversion of the stereocenter at the β -carbon. The dipeptide is generated in the form of the methyl ester with EDCI coupling and converted to *trans*-oxazoline. The corresponding β -keto system was prepared for the synthesis of 3-acyltetramic acid via Dieckmann cyclization.

Starting from (S)-2-hydroxy-3-methyl-butyric acid, the benzyl-protected compound was prepared in three steps and acylated on Meldrum's acid, which was reacted with ethyl *N*-methyl-alaninate under elimination of CO_2 to form the β -keto compound.

In addition to this tetramic acid precursor and the finished oxazoline component, a simplified test component with *N*-nitroso hydroxyamino function was set up for coupling tests. Starting from L-glutamic acid, a benzyl-protected hydroxyamino function was generated in the side chain via the aldehyde stage, which was nitrosylated with butyl nitrite. In the absence of light, this compound could be stored under cooling for a long period of time without any noticeable decomposition, but decomposition occurred under acidic conditions. The more stable benzylated diimide N-oxide could be synthesized, which enables transformations like Boc-elimination with *p*TsOH on the building block. Coupling with the *in situ* cesium salt of oxazoline was also achieved. This confirms the chosen synthetic strategy and the further steps that would be necessary to link all building blocks have been described in a formal synthesis. Furthermore, the synthesis of the middle building block was examined with a Reformatsky reaction as a key step as well as with a key Grignard reaction based on pantolactone.

Abkürzungsverzeichnis

abs	absolutiert
Ac	Acetyl
aq	aqua, wässrig
Äquiv	Äquivalente
BEP	2-Bromo-1-ethyl Pyridiniumtetrafluoroborat
Bn	Benzyl
Вос	tert-Butyloxycarbonyl
СН	Cyclohexan
СНО	chinese hamster ovary cells, Chinesische Hamster Ovarialzellen
CML	chronische myeloische Leukämie
COMU	[(1-Cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium-
	hexafluorophosphat]
DAST	(Diethylamino)schwefeltrifluorid
DC	Dünnschichtchromatographie
DEAD	Diethylazodicarboxylat
Deoxo-Fluor	Bis(2-methoxyethyl)aminoschwefeltrifluorid
DEPC	Diethylphosphorcyanidat
DIAD	Diisopropylazodicarboxylat
DIPEA	Diisopropylethylamin
DMAP	4-(Dimethylamino)-pyridin
DMF	N,N-Dimethylformamid
Dov	Dolavalin
DPPA	Diphenylphosphorylazid

Dpy	Dolapyrrolidon
EC ₅₀	mittlere effektive Konzentration
EGF	epidermal growth factor, Epidermaler Wachstumsfaktor
Et	Ethyl
FoxO	Forkhead box O
h	<i>hora,</i> Stunde
HATU	[O-(7-Azabenzotriazol-1-yl)-N,N,N`,N`-tetramethyluronium-hexafluorophosphat]
Hiv	(S)-2-Hydroxy-Isovaleriansäure
НМВС	heteronuclear multiple bond correlation
HSQC	heteronuclear single quantum coherence
IC ₅₀	mittlere inhibitorische Konzentration
i.p.	intraperitoneal, in die Bauchhöhle
KRAS	Kirsten rat sarcoma
LD	Letale Dosis
MEM	2-Methoxyethoxymethyl
min	Minute
MS	Molsieb
NMR	nuclear magnetic resonance, Kernspinresonanz
NRPS	nichtribosomale Peptidsynthetase
p	para
Ph	Phenyl
PKS	Polyketidsynthase
pNos	para-Nitrobenzolsulfonyl
ppm	parts per million, Maßeinheit zur chemischen Verschiebung in der NMR-Spektroskopie
PPTS	Pyridinium para-Toluolsulfonsäure

Pro	L-Prolin			
PyBroP	Bromotripyrrolidinophosphonium hexafluorophosphat			
TBAF	Tetrabutylammoniumfluorid			
ТВАІ	Tetrabutylammoniumiodid			
TBDPS	<i>Tert</i> -Butyldiphenylsilyl			
TBS	<i>Tert</i> -Butylsilyl			
TFA	Trifluoressigsäure			
TIPS	Triisopropylsilyl			
TMS	Trimethylsilyl			
Ts	Tosyl			

1. Einleitung

Tetramsäuren (Pyrrolidin-2,4-dione) sind ein häufig vorkommendes Strukturmotiv in verschiedenen Naturstoffen. Grundsätzlich kommen diese sowohl als freie Tetramsäure (**1a**, Abbildung 1), als 4-*O*-Alkyl-Form (**2**), die sog. Tetramate, und als 3-Acyltetramsäure (**3**) vor. Als cyclisches β -Ketoamid-System, unterliegt die freie Säure einer Keto-Enol-Tautomerie, die aber hauptsächlich zur 2,4-Diketoform verschoben ist. Die Tricarbonyl-Methin-Einheit der 3-Acyltetramsäure bildet ein komplexes Gleichgewicht aus vier Haupttautomeren bzw. –isomeren aus, welche beispielsweise analytische Verfahren wie Chromatographie oder die Auswertung von NMR-Spektren erschwert und sie dadurch zu einer synthetisch anspruchsvollen Substanzklasse macht.

Entsprechend ihrer Struktur sind Tetramsäuren und 3-Acyltetramsäuren acide (pK_s 6,4 und 3,0-3,5).^[1,2] Unter physiologischen Bedingungen sind 3-Acyltetramsäuren in Form ihrer Salze vorzufinden. Einige Vertreter dieser Gruppe wurden als ebensolche, gebunden an Na⁺, Ca²⁺ oder beispielsweise Mg²⁺-Ionen, isoliert. Durch Bildung von Chelat-Komplexen wird beispielsweise die Stabilität aber auch die Lipophilie im Vergleich zur protonierten Form erhöht. Ob die protonierte Form oder ein Chelat-Komplex im Produzenten gebildet wird und dadurch eine bestimmte Wirkungsweise eingeht, ist häufig schwer aufzuklären.^[3]

Abbildung 1: Die Tetramsäure (**1a** und **1b**), ihr 4-O-Alkyl-Ether (**2**), 3-Acyltetramsäure und ihre tautomeren Formen (**3a-d**).

Biosynthetisch ist vor allem der Aufbau des 3-Acyl-Motivs innerhalb der produzierenden Schwämme, Bakterien, Cyanobakterien und Pilze gut untersucht. Meist sind es zusammengesetzte Biosynthesemaschinerien aus Hybrid Typ-I Polyketidsynthasen (PKS) und nichtribosomale Peptidsynthetasen (NRPS), die lineare 3-(β-Ketoamid)propanoylthioester-Intermediate freisetzen.^[4] Der eigentliche Ringschluss, die Dieckmann-Cyclisierung, erfolgt dabei hauptsächlich in vier unterschiedlichen Arten von enzymatischen Einheiten. Eine, im letzten Modul der Megasynthetase eingebaute, reduktive Domäne (R) sorgt vor allem bei Verbindungen aus Pilzen für den finalen Ringschluss. Bei polycyclischen Tetramsäuremakrolactamen bakteriellen Ursprungs ist dafür meist ein Thioesterase (TE) Modul innerhalb der iterativen PKS-NRPS Megasynthetase verantwortlich. Aber auch Dieckmann-Cyclasen und bestimmte Genkassetten (PyrD3 und PyrD4), die sich innerhalb der PKS-Gen-Region befinden, können bekannter Weise die Ringschlussreaktion forcieren.^[5a,4,5b,4]

Ebenso vielfältig wie die Produzenten, die Biosynthesewege und damit aufgebauten Strukturen sind auch die biologischen Eigenschaften dieser Naturstoffklasse. Daraus wurden bereits eine Reihe vielversprechender Leitstrukturen für die Wirkstoffforschung identifiziert und untersucht.^[6] Eine kleine Unterklasse ist die der peptidischen Tetramsäuren.^[2,7] Bis dato wurden nur wenige Vertreter isoliert, dann aber mit meist modifizierten Aminosäuren und hervorragenden biologischen Aktivitäten. Die vorliegende Arbeit befasst sich mit der Synthese von Vertretern dieser Gruppe, den Naturstoffen Caldoramid (**4**), JBIR-141 (**5**) und JBIR-142 (**6**, Abbildung 2).

Abbildung 2: Naturstoffe Caldoramid (4) und JBIR-141/142 (5/6).

Caldoramid hat als 4-*O*-Methyl-Tetramat ein paar Strukturverwandte, auf die im allgemeinen Teil näher eingegangen werden soll. Einige davon sind bereits auch totalsynthetisch hergestellt und umfangreich untersucht worden. In dieser Arbeit soll ein neuer Zugang mit iterativer Peptidsynthese am Tetramatkern geschaffen werden. Die Verbindungen JBIR-141 (**5**) und -142 (**6**) sind hingegen bislang die einzigen in der Literatur bekannten peptidischen 3-Acyltetramsäuren. Eine mögliche Synthesestrategie zur Erzeugung des komplexen *N*-Nitroso-hydroxyamino-Motivs, des Oxazolin-Rings sowie der 3-Acyltetramsäure soll nachfolgend entwickelt werden.

2. Allgemeiner Teil

2.1 N-Acyl-4-methoxy-pyrrolin-2-one

2.1.1 Vorkommen und Eigenschaften

Naturstoffe mit Pyrrolidinon-Einheit zeigen nicht nur außerhalb des Heterocyclus unterschiedliche Strukturen, sondern auch der Ring kann in verschiedenster Weise oxidiert vorliegen. Innerhalb einer Naturstoffgruppe sind teilweise Derivate bekannt, die sich nur hinsichtlich der Oxidation des Ringes unterscheiden (z.B. die Gruppe der Malyngamide (**7-9**)^[8], Abbildung 3). Im Folgenden sollen diese Naturstoffgruppen betrachtet werden, die 4-*O*-Alkoxy-pyrrolidin-2-on-Vertreter enthalten. Soweit bekannt, sind bislang nur Vertreter mit $R^1 = CH_3$ isoliert worden. Interessanterweise treten diese allesamt *N*-acyliert auf. Strukturverwandte Ausnahmeverbindungen, die weder *N*-acyliert, noch als Tetramat vorliegen, wie Isochrysohermidin (**10**), aus *Mercurialis leiocarpa* isoliert^[9], oder Speranberculatin A (**11**) und Speranskilantin A (**12**), beide aus *Speranskia tuberculata* isoliert^[10], sollen im Folgenden nicht weiter betrachtet werden.

Abbildung 3: Allgemeine Struktur der N-Acyl-Pyrrolidinone; Malyngamid 4 (7), Isomalyngamid B (8) und Isomalyngamid A (9); Isochrysohermidin (10), Speranberculatin A (11) und Speranskilantin A (12).

Da das Vorkommen und die Eigenschaften natürlicher 3-Acyltetramsäuren hinreichend in der Literatur zusammengefasst worden ist, aber natürlichen *N*-Acyl-Pyrrolidinonen eine untergeordnete Bedeutung beigemessen wird, soll ein kurzer Überblick gegeben werden. Die erste Familie der Malyngamide umfasst bis heute mehr als 35 Vertreter. Dabei handelt es sich um Lipopeptide, deren gemeinsames Charakteristikum die (*S*)-7-Methoxytetradec-4(*E*)-ensäure ist. Die Verbindungen wurden aus dem Cyanophyten *Lyngbya majuscula* isoliert, aber auch eine Isolation aus dem Seehasen *Burstella leachii* ist bekannt^[11]. In Abbildung 4 sind die sieben Vertreter (**9,13-18**) mit 4-Methoxy-pyrrolin-2-on-Motiv dargestellt.

9	R ⁶ = H	R ⁵ = CH ₃ ;	R ⁴ = H;	R ³ = CI;	R ² = CH ₃ ;	$R^{1} = CH_{3};$
13	R ⁶ = H	R ⁵ = CH ₃ ;	R ⁴ = CI;	R ³ = H;	R ² = CH ₃ ;	R ¹ = CH ₃ ;
14	R ⁶ = H	R ⁵ = H;	R ⁴ = H;	R ³ = CI;	$R^2 = CH_3;$	R ¹ = CH ₃ ;
15	R ⁶ = H	R ⁵ = CH ₃ ;	R ⁴ = H;	R ³ = CI;	$R^2 = CH_3;$	R ¹ = H;
16	$R^6 = CH_2OH$	R ⁵ = CH ₃ ;	R ⁴ = H;	R ³ = CI;	R ² = H;	R ¹ = CH ₃ ;
17	$R^6 = CH_2OH$	R ⁵ = CH ₃ ;	R ⁴ = H;	R ³ = CI;	$R^2 = CH_3;$	R ¹ = CH ₃ ;

Abbildung 4: Vertreter der Malyngamid-Familie mit 4-Methoxy-pyrrolin-2-on-Motiv (Malyngamid A 13, Isomalyngamid A 9, Isomalyngamid A-1 14, Desmethylisomalyngamid A 15, Malyngamid Q 16, Malyngamid R 17 und Malyngamid X 18) und die 3,3-Dimethyltetramsäuren Janolusimid 19 und Janolusimid B 20.

Während Malyngamid A (**13**) in der Chloromethylen-Einheit (*E*)-konfiguriert ist^[12], ist Isomalyngamid A (**9**) (*Z*)-konfiguriert. Isomalyngamid A-1 (**14**) weist im Vergleich zu Isomalyngamid A ein Keton anstelle der Methoxygruppe an C12' auf. Auch ist ein Vertreter literaturbekannt, der an C7 mit einem freien Alkohol vorliegt. Bei den Malyngamiden Q (**16**) und R (**17**) handelt es sich um Serin-abgeleitete Tetramate.^[13,14] In der Familie der Malyngamide sind eine Fülle von cytotoxischen, anti-inflammatorischen und antibakteriellen Eigenschaften bis hin zur inhibierenden Wirkung von

Mycobacterium tuberculosis und *Plasmodium falciparum* bekannt.^[11,11,11,15] Des Weiteren sind mäßige Toxizität gegenüber *Artemia salina*^[14,13], *Palaemon paucidens*^[16] und *Procambarus clarkii*^[17] in der Literatur beschrieben.

Strukturell verwandt mit Malyngamid X (**18**) ist der Naturstoff Janolusimid (**19**), eine ungewöhnliche 3,3-Dimethyl-Tetramsäure. Die Verbindung wurde aus der Nacktschnecke *Janolus Cristatus* isoliert und zeigt Toxizität an Mäusen (LD 5 mg/kg i.p.).^[18] Eine Totalsynthese der Verbindung ist literaturbekannt.^[19] Janolusimid B (**20**) wurde aus dem Moostierchen *Bugula flabellata* isoliert, welches in einer Räuber-Beute-Beziehung zu *Janolus Cristatus* steht.^[20]

Ebenfalls in einer Wirts-Gast-Beziehung stehen der karibische Schwamm Smenospongia aurea und das Cyanobakterium Synechococcus spongiarum, aus denen die chlorierten Hybrid Peptid/Polyketid-Verbindungen Smenamid A (21) und B (22) isoliert wurden.^[21] Beide Verbindungen unterscheiden sich hinsichtlich der Doppelbindungs-Konfiguration. Die Stereozentren an C-8 und C-16 von Smenamid A wurden durch Synthese aufgeklärt und werden für Smenamid B analog in der Literatur angenommen.^[22] Die Naturstoffe wurden auf ihre cytotoxische Aktivität an einer Zelllinie eines nichtkleinzelligen Lungenkarzinoms, Calu-1, getestet und zeigten IC_{50} -Werte von 48 nM (21) und 49 nM (22). Synthetische Smenamid A-Analoga mit strukturellen Vereinfachungen zeigen an SKM-M1 und an RPMI-8226, multiple Myelom-Zelllinien im Vergleich zum Naturstoff verringerte Aktivität.^[23] Aus der Algenblüte des Cyanobakterienstammes Trichodesmium wurden ferner die Smenamide C-E (23-25) isoliert.^[24] Die Stereochemie der Vertreter C und D wurden durch Vergleich von CD-Spektren und Drehwerten bestimmt. Eine vollständige Aufklärung der Stereochemie von Smenamid E (25) ist bis dato nicht literaturbekannt. Verbindungen 23-25 wurden sowohl an Neuro-2A-Zellen als auch an HCT-116-Zellen getestet. Smenamid C und E zeigen gegenüber beiden Zelllinien cytotoxische Wirkung (Smenamid C 23: EC₅₀ neuro-2A: 7.2 \pm 3.1 μ M; EC₅₀ HCT-116: 20.9 \pm 2.1 μ M; Smenamid E 25: EC₅₀ neuro 2A: 4.8 \pm 0.6 μ M; EC₅₀ HCT-116: 18.6 \pm 1.8 μ M). Smenamid D (24) zeigte an beiden Zelllinien keine Cytotoxizität.^[24]

Abbildung 5: Die Klasse der Smenamide (21-25).

Ebenso wie die Smenamide, sind auch die Pukeleimide marinen Ursprungs und wurden 1979 von MOORE und Mitarbeitern publiziert.^[25,26] Die sieben Verbindungen (Abbildung 6) wurden aus unterschiedlich gesammelten Chargen des Cyanophyten *Lyngbya majuscula* gewonnen. So wurde zum Beispiel Pukeleimid C (**28**) aus einer Probe eines giftigen, seichten Gewässers am Kahala Beach in Oahu (Hawaii) extrahiert. Die Pukeleimide zeigten keine giftige Wirkung auf Mäuse^[25] und Pukeleimid A (**26**) ist totalsynthetisch zugänglich.^[27]

Abbildung 6: Die Gruppe der Pukeleimide A-G (26-32).

Eliamid (**33**, Abbildung 7), ein lineares Polyketid mit terminaler Tetramsäureamid-Einheit, wurde 2012 von Höfle *et al.* auf der Suche nach Sekundärmetaboliten aus Myxobakterien mit antifungaler Aktivität isoliert.^[28]

Abbildung 7: Strukturen der N-Acyl-4-methoxy-pyrrol-2-one Eliamid (33) und der Sintokamide A-E (34-38).

Als Produzenten konnten die Bakterienstämme *Sorangium cellulosum* So ce241 und So ce439 identifiziert werden, welche aus Bodenproben aus der Schweiz und aus Ägypten gewonnen wurden. (**33**) zeigt zytostatische Wirkung gegenüber Lymphomzellen (U-937 IC₅₀ = 0.5 ng/mL) und Gebärmutterhalskrebszellen (KB 3.1 IC₅₀ = 1.0 ng/mL). An Rinderherz-Submitochondrialpartikeln konnte eine starke Inhibition der NADH Oxidation mit einem IC₅₀ Wert von 8 ng/mL nachgewiesen werden. Diese wird innerhalb der eukariotischen Atmungskette durch eine Wechselwirkung mit dem Komplex I (NADH-Ubiquinon Oxidoreduktase) ausgelöst. Die absolute Konfiguration des Stereozentrums am Pyrrolin-Ring wurde durch oxidative und hydrogenolytische Spaltung und anschließende chirale Gaschromatographie bestimmt. Die Stereozentren der Kette wurden durch Vergleich mit ähnlichen Naturstoffen und Anwendung der Breit'schen Regeln an C2,C4-dimethylierten Systemen als *anti* bestimmt. Ein Beweis der absoluten Konfiguration wurde durch Totalsynthese und Vergleich mit dem natürlichen Isolat erbracht.^[28]

Die Gruppe der Sintokamide (A-E, **34-38**) wurde aus dem marinen Schwamm *Dysidea sp.* isoliert. Aufgrund der D-Aminosäure, der chlorierten Leucin-Methylgruppen und der *N*-Propionyl-Gruppe wird ein mikrobieller Ursprung vermutet. Sintokamid A (**34**) zeigt eine selektive Blockierung der Transaktivierung am *N*-Terminus des Androgenrezeptors in Prostatakrebszellen.^[29] Die Gruppe der Mirabimide (A-E, **39-43**) umfasst fünf Vertreter, welche aus dem Cyanobakterium *Scytonema mirabile* (Stamm BY-8-1) isoliert wurden.^[30]

Abbildung 8: Strukturklasse der Mirabimide (A-E, 39-43).

Darunter ist Mirabimide E (**43**) die pharmakologisch interessanteste Verbindung, welche eine tetrachlorierte Ethyleneinheit trägt und im Corbett-Assay selektive Zytotoxizität an soliden murinen Tumorzellen zeigt.^[31] Neben Mirabimid E konnten keine weiteren chlorierten Verbindungen aus dem Cyanobakterium isoliert werden, selbst nach Zucht in einem Medium mit [³⁶Cl]Chlorid. Der Aufbau der Tetrachlorethyleneinheit ist durch Chlorierung eines Alkin-Precursors mittels einer Haloperoxidase denkbar. Einige Eigenschaften des Biosyntheseweges von **43** konnten durch Fütterungsexperimente mit Natrium [1,2-¹³C₂]Acetat und [Methyl-¹³C]Methionin nachgewiesen werden: Die Decanoat-Kette sowie C4 und C5 des Tetramatrings entstammen aus 6 Acetat-Einheiten, zusätzlich wird biosynthetisch ein Äquivalent L-Alanin in der Tetramsäureeinheit verbaut.

Die antimikrobielle Eigenschaft des Meeresschwammes *Dysidea herbacea* war Ausgangspunkt für HOFHEINZ und OBERHÄNSLI^[32] Proben des Schwammes, die am australischen Great Barrier Reef gesammelt wurden, nach interessanten Isolaten zu untersuchen. Dysidin (**44**, Abbildung 9) ist ein chlorierter Naturstoff, der 1-1.2% der Trockenmasse des Schwammes ausmacht. Eine racemische Synthese^[33] sowie enantioselektive Synthesen sind beschrieben.^[34] Jedoch wurden, soweit bekannt, keine umfangreicheren Bioaktivitätstests durchgeführt.

Abbildung 9: Strukturformel von Dysidin (44) und die Klasse der Mycapolyole A-F (45-50).

Eher ungewöhnlich ist die hochgradig hydroxylierte Seitenkette der Naturstoffklasse der Mycapolyole.^[35] Die sechs Vertreter A-F (**45-50**), welche aus dem marinen Schwamm *Mycale izuensis* isoliert worden sind, zeigen in großen Bereichen deckungsgleiche ¹H und ¹³C-Spektren und unterscheiden sich hinsichtlich ihrer Molekularformeln in C₂H₄O-Einheiten. Die Strukturaufklärung von FUSETANI und Mitarbeitern stützt sich auf zweidimensionale NMR-Experimente und HRFABMS-Messungen, welche ein gemeinsames stereochemisches Muster aller Vertreter nahelegen. Die Verbindungen A-F zeigen an HeLa-Zellen IC₅₀-Werte von 0.06, 0.05, 0.16, 0.40, 0.38 und 0.90 μg/mL.^[35]

Wenngleich auch die oben genannten *N*-Acyl-pyrrolin-2-one teilweise Aminosäuren in den Seitenketten tragen, sollen im Folgenden nun weitere peptidische Vertreter vorgestellt werden. Strukturell gesehen handelt es sich bei Palau'imid (**51**, Abbildung 10) um einen sehr einfachen Vertreter mit nur einer Aminosäure in der Seitenkette, dem *N*-Methyl-Valin. Dieser wurde aus *Lyngbya sp.* isoliert und zeigt IC₅₀-Werte von 1.4 µg/mL (an KB-Zellen) und 0.36 µg/mL (an LoVo-Zellen). Eine Synthese des Naturstoffs ist ebenfalls literaturbekannt.^[36]

Ebenfalls methylierte Aminosäuren weißt Belamid A (**52**) auf, dass von SIMMONS *et al.* aus dem Cyanobakterium *Symploca sp.* isoliert wurde.^[37] Das Tetrapeptid zeigt an MCF7-Brustkrebszellen einen IC₅₀-Wert von 1.6 μ g/mL und an HCT-116-Zellen einen IC₅₀ von 0.74 μ g/mL. Desweiteren wirkt die Verbindung antimitotisch und zeigt an A-10-Zellen eine Zerstörung des Mikrotubuli-Netzwerkes bei einer Konzentration von 20 μ g/mL.^[37]

Der Naturstoff Symplostatin 4 (**53**) ist in der Literatur auch unter der Bezeichnung Gallinamid A bekannt. Die Verbindung wurde unabhängig voneinander aus den Cyanobakterien des Stammes *Schizothrix*^[38] als auch aus *Symploca*^[39] isoliert. Die Verbindung zeigt gegenüber *Plasmodium falciparum* eine signifikante Antimalaria-Aktivität (EC₅₀ = 74 ng/mL)^[40]. Weitere Untersuchungen der Bioaktivität von Symplostatin ergaben eine Cytotoxizität gegenüber Vero-Zellen (TC₅₀ = 10.4 μ g/mL) und Aktivität gegenüber *Leishmania donovani* (IC₅₀ = 9.3 μ M)^[38].

Abbildung 10: Strukturformeln der Naturstoffe Palau'imid (**51**), Belamid A (**52**) und Symplostatin 4 (**53**).

Die Familie der Dolastatine umfasst eine große Gruppe an strukturell vielfältigen Verbindungen, die aus Dolabella auricularia isoliert worden sind. Sie beinhaltet lineare und cyclische Peptide, Depsipeptide und Peptide mit Thiazol und Oxazolheterocyclen sowie Macrolide, die meist in niedrigen Konzentrationen im Seehasen vorliegen.^[41] So wurde beispielsweise eine Tonne der Schnecke gesammelt um 29 mg des bekanntesten Vertreters, Dolastatin 10 (54, Abbildung 11), zu isolieren.^[42] Bei einigen Vertretern wurde nachgewiesen, dass diese durch die Nahrung aufgenommen werden und nicht von der Schnecke selbst produziert werden.^[41] Dolastatin 10 (54) ist einer der wirksamsten Tubulin-Polymerisations-Inhibitoren mit stark antivaskulären und antimitotischen Eigenschaften, welche in umfassenden klinischen Studien untersucht wurde, jedoch erhebliche Toxizität zeigte.^[43] Bis dato dient Dolastatin 10 als Leitstruktur für neue hochwirksame Analoga, wie beispielsweise den Auristatinen, welche als Ladungsträger in sogenannten Antikörper-Wirkstoff-Konjugaten eingesetzt werden. Ein Beispiel dafür ist das zugelassene Brentuximab Vedotin (56, Abbildung 11), das zur Behandlung von rückfälligem Hodgkin-Lymphom und systematischen anaplastischen Großzell-Lymphomen eingesetzt wird und spezifisch auf CD30+-Zellen wirkt. Der monoklonale Antikörper trägt einen Linker, der durch Proteasen, wie dem Cathepsin B, gespalten wird und den Wirkstoff Monomethylauristatin E gezielt freisetzt.^[43]

Dolastatin 15 (**55**) ist strukturell ähnlich zu Dolastatin 10 (**54**) bezüglich der Dolavalin-Valin-Sequenz am *N*-Terminus und im aromatischen Charakter des C-Terminus. Jedoch handelt es sich bei Dolastatin 15 (**55**) aufgrund der Esterbindung im Amid-Rückgrat um ein Depsipeptid. Dolastatin 15 zeigt einen durchschnittlichen IC₅₀-Wert von 1.6 nM (70 Zelllinien) und ist damit aktiver als beispielsweise Taxol oder Vincristin, beides Naturstoffe die in der Krebstherapie eingesetzt werden.^[44]

55 arretiert die Zellen in der Mitose und reduziert intrazelluläre Mikrotubuli. Eine Bindung in der Vinca-Domäne von Tubulin, wie im Fall des Dolastatins 10 (**54**), ist bei Dolastatin 15 (**55**) nicht nachweisbar.^[45] Strukturell ist vorwiegend die fehlende Dolaisoleucin-Einheit für eine verminderte Aktivität im Vergleich zum Dolastatin 10 verantwortlich. Diese ist für die Inhibition der Tubulin-Polymerisation wichtig.

Abbildung 11: Strukturen der Dolastatine 10 (**54**) und 15 (**55**) sowie das Konjugat (**56**) aus einem monoklonalen Antikörper (AK) einem-Linker (blau) und Monomethylauristatin E (orange); durch proteolytische Spaltung wird Monomethylauristatin E (**57**) freigesetzt.

Im Gegensatz zu Dolastatin 10 wurde Dolastatin 15 nicht in klinischen Studien untersucht. Es diente als jedoch als Leitstruktur für die synthetischen Analoga Cemadotin und Synthadotin, die verbesserte Eigenschaften aufweisen und bereits klinische Studien in Phase I und II durchlaufen haben.^[44]

2.1.2 Caldoramid

Ein weiterer Vertreter der peptidischen *N*-Acyl-pyrrolin-2-one ist der Naturstoff Caldoramid (**4**), welcher 2016 von GUNASEKERA *et al.* zusammen mit den bekannten Verbindungen Largazol (**58**) und Dolastatin 10 (**54**) aus einer Probe des Cyanobakteriums *Caldora penicillata* von den Florida Keys isoliert wurde (Abbildung 12).^[46]

Abbildung 12: Die Naturstoffe Caldoramid (**4**) und Largazol (**58**) aus dem Isolat von Caldora penicillata nach GUNASEKERA et al.

Aufgrund der strukturellen Verwandtschaft zu Belamid A (**51**) und Dolastatin 15 (**55**) wurde die Cytotoxizität der Verbindung anhand von drei isogenen Darmkrebszelllinien von GUNASEKERA *et al.* untersucht. Dazu wurde die Substanz zum einen an der HCT116-Mutterzelllinie, die eine onkogene KRAS-Allele und eine wild-typ KRAS-Allele besitzt, sowie an HCT116-Zellen ohne die onkogene KRAS-Allele und an HCT116-Zellen ohne HIF-1 α - und HIF-2 α -Transkriptionsfaktoren getestet.^[46] Kirsten Rat Sacroma (KRAS) ist ein Gen, welches durch Mutation eine zentrale Rolle in der Krebsentstehung und – progression einnehmen kann. Vor allem ist es auch primär an der Resistenzentwicklung bei Therapien, die den EGF-Rezeptor (Epidermal Growth Receptor) ansprechen, beteiligt. Die Hypoxie-induzierenden Faktoren (HIF) 1 α und 2 α werden in Krebszellen durch Fehlregulation im ras-Signalübertragungsweg überexprimiert und stehen im Zusammenhang mit dem Wachstum der Krebszellen.^[47] Die Zelltests zeigten, dass das moderat cytotoxische Caldoramid Zellen mit den onkogenen KRAS und HIF-1 α - und HIF-2 α -Transkriptionsfaktoren stärker in ihrem Wachstum inhibiert (IC₅₀ = 3.9 µmol) als Zellen, denen diese Gene fehlen (IC₅₀ = 5.2 µmol und 8.6 µmol).^[46] Im Wirkmechanismus dieser Verbindung stellen diese Gene Targets dar und machen **4** zu einer interessanten Struktur für weitere Untersuchungen.

2.2 N-Nitroso-Hydroxyamino-Verbindungen

2.2.1 Vorkommen und Eigenschaften

Die Nitroso-Hydroxylamino-Funktion besteht aus zwei *N*-Atomen sowie zwei *O*-Atomen (Abbildung 13, A-**59**/B-**59**) und liegt in zwei tautomeren Formen vor. Daher wird die funktionelle Gruppe in der Literatur auch als Diimid-*N*-Oxid bezeichnet. HRABIE und KEEFER^[48] schlagen die Bezeichnung Diazeniumdiolat vor, die aber nicht standardmäßig verwendet wird. Je nach Tautomer können am unteren (O¹) oder am oberen (O²) Sauerstoff Substitutionen stattfinden (jeweils blau dargestellt) und die funktionelle Gruppe kann als *C*- sowie als *N*- oder *O*-verknüpfte (X = C, N, O) Verbindung vorliegen.

Abbildung 13: Tautomere und literaturbekannte Reaktionen von Diazeniumdiolaten nach HRABIE und KEEFER.

Es sind nur wenige Beispiele von *O*-Diazeniumdiolat-Verbindungen in der Literatur bekannt (siehe "Angeli-Salz" Lit.^[49]), *N*-Diazeniumdiolate (auch NONOate) sind als sehr gut NO-freisetzende Verbindungen gut untersucht und stellen ein eigenes Forschungsgebiet dar^[50]. Im Folgenden soll auf die Gruppe der *C*-Diazeniumdiolat-Verbindungen eingegangen werden.

Als monobasische Säuren zeigen *C*-Diazeniumdiolate pK_a -Werte zwischen 3.5-4.4 (X = Ar) und 5.1-6.4 (X = Aliphat). Verbindungen mit der freien Säurefunktion (*O*-unsubstituiert) sind relativ instabil, aber an wenigen Beispielen gelang eine Röntgenkristallstrukturaufklärung. Es zeigte sich, dass die funktionelle Gruppe planar ist und beide N-O-Bindungen fast die gleiche Länge haben. B-**59** stellt das stabilere Tautomer dar. O²-substituierte Verbindungen (B-**59**) zeigen, dass beide Sauerstoffe auf der gleichen Seite der N=N-Bindung vorliegen (*Z*-Konfiguration). Dagegen liegen die O¹-substituierten Derivate (A-**59**) aufgrund der gehinderten Rotation bei niedrigen Temperaturen als Gemische von *E*-und *Z*-Konformeren vor.

Literaturbekannt ist die Hydrolyselabilität der funktionellen Gruppe. Sowohl O¹-Alkyl-Derivate als auch O²-Derivate können schnell zerfallen.^[48] Eine Außnahme davon ist Verbindung **60**, die sowohl in 0.5M KOH-Lösung bei 70 °C als auch in 40%iger H₂SO₄ bei 25 °C keine Zersetzung zeigte.^[51] Sowohl O¹- als auch O²-Acyl-Derivate sind äußerst instabil, selbst bei niedrigen Temperaturen. Auch die freie funktionelle Gruppe zeigt thermische oder photochemische Freisetzung von NO (Abbildung 13, Reaktion I). Selbige spalten unter Einwirkung von Oxidationsmitteln NO ab unter Bildung von Nitroso-Verbindung **64** (II), während O²-alkylierte Verbindungen weitestgehend oxidativ stabil sind. Auch konnte an O¹-substituierten Derivaten mit Hydridquellen wie LiAlH₄ eine Reduktion zu Verbindung **66** durchgeführt werden (III).

 O^2 -Tosyl Diazeniumdiolate sind hingegen relativ stabil. In Natriummethanolat-Lösung wird durch Austausch der Tosyl-Gruppe, die Alkyl-Spezies hergestellt, während unter neutraleren Bedingungen eine N₂O-Freisetzung unter Bildung von **68** stattfindet (IV). Interessant ist, dass mit Nucleophilen selektive Reaktionen eingegangen werden, wie die Umsetzung mit Grignardreagenzien zu **69** zeigt (V). Neben den Sauerstoffen der funktionellen Gruppe, zeigen auch die α -Protonen der C-Kette acide Eigenschaften und können nach (VI) unter Einwirkung von Base alkyliert werden.

2.2.2 Naturstoffe mit N₂O₂-Motiv

Verbindungen mit Diazeniumdiolat-Motiv sind bislang eher ungewöhnlich und wurden nicht oft aus natürlichen Quellen isoliert. Allen gemein ist, dass es sich bei den natürlich vorkommenden Strukturen um *C*-verknüpfte Diazeniumdiolate handelt. Dabei ist nicht wie bei den *O*- oder *N*-verknüpften Analoga vordergründig ihre Rolle als NO-Donor interessant, sondern ihre Eigenschaft als Metal-Chelatoren.

Die Bindungseigenschaften beispielsweise von Alanosine (**72**) mit Cu(II) sind mit EDTA vergleichbar^[52] und Verbindung **72** ist der wohl wichtigste und am besten untersuchte Vertreter dieser Naturstoffgruppe. Es wurde 1966 als Fermentationsprodukt aus *Streptomyces alanosinicus* isoliert und zeigt sowohl antitumorale als auch antibiotische Eigenschaften.^[53] Synthesen sind sowohl racemisch als auch enantiomerenrein beschrieben.^[54a,55,54b,56] Die Struktur wurde in einigen klinischen Studien (Phase I-II) bei verschiedenen Krebsarten getestet und ist auch unter dem Namen SDX-102 bekannt.^[57] Die um eine CH₂-Einheit längere Verbindung **73**, Homo-Alanosine wurde aus *Streptomyces galilaeus* isoliert und zeigt hauptsächlich herbizide Eigenschaften gegen Spitzklette und Floh-Knöterich.^[58] Verbindung **74**, Nitrosofungin, wurde 1983 aus einer Kultur zweier Organismen, dem Bakterium *Alcaligenes* (UC 9152) und *Streptomyces plicatus* (UC 8272) isoliert.^[59] **74** zeigt gegenüber mehreren Pilzen Inhibition bei gleichzeitiger geringer Toxizität für kleinere Labortiere.^[59] Eine Synthese der Verbindung ist ebenfalls bekannt, nicht jedoch die Konfiguration des Stereozentrums.^[60] Eine weitere N₂O₂-tragende Verbindung stellt das Valdiazen (**75**) dar. **75** ist ein Zell-Zell-Signal-Molekül, welches von JENUL *et al.* beschrieben wurde und aus dem Bakterium *Burkholderia cenocepacia* isoliert wurde.^[61]

Abbildung 14: Naturstoffe mit N₂O₂-Motiv.

Nitrosostromelin (**76**) wurde aus einer Streptomyces-Kultur isoliert^[48] und inhibiert das Protein Stromelysin, welches aus der Gruppe der Matrix-Metalloproteinasen stammt.^[62]

Die Nitrosoxacine A-C (**80-82**) inhibieren die Aktivität der 5-Lipoxygenase und sind aus Streptomyces AA4091 isoliert worden^[63]. Erst durch die Kombination der chelatisierenden *N*-Nitrosohydroxyamino-Funktion mit den spezifischen Alkylketten der Nitrosoxazine, war eine Lipoxigenase-Inhibition bei Strukturuntersuchungen nachweisbar.^[63] Dopastin (**78**) ist ein Inhibitor der Kupfer-abhängigen Dopamine β -Hydroxylase und wurde aus einer Kulturbrühe eines Pilzes isoliert, die den eigentlichen Produzenten, ein Pseudomonas-Bakterium enthielt.^[64] Poecillanosin (**77**) ist aus dem marinen Schwamm *Poecillastra* spec. aff. *tenuilaminaris* isoliert worden, inhibiert Lipid Peroxidation und zeigt Cytotoxizität gegen P388 Maus-Leukämie-Stammzellen (IC₅₀ = 1.5 µg/mL).^[65]

Fragin (**79**) wurde bereits 1967 aus *Pseudomonas fragi* isoliert.^[66] Kurz darauf wurde die Struktur beschrieben und eine racemische Synthese des Pflanzenwachstums-Inhibitors entwickelt.^[67] Jahre später wurde der Naturstoff auch in *Burkholderia cepacia* isoliert, enantiomerenrein synthetisiert und auch die antifungale Aktivität untersucht.^[68] Diese ergibt sich durch die chelatisierende Eigenschaft von **79**, wobei beispielsweise Cu-Fragin-Komplexe keine antifungale Wirkung zeigen.^[68] Ein möglicher Biosyntheseweg wird von JENUL *et al.* aufgrund von Gen-Analysen, Fütterungs-Experimenten und Knock-out-Experimenten wie folgt vorgeschlagen:^[62] An der Biosynthese von Fragin (**79**) und Valdiazen (**75**) sind die Gene HamA-G (human antifungal metabolite) beteiligt, wobei HamA und HamB wichtig sind für die Herstellung des Vorläufers Valin (**83**). Dieses wird durch HamD an die NRPS gebunden und der Thioester **84** erzeugt. Das freie Amin wird durch HamC oxidiert und die Diazeniumdiolat-Funktion **86** erzeugt. Ausgehend von **86** sind zwei Wege möglich. Der erste läuft über HamD, wodurch die Verbindung von der NRPS über ein Aldehyd-Intermediat abgespalten wird und direkt zu Valdiazen (**75**) reduziert wird. Der zweite Weg über HamG würde das freie Amin direkt über einen reduktiven Transaminase-Weg erzeugen. Der Naturstoff Fragin (**79**) wird durch Kondensation mit der Fettsäurekette innerhalb der Kondensationsdomäne HamF erhalten.

Abbildung 15: Vorschlag zur Biosynthese von Fragin (79) und Valdiazen (75) nach JENUL et al^[61].

2.2.3 JBIR-141/142

Die Naturstoffe JBIR-141/142 (**5/6**) wurden von KAWAHARA *et al*. im Jahr 2015 publiziert^[69] und wurden bis dato nicht synthetisiert. Isoliert wurden beide Verbindungen, die sich lediglich in Position 3 (R = H, OH) unterscheiden, aus einer Bodenprobe mit dem Streptomyces-Stamm sp. 4587H4S.

Abbildung 16: Struktur der Naturstoffe JBIR-141/142 5/6.

Ziel des Screenings war die Identifikation neuer Inhibitoren für FoxO3a-Transkriptionsfaktoren. Die Forkhead box O (FoxO)-Familie wurde als wichtiger Transkriptionsregulator essentieller Proteine identifiziert, die mit verschiedenen Zellfunktionen in Verbindung stehen.^[70,71] Neben FoxO1, FoxO4 und FoxO6 nimmt FoxO3a eine zentrale Rolle in der Regulation der Zellproliferation, Apoptose, Metabolismus, im Stressmanagement und der Lebensdauer ein und wirkt als Tumorsuppressor. Veränderungen von FoxO3a stehen in direkter Verbindung mit der Entwicklung von Krebszellen, Fibrose und anderen Krankheiten. Auch altersbedingte Krankheiten, die durch eine Deregulation von FoxO3a ausgelöst werden, könnten durch ideale Optimierung der FoxO3a-Aktivität verbessert werden.

Inhibition von FoxO3a ist bei der Behandlung von chronischer myeloischer Leukämie ein besonders interessanter Ansatzpunkt, da hier das Überleben und die Selbsterneuerung von hematopoetischen Stammzellen und Leukämie-Stammzellen durch Hochregulation von FoxO3a gesteuert wird.^[69] Die bisherige Behandlung mit Imatinib ist aufgrund von quieszenten Zellen und undifferenzierten Stammzellen problematisch. In ersten Maustests konnten bei Gabe von Imatinib und gleichzeitiger FoxO3a-Entfernung die Leukämie-initiierenden Zellen (LICs) reduziert werden. Ein Abbau von FoxO3a könnte eine Alterung der LICs und damit den Zelltod bewirken und dadurch ein geeignetes Target in der Krebstherapie darstellen.

3. Spezieller Teil

3.1 Caldoramid

3.1.1 Synthesestrategie

Viele Strukturverwandte des Caldoramids (**4**) wurden in der Literatur hinlänglich synthetisch beschrieben. Hauptsächlich findet man zwei Synthesestrategien für diese Verbindungsklasse: Zum einen der vollständige Aufbau der Acylseitenkette, gefolgt von *N*-Acylierung, zum anderen die Synthese von Fragmenten und anschließende schrittweise Verknüpfung. Zwei Synthesen für Dolastatin 15 (**55**) seien hier exemplarisch kurz skizziert, die auch für andere Vertreter ähnlich in der Literatur beschrieben wurden.

Entsprechend eines retrosynthetischen Schnittes an der Ester-Bindung des Depsipeptids erfolgte die Synthese von PATINO *et al.*^[72] durch Verknüpfung von Seitenkettenbaustein **92** und Hiva-Dpy-Baustein **90** (Abbildung 17).

Abbildung 17: Synthese von Dolastatin 15 (**55**) nach PATINO et al.; Reagenzien und Bedingungen: a) Meldrumsäure, DMAP, IPCC, CH₂Cl₂, —10 °C, b) CH₃CN, 30 Min, 86% über zwei Stufen, c) Ph₃P, CH₃OH, DEAD, THF, rt, 16h, 60%, d) TFA, RT, 5 Min, 86%, e) **92**, Et₃N, DMAP, IPCC, CH₂Cl₂, 5 Min 0 °C, dann 2h RT, 76%, f) H₂, 10% Pd/C, 37% HCHO_(aq), CH₃OH, RT, 48h, 80%.

90 wurde am Dipeptid **88** mittels Meldrumsäuremethode und anschließender Alkylierung zum Tetramat **89** aufgebaut. Nach Entschützung wurde die Seitenkette **92** mittels Isopropenyl chlorocarbonat (IPCC)/ Dimethylaminopyridin (DMAP)-Aktivierung zu Verbindung **91** verknüpft. Als finaler Schritt wurde aus Cbz-geschütztem Valin die Dolavalin-Einheit (Dov) durch selektive Methylierung des C-Terminus erzeugt.^[72]

Interessant war der Vergleich mit einer späteren Synthese durch PETTIT *et al.*^[73], die zum Ziel hatte Dolastatin 15 (**55**) in größeren Mengen synthetisch zugänglich zu machen (Abbildung 18). Während die Synthese des Bausteins **90** nahezu identisch durchgeführt wurde, erfolgte anschließend eine Kupplung von Boc-(*S*)-Pro-OH sowie Verknüpfung mit dem Tripeptid **95**, welche racemisierungsfrei ablief. Entschützung und Kondensation mit der Dov-Einheit führten zu **55**. Durch die sequentielle Verknüpfung konnte nach PETTIT *et al.* insgesamt eine höhere Ausbeute erhalten werden.

Abbildung 18: Synthese von Dolastatin 15 nach PETTIT et al.; Reagenzien und Bedingungen: a) Meldrumsäure, 4-DMAP, IPCC, CH₂Cl₂; Toluol, rf, b) K₂CO₃, (CH₃O)₂SO₂, THF, 68%, über zwei Stufen, c) TFA, quant., d) Boc-(S)-Pro-OH, Dicyclohexylcarbodiimid DCC, 4-Pyrrolidinopyridin, CH₂Cl₂, 92%, e) TFA, CH₂Cl₂, quant. f) **95**, DEPC, NEt₃, CH₂Cl₂, 0 °C, 89%, g) H₂, 10% Pd/C, EtOAc/CH₃OH, 96%, h) (S)-Dov-OH, DEPC, NEt₃, CH₂Cl₂, 0 °C, 97%.

Im Gegensatz dazu war ein sukzessiver Aufbau dieser Naturstoffklasse ausgehend vom Dpy-*N*-Terminus in Lösung in der Literatur selten und aufgrund der stark *N*-methylierten Sequenz von Caldoramid anspruchsvoll. Im Rahmen dieser Arbeit sollte ein entsprechendes Protokoll erarbeitet werden.

3.1.2 Durchführung

Die Synthese begann mit der Synthese der Dolapyrrolidon-Einheit **98**. Dazu wurde L-Phenylalanin **96** zunächst Methyl-verestert, das entstehende Hydrochlorid freigesetzt und anschließend nach SCHOBERT^[74] mit Ketenylidentriphenylphosphoran umgesetzt (Abbildung 19). Der Baustein **98** konnte mittels Kristallisation als farbloser Feststoff in 59% Ausbeute erhalten werden.

Abbildung 19: Synthese der Dolapyrrolidon-Einheit **98**, Reagenzien und Bedingungen: a) i) SOCl₂, CH₃OH, ii) NaHCO_{3 (aq)}, b) Ph₃PCCO, Toluol, rf, 59%, über zwei Stufen.

Als nächstes wurde ausgehend von käuflich erhältlichem Fmoc-*N*-Methyl-Isoleucin versucht an die Dolapyrrolidon-Einheit **98** zu kuppeln. Hier wurde bereits von Hossein *et al.* beschrieben, dass Fmocgeschützte nicht-methylierte Aminosäure-Pentafluorphenylester in bis zu 91% Ausbeute unter Verwendung von n-BuLi als Base an Tetramate gekoppelt worden sind.^[75]

Abbildung 20: Kupplung an Dpy und Schutzgruppensuche, Reagenzien und Bedingungen: a) SOCl₂, CH₂Cl₂, quant. b) n-BuLi, THF, —78 °C, c) CH₃I, NaH, THF, 90%, d) Im₂CO, THF, 0 °C, 78%, e) i) **98**, LiHMDS, THF, —40 °C, ii) **104**, 55%.

Verbindung **101** wurde bei der Kupplungsreaktion nicht erhalten. Hauptsächlich konnte die abgespaltene Fmoc-Schutzgruppe neben weiteren Zersetzungsprodukten nachgewiesen werden. Ein Kupplungsprodukt konnte nicht erhalten werden. Daher wurde ein Wechsel der Aktivierungsstrategie der Aminosäure vom Säurechlorid zum Acyl-Imidazol **104** vorgenommen. Letzteres zeichnete sich durch eine hinreichende Aktivierung für nachfolgende Kupplungsreaktionen und gleichzeitige Stabilität bei wässriger Aufarbeitung aus, was eine möglichst saubere Umsetzung mit dem deprotonierten Tetramat ermöglichen sollte. Ausgehend von Boc-Isoleucin (**102**) wurde Verbindung **103** unter Verwendung von

CH₃I und NaH in 90%iger Ausbeute *N*-methyliert. **103** wurde mit Staabs-Reagenz, Carbonyldiimidazol, zum Acyl-Imidazol **104** in 78% Ausbeute umgesetzt. Anschließend erfolgte die Kupplung an das Tetramat **98**, welches mit LiHMDS in THF bei —40 °C deprotoniert und dann mit dem Acyl-Imidazol **104** versetzt wurde.

Die Entschützung der Boc-Schutzgruppe fand unter Standardbedingungen mit TFA statt und lieferte Baustein **106** in 94%iger Ausbeute (Abbildung 21). Eine Kupplung an den methylierten *N*-Terminus machte aufgrund der sterischen Hinderung eine starke Aktivierung des zu verknüpfenden Bausteins erforderlich (siehe z.B. Lit^[76]). Dem gegenüber stand, dass bei der Aktivierung des zu kuppelnden *N*methylierten Valin-Bausteins in *N*-Carbamat-geschützter Form **107** Nebenreaktionen wie Oxazolonium-**108** oder *N*-Carboxyanhydrid-Bildung **109** auftreten konnten.^[77]

Abbildung 21: Synthese des Tripeptids **111** und Bildung von Oxazolonium **108** und N-Carboxyanhydrid **109** bei der Aktivierung Carbamat-geschützter, N-methylierter Aminosäuren; Reagenzien und Bedingungen: a) TFA, CH₂Cl₂, 94%, b) pNos-Cl, 1 M NaOH, 0 °C, 71%, c) i) **110**, 1-Chloro-(N,N,2-trimethyl)-1propenylamin, CH₂Cl₂, ii) **106**, NaHCO₃, 78%.
Sowohl in Boc- als auch in Fmoc-geschützter Form konnte N-Methylvalin in verschiedenen Ansätzen unter Verwendung diverser Kupplungsreagenzien wie EDCI, HATU, BEP^[78], PyBROp^[76] und COMU^[79] nicht an Verbindung 106 geknüpft werden. Der nucleophile Angriff fand deutlich langsamer statt als die Zersetzung der aktivierten Aminosäure, weshalb kein Kupplungsprodukt erhalten werden konnte. Auch eine Kupplung von **106** mit dem intermediär gebildeten Leuch-Anhydrid **109** konnte nicht festgestellt werden. Lediglich die Abspaltung der Fmoc-Schutzgruppe vom N-Methylvalin konnte nachgewiesen werden. Um das intermediär gebildete N-Carboxyanhydrid direkt als aktivierte Aminosäure wie in einer Bailey-Peptidsynthese^[80] einzusetzen und eine definierte Kupplungsreaktionen durchzuführen, müssten aufgrund der hohen Aktivität der *N*-Carboxyanhydride unerwünschte Polymerisationsreaktionen durch niedrige Reaktionstemperaturen und Vermeidung hoher Konzentrationen an NCA vermieden werden, was bei den durchgeführten Versuchen nicht erreicht werden konnte.

Um Nebenreaktionen zu unterdrücken, wurde eine Schutzgruppenänderung zu Nosyl-geschütztem Valin (**110**) durchgeführt. Nos-Aminosäuren wurden von LEGGIO *et al.*^[81,82] beschrieben, wobei diese die Aminosäuren unter Verwendung von Diazomethan methylierten und zum Peptid verknüpften. In dieser Arbeit wurde Nosyl-geschütztes Valin mittels 1-Chloro-(*N*,*N*-2-trimethyl)-1-propenylamin *in situ* zum Säurechlorid umgesetzt^[83] und dieses mit Verbindung **106** in 78% Ausbeute gekuppelt. Anschließend erfolgte eine selektive Methylierung von **108** am Nosyl-aktivierten Amin durch Verwendung von CH₃I in einer sehr guten Ausbeute von 99% (Abbildung 22). Eine Abspaltung der Nosyl-Gruppe erfolgte mittels 5-*Tert*-butyl-2-methyl-thiophenol (**116**) und K₂CO₃ in DMF zu **113**. Durch Vermeidung von Thiophenol oder Mercaptoessigsäure wurde die Geruchsentwicklung und Toxizität deutlich reduziert und die Durchführung erleichtert. Der nächste Aminosäurebaustein wurde ebenfalls über Aktivierung mit 1-Chloro-(*N*,*N*,2-trimethyl)-1-propenylamin gekuppelt (85% über zwei Stufen). Verbindung **114** wurde entschützt und im finalen Schritt mit Dimethyl-L-Valin in einer HATU-Kupplung zu Verbindung **4** umgesetzt.

Abbildung 22: Reagenzien und Bedingungen: a) CH₃I, K₂CO₃, DMF, 99%, b) 116, K₂CO₃, DMF,
c) i) 110, 1-Chloro-(N,N,2-trimethyl)-1-propenylamin, CH₂Cl₂, ii) NaHCO₃, 85% über zwei Stufen,
d) 116, K₂CO₃, DMF, e) N,N-Dimethyl-L-valin, HATU, DIPEA, 64% über zwei Stufen,
f) CH₂O_(aq), H₂O, 10% Pd/C, 99%.

Die Synthese des letzten Bausteins, Dolavalin (**115**), erfolgte via Alkylierung von Valin (**83**) und war in der Literatur mit verschiedenen Vorschriften beschrieben. Die ersten Ansätze wurden nach XU *et al.*^[84] mit Methanol als Alkylierungsreagenz und sowohl mit 5% Pd/C als auch mit 10% Pd/C unter einer H₂-Atomsphäre durchgeführt. Es wurde jeweils ein nicht auftrennbares Produktgemisch erhalten und die Ansätze wurden verworfen. Eine andere Vorschrift nach TAJBAKHSH *et al.*^[85] verwendete Paraformaldehyd und NaBH₄ in 2,2,2-Trifluoroethanol in einer reduktiven Alkylierung. Auch hier konnte keine zufriedenstellende Aufreinigung durch Kristallisation erzielt werden. Ein gutes Ergebnis lieferte dagegen ein Ansatz mit Formalin-Lösung und 10% Pd/C unter H₂-Atmosphäre in H₂O, welcher mehrfach in der Literatur^[86,87] beschrieben wurde, wobei **115** als weißer Feststoff erhalten wurde.

Die gewünschte Struktur **4** konnte somit in 12 Stufen (längste lineare Sequenz) in einer Ausbeute von 16% erhalten werden und wurde anschließend via NMR (siehe Tabelle 1) für einen Vergleich mit den Literaturdaten des natürlichen Isolates analysiert^[46]. Während die 2D-Spektren (HSQC und HMBC) in guter Übereinstimmung mit der Literatur und der Struktur waren, zeigten ¹H- und ¹³C-Signale eine Verschiebung zu höheren ppm. Möglicherweise könnten diese leichten Abweichungen durch Messungen bei unterschiedlichen Konzentrationen hervorgerufen worden sein. Auch wurde in der Literatur keine Konzentration angegeben. Selbst leichte Abweichungen in den Kopplungskonstanten könnten nach MITRA *et al.* konzentrationsabhängig entstehen.^[88]

Position	¹³ C NMR (δ in ppm)		¹ H NMR (δ in ppm)	
	Natürliches	Verbindung 4	Natürliches Isolat	Verbindung 4
	Isolat	(125 MHz,	(600 MHz, CDCl₃)	(500 MHz, CDCl₃)
	(150 MHz, CDCl ₃)	CDCl ₃)		
1	169.1	169.22		
2	94.8	94.94	4.80, s	4.83, s
3	178.1	178.19		
4	59.7	59.84	4.83, dd (4.8, 3.4)	4.86 dd (5.2, 3.4)
6	35.6	35.65	3.30, dd (13.7, 4.8)	3.33, dd (14.0, 5.2)
			3.08, dd (13.7, 3.4)	3.11, dd (14.0, 3.4)
7	134.7	134.8		
8/12	129.6	129.67	7.00, dd (7.5, 1.3)	7.00-7.04, m
9/11	128.3	128.38	7.20, m	7.18-7.25, m
10	127.0	127.17	7.14, m	
13	58.4	58.51	3.72, s	3.75, s
14	172.2	172.29		
15	58.7	58.73	6.45, d (10.9)	6.48, d (10.7)
16	34.3	34.39	2.09, m	2.11, m (ovl)
17	25.1	25.23	1.26, m	1.26-1.30, m (ovl)
			1.10, m	1.13, ddq (13.9, 8.7,
				7.3)
18	10.6	10.67	0.84, t (7.5)	0.86, t (7.3)
19	14.5	14.62	0.89, d (6.8)	0.91, d (6.7)
21	31.8	31.91	3.21, s	3.24, s
22	171.2	171.32		
23	58.3	58.41	5.27, d (10.3)	5.30, d (11.0)
24	27.2	27.25	2.38, m	2.41, dspt (11.0, 6.7)
25	19.6	19.66	0.89, d (6.9)	0.91, d (6.7)
26	18.3	18.37	0.75, d (6.9)	0.78, d (6.7)
28	30.5	30.66	3.10, s	3.13, s
29	172.8	172.86		
30	53.6	53.77	4.81, dd (8.9, 3.4)	4.84, dd (8.9, 5.9)
31	31.0	31.04	1.96, m	1.99, sptd (6.7, 5.9)

Tabelle 1: Vergleich der NMR-Signale des natürlichen Isolates nach GUNASEKERA et al.^[41] und von synthetisierter Verbindung 4.

32	17.8	17.93	0.93, d (6.9)	0.97, d (6.7)
33	19.9	20.00	0.98, d (6.9)	1.01, d (6.7)
NH-34			6.92, d (8.9)	6.99, d (8.9)
35	171.8	171.89		
36	76.6	76.61	2.44, d (6.2)	2.49, d (6.1)

Der relativ kleine Literatur-Drehwert von $[\alpha]^{25}_{D}$ +11.1 (c = 0.36, CH₃OH) und der gemessene Drehwert der synthetisch hergestellten Verbindung **4** $[\alpha]^{20}_{D}$ —13.2 (c = 0.50, CH₃OH) wichen voneinander ab. Daher wurde eine kleine Menge der Verbindung mittels HPLC analysiert und nochmals präparativ aufgereinigt, was ebenfalls zu keiner Änderung im Drehwert führte.

Ähnliche Problemstellungen waren in der Literatur häufig beschrieben. So wurde beispielsweise Dolastatin 15 bei der Isolation mit einem Drehwert von $[\alpha]^{26} - 26$ (c = 0.01, CH₃OH) von PETTIT *et al.*^[89] beschrieben. Die Erstsynthese erfolgte ebenfalls im Arbeitskreis PETTIT und lieferte einen Drehwert von $[\alpha]_D - 48.2$ (c = 0.11, CH₃OH)^[90]. Abweichend dazu der Drehwert von PATINO *et al.* (Synthese siehe Abschnitt 3.1.1) $[\alpha]^{20}_D - 87$ (c = 0.4, CH₃OH), welche ebenfalls kleinere Abweichungen der NMR-Verschiebungen berichteten. Eine dritte Synthese (Abschnitt 3.1.1), wieder aus dem Arbeitskreis von PETTIT, berichtete einen Drehwert von $[\alpha]^{24}_D - 77$ (c = 0.2, CH₃OH)^[73]. Die Konfiguration der Stereozentren erfolgte durch direkten Vergleich von synthetischem **4** mit dem Isolat via Dünnschichtchromatographie, ¹H- und ¹³C-NMR. Eine eindeutige Identifikation von Struktur **4** mit dem natürlichen Isolat sollte durch direkten Vergleich z.B. mittels NMR, CD/ORD oder HPLC ^[91] getroffen werden, was aufgrund des Fehlens einer Probe des natürlichen Isolates nicht möglich war.

Desweiteren wurde Verbindung **4** auf ihre biologische Aktivität an verschiedenen Krebszellen untersucht. Die MTT-Assays an den menschlichen Dickdarmkarzinomzelllinien HT-29 und HCT-116^{wt} zeigten IC₅₀-Werte von 77.5 ± 1.3 μ M und 43.8 ± 3.7 μ M. An der Brustkrebszelllinie MCF-7 wurde ein IC₅₀-Wert von 33.9 ± 1.3 μ M ermittelt.^[92]

3.2 JBIR-141/142

3.2.1 Synthesestrategie

Die Naturstoffe JBIR-141 und JBIR-142 unterschieden sich lediglich in einem Stereozentrum und so sollte im Folgenden ein möglichst allgemeiner synthetischer Zugang für beide Naturstoffe erarbeitet werden. Die Zielstrukturen wiesen drei strukturelle Besonderheiten auf. Zum einen das Threoninabgeleitete Oxazol-Motiv (Abbildung 23, rot), die Hydroxy-Nitroso-Amino-Gruppe (gelb) in der Aminosäureseitenkette sowie die 3-Acyltetramsäureeinheit (blau).

Abbildung 23: Retrosynthetische Zerlegung der Naturstoffe JBIR-141/142 (5/6).

Dabei galt für jede dieser Einheiten, dass ein Aufbau möglichst am Schluss einer Synthese stattfinden sollte. So waren in der Literatur viele Beispiele bekannt, welche die Oxazolin-Einheit aufgrund ihrer Säurelabilität am Ende der Synthese, vor Abnahme der letzten Schutzgruppen, einführten^[93,94]. Ebenfalls problematisch war die literaturbekannte^[95] Racemisierung am C-2 *exo* Methin neben der Oxazolin-Einheit, die nicht nur unter sauren Bedingungen, sondern nach längerer Zeit und bei erhöhten Temperaturen bereits im protischen Medium wie CH₃OH auftreten konnte (Abbildung 24). Eine direkte Abstraktion des α-Methin-Protons in **120** bei Zugabe von Base fand nachweislich nicht statt. Anstelle

Abbildung 24: Mechanismus der Racemisierung am C-2 exo Methin nach YONETANI et al.

dessen kam es erst durch den Elektronenzug nach Protonierung des Oxazolin Stickstoffs zu einer Abspaltung des α -Protons.^[95]

Auch das 3-Acyltetramsäuremotiv wurde bevorzugt in den letzten Synthesestufen realisiert, da jeder nachfolgende Aufreinigungsschritt auf Grund seiner Chelatbildungsfähigkeit problematisch sein konnte. Überdies waren in der Literatur nur wenig totalsynthetische Beispiele der Hydroxy-Nitroso-Amino-Gruppe bekannt, sodass die Stabilität unter verschiedenen Reaktionsbedingungen ungewiss war (siehe Abschnitt 2.2.1). Daher wurden diese Funktionalitäten auf drei Bausteine retrosynthetisch verteilt, die dann miteinander verknüpft werden sollten und möglichst wenig chemische Transformationen am Gesamtsystem erforderlich machten. Als Bausteine ergaben sich der "Westbaustein", 2-((1-Dimethylamino)ethyl)-5-methyl-4,5-dihydrooxazol-4-carbonsäure **117**, der "Mittelbaustein"

3-Acetoxy-4-amino-7-(hydroxy(nitroso)-amino)-2,2-dimethylheptansäure **118** und der "Ostbaustein", Ethyl *N*-(4-hydroxy-5-methyl-3-oxohexanoyl)-*N*-methyl-alaninat **119**. Aus diesem wurde die Tetramsäureeinheit mittels Dieckmann-Cyclisierung aufgebaut (Abbildung 23).

Abbildung 25: Geplante Verknüpfungsstrategie der Bausteine zur geschützten Zielverbindung 126.

Zunächst war die Verknüpfung von West- und Mittelbaustein geplant, anschließend die *C*-terminale Entschützung und Kopplung mit β-Ketoamid **119**. Ein Tetramsäureringschluss nach Lacey-Dieckmann erfolgte baseninduziert und sollte sowohl mit dem Oxazolin, als auch mit der geschützten Hydroxy-Nitroso-Amino-Funktion kompatibel sein. Jedoch musste die Acetyl-Gruppe als auch die Esterfunktion (orange) dabei intakt bleiben, was vorab an einem Modell getestet werden sollte (siehe Kapitel 3.2.2). Ebenso sollte anhand eines vereinfachten Mittelbausteins zunächst sowohl der Aufbau der Hydroxy-Nitroso-Amino-Gruppe untersucht werden, sowie mögliche Schutzgruppen für *N*- und *C*-Terminus des Mittelbausteins gefunden werden (Abbildung 25).

3.2.2 Synthese des Oxazolin-Fragmentes 117

Das Oxazolin-Fragment **117** bestand aus den Bausteinen Threonin und *N*,*N*-Dimethyl-L-Alanin. Das Threonin-abgeleitete Oxazolin lag im Naturstoff *trans*-konfiguriert vor und war somit auf L-Threonin (2*S*,3*R*) zurückzuführen. Biosynthetisch erfolgte die dehydrative Cyclisierung zum Oxazolin durch enzymatische Reaktion der Threonin-Seitenkette unter Retention mit der vorangehenden Carbonylfunktion des Peptidsubstrats während der Peptidelongation^[96] (Abbildung 26).

Synthese unter Inversion:

Abbildung 26: Mechanismus der Oxazolin-Biosynthese aus L-Threonin und Mechanismus der Oxazolin-Synthese aus L-Threonin mit Burgess-Reagenz unter Inversion an C-3; Strukturen der Reagenzien DAST 132, Martins-Sulfuran 133 und Burgess-Reagenz 134.

Im Vergleich dazu erfolgten die meisten synthetischen Oxazolin-Ringschluss-Methoden unter Aktivierung der Threonin-Seitenkette und anschließendem Angriff des Amids unter Austritt der Abgangsgruppe^[97]. Die S_N2-typische Inversion des Stereozentrums machte dadurch den Einsatz des teuren L-*allo*-Threonins erforderlich, um das (2*S*,3*R*)-konfigurierte Oxazolin zu erhalten.

Hauptsächlich wurde beim Oxazolin-Ringschluss in der Literatur auf stöchiometrische Reagenzien zurückgegriffen. Einige Beispiele dafür waren nach VORBRUGGEN das Reagenz PPh₃-CCl₄^[98], oder

Diethylaminoschwefeltrifluorid (DAST **132**) / Bis(2-methoxyethyl)aminoschwefeltrifluorid (Deoxo-Fluor)^[99], Ph₂SO-Tf₂O^[100], Martins-Sulfuran (**133**) ^[101], Burgess-Reagenz (**134**) ^[102] und das Mitsunobu-Reagenz^[103]. Daneben waren Literaturstellen unter Verwendung katalytischer Dehydratisierungs-Reagenzien bekannt (z.B. (NH₄)₆Mo₇O₂₄*4H₂O/(NH₄)₂MoO₄^[104], 3-Nitrophenyl-borsäure^[105], *p*-Toluolsulfonsäure^[106]), wurden aber weniger genutzt.

Problematisch an der dehydrativen Cyclisierung war die geringe Stereoselektivität. So konnten abhängig vom Substrat, mäßige Oxazolin-Ausbeuten erhalten werden und in Konkurrenz dazu Aziridin-Bildung oder Eliminierung zur α,β-Dehydroaminosäure auftreten. Generell fand die Oxazolin-Bildung bevorzugt statt, wenn anstelle einer NH-Carbamat-Gruppe eine nucleophilere Amid-Bindung vorhanden war.^[94] Unter Mitsunobu-Bedingungen war nach WIPF und MILLER^[103] bekannt, dass im Beispiel (I, Abbildung 27) ausgehend von L-Threonin das Aziridin gebildet wurde, während L-*allo*-Threonin in Beispiel (II) zum *trans*-Oxazolin reagierte. Mit Martins-Sulfuran berichteten YOKOKAWA und SHIOIRI^[101] die Eliminierung von L-Threonin zur Dehydroaminosäure (III), während L-*allo*-Threonin wiederum meist das *trans*-Oxazolin bildete (IV). Am Dipeptid Boc-Phe-L-*allo*-Thr-OMe hingegen konnten statt des Oxazolins, die *E*- und *Z*-Isomere des Eliminierungsproduktes isoliert werden, worauf leider nicht weiter eingegangen worden ist (V). Am identischen Dipeptid berichteten LAFARGUE *et al.* von selektiver Eliminierung zum *Z*-Dehydropeptid mittels DAST bei —78°C (VI).^[107] Ebenfalls nach Reaktion mit DAST wurde am Dipeptid Cbz-Phe-L-Thr-OMe von PHILLIPS *et al.* die Bildung des Oxazolins berichtet (VII).^[99]

Somit war der Reaktionsverlauf des jeweiligen Substrates mit den unterschiedlichen Dehydratisierungsreagenzien schwer anhand der Literatur abschätzbar.

nach YOKOKAWA und SHIOIRI

nach LAFARGUE et al.

nach PHILLIPS et al.

 $\begin{array}{c} HO \\ CbzHN \\ H \\ Ph \\ 144 \end{array} \xrightarrow{OMe} G \\ CbzHN \\ Ph \\ 145 \end{array}$ (VII)

Abbildung 27: Synthese von Aziridin, Oxazolin und Dehydrobutyrin aus ι-Threonin und ι-allo-Threonin; Reagenzien und Bedingungen: a) PPh₃, DIAD, CH₂Cl₂, 0 °C, 56%, b), PPh₃, DIAD, THF, 0 °C, 64%, c) Martins-Sulfuran, CH₂Cl₂, RT, 86%, d) Martins-Sulfuran, CH₂Cl₂, RT, 81%, e), Martins-Sulfuran, CH₂Cl₂, RT, 35% E-**143** und 56% Z-**143**, f) DAST, CH₂Cl₂, -78 °C, 48%, g) DAST, CH₂Cl₂, -78 °C, 43%. Zur Synthese des benötigten Bausteins für JBIR-141/142 wurde zunächst nach einer Literaturvorschrift^[108] L-allo-Threonin aus L-Threonin hergestellt (Abbildung 28). Im ersten Schritt wurde der Methylester durch saure Veresterung in 98% Ausbeute hergestellt. Anschließend erfolgte N-Acetylierung mit Acetylchlorid und Triethylamin in CH₂Cl₂ zu 147 in 94% Ausbeute. Dieses wurde in SOCl₂ zum Oxazolin 149 umgesetzt, wobei die Invertierung des Stereozentrums stattfand. Anschließend wurde 149 in verdünnter HCI-Lösung unter Reflux erhitzt und das gewünschte allo-Threonin (allo-146) wurde erhalten. Dieses war auf der Stufe der freien Aminosäure schwer aufzureinigen und wurde deshalb weiter umgesetzt zur Boc-geschützten Aminosäure **150**. Nach einer säulenchromatographischen Aufreinigung wurde 150 in einer Ausbeute von 61% (ausgehend von 147 über drei Stufen) erhalten. 150 wurde anschließend mit Cs₂CO₃ in CH₃OH deprotoniert und das Carboxylat mit Benzylbromid in DMF umgesetzt (151, 90%). Eine standardmäßige Boc-Entschützung mit Trifluoressigsäure in CH₂Cl₂ bei niedrigen Temperaturen (-10 °C) wies bei der Überprüfung der Reaktion per Dünnschichtchromatographie (CH₂Cl₂/CH₃OH 98:2) einen relativ apolar laufenden Spot sowie den erwarteten sehr polaren Spot des freien Amins auf. Ebenfalls auffällig an dem Spot des Nebenproduktes war, dass ein Säure- oder Basenzusatz im DC-Laufmittel keine Auswirkungen auf den Rf-Wert desselben hat. Neben dem gewünschten Produkt 151 (66%) konnte nach Chromatographie das Nebenprodukt abgetrennt werden. Dieses wies im IR zwei Carbonylbanden bei 1737 cm⁻¹ und 1708 cm⁻¹ auf und konnte als das Oxazolidon **153** (23%) identifiziert werden. Die Kopplungskonstante von 3.5 Hz deutete auf eine erneute Inversion zum *trans*-Oxazolidon hin (vgl. dazu Lit.^[109]). Aufgrund der unerwarteten Nebenreaktion wurde alternativ die direkte Benzylveresterung des allo-Threonins unter Dean-Stark-Bedingungen und unter p-Toluolsulfonsäure-Katalyse durchgeführt. Somit konnte die Reaktionssequenz weiter verkürzt werden, mit einer Gesamtausbeute über drei Stufen (ebenfalls ausgehend von Verbindung 147) von 53%.

Abbildung 28: Synthese von L-allo-Threonin und anschließende Benzylschützung; Reagenzien und Bedingungen: a) CH₃OH, SOCl₂, 0 °C \rightarrow rf, 98%, b) AcCl, NEt₃, CH₂Cl₂, 94%, c) SOCl₂, RT, d) 10% HCl_(aq), rf, e) Boc₂O, 1m NaOH_(aq), 1,3-Dioxan, 61% über 3 Stufen (c-e), f) i) Cs₂CO₃, CH₃OH, ii) BnBr, DMF, 90%, g) TFA, CH₂Cl₂, -10 °C, **152** 66%, **153** 23%, h) BnBr, pTsOH x H₂O, Benzol, 53% über 3 Stufen (c,d,h).

Als nächstes wurde in einer literaturbekannten Reaktion^[110,111] *N*,*N*-Dimethyl-L-Alanin (**155**) durch reduktive Kondensation von L-Alanin mit Formaldehyd und H₂ an Pd/C in einer wässrigen Lösung hergestellt (Abbildung 29). Dieses wurde mit Benzyl-L-*allo*-Threoninat (**152**) zum Dipeptid **156** in einer Kopplung mit EDCI, HOBt und DIPEA in CH₂Cl₂ umgesetzt. Die Ausbeute betrug hierbei lediglich 40%. Gründe dafür waren sowohl das Stören der freien OH-Gruppe bei der Kupplungsreaktion, sowie die schlechte Elution der Substanz bei der Chromatographie an SiO₂ (EtOAc/EtOH 98:2 \rightarrow 96:4). Die Versuche einer manuellen RP-Säulenchromatographie an C18-Säulenchromatographie zeigten hingegen unzureichende Abtrennung der Verunreinigungen und lieferten keine bessere Ausbeute. Trotz der schlechten Ausbeute des Dipeptids wurden erste Testansätze zum Ringschluss des Oxazolins **157** durchgeführt. Unter Mitsunobu-Bedingungen (PPh₃-DIAD, 0 °C) wurde bereits bei der ersten Reaktionskontrolle per Dünnschichtchromatographie (Et₂O/EtOH 95:5 + 0.1% NH₄OH_(aq)) nach einigen Minuten deutlich, dass eine Vielzahl von Verbindungen gebildet wurde. Nach 1 h 40 min war das Edukt vollständig abreagiert unter Bildung von nur zwei Verbindungen, welche chromatographisch trennbar waren.

Abbildung 29: Fehlgeschlagene Synthese des benzylgeschützten Oxazolins **157**; Reagenzien und Bedingungen: a) CH₂O_(aq), Pd/C (10%), H₂, H₂O, 98%, b) EDCI, HOBt, DIPEA, CH₂Cl₂, 40%, c) PPh₃, DIAD, THF, 0 °C, Z-**158** <1%, E-**158** <1%.

Auffällig waren, in den beiden ¹H NMR-Spektren (500 MHz, CDCl₃) der beiden Verbindungen neben den aromatischen Protonen des Benzylesters, zwei entschirmte Protonen bei 6.86 ppm bzw. 7.20 ppm die jeweils zu Quartetts aufspalteten. Diese wiederum koppelten mit den Dupletts 1.78 ppm (J = 7.3 Hz) bzw. 2.12 ppm (J = 7.6 Hz). Die ¹³C NMR-Spektren wiesen ebenfalls je Verbindung zwei zu tiefem Feld verschobene Signale auf (126.2 ppm und 134.1 ppm bzw. 125.7 ppm und 128.5 ppm), welche Methylengruppen zugeordnet werden konnten. Mithilfe der 2D-NMR-Experimente (HSQC, HMBC) und massenspektroskopischen Untersuchungen konnten die Verbindungen den Strukturen *Z*-**158** und *E*-**158** zugeordnet werden. Die Zuordnung zum entsprechenden Isomer konnte nach Lit.^[112] anhand der Signalverschiebungen im NMR durchgeführt werden. Das Isomer mit den Signalen im niedrigeren Feld (2.12 ppm, 7.20 ppm) wurde als *E*-Isomer bestimmt, das andere entsprechend als *Z*-konfiguriert.

Aufgrund der schlechten Ausbeuten für die Benzylschützung, Kopplung und schließlich der gescheiterte Ringschluss, wurde im Folgenden ein Wechsel zum Methylester durchgeführt. Die ersten Schritte der Inversion des Stereozentrums wurden identisch durchgeführt (s.o.) und das Rohprodukt des L-allo-Threonins allo-146 wurde zum Methylester 159 umgesetzt (Abbildung 30). Dieser konnte in guten 90% Ausbeute ausgehend von Verbindung 147 erhalten werden. Anschließend erfolgte die Kupplungsreaktion mit N,N-Dimethyl-L-alanin unter Verwendung von EDCI, HOBt und DIPEA in CH₂Cl₂ Mitsunobu-Reaktion (PPh₃-DIAD) in 54% Ausbeute zu **160**. Nach konnte per Dünnschichtchromatographie (EtOAc/EtOH 96:4 + 0.1% NH₄OH_(aq)) ein geringer R_f-Unterschied zwischen Edukt (160, 0.45) und Produkt (161, 0.38) festgestellt werden. Nach Aufarbeitung und Säulenchromatographie konnte das Oxazolin **161** in 45% Ausbeute erhalten werden.

Abbildung 30: Synthese des Oxazolins via Methyl-L-allo-Threoninat; Reagenzien und Bedingungen: a) CH₃OH, SOCl₂, 0 °C \rightarrow rf, 98%, b) AcCl, NEt₃, CH₂Cl₂, 94%, c) SOCl₂, RT, d) 10% HCl_(aq), rf, e) SOCl₂, CH₃OH, 90% über 3 Stufen (c-e), f) EDCl, HOBt, DIPEA, CH₂Cl₂, 54%, g) PPh₃, DIAD, THF, 0 °C, 45%.

Die eindeutige Bestimmung des Oxazolins, anstatt des strukturisomeren Aziridins, erfolgte durch den Abgleich der NMR-Daten mit ähnlichen Verbindungen. So waren nach WIPF und MILLER die Signale von α -H und β -H im Aziridin **162** stärker abgeschirmt als im entsprechenden *cis*-Oxazolin **163**^[103]. Sowohl die α -H- und β -H-Verschiebungen als auch der ¹³C-Shift des quartären Kohlenstoffs im Oxazolin **163** stimmten gut mit literaturüblichen Werten überein. Die Kopplungskonstante (*J* = 6.7 Hz) zeigte ebenfalls an, dass das gewünschte *trans*-Oxazolin vorlag (vgl. *cis*-Oxazoline *J* = 10 Hz^[103], vgl. dazu auch Lit.^[113]).

Ein direkter Vergleich von Methyl-Threoninat und Benzyl-Threoninat zeigte, dass letzteres einen leicht Elektronen schiebenden Effekt aufwies.^[114] Im Gegensatz dazu sollte eine Eliminierung zur α -Dehydroaminosäure durch Elektronenzug erleichtert werden.^[115] Die fehlgeschlagene Umsetzung des Benzylesters zum Oxazolin im Vergleich zum Methylester wurde vermutlich durch sterische Einflüsse ausgelöst.

3.2.3 Synthese des 6-Keto-Bausteins 119

Die Synthese des β -Ketobausteins erfolgte aus den Bausteinen (*S*)-2-Hydroxy-3-methyl-butansäure (**164**, orange), *N*-Methyl-Alanin (**166**) sowie Meldrumsäure (**165**, Abbildung 31). Letztere diente als Donor der rot markierten C2-Einheit.

Abbildung 31: Retrosynthetische Zerlegung des β-Ketobausteins 119.

Ausgehend von Boc-L-Alanin (**167**) wurde dieses in drei literaturbekannten Stufen zum Ethyl *N*-methyl-L-alaninat (**170**) umgesetzt. Das Edukt wurde dabei mit Paraformaldehyd unter *p*-Toluolsulfonsäure-Katalyse zum Oxazolidinon **168**^[116] in 77% Ausbeute umgesetzt. Dieses wurde mit Triethylsilan und Trifluoressigsäure in CH₂Cl₂^[117] durch reduktive Ringöffnung unter gleichzeitiger Boc-Entschützung zu *N*-Methyl-L-Alanin (**169**) umgesetzt. Nach Umkristallisation konnte das gewünschte Produkt als farbloser Feststoff in 99% Ausbeute erhalten werden. Anschließend erfolgte Veresterung in Ethanol und erneute Umkristallisation des entstandenen Hydrochlorids **170** aus Aceton (85% Ausbeute).

Abbildung 32: Synthese von Ethyl N-methyl-L-alaninat (Hydrochlorid) **170**; Reagenzien und Bedingungen: a) CH₂O, pTsOH, Benzol, 77%, b) Et₃SiH, TFA, CH₂Cl₂, 99%, c) SOCl₂, EtOH, 85%.

Zur Darstellung des (*S*)-2-Hydroxy-3-methyl-buttersäure-Bausteins wurde der gut abspaltbare Benzylester (**173**) gewählt. Hierdurch sollten bereits im Voraus Aufreinigungsproblemen des späteren β -Keto-Systems in Folge der Keto-Enol Tautomerie vorgebeugt werden. Dies gelang über den Umweg des Ethylesters **171** in 81% Ausbeute. Analog zu den Arbeiten von JOULLIÉ *et al.*^[118] wurde aufgrund der Flüchtigkeit des Methylesters die Ethylesterverbindung **171** verwendet. Die Benzylschützung erfolgte nach Deprotonierung mit NaH und Zugabe von Benzylbromid (80%). Nach Verseifung von **172** wurde der kupplungsfertige Baustein **173** in 89% Ausbeute erhalten.^[119,120]

Abbildung 33: Synthese von **173**; Reagenzien und Bedingungen: a) EtOH, H₂SO₄, 81%, b) NaH, BnBr, TABI, THF, 80%, c) KOH, H₂O, EtOH, 89%.

Anschließend erfolgte die Acylierung von Meldrumsäure mit **173** unter Steglich-Bedingungen (EDCl, DMAP)^[121]. Das acylierte Meldrumsäureaddukt wurde lediglich wässrig aufgearbeitet und konnte nicht weiter aufgereinigt werden, da das Produkt thermisch und säulenchromatographisch (an SiO₂) instabil war. Die Umsetzung mit Ethyl-*N*-Methyl-L-alaninat (**170**) erfolgte in Toluol unter Reflux^[122], wobei eine Abspaltung von CO₂ und Aceton erfolgte. Die Ausbeute lag nach Säulenchromatographie bei 41%, was vergleichbar mit ähnlichen Reaktionen in der Literatur war^[123]. Letztlich erfolgte die hydrogenolytische Abspaltung der Benzylschutzgruppe in CH₃OH (80%) um den kupplungsfähigen Baustein zu erhalten. Ausgehend von (*S*)-2-Hydroxy-3-methyl-buttersäure (**164**) wurde dieser in 16% Ausbeute über 6 Stufen (längste lineare Kette) erhalten.

Abbildung 34: Synthese von 8-Ketoverbindung **119**; Reagenzien und Bedingungen: a) Meldrumsäure, DMAP, EDCI, CH₂Cl₂, 85%, b) Ethyl N-methyl Lalaninat (**170**), NEt₃, Toluol, rf, 41%, c) H₂, Pd/C, CH₃OH, 80%.

Die Synthese des 3-Acyltetramsäurebausteins sollte durch Einführung als β -Ketoamid und anschließende baseninduzierte Lacey-Dieckmann-Cyclisierung an Baustein **125** stattfinden. Ausgehend vom aciden Proton des β -Keto-Systems waren im C-5-Abstand zwei Carbonylester-Funktionen angreifbar (Abbildung 35).

Abbildung 35: Möglich Reaktionen bei der baseninduzierten ("B-") Dieckmann-Cyclisierung von Verbindung **125**.

Neben der gewünschten Bildung der 3-Acyltetramsäure (**126**, blau) war auch ein baseninduzierter Angriff auf die Esterbindung (orange) **176** denkbar. Des Weiteren wurden standardmäßig in der Literatur Alkoxide wie KOtBu^[124] oder NaOMe^[125] zum Dieckmann-Ringschluss verwendet, welche zugleich eine Abspaltung der Acetylgruppe (rot) bewirkten.^[126] Ein alternatives Reagenz zur Ringschlussreaktion stellte das literaturbekannte TBAF dar.^[127] Dieses war zwar nicht als Standard-Reagenz zur Deacetylierung bekannt, lieferte aber beispielsweise an Ribonucleosiden selektive Deacetylierung^[128] und war häufig an der Migration von Acetylschutzgruppen beteiligt.^[129] So wurde mit TBAF die vergleichsweise hydrolyselabile Chloroacetyl-Schutzgruppe in guten Ausbeuten abgespalten^[130]. Um eine Deacetylierung in der eigentlichen Synthese ausschließen zu können, sollte anhand eines einfachen Testsystems der Dieckmann-Ringschluss mit TBAF getestet werden (Abbildung 36).

Abbildung 36: Synthese der Test-3-Acyltetramsäure **181**; Reagenzien und Bedingungen: a) AcCl (neat) 99%, b) Meldrumsäure, DMAP, EDCl, CH₂Cl₂, 92%, c) Ethyl methyl-Lalaninat (Hydrochlorid), NEt₃, Toluol, 55%, d) TBAF, THF, **180** 0%, **181** 97%.

(*S*)-2-Hydroxy-3-methyl-butansäure **164** wurde mit Acetylchlorid zu **177** hydroxygeschützt^[131] (99%). Anschließend erfolgte Acylierung an Meldrumsäure zum aktiven Addukt **178** (92%) sowie die Umsetzung mit *N*-Methyl-L-Alanin-Ethylester (**170**) zum β-Ketoamid **179**^[123] (55%). Das NMR zeigte für Verbindung **179** typische tautomere Formen und war nur schwer auszuwerten. Nach einer Vorschrift von LEY *et al.*^[127] erfolgte der Cyclisierungsansatz mit TBAF (1.0 M in THF). Hierzu wurde das Edukt in THF gelöst und mit 2 Äquivalenten TBAF bei Raumtemperatur versetzt. Die vorhandene *N*-Methyl-Funktion ermöglichte eine sehr hohe Reaktionsgeschwindigkeit, was die Gefahr der Epimerisierung während des Ringschlusses minimierte. Diese Reaktionsführung erlaubte zusätzlich eine lediglich sauerwässrige Aufarbeitung (Et₂O, gesättigte NH₄Cl-Lösung), um TBAF zu entfernen. Für die Testreaktion wurde das Rohprodukt direkt per NMR analysiert (Abbildung 37, 500 MHz, in CD₃OD, H₂O-Signal bei 4.9 ppm aus dem deuterierten Lösungsmittel). Es konnte ausschließlich der Ringschluss zur Tetramsäure in guten 97% Ausbeute analog der Literatur^[127] nachgewiesen werden. Eine Deacetylierung konnte bei den milden Bedingungen nicht beobachtet werden.

Abbildung 37: ¹H-NMR-Spektrum des Rohproduktes der TBAF-Cyclisierung (500 MHz, CD₃OD).

In einem weiteren Modellsystem sollte der Aufbau der Nitroso-Hydroxyamino-Funktion untersucht werden. Dazu sollte die Säure-Gruppe in der Seitenkette von L-Glutaminsäure über Nitrosylierung eines geschützten Hydroxylamins **180** dargestellt werden (siehe Abbildung 38). Dieses konnte wiederum durch Verknüpfung des Glutaminsäure-Aldehyds **181** mit dem käuflich erwerblichen BnO-NH₂ x HCl, über die Zwischenstufe des Oxims und Reduktion, erhalten werden.

Abbildung 38: Retrosynthese des Hydroxy-Nitroso-Amino-Modellsystems **182** ausgehend von der L-Glutaminsäure-Verbindung **185**.

Diverse Methoden wurden zur selektiven Reduktion der Seitenkettencarbonsäure von L-Glutaminsäure durch Einsatz sterisch anspruchsvoller Schutzgruppen (z.B. durch *N*-Tritylschützung^[132]) beschrieben. Nach einer Methode von MORE und VINCE^[133] wurde die δ -Carbonsäure zunächst mit TMSCI in CH₃OH verestert. Eine Selektivität der Seitenkettenfunktion war durch kalte Reaktionstemperaturen und kurze Reaktionszeiten gegeben. Auch das Entfernen der flüchtigen Reagenzien unter vermindertem Druck nach Beendigung der Reaktion sollte möglichst bei Raumtemperatur erfolgen. Erste Versuchsansätze zeigten, dass bereits Spuren von Säure und CH₃OH im Rohprodukt ausreichend sind, um innerhalb weniger Stunden ebenfalls den Di-Ester zu erzeugen. Deshalb wurde das Rohprodukt direkt im Basischen in situ in einer Boc-Schützung umgesetzt und das gewünschte Produkt in 90% Ausbeute erhalten. Die anschließende Veresterung des *C*-Terminus mit *tert*-Butanol erfolgte nach Literaturvorschrift^[134] unter Anhydrid-Aktivierung und DMAP-Katalyse. Jedoch konnte nur eine mäßige Ausbeute von 66% erhalten werden, da zu einem nicht unerheblichen Teil eine Umesterung der δ -

Abbildung 39: Synthese von 1-(Tert-butyl) 5-methyl (tert-butoxycarbonyl)-L-glutamat **189**; Reagenzien und Bedingungen: a) TMSCI, CH₃OH, 99%, b) Boc₂O, NEt₃, H₂O/1,3-Dioxan, 90%, c) tBuOH, Boc₂O, DMAP **189** 66%, **190** 24%.

Carbonsäure auftrat. Der Di-*tert*-Butyl-Ester **190** wurde unter diesen Reaktionsbedingungen in 24% Ausbeute isoliert und identifiziert.

Durch Einführung einer zweiten Boc-Schutzgruppe am Amin, wurde eine ausreichende sterische Abschirmung für die nachfolgende Reduktion gewährleistet. Die Reaktion erfolgte erneut unter DMAP-Katalyse und das Produkt **191** wurde in 80% Ausbeute erhalten. Eine Reduktion des Methylesters **191** zum Aldehyd **192** gelang mit DIBAL-H. Die Durchführung im Lösungsmittel Et₂O war essentiell, da die Reaktion in THF nur sehr langsam ablief. Da eine weitere polare Substanz mittels Dünnschichtchromatographie nachweisbar war, wurde eine teilweise Reduktion zum Alkohol vermutet. Da der Aldehyd nur bedingt säulenchromatographisch stabil war, konnten auf dieser Stufe lediglich 55% isoliert werden. Nach Reaktionsabbruch durch H₂O-Zugabe und abfiltrieren der Al-Salze wurde ein genügend reines Produkt enthalten, dass mit *O*-Benzylhydroxylamin Hydrochlorid umgesetzt werden konnte. Das Oxim **193** wurde über zwei Stufen in 67% Ausbeute als *E/Z*-Gemisch erhalten. Mit NaBH₃CN wurde nach einer Vorschrift^[135] zum Hydroxylamin **194** reduziert (90%).

Abbildung 40: Synthese des benzylgeschützten Hydroxylamins **194**; Reagenzien und Bedingungen: a) Boc₂O, DMAP, MeCN, 80%, b) DIBAL-H, Et₂O, c) BnO-NH₂ x HCl, Pyridin, EtOH, 67% über 2 Stufen, d) NaBH₃CN, pH 2-3, CH₃OH, 90%.

Anschließend erfolgte die Nitrosylierung zu Verbindung **195** (Abbildung 41). Dazu wurde das Edukt in CH₂Cl₂ unter Argon vorgelegt und *n*-Butylnitrit zugegeben. Da das Reagenz lichtempfindlich war, wurde der Ansatz im Dunklen durchgeführt. Der Reaktionsverlauf konnte per DC verfolgt werden, da das entstehende Produkt SiO₂-stabil war und eine charakteristische starke UV-Löschung (254 nm) zeigte. Nach säulenchromatographischer Aufreinigung wurde **195** als gelbes Öl in 82% Ausbeute erhalten. Dieses war auch über längere Zeit unter Argon gekühlt lagerbar. Mit Verbindung **195** wurden erste Entschützungsversuche der Di-Boc-Amino-Funktion durchgeführt (siehe Abbildung 41). Aufgrund von Zersetzung konnte kein intaktes Produkt **196** erhalten werden.

Abbildung 41: fehlgeschlagene Synthese von Verbindung **196**, Reagenzien und Bedingungen: a) BuONO, CH₂Cl₂, 82%, b) siehe Tabelle.

Um die saure Entschützung des *N*-Terminus zu erleichtern, wurde im Folgenden die Mono-Bocgeschützte Verbindung **197** hergestellt (Abbildung 42). Dazu wurde Verbindung **194** mit LiBr nach einer allgemeinen Vorschrift von HAUG und RICH^[136] in Acetonitril umgesetzt und **197** in 90% Ausbeute erhalten. Nitrosylierung mit *n*-Butylnitrit in CH₂Cl₂ lieferte Verbindung **198**, welche ähnlich wie **195** ebenfalls an SiO₂ chromatographisch stabil war (CH/EtOAc 4:1, 88%). Bei den nachfolgenden Entschützungsreaktionen wurden die Äquivalente an Säure im Vergleich zu den Versuchen aus Abbildung 41 reduziert oder die Temperatur nochmals erniedrigt. Aber auch diese Versuche lieferten nur Zersetzungsprodukte.

Abbildung 42: Synthese von Boc-Diimid-N-Oxid **198**, Reagenzien und Bedingungen: a) LiBr, MeCN 70 °C, 90%, b) BuONO, CH₂Cl₂, 1h, RT, 88%, c) siehe Tabelle.

STRAZZOLINI et al.^[56] erwähnten, dass die N-Nitroso- geschützte Verbindung und die Diimid-N-Oxidgeschützte Verbindung unterschiedliche Eigenschaften aufwiesen, gingen aber nicht weiter darauf ein. So wurde als Nächstes die als Diimid-N-Oxid-geschützte Verbindung hergestellt. In dieser Arbeit wurde kurzerhand auf die bereits dargestellte Verbindung 195 zurückgegriffen und diese nach STRAZZOLINI et al. hydrogenolytisch entschützt (Abbildung 43). Die Reaktion zeigte nach über sechs Stunden Reaktionszeit, dass noch Edukt vorhanden war (DC SiO₂, CH/EtOAc 7:1) und wurde deshalb über Nacht gerührt. Anschließend wurde der Katalysator durch Filtration entfernt und das Filtrat im Vakuum einkonzentriert. Das Zwischenprodukt 199 wurde ohne weitere Aufreinigung direkt weiter in EtOAc mit Benzylbromid und Triethylamin umgesetzt. Bei der erneuten Reaktionskontrolle auf SiO₂-DC-Platten zeigte sich die Bildung undefinierter Spots. Des Weiteren fiel auf, dass die UV-Löschung eines Spots innerhalb von wenigen Minuten verschwand. Auch mit verschiedenen Lösungsmittelgemischen wurde kein reproduzierbares Laufverhalten erhalten und es konnte keine Aussage getroffen werden. Erfolgreich war der Wechsel zu Alox-Platten (neutral, CH/EtOAc 7:1), auf denen sowohl das Zwischenprodukt **199** (baseline-Spot) als auch die Bildung des gewünschten Produktes **200** ($R_f = 0.21$) deutlich zu erkennen war. Wurde Verbindung 200 auf Al₂O₃-Platten aufgetragen und diese vor Licht geschützt, konnte der Spot über mehrere Tage detektiert werden, wenn auch mit langsamer Abnahme der Löschungsintensität. Daher wurde vermutet, dass Verbindung 200 gegenüber Licht instabil war und es wurde im Folgenden im Dunklen gearbeitet. Das Rohprodukt konnte ebenfalls über Alox säulenchromatographisch aufgereinigt werden. Die beste Ausbeute wurde mit deaktiviertem Alox (neutral, Brockman III) erhalten (69% über zwei Stufen).

Abbildung 43: Synthese der als Diimid-N-Oxid-geschützten Verbindung **200**, Reagenzien und Bedingungen: a) Pd/C (5%), H₂, 0.5 M NaOH/CH₃OH, b) BnBr, NEt₃, EtOAc, 69% über zwei Stufen.

Ein praktikabler und schneller Nachweis über den Erfolg der Transformationen am *N*-Gerüst lieferten, in Verbindung mit der massenspektrometrischen Analyse, die jeweiligen ¹H-Spektren. Die direkt benachbarten PhCH₂-Protonen der Schutzgruppe und die δ -Glu-CH₂-Protonen der Seitenkette zeigten entsprechende Aufspaltungsmuster. Alle Spektren wurden für einen direkten Vergleich in C₆D₆ bei 500 MHz vermessen (siehe Abbildung 44). Während die Methyleneinheit der Schutzgruppe am Hydroxylamin **194** ein klassisches Singulett aufwies, spaltete diese im Nitroso-Hydroxylamin **195** als Dublett auf. Wurde dann anschließend die Benzylschutzgruppe umgeschützt, lag dieses im Diimid-*N*- Oxid **200** wieder als Singulett vor. Die δ -Glu-CH₂-Protonen des Hydroxylamins lagen bei 2.74 ppm und 2.80 ppm, beide chemisch unterschiedlich, wodurch sowohl untereinander eine Kopplung (²*J* = 12 Hz) und auch jeweils zu den einzelnen γ -Methylen-Protonen eine Kupplung auftrat. Eine erfolgreiche Nitrosylierung konnte sowohl an der Verschiebung ins Tieffeld (3.64 ppm), aber auch an der veränderten Aufspaltung zu einem Triplett erkannt werden. Es lag nur noch eine ³*J*-Kopplung mit den γ -Methylen-Protonen vor. Im Gegensatz waren im Diimid-*N*-Oxid zwei überlagernde Tripletts vorhanden, die chemische Verschiebung änderte sich nur geringfügig zu höherem Feld (3.51 & 3.52 ppm).

Abbildung 44: Vergleich der benachbarten Protonen im ¹H-Spektrum beim Aufbau des N-Gerüsts, ausgehend vom Hydroxylamin **194** über das Nitroso-Hydroxylamin **195** zum Diimid-N-Oxid **200**.

Mit Verbindung **200** in der Hand wurde die Entschützung zum freien Amin **201** versucht (Abbildung 45). Im Vergleich zu den Versuchen der Boc-Entschützung des *O*-Benzyls **195/198**, war es möglich **200** mittels *p*TsOH x H₂O in MeCN zu entschützen. Das ¹H-NMR der Rohsubstanz zeigte keine Zersetzung der *N*-Funktionalität und keine Esterspaltung. Das sehr polare Amin **201** lief auf basischen Al₂O₃-Platten auf einen R_f-Wert von 0.52 und konnte ebenfalls wie Verbindung **195** unter Ausschluss von Licht über längere Zeit durch UV-Löschung detektiert werden. Jedoch schlugen Chromatographie-Versuche des Rohproduktes an neutralen Al₂O₃ sowie an deaktiviertem basischen Al₂O₃ (Brockmann III, EtOAc) fehl. Es konnte nur 20% der Masse des Rohproduktes wiedergefunden werden, wobei keine sauberen Fraktionen erhalten wurden. Möglicherweise kann der wachsartige Feststoff durch Kristallisation aufgereinigt werden, was im Rahmen dieser Arbeit nicht versucht wurde.

Abbildung 45: Synthese des Amins **201** und Kupplung mit Oxazolin **202**, Reagenzien und Bedingungen: a) pTsOH x H₂O, MeCN, b) CsOH x H₂O, THF/H₂O, c) EDCI, HOBt, DIPEA, CH₂Cl₂, 45%.

Eine Kupplung mit dem Cäsium-Salz des Oxazolins **202** wurde als letzte Testreaktion am Modellsystem durchgeführt. Das im Vakuum getrocknete Oxazolin-Salz wurde mit dem freien Amin **201** in THF unter Verwendung von HOBt, DIPEA und EDCI zur Reaktion gebracht. Der Reaktionsfortschritt wurde durch Detektion des freien Amins (DC Al₂O₃, basisch, EtOAc) durchgeführt, wobei ein unpolarer Spot (Al₂O₃, basisch, Rf 0.63 EtOAc) entstand. Nach Chromatographie (Alox neutral, Brockman III, CH/EtOAc 1:1) wurde ein farbloses Öl erhalten, welches massenspektrometrisch analysiert wurde. Dabei konnte sowohl die exakte Masse von 506.29650, welche dem [M+H]⁺ entsprach, sowie die Masse von 528.27816 [M+Na]⁺ detektiert werden. Spuren des freien Amins, der Oxazolinsäure oder einer Eliminierung zum Oxazol wurden nicht gefunden.

Abbildung 46: LC-HRMS Analyse von Verbindung 203.

NMR-Experimente zeigten jedoch eine deutliche Verunreinigung mit einer zweiten Verbindung. Eine Auftrennung der Verbindungen konnte auf deaktivierten SiO₂-DC-Platten erreicht werden (Deaktivierung mit 7.5 Gew.-% NH₄OH-Lösung, CH/EtOAc 3:7), auch die 2-dimensionale DC zeigte keine Zersetzung der Verbindungen. Präparativ eluierte das gewünschte Produkt nur in analytischen Mengen von der Säule (EtOAc + 0.2% NH₄OH-Lösung), weshalb die Ausbeute nicht bestimmt wurde. Vor allem die Aufreinigung des Produktes bedarf weiterer Optimierung, was aus zeitlichen Gründen im Rahmen dieser Arbeit nicht möglich war.

Die Analyse der 1D- und 2D-NMR-Spektren zeigte, dass sowohl das Oxazolin-Fragment als auch das Glutamin-Fragment intakt waren und die in Abbildung 47 dargestellten Korrelationen aufwiesen. Das ¹H-NMR (500 MHz, CD₃OD) zeigte vor allem bei der OCH₂-Gruppe der Benzylschutzgruppe und bei der NMe₂-Gruppe eine zweite Verbindung. Dabei handelte es sich vermutlich um ein Rotamer. Räumlich lag sowohl die OCHCH₃-Gruppe des Oxazolin-Rings, als auch die Glu-Seitenkette durch die starre Amidbindung auf einer Seite und könnte dadurch sterische Hinderung verursachen. Ein Vergleich mit dem Spektrum des Naturstoffes JBIR-141 zeigte, auch wenn von den Autoren nicht beschrieben, ebenfalls ein Nebenisomer. Eine genaue Untersuchung zum Ausschluss einer teilweisen Racemisierung erfolgte aus zeitlichen Gründen nicht. Ein Vergleich der Signale von Verbindung **203** und dem Naturstoff **5** wurde, soweit möglich, in Abbildung 47 gegeben.

48

HMBC

	Signale aus Naturstoff 5 (in CD₃OD)		Signale aus Verbindung 200 (in CD₃OD)		
	500 MHz, δ_{H} in ppm,	125 MHz, δ_c	500 MHz, δ_{H} in ppm,	125 MHz, δ_c in ppm	
	mult (<i>J</i> in Hz)	in ppm	mult (<i>J</i> in Hz)		
1	3.93, ovl	50.9	4.30-4.34, m	53.7	
2	1.26, ovl, 1.77, ovl	30.5	1.65-1.73, m, 1.81-1.88, m	29.2	
3	1.75, ovl, 1.75, ovl	22.6	1.81-1.88, m	24.1	
4	3.95, ovl, 3.90, ovl	57.5	4.11, m	63.7	
5		172.2		173.3	
6	3.68, d (4.5)	75.0	4.23, d (6.7)	75.5	
7	4.90, ovl	80.5	4.77, qd (7.0, 6.7)	81.3	
8	1.11, d (6.0)	20.9	1.44, d (7.0)	21.5	
9		172.4		171.4	
10	3.41, q (7.0)	59.8	3.38, q (7.0)	59.3	
11	1.34, d (7.0)	15.6	1.33, d (7.0)	15.5	
12	2.34, s	42.8	2.33, s	42.3	
13				171.9*	
14				83.4	

15	1.46, s	28.2
16	5.30, s	77.0
17		137.1
18		129.6, 129.7, 129.8

Abbildung 47: Analyse der 1D- und 2D-NMR-Spektren von Verbindung **200**, Korrelationen im H,H-COSY & HMBC-Experiment sowie 2D-Struktur.

*über 2D-NMR bestimmt

Grundsätzlich zeigten sich bereits erste Übereinstimmungen der beiden Verbindungen. Auch konnte durch die Synthese von **203** gezeigt werden, dass die Verknüpfung der Bausteine und die Wahl der Schutzgruppen zur Synthese der Naturstoffe **4/5** sinnvoll gewählt wurden. Um das System fertig zu stellen, sind im Anschluss die in Abbildung 48 dargestellten Reaktionen erforderlich. Die saure *t*Bu-Entschützung (TFA in CH₂Cl₂)^[137] war nach LEY *et al.*^[138] auch in Gegenwart des Oxazolin-Systems literaturbekannt. Die nachfolgende Kupplung mit Baustein **119** zu Verbindung **204** sollte analog durchführbar sein und die TBAF-Cyclisierung zur 3-Acyltetramsäure wurde bereits testweise untersucht. Eine Benzylentschützung ist als finaler Schritt wahrscheinlich vorteilhaft und sollte ebenfalls mit den anderen Bausteinen kompatibel sein.

Abbildung 48: Plan zur weiteren Synthese der Modellverbindung **206**, bzw. analog zur formalen Synthese von **4/5**, Reagenzien und Bedingungen: a) TFA, CH₂Cl₂, b) **119**, EDCI, DIPEA, THF, c) TBAF, THF, d) H₂, Pd/C, EtOAc.

Parallel zur Synthese des Modellsystems wurden im Rahmen dieser Arbeit erste Versuche für die Synthese der Mittelbausteine für die Naturstoffe **5** bzw. **6** anhand zweier Routen unternommen, die im Folgenden beschrieben werden.

3.2.5 Synthese des Mittelbausteins via Reformatsky-Reaktion

Die stereoselektive Synthese des (*S*,*R*)-Aminoalkohols im Mittelbaustein **118** konnte grundsätzlich durch zwei Routen erfolgen (Abbildung 49). In der ersten Route wurde der Alkohol durch Alkylierung mit dem Isobutylester-Fragment **208** aufgebaut, während das (*S*)-konfigurierte Amin einer geeigneten Aminosäure **207** entstammte. Dieser Syntheseweg wurde nachfolgend als Reformatsky-Route bezeichnet. *Vice versa*, erfolgte die zweite Route über den Aufbau des Amins, während das (*R*)-Hydroxy-Dimethyl-pentylfragment **210** einer geeigneten Verbindung des "chiral Pool" entstammte (siehe dazu Kapitel 3.2.6, "Grignard-Route").

Abbildung 49: Retrosynthetische Zerlegung des Aminoalkohol-Motivs des Mittelbausteins **118** in die Synthone **207** und **208** (via Route 1) sowie **209** und **210** (via Route 2).

Die Reformatsky-Route zeichnete sich dadurch aus, dass durch Verknüpfung der Bausteine **207** mit **208** der benötigte Mittelbaustein schnell aufgebaut wurde. Nach erfolgter Reaktion waren noch eventuelle Schutzgruppen-Modifikationen an *N*- und *C*-Terminus sowie die Synthese der Nitroso-Hydroxyamino-Funktion in der Seitenkette erforderlich. Für die Synthese des Mittelbausteins von **5** (R = H) konnte auf die käuflich erhältliche Aminosäure Glutaminsäure zurückgegriffen werden, um den Aldehyd **207** zu erzeugen. Nachteilig an dieser Synthesestrategie war, dass für **6** (R = OH) die entsprechende γ-Hydroxy-Aminosäure benötigt wurde, die einer umfangreichen Synthese bedurfte.

Stereoselektive Grignard-artige Reaktionen an α -Aminoaldehyden sind zahlreich untersucht worden. So war bekannt, dass Additionen an Boc-geschützte α -Aminoaldehyde keine oder mäßige diastereofaciale Selektivität aufwiesen.^[139] Auch konnten die Aldehyde leicht racemisieren. Dagegen konnten durch Dibenzylschützung des Amins nicht-chelat-kontrollierte Reaktionen deutlich bessere Ergebnisse mit geeigneten organometallischen Reagenzien liefern (siehe Literaturbeispiele I-III^[140], Abbildung 50). Alternativ war auch die Trt-Schützung für eine stereoselektive metallorganische Addition an Aminoaldehyden in der Literatur beschrieben.^[141] Da der Baustein aber als Reformatsky-Spezies gekuppelt werden sollte, wurden schlechtere Diastereoselektivitäten erwartet. ANDRÉS *et al.* beschrieben an verschiedenen Aminosäurealdehyden die Additionsreaktion mit BrZnCH₂CO₂*t*Bu in Ausbeuten zwischen 52 – 87% und *anti/syn*-Verhältnissen zwischen 62:38 und 80:20.^[142]

nach REETZ et al.

nach ANDRÉS et al.

Abbildung 50: Literaturbeispiele für Additionen an N,N-Dibenzyl α-Aminoaldehyde, Reagenzien und Bedingungen: a) PhMgBr, Et₂O, O °C, 85%, b) tBuMgBr, Et₂O, O °C, 72%, c) CH₃Ti(OiPr)₃, Et₂O, 20 °C, 77%, d) CH₃Li, Et₂O, —10 °C, 81%, e) BrZnCH₂CO₂tBu, THF, O °C, 78%, f) BrZnCH₂CO₂tBu, THF, O °C, 69%.

In dieser Arbeit wurde als Aminosäure L-Glutaminsäure (**186**) verwendet (Abbildung 51). Diese wurde nach einer Vorschrift von RodRiquez und TAddel^[143] zur vierfach benzylierten Verbindung **220** umgesetzt (56%). Durch die Abschirmung der beiden *N*-Benzylschutzgruppen wurde der α-Ester in einer Reduktion

mit DIBAL-H nicht angegriffen und der Seitenkettenester selektiv zu 221 überführt. Nach Aufarbeitung und Säulenchromatographie wurde das erhaltene Produkt 221 in einer TIPS-Schützung umgesetzt. Mit der Wahl der TIPS-Schutzgruppe wurde eine sterisch-abschirmende Schutzgruppe gewählt, die eine mögliche Chelatisierung unterdrücken sollte. Anschließend erfolgte Reduktion des α-Aminosäureesters 222 mit LiAlH₄ zum Aminoalkohol 223 in 90% Ausbeute. 223 wurde anschließend zum α-Aminoaldehyd oxidiert. Dabei zeigte sich, dass eine Dess-Martin-Oxidation (DMP, NaHCO₃, CH₂Cl₂, in Anlehnung an Lit.^[144]) den Aldehyd innerhalb von 2 Stunden bei 0 °C lieferte, allerdings war die Rohsubstanz stark verunreinigt. Eine säulenchromatographische Aufreinigung des α -Aminoaldehydes zeigte spontane Zersetzung, wenngleich die vorherige Reaktionskontrolle per Dünnschichtchromatographie einen definierten Produkt-Spot zeigte. Die Parikh-Döring-Oxidation von Verbindung 223 (Pyridin x SO₃, NEt₃, DMSO, nach Lit.^[145]) lieferte innerhalb von 10 – 45 Minuten den gewünschten Aldehyd 224. Die Reaktion lief nicht reproduzierbar ab, weshalb Rohspektren zum Teil akzeptable Reinheiten, teilweise aber auch starke Verunreinigungen zeigten. Eine deutlich bessere Alternative war die Swern-Oxidation, die Verbindung 224 in akzeptabler Reinheit und in guten Ausbeuten (94%) lieferte. Der SiO₂-labile Aldehyd 224 wurde ohne weitere Aufarbeitung direkt weiter umgesetzt, um eine mögliche Racemisierung oder Zersetzung durch Lagerung zu vermeiden. Die Synthese des Reformatsky-Reagenzens ausgehend von **226** erfolgte nach GAUDEMAR^[146] und wurde anschließend nach KNOCHEL^[147] mit LiCl titriert. Erste Versuche haben gezeigt, dass bei der Zugabe des Metallorganyls zur stark gekühlten Aldehydlösung (-78 °C, THF oder Et₂O) dieses sofort fest wurde und nicht abreagieren konnte. Eine Steigerung der Reaktionstemperatur auf -10 °C bis 0 °C ermöglichte es diese Problematik zu umgehen und eine dennoch ausreichende Kühlung zur Kontrolle zuzulassen. In der Reaktionskontrolle konnte aber bereits die Bildung der beiden Diastereomere per Dünnschichtchromatographie gesehen werden. Sowohl die Herstellung des Aldehyds 224 aufgrund der Racemisierungsproblematik, als auch die Synthese der Reformatsky-Spezies sollte dabei möglichst frisch erfolgen. So zeigte eine gut gekühlte Reformatsky-Suspension nach 6 Tagen Lagerung bei einer erneuten Titration mit trockenem LiCl den charakteristischen Farbumschlag von braun nach farblos. Ein Umsatz mit frischem Aldehyd 224 führte aber zu einem unsauberen Reaktionsverlauf und Nebenproduktbildung.^[148] Die beiden Diastereomere von Verbindung **225** konnten aus dem Rohprodukt auch nach mehrfacher säulenchromatographischer Aufreinigung nicht zufriendenstellend getrennt werden. Für analytische Zwecke konnten zwar wenige Fraktionen der reinen Diastereomere isoliert werden, die Hauptfraktion lag jedoch co-eluiert vor. Aufgrund der Schutzgruppen-bedingten Apolarität konnte keine Auftrennung mittels Hochdruckchromatographie an einer C18-Säule durchgeführt werden.

Abbildung 51: Synthese von Verbindung **225** aus L-Glutaminsäure (**186**), Reagenzien und Bedingungen: a) BnBr, K₂CO₃, NaOH, H₂O, rf, 56%, b) DIBAL-H, THF, −10 °C, 71% c) TIBPSCI, Imidazol, DMF, 90%, d) LiAlH₄, THF, 0 °C, 90%, e) (COCI)₂, NEt₃, CH₂Cl₂, 94%, f) i) **226**, Zn, LiBr, BrCH₂CH₂Br, Et₂O, ii) **224**, Et₂O, −10 °C, 25%.

Daher wurde im nächsten Schritt die Polarität durch Abnahme von Schutzgruppen reduziert, um eine Auftrennung zu ermöglichen (Abbildung 52).

Abbildung 52: Entschützungen zur Trennung des Diastereomerengemisches **225**, Reagenzien und Bedingungen: a) Pd/C (10%), H₂, AcOH, EtOAc, (R,S)-**227** 29%, (S,S)-**227** 16%, b) TBAF, 4Å MS, THF, 56%.

So wurde zunächst die hydrogenolytische Abspaltung der Benzylschutzgruppen versucht. In der Literatur fanden sich dazu Beispiele unter Verwendung des Pearlman-Katalysators (Pd(OH)₂/C)^[149,142,150]. Der Ansatz nach einer Vorschrift von ZHU und BUCHWALD^[149] (Pd(OH)₂ (20%), H₂, CH₃OH) zeigte auf der Dünnschichtchromatographie die Bildung vieler Nebenprodukte. Eine

Auftrennung des Gemisches in Unterfraktionen lies aufgrund der ¹H-NMR Spektren eine teilweise Benzylentschützung, zusammen mit einer partiellen TIPS-Entschützung vermuten (siehe dazu Lit.^[151]). Pd(OH)₂ wurde daher als Hydrierkatalysator verworfen. Um eine vollständige Benzylentschützung zu erhalten, wurde häufig Säure in der Literatur zugesetzt.^[152] So wurde als nächstes die hydrogenolytische Entschützung mit Pd/C (10%) und AcOH in EtOAc durchgeführt. Als Hauptfraktionen konnten aus dem Rohprodukt zwei Verbindungen isoliert werden. Beide zeigten im ¹H-NMR-Spektrum sowohl eine zu tiefem Feld verschobene CH₂-Gruppe an, als auch die entsprechenden aromatischen Protonen einer Benzylgruppe. Daneben fehlten sowohl das Quartett als auch das Triplett der OCH₂CH₃-Gruppe. Daher wurde die Struktur den Verbindungen (R,S)-227 und (S,S)-227 zugeordnet, die aus dem nucleophilen Angriff des mono-benzylierten Zwischenproduktes auf die Estercarbonyl-Gruppe resultierten. Im Vergleich dazu berichtete die Lit.^[153] bei der Pd-katalysierten Hydrierung unter Säurezusatz von einer Cyclisierung, die erst unter Rückfluss-Bedingungen in 3M HCl_(aq) stattfand. Nichtsdestotrotz konnten die beiden Diastereomere auf dieser Stufe chromatographisch getrennt werden und konnten als Hilfsmittel zur indirekten Bestimmung der Konfiguration des Alkohols in Verbindung **225** herangezogen werden. Die relative Stereokonfiguration der Diastereomere wurde mittels 1-dimensionaler NOESY-Differenz-Messungen (H-4 und H-5) bestimmt. Das Hauptdiastereomer zeigte keine Korrelation zwischen dem α -H der ehemaligen (S)-Aminosäure und dem benachbarten Proton, wodurch die Konfiguration zu (4R,5S) bestimmt werden konnte. Beim Nebendiastereomer wurde eine Korrelation der beiden Protonen erhalten, was eine (45,55)-Konfiguration implizierte. Beim Hauptdiastereomer war das NOESY-Experiment bei dem Einstrahlen auf das CH(OH)-Signal bei 3.77 ppm nicht aussagekräftig, da dieses Signal mit den SiOCH₂-Protonen der Seitenkette (3.74 ppm) überlappte. Aufgrund der Kreuzexperimente von Haupt- und Nebenverbindung waren genug Indizien für eine sichere Zuordnung gegeben.

Abbildung 53: 1D-NOESY-DIFF-Untersuchung von Haupt- und Nebenverbindung **227** zur Konfigurationsbestimmung.

Da die Benzylentschützungs-Versuche jedoch keine Lösung zur präparativen Trennung der Diastereomere von **225** brachte, wurde parallel eine Entschützung der Silylgruppe mit TBAF unter Verwendung von 4Å Molsieb vorgenommen (Abbildung 52, Reaktionsbedingung b). Nach Aufarbeitung blieb auch hier eine Trennung mittels manueller Säulenchromatographie erfolglos. Jedoch lies nun die Polarität eine Analyse mittels HPLC an einer C-18-Säule zu (Abbildung 54). Beide Peaks waren mit relativ geringem Retentionszeitunterschied Basislinien-getrennt.

Abbildung 54: HPLC-Chromatogramm des Diastereomerengemisches **228** nach TIPS-Entschützung.

3.2.6 Synthese des Mittelbausteins via Grignard-Reaktion

Parallel zu den Versuchen der Reformatsky-Route wurde im Rahmen dieser Arbeit eine zweite Route untersucht, bei der das Amino-Stereozentrum durch 1,2-Induktion des (*R*)-OH-Stereozentrums aufgebaut wurde (Abbildung 55). Diese Route sollte einen Zugang zu dem Mittelbaustein **118** für gleichzeitig beide Naturstoffe JBIR-141/142 **5/6** liefern. Eine Möglichkeit sowohl die gesättigte Seitenkette des JBIR-141 (**5**) als auch die Alkoholfunktionalität in JBIR-142 (**6**) zu erhalten war die Einführung der Seitenkette mit einer terminalen Doppelbindung. Die Einführung der Allylkette erfolgte über Addition an den Aldehyd **233**. Dabei sollte selektiv das *syn*-Produkt **232** aufgebaut werden, da durch S_N-artige Substitution zum Amin das benötigte (*S*,*R*)-Motiv erhalten werden sollte. Die Aldehyd-Zwischenstufe **233** wurde wiederum aus dem geschütztem (*R*)-Pantolacton (**234**) erhalten. Im Vergleich zur Reformatsky-Route waren für den Aufbau des Mittelbausteins zwar mehr Reaktionsschritte erforderlich, jedoch zeichnete sich die Grignard-Route dadurch aus, dass der Unterschied zwischen dem Mittelbaustein für **5** und dem Mittelbaustein für **6** erst sehr spät zu tragen kam und alle Stufen bis dahin für beide Naturstoffe genutzt werden können.

Abbildung 55: Retrosynthetische Zerlegung des Mittelbausteins 118 via Grignard-Route.

Der Syntheseplan (Abbildung 56) begann mit der Suche einer geeigneten Schutzgruppe sowie der Reduktion zur Aldehyd-Verbindung **233**. Unter geeigneten Bedingungen sollte mittels Grignard-Reaktion Verbindung **232** erzeugt werden. Der sekundäre Alkohol wurde über die Stufe des Azids **236** durch Reduktion zum Amin umgesetzt. Es erfolgte die Schützung des Amins und die Entschützung des primären Alkohols unter Bildung der Verbindung **237**. Oxidation des Alkohols zur Säure sowie Bildung des *t*Bu-Esters (siehe dazu Kapitel 3.2.4) lieferten Verbindung **238**. Damit sollte zum einen Verbindung **239** über Hydroborierung (z.B. Lit.^[154]) und Verbindung **242** mittels Sharpless-Dihydroxylierung (z.B. Lit.^[155,156]) zugänglich sein. Nach Synthese der Seitenkettenaldehyde **240** und **243** sollten die Diimid-*N*-Oxide **241** und **244** erzeugt werden, die entsprechend Kapitel 3.2.4 entschützt und mit den anderen Bausteinen verknüpft werden sollten.

Abbildung 56: Geplante Vorwärts-Synthese der Mittelbausteine 241 und 244 via Grignard-Route.
Die Reduktion des benzylgeschützten (*R*)-Pantolactons **245** zum Aldehyd wurde über verschiedene Wege in der Literatur beschrieben (Abbildung 57). Z.B. wurde nach GREGSON und THOMAS^[157] der Ring zum Weinrebamid geöffnet und der primäre Alkohol TBS-geschützt. Dabei wurde **246** nur in einer mäßigen Ausbeute von 30% erhalten, 48% des Edukts konnten wiedergewonnen werden. Das Weinrebamid wurde in mäßigen 45% Ausbeute zum Aldehyd **247** reduziert und stellte aufgrund der schlechten Ausbeuten keinen guten Zugang zum Mittelbaustein dar. In der zweiten häufig verwendeten

Abbildung 57: Synthese des Aldehydes **247** nach GREGSON und THOMAS, Reagenzien und Bedingungen: a) i) MeONHMe x HCl, Benzol, AlMe₃, 0 °C \rightarrow RT, 2h, ii) (R)-**245**, RT, 1h, iii) TBSCl, Imidazol, CH₂Cl₂, DMAP, TBAI, RT, 1h, 30% (48% wiedergewonnenes Edukt), b) DIBAL-H, -78 °C, 45%, c) LiAlH₄, THF, 0 °C \rightarrow rf, 6h, 68%, d) p-Anisaldehyd Dimethyl Acetal, PPTS, CH₂Cl₂, 78%, e) (COCl)₂, DMSO, NEt₃, CH₂Cl₂, -78 °C \rightarrow RT, 96%, f) **252**, THF, 0 °C \rightarrow RT, 40% über 2 Stufen.

Synthesestrategie z.B. nach WHITE *et al.*^[158] wurde das ungeschützte Pantolacton (**235**) mittels LiAlH₄ zum Triol **248** reduziert, mittels *p*-Anisaldehyd Dimethyl Acetal als 1,3-Diol **249** geschützt. Der primäre Alkohol in **249** wurde anschließend unter Swern-Bedingungen zu **250** oxidiert. Nach TLAIS *et al.* war bekannt, dass (*R*)-**250** mit Prop-1-inylmagnesiumbromid (**252**) nicht unter Chelat-Kontrolle reagierte. Es wurde dagegen im Verhältnis 3:1 das Felkin-Anh-Produkt (*S*,*R*)-**251** gebildet.^[159]

So wurde in dieser Arbeit versucht, das durch direkte Reduktion erhältliche Lactol zu verwenden und eine stereoselektive Addition zu entwickeln. Dabei sollte die Schutzgruppe am (R)-Stereozentrum möglichst klein gewählt werden um eine Chelatisierung zuzulassen. So wurde (R)-Pantolacton (235) zunächst mit TMSCI in einer Standardvorschrift mit Imidazol in DMF zu 253 in mäßigen 68% Ausbeute umgesetzt (Abbildung 58). Alternativ lief die Schützungsreaktion mit TMSCl und Triethylamin in THF^[160] mit guten 83% ab. Die Reduktion mit DIBAL-H wurde bei -78 °C durchgeführt, wobei bereits nach 15 Minuten neben dem erwarteten polaren Spot ($R_f 0.18$) eine zweite Spezies gebildet wurde ($R_f 0.60$). Obwohl nach insgesamt 25 Minuten Reaktionszeit noch Edukt nachweisbar war, wurde der Ansatz abgebrochen, um die weitere Bildung des Nebenproduktes zu unterbinden. Aufarbeitung und Säulenchromatographie ergab neben dem rückgewonnenen Edukt (4%) zwei Verbindungen. Die Hauptfraktion stellte das gewünschte Produkt dar, welches im ¹H-NMR (300 MHz, CDCl₃) ein deutliches Tautomerieverhalten zeigte. Haupt- und Nebenisomer konnten den cyclischen Strukturen 254a und 254c zugeordnet werden, der offenkettige Aldehyd 254b wurde nicht beobachtet. Die Nebenfraktion zeigte im NMR einen Signalsatz und wies kein Tautomerieverhalten auf, die TMS-Gruppe war vorhanden. Im ¹³C-NMR lag das Signal im tiefsten Feld bei 98.3 ppm und wies darauf hin, dass keine Carbonylgruppe vorhanden ist. Die Auswertung der 2-dimensionalen Spektren sowie die Beobachtung, dass es sich um eine gleichzeitig mit der Reduktion stattfindende Nebenreaktion handelte, liesen auf Struktur 256 schließen. Grundsätzlich war eine Migration der Silyl-Schutzgruppe hin zum anomeren Proton aufgrund der höheren Acidität ungewöhnlich. Ein Grund hierfür war wahrscheinlich die Labilität der Schutzgruppe, die somit die sterisch weniger anspruchsvolle Position einnahm (siehe dazu Lit.^[161]). Trotz der schlechten Ausbeute des Lactols wurde die Reaktion mit der Grignard-Verbindung durchgeführt. Dabei zeigte sich in den ersten Versuchen ein sehr langsamer Reaktionsablauf bei niedrigen Temperaturen (-70 °C). Auch zeigte sich ein vollständiger Reaktionsumsatz erst mit 4 Äquivalenten Allylmagnesiumchlorid. Der beste Ansatz brachte das Diastereomerengemisch (Verhältnis 1:2.75) in 74% Ausbeute, jedoch gestaltete sich deren chromatographische Trennung schwierig. Aufgrund der zahlreichen Probleme wurde die TMS-Schutzgruppe für weitere Untersuchungen verworfen.

Abbildung 58: Synthese des TMS-geschützten Triols **255**, Reagenzien und Bedingungen: a) TMSCI, Imidazol, DMF, 68%, b) TMSCI, NEt₃, THF, 83%, c) DIBAL-H, Toluol, —78 °C, 46% **254**, 15% **256**, 4% zurückgewonnenes Edukt, d) Allylmagnesiumchlorid, CH₂Cl₂, —70 °C, Diastereomer 1 19%, Diastereomer 2 55%.

Auch wenn größere OH-Schutzgruppen am Pantolacton wahrscheinlich zu einer schlechteren Chelat-Bildung bei der Addition führten, wurde die gleiche Reaktionssequenz zunächst mit der TIPS-Schutzgruppe durchgeführt, um möglichst beide Diastereomere sauber zu erhalten und eine Aufklärung der Konfiguration der Diastereomere durchführen zu können (Abbildung 59). Sowohl die Schützungsreaktion als auch die Reduktion fanden in sehr guten Ausbeuten statt (90 bzw. 93%). Eine Schutzgruppenmigration wurde mit dem sterisch anspruchsvolleren, aber auch stabileren Silyl-Derivat

Abbildung 59: Synthese des Triols **259** via TIPS-Schutzgruppe, Reagenzien und Bedingungen: a) TIPSCl, Imidazol, THF, 90%, b) DIBAL-H, Toluol, —78 °C, 93%, c) Allylmagnesiumchlorid, THF, —70 °C → RT, 88%, d) Allyltrimethylsilan, TiCl₄, CH₂Cl₂, —70 °C, 46%.

nicht beobachtet und zeigte, dass es sich bei der TMS-Gruppe um einen Ausnahmefall handelte. Die TIPS-geschützte Verbindung wurde mit 4 Äquivalenten des Grignard-Reagenzes vollständig umgesetzt und der gewünschte Allylalkohol in 88% Ausbeute erhalten. Beide Diastereomere konnten mittels Säulenchromatographie getrennt werden (Verhältnis der isolierten Verbindungen ca. 1:7). Eine

ebenfalls versuchte Sakurai-Reaktion ausgehend von **258** mit Allyltrimethylsilan und TiCl₄ brachte an dieser Stelle nicht die gewünschte Allylierungsreaktion, sondern Lewis-Säure-vermittelte Substitution^[162] via Oxazoloniumion **260** und Produkt **261** wurde erhalten. Dadurch wurde eine Veränderung des Diastereomerenverhältnisses durch Einsatz von chelatisierenden Lewis-Säuren am Lactol ausgeschlossen.

Um die Konfiguration des neuen Stereozentrums in beiden Diastereomeren aufzuklären, wurde zunächst mit der Hauptverbindung des Triols eine selektive TBS-Schützung des primären Alkohols durchgeführt, um die sekundäre OH-Funktion jeweils mit (*S*)- und (*R*)-Moshersäure zu verestern. Sowohl mit der Säure^[163] als auch mit dem Säurechlorid^[164] schlugen, vermutlich aufgrund von sterischer Abschirmung, die Veresterungen fehl.

Abbildung 60: Versuchte Konfigurationsbestimmung am TIPS-geschützten Hauptdiastereomer **259**, Reagenzien und Bedingungen: a) TBSCl, Imidazol, CH_2Cl_2 , 91%, b) (S)- bzw. (R)-Moshersäure, DCC, DMAP, CH_2Cl_2 , oder (S)- bzw. (R)-Moshersäurechlorid, Pyridin, CH_2Cl_2 , c) TEMPO/BAIB, CH_2Cl_2 , 0 °C \rightarrow RT, 13%, d) TEMPO/BAIB, CH_2Cl_2 , 0 °C \rightarrow RT, 91%, e) TBAF, 4Å MS, THF, 82%.

Alternativ wurde sowohl Haupt- als auch Nebendiastereomer separat in einer TEMPO/BAIB-Oxidation am primären Alkohol zur Säure umgesetzt. Es trat sofortige Cyclisierung zu den Verbindungen **264** ein. Da mehrfache säulenchromatographische Aufreinigung zur Abtrennung der Oxidationsreagenzien beim ersten Diastereomer nötig war, wurden lediglich 13% des Lactols erhalten. Diastereomer 2 bereitete keine Aufreinigungsprobleme und konnte in 91% Ausbeute erhalten werden. Eine Analyse mittels 1dimensionaler NOESY-Experimente, wie unter Abschnitt 3.2.5 beschrieben, konnte aufgrund der eng beieinander liegenden Signale (ca. 0.08 ppm und ca. 0.15 ppm Unterschied) der entsprechenden Protonen nicht durchgeführt werden. Da das Lactol des zweiten Diastereomers in ausreichender Menge vorhanden war, wurde zu analytischen Zwecken die TIPS-Entschützung zu **Dia2-265** mit TBAF durchgeführt. Bei Verbindung **Dia2-265** lagen die beiden gekennzeichneten Protonen für eine NOESY-Analyse ausreichend weit auseinander. Diese zeigte, dass beide Protonen des zweiten Diastereomers, des Hauptprodukts der Grignard-Reaktion, auf unterschiedlichen Seiten des Rings lagen. Im Umkehrschluss war das ein Hinweis, dass das Hauptdiastereomer in (*S,R*)-Konfiguration vorlagt, was aufgrund der räumlich stark abschirmenden Schutzgruppe erwartet wurde.

Um nun eine Induktion hauptsächlich zum gewünschten Produkt zu erhalten, wurde ein Schutzgruppenwechsel zur 2-Methoxyethoxymethyl-Schutzgruppe (MEM) durchgeführt, die eine Chelatisierung im Übergangszustand erleichtern sollte. Dazu wurde im ersten Schritt die Schützung mit MEMCI und NaH in THF in 70% Ausbeute durchgeführt. Anschließend erfolgte die Reduktion zu Verbindung **266** in 91% Ausbeute. Die Umsetzung mit dem Grignard-Reagenz wurde in verschiedenen Lösungsmitteln durchgeführt. In THF wurde ein 48:52-Gemisch der beiden Diastereomere 267a und 267b erhalten. Bei der Umsetzung in anderen Lösungsmitteln wurde das Grignard-Reagenz, welches als 1M-Lösung in THF käuflich erhältlich ist, zunächst im Hochvakuum einkonzentriert bis ein gräulicher Feststoff zurückblieb und dieser im gewünschten Lösungsmittel, wenn nötig im Ultraschallbad, resuspendiert. In Toluol wurden die Diastereomere ebenfalls nur in einem Verhältnis von 48:52 isoliert. In CH₂Cl₂ wurde ein Verhältnis von 60:40 erhalten. Wenngleich das Diastereomerenverhältnis schlecht war und nicht weiter optimiert werden konnte, so zeigte sich doch zumindest, dass beide Diastereomere mittels Säulenchromatographie gut trennbar waren. Beide Verbindungen 267a bzw. 267b wurden separat durch Oxidation des primären Alkohols mit TEMPO und BAIB zu den Lactonen 268a bzw. 268b umgesetzt. Mittels 1-dimensionaler NOE-Differenz-Experimente konnten beide Verbindungen stereochemisch aufgeklärt werden. So wurde die Hauptverbindung, das zuerst eluierte Diastereomer (Diastereomer 1, R_f 0.34 CH/EtOAc 1:3), eindeutig als gewünschtes (R_r , R_r)-Produkt **268a** identifiziert, da ein NOE zwischen H-4 und H-5 beobachtet werden konnte. In Übereinstimmung dazu wurde zwischen H-4 und H-5 des zweiten Diastereomers kein NOE beobachtet und dieses auf die (S,R)-Verbindung 268b (Diastereomer 2, Rf 0.21 CH/EtOAc 1:3) zurückgeführt. Ausgehend von 267a wurde

der primäre Alkohol selektiv mit TBSCI zu **269** umgesetzt und in einer Mitsunobu-Reaktion mit DPPA das Azid **270** hergestellt. Anschließend erfolgte eine Staudinger-Reduktion mit PPh₃ und H₂O in THF die Bildung von **271** in 87% Ausbeute. Alternativ lieferte die Reduktion mit LiAlH₄ in THF (0 °C \rightarrow RT) eine Ausbeute von lediglich 63%. Das Amin wurde mit Boc₂O in ersten Testansätzen mit NEt₃ in CH₃OH umgesetzt und in einer verbesserungswürdigen Ausbeute von 65% zu **272** geschützt. Die nachfolgende TBS-Abspaltung mit TBAF erfolgte in 86% Ausbeute zu **273**.

Abbildung 61: Synthese des (S,R)-Amins **273** via Grignard-Route mittels MEM-Schutzgruppenstrategie, Reagenzien und Bedingungen: a) MEMCI, NaH, THF, 70%, b) DIBAL-H, THF, 91%, c) Allylmagnesiumchlorid, CH₂Cl₂, **267a** 49%, **267b** 32%, d) BAIB, TEMPO, CH₂Cl₂, 0 °C \rightarrow RT, **268a** 45%, **268b** 54%, e) TBSCI, Imidazol, CH₂Cl₂, 0 °C \rightarrow RT, 80%, f) PPh₃, DEAD, DPPA, THF, 57%, g) PPh₃, THF/H₂O, 87%, h) Boc₂O, NEt₃, CH₃OH, 65%, i) TBAF, THF, 86%.

Aus zeitlichen Gründen konnten die nachfolgenden Schritte die zur Fertigstellung des kupplungsfähigen Bausteins nötig wären, nicht durchgeführt werden. Dabei handelt es sich zunächst um die Oxidation zur Carbonsäure (z.B. nach Lit^[165]) und anschließend um die Schützung zum *t*Bu-Ester **274** (vgl. Lit^[166]). Verbindung **274** kann sowohl zu **275** hydroboriert werden (Lit^[154]) oder mittels Sharpless-Hydroxylierung zu **276** umgesetzt werden (Lit^[155]). **275** soll anschließend zum Aldehyd **277** umgesetzt (z.B. via DMP-Oxidation^[167]) und die Hydroxy-Nitrosoamino-Verbindung **278** erzeugt werden (Lit^[168,68]). Nach Benzylschützung kann die MEM-Schutzgruppe am sekundären Alkohol entfernt (Lit^[169]) und durch die benötigte Acetylgruppe^[170] ersetzt werden. Nach Boc-Entschützung und Kupplung mit dem Oxazolinon-Baustein kann die *t*Bu-Schutzgruppe am C-Terminus abgenommen und mit dem β -Ketobaustein gekuppelt werden. TBAF-Cyclisierung zu **283** und Benzylentschützung soll den Naturstoff **5** liefern.

Analog dazu soll der primäre Alkohol in Verbindung **276** selektiv zum Aldehyd oxidiert (vgl Lit^[166]) und der sekundäre Alkohol benzylgeschützt werden. Anschließend sollten auch hier die Reaktionsschritte fr analog durchgeführt werden, und so der Naturstoff **6** erhalten werden.

Abbildung 62: geplante Syntheseschritte für Naturstoff **5** bzw. **6**, a) TEMPO, BAIB, CH₃CN/H₂O, b) Boc₂O, DMAP, tBuOH, c) 9-BBN, THF, dann NaHCO₃, H₂O₂, d) (DHQD)₂PYR, OsO₄, K₂CO₃, K₃Fe(CN)₆, tBuOH/H₂O, e) DMP, CH₂Cl₂, f) H₂NOH x HCl, Pyridin, EtOH, g) NaBH₃CN, CH₃OH, HCl, pH < 3, h) BuONO, NH_{3 (g)}, EtOH, i) BnBr, NEt₃, EtOAc, j) ZnBr₂, CH₂Cl₂, k) AcCl, DMAP, Pyridin, l) TFA, CH₂Cl₂, m) **202**, EDCl, HOBt, DIPEA, CH₂Cl₂, n) TFA, CH₂Cl₂, o) **119**, EDCl, DIPEA, THF, p) TBAF, THF, q) Pd/C, H₂, EtOAc, r) TEMPO, BAIB, CH₂Cl₂, s) BnBr, NaH, THF, TBAI.

4. Résumé und Ausblick

Ziel dieser Arbeit war es neue Synthesewege zu den Tetramsäuren Caldoramid (4), JBIR-141 (5) und JBIR-142 (6) aufgrund ihrer vielversprechenden Bioaktivitäten zu erarbeiten^[46,69]. Diese stellen bedingt durch ihre hohe Dichte an unterschiedlichen funktionellen Gruppen, wie im Fall von 5 und 6, oder durch ihre hohe Anzahl an *N*-methylierten Peptidbindungen im Fall von 4 synthetisch anspruchsvolle Naturstoffe dar. Der Naturstoff Caldoramid (4) ist ein Vertreter der Klasse der peptidischen 3*O*-Methyltetramate und strukturell verwandt mit den Naturstoffen Belamid (52) oder Dolastatin 15 (55), wobei vor allem zu letzterem verschiedene Synthesewege in der Literatur beschrieben sind, die auf der Verknüpfung einzeln aufgebauter Fragmente basieren.^[72,73] Im Unterschied dazu wurde in dieser Arbeit eine Strategie erarbeitet, bei der ähnlich einer Festphasenpeptidsynthese der Aufbau des Gesamtsystems direkt am Kern, dem 3*O*-Methyltetramat, hin zur *N*-terminalen *N*,*N*-Dimethylalanin-Aminosäure stattfinden sollte.

Abbildung 63: Struktur der Zielverbindungen Caldoramid (4), JBIR-141 (5) und JBIR-142 (6) und strukturverwandte Naturstoffe Belamid A (52) und Dolastatin 15 (55) sowie Alanosin (72).

Als zweites Ziel der Arbeit sollten die Grundlagen für einen synthetischen Zugang zu den hochfunktionalisierten Naturstoffen JBIR-141/142 (**5/6**) erabeitet werden. Beide Naturstoffe wurden von KAWAHARA et *al.* isoliert und als FoxO3a-Inhibitoren identifiziert.^[69] Innerhalb der Forkhead box O-Familie, die als wichtige Transkriptionsregulatoren essentielle Proteine steuern, ist FoxO3a unter anderem bei der Regulation der Zellproliferation, -apoptose, -metabolismus, im Stressmanagement und der Lebensdauer beteiligt^[70,71]. Störungen von FoxO3a stehen in direktem Zusammenhang mit Krebs, Fibrose und altersbedingten Krankheiten, wodurch die Optimierung der FoxO3a-Aktivität in der Behandlung dieser Krankheiten zielführend sein kann^[69,71]. Strukturell gesehen, enthalten die Naturstoffe JBIR-141/142 (**5/6**) neben der Tetramsäure- sowie der Oxazolin-Einheit eine *N*-Nitroso hydroxyaminofunktion, welche bis dato nur in Totalsynthesen strukturell einfacherer Verwandter wie dem Alanosin (**72**) hergestellt worden ist^[55]. Eine Synthesestrategie zum Aufbau und zur Verknüpfung der Funktionalitäten in den Naturstoffen **5** und **6** sollte hier erarbeitet werden und den Grundstein für eine spätere Totalsynthese legen.

Zur Synthese von Caldoramid (4) wurde ausgehend vom L-Phenylalanin **96** der Methylester **97** hergestellt und anschließend nach einer Methode von SCHOBERT^[74] mit Ketenylidentriphenylphosphoran zum Tetramat **98** umgesetzt (Abbildung 64). Daneben wurde Boc-Isoleucin **102** mit CH₃I zu **103** *N*-methyliert und nach verschiedenen Versuchen der Aktivierung als Acyl-Imidazol **104** mit dem deprotonierten Tetramat zu **105** umgesetzt.

Abbildung 64: Synthese der Dolapyrrolidon-Einheit **98** und des Kopplungsproduktes **105**, Reagenzien und Bedingungen: a) i) SOCl₂, CH₃OH, ii) NaHCO_{3 (aq)}, b) Ph₃PCCO, Toluol, rf, 59% über zwei Stufen, c) CH₃I, NaH, THF, 90%, d) Im₂CO, THF, 0 °C, 78%, e) i) **98**, LiHMDS, THF, —40 °C, ii) **104**, 55%.

Anschließend wurde Verbindung **105** sauer entschützt. Eine Kupplung der nächsten Aminosäure konnte in Form von Fmoc- oder Boc-*N*-Methyl-Valin mittels verschiedener Aktivierungsreagenzien nicht erreicht werden, was eine Änderung der Schutzgruppenstrategie auf die nosylierte Aminosäure **110** erforderlich machte (Abbildung 65). Nach Aktivierung als Säurechlorid mit Ghosez Reagenz, 1-Chloro-(*N*,*N*,2-trimethyl)-1-propenylamin, und Kopplung mit dem Baustein **106** wurde das Peptid **111** erhalten, welches nachfolgend selektiv am *N*-Terminus in quantitativer Ausbeute methyliert wurde.

Abbildung 65: Synthese des Kopplungsproduktes 111 und Methylierung der nosylierten Verbindung 113, Reagenzien und Bedingungen: a) TFA, CH₂Cl₂, 94%,
b) pNos-Cl, 1 M NaOH, 0 °C, 71%, c) i) 110, 1-Chloro-(N,N,2-trimethyl)-1-propenylamin, CH₂Cl₂, ii) 106, NaHCO₃, 78%, d) CH₃I, K₂CO₃, DMF, 99%.

Verbindung **113** konnte unter Verwendung des geruchsarmen Thiophenols **116** Nosyl-entschützt und die nächste Nosyl-Valin-Aminosäure wiederum gekuppelt und entschützt werden. Die letzte Aminosäure, das Dimethylvalin **115**, wurde in einer Eschenweiler-Clark-artigen Reaktion^[86] hergestellt und in einem finalen Kopplungsschritt an die entschützte Verbindung **114** geknüpft. Die Zielverbindung **4** konnte in 12 Schritten (längste lineare Kette) mit einer insgesamten Ausbeute von 16% erhalten werden. Ein Vergleich mit den Literaturdaten des Isolates zeigte neben der leichten Abweichung der NMR-Signale zu höheren ppm keine Übereinstimmung der Drehwerte ($[\alpha]^{20}_{p}$ — 13.2 (c = 0.50, CH₃OH), Lit: $[\alpha]^{25}_{p}$ +11.1 (c = 0.36, CH₃OH)). Ein eindeutige Bestimmung sollte mit einem direkten Vergleich mit einer Probe des natürlichen Isolats z.B. mittels NMR, CD/ORD oder HPLC durchgeführt werden.^[91] Verbindung **4** zeigte in MTT-Assays an menschlichen Dickdarmkarzinomzelllinien HT-29 und HCT-116^{wt} IC₅₀-Werte von 77.5 ± 1.3 µM und 43.8 ± 3.7 µM. An der Brustkrebszelllinie MCF-7 wurde ein IC₅₀-Wert von 33.9 ± 1.3 µM ermittelt.^[92]

Abbildung 66: Synthese von Caldoramid (4), Reagenzien und Bedingungen: a) **116**, K₂CO₃, DMF, b) i) **110**, 1-Chloro-(N,N,2-trimethyl)-1-propenylamin, CH₂Cl₂, ii) NaHCO₃, 85% über zwei Stufen, c) **116**, K₂CO₃, DMF, d) N,N-Dimethyl-L-Valin, HATU, DIPEA, 64% über zwei Stufen, e) CH₂O_(aq), H₂O, Pd/C (10%), 99%.

Das zweite Ziel dieser Arbeit, die Erabeitung der Grundlagen eines synthetischen Zugangs zu den Naturstoffen JBIR-141 (**5**) und JBIR-142 (**6**), sollte in Form von Testsystemen, die die Verknüpfung der *N*-Nitroso hydroxyamino-, Oxazolin- und Tetramsäure-Einheit ermöglichen, erfolgen. Zur Synthese der Oxazolin-Einheit wurde zunächst L-allo-Threonin *allo*-**146** ausgehend von L-Threonin **146** nach literaturbekannter Vorschrift hergestellt. Dies war nötig, da die meisten Oxazolin-Ringschlussmethoden unter Inversion des Stereozentrums am β -Kohlenstoff erfolgen. Verbindung *allo*-**146** wurde anschließend methyliert und mit Dimethyl-L-alanin **155** in einer EDCI-Kupplung zum Dipeptid **160** umgesetzt. Die Aminosäure Alanin wurde zuvor wiederum unter Eschenweiler-Clark-artigen Bedingungen zu **155** in 98%iger Ausbeute umgesetzt. Eine Umsetzung zum *trans*-Oxazolin **161** erfolgte am Dipeptid **160**, wobei der Einsatz des benzylgeschützten Dipeptids zu Eliminierung geführt hatte (Abbildung 67).

Abbildung 67: Synthese des Oxazolin-Bausteins **161**, Reagenzien und Bedingungen: a) CH₃OH, SOCl₂, 0 °C \rightarrow rf, 98%, b) AcCl, NEt₃, CH₂Cl₂, 94%, c) SOCl₂, RT, d) 10% HCl_(aq), rf, e) SOCl₂, CH₃OH, 90% über drei Stufen (c-e), f) **155**, EDCl, HOBt, DIPEA, CH₂Cl₂, 54%, g) PPh₃, DIAD, THF, 0 °C, 45%, h) CH₂O_(aq), Pd/C (10%), H₂, H₂O, 98%.

Die Synthese der 3-Acyltetramsäure sollte via Dieckmann-Cyclisierung^[127] des entsprechenden β -Ketosystems **119** hergestellt werden. Dazu wurde Boc-L-Alanin (**167**) in das Oxazolidinon **168** überführt, zur *N*-Methyl-Aminosäure **169** reduziert und der Ethylester **170** erzeugt.

Abbildung 68: Synthese des β-Ketosystems **119**, Reagenzien und Bedingungen: a) CH₂O, pTsOH, Benzol, 77%, b) Et₃SiH, TFA, CH₂Cl₂, 99%, c) SOCl₂, EtOH, 85%, d) EtOH, H₂SO₄, 81%, e) NaH, BnBr, TBAI, THF, 80%, f) KOH, H₂O, EtOH, 89%, g) Meldrumsäure, DMAP, CH₂Cl₂, 85%, h) Ethyl N-methyl L-alaninat (**170**), NEt₃, Toluol, rf, 41%, i) H₂, Pd/C, CH₃OH, 80%.

Als zweites Fragment wurde ausgehend von (*S*)-2-Hydroxy-3-methyl-buttersäure (**164**) über drei Stufen die Benzyl-geschützte Verbindung **173** hergestellt. Diese wurde an Meldrumsäure zum Addukt **174** acyliert, welches anschließend mit dem *N*-Methyl-Aminosäureester **170** unter Abspaltung von CO₂ zur β -Ketoverbindung **175** umgesetzt wurde. Für eine Verknüpfung mit anderen Bausteinen konnte die Benzylschutzgruppe hydrogenolytisch zu **119** abgespalten werden.

Mit den Fragmenten **161** und **119** in der Hand, wurde nachfolgend ein vereinfachter Baustein für ein Testsystem mit *N*-Nitroso hydroxyamino-Funktion aufgebaut (Abbildung 69).

Abbildung 69: Synthese eines vereinfachten Bausteins mit N-Nitroso hydroxylamino-Funktion, Reagenzien und Bedingungen: a) TMSCl, CH₃OH, 99%, b) Boc₂O, NEt₃, H₂O/1,3-Dioxan, 90%, c) tBuOH, Boc₂O, DMAP, 66%, d) Boc₂O, DMAP, MeCN, 80%, e) DIBAL-H, Et₂O, f) BnO-NH₂ x HCl, Pyridin, EtOH, 67% über 2 Stufen, g) NaBH₃CN, pH 2-3, CH₃OH, 90%, h) BuONO, CH₂Cl₂, 82%, i) TFA, CH₂Cl₂, 0 °C oder pTsOH x H₂O, MeCN, 0 °C, j) Pd/C (5%), H₂, 0.5 M NaOH/CH₃OH, k) BnBr, NEt₃, EtOAc, 69% über zwei Stufen.

Dazu wurde L-Glutaminsäure **186** an der Seitenkette selektiv Methyl-verestert (**187**) und über Einführung von Boc- und *t*Bu-Schutzgruppen in drei Stufen in Verbindung **191** überführt. Es folgte eine Reduktion der Seitenkette zum Aldehyd **192**, Umsetzung mit Benzylhydroxylamin Hydrochlorid zur Schiffschen Base **193** und wiederum Reduktion zu **194**. Das Hydroxylamin wurde mit Butylnitrit in Verbindung **195** überführt und konnte unter Ausschluss von Licht auch über einen längeren Zeitraum ohne erkennbare Zersetzung kühl gelagert werden. Jedoch schlugen verschiedene Versuche, sowohl aus dem Di-Boc-Amin **195**, als auch aus dem Mono-Boc-Amin **197** mittels saurer Entschützung das Amin freizusetzen und Verbindung **196** zu erhalten, fehl, da sich das *N*-Nitroso Benzylhydroxylamin **195** unter Einwirkung von Säuren zersetzte. Die Abnahme der Benzylschutzgruppe setzte die tautomere Verbindung **199** frei, die hauptsächlich in Form des Diimid-*N*-Oxids **199b** vorlag. Diese konnte bei erneuter Umsetzung mit Benzylbromid als Verbindung **200** abgefangen werden, die im Gegensatz zu **195** mit *p*TsOH Boc-entschützt werden konnte. Mit Verbindung **201** in der Hand konnte eine Kupplung mit dem *in situ* hergestellten Cäsium-Salz des Oxazolins **202** erzielt werden (Abbildung 70).

Abbildung 70: Kupplungsprodukt aus Oxazolin- und N-Nitroso hydroxyamino-Baustein, Reagenzien und Bedingungen: a) pTsOH x H₂O, MeCN, b) CsOH x H₂O, c) EDCI, HOBt, DIPEA, CH₂Cl₂, 45%.

Über die Schützung der N₂O₂-Funktion als benzyliertes Diimid-*N*-Oxid war dieses stabil genug, um sauer abspaltbare Schutzgruppen zu entfernen und unter Peptidkupplungsbedingungen Fragemente zusammen zu fügen.

Weitere Syntheseschritte die zum Aufbau der Naturstoffe JBIR-141 (5) und -142 (6) erforderlich sind, sind die Entschützung des *C*-Terminus, Veresterung mit dem β -Ketosystem **119**, TBAF-vermittelte Cyclisierung zur 3-Acyltetramsäure und Benzylentschützung zu den Zielverbindungen (Abbildung 71). Eine saure *t*Bu-Entschützung (TFA in CH₂Cl₂)^[137] ist nach LEY *et al*.^[138] auch in Gegenwart des Oxazolin-Systems literaturbekannt und könnte auch für Verbindung **124** erfolgreich sein. Die nachfolgende Kupplung mit Baustein **119** zu Verbindung **125** sollte ebenfalls unter EDCI-Aktivierung durchführbar sein und die TBAF-Cyclisierung zur 3-Acyltetramsäure wurde ebenso im Test erfolgreich durchgeführt.

Abbildung 71: Plan zur formalen Synthese der Naturstoffe JBIR-141 (**5**) und JBIR-142 (**6**), Reagenzien und Bedingungen: a) TFA, CH₂Cl₂, b) **119**, EDCI, DIPEA, THF, c) TBAF, THF, d) H₂, Pd/C, EtOAc.

Neben diesen Untersuchungen zum Aufbau von **5** und **6** wurden in dieser Arbeit auch erste Versuche zur Synthese des Bausteins **118** unternommen und zwei Methoden hinsichtlich ihre Praktikabilität untersucht. Die erste Methode bediente sich der Reformatsky-Reaktion und begann mit der Benzylschützung von L-Glutaminsäure zu **220** und anschließender Reduktion der Seitenkette zum Alkohol **221**. Nach TIPS-Schützung wurde über zwei Stufen der Aldehyd **224** erzeugt. Das Reagenz **226** wurde mit Zn *in situ* zum Reformatsky-Reagenz^[146] umgesetzt und reagierte mit **224** zu dem Diastereomerengemisch **225**. Eine Bestimmung der relativen Konfiguration des Hauptdiastereomers konnte indirekt anhand von NOESY-Messungen durchgeführt werden und deutete darauf, dass die gewünschte (3*R*,4*S*)-Verbindung in einem marginalen Überschuss von 7% erzeugt wurde. Eine weitere Untersuchung der Route wurde nicht durchgeführt, da im Zuge dieser Arbeit zum einen keine geeignete Auftrennungsmethode der Diastereomere gefunden werden konnte, zum anderen war auch die Schutzgruppenstrategie und Entschützung derselben problematisch.

Abbildung 72: Erste Versuche zur Synthese des Bausteins **118** via Reformatsky-Reaktion, Reagenzien und Bedingungen: a) BnBr, K₂CO₃, NaOH, H₂O, rf, 56%, b) DIBAL-H, THF, —10 °C, 71%, c) TIPSCI, Imidazol, DMF, 90%, d) LiAlH₄, THF, 0 °C, 90%, e) (COCI)₂, NEt₃, CH₂Cl₂, 94%, f) i) **226**, Zn, LiBr, BrCH₂CH₂Br, Et₂O, ii) **224**, Et₂O, —10 °C, 25%.

Die zweite Methode zum Aufbau des Bausteins **118** verwendete als Schlüsselschritt eine Grignard-Reaktion mit (*R*)-Pantolacton **235** als Ausgangsstoff. Die Stereoinduktion sollte zum einen vom (*R*)konfiguierten Stereozentrum, zum anderen aber über die dort eingeführte Schutzgruppe erfolgen. Das Edukt (*R*)-**235** wurde in zwei Stufen in das MEM-geschützte Lactol **266** überführt. Dieses reagierte mit Allylmagnesiumchlorid unter Ringöffnung zu dem Diastereomerengemisch **267a** und **267b**. Bei der Wahl des Lösungsmittels hatte sich trockenes CH₂Cl₂ als vorteilhaft erwiesen. Dieses ermöglichte eine Chelatisierung zwischen dem Grignard-Reagenz und der MEM-Gruppe, sodass ein leichter Überschuss des gewünschten Diastereomers **267a** erhalten wurde. Die Durchführung in Ether-Lösungsmitteln wie THF oder Et₂O hingegen unterband diese Wechselwirkungen und lieferte ein 1:1 Produktgemisch. Eine Trennung der beiden Verbindungen war auf dieser Stufe via Säulenchromatographie möglich und entschädigte die mäßige Stereoinduktion der Additionsreaktion. Im Rahmen dieser Arbeit konnten desweiteren die Überführung des Alkohols **269** in das Boc-geschützte Amin **272** über zwei Stufen und die TBS-Entschützung zu Verbindung **273** durchgeführt werden.

Abbildung 73: Erste Versuche zur Synthese des Bausteins **118** via Grignard-Reaktion, Reagenzien und Bedingungen: a) MEMCl, NaH, THF, 70%, b) DIBAL-H, THF, 91%, c) Allylmagnesiumchlorid, CH₂Cl₂, **267a** 49%, **267b** 32%, d) BAIB, TEMPO, CH₂Cl₂, 0 °C \rightarrow RT, **268a** 45%, **268b** 54%, e) TBSCl, Imidazol, CH₂Cl₂, 0 °C \rightarrow RT, 80%, f) DPPA, PPh₃, DEAD, THF, 57%, g) PPh₃, THF/H₂O, 87%, h) Boc₂O, NEt₃, CH₃OH, 65%, i) TBAF, THF, 86%.

Im Vergleich zur Reformatsky-Route sind für den Aufbau von **118** mehr Reaktionsschritte erforderlich, jedoch ermöglicht die Einführung der terminalen Doppelbindung auf später Stufe eine Divergenz zu den beiden Seitenketten von JBIR-141 (**5**) und JBIR-142 (**6**) (Abbildung 74). Nachfolgend könnte durch Oxidation des Alkohols **273** zur Carbonsäure (z.B. nach Lit^[165]) und anschließende Veresterung (vgl. Lit^[166]) die zentrale Verbindung **274** hergestellt werden. Mit dieser könnten mittels Hydroborierung (*c*, Lit^[154]) oder asymmetrischer Sharpless-Hydroxylierung (d, Lit^[155]) die Verbindungen **275** bzw. **276** erhalten werden. Eine Überführung von **275** in vier Stufen (Lit^[168,68]) zu der Hydroxy-Nitrosoamino-Verbindung **278** und die anschließenden Schutzgruppentransformationen i - k (Lit^{[169][170]}) sollten die Schlüsselverbindung **280** liefern. Analog dazu soll der primäre Alkohol in Verbindung **276** selektiv zum Aldehyd oxidiert (vgl. Lit^[166]) und der sekundäre Alkohol Benzylgeschützt werden. Ebenso sollen die Reaktionsschritte f - k zur zweiten Schlüsselverbindung **285** führen. Nach Boc-Entschützung der Schlüsselverbindungen können diese jeweils wie in Abbildung 71 dargestellt zu den Naturstoffen **5** bzw. **6** umgesetzt werden.

Abbildung 74: Geplante Reaktionsschritte zur Synthese der Schlüsselbausteine 280 bzw. 285, Reagenzien und Bedingungen: a) TEMPO, BAIB, CH₃CN/H₂O, b) Boc₂O, DMAP, tBuOH, c) 9-BBN, THF, dann NaHCO₃, H₂O₂, d) (DHQD)₂PYR, OsO₄, K₂CO₃, K₃Fe(CN)₆, tBuOH/H₂O, e) DMP, CH₂Cl₂, f) H₂NOH x HCl, Pyridin, EtOH, g) NaBH₃CN, CH₃OH, HCl, pH < 3, h) BuONO, NH_{3 (g)}, EtOH, i) BnBr, NEt₃, EtOAc, j) ZnBr₂, CH₂Cl₂, k) AcCl, DMAP, Pyridin, l) TEMPO, BAIB, CH₂Cl₂, m) BnBr, NaH, THF, TBAI.

5. Experimenteller Teil

5.1 Materialien & Methoden

Schutzgasbedingungen und Lösungsmittel: Alle luft- und feuchtigkeitsempfindlichen Reaktionen wurden in einem ausgeheizten und mit Argon-Schutzgas der Reinheitsstufe 5.0 begasten Kolben durchgeführt. Diese Reaktionen werden im Folgenden durch Verwendung absolutierter Lösungsmittel "(abs)" gekennzeichnet. THF wurde über eine Na/K-Legierung getrocknet, CH₂Cl₂, DMSO und NEt₃ über CaH₂, DMF über P₂O₅ und Toluol über 3Å Molsieb. Alle technischen Lösungsmittel zur Extraktion oder für chromatographische Zwecke wurden vor Gebrauch destilliert.

Chemikalien: Alle angegebenen Chemikalien wurden, soweit nichts anderes angegeben, kommerziell von den Firmen *ABCR*, *Acros Organics*, *Fluka*, *Merck*, *Sigma-Aldrich* und *TCI* erworben und ohne weitere Aufreinigung eingesetzt.

Dünnschichtchromatographie: Die Kontrolle der durchgeführten Reaktionen erfolgte mittels Dünnschichtchromatographie. Dazu wurden standardmäßig *Merck* TLC Silicagel 60 F254 Fertigplatten verwendet. Wo angegeben, werden Aluminiumoxid-Platten 150 F₂₅₄ neutral (Typ F) verwendet. Die Substanzen wurden durch Fluoreszenzlöschung bei 254 nm oder durch die Anfärbereagenzien KMnO₄ (100 mL Wasser, 2 g Na₂CO₃, 1 g KMnO₄), Ninhydrin (0.1 g Ninhydrin, 10 mL EtOH, 90 mL Wasser), Vanillin (15 g Vanillin, 250 mL EtOH, 2.5 mL konz. H₂SO₄) und dem Dragendorff-Reagenz (Lösung A: 0.5 g BiONO₃, 10 mL konz. Essigsäure, 40 mL Wasser, Lösung B: 8 g KI, 20 mL Wasser; je 1 mL von A und B, 4 mL konz. Essigsäure, 14 mL Wasser) detektiert.

Säulenchromatographie: Für säulenchromatographische Aufreinigungen wurde standardmäßig "Kieselgel 60" der Firma *Macherey-Nagel* mit einer Korngröße von 40-60 μmol als stationäre Phase verwendet. Wo angegeben, wird Aluminiumoxid neutral, Brockmann I für die Chromatographie 50-200 μm, 60A, verwendet. Die Laufmittelzusammensetzung ist stets in Volumenprozent angegeben.

Drehwerte: Die Messung der Drehwerte erfolgte bei 589 nm (Natrium-D-Linie) an einem Polarimeter *Model 241* der Firma *Perkin Elmer*. Lösungsmittel, Aufnahmetemperatur und Konzentration sind jeweils bei den einzelnen Versuchsvorschriften angegeben. $[\alpha]_D$ -Werte sind angegeben in °·cm²·10 g⁻¹.

Kernresonanzspektroskopie: Alle ¹H-NMR Messungen wurden mit einem *Bruker*-Spektrometer (300 MHz und 500 MHz) bei Raumtemperatur durchgeführt. Die chemischen Verschiebungen sind in

Einheiten der δ -Skala angegeben. Als interner Standard diente bei ¹H-NMR-Spektren das Resonanzsignal der Restprotonen der verwendeten Lösungsmittel ((CD₃)₂CO 2.05 ppm, CD₃CN 1.94 ppm, CDCl₃ 7.27ppm, CD₃OD 3.31 ppm, C₆D₆ 7.16 ppm, D₂O 4.75 ppm, (CD₃)₂SO 2.50 ppm). Bei ¹³C-NMR-Spektren wurde das Resonanzsignal des Kohlenstoffatoms der verwendeten Lösungsmittel als interner Standard verwendet ((CD₃)₂CO 29.84 & 206.26 ppm, CD₃CN 1.32 & 118.26 ppm, CDCl₃ 77.16 ppm, CD₃OD 49.00 ppm, C₆D₆ 128.06 ppm, (CD₃)₂SO 39.52 ppm).^[171] Die Zuordnung der Signale wurde, wenn nötig, mit Hilfe von 2D-NMR-Messungen vorgenommen und gekennzeichnet (*). Zur Beschreibung der Signalformen wurden folgende Symbole verwendet: s = Singulett, d = Dublett, t = Triplett, m = Multiplett, q = Quartett, quin = Quintett, sept = Septett, br = breit. Die Kopplungskonstante *J* wurde in der Einheit Hz angegeben.

Infrarotspektroskopie: Alle IR-Spektren wurden mit einem IR-Spektrometer *Spectrum S100*-FT-IR der Firma *Perkin Elmer* aufgenommen. Die Wellenzahl ist durch v mit der Einheit cm⁻¹ angegeben.

Massenspektrometrie: Hochauflösende Massen wurden, soweit detektierbar, mit Hilfe eines UPLC/Orbitrap MS Systems von *Thermo Fisher Scientific* im ESI Modus aufgenommen.

Schmelzpunktanalyse: Schmelzpunkte wurden mit einem Büchi Melting Point M-565 gemessen.

HPLC-Analyse: Analytische HPLC Messungen wurden auf einem Beckmann System Gold Module 126 mit Diode Array Detector Module 168 durchgeführt. Es wurde eine Phenomenex Kinetex C18-Säule (100 Å, 250 x 4.6 mm) verwendet.

5.2 Synthesevorschriften Caldoramid

Methyl-L-Phenylalaninat (97)

Zu einer Eis-gekühlten Suspension aus L-Phenylalanin (8.3 g, 50 mmol, 1.0 Äquiv.) in 50 mL CH₃OH wird SOCl₂ (14.5 mL, 200 mL, 4.0 Äquiv.) vorsichtig getropft. Der Reaktionsansatz wird bei Raumtemperatur 24 h lang gerührt. Die flüchtigen Bestandteile werden anschließend im Vakuum entfernt und der Rückstand mit Toluol versetzt und erneut im Vakuum einkonzentriert. Dieser Vorgang wird wiederholt bis ein fester Rückstand erhalten wird. Nach Kristallisation aus Et₂O/CH₃OH werden farblose Kristalle erhalten, welche mit einer 10%igen Na₂CO₃-Lösung versetzt werden. Die wässrige Phase wird mehrfach mit CH₂Cl₂ extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet, sowie das Lösungsmittel im Vakuum entfernt. Die gewünschte Verbindung wird als farbloses Öl (8.1 g, 90%) erhalten.^[172]

Chemical Formula: C₁₀H₁₃NO₂ Molecular Weight: 179,2190

IR 3378, 3029, 2951, 1733, 1604, 1496, 1455, 1436, 1267, 1195, 1172, 1112, 1076, 1009, 812, 744, 700. ¹H NMR (500 MHz, CD₃OD) 2.92 (dd, J = 13.5, 6.6 Hz, 1H, H₂NCHCHH^{β-Phe}), 3.01 (dd, J = 13.5, 6.2 Hz, 1H, H₂NCHCHH^{β-Phe}), 3.67 (s, 3H, COOCH₃), 3.71 (dd, J = 6.6, 6.2 Hz, 1H, H₂NCH^{α-Phe}), 7.15-7.32 (m, 5H, H^{ar}). ¹³C NMR (125 MHz, CD₃OD) 41.7 (H₂NCHCH₂^{β-Phe}), 52.3 (COOCH₃), 56.7 (H₂NCH^{α-Phe}), 127.9 (C^{ar}), 129.6 (2x C^{ar}), 130.3 (2x C^{ar}), 138.3 (C^{ar}), 176.3 (COOCH₃).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₁₀H₁₄NO₂⁺ 180.10191, gefunden 180.10160.

(5S)-Benzyl 4-methoxy-2,5-dihydropyrrol-2-on (98)

Methyl-L-Phenylalaninat (**97**) (2.9 g, 16.3 mmol, 1.0 Äquiv.) wird in 150 mL Toluol (abs) gelöst, Ketenyliden(triphenyl)phosphoran (6.2 g, 20.4 mmol, 1.25 Äquiv.) wird zugegeben und der Ansatz unter Ar-Schutzgasatmosphäre 18 h lang unter Rückfluss erhitzt. Das Lösungsmittel wird im Anschluss unter Vakuum entfernt und der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 1:3 -> 1:4). Nach Kristallisation aus Et_2O/CH_3OH wird das gewünschte Produkt in Form von farblosen Kristallen (1.9 g, 59%) erhalten.

Chemical Formula: C₁₂H₁₃NO₂ Molecular Weight: 203,2410

Schmelzpunkt 170.6 °C, Lit^[74]: 157 °C.

IR 3233, 3059, 3029, 2933, 2852, 2336, 1679, 1621, 1534, 1497, 1455, 1438, 1366, 1344, 1232, 1173, 1100, 1028, 988, 959, 890, 801, 752, 733, 700, 668, 657.

¹H NMR (500 MHz, CDCl₃) 2.64 (dd, J = 13.7, 9.4 Hz, 1H, HNCHCHH^{β -Phe}</sub>), 3.23 (dd, J = 13.7, 3.5 Hz, 1H, HNCHCHH^{β -Phe}</sub>), 3.85 (s, 3H, OCH₃), 4.25 (dd, J = 9.4, 3.5 Hz, 1H, HNCH^{α -Phe}</sub>), 5.04 (s, 1H, C(=O)CH), 7.18-7.35 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) 38.9 (HNCH*C*H₂^{β-Phe}), 58.5 (HNCH^{α-Phe}), 58.8 (OCH₃), 94.0 (C(=O)*C*H), 127.3 (C^{ar}), 128.9 (2x C^{ar}), 129.2 (2x C^{ar}), 136.8 (C^{ar}), 173.5 (*C*(=O)CH), 177.6 (*C*OCH₃).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₁₂H₁₄NO₂⁺ 204.10191, gefunden 204.10144.

 $[\alpha]^{20}_{D}$ -57 (c = 0.45, CHCl₃), Lit^[173]: $[\alpha]^{20}_{D}$ -63 (c = 0.86, CHCl₃).

(Tert-butoxycarbonyl)-L-Isoleucin (102)

Eine Lösung aus L-Isoleucin (1.31 g, 10 mmol, 1.0 Äquiv.) in 20.5 mL einer 1M NaOH-Lösung wird auf 0 °C gekühlt. Boc₂O (2.62 g, 12 mmol, 1.2 Äquiv.) wird in 7 mL Dioxan gelöst und langsam zum Ansatz getropft. Die Reaktionslösung wird bei Raumtemperatur einen Tag lang gerührt und der pH-Wert anschließend überprüft. Wenn nötig wird durch Zugabe von 1M NaOH der pH auf 10 eingestellt und Et₂O zugegeben. Die Phasen werden getrennt und die wässrige Phase mit 1M HCl auf pH 2 angesäuert, sowie mit EtOAc extrahiert (3x). Die vereinigten EtOAc-Phasen werden mit gesättigter NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Nach Entfernung der flüchtigen Bestandteile im Vakuum, wird die gewünschte Verbindung als farbloses Öl erhalten (2.20 g, 95%).

Chemical Formula: C₁₁H₂₁NO₄ Molecular Weight: 231,2920

IR 3292, 2967, 2934, 2880, 1713, 1661, 1504, 1465, 1394, 1368, 1242, 1159, 1121, 1046, 1019, 857, 778, 657.

¹H NMR (500 MHz, CDCl₃) 0.94 (t, J = 7.3 Hz, 3H, CH₂CH₃^{δ -IIe}), 0.98 (d, J = 7.0 Hz, 3H, CHCH₃^{β '-IIe}), 1.15-1.29 (m, 1H, CHHCH₃^{γ -IIe}), 1.46 (s, 9H, OC(CH₃)₃), 1.46-1.54 (m, teilweise überlappt, 1H, CHHCH₃^{γ -IIe}), 1.83-1.99 (m, 1H, CHCH₃^{β -IIe}), 4.30 (dd, J = 8.9, 4.6 Hz, 1H, HNCH^{α -IIe}), 5.02 (d, J = 8.9 Hz, 1H, NH).

¹³C NMR (125MHz, CDCl₃) 11.8 (CH₂CH₃^{δ-Ile}), 15.7 (CHCH₃^{β'-Ile}), 25.0 (CH₂CH₃^{γ-Ile}), 28.5 (OC(CH₃)₃), 37.9 (CHCH₃^{β-Ile}), 58.0 (HNCH^{α-Ile}), 80.2 (OC(CH₃)₃), 155.9 (NHCOO), 177.2 (COOH).

HRMS (ESI) m/z $[M-H]^-$ berechnet für C₁₁H₂₀NO₄⁻ 230.13868, gefunden 230.13926.

 $[\alpha]^{20}_{D}$ +3.6 (*c* = 2.00, CH₃OH), Lit^[174]: $[\alpha]^{25}_{D}$ +3.8 (*c* = 1.01, CH₃OH).

N-(Tert-butoxycarbonyl)-N-methyl-L-Isoleucin (103)

Eine Lösung aus *N*-(*tert*-butoxycarbonyl)-L-Isoleucin (**102**) (1.24 g, 5.4 mmol, 1.0 Äquiv.) in 35 mL THF (abs) wird auf 0 °C abgekühlt und NaH (60% in Mineralöl, 0.64 g, 16.1 mmol, 3.0 Äquiv.) wird langsam zugegeben. Methyliodid (6.1 g, 42 mmol, 8.0 Äquiv.) wird zugegeben und die Reaktion wird bei Raumtemperatur 24 h lang gerührt. Et₂O wird zugegeben und die organische Phase mit H₂O zwei Mal gewaschen. Die wässrigen Phasen werden vereint, mit Zitronensäure auf pH 3 angesäuert und mit EtOAc extrahiert. Die EtOAc-Phasen werden mit einer gesättigten Na₂S₂O₃-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wird im Vakuum entfernt und das gewünschte Produkt wird als farbloses Öl (1.18 g, 90%) erhalten.

Chemical Formula: C₁₂H₂₃NO₄ Molecular Weight: 245,3190

IR 2971, 2934, 2880, 1741, 1694, 1478, 1457, 1436, 1392, 1366, 1332, 1312, 1198, 1143, 1047, 1033, 999, 937, 913, 868, 772, 727.

¹H NMR (500 MHz, CDCl₃) 0.90 (t, J = 7.4 Hz, 3H, CH₂CH₃^{δ -lle}), 0.99 (d, J = 6.6 Hz, 3H, CHCH₃^{β '-lle}), 1.10 (ddd, J = 13.7, 8.9, 7.4 Hz, 1H, CHHCH₃^{γ -lle}), 1.47 (br s, 10H, OC(CH₃)₃ & CHHCH₃^{γ -lle}, überlagert), 1.94-2.14 (m, 1H, CHCH₃^{β -lle}), 2.86 (s, 3H, NCH₃), 4.26 (m, 1H, NCH₃CH^{α -lle}), 9.46 (br s, COOH).

¹³C NMR (125 MHz, (CD₃)₂SO) 10.3 (CH₂CH₃^{δ-lle}), 15.8 & 15.9 (CHCH₃^{β'-lle}), 24.6 (CH₂CH₃^{γ-lle}), 27.9 (OC(CH₃)₃), 30.3 & 30.7 (NCH₃), 32.8 & 33.0 (CHCH₃^{β-lle}), 61.4 & 63.0 (NCH₃CH^{α-lle}), 79.1 (OC(CH₃)₃), 154.8 & 155.3 (NCH₃COO), 172.1 (COOH).

HRMS (ESI) m/z [M-H]⁻ berechnet für C₁₂H₂₂NO₄⁻ 244.15433, gefunden 244.15495.

 $[\alpha]^{20}_{D}$ +2.6 (*c* = 1.8, CH₃CO₂H).

L-N-Boc-Isoleucin Imidazol-1-ylamid (104)

Eine Eis-gekühlte Lösung aus *N*-Boc-*N*-Methyl-L-isoleucin (**103**) (80 mg, 0.33 mmol, 1.0 Äquiv.) in THF (abs) wird mit 1,1'-Carbonyldiimidazol (63 mg, 0.39 mmol, 1.2 Äquiv.) portionsweise über 5 Minuten zugegeben. Der Ansatz wird 2.5 h lang bei Raumtemperatur gerührt. Das Reaktionsgemisch wird mit Et₂O verdünnt, die organische Phase mit Wasser und gesättigter NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Die flüchtigen Bestandteile werden im Vakuum entfernt und das gewünschte Produkt als farbloses Öl erhalten, welches ohne weitere Aufreinigung verwendet wird (75 mg, 78%).

Chemical Formula: C₁₅H₂₅N₃O₃ Molecular Weight: 295,3830

IR 3123, 2970, 2933, 2881, 1734, 1684, 1531, 1473, 1390, 1368, 1308, 1275, 1233, 1214, 1153, 1118, 1094, 1062, 933, 871, 808, 748.

¹H NMR (500 MHz, CDCl₃) Mischung von Rotameren: Hauptrotamer: 0.89-1.00 (m, 6H, CHCH₃^{β'-Ile} & CH₂CH₃^{δ-Ile}), 1.07 (m, 1H, CHHCH₃^{γ-Ile}), 1.36-1.46 (m, 1H, teilweise überlappt, CHHCH₃^{γ-Ile}), 1.46 (s, 9H, (CH₃)₃C), 2.18-2.30 (m, 1H, CHCH₃^{β-Ile}), 2.72 (s, 3H, NCH₃), 5.11 (d, J = 10.9Hz, 1H, CHCO^{α-Ile}), 7.08 (d, J = 0.9 Hz, 1H, NCHCHN), 7.69 (d, J = 0.9 Hz, 1H, NCHCHN), 8.43 (s, 1H, NCHN).

¹³C NMR (125 MHZ, CDCl₃) 10.7 (CH₂CH₃^{δ-lle}), 15.8 (CHCH₃^{β-lle}), 23.9 (CH₂CH₃^{γ-lle}), 28.4 ((CH₃)₃C), 29.5 (NCH₃), 32.3 (CHCH₃^{β-lle}), 61.3 (CHCO^{α-lle}), 81.4 ((CH₃)₃C), 116.6 (NCHCHN), 131.2 (NCHCHN), 137.2 (NCHN), 155.9 (NCH₃CO), 167.7 (CHCON).

(5S)-1-[(N-Boc,N-methyl)-L-Isoleucinoyl]-5-benzyl-4-methoxy-2,5-dihydropyrrol-2-on (105)

Eine Lösung aus (5*S*)-Benzyl-4-methoxy-2,5-dihydropyrrol-2-on (**96**) (203 mg, 1.0 mmol, 1.00 Äquiv.) in 10 mL THF (abs) wird auf -40 °C gekühlt und LiHMDS (1.05 mL, 1M Lösung in THF, 1.05 mmol, 1.05 Äquiv.) wird vorsichtig zugetropft. Die gelbe Lösung wird für 10 Min gerührt und anschließend wird tropfenweise (0.1mL/Min) eine frische Lösung des Isoleucinamids **102** (295 mg, 1.0 mmol, 1.00 Äquiv.) in 4 mL THF (abs) zugegeben. Die Reaktionslösung wird eine Stunde lang bei -40 °C gerührt, die Reaktion mit H₂O (0.5 mL) abgebrochen, auf Raumtemperatur gebracht und anschließend mit Et₂O verdünnt. Die Phasen werden getrennt und die organische Phase wird mit 1M NaOH, 1M HCl und gesättiger NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Die flüchtigen Bestandteile werden im Vakuum entfernt und der Rückstand per Säulenchromatographie (CH/EtOAc 4:1) gereinigt. Das gewünschte Produkt wird als wachsartiger weißer Feststoff erhalten, der nach längerer Lagerung erstarrt (237 mg, 55%).

Chemical Formula: C₂₄H₃₄N₂O₅ Molecular Weight: 430,5450

Schmelzpunkt 77-84 °C.

IR 3031, 2969, 2936, 2882, 1730, 1679, 1629, 1455, 1429, 1407, 1380, 1365, 1301, 1247, 1228, 1190, 1148, 1120, 1079, 1048, 1023, 965, 872, 803, 699.

¹H NMR (500 MHz, CDCl₃) 1:3.3 Mischung aus zwei Rotameren: 0.82-0.95 (m, 6H, CHCH₃^{β -ile}, CH₂CH₃^{δ -ile}), 1.11-1.21 (m, 1H, CH*H*CH₃^{γ -ile}), 1.42 & 1.51 (je s, 9H, (CH₃)₃C), 1.42-1.49 (m, 1H, teilweise überlappt, CHHCH₃^{γ -ile}), 2.08-2.19 (m, 1H, CHCH₃^{β -ile}), 3.02 & 3.03 (s, 3H, NCH₃), 3.10 (dd, *J* = 14.1, 2.9 Hz, 1H, PhCHH^{β -Phe}), 3.44 (dd, *J* = 14.1, 4.9 Hz, 1H, PhCHH^{β -Phe}), 3.76 & 3.83 (je s, 3H, OCH₃), 4.80 & 4.84 (je s, 1H, C=CHCO), 4.91 (dd, *J* = 4.9, 2.9 Hz, 1H, BnCH^{α -Phe}), 6.18 (d, *J* = 11.1 Hz, 1H, NCHCON), 6.89-7.25 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) 10.4 (CH₂CH₃^{δ-lle}), 14.7 (CHCH₃^{β'-lle}), 24.7 (CH₂CH₃^{γ-lle}), 28.5/28.6 ((CH₃)₃C), 31.1 (CHCH₃^{β-lle}), 33.8 (NCH₃), 34.7/35.0 (PhCH₂^{β-lle}), 58.5 (CH₃O), 59.4 (BnCH^{α-Phe}), 59.8 (NCHCON^{α-lle}), 80.2 ((CH₃)₃C), 95.1 (C=CHCO), 127.1 (C^{ar}), 128.3 (C^{ar}), 128.5 (C^{ar}), 129.6 (C^{ar}), 129.74 (C^{ar}), 134.3 (C^{ar}), 156.4 (OCON), 169.2 (=CHCON), 171.6 (NCHCON), 177.7 (COCH₃).

 $[\alpha]^{20}_{D}$ +150.7 (*c* = 0.90, CHCl₃).

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₂₄H₃₄N₂O₅Na⁺ 453.23599, gefunden 453.23503.

(5S)-1-(N-Methyl-L-Isoleucinoyl)-5-benzyl-4-methoxy-2,5-dihydropyrrol-2-on (106)

Eine Lösung des Carbamats **105** (0.25 g, 0.58 mmol, 1.0 Äquiv.) in 8 mL CH₂Cl₂ wird auf 0 °C gekühlt und langsam mit Trifluoressigsäure (0.67 mL, 8.71 mmol, 15 Äquiv.) versetzt. Die Lösung wird auf Raumtemperatur erwärmt, vier Stunden lang gerührt und mit CH₂Cl₂ verdünnt. Die Lösung wird erneut auf 0 °C gekühlt und mit gesättigter NaHCO₃-Lösung versetzt. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Es wird ein farbloses Öl erhalten (0.18 g, 94%).

 $\begin{array}{l} \mbox{Chemical Formula: } C_{19}H_{26}N_2O_3 \\ \mbox{Molecular Weight: } 330,4280 \end{array}$

IR 3336, 3031, 2964, 1724, 1674, 1627, 1455, 1379, 1351, 1304, 1262, 1245, 1188, 1115, 963, 799, 732, 700.

¹H NMR (500 MHz, CDCl₃) 0.85 (t, J = 7.3 Hz, 3H, CH₂CH₃^{δ -Ile}), 0.99 (d, J = 6.7 Hz, 3H, CHCH₃^{β '-Ile}), 1.12 (ddq, J = 13.3, 10.2, 7.3 Hz, CHHCH₃^{γ -Ile}), 1.49 (dqd, J = 13.3, 7.3, 3.1 Hz, 1H, CHHCH₃^{γ -Ile}), 1.60 (dqdd, J = 10.2, 6.7, 4.6, 3.1 Hz, 1H, CHCH₃^{β -Ile}), 2.44 (s, 3H, NCH₃), 3.18 (dd, J = 14.0, 2.9 Hz, 1H, PhCHH^{β -Phe}), 3.65 (dd, J = 14.0, 5.2 Hz, PhCHH^{β -Phe}), 3.85 (s, 3H, OCH₃), 4.30 (d, J = 4.6 Hz, 1H, NCHCON^{α -Ile}), 4.85 (s, 1H, C=CHCO), 4.86 (dd, J = 5.2, 2.9 Hz, 1H, BnCH^{α -Phe}), 6.98-7.24 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) 11.9 (CH₂CH₃^{δ -lle}), 16.6 (CHCH₃^{β '-lle}), 23.4 (CH₂CH₃^{γ -lle}), 35.2 (PhCH₂^{β -Phe}), 35.7 (NCH₃), 38.0 (CHCH₃^{β -lle}), 58.5 (OCH₃), 60.3 (BnCH^{α -Phe}), 67.7 (NCHCON^{α -lle}), 95.3 (=CHCO), 127.3 (C^{ar}), 128.2 (C^{ar}), 129.7 (C^{ar}), 134.3 (C^{ar}), 170.1 (=CHCON), 176.4 (NCHCON), 178.1 (COCH₃).

HRMS (ESI) m/z $[M+H]^+$ berechnet für $C_{19}H_{27}N_2O_3^+$ 331.20162, gefunden 331.20115.

p-Nosyl-L-Valin (110)

Eine Lösung aus L-Valin (**83**) (0.5 g, 4.3 mmol, 1.0 Äquiv.) in 4 mL 1M NaOH wird auf 0 °C gekühlt und mit *p*-Nitrobenzolsulfonylchlorid (1.4 g, 6.4 mmol, 1.5 Äquiv.) portionsweise versetzt. Die Mischung wird bei Raumtemperatur zwei Stunden lang gerührt. Dann wird die wässrige Phase mit EtOAc extrahiert und die organische Phase verworfen. Die wässrige Phase wird anschließend mit 1M HCl angesäuert, bis kein weiterer Niederschlag ausfällt und erneut mit EtOAc extrahiert. Die vereinigte organische Phase wird mit wenig gesättigter NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Die flüchtigen Bestandteile werden im Vakuum entfernt und das gewünschte Produkt wird als gelber, amorpher Feststoff erhalten (0.9 g, 71%).^[81]

Chemical Formula: C₁₁H₁₄N₂O₆S Molecular Weight: 302,3010

Schmelzpunkt 183-185 °C, Lit^[81]: 185-187 °C.

IR 3271, 3114, 2969, 1709, 1608, 1531, 1463, 1410, 1354, 1313, 1286, 1216, 1168, 1144, 1090, 1062, 1013, 942, 904, 854, 738, 685, 617, 575, 556.

¹H NMR (500 MHz, $(CD_3)_2SO$) 0.80 (d, J = 6.8 Hz, 3H, $(CH_3)_2CH^{\gamma-Val}$), 0.84 (d, J = 6.8 Hz, $(CH_3)_2CH^{\gamma-Val}$), 1.93-2.03 (m, 1H, $(CH_3)_2CH^{\beta-Val}$), 3.61 (dd, J = 9.5, 5.9 Hz, 1H, NCHCO^{α -Val}</sub>), 8.01-8.05 (m, 2H, H^{ar}), 8.37-8.40 (m, 2H, H^{ar}), 8.47 (d, J = 9.5 Hz, 1H, NH), 12.67 (br s, 1H, COOH).

¹³C NMR (125 MHz, (CD₃)₂SO) 17.8 ((CH₃)₂CH^{γ-Val}), 19.1 ((CH₃)₂CH^{γ-Val}), 30.3 ((CH₃)₂CH^{β-Val}), 61.4 (NCHCO^{α-Val}), 124.3 (C^{ar}), 128.2 (C^{ar}), 146.8 (C^{ar}), 149.4 (C^{ar}), 171.9 (COOH).

HRMS (ESI) m/z $[M-H]^{-}$ berechnet für $C_{11}H_{13}N_2O_6S^{-}$ 301.04888, gefunden 301.04991.

 $[\alpha]^{20}_{D}$ +44.2 (*c* = 1.0, CH₃CH₂OH).

pNosyl-L-Valin-(N-methyl-L-Isoleucin)-(5-benzyl-4-methoxy-2,5-dihydropyrrol-2-on) (111)

N-p-Nosyl-L-valin (**110**) (98 mg, 0.32 mmol, 1.3 Äquiv.) wird in 2.5 mL trockenem CH₂Cl₂ suspendiert und auf 0 °C gekühlt. Der Ansatz wird mit 1-Chloro-*N*,*N*,2-trimethyl-1-propenylamin (43 μ L, 0.32 mmol, 1.3 Äquiv.) versetzt und bei 0 °C eine Stunde lang gerührt und mittels Dünnschichtchromatographie überwacht (CH/EtOAc 3:1). Dazu wird ein Aliquot entnommen und in CH₃OH gegeben. Der entsprechende Methylester wird als ein Maß für die Umsetzung des Edukts herangezogen. Das Amin **106** (82 mg, 0.25 mmol, 1.0 Äquiv.) wird in 2.5 mL CH₂Cl₂ gelöst und mit einer 10%igen NaHCO₃-Lösung (2.5 mL) versetzt und zum Ansatz gegeben. Nach einer Stunde Rühren bei Raumtemperatur werden die Phasen getrennt und die wässrige Phase wird mit EtOAc extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet sowie das Lösungsmittel im Vakuum entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (CH/Et₂O 3:1 -> 4:1) und das gewünschte Produkt wird als farbloser Feststoff erhalten (118 mg, 78%).

Chemical Formula: C₃₀H₃₈N₄O₈S Molecular Weight: 614,7140

Schmelzpunkt 90-95 °C.

IR 2964, 2931, 1733, 1677, 1628, 1530, 1456, 1378, 1369, 1350, 1306, 1171, 737, 616.

¹H NMR (500 MHz, CDCl₃) 78:22 Mischung aus Rotameren; Hauptrotamer: 0.56-0.63 (m, 2H, $CH_2CH_3^{V^-}$ ^{Ile}), 0.66 (t, *J* = 7.6 Hz, 3H, $CH_2CH_3^{\delta-Ile}$), 0.77 (d, *J* = 6.4 Hz, 3H, $CHCH_3^{\beta^-Ile}$), 0.80 & 1.11 (je d, *J* = 6.7 Hz, 3H, $CH(CH_3)_2^{V-Val}$), 1.86-1.95 (m, 2H, $CHCH_3^{\beta-Ile}$, $CH(CH_3)_2^{\beta-Val}$), 2.97 (s, 3H, NCH₃), 3.11 (dd, *J* = 14.0, 3.2 Hz, 1H, PhC $HH^{\beta-Phe}$), 3.29 (dd, J = 14.0, 5.5 Hz, PhCH $H^{\beta-Phe}$), 3.77 (s, 3H, OCH₃), 4.01 (m, 1H, SNCH^{α -</sub> ^{Val}), 4.78 (dd, J = 5.5, 3.2 Hz, 1H, BnC $H^{\alpha-Phe}$), 4.84 (s, 1H, C=CHCO), 5.96 (br d, 1H, NH), 6.17 (d, *J* = 10.7 Hz, 1H, NCHCON^{α -Ile}), 6.92-6.99 (m, 2H, H^{ar, Phenyl}), 7.16-7.23 (m, 3H, H^{ar, Phenyl}), 8.01-8.17 (m, 2H, H^{ar, Nosyl}), 8.31-8.36 (m, 2H, H^{ar, Nosyl}).}

¹³C NMR (125 MHz, CDCl₃) 10.8 (CH₂CH₃^{δ-IIe}), 14.5 (CHCH₃^{β'-IIe}), 16.0 & 20.2 (CH(CH₃)₂^{γ-Val}), 24.9 (CH₂CH₃^{γ-IIe}), 31.0 (CH(CH₃)₂^{β-Val}), 31.3 (CH₃N), 33.9 (CHCH₃^{β-IIe}), 35.6 (PhCH₂^{β-Phe}), 58.6 (OCH₃), 58.8 (SNCH^{α-Val}), 59.4 (NCHCON^{α-IIe}), 59.9 (BnCH^{α-Phe}), 94.8 (=CHCO), 124.3 (C^{ar}), 127.2 (C^{ar}), 128.4 (C^{ar}), 128.6 (C^{ar}), 129.5 (C^{ar}), 134.7 (C^{ar}), 145.9 & 150.0 (C^{ar}), 169.1 (=CHCON), 171.2 (CH₃NCO), 171.3 (NCHCON), 178.4 (COCH₃).

HRMS (ESI) m/z $[M+Na]^+ C_{30}H_{38}N_4O_8NaS^+$ berechnet 637.23026, gefunden 637.23010.

 $[\alpha]^{20}_{D}$ +118.0 (*c* = 1.0, CHCl₃).

pNosyl-N-methyl-L-Valin-(N-methyl-L-Isoleucin)-(5-benzyl-4-methoxy-2,5-dihydropyrrol-2on) (113)

Eine Lösung des Sulfonamids (166 mg, 0.27 mmol, 1.0 Äquiv.) in DMF (2.7 mL) wird mit K₂CO₃ (75 mg, 0.54 mmol, 2.0 Äquiv.) und CH₃I versetzt und bei Raumtemperatur für eine Stunde gerührt. Es wird H₂O zugegeben, mit Et₂O verdünnt und die Phasen getrennt. Die wässrige Phase wird mit Et₂O extrahiert und die vereinigten organischen Phasen mit wenig gesättigter NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand säulenchromatographisch gereinigt (CH/EtOAc 2:1). Das gewünschte Produkt wird als farbloser Feststoff erhalten (168 mg, 99%).

Chemical Formula: C₃₁H₄₀N₄O₈S Molecular Weight: 628,7410

Schmelzpunkt 183-187 °C.

IR 2972, 2932, 2882, 1729, 1677, 1643, 1625, 1529, 1453, 1384, 1340, 1304, 1272, 1240, 1192, 1159, 1134, 1120, 1106, 1084, 968, 956, 936, 864, 852, 819, 797, 737, 720, 699, 602, 567.

¹H NMR (500 MHz, CDCl₃) 95:5 Mischung von Rotameren; Hauptrotamer: 0.81 (d, J = 6.6 Hz, 3H, CH(CH_3)₂^{v-Val}), 0.86 (t, J = 7.4 Hz, 3H, CH₂ $CH_3^{\delta-Ile}$), 0.91 (d, J = 6.4 Hz, überlappt, 3H, CH(CH_3)₂^{v-Val}), 0.92 (d, J = 6.7 Hz, überlappt, 3H, CH($CH_3^{\beta^{-Ile}}$), 1.12 (ddq, J = 13.7, 8.0, 7.4 Hz, 1H, CHHCH₃^{v-Ile}), 1.31 (dqd, J = 13.7, 7.4, 2.9 Hz, 1H, CHHCH₃^{v-Ile}), 2.13 (ddqd, J = 11.0, 8.0, 6.7, 2.9 Hz, 1H, CHCH₃^{β -Ile}), 2.32 (dqq, J = 10.7, 6.7, 6.4 Hz, 1H, CH(CH₃)₂^{β -Val}), 3.04 (s, 3H, SNCH₃), 3.12 (dd, J = 14.0, 3.4 Hz, 1H, PhCHH^{β -Phe}), 3.30 (dd, J = 14.0, 5.2 Hz, 1H, PhCHH^{β -Phe}), 3.36 (s, 3H, NCH₃), 3.74 (s, 3H, OCH₃), 4.68 (d, J = 11.0 Hz, 1H, SNCH^{α -Val}), 4.82 (s, 1H, C=CHCO), 4.84 (dd, J = 5.2, 3.4 Hz, 1H, BnCH^{α -Phe}), 6.44 (d, J = 10.7 Hz, 1H, NCHCON^{α -Ile}), 7.02-7.08 (m, 2H, H^{ar, Phenyl}), 7.17-7.26 (m, 3H, H^{ar, Phenyl}), 7.97-8.02 (m, 2H, H^{ar, Nosyl}), 8.33-8.38 (m, 2H, H^{ar, Nosyl}).

¹³C NMR (125 MHz, CDCl₃) 10.6 (CH₂CH₃^{δ-lie}), 14.5 (CHCH₃^{β'-lie}), 18.9 & 19.8 (CH(CH₃)₂^{γ-Val}), 25.5 (CH₂CH₃^{γ-lie}), 28.8 (CH(CH₃)₂^{β-Val}), 30.4 (SNCH₃), 32.3 (NCH₃), 34.5 (CHCH₃^{β-lie}), 35.7 (PhCH₂^{β-Phe}), 58.5 (OCH₃), 58.8 (NCHCON^{α-lie}), 59.9 (BnCH^{α-Phe}), 60.4 (SNCH^{α-Val}), 94.9 (=CHCO), 124.4 (C^{ar}), 127.2 (C^{ar}),

128.3 (C^{ar}), 128.4 (C^{ar}), 129.7 (C^{ar}), 134.9 (C^{ar}), 145.8/150.0 (C^{ar}), 169.3 (=CH*C*ON), 171.8 (CH₃N*C*O), 172.7 (NCH*C*ON), 178.3 (*C*OCH₃).

 $[\alpha]^{20}_{D}$ +79.0 (*c* = 0.52, CHCl₃).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₃₁H₄₀N₄O₈NaS⁺ 651.24591, gefunden 651.24377.

pNosyl-L-Valin-(N-methyl-L-Valin)-(N-methyl-L-Isoleucin)-(5-benzyl-4-methoxy-2,5dihydropyrrol-2-on) (114)

Eine Lösung aus **113** (45 mg, 72 μ mol, 1.0 Äquiv.) in DMF (0.7 mL) wird mit K₂CO₃ (59 mg, 429 μ L, 6.0 Äquiv.) und 2-Methyl-5-*tert*-butylthiophenol (32 mg, 179 μmol, 2.5 Äquiv.) versetzt und eine Stunde lang bei Raumtemperatur gerührt. Anschließend wird die Reaktion durch Zugabe von 1M HCl und gesättigter NaCl-Lösung abgebrochen. Die wässrige Phase wird mehrfach mit Et₂O extrahiert bis kein Thiophenol im Extrakt mittels Dünnschichtchromatographie detektiert wird (CH/EtOAc 1:1). Der pH-Wert der wässrigen Phase wird mit einer gesättigten Na₂CO₃-Lösung auf 9 eingestellt und 2 mL CH₂Cl₂ werden zugegeben. Diese Lösung wird direkt für die nächste Kupplungsreaktion verwendet. Des Weiteren wird N-p-Nosyl-L-Valin (107) (69 mg, 215 μL, 3.0 Äquiv.) in 1 mL trockenem CH₂Cl₂ vorgelegt, auf 0 °C gekühlt und mit 1-Chloro-N,N,2-trimethyl-1-propenylamin (34 μL, 215 μmol, 3.0 Äquiv.) versetzt. Die Reaktionslösung wird bei 0 °C für eine Stunde gerührt und per Dünnschichtchromatographie überwacht. Anschließend wird die Lösung des De-Nosylierten Amins mittels Spritze zur Lösung gegeben und für 30 Minuten gerührt. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ extrahiert. Die vereinigte organische Phase wird mit 1M NaOH-Lösung gewaschen, über Na₂SO₄ getrocknet und im Vakuum das Lösungsmittel entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (CH/EtOAc 1:1) und das Produkt als amorpher weißer Feststoff erhalten (44 mg, 85%).

Chemical Formula: C₃₆H₄₉N₅O₉S Molecular Weight: 727,8740

IR 3200, 3106, 3034, 2965, 2931, 2876, 1728, 1626, 1531, 1456, 1379, 1349, 1305, 1246, 1193, 1170, 1089, 965, 854, 738, 719, 700, 686, 671, 615, 565, 554.

¹H NMR (500 MHz, CDCl₃) 0.17 (d, *J* = 6.7 Hz, 3H, CH(*CH*₃)₂^{v-Val1}), 0.80 (d, *J* = 6.5 Hz, 3H, CH(*CH*₃)₂^{v-Val1}), 0.82 (d, *J* = 6.8 Hz, 3H, CH(*CH*₃)₂^{v-Val2}), 0.83 (t, *J* = 7.3 Hz, überlappt, 3H, CH₂*CH*₃^{δ-Ile}), 0.88 (d, *J* = 6.7 Hz, 3H, CH*CH*₃^{β'-Ile}), 1.06 (ddq, *J* = 13.5, 9.0, 7.3 Hz, 1H, CHHCH₃^{v-Ile}), 1.12 (d, *J* = 6.8 Hz, 3H, CH(*CH*₃)₂^{v-Val2}), 1.20 (dqd, *J* = 13.5, 7.3, 3.2 Hz, 1H, CHHCH₃^{v-Ile}), 1.88 (sptd, *J* = 6.8, 3.1 Hz, 1H, *CH*(CH₃)₂^{β-Val2}), 2.08 (ddqd, *J* = 10.8, 9.0, 7.0, 3.2 Hz, 1H, CHCH₃^{β-Ile}), 2.22 (dqq, *J* = 10.8, 6.7, 6.5 Hz, 1H, *CH*(CH₃)₂^{β-Val1}), 2.88 (s, 3H, NCH₃^{Val1}), 3.09 (dd, *J* = 14.0, 3.4 Hz, 1H, PhCHH^{β-Phe}), 3.15 (s, 3H, CH₃N^{Ile}), 3.31 (dd, *J* = 14.0, 4.9 Hz, 1H, PhCHH^{β-Ile}), 3.75 (s, 3H, OCH₃), 4.01 (dd, *J* = 9.2, 3.1 Hz, 1H, NCHCO^{α-Val2}), 4.81 (s, 1H, C=CHCO), 4.83 (dd, *J* = 4.9, 3.4 Hz, 1H, BnCH^{α-Phe}), 5.02 (d, *J* = 10.8 Hz, 1H, NCHCO^{α-Val1}), 5.86 (d, *J* = 9.2 Hz, 1H, NH), 6.44 (d, *J* = 10.8 Hz, 1H, NCHCO^{α-Ile}), 6.96-7.00 (m, 2H, H^{ar, Phenyl}), 7.18-7.23 (m, 3H, H^{ar, Phenyl}), 8.00-8.05 (m, 2H, H^{ar, Nosyl}), 8.29-8.34 (m, 2H, H^{ar, Nosyl}).

¹³C NMR (125 MHz, CDCl₃) 10.6 (CH₂CH₃^{δ-Ile}), 14.5 (CHCH₃^{β'-Ile}), 15.8 (CH(CH₃)₂^{γ-Val2}), 17.8 & 19.2 (CH(CH₃)₂^{γ-Val1}), 20.2 (CH(CH₃)₂^{γ-Val2}), 25.2 (CH₂CH₃^{γ-Ile}), 27.0 (CH(CH₃)₂^{β-Val1}), 30.3 (CH₃N^{Val1}), 30.8 (CH(CH₃)₂^{β-Val2}), 31.8 (CH₃N^{Ile}), 34.4 (CHCH₃^{β-Ile}), 35.6 (PhCH₂^{β-Phe}), 58.48*, 58.49*, 58.54*, 58.6 (NCHCO^{α-Ile}), 59.8 (BnCH^{α-Phe}), 94.9 (=CHCO), 124.5 (C^{ar}), 127.2 (C^{ar}), 128.4 (C^{ar}), 128.6 (C^{ar}), 129.6 (C^{ar}), 134.7 (C^{ar}), 145.9/150.2 (C^{ar}), 169.2 (=CHCON), 170.8 (CO^{Val2}), 170.9 (CO^{Val1}), 172.1 (NCHCON), 178.3 (COCH₃); Zuordnung nicht eindeutig: OCH₃/NCHCO^{α-Val1}/SNCH^{α-Val2}.

 $[\alpha]^{20}_{D}$ +61.7 (*c* = 0.94, CHCl₃).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für C₃₆H₄₉N₅O₉NaS⁺ 750.31432, gefunden 750. 31347.

Dimethyl-L-Valin (115)

Eine Lösung aus L-Valin (352 mg, 3.0 mmol, 1.0 Äquiv.) in 5.5 mL H₂O wird mit einer wässrigen Formaldeyhd-Lösung (37 Gew.-%, 0.94 mL, 11.5 mmol, 3.8 Äquiv.) und Pd/C (10%, 112 mg) versetzt. Der Ansatz wird unter einer H₂-Atmosphäre drei Tage gerührt. Anschließend wird die Suspension eine Stunde lang unter Rückfluss erhitzt und noch heiß über Celite abfiltriert. Nach Entfernen der flüchtigen Bestandteile wird ein weißer Feststoff erhalten, der ohne weitere Aufreinigung verwendet wird (401 mg, 92%).^[86]

,OH

Chemical Formula: C₇H₁₅NO₂ Molecular Weight: 145,2020

IR 3330, 2972, 2937, 2893, 2306, 1606, 1520, 1468, 1379, 1367, 1348, 1304, 1257, 1185, 1138, 1111, 1093, 1066, 1020, 1005, 963, 933, 915, 834, 781, 562.

¹H NMR (500 MHz, D₂O) 0.89 (d, *J* = 6.8 Hz, 3H, CH(CH₃)₂^{*y*-Val}), 1.01 (d, *J* = 6.9 Hz, 3H, CH(CH₃)₂^{*y*-Val}), 2.28 (qqd, *J* = 6.9, 6.8, 5.0 Hz, 1H, CH(CH₃)₂^{*β*-Val}), 2.82 (s, 6H, N(CH₃)₂), 3.35 (d, *J* = 5.0 Hz, 1H, NCHCO^{α -Val}</sub>). ¹³C NMR (125 MHz, D₂O) 15.6 & 19.2 (CH(CH₃)₂^{*y*-Val}), 25.9 (CH(CH₃)₂^{*β*-Val}), 39.9 & 43.0 (N(CH₃)₂), 76.1 (NCHCO^{α -Val}), 171.6 (CO). HRMS (ESI) m/z [M+H]⁺ berechnet für C₇H₁₆NO₂⁺ 146.11756, gefunden 146.11714.

 $[\alpha]^{20}_{D}$ +33.4 (*c* = 2.0, CH₃CH₂OH), Lit^[86]: für Dimethyl-D-Valin $[\alpha]^{28}_{D}$ —33.6 (*c* = 2.1, CH₃CH₂OH).

Caldoramid (4)

Analog zur Vorschrift von Verbindung **113** wird *p*Nos-L-Val-(NMe-L-Val)-(NMe-L-Ile)-(5-benzyl-4-methoxy-2,5-dihydropyrrol-2-on) (**114**) (57 mg, 79 μ mol, 1.0 Äquiv.) mit K₂CO₃ (65 mg, 473 μ mol, 6.0 Äquiv.) und 2-Methyl-5-*tert*-butylthiophenol (35 μ L, 189 μ mol, 2.5 Äquiv.) in DMF (0.78 mL) Nosyl-Entschützt, um das primäre Amin zu erhalten.

Eine Lösung des Amins wird mit DMF (0.4 mL) und DIPEA (66 μL, 379 μmol, 4.8 Äquiv.) versetzt. Des Weiteren wird Dimethyl-L-Valin (**115**) (14 mg, 95 μmol, 1.2 Äquiv.) und HATU (36 mg, 95 μmol, 1.2 Äquiv.) in 0.3 mL DMF, gekühlt auf 0 °C für 20 Minuten gerührt und die Lösung des Amins wird zugegeben. Der Ansatz wird 2 Stunden lang bei Raumtemperatur gerührt, mit EtOAc verdünnt und die organische Phase mit gesättigter NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Die flüchtigen Bestandteile werden im Vakuum entfernt und der Rückstand mittels Säulenchromatographie (EtOAc/EtOH 96:4) aufgereinigt. Es wird ein farbloser, amorpher Feststoff erhalten (34 mg, 64%).

Chemical Formula: C₃₇H₅₉N₅O₆ Molecular Weight: 669,9080

Schmelzpunkt 177-179 °C.

IR 3318, 2964, 2932, 1733, 1627, 1497, 1455, 1380, 1304, 1259, 1247, 1193, 1112, 1093, 1033, 1026, 965, 909, 807, 799, 729, 699, 670, 645.

¹H NMR (500 MHz, CDCl₃) 0.78 (d, J = 6.7 Hz, 3H, 3H, CH(CH₃)₂^{*y*-Val1}), 0.86 (t, J = 7.3 Hz, 3H, CH₂CH₃^{δ-lle}), 0.91 (d, J = 6.7 Hz, 3H, CH(CH₃)₂^{*y*-Val1}), 0.94 (d, J = 6.7 Hz, 3H, CH(CH₃)₂^{*y*-Val3}), 0.97 (d, J = 6.7 Hz, 3H, CH(CH₃)₂^{*y*-Val2}), 1.01 (d, J = 6.7 Hz, 3H, CH(CH₃)₂^{*y*-Val2}), 1.02 (d,

 $J = 6.7 \text{ Hz}, 3\text{ H}, C\text{H}(CH_3)_2^{\text{y-Val3}}, 1.13 \text{ (ddq, } J = 13.9, 8.7, 7.3 \text{ Hz}, 1\text{ H}, C\text{HHCH}_3^{\text{y-lle}}, 1.26-1.30 \text{ (m, 1H,} \\ \ddot{u}berlappt, C\text{H}(CH_3)_2^{\beta-Val3}), 1.99 \text{ (sptd, } J = 6.7, 5.9 \text{ Hz}, 1\text{ H}, C\text{H}(CH_3)_2^{\beta-Val2}), 2.09 \text{ (sptd, } J = 6.7, 6.1 \text{ Hz}, 1\text{ H}, \\ \ddot{u}berlappt, C\text{H}(CH_3)_2^{\beta-Val3}), 2.11 \text{ (m, 1H, } \ddot{u}berlappt, C\text{HCH}_3^{\beta-\text{lle}}), 2.27 \text{ (s, 6H, N}(CH_3)_2), 2.41 \text{ (dspt, } J = 11.0, \\ 6.7 \text{ Hz}, 1\text{ H}, C\text{H}(CH_3)_2^{\beta-Val1}), 2.47 \text{ (d, } J = 6.1 \text{ Hz}, 1\text{ H}, \text{NCHCO}^{\alpha-Val3}), 3.11 \text{ (dd, } J = 14.0, 3.4 \text{ Hz}, 1\text{ H}, \text{PhCHH}^{\beta-\text{Phe}}), 3.13 \text{ (s, 3H, NCH}_3^{Val1}), 3.24 \text{ (s, 3H, NCH}_3^{\text{lle}}), 3.33 \text{ (dd, } J = 14.0, 5.2 \text{ Hz}, 1\text{ H, PhCHH}^{\beta-\text{Phe}}), 3.75 \text{ (s, 3H, OCH}_3), 4.83 \text{ (s, 1H, C=CHCO)}, 4.84 \text{ (dd, } J = 8.9, 5.9 \text{ Hz}, 1\text{ H, NCHCO}^{\alpha-Val2}), 4.86 \text{ (dd, } J = 5.2, 3.4 \text{ Hz}, 1\text{ H, BnCH}^{\alpha-\text{Phe}}), 5.30 \text{ (d, } J = 11.0 \text{ Hz}, 1\text{ H, NCHCO}^{\alpha-Val1}), 6.48 \text{ (d, } J = 10.7 \text{ Hz}, 1\text{ H, NCHCO}^{\alpha-\text{lle}}), 6.96 \text{ (d, } J = 8.9 \text{ Hz}, 1\text{ H, NH}^{Val2}), 7.00-7.04 \text{ (m, 2H, H}^{ar}), 7.22 \text{ (m, 3H, H}^{ar}).$

¹³C NMR (125 MHz, CDCl₃) 10.7 (CH₂CH₃^{δ-Ile}), 14.6 (CHCH₃^{β'-Ile}), 17.8 (CH(*C*H₃)₂^{γ-Val3}), 17.9 (CH(*C*H₃)₂^{γ-Val2}), 18.4 (CH(*C*H₃)₂^{γ-Val1}), 19.7 (CH(*C*H₃)₂^{γ-Val1}), 20.0 (CH(*C*H₃)₂^{γ-Val2}), 20.3 (CH(*C*H₃)₂^{γ-Val3}), 25.2 (*C*H₂CH₃^{γ-Ile}), 27.3 (*C*H(CH₃)₂^{β-Val1}), 27.8 (*C*H(CH₃)₂^{β-Val3}), 30.7 (NCH₃^{Val1}), 31.0 (*C*H(CH₃)₂^{β-Val2}), 31.9 (NCH₃^{Ile}), 34.4 (*C*HCH₃^{β-Ile}), 35.6 (Ph*C*H₂^{β-Phe}), 43.1 (N(CH₃)₂), 53.8 (N*C*HCO^{α-Val2}), 58.4 (N*C*HCO^{α-Val1}), 58.5 (OCH₃), 58.7 (N*C*HCO^{α-Ile}), 59.8 (Bn*C*H^{α-Phe}), 76.6 (N*C*HCO^{α-Val3}), 94.9 (C=*C*HCO), 127.2 (C^{ar}), 128.4 (C^{ar}), 129.7 (C^{ar}), 134.8 (C^{ar}), 169.2 (=CHCON), 171.3 (CO^{Val1}), 171.9 (CO^{Val3}), 172.3 (CO^{Ile}), 172.9 (CO^{Val2}), 178.2 (*C*OCH₃).

HRMS (ESI) m/z $[M+H]^+$ berechnet für $C_{37}H_{60}N_5O_6^+$ 670.45186, gefunden 670.45381.

 $[\alpha]^{20}_{D}$ –13.2 (*c* 0.50, CH₃OH).

5.3 Synthesevorschriften JBIR-141/142

5.3.1 Vorschriften zu Abschnitt 3.2.2

Methyl L-Threoninat (Hydrochlorid)

100 mL CH₃OH werden auf 0 °C gekühlt und SOCl₂ (9.1 mL, 126 mmol, 1.5 Äquiv.) wird vorsichtig unter Argon eingetragen. Dann wird L-Threonin (10 g, 84 mmol, 1.0 Äquiv.) zugegeben und die Reaktion unter Rückfluss für 2 h gerührt. Die flüchtigen Bestandteile werden im Vakuum entfernt und der Rückstand wird erneut mit Toluol versetzt und im Vakuum einkonzentriert. Dies wird mit Et₂O wiederholt. Das gewünschte Produkt wird als farbloses Öl erhalten (11 g, 99%), das ohne weitere Aufreinigung verwendet wird.^[108]

CIH₃N

Chemical Formula: C₅H₁₂CINO₃ Molecular Weight: 169,61

IR 3260, 2960, 1741, 1590, 1504, 1441, 1384, 1294, 1234, 1113, 1045, 920.

¹H NMR (500 MHz, CD₃OD) 1.32 (d, J = 6.6 Hz, 3H, CH(OH)CH₃^{*y*-Thr}), 3.85 (s, 3H, COOCH₃), 3.92 (d, J = 4.1 Hz, 1H, NCH^{α -Thr}), 4.28 (qd, J = 6.6, 4.1 Hz, 1H, CH(OH)^{β -Thr}).

¹³C NMR (125 MHz, CD₃OD) 20.5 (CH(OH)*C*H₃^{γ-Thr}), 53.5 (COO*C*H₃), 59.8 (NCH^{α-Thr}), 66.3 (*C*H(OH)^{β-Thr}), 169.7 (*C*OOCH₃).

HRMS (ESI) m/z $[M+H]^+$ (freies Amin) berechnet für C₅H₁₂O₃N⁺ 134.08117, gefunden 134.08101.

 $[\alpha]^{20}_{D}$ -11.3 (*c* = 2.0, H₂O), Lit^[175]: $[\alpha]^{29}_{D}$ -14.9 (*c* = 2.1, H₂O).

(2S,3R)-Methyl 2-acetamido-3-hydroxybutanoat (147)

Methyl L-threoninat (Hydrochlorid) (14.2 g, 84 mmol, 1.0 Äquiv) wird mit 110 mL CH₂Cl₂ (abs) unter Argon versetzt und der Ansatz im Ultraschallbad suspendiert. Anschließend wird bei 0 °C Triethylamin (28.3 mL, 168 mmol, 2.0 Äquiv.) und Acetylchlorid (6.0 mL, 84 mmol, 1.0 Äquiv.) vorsichtig zugetropft. Nachdem der Ansatz 2 h lang bei 0 °C gerührt wurde, wird die Mischung über Celite abfiltriert und das Filtrat im Vakuum einkonzentriert. Anschließend erfolgt säulenchromatographische Aufreinigung (EtOAc/EtOH 95:5 -> 90:10). Das Produkt wird als weißer Feststoff erhalten (13.8 g, 94%).^[108]

Chemical Formula: C₇H₁₃NO₄ Molecular Weight: 175,18

R_f (SiO₂) 0.16 EtOAc 100%.

Schmelzpunkt 102.8 °C, Lit^[176]: 102 °C.

IR 3269, 3177, 2981, 1747, 1643, 1544, 1433, 1377, 1308, 1213, 1153, 1115, 1079, 988, 891, 856, 780, 736, 697, 633, 589.

¹H NMR (500 MHz, CDCl₃) 1.24 (d, J = 6.4 Hz, 3H, CH(OH)CH₃^{y-Thr}), 2.10 (s, 3H, NHCOCH₃), 2.14 (d, J = 4.3 Hz, 1H, OH), 3.79 (s, 3H, COOCH₃), 4.36 (qdd, J = 6.4, 4.3, 2.4 Hz, 1H, CH(OH)^{β -Thr}), 4.62 (dd, J = 8.9, 2.4 Hz, 1H, NHCH^{α -Thr}), 6.25 (d, J = 8.9 Hz, 1H, NH).

¹³C NMR (125 MHz, CDCl₃) 20.1 (CH(OH)CH₃^{γ-Thr}), 23.2 (NHCOCH₃), 52.7 (COOCH₃), 57.4 (NCH^{α-Thr}), 68.1 (CH(OH)^{β-Thr}), 171.0 (NHCOCH₃), 171.8 (COOCH₃).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₇H₁₄O₄N⁺ 176.09173, gefunden 176.09163.

 $[\alpha]^{20}_{D}$ - 2.9 (c = 1.26, CH₂Cl₂), Lit^[176]: $[\alpha]^{20}_{D}$ - 1.7 (c = 0.02, CH₂Cl₂).

(Tert-butoxycarbonyl)-L-allo-Threonin (150)

Analog zu Liu *et al.*^[108] wird (2*S*,3*R*)-Methyl 2-acetamido-3-hydroxybutanoat (**147**) (13.7 g, 78.2 mmol, 1.0 Äquiv.) mit 38.7 mL SOCl₂ versetzt und die Reaktionslösung 19 h lang bei Raumtemperatur gerührt. Anschließend werden die flüchtigen Bestandteile im Vakuum entfernt und der Rückstand wiederholt mit Cyclohexan versetzt und erneut im Vakuum einkonzentriert. Das entstandene Oxazolin **149** wird als braunes Harz erhalten und direkt weiterverwendet.

Das Zwischenprodukt wird mit 36 mL 10%iger HCl-Lösung (aq.) versetzt und 7 h unter Rückfluss erhitzt. Es wird im Vakuum eingeengt und der Rückstand mit Toluol versetzt, sowie unter vermindertem Druck das Lösungsmittel entfernt (3x). Es wird L-*allo*-Threonin (Hydrochlorid) (*allo*-**146**) erhalten, welches nicht mittels Umkristallisation aufgereinigt werden kann. Es wird ohne Aufreinigung weiterverwendet.

Zu einer auf 0 °C gekühlten Lösung aus L-*allo*-Threoninat (Hydrochlorid) in 160 mL 1M NaOH wird eine zweite Lösung aus Boc₂O (20.5 g, 93.8 mmol, 1.2 Äquiv.) in 62 mL 1,4-Dioxan zugegeben. Die Reaktion wird bei Raumtemperatur über Nacht gerührt. Der Ansatz wird 1M HCl angesäuert (pH 2) und mit EtOAc extrahiert (3x). Die vereinigten organischen Phasen werden mit gesättigter NH₄Cl-Lösung gewaschen (2x) und über Na₂SO₄ getrocknet. Nach Entfernung des Lösungsmittels unter vermindertem Druck wird der Rückstand säulenchromatographisch aufgereinigt (CH₂Cl₂/CH₃OH 10:1) und das gewünschte Produkt als leicht gelbes Öl erhalten (10.5 g, 61%).

Chemical Formula: C₉H₁₇NO₅ Molecular Weight: 219,24

R_f (SiO₂) 0.38 CH₂Cl₂/CH₃OH 9:1, starkes tailing.

IR 3345, 2980, 2934, 1569, 1687, 1514, 1452, 1394, 1368, 1309, 1252, 1162, 1098, 1047, 1022, 958, 873, 849, 781, 669, 599.

¹H NMR (300 MHz, CD₃OD) 1.22 (d, J = 6.3 Hz, 3H, CH(OH)CH₃^{y-Thr}), 1.45 (s, 9H, C(CH₃)₃), 4.04 (qd, J = 6.3, 4.9 Hz, 1H, CH(OH)CH₃^{β-Thr}), 4.14 (d, J = 4.9 Hz, 1H, NHCH^{α -Thr}).

¹³C NMR (75 MHz, CD₃OD) 19.3 (CH(OH)*C*H₃^{γ-Thr}), 28.7 (C(*C*H₃)₃), 60.8 (NH*C*H^{α-Thr}), 68.9 (*C*H(OH)CH₃^{β-Thr}), 80.7 (*C*(CH₃)₃), 158.0 (NHCO), 174.0 (*C*OOH).

HRMS (ESI) m/z $[M-H]^{-}$ berechnet für C₉H₁₆NO₅⁻ 218.10230, gefunden 218.10168.

 $[\alpha]^{22}_{D}$ +31.2 (*c* = 0.58, CHCl₃); Lit^[177]: $[\alpha]^{24}_{D}$ +19.2 (*c* = 2.06, CHCl₃).

Aus L-allo-Threonin (Hydrochlorid):

L-*allo*-Threonin (**146**) (Hydrochlorid, 2.61 g, 16.8 mmol, 1.00 Äquiv.) wird mit 150 mL Benzol versetzt und Benzylalkohol (25.0 mL, 24.0 mmol, 1.80 Äquiv.) sowie *p*-TsOH x H₂O (3.55 g, 18.5 mmol, 1.10 Äquiv.) zugegeben. Der Ansatz wird ca. 28 h lang unter Rückfluss erhitzt und das entstehende Reaktionswasser mittels Wasserabscheider abgetrennt. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand in EtOAc aufgenommen. Die organische Phase wird mit H₂O gewaschen. Der vereinigten Wasserphase wird NaHCO₃ (3.50 g) zugegeben und CH₂Cl₂ reextrahiert. Die organischen Phasen werden vereinigt und über Na₂SO₄ getrocknet. Die flüchtigen Bestandteile werden im Vakuum entfernt und der Rückstand via Säulenchromatographie (EtOAc/EtOH 95:5) aufgereinigt. Das Produkt wird als farbloses Öl erhalten (2.2 g, 53%).

Chemical Formula: C₁₁H₁₅NO₃ Molecular Weight: 209,25

R_f (SiO₂) 0.19 EtOAc/EtOH 95:5.

IR 3367, 2971, 2933, 1731, 1587, 1498, 1456, 1377, 1261, 1214, 1165, 1135, 1082, 972, 914, 825, 747, 737, 696, 580.

¹H NMR (300 MHz, CDCl₃) 1.05 (d, J = 6.5 Hz, 3H, CH(OH)CH₃^{y-Thr}), 2.11 (br s, 3H, NH₂ & OH), 3.61 (d, J = 3.7 Hz, 1H, NCH^{α -Thr}), 4.04 (qd, J = 6.5, 3.7 Hz, 1H, CH(OH)CH₃^{β -Thr}), 5.14 (d, J = 12.2 Hz, 1H, OCHHPh), 5.19 (d, J = 12.2 Hz, 1H, OCHHPh), 7.28-7.38 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) 18.1 (CH(OH)CH₃^{γ-Thr}), 59.1 (NCH^{α-Thr}), 67.2 (OCH₂Ph), 68.1 (CH(OH)CH₃^{β-Thr}), 128.6 (C^{ar}), 128.7 (C^{ar}), 128.8 (C^{ar}), 135.5 (C^{ar}), 173.6 (COOBn).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₁₁H₁₆NO₃⁺ 210.11247, gefunden 210.11220.

 $[\alpha]^{20}_{D}$ +11.1 (*c* = 0.93, CH₃OH).

Aus Benzyl (*tert*-butoxycarbonyl)-L-*allo*-Threoninat:

Benzyl (*tert*-butoxycarbonyl)-L-*allo*-Threoninat (**151**) (30 mg, 97 μ mol, 1.0 Äquiv.) wird vorgelegt und mit 1 mL CH₂Cl₂ versetzt. Die Lösung wird auf -10 °C gekühlt, Trifluoressigsäure (70 μ L, 970 μ mol, 10.0 Äquiv.) zugetropft und der Ansatz über 4 h langsam auf 0 °C gebracht. Es wird gesättigte NaHCO₃-Lösung zugegeben, bis keine CO₂-Entwicklung mehr beobachtet werden kann, und die wässrige Phase mit CH₂Cl₂ extrahiert. Die vereinigte organische Phase wird über Na₂SO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand enthält neben dem gewünschten Benzyl L-*allo*-Threoninat (13 mg, 66%) ein Nebenprodukt. Dieses wird säulenchromatographisch abgetrennt (CH₂Cl₂/CH₃OH 98:2 -> CH₂Cl₂/CH₃OH 98:2 + 0.1% NEt₃) und als Benzyl (4S,5*R*)-5-methyl-2oxooxazolidin-4-carboxylat (**153**) (5 mg, 23%, farbloser Feststoff) identifiziert.

Chemical Formula: C₁₂H₁₃NO₄ Molecular Weight: 235,24

Schmelzpunkt 80.1 °C.

R_f (SiO₂) 0.57 CH₂Cl₂/CH₃OH 98:2.

IR 3272, 3100, 3036, 2979, 2920, 1737, 1708, 1558, 1495, 1463, 1457, 1393, 1357, 1324, 1313, 1265, 1194, 1182, 1160, 1149, 1129, 1098, 1073, 1028, 1004, 997, 949, 932, 911, 897, 871, 831, 755, 742, 718, 698, 683, 621, 602, 578, 558.

¹H NMR (500 MHz, CDCl₃) 1.25 (d, J = 6.6 Hz, 3H, OCHCH₃^{*y*-Thr}), 4.21 (qd, J = 6.6, 3.5 Hz, 1H, OCHCH₃^{*β*-Thr}), 4.67 (dd, J = 7.8, 3.5 Hz, 1H, NHCH^{α -Thr}), 5.23 (d, J = 12.1 Hz, 1H, OCHHPh), 5.29 (d, J = 12.1 Hz, 1H, OCHHPh), 7.33-7.44 (m, 5H, H^{ar}).

¹³C NMR (75 MHz, CDCl₃) 19.4 (OCHCH₃^{γ-Thr}), 58.2 (NHCH^{α-Thr}), 68.3 (OCH₂Ph), 68.8 (OCHCH₃^{β-Thr}), 128.7 (C^{ar}), 128.9 (C^{ar}), 129.0 (C^{ar}), 134.7 (C^{ar}), 157.2 (NHCOO), 168.7 (COOBn).

 $[\alpha]^{25}_{D}$ +9.2 (*c* = 0.5, CHCl₃).

Benzyl (tert-butoxycarbonyl)-L-allo-Threoninat (151)

(*tert*-Butoxycarbonyl)-L-*allo*-Threonin (**150**) (256 mg, 1.17 mmol, 1.00 Äquiv.) wird in 5 mL CH₃OH gelöst und mit Cs₂CO₃ (209 mg, 0.64 mmol, 0.55 Äquiv.) versetzt. Die Mischung wird gerührt, bis eine klare Lösung erhalten wird. Anschließend wird das Lösungsmittel im Vakuum entfernt, sodass ein leicht gelber Schaum entsteht. Dieser wird in 2.5 mL DMF aufgenommen und Benzylbromid (153 μ L, 1.28 mmol, 1.10 Äquiv.) zugegeben. Ein Niederschlag entsteht und die Suspension wird zwei Tage lang gerührt. Das Reaktionsgemisch wird mit EtOAc verdünnt und die organische Phase mit gesättigter NH₄Cl-Lösung und gesättigter NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Das Rohprodukt wird mittels Säulenchromatographie aufgereinigt (CH/EtOAc 2:1) und das gewünschte Produkt als farbloses Öl erhalten (325 mg, 90%).^[178]

Chemical Formula: C₁₆H₂₃NO₅ Molecular Weight: 309,36

R_f (SiO₂) 0.38 CH/EtOAc 2:1

IR 3397, 2978, 2933, 1694, 1499, 1456, 1392, 1367, 1250, 1157, 1098, 1045, 1017, 1001, 879, 846, 749, 697, 579.

¹H NMR (500 MHz, CDCl₃) 1.14 (d, *J* = 6.1 Hz, 3H, CH(OH)CH₃^{γ-Thr}), 1.45 (s, 9H, C(CH₃)₃), 2.94 (br s, 1H, OH), 4.14-4.21 (m, 1H, CH(OH)CH₃^{β-Thr}), 4.40-4.49 (m, 1H, NHCH^{α-Thr}), 5.18-5.26 (m, 2H, OCH₂Ph), 5.40-5.50 (m, 1H, NH), 7.33-7.41 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) 18.8 (CH(OH)CH₃^{γ-Thr}), 28.4 (C(CH₃)₃), 59.3 (NHCH^{α-Thr}), 67.6 (OCH₂Ph), 69.3 (CH(OH)CH₃^{β-Thr}), 80.7 (C(CH₃)₃), 128.5 (C^{ar}), 128.7 (C^{ar}), 128.8 (C^{ar}), 135.5 (C^{ar}), 159.1 (NHCO), 170.5 (COOBn).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für $C_{16}H_{23}NO_5Na^+$ 332.14684, gefunden 332.14669.

 $[\alpha]^{22}$ _D - 4.21 (*c* = 0.29, EtOAc).

Dimethyl L-alanin (155)

Zu einer Lösung aus L-Alanin (**154**) (1.20 g, 13.5 mmol, 1.0 Äquiv.) in 25 mL H₂O wird eine wässrige Formaldehyd-Lösung (4.2 mL, 37%, 51.7 mmol, 3.8 Äquiv.) und Pd/C (0.50 g, 10%) zugegeben. Die Lösung wird mit H₂ gesättigt und unter einer H₂-Atmosphäre 3 Tage lang gerührt. Dann wird die Lösung 30 Minuten lang unter Reflux gerührt heiß über Celite abfiltriert. Das Filtrat wird im Vakuum einkonzentriert. Anschließend wird dem Rückstand Toluol zugegeben und erneut die flüchtigen Bestandteile im Vakuum entfernt. Das Produkt wird als weißer Feststoff erhalten (1.56 g, 98%), der ohne weitere Aufreinigung verwendet wird.^[111]

∼мдон

Chemical Formula: C₅H₁₁NO₂ Molecular Weight: 117,15

Schmelzpunkt 115 °C, Lit^[179]: 121 °C .

IR 3346, 2940, 2062, 1596, 1527, 1475, 1454, 1393, 1359, 1328, 1295, 1243, 1193, 1144, 1095, 1082, 1040, 1003, 940, 878, 784, 771, 692, 639, 555.

¹H NMR (300 MHz, (CD₃)₂SO) 1.24 (d, J = 6.9 Hz, 3H, CHCH₃^{β-Ala}), 2.57 (s, 6H, N(CH₃)₂), 3.30 (q, J = 6.9 Hz, 1H, CHCH₃^{α-Ala}).

¹³C NMR (75 MHz, (CD₃)₂SO) 12.5 (CHCH₃^{β-Ala}), 40.5 (N(CH₃)₂), 64.8 (CHCH₃^{α-Ala}), 169.8 (COOH).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₅H₁₂O₂N⁺ 118.08626, gefunden 118.08619.

 $[\alpha]^{20}_{D}$ + 8.0 (*c* = 1.0, H₂O), Lit^[179]: $[\alpha]^{29}_{D}$ +12.32 (*c* = 1.87, H₂O).

Benzyl dimethyl-L-Alanyl-L-allo-Threoninat (156)

Dimethyl L-Alanin (**155**) (0.50 g, 4.26 mmol, 1.50 Äquiv) und Benzyl L-*allo*-Threoninat (**152**) (698 mg, 2.84 mmol, 1.00 Äquiv.), werden in 25 mL CH_2Cl_2 suspendiert und mit DIPEA (1.93 mL, 11.4 mL, 4.00 Äquiv.), HOBt (576 mg, 4.26 mmol, 1.50 Äquiv.) und EDCI (817 mg, 4.26 mmol, 1.50 Äquiv.) versetzt. Es entsteht eine trübe Reaktionslösung, die für 12.5 h bei Raumtemperatur gerührt wird. Der Ansatz wird mit CH_2Cl_2 verdünnt und die organische Phase mit gesättigter NaCl-Lösung gewaschen und über Na₂SO₄getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand

mittels Säulenchromatographie gereinigt (EtOAc/EtOH 98:2 -> 96:4). Das gewünschte Produkt wird als farbloses Öl erhalten (0.40 g, 40%), welches langsam kristallisiert.

Chemical Formula: C₁₆H₂₄N₂O₄ Molecular Weight: 308,38

Schmelzpunkt 57.8 °C.

IR 3365, 2978, 2938, 2877, 2831, 2787, 1739, 1656, 1506, 1456, 1378, 1323, 1298, 1261, 1187, 1161, 1144, 1100, 1043, 1029, 961, 913, 849, 749, 738, 697, 581.

¹H NMR (500 MHz, CDCl₃) 1.11 (d, J = 6.4 Hz, 3H, CH(OH)CH₃^{ν -Thr}), 1.24 (d, J = 7.0 Hz, 3H, NCHCH₃^{β -Ala}), 2.27 (s, 6H, N(CH₃)₂), 3.04 (q, J = 7.0 Hz, 1H, NCHCH₃^{α -Ala}), 4.24 (qd, J = 6.4, 3.7 Hz, 1H, CH(OH)CH₃^{β -Thr}), 4.71 (dd, J = 7.3, 3.7 Hz, 1H, NHCH^{α -Thr}), 5.19 (d, J = 12.4 Hz, 1H, OCHHPh), 5.24 (d, J = 12.4 Hz, 1H, OCHHPh), 7.33-7.41 (m, 5H, H^{ar}), 8.10 (d, J = 7.3 Hz, 1H, NH).

¹³C NMR (125 MHz, CDCl₃) 12.0 (NCHCH₃^{β-Ala}), 18.6 (CH(OH)CH₃^{γ-Thr}), 42.4 (N(CH₃)₂), 58.3 (NHCH^{α-Thr}), 64.7 (NCHCH₃^{α-Ala}), 67.6 (OCH₂Ph), 69.3 (CH(OH)CH₃^{β-Thr}), 128.5 (C^{ar}), 128.75 (C^{ar}), 128.79 (C^{ar}), 135.1 (C^{ar}), 170.1 (CO^{Thr}), 175.7 (CO^{Ala}).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₁₆H₂₅N₂O₄⁺ 309.18088, gefunden 309.18042.

 $[\alpha]^{23}_{D}$ +28.4 (*c* = 0.42, CHCl₃).

Benzyl (S)-2-(2-(dimethylamino)propanamido)but-2-enoat (158)

Benzyldimethyl-L-alanyl-L-*allo*-threoninat (**156**) (100 mg, 289 mmol, 1.00 Äquiv.), wird vorgelegt und in 9 mL THF (abs) unter Argon gelöst und auf 0 °C gekühlt. PPh₃ (149 mg, 566 mmol, 1.96 Äquiv.) und DIAD (111 μ L, 566 mmol, 1.96 Äquiv.) werden zugegeben und 1 h 40 Minuten unter Kühlung gerührt. Anschließend wird das Lösungsmittel im Vakuum entfernt und Produktgemisch säulenchromatographisch aufgetrennt (EtOAc/EtOH 98:2 + 0.1% NEt₃).

Chemical Formula: C₁₆H₂₂N₂O₃ Molecular Weight: 290,3630

(E)-Diastereomer 1 (6 mg):

R_f (SiO₂) 0.67 Et₂O/EtOH 98:2 + 0.1% NEt₃.

¹H NMR (500 MHz, CDCl₃) 1.21 (d, J = 7.0 Hz, 3H, NCHCH₃^{β -Ala}), 2.12 (d, J = 7.6 Hz, 3H, C=CHCH₃), 2.22 (s, 6H, N(CH₃)₂), 3.04 (q, J = 7.0 Hz, 1H, NCHCH₃^{α -Thr}), 5.27 (s, 2H, OCH₂Bn), 7.20 (q, J = 7.6 Hz, 1H, C=CHCH₃), 7.33-7.42 (m, 5H, H^{ar}), 9.33 (s, 1H, NH).

¹³C NMR (125 MHz, CDCl₃) 11.0 (NCH*C*H₃^{β-Ala}), 14.5 (C=CH*C*H₃), 42.2 (N(CH₃)₂), 65.1 (N*C*HCH₃^{α-Ala}), 67.2 (O*C*H₂Bn), 125.7 (*C*=CHCH₃), 128.4 (C^{ar}), 128.47 & 128.54 (C=*C*HCH₃ & C^{ar}), 128.7 (C^{ar}), 135.5 (C^{ar}), 164.1 (COO), 173.0 (CO^{Ala}).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₁₆H₂₃O₃N₂⁺ 291.17032, gefunden 291.16945.

(Z)-Diastereomer 2 (1 mg):

R_f (SiO₂) 0.47 Et₂O/EtOH 98:2 + 0.1% NEt₃.

¹H NMR (500 MHz, CDCl₃) 1.24 (d, J = 6.8 Hz, 3H, NCHCH₃^{β-Ala}), 1.78 (d, J = 7.3 Hz, 3H, C=CHCH₃), 2.28 (s, 6H, N(CH₃)₂), 3.07 (q, J = 6.8 Hz, 1H, NCHCH₃^{α-Ala}), 5.19 (s, 2H, OCH₂Bn), 6.86 (q, J = 7.3 Hz, 1H, C=CHCH₃), 7.31-7.40 (m, 5H, H^{ar}), 8.68 (s, 1H, NH).

¹³C NMR (125 MHz, CDCl₃) 11.6 (NCH*C*H₃^{β-Ala}), 14.8 (C=CH*C*H₃), 42.4 (N(CH₃)₂), 65.1 (N*C*HCH₃^{α-Ala}), 67.1 (O*C*H₂Bn), 126.2 (*C*=CHCH₃), 128.44 (C^{ar}), 128.45 (C^{ar}), 128.7 (C^{ar}), 134.1 (C=*C*HCH₃), 135.7 (C^{ar}), 164.6 (COO), 172.9 (CO^{Ala}).

HRMS (ESI) m/z $[M+H]^+$ berechnet für $C_{16}H_{23}O_3N_2^+$ 291.17032, gefunden 291.16928.

Methyl-L-allo-Threoninat (159)

Analog zu Liu *et al.*^[108] wird (2*S*,3*R*)-Methyl 2-acetamido-3-hydroxybutanoat (**147**) (13.7 g, 78.2 mmol, 1.0 Äquiv.) mit 38.7 mL SOCl₂ versetzt und die Reaktionslösung 19 h lang bei Raumtemperatur gerührt. Anschließend werden die flüchtigen Bestandteile im Vakuum entfernt und der Rückstand wiederholt mit Cyclohexan versetzt und erneut im Vakuum einkonzentriert. Das entstandene Oxazolin **149** wird als braunes Harz erhalten und direkt weiter verwendet. Das Zwischenprodukt wird mit 36 mL 10%iger HCI-Lösung (aq.) versetzt und 7 h unter Rückfluss erhitzt. Es wird im Vakuum eingeengt und der Rückstand mit Toluol versetzt und unter vermindertem Druck das Lösungsmittel entfernt. Es wird L-*allo*-Threonin (Hydrochlorid) (*allo*-**146**) erhalten. Es wird ohne Aufreinigung weiterverwendet.

Das Rohprodukt wird in 100 mL CH₃OH (abs) gelöst und auf 0 °C gekühlt. Zu der Reaktionslösung wird vorsichtig SOCl₂ (8.5 mL, 117 mmol, 1.5 Äquiv.) getropft und weitere 5 Minuten bei 0 °C gerührt sowie 3 h unter Rückfluss erhitzt. Anschließend wird das Lösungsmittel unter Vakuum entfernt, der Rückstand in Toluol aufgenommen und wiederholt unter vermindertem Druck entfernt (3x). Dies erfolgt noch zwei Mal mit Et₂O. Methyl L-*allo*-Threoninat (Hydrochlorid) (**159**) wird aus EtOAc/EtOH kristallisiert und wird als weißer Feststoff erhalten (11.9 g, 90% über drei Stufen).

Chemical Formula: C₅H₁₂CINO₃ Molecular Weight: 169,61

Schmelzpunkt 109-111°C, Lit^[180]: 95-97°C.

IR 3393, 2899, 2926, 1736, 1600, 1582, 1524, 1495, 1437, 1381, 1346, 1235, 1167, 1119, 1057, 1031, 966, 927, 888, 833, 794, 649, 563.

¹H NMR (300 MHz, CD₃OD) 1.26 (d, J = 6.6 Hz, 3H, CH(OH)CH₃^{γ -Thr}), 3.86 (s, 3H, COOCH₃), 4.07 (d, J = 3.6 Hz, 1H, NCH^{α -Thr}), 4.25 (qd, J = 6.6, 3.6 Hz, 1H, CH(OH)^{β -Thr}).

¹³C NMR (75 MHz, CD₃OD) 18.6 (CH(OH)CH₃^{γ-Thr}), 53.6 (COOCH₃), 59.5 (NCH^{α-Thr}), 66.6 (CH(OH)^{β-Thr}), 168.9 (COOCH₃).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₅H₁₂O₃N⁺ (freies Amin) 134.08117, gefunden 134.08089.

 $[\alpha]^{20}{}_{D}$ +21.7° (*c* = 1.05, MeOH), Lit^[180]: $[\alpha]^{26}{}_{D}$ +28.0° (*c* = 0.1, MeOH).

Methyl dimethyl-L-Alanyl-L-allo-Threoninat (160)

Zu einer Lösung aus Methyl L-*allo*-Threoninat (Hydrochlorid) (**159**) (123 mg, 0.73 mmol, 1.0 Äquiv.) und Dimethyl L-Alanin (**155**) (85.2 mg, 0.73 mmol, 1.0 Äquiv.) in 7.3 mL CH_2Cl_2 werden DIPEA (495 μ L, 2.91 mmol, 4.0 Äquiv.) sowie HOBt x H_2O (118 mg, 0.87 mmol, 1.2 Äquiv.) und EDCI (168 mg, 0.87 mmol, 1.2 Äquiv.) gegeben. Die Lösung rührt 24 h lang bei Raumtemperatur. Die organische Phase wird durch Zugabe von CH_2Cl_2 verdünnt, mit gesättigter NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (EtOAc/EtOH 96:4). Das Dipeptid wird als farbloses Öl erhalten (91 mg, 54%).

Chemical Formula: C₁₀H₂₀N₂O₄ Molecular Weight: 232,28

R_f (SiO₂) 0.18 EtOAc/EtOH 8:2.

IR 3370, 2978, 2951, 2871, 2832, 2787, 1740, 1656, 1511, 1454, 1436, 1372, 1298, 1262, 1202, 1161, 1133, 1100, 1044, 1030, 933, 602, 585, 569, 555.

¹H NMR (500 MHz, CD₃OD) 1.23 (überlappt d, J = 6.8 Hz, 3H, CHCH₃^{β-Ala}), 1.23(überlappt, d, J = 6.4 Hz, 3H, CH(OH)CH₃^{γ-Thr}), 2.31 (s, 6H, N(CH₃)₂), 3.01 (q, J = 6.8 Hz, 1H, CHCH₃^{α-Ala}), 3.74 (s, 3H, COOCH₃), 4.05 (qd, J = 6.4, 5.1 Hz, 1H, CH(OH)^{β-Thr}), 4.43 (d, J = 5.1 Hz, 1H, NHCH^{α-Thr}).

¹³C NMR (125 MHz, CD₃OD) 14.3 (CHCH₃^{β-Ala}), 19.8 (CH(OH)CH₃^{γ-Thr}), 42.6 (N(CH₃)₂), 52.6 (COOCH₃), 59.3 (NHCH^{α-Thr}), 65.8 (CHCH₃^{α-Ala}), 68.8 (CH(OH)^{β-Thr}), 172.12 (COOCH₃^{Thr}), 176.3 (CO^{Ala}).

HRMS (ESI) m/z $[M+H]^+$ berechnet für $C_{10}H_{21}O_4N_2^+$ 233.14958, gefunden 233.14900.

 $[\alpha]^{22}_{D}$ -15.1 (*c* = 1.0, CH₃OH).

Methyl (4S,5R)-2-((S)-1-(dimethylamino)ethyl)-5-methyl-4,5-dihydrooxazol-4-carboxylat (161)

Das Dipeptid **160** (240 mg, 1.03 mmol, 1.0 Äquiv.) wird in 18 mL THF (abs) unter Argon gelöst, mit PPh₃ (531 mg, 2.03 mmol, 1.96 Äquiv.) versetzt und die Reaktion auf 0 °C gekühlt. Es wird DIAD (398 μ L, 2.03 mmol, 1.96 Äquiv.) zugegeben und 3 h bei 0 °C gerührt. Das Lösungsmittel wird im Vakuum entfernt und das Rohprodukt via Säulenchromatographie aufgereinigt (EtOAc/EtOH 6:4 + 1% NEt₃). Das gewünschte Produkt wird als gelbes Öl erhalten (100 mg, 45%).

Chemical Formula: C₁₀H₁₈N₂O₃ Molecular Weight: 214,27

R_f (SiO₂) 0.32 EtOAc/EtOH 6:4 + NH₄OH.

IR 2980, 2942, 2871, 2829, 2782, 1740, 1646, 1452, 1438, 1376, 1309, 1266, 1201, 1173, 1096, 1078, 1043, 1016, 987, 962, 939, 867, 798, 745, 722, 607.

¹H NMR (500 MHz, CDCl₃) 1.33 (d, J = 6.8 Hz, 3H, NCHCH₃^{β-Ala}), 1.43 (d, J = 6.4 Hz, 3H, OCHCH₃^{γ-Thr}), 2.34 (s, 6H, N(CH₃)₂), 3.37 (q, J = 6.8 Hz, 1H, NCHCH₃^{α-Ala}), 3.77 (s, 3H, COOCH₃), 4.26 (d, J = 6.7 Hz, 1H, NCHCO^{α-Thr}), 4.83 (dq, J = 6.7, 6.4 Hz, 1H, OCHCH₃^{β-Thr}).

¹³C NMR (125 MHz, CDCl₃) 15.2 (NCHCH₃^{β -Ala}), 21.1 (OCHCH₃^{γ -Thr}), 42.1 (N(CH₃)₂), 52.7 (COOCH₃), 58.4 (NCHCH₃^{α -Ala}), 74.3 (NCHCO^{α -Thr}), 78.8 (OCHCH₃^{β -Thr}), 169.9 (C=N), 171.7 (COOCH₃^{Thr}).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₁₀H₁₉N₂O₃⁺ 215.13902, gefunden 215.13847.

 $[\alpha]^{22}_{D}$ +122.3 (*c* = 0.75, CH₂Cl₂).

5.3.2 Vorschriften zu Abschnitt 3.2.3

(4S)-N-Tert-butyloxycarbonyl-4-methyl-1,3-oxazolidin-5-on (168)

Boc-L-Alanin (**167**) (3.00 g, 16.0 mmol, 1.00 Äquiv.) wird in 150 mL Benzol gelöst und Paraformaldehyd (0.62 g, 21.0 mmol, 1.30 Äquiv.) und *p*-TosOH (0.14 g, 0.8 mmol, 0.05 Äquiv.) zugegeben und die Mischung über Nacht unter Rückfluss erhitzt. Dann wird die Reaktion mit EtOAc verdünnt und die organische Phase mit 5% KHCO₃-Lösung und mit gesättiger NaCl-Lösung gewaschen. Anschließend wird die organische Phase über Na₂SO₄ getrocknet. Nach Entfernung des Lösungsmittels unter Vakuum wird ein farbloser Feststoff erhalten (2.46 g, 77%), der ohne weitere Aufreinigung verwendet wird.^[181]

Chemical Formula: C₉H₁₅NO₄ Molecular Weight: 201,22

Schmelzpunkt 66-68°C, Lit^[181]: 64-67 °C.

IR 2980, 2934, 1798, 1701, 1479, 1451, 1387, 1367, 1325, 1291, 1256, 1163, 1134, 1097, 1042, 1002, 868, 809, 768, 713, 670.

¹H NMR (300 MHz, CDCl₃) 1.50 (s, 9H, C(CH₃)₃), 1.52 (d, J = 6.9 Hz, 3H, CHCH₃^{β -Ala}, überlappt), 4.23 (q, J = 6.9 Hz, 1H, CHCH₃^{α -Ala}), 5.22 (dd, J = 4.5, 1.0 Hz, 1H, NCHH), 5.41 (d, J = 4.5 Hz, 1H, NCHH).

¹³C NMR (75 MHz, CDCl₃) 16.9 (CHCH₃^{β-Ala}), 28.4 (C(CH₃)₃), 50.8 (CHCH₃^{α-Ala}), 77.6 (NCH₂), 82.1 (C(CH₃)₃), 128.5 (NCO), 173.5 (COO).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₉H₁₆O₄N⁺ 202.10738, gefunden 202.10713.

 $[\alpha]^{23}_{D}$ +100.3 (*c* = 1.0, CHCl₃); Lit^[181]: $[\alpha]^{20}_{D}$ + 78.1 (*c* = 1.0, CHCl₃).

Methyl-L-Alanin (169)

(4*S*)-*N*-*tert*-Butyloxycarbonyl-4-methyl-1,3-oxazolidin-5-on (**168**) (2.46 g, 12.2 mmol, 1.0 Äquiv.) wird in 70 mL CH₂Cl₂ gelöst und Et₃SiH (6.53 mL, 40.8 mmol, 3.3 Äquiv.) und 70 mL Trifluoressigsäure zugegeben. Die Reaktionsmischung wird 24 h lang gerührt und die flüchtigen Bestandteile im Vakuum entfernt. Der Rückstand wird in Toluol gelöst und erneut im Vakuum einkonzentriert. Die azeotropische Destillation wird zwei mal mit Toluol und ein mal mit Et₂O wiederholt. Ein leicht oranger Feststoff wird erhalten, der aus CH₃OH umkristallisiert wird. Das gewünschte Produkt wird als farbloser kristalliner Feststoff erhalten (1.25 g, 99%).^[117]

Chemical Formula: C₄H₉NO₂ Molecular Weight: 103,12

Schmelzpunkt 140 °C (aus CH₃OH/Et₂O).

IR 3046, 2803, 2487, 2279, 1957, 1644, 1475, 1460, 1437, 1370, 1308, 1254, 1180, 1145, 1108, 1016, 890, 826, 795, 722, 603.

¹H NMR (300 MHz, CD₃OD) 1.56 (d, *J* = 7.1 Hz, 3H, CHCH₃^{β-Ala}), 2.72 (s, 3H, NHCH₃), 3.95 (q, *J* = 7.1 Hz, 1H, CHCH₃^{α-Ala}).

¹³C NMR (75 MHz, CD₃OD) 14.7 (CHCH₃^{β-Ala}), 31.6 (NHCH₃), 57.7 (CHCH₃^{α-Ala}), 172.0 (COOH).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₄H₁₀O₂N⁺ 104.07061, gefunden 104.07080.

 $[\alpha]^{23}_{D}$ – 52.9 (*c* = 1.0, CHCl₃); Lit^[182]: $[\alpha]_{D}$ – 38.7 (*c* = 1.0, CHCl₃) keine Temperatur angegeben.

Ethyl methyl-L-Alaninat (Hydrochlorid) (170)

Eine Lösung aus *N*-Methyl-L-alanin (**169**) (0.5 g, 4.8 mmol, 1.0 Äquiv.) in 10 mL EtOH wird auf 0 °C gekühlt. SOCl₂ (1.1 mL, 14.5 mmol, 3.0 Äquiv.) wird tropfenweise vorsichtig zugegeben. Nach 30 Minuten wird die Lösung auf Raumtemperatur gebracht und über Nacht gerührt. Anschließend werden die flüchtigen Bestandteile im Vakuum entfernt. Der Rückstand wird in Toluol aufgenommen und erneut im Vakuum eingeengt. Dies wird zwei Mal mit Toluol und zwei Mal mit Et₂O wiederholt, bis ein farbloser Feststoff entsteht. Dieser wird aus Aceton umkristallisiert (0.5 g, 85%).

CIH₂N

Chemical Formula: C₆H₁₄CINO₂ Molecular Weight: 167,63

Schmelzpunkt 47 °C.

IR 2949, 2803, 2746, 2629, 2598, 2540, 2469, 2443, 1713, 1586, 1457, 1414, 1365, 1305, 1238, 1193, 1168, 1104, 1051, 1039, 1017, 889, 862, 822, 730, 609.

¹H NMR (300 MHz, (CD₃)₂SO) 1.24 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃), 1.45 (d, *J* = 7.2 Hz, 2H, CHCH₃^{β -Ala}), 2.54 (s, 3H, NCH₃), 4.06 (q, *J* = 7.2 Hz, 1H, CHCH₃^{α -Ala}), 4.22 (q, *J* = 7.1 Hz, 2H, OCH₂CH₃).

¹³C NMR (75 MHz, (CD₃)₂SO) 13.85 (OCH₂CH₃), 13.93 (CHCH₃^{β-Ala}), 30.4 (NCH₃), 55.0 (CHCH₃^{α-Ala}), 61.9 (OCH₂CH₃), 169.3 (COO).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₆H₁₄NO₂⁺ (freies Amin) 132.10245, gefunden 132.10160.

 $[\alpha]^{23}_{D}$ +2.9 (*c* = 1.0, EtOH).

Ethyl (S)-2-hydroxy-3-methylbutanoat (171)

Zu einer Lösung aus (*S*)-2-Hydroxy-3-methylbutansäure (**164**) (2.5 g, 21.2 mmol, 1.0 Äquiv.) in 25 mL EtOH wird H_2SO_4 (0.6 mL, 10.5 mmol, 0.5 Äquiv.) zugegeben und die Lösung 3 h lang unter Rückfluss gerührt. Nach dem Abkühlen auf Raumtemperatur wird das Lösungsmittel im Vakuum entfernt und der Rückstand in Et₂O gelöst sowie mit gesättigter NaHCO₃-Löung und gesättigter NaCl-Lösung gewaschen. Die organische Phase wird über Na₂SO₄ getrocknet und das Lösungmittel erneut im Vakuum entfernt. Es wird ein farbloses Öl erhalten (2.5 g, 81%).

Chemical Formula: C₇H₁₄O₃ Molecular Weight: 146,19

IR 3488, 2965, 2934, 2876, 1730, 1651, 1468, 1450, 1388, 1379, 1260, 1213, 1179, 1139, 1071, 1032.

¹H NMR (300 MHz, CDCl₃) 0.86 (d, J = 6.9 Hz, 3H, CH(CH₃)₂^{γ-Hiv}), 1.02 (d, J = 6.9 Hz, 3H, CH(CH₃)₂^{γ-Hiv}), 1.30 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 2.07 (sptd, J = 6.9, 3.6 Hz, 1H, CH(CH₃)₂^{β-Hiv}), 2.79 (s, 1H, OH), 3.80 (s, 3H, OCH₃), 4.02 (d, J = 3.6 Hz, 1H, COCH^{α -Hiv}</sub>), 4.24 & 4.25 (q, J = 7.1 Hz, 2H, COCH₂CH₃).

¹³C NMR (125 MHz, CDCl₃) 14.4 (OCH₂CH₃), 16.1 (CH(*C*H₃)₂^{γ-Hiv}), 18.9 (CH(*C*H₃)₂^{γ-Hiv}), 32.3 (*C*H(CH₃)₂^{β-Hiv}), 61.7 (OCH₂CH₃), 75.1 (COCH^{α-Hiv}), 162.5 (*C*OOCH₃).

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₇H₁₄O₃Na⁺ 169.08352, gefunden 169.08320.

 $[\alpha]^{23}_{D}$ + 7.3 (*c* = 1.0, CHCl₃); Lit^[183]: für Ethyl (*R*)-2-hydroxy-3-methylbutanoat $[\alpha]^{22}_{D}$ — 9.5 (*c* = 1, CHCl₃).

Ethyl (S)-2-(benzyloxy)-3-methylbutanoat (172)

Zu einer gekühlten Suspension aus NaH (60% in mineral oil, 448 mg, 11.2 mmol, 1.3 Äquiv.) in 15 mL THF (abs) wird unter Argon Ethyl (*S*)-2-hydroxy-3-methylbutanoat (**171**) (1.26 g, 8.6 mmol, 1.0 Äquiv.) tropfenweise zugegeben. Nach 5 Minuten wird Benzylbromid (1.33 mL, 11.2 mmol, 1.3 Äquiv.) sowie TBAI (321 mg, 0.9 mmol, 0.1 Äquiv.) zugegeben und die Reaktion bei Raumtemperatur 2 h lang gerührt. Der Reaktionsfortschritt wird per Dünnschichtchromatographie bestimmt (CH/EtOAc 4:1). Die Reaktionslösung wird mit Et₂O verdünnt und H₂O vorsichtig zugegeben. Die Phasen werden anschließend getrennt und die organische Phase wird mit gesättigter NaCl-Lösung gewaschen sowie über Na₂SO₄ getrocknet. Nach Entfernung des Lösungsmittels im Vakuum, wird der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 15:1). Das Produkt wird als farbloses Öl erhalten (1.62 g, 80 %).

Chemical Formula: C₁₄H₂₀O₃ Molecular Weight: 236,31

R_f (SiO₂) 0.31 (CH/EtOAc 15:1).

IR 2966, 2934, 2875, 1744, 1730, 1498, 1455, 1388, 1368, 1347, 1261, 1185, 1140, 1093, 1072, 1028, 908, 852, 736, 697, 620.

¹H NMR (300 MHz, CDCl₃) 0.97 (d, J = 6.8 Hz, 3H, CH(CH₃)₂^{v-Hiv}), 0.99 (d, J = 6.8 Hz, 3H, CH(CH₃)₂ v -Hiv}), 1.31 (t, J = 7.1 Hz, 3H, CH₂CH₃), 2.10 (sptd, J = 6.8, 5.8 Hz, 1H, CH(CH₃)₂ $^{\beta$ -Hiv}), 3.69 (d, J = 5.8 Hz, 1H, OCH $^{\alpha$ -Hiv}), 4.23 (qd, J = 7.1, 2.3 Hz, 1H, CH₂CH₃), 4.39 (d, J = 11.8 Hz, 1H, OCHHPh), 4.72 (d, J = 11.8 Hz, 1H, OCHHPh), 7.27-7.40 (m, 5H, H^{ar}).

¹³C NMR (75 MHz, CDCl₃) 14.5 (CH₂CH₃), 18.0 (CH(CH₃)₂^{γ-Hiv}), 18.9 (CH(CH₃)₂^{γ-Hiv}), 31.7 (CH(CH₃)₂^{β-Hiv}), 60.7 (CH₂CH₃), 72.6 (OCH₂Ph), 83.5 (OCH^{α-Hiv}), 127.9 (C^{ar}), 128.1 (C^{ar}), 128.4 (C^{ar}), 137.9 (C^{ar}), 172.6 (COO).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für $C_{14}H_{20}O_3Na^+$ 259.13047, gefunden 259.12993.

 $[\alpha]^{22}_{D}$ -81.7 (*c* = 1.0, CHCl₃).

(S)-2-(Benzyloxy)-3-methylbutansäure (173)

Eine Lösung aus Ethyl (*S*)-2-(benzyloxy)-3-methylbutanoat (**172**) (330 mg, 1.4 mmol, 1.0 Äquiv.) in 1.5 mL EtOH wird auf 0 °C gekühlt. Dann wird eine Lösung aus KOH (78 mg, 1.4 mmol, 1.0 Äquiv.) in 1.5 mL H₂O tropfenweise zur Reaktionslösung gegeben. Die Reaktion wird auf Raumtemperatur gebracht und über Nacht gerührt. Die Reaktion wird mit 1M NaOH verdünnt und die wässrige Phase mit Et₂O gewaschen. Die organische Phase wird mit wenig gesättigter NaHCO₃-Lösung rückextrahiert. Die wässrigen Phasen werden vereinigt und mit 1M HCl (pH 2) angesäuert und drei Mal mit EtOAc extrahiert. Die vereinigten EtOAc-Phasen werden mit gesättigter NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und die flüchtigen Bestandteile im Vakuum entfernt. Es wird ein farbloses Öl erhalten (258 mg, 89%).^[119,120]

Chemical Formula: C₁₂H₁₆O₃ Molecular Weight: 208,26

IR 3080, 2965, 2876, 1714, 1498, 1455, 1389, 1369, 1209, 1182, 1140, 1072, 1029, 984, 736, 698.

¹H NMR (300 MHz, CDCl₃) 1.02 (d, J = 6.9 Hz, 3H, CH(CH₃)₂^{γ -Hiv}), 1.03 (d, J = 6.9 Hz, 3H, CH(CH₃)₂^{γ -Hiv}), 2.18 (sptd, J = 6.9, 4.7 Hz, 1H, CH(CH₃)₂^{β -Hiv}), 3.83 (d, J = 4.7 Hz, 1H, COCH^{α -Hiv}), 4.49 (d, J = 11.5 Hz, 1H, OCHHPh), 4.75 (d, J = 11.5 Hz, 1H, OCHHPh), 7.29-7.41 (m, 5H, H^{ar}).

¹³C NMR (75 MHz, CDCl₃) 17.5 (CH(*C*H₃)₂^{γ-Hiv}), 18.9 (CH(*C*H₃)₂^{γ-Hiv}), 31.7 (*C*H(CH₃)₂^{β-Hiv}), 73.4 (OCH₂), 83.0 (COCH^{α-Hiv}), 128.2 (C^{ar}), 128.3 (C^{ar}), 128.7 (C^{ar}), 137.2 (C^{ar}), 176.2 (COO).

HRMS (ESI) m/z $[M-H]^{-}$ berechnet für C₁₂H₁₅O₃⁻ 207.10157, gefunden 207.10074.

 $[\alpha]^{22}_{D}$ - 80.0 (*c* = 1.0, THF); Lit^[184]: $[\alpha]^{25}_{D}$ - 84.0 (*c* = 1.0, THF).

(S)-5-(2-(Benzyloxy)-1-hydroxy-3-methylbutyliden)-2,2-dimethyl-1,3-dioxan-4,6-dion (174)

Zu einer Lösung aus (*S*)-2-(Benzyloxy)-3-methylbutansäure (**173**) (138 mg, 0.66 mmol, 1.0 Äquiv.) in 7 mL CH₂Cl₂ (abs) wird EDCI (152 mg, 0.80 mmol, 1.2 Äquiv.) sowie DMAP (81 mg, 0.66 mg, 1.0 Äquiv.) unter Argon zugegeben. Die Mischung wird 25 Minuten lang gerührt und anschließend Meldrumsäure (105 mg, 0.73 mmol, 1.1 Äquiv.) zugegeben. Die gelbe Lösung wird 24 h lang gerührt und die flüchtigen Bestandteile im Vakuum entfernt. Der Rückstand wird in EtOAc gelöst und die organische Phase mit 1M HCl und gesättigter NaCl-Lösung gewaschen. Nachdem über Na₂SO₄ getrocknet wurde, wird das Lösungsmittel im Vakuum entfernt, um ein gelbes Öl zu erhalten (189 mg, 85%), welches ohne weitere Aufreinigung verwendet wird.^[123]

Chemical Formula: C₁₈H₂₂O₆ Molecular Weight: 334,37

IR 2965, 2875, 1737, 1664, 1567, 1497, 1455, 1413, 1394, 1381, 1343, 1270, 1203, 1150, 1070, 1023, 973, 936, 908, 800, 732, 697, 649.

¹H NMR (300 MHz, CDCl₃) 1.02 (d, J = 6.9 Hz, 3H, CH(CH₃)₂^{γ -Hiv}), 1.05 (d, J = 6.9 Hz, 3H, CH(CH₃)₂ $^{\gamma$ -Hiv}), 1.71 (s, 3H, C(CH₃)₂), 1.73 (s, 3H, C(CH₃)₂), 2.13 (sptd, J = 6.9, 5.8 Hz, 1H, CH(CH₃)₂ $^{\beta$ -Hiv}), 4.56 (s, 2H, CHOCH₂), 5.29 (d, J = 5.8 Hz, 1H, CHOCH₂ $^{\alpha$ -Hiv}), 7.27-7.39 (m, 5H, H^{ar}), 15.46 (s, 1H, OH).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₁₈H₂₃O₆⁺ 335.14891, gefunden 335.14859.

Da das Produkt nich weiter aufgereinigt werden kann, wird kein Drehwert gemessen.

(*S*)-5-(2-(Benzyloxy)-1-hydroxy-3-methylbutyliden)-2,2-dimethyl-1,3-dioxan-4,6-dion (**174**) (189 mg, 0.57 mmol, 1.2 Äquiv.) wird in 4 mL Toluol (abs) gelöst und Ethyl methyl-L-alaninat Hydrochlorid (**170**) (62 mg, 0.47 mmol, 1.0 Äquiv) und Triethylamin (72 μ L, 0.52 mmol, 1.1 Äquiv.) werden zugegeben. Die Reaktionslösug wird unter Reflux 24 h lang gerührt. Anschließend wird das Lösungsmittel unter Vakuum entfernt und der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 4:1). Es wird die β -Ketoverbindung als leicht gelbes Öl erhalten (84 mg, 41%). Das Öl wird in CH₃OH gelöst und Pd/C (10%, 15 mg) wird zugegeben^[185]. Der Ansatz wird unter eine H₂-Atmosphäre gesetzt und über Nacht gerührt. Anschließend wird die Suspension über Celite abfiltriert. Das Lösungsmittel des Filtrats wird im Vakuum entfernt, um das Produkt als gelbes Öl zu erhalten (48 mg, 80%).

Chemical Formula: C₁₃H₂₃NO₅ Molecular Weight: 273,33

IR 3453, 2966, 2937, 2876, 1734, 1627, 1465, 1368, 1315, 1209, 1181, 1092, 1022, 950, 860, 785, 556.

¹H NMR (500 MHz, C₆D₆) Isomerengemisch aus mindestens drei Spezies. Hauptisomer: 0.85 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 0.87 (d, J = 6.9 Hz, 3H, CH(CH₃)(CH₃)^{γ -Hiv}</sub>), 1.04 (d, J = 7.3 Hz, 3H, NCHCH₃^{β -Ala}), 1.05 (d, J = 6.9 Hz, 3H, CH(CH₃)(CH₃)^{γ -Hiv}</sub>), 2.16 (sptd, J = 6.9, 3.5 Hz, 1H, CH(CH₃)(CH₃)^{β -Hiv}</sub>), 2.33 (s, 3H, NCH₃), 3.11 (d, J = 14.3 Hz, 1H, COCHHCO), 3.40 (d, J = 14.3 Hz, 1H, COCHHCO), 3.84 (q, J = 7.0 Hz, 2H, OCH₂CH₃), 3.84 (d, J = 3.5 Hz, 1H, COCH(OH)^{α -Hiv}</sub>), 5.09 (q, J = 7.3 Hz, 1H, NCHCH₃^{α -Ala}).

¹³C NMR (125 MHz, C₆D₆) Hauptisomer: 14.1 (CH(CH₃)(CH₃)^{γ-Hiv}), 14.2 (CH(CH₃)(CH₃)^{γ-Hiv}), 16.0 (OCH₂CH₃), 19.8 (NCHCH₃^{β-Ala}), 31.4 (CH(CH₃)₂^{β-Hiv}), 31.6 (NCH₃), 45.7 (COCH₂CO), 52.8 (NCHCH₃^{α-Ala}), 61.1 (OCH₂CH₃), 85.7 (COCH(OH)^{α-Hiv}), 168.1 (NCO), 171.3 (COO^{Ala}), 207.5 (COCH(OH)).

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₁₃H₂₃O₅NNa⁺ 296.14684, gefunden 296.14606.

 $[\alpha]^{20}_{D}$ -23.7 (*c* = 0.53, CH₂Cl₂).

5.3.3 Vorschriften zu Abschnitt 3.2.4

(S)-2-Acetoxy-3-methylbutansäure (177)

Zum Edukt, (*S*)-2-Hydroxy-3-methyl-butansäure (**164**) (500 mg, 4.23 mmol, 1.0 Äquiv.) wird Acetylchlorid (0.51 mL, 7.62 mmol, 1.8 Äquiv.) bei Raumtemperatur zugetropft. Die entstehende Lösung wird 5 h lang gerührt. Dann wird überschüssiges Acetylchlorid durch azeotrope Destillation mit Toluol und Diethylether im Vakuum entfernt. Ein farbloses Öl wird erhalten (677 mg, 99%), welches ohne weitere Aufreinigung eingesetzt wird.^[131]

Chemical Formula: C₇H₁₂O₄ Molecular Weight: 160,16900

R_f (SiO₂) 0.26 CH/EtOAc 1:1.

IR 3500, 3141, 2971, 2940, 2881, 1718, 1469, 1429, 1393, 1373, 1227, 1184, 1130, 1112, 1035, 905, 728, 642.

¹H NMR (500 MHz, CDCl₃) 1.03 & 1.04 (je d, *J* = 7.0 Hz, 3H, CH(CH₃)₂^{γ-Hiv}), 2.16 (s, 3H, COOCH₃), 2.28 (sptd, *J* = 7.0, 4.3 Hz, 1H, CH(CH₃)₂^{β-Hiv}), 4.89 (d, *J* = 4.3 Hz, 1H, COOCH^{α-Hiv}).

¹³C NMR (125 MHz, CDCl₃) 17.3 & 18.9 (CH(CH₃)₂^{γ-Hiγ}), 20.7 (COOCH₃), 30.1 (CH(CH₃)₂^{β-Hiγ}), 76.4 (COOCH^{α-Hiγ}), 171.1 (COOCH₃), 174.4 (COOH).

HRMS (ESI) m/z $[M-H]^{-}$ berechnet für C₇H₁₁O₄⁻ 159.06519, gefunden 159.06523.

 $[\alpha]^{29}{}_{D}$ -24.9 (c = 1.0, CH₃OH) Lit^[131]: $[\alpha]^{20}{}_{D}$ -22.2 (c = 0.01, CH₃OH).

(S)-1-(2,2-Dimethyl-4,6-dioxo-1,3-dioxan-5-yliden)-1-hydroxy-3-methylbutan-2-yl acetat (178)

(*S*)-2-Acetoxy-3-methylbutansäure (**177**) (339 mg, 2.12 mmol, 1.0 Äquiv.) wird unter Argon in 22.5 mL CH₂Cl₂ (abs) gelöst und EDCI (487 mg, 2.54 mmol, 1.2 Äquiv.) sowie DMAP (259 mg, 2.12 mmol, 1.0 Äquiv.) zugegeben. Der Ansatz wird für 30 Minuten gerührt und Meldrumsäure (336 mg, 2.33 mmol, 1.1 Äquiv.) zugegeben. Die gelbe Lösung wird über Nacht gerührt. Anschließend wird das Lösungsmittel im Vakuum entfernt und der Rückstand in EtOAc gelöst. Die EtOAc-Phase wird ein Mal mit 1M HCl und ein Mal mit gesättigter NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im

Vakuum entfernt. Es wird ein gelbes Öl erhalten (560 mg, 92%), welches ohne weitere Aufreinigung direkt weiterverwendet wird.

Chemical Formula: C₁₃H₁₈O₇ Molecular Weight: 286,28

IR 2972, 2943, 2879, 1737, 1668, 1574, 1466, 1419, 1394, 1382, 1372, 1350, 1294, 1270, 1228, 1202, 1153, 1081, 1022, 973, 939, 914, 902, 840, 797, 730, 637, 606, 565.

¹H NMR (500 MHz, CDCl₃) 1.04 (d, J = 6.7 Hz, 3H, CH(CH₃)(CH₃)^{γ -Hiv}), 1.11 (d, J = 7.0 Hz, 3H, CH(CH₃)(CH₃)^{γ -Hiv}), 1.75 & 1.77 (je s, 3H, C(CH₃)₂), 2.15 (s, 3H, COOCH₃), 2.29 (qqd, J = 7.0, 6.7, 4.3 Hz, 1H, CH(CH₃)₂^{β -Hiv}), 6.01 (d, J = 4.3 Hz, 1H, COOCH^{α -Hiv}), 15.51 (s, 1H, OH).

¹³C NMR (125 MHz, CDCl₃) 16.9 & 19.5 (CH(*C*H₃)₂^{γ-Hiv}), 20.5 (COO*C*H₃), 26.8 & 27.1 (C(*C*H₃)₂), 31.0 (*C*H(CH₃)₂^{β-Hiv}), 76.6 (COO*C*H^{α-Hiv}), 91.6 (C(OH)=*C*^{qu}), 105.8 (*C*(CH₃)₂), 159.9 (C^{qu}*C*OO), 171.0 (*C*OOCH₃), 193.4 (*C*(OH)=C^{qu}).

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₁₃H₁₈O₇Na⁺ 309.09447, gefunden 309.09459.

 $[\alpha]^{25}_{D}$ -1.4 (c = 1.3, CHCl₃).

Ethyl N-((S)-4-acetoxy-5-methyl-3-oxohexanoyl)-N-methyl-L-Alaninat (179)

Das Meldrumsäure-Addukt **178** (560 mg, 1.96 mmol, 1.2 Äquiv.), wird unter Argon vorgelegt und in Toluol (abs) (13 mL) gelöst. Es werden Ethyl methyl-L-alaninat Hydrochlorid (**170**) (273 mg, 1.63 mmol, 1.0 Äquiv.) und Triethylamin (0.25 mL, 181 mg, 1.79 mmol, 1.1 Äquiv.) zugegeben und über Nacht unter Reflux gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 2:1). Es wird ein gelbes Öl erhalten (339 mg, 55%).

Chemical Formula: C₁₅H₂₅NO₆ Molecular Weight: 315,37 R_f (SiO₂) 0.40 CH/EtOAc 2:1.

IR 2971, 2941, 2876, 1737, 1638, 1595, 1491, 1467, 1373, 1322, 1231, 1124, 1095, 1030, 957, 861, 786, 612.

¹H NMR (500 MHz, CDCl₃) Gemisch aus mehreren Isomeren, Haup-Keto und Haupt-Enol: β -Keto-Isomer: 0.95 (d, *J* = 5.8 Hz, 3H, CH(CH₃)(CH₃)^{y-Hiv}), 1.04 (d, *J* = 6.8 Hz, 3H, CH(CH₃)(CH₃)^{y-Hiv}), 1.27 (t, *J* = 6.4 Hz, 3H, COOCH₂CH₃), 1.42 (d, *J* = 7.7 Hz, 3H, NCHCH₃^{β -Ala}), 2.15 (s, 3H, COOCH₃), 2.36 (dqq, *J* = 10.7, 6.8, 5.8 Hz, 1H, OCHCH(CH₃)₂^{β -Hiv}), 2.92 (s, 3H, NCH₃), 3.64 (d, *J* = 16.5 Hz, 1H, COCHHCO), 3.72 (d, *J* = 16.5 Hz, 1H, COCHHCO), 4.18 (q, *J* = 6.4 Hz, 2H, COOCH₂CH₃), 4.98 (d, *J* = 10.7 Hz, 1H, OCHCH(CH₃)₂^{α -Hiv}), 5.22 (q, *J* = 7.7 Hz, 2H, OCH₂CH₃).

¹³C NMR (125 MHz, CDCl₃) Gemisch aus mehreren Isomeren, Hauptisomer: 14.3 (COOCH₂CH₃), 14.5 (NCHCH₃^{β-Ala}), 16.8 (CH(CH₃)₂^{ν -Hiv</sub>), 19.4 (CH(CH₃)₂^{ν -Hiv}), 20.7 (COOCH₃), 29.4 (OCHCH(CH₃)₂^{β -Hiv}), 32.3 (NCH₃), 47.3 (COCH₂CO), 52.5 (NCHCH₃^{α -Ala}), 61.4 (COOCH₂CH₃), 78.4 (OCHCH(CH₃)₂^{α -Hiv}), 166.7 (COCH₂CON), 171.0 (COOCH₃), 171.8 (COOCH₂CH₃), 201.0 (COCH₂CON).}

HRMS (ESI) m/z $[M+Na]^+$ berechnet für $C_{15}H_{25}O_6NNa^+$ 338.15741, gefunden 338.15707.

 $[\alpha]^{25}_{D}$ -62.0 (*c* = 1.0, CHCl₃).

(S)-1-((S)-4-Hydroxy-1,5-dimethyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)-3-methyl-1-oxobutan-2yl acetat (181)

Das β -Ketoamid, Ethyl *N*-((*S*)-4-acetoxy-5-methyl-3-oxohexanoyl)-*N*-methyl-L-alaninat (**179**) (29 mg, 92 µmol, 1.0 Äquiv.), wird unter Argon in 0.5 mL THF (abs) gelöst und bei Raumtemperatur mit TBAF (1M in THF, 0.18 mL 184 µmol, 2.0 Äquiv.) versetzt. Nach 30 Minuten ist das Edukt abreagiert (Dünnschichtchromatographie CH/EtOAc 1:2) und das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird in Et₂O aufgenommen und zwei Mal mit gesättigter NH₄Cl-Lösung ausgeschüttelt, anschließend wird mit wenig H₂O nachgewaschen. Das Lösungsmittel wird im Vakuum entfernt, der Rückstand zwei Mal mit Toluol versetzt und jeweils im Vakuum einkonzentriert. Es wird ein farbloses bis leicht oranges Öl erhalten (24 mg, 97%), welches nicht weiter aufgereinigt wird.^[127]

Chemical Formula: C₁₃H₁₉NO₅ Molecular Weight: 269,30

R_f (SiO₂) 0.21 CH₂Cl₂/CH₃OH 1:1.

IR 2974, 2934, 2876, 1744, 1712, 1649, 1627, 1450, 1372, 1268, 1233, 1159, 1033, 927, 793, 610, 578. ¹H NMR (500 MHz, CD₃OD) 0.97 (d, *J* = 7.0 Hz, 3H, CH(CH₃)(CH₃)^{γ -Hiv}</sub>), 1.06 (d, *J* = 7.0 Hz, 3H, CH(CH₃)(CH₃)^{γ -Hiv</sub>), 1.37 (d, *J* = 7.0 Hz, 3H, NCHCH₃^{β -Ala}), 2.10 (s, 3H, COOCH₃), 2.24 (sptd, *J* = 7.0, 4.6 Hz, 1H, OCHCH(CH₃)₂^{β -Hiv}), 2.99 (s, 3H, NCH₃), 3.93 (q, *J* = 7.0 Hz, 1H, NCHCH₃^{α -Ala}), 5.66 (d, *J* = 4.6 Hz, 1H, OCHCH(CH₃)₂^{α -Hiv}).}

¹³C NMR (75 MHz, CD₃OD) 14.9 (NCHCH₃^{β-Ala}), 17.0 & 19.4 (CH(CH₃)₂^{γ-Hiv}), 20.3 (COOCH₃), 26.8 (NCH₃),
31.6 (OCHCH(CH₃)₂^{β-Hiv}), 63.0 (NCHCH₃^{α-Ala}), 78.1 (OCHCH(CH₃)₂^{α-Hiv}), 101.8 (COC^{qu}, C3-TA), 172.3 (COOCH₃), 172.7 (NCO, C2-TA), 188.1 (COC^{qu}), 194.9 (NCH(CH₃)C(OH), C4-TA).

HRMS (ESI) m/z $[M+H]^+$ berechnet für $C_{13}H_{20}NO_5^+$ 270.13360, gefunden 270.13291.

 $[\alpha]^{25}_{D}$ -1.8 (*c* = 0.7, CHCl₃).

(S)-2-((Tert-butoxycarbonyl)amino)-5-methoxy-5-oxopentansäure (188)

L-Glutaminsäure (**186**) (3.68 g, 25 mmol, 1.0 Äquiv.) wird in 75 mL CH₃OH (abs) unter Argon gelöst und auf 0 °C gekühlt. Trimethylsilylchlorid (6.98 mL, 55 mmol, 2.2 Äquiv.) wird vorsichtig zugetropft und die Lösung wird 10 Minuten lang gerührt. Anschließend werden die flüchtigen Bestandteile im Vakuum entfernt und (*S*)-2-Amino-5-methoxy-5-oxopentansäure (**187**) als leicht gelbes Öl erhalten (4.93 g, 99%), welches direkt weiter verwendet wird.^[133]

(*S*)-2-amino-5-methoxy-5-oxopentansäure (**187**) (4.9 g, 25.0 mmol, 1.0 Äquiv.) wird in 20 mL Dioxan und 10 mL H₂O gelöst. Boc₂O (6.6 g, 30.0 mmol, 1.2 Äquiv.) und Triethylamin (12.1 mL, 87.5 mmol, 3.5 Äquiv.) werden zugegeben und die Reaktion bei Raumtemperatur über Nacht gerührt. Der Ansatz wird im Vakuum eingeengt, sodass eine wässrige Phase zurückbleibt. Diese wird mit Et₂O gewaschen, auf pH 4 angesäuert (1M HCl) und drei Mal mit EtOAc extrahiert. Die vereinigten EtOAc-Phasen werden über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das gewünschte Produkt wird als leicht gelbes Öl erhalten (5.9 g, 90%) und wird ohne weitere Aufreinigung verwendet.^[134]

Chemical Formula: C₁₁H₁₉NO₆ Molecular Weight: 261,27

IR 3346, 2980, 1733, 1712, 1518, 1440, 1393, 1368, 1242, 1159, 1047, 1028, 852, 781, 632, 609, 588. ¹H NMR (500 MHz, CDCl₃) 1.45 (s, 9H, C(CH₃)₃), 2.02 (dtd, J = 14.1, 7.8, 5.5 Hz, 1H, NCHC $HH^{\beta-Glu}$), 2.25 (dtd, J = 14.1, 6.4, 5.5 Hz, 1H, NCHCH $H^{\beta-Glu}$), 2.44 (überlappt, ddd, J = 14.4, 7.8, 6.4 Hz, 1H, NCHCH₂C $HH^{\gamma-Glu}$), 2.51 (überlappt, ddd, J = 14.4, 7.8, 6.4 Hz, 1H, NCHCH₂C $HH^{\gamma-Glu}$), 3.70 (s, 3H, COOCH₃), 4.33 (dd, J = 7.3, 5.5 Hz, 1H, NCH α -Glu), 5.25 (d, J = 7.3 Hz, 1H, NH).

¹³C NMR (75 MHz, CDCl₃) 27.5 (NCHCH₂^{β-Glu}), 28.4 (C(*C*H₃)₃), 30.3 (NCHCH₂*C*H₂^{γ-Glu}), 52.1 (COOCH₃), 53.0 (NCH^{α-Glu}), 80.7 (*C*(CH₃)₃), 155.9 (NHCO), 173.7 (*C*OOCH₃), 175.9 (COOH).

HRMS (ESI) m/z [M+Na]⁺ berechnet für $C_{11}H_{19}O_6NNa^+$ 284.11046, gefunden 284.11001.

 $[\alpha]^{20}_{D}$ + 13.0 (*c* = 1.43, CHCl₃), Lit^[134]: $[\alpha]^{20}_{D}$ + 11.4 (*c* = 1.43, CHCl₃).

1-(Tert-butyl) 5-methyl (tert-butoxycarbonyl)-L-Glutamat (189)

Zu einer Lösung aus (*S*)-2-((*Tert*-butoxycarbonyl)amino)-5-methoxy-5-oxopentansäure (**188**) (2.00 g, 7.65 mmol, 1.0 Äquiv.) in 22 mL *tert*-Butanol wird sowohl Boc₂O (2.01 g, 9.19 mmol, 1.2 Äquiv.) als auch DMAP (94 mg, 0.77 mmol, 0.1 Äquiv.) unter Argon zugegeben. Die Lösung wird über Nacht bei 50 °C gerührt. Dann werden die flüchtigen Bestandteile im Vakuum entfernt und der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 9:1). Die gewünschte Verbindung wird als farbloses Öl erhalten (1.59 g, 66%), welches bei längerer Lagerung fest wird. Daneben wird ein leicht gelber Feststoff isoliert (0.65 g, 24%), welcher als Di-*tert*-Butyl (*tert*-butoxycarbonyl)-L-Glutamat (**190**) identifiziert wird.^[134]

Chemical Formula: C₁₅H₂₇NO₆ Molecular Weight: 317,38

Schmelzpunkt 57.4-59.9°C.

R_f (SiO₂) 0.37 CH/EtOAc 4:1.

IR 3376, 2978, 2934, 1713, 1506, 1451, 1392, 1366, 1249, 1222, 1149, 1048, 1027, 847, 779, 668, 564. ¹H NMR (500 MHz, CDCl₃) 1.45 & 1.47 (je s, 9H, NHCOOC(CH₃)₃ & COOC(CH₃)₃), 1.91 (dtd, *J* = 14.6, 7.3, 7.2 Hz, 1H, NCHC*H*H^{β-Glu}), 2.15 (ddt, *J* = 14.6, 7.2, 6.4 Hz, 1H, NCHCH*H*^{β-Glu}), 2.29-2.50 (m, 2H, COCH₂^{γ-Glu}), 3.69 (s, 3H, COOCH₃), 4.21 (dt, *J* = 7.7, 7.2 Hz, 1H, NCH^{α-Glu}), 5.08 (d, *J* = 7.7 Hz, NH).

¹³C NMR (75 MHz, CDCl₃) 28.1 (C(*C*H₃)₃), 28.3 (NCH*C*H₂^{β-Glu}), 28.5 (C(*C*H₃)₃), 30.3 (CO*C*H₂^{γ-Glu}), 51.9 (COOCH₃), 53.5 (NCH^{α-Glu}), 79.9 & 82.4 (NHCOO*C*(CH₃)₃ & COO*C*(CH₃)₃), 155.5 (NHCO), 171.5 (COOC(CH₃)₃), 173.5 (COOCH₃).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für C₁₅H₂₇O₆NNa⁺ 340.17306, gefunden 340.17239.

 $[\alpha]^{20}_{D}$ -21.3 (*c* = 1.52, CH₃OH), Lit^[1]: $[\alpha]^{20}_{D}$ -27.7 (*c* = 1.52, CH₃OH).

Di-tert-butyl (tert-butoxycarbonyl)-L-Glutamat (190)

Chemical Formula: C₁₈H₃₃NO₆ Molecular Weight: 359,46

Schmelzpunkt 58.8-62.0 °C.

R_f (SiO₂) 0.55 CH/EtOAc 4:1.

IR 3347, 2984, 2970, 2931, 1731, 1722, 1702, 1528, 1455, 1390, 1366, 1347, 1336, 1302, 1256, 1228, 1211, 1150, 1090, 1056, 1031, 962, 948, 913, 846, 826, 789, 779, 766, 608.

¹H NMR (500 MHz, CDCl₃) 1.44 & 1.45 (überlappt, je s, 9H, CH₂COOC(CH₃)₃ & CHCOOC(CH₃)₃), 1.47 (s, 9H, NHCOOC(CH₃)₃), 1.86 (dtd, J = 14.3, 8.5, 6.3 Hz, 1H, NHCHCHH^{β-Glu}), 2.09 (ddt, J = 14.3, 7.9, 6.9 Hz, 1H, NHCHCHH^{β-Glu}), 2.26 (ddd, J = 16.0, 8.5, 6.9 Hz, 1H, COCHH^{γ-Glu}), 2.33 (ddd, J = 16.0, 8.5, 6.9 Hz, 1H, COCHH^{γ-Glu}), 4.18 (ddd, J = 7.9, 7.9, 6.3 Hz, 1H, NHCH^{α-Glu}), 5.06 (d, J = 7.9 Hz, 1H, NH).

¹³C NMR (125 MHz, CDCl₃) 28.1 (NHCOOC(CH₃)₃), 28.15 (NHCHCH₂^{β-Glu}), 28.2 & 28.5 (CH₂COOC(CH₃)₃ & CHCOOC(CH₃)₃), 31.8 (COCH₂^{γ-Glu}), 53.7 (NHCH^{α-Glu}), 79.8 & 80.7 (CH₂COOC(CH₃)₃ & CHCOOC(CH₃)₃), 82.2 (NHCOOC(CH₃)₃), 155.6 (NHCOOC(CH₃)₃), 171.7 (CHCOOC(CH₃)₃), 172.4 (CH₂COOC(CH₃)₃).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für C₁₈H₃₃O₆NNa⁺ 382.22001, gefunden 382.21924.

 $[\alpha]^{24}_{D}$ +1.2 (*c* = 1.7, CHCl₃).

(S)-1-Tert-butyl 5-methyl 2-(bis-(tert-butoxycarbonyl)amino)pentandioat (191)

Zu einer Lösung aus 1-(*Tert*-butyl) 5-methyl (*tert*-butoxycarbonyl)-L-glutamat (**189**) (3.0 g, 9.5 mmol, 1.0 Äquiv.) in 50 mL MeCN (abs) wird Boc₂O (8.3 g, 37.8 mmol, 4.0 Äquiv.) und DMAP (0.4 g, 3.8 mmol, 0.4 Äquiv.) unter Argon zugegeben. Die gelbe Lösung wird bei Raumtemperatur zwei Tage lang gerührt. Anschließend wird das Lösungsmittel unter Vakuum entfernt und das Rohprodukt mittels Säulenchromatographie aufgereinigt (CH/EtOAc 9:1). Ein farbloses Öl wird erhalten (3.1 g, 80%).

Chemical Formula: C₂₀H₃₅NO₈ Molecular Weight: 417,50

R_f (SiO₂) 0.57 CH/EtOAc 4:1.

IR 2980, 2935, 1737, 1699, 1478, 1454, 1366, 1301, 1273, 1250, 1233, 1138, 1115, 1036, 1005, 961, 903, 849, 794, 767.

¹H NMR (500 MHz, CDCl₃) 1.45 (s, 9H, COOC(CH₃)₃), 1.51 (s, 18H, N(COOC(CH₃)₃)₂), 2.12-2.20 (m, 1H, NCHC*H*H^{β-Glu}), 2.33-2.47 (m, 3H, NCHCH*H*^{β-Glu} & COC*H*₂^{γ-Glu}), 3.67 (s, 3H, COOCH₃), 4.77-4.81 (m, 1H, NCH^{α-Glu}).

¹³C NMR (125 MHz, CDCl₃) 24.8 (NCHCH₂^{β-Glu}), 28.08 & 28.14 (N(COOC(CH₃)₃)₂ & COOC(CH₃)₃), 31.0 (COCH₂^{γ-Glu}), 51.8 (COOCH₃), 58.3 (NCH^{α-Glu}), 81.6 (COOC(CH₃)₃), 83.1 (N(COOC(CH₃)₃)₂), 152.5 (N(COOC(CH₃)₃)₂), 169.4 (COOC(CH₃)₃), 173.4 (COOCH₃).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für C₂₀H₃₅O₈NNa⁺ 440.22549, gefunden 440.22472.

 $[\alpha]^{22}_{D}$ -20.3 (*c* = 1.0, CH₃OH).

(S)-1-Tert-butyl 2-(bis-(tert-butoxycarbonyl)amino) 5-oxopentanoat (192)

200 mg (*S*)-1-*Tert*-butyl 5-methyl 2-(bis-(*tert*-butoxycarbonyl)amino)pentanedioat (**191**) (480 µmol, 1.0 Äquiv.) werden in 5.5 mL Et₂O (abs) unter Argon gelöst und auf -78 °C gekühlt. Dann wird DIBAL-H (530 µL, 530 µmol, 1.1 Äquiv. 1M Lösung in Hexan) tropfenweise zugegeben und die Reaktion 15 Minuten lang gerührt. Zum Abbruch der Reaktion wird H₂O (250 µL) zugegeben und ein weißer Feststoff fällt aus. Die Suspension wird auf Raumtemperatur erwärmt und über Celite abfiltriert. Das Filtrat wird im Vakuum einkonzentriert. Es wird Toluol zugegeben und erneut unter vermindertem Druck die flüchtigen Bestandteile entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (CH/EtOAc 9:1 \rightarrow 2:1). Das gewünschte Produkt wird als farbloses Öl erhalten (102 mg, 55%).

Chemical Formula: C₁₉H₃₃NO₇ Molecular Weight: 387,47

R_f (SiO₂) 0.41 CH/EtOAc 4:1.

IR 2980, 2934, 1790, 1733, 1699, 1479, 1457, 1381, 1366, 1299, 1252, 1235, 1144, 1119, 1036, 993, 967, 919, 847, 814, 767, 735.

¹H NMR (500 MHz, CDCl₃) 1.46 (s, 9H, COOC(CH₃)₃), 1.51 (s, 18H, N(COOC(CH₃)₃)₂), 2.10-2.20 (m, 1H, NCHC*H*H^{β-Glu}), 2.40-2.63 (m, 3H, NCHCH*H*^{β-Glu} & COC*H*₂^{γ-Glu}), 4.75 (dd, *J* = 9.5, 5.2 Hz, 1H, NCH^{α-Glu}), 9.77 (t, *J* = 1.2 Hz, 1H, CHO).

¹³C NMR (125 MHz, CDCl₃) 22.1 (NCH*C*H₂^{β-Glu}), 28.06 (COOC(*C*H₃)₃), 28.13 (N(COOC(*C*H₃)₃)₂), 40.8 (CO*C*H₂^{γ-Glu}), 58.3 (NCH^{α-Glu}), 81.7 (COO*C*(CH₃)₃), 83.2 (N(COO*C*(CH₃)₃)₂), 152.5 (N(*C*OOC(CH₃)₃)₂), 169.3 (COOC(CH₃)₃), 201.4 (CHO).

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₁₉H₃₃O₇NNa⁺ 410.21492, gefunden 410.21413.

 $[\alpha]^{20}_{D}$ -17.3 (*c* = 0.81, CHCl₃), Lit^[134]: $[\alpha]^{20}_{D}$ -22.2 (*c* = 0.81, CHCl₃).

(S)-1-Tert-butyl 2-(bis-(tert-butoxycarbonyl)amino) 5-((benzyloxy)imino)pentanoat (193)

Das Edukt, (*S*)-1-*Tert*-butyl 2-(bis-(*tert*-butoxycarbonyl)amino) 5-oxopentanoat (**192**) (464 mg, 1.20 mmol, 1.00 Äquiv.), wird in 2.5 mL EtOH gelöst und mit BnO-NH₂ (Hydrochlorid, 230 mg, 1.44 mmol, 1.20 Äquiv.) und Pyridin (2.5 mL) versetzt. Der Ansatz rührt 3 h bei Raumtemperatur und

das Lösungsmittel anschließend unter vermindertem Druck entfernt. Der Rückstand wird via Säulenchromatographie aufgereinigt (CH/EtOAc 19:1) und das gewünschte Produkt als Isomerengemisch (Z/E 4:6) in Form eines farblosen Öls erhalten (400 mg, 67% über zwei Stufen).

Chemical Formula: C₂₆H₄₀N₂O₇ Molecular Weight: 492,61

R_f (SiO₂) 0.63/0.58 CH/EtOAc 4:1.

IR 2979, 2933, 1736, 1699, 1455, 1366, 1252, 1144, 1121, 848.

¹H NMR (500 MHz, CDCl₃) *E/Z*-Isomerengemisch, Hauptisomer: 1.45 (9H, s, COOC(CH₃)₃) 1.49 (18H, s, N(COOC(CH₃)₃)₂), 1.99-2.09 (m, 1H, NCHC*H*H^{β-Glu}), 2.22-2.31 (m, 1H, NCHCH*H*^{β-Glu}), 2.35-2.50 (m, 2H, N=CHCH₂^{y-Glu}), 4.74 (dd, *J* = 9.5, 5.2 Hz, 1H, NCH^{α-Glu}), 5.10 (s, 2H, OCH₂Ph), 6.71 (t, *J* = 5.3 Hz, 1H, N=CH), 7.28-7.38 (m, 5H, H^{ar}).

Nebenisomer: 1.45 (9H, s, COOC(CH₃)₃), 1.50 (18H, s, N(COOC(CH₃)₃)₂), 1.99-2.09 (m, 1H, NCHCHH^{β-Glu}), 2.22-2.31 (m, 3H, NCHCHH^{β-Glu} & N=CHCH₂^{y-Glu}), 4.76 (dd, J = 9.6, 4.6 Hz, 1H, NCH^{α-Glu}), 5.05 (s, 2H, OCH₂Ph), 7.28-7.38 (m, 5H, H^{ar}), 7.46 (t, J = 5.6 Hz, 1H, N=CH).

¹³C NMR (125 MHz, CDCl₃) Hauptisomer: 23.2 (N=CH*C*H₂^{γ-Glu}), 26.2 (NCH*C*H₂^{β-Glu}), 28.07 & 28.14
(COOC(*C*H₃)₃ & N(COOC(*C*H₃)₃)₂), 58.7 (NCH^{α-Glu}), 75.9 (OCH₂Ph), 81.6 (COOC(*C*H₃)₃), 83.1
(N(COOC(*C*H₃)₃)₂), 127.8 (C^{ar}), 128.0 (C^{ar}), 128.5 (C^{ar}), 138.1 (C^{ar}), 151.3 (N=CH), 152.5
(N(COOC(*C*H₃)₃)₂), 169.5 (COOC(*C*H₃)₃).

Nebenisomer: 26.7 (N=CH*C*H₂^{γ-Glu}), 26.9 (NCH*C*H₂^{β-Glu}), 28.1 & 28.2 (COOC(*C*H₃)₃ & N(COOC(*C*H₃)₃)₂), 58.4 (NCH^{α-Glu}), 75.7 (OCH₂Ph), 81.6 (COO*C*(CH₃)₃), 83.1 (N(COO*C*(CH₃)₃)₂), 127.9 (C^{ar}), 128.4 (C^{ar}), 128.5 (C^{ar}), 137.8 (C^{ar}), 150.4 (N=CH), 152.5 (N(*C*OOC(CH₃)₃)₂), 169.6 (*C*OOC(CH₃)₃).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für C₂₆H₄₀O₇N₂Na⁺ 515.27277, gefunden 515.27190.

 $[\alpha]^{20}_{D}$ -13.8 (*c* = 1.0, CH₃OH).

(S)-1-Tert-butyl 2-(bis-(tert-butoxycarbonyl)amino) 5-((benzyloxy)amino)pentanoat (194)

Zu einer Lösung von (*S*)-1-*Tert*-butyl 2-(bis-(*tert*-butoxycarbonyl)amino) 5-((benzyloxy)imino)pentanoat (**193**) (225 mg, 457 µmol, 1.0 Äquiv.) in 3.2 mL CH₃OH wird NaBH₃CN (46 mg, 733 µmol, 1.6 Äquiv.) gegeben und mit 1M HCl (aq) der pH-Wert auf 2-3 eingestellt. Der Ansatz rührt bei Raumtemperatur 3 h lang unter Beibehalt des pH-Wertes von 2-3. Dann wird mit 1M NaOH-Lösung neutralisiert und das Lösungsmittel im Vakuum entfernt. Anschließend wird der Rückstand in EtOAc und H₂O aufgenommen und die Phasen getrennt. Die wässrige Phase wird mit EtOAc extrahiert, die organischen Phasen vereinigt sowie mit wenig gesättigter NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Im Vakuum wird das Lösungsmittel entfernt und säulenchromatographisch aufgereinigt (CH/EtOAc 9:1). Es wird ein farbloses Öl erhalten (204 mg, 90%).

Chemical Formula: C₂₆H₄₂N₂O₇ Molecular Weight: 494,63

R_f (SiO₂) 0.42 CH/EtOAc 4:1.

IR 2979, 2934, 1735, 1699, 1478, 1455, 1366, 1306, 1251, 1231, 1151, 1125, 1040, 965, 911, 849, 793, 737, 698.

¹H NMR (500 MHz, CDCl₃) 1.45 (s, 9H, COOC(CH₃)₃), 1.50 (s, 18H, N(COOC(CH₃)₃)₂), 1.54-1.63 (m, 2H, NCHCH₂CH₂v-Glu), 1.90 (dddd, *J* = 14.0, 9.6, 8.8, 6.4 Hz, 1H, NCHCHH^{β-Glu}), 2.11 (dtd, *J* = 14.0, 8.2, 5.2 Hz, 1H, NCHCHH^{β-Glu}), 2.93 (überlappt, ddd, *J* = 12.0, 6.7, 6.4 Hz, 1H, CHHNH^{δ-Glu}), 2.98 (überlappt, ddd, *J* = 12.0, 6.7, 6.4 Hz, 1H, CHHNH^{δ-Glu}), 2.98 (überlappt, ddd, *J* = 12.0, 6.7, 6.4 Hz, 1H, CHHNH^{δ-Glu}), 2.98 (überlappt, ddd, *J* = 12.0, 6.7, 6.4 Hz, 1H, CHHNH^{δ-Glu}), 2.98 (überlappt, ddd, *J* = 12.0, 6.7, 6.4 Hz, 1H, CHHNH^{δ-Glu}), 4.70 (s, 2H, OCH₂Bn), 4.72 (dd, *J* = 9.6, 5.2 Hz, 1H, NCH^{α-Glu}), 5.55 (s, 1H, NH), 7.28-7.40 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) 24.4 (NCHCH₂CH₂ν-Glu), 27.0 (NCHCH₂β-Glu), 28.1 & 28.2 (COOC(CH₃)₃ & N(COOC(CH₃)₃)₂), 51.8 (CH₂NH^{δ-Glu}), 58.9 (NCH^{α-Glu}), 76.4 (OCH₂Bn), 81.3 & 82.9 (COOC(CH₃)₃ & N(COOC(CH₃)₃)₂), 127.9 (C^{ar}), 128.51 (C^{ar}), 128.52 (C^{ar}), 138.1 (C^{ar}), 152.6 (N(*C*OOC(CH₃)₃)₂), 170.0 (COOC(CH₃)₃).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₂₆H₄₃N₂O₇⁺ 495.30648, gefunden 495.30560.

 $[\alpha]^{22}_{D}$ -15.8 (*c* = 1.0, CH₂Cl₂).

(S)-1-Tert-butyl 2-(bis-(tert-butoxycarbonyl)amino) 5-((benzyloxy)(nitroso)amino)pentanoat (195)

Zu dem Edukt, (*S*)-1-*Tert*-butyl 2-(bis-(*tert*-butoxycarbonyl)amino) 5-((benzyloxy)amino)pentanoat (**194**) (157 mg, 317 μ mol, 1.0 Äquiv.) werden unter Argon 900 μ L CH₂Cl₂ (abs) sowie n-Butylnitrit (164 mg, 186 μ L, 1.59 mmol, 5.0 Äquiv.) zugegeben und im Dunkeln 3.5 h lang gerührt. Die flüchtigen Bestandteile werden im Vakuum entfernt. Das Rohprodukt wird säulenchromatographisch aufgereinigt (SiO₂, CH/EtOAc 7:1) und das gewünschte Produkt wird als gelbes Öl erhalten (137 mg, 82%).

Chemical Formula: C₂₆H₄₁N₃O₈ Molecular Weight: 523,63

R_f (SiO₂) 0.81 CH/EtOAc 2:1.

IR 2979, 2934, 1735, 1698, 1456, 1366, 1312, 1253, 1232, 1150, 1125, 1031, 954, 913, 848, 819, 796, 737, 698, 624, 597.

¹H NMR (500 MHz, C₆D₆) 1.37 (s, 9H, COOC(CH₃)₃), 1.38 (s, 18H, N(COOC(CH₃)₃)₂), 1.66 (dtt, J = 8.4, 6.7, 6.4 Hz, 2H, NCHCH₂CH₂^{v-Glu}), 2.04 (dtd, J = 14.3, 6.4, 5.5 Hz, 1H, NCHCHH^{β-Glu}), 2.12 (ddt, J = 14.3, 9.2, 6.4 Hz, 1H, NCHCHH^{β-Glu}), 3.64 (t, J = 6.7 Hz, 2H, NCHCH₂CH₂CH₂^{δ-Glu}), 4.76 (d, J = 10.4 Hz, 1H, OCHHPh), 4.79 (d, J = 10.4 Hz, 1H, OCHHPh), 4.95 (dd, J = 9.2, 5.5 Hz, 1H, NCH^{α-Glu}), 7.03-7.25 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, C₆D₆) 24.6 (NCHCH₂CH₂ $^{\gamma-Glu}$), 27.0 (NCHCH₂ $^{\beta-Glu}$), 27.95 (COOC(CH₃)₃), 28.0 (N(COOC(CH₃)₃)₂), 53.2 (NCHCH₂CH₂ $^{\delta-Glu}$), 58.7 (NCH $^{\alpha-Glu}$), 76.8 (OCH₂Ph), 80.9 (COOC(CH₃)₃), 82.5 (N(COOC(CH₃)₃)₂), 128.7 (C^{ar}), 129.1 (C^{ar}), 129.7 (C^{ar}), 135.1 (C^{ar}), 153.1 (N(COOC(CH₃)₃)₂), 169.3 (COOC(CH₃)₃).

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₂₆H₄₁N₃O₈Na⁺ 546.2786, gefunden 546.2780.

 $[\alpha]^{23}_{D}$ -6.3 (*c* = 1.0, CHCl₃).

Tert-butyl (S)-5-((benzyloxy)(nitroso)amino)-2-((tert-butoxycarbonyl)amino)pentanoat (198)

Zu einer Lösung aus (*S*)-1-*Tert*-butyl 2-(bis-(*tert*-butoxycarbonyl)amino) 5-((benzyloxy)amino)pentanoat (**194**) (200 mg, 404 μmol, 1.0 Äquiv.) in 16 mL MeCN (abs) wird unter Argon LiBr (77 mg, 890 μmol, 2.2 Äquiv.) zugegeben und der Ansatz auf 70 °C erhitzt und über Nacht gerührt. Anschließend wird das Lösungsmittel im Vakuum entfernt und der Rückstand säulenchromatographisch aufgereinigt (SiO₂, CH/EtOAc 4:1). *Tert*-butyl (S)-5-((benzyloxy)amino)-2-((*tert*-butoxycarbonyl)amino)penatonat (**197**) wird als farbloses Öl erhalten (144 mg, 90%).

197 (140 mg, 355 μ mol, 1.0 Äquiv.) wird unter Argon-Schutzgasatmosphäre gesetzt und in 1.4 mL CH₂Cl₂ (abs) gelöst. Die Reaktionslösung wird vor Licht geschützt, *n*-BuONO (0.33 mL, 2.84 mmol, 8.0 Äquiv.) zugegeben und eine Stunde bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand säulenchromatographisch aufgereinigt (SiO₂, CH/EtOAc 4:1) und das gewünschte Produkt als leicht gelbes Öl erhalten (132 mg, 88%).

Chemical Formula: C₂₁H₃₃N₃O₆ Molecular Weight: 423,51

R_f (SiO₂) 0.36 CH/EtOAc 4:1

IR 3360, 2978, 2934, 2876, 1711, 1498, 1455, 1392, 1366, 1297, 1250, 1152, 1053, 1028, 959, 913, 868, 846, 803, 749, 699, 596.

¹H NMR (500 MHz, C₆D₆) 1.24 (s, 9H, COOC(CH₃)₃), 1.26-1.34 (m, 1H, NHCHCHH^{β-Glu}), 1.41 (s, 9H, NHCOOC(CH₃)₃), 1.43-1.52 (m, 2H, NHCHCH₂CH₂^{γ -Glu}), 1.56-1.67 (m, 1H, NHCHCHH^{β-Glu}), 3.47 (dt, J = 13.3, 6.4 Hz, 1H, ONCHH^{δ-Glu}), 3.59 (dt, J = 13.3, 6.6 Hz, 1H, ONCHH^{δ-Glu}), 4.31 (ddd, J = 7.9, 7.4, 5.2 Hz, 1H, NHCHCH^{α -Glu}), 4.71 (d, J = 10.1 Hz, 1H, OCHHPh), 4.76 (d, J = 10.1 Hz, 1H, OCHHPh), 4.91 (d, J = 7.9 Hz, 1H, NH), 7.05-7.21 (m, 5H, H^ar).

¹³C NMR (125 MHz, C₆D₆) 23.3 (NHCHCH₂CH₂^{γ -Glu}), 27.8 (COOC(CH₃)₃), 28.4 (NHCOOC(CH₃)₃), 30.0 (NHCHCH₂^{β -Glu}), 53.0 (ONCH₂^{δ -Glu}), 53.6 (NHCH^{α -Glu</sub>), 76.8 (OCH₂Ph), 79.4 (NHCOOC(CH₃)₃), 81.6 (COOC(CH₃)₃), 128.8 (C^{ar}), 129.2 (C^{ar}), 129.7 (C^{ar}), 135.1 (C^{ar}), 155.6 (NHCOOC(CH₃)₃), 171.5 (COOC(CH₃)₃).}

HRMS ESI (m/z) [M+H]⁺ berechnet für C₂₁H₃₄N₃O₆⁺ 424.24421, gefunden 424.24376.

 $[\alpha]^{25}_{D}$ + 5.7 (*c* = 0.9, EtOAc).

(S,Z)-8-(Bis-(tert-butoxycarbonyl))-12,12-dimethyl-10-oxo-1-phenyl-2,11-dioxa-3,4,9triazatridec-3-ene 4-oxid (200)

(S)-1-*Tert*-butyl 2-(bis-(*tert*-butoxycarbonyl)amino) 5-((benzyloxy)(nitroso)-amino)pentanoat (**195**) (137 mg, 262 μmol, 1.0 Äquiv.) wird unter Argon im Dunkeln vorgelegt und in 0.5 mL CH₃OH und 0.5 mL NaOH-Lösung (0.5M) gelöst. Pd/C (5%, 22 mg) wird zugesetzt und der Ansatz unter H₂-Atmosphäre gesetzt. Nach 8 h erfolgt eine Reaktionskontrolle per Dünnschichtchromatographie (CH/EtOAc 7:1), wobei das Edukt vollständig abreagiert ist. Die Reaktionssuspension wird über eine Fritte abfiltriert und das Filtrat im Vakuum einkonzentriert. Das entstandene Öl wird unter Argon mit 5 mL EtOAc versetzt und Triethylamin (73 μL, 53 mg, 523 μmol, 2.0 Äquiv.) sowie Benzylbromid (65 μL, 94 mg, 549 μmol, 2.1 Äquiv.) zugegeben. Der Ansatz rührt für 9 h bei Raumtemperatur. Anschließend wird die Lösung mit EtOAc verdünnt und die organische Phase ein Mal mit gesättigter NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Nach Entfernen der flüchtigen Bestandteile im Vakuum erfolgt eine säulenchromatographische Aufreinigung (Al₂O₃, CH/EtOAc 9:1) und das gewünschte Produkt wird als farbloses Öl erhalten (55 mg, 40%).

Chemical Formula: C₂₆H₄₁N₃O₈ Molecular Weight: 523,63

R_f (Al₂O₃) 0.21 (CH/EtOAc 7:1).

IR 2981, 2937, 1738, 1701, 1505, 1478, 1457, 1368, 1311, 1255, 1236, 1147, 1123, 1017, 850, 797, 738, 698, 621, 573, 558.

¹H NMR (500 MHz, C₆D₆) 1.38 (s, 9H, COOC(CH₃)₃), 1.40 (s, 18H, N(COOC(CH₃)₃)₂), 1.76 (ddt, J = 14.1, 7.6, 7.1 Hz, 1H, NCHCHH^{β-Glu}), 1.94 (ddt, J = 14.1, 7.3, 7.2 Hz, 1H, NCHCHH^{β-Glu}), 2.06-2.13 (m, 2H, NCHCH₂CH₂^{γ-Glu}), 3.51 (t, J = 6.4 Hz, 1H, CHHNO^{δ-Glu}), 3.54 (t, J = 7.0 Hz, 1H, CHHNO^{δ-Glu}), 4.91 (s, 2H, OCH₂Ph), 4.94 (dd, J = 7.6, 7.3 Hz, 1H, NCH^{α-Glu}), 7.03-7.23 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, C_6D_6) 24.2 (NCHCH₂CH₂^{γ -Glu}), 26.5 (NCHCH₂ $^{\beta$ -Glu}), 27.96 (COOC(CH₃)₃), 28.01 (N(COOC(CH₃)₃)₂), 58.6 (NCH^{α -Glu</sub>), 62.7 (NCHCH₂CH₂ $^{\delta$ -Glu}), 74.9 (OCH₂Ph), 80.9 (COOC(CH₃)₃), 82.5 (N(COOC(CH₃)₃)₂), 128.4 (C^{ar}), 128.7 (C^{ar}), 136.8 (C^{ar}), 153.1 (N(COOC(CH₃)₃)₂), 169.3 (COOC(CH₃)₃).}

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₂₆H₄₁N₃O₈Na⁺ 546.27859, gefunden 546.27775.

 $[\alpha]^{25}_{D}$ -18.0 (*c* = 0.2, EtOAc).

(S)-1-(4-Amino-5-(tert-butoxy)-5-oxopentyl)-2-(benzyloxy)diazen 1-oxid (201)

Verbindung **200** (20 mg, 38 µmol, 1.0 Äquiv.), wird unter Argon im Dunkeln mit MeCN (abs, 0.4 mL) gelöst und mit *p*TsOH x H₂O (29 mg, 153 µmol, 4.0 Äquiv.) versetzt. Der Ansatz rührt ca 20 h und der Umsatz des Edukts mittels Dünnschichtchromatographie (Al₂O₃, CH/EtOAc 7:1) detektiert. Es wird mit EtOAc verdünnt und die organische Phase mit gesättigter NaHCO₃-Lösung gewaschen und über Na₂SO₄ getrocknet. Das gewünschte Produkt wird als weißer öliger Feststoff erhalten (12 mg, 99%).

R_f (Al₂O₃, basisch) 0.52 EtOAc.

IR 3306, 2969, 2929, 2872, 1727, 1661, 1542, 1500, 1456, 1393, 1368, 1307, 1252, 1224, 1154, 1012, 846, 801, 741, 699, 595.

¹H NMR (500 MHz, C₆D₆) 1.22-1.28 (m, 1H, H₂NCHCHH^{β-Glu}), 1.32 (s, 9H, COOC(CH₃)₃), 1.42-1.50 (m, 1H, H₂NCHCHH^{β-Glu}), 1.68-1.87 (m, 2H, H₂NCHCH₂CH₂^{γ -Glu}), 2.97 (dd, *J* = 7.8, 5.3 Hz, 1H, H₂NCH^{α -Glu}), 3.49 (t, *J* = 6.7 Hz, 1H, ONCHH), 3.50 (t, *J* = 6.9 Hz, 1H, ONCHH), 4.94 (s, 2H, OCH₂Ph), 7.02-7.23 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, C₆D₆) 23.5 (H₂NCHCH₂CH₂^{γ-Glu}), 28.0 (COOC(CH₃)₃), 31.7 (H₂NCHCH₂^{β-Glu}), 54.6 (H₂NCH^{α-Glu}), 63.1 (ONCH₂^{δ-Glu}), 75.0 (OCH₂Ph), 80.5 (COOC(CH₃)₃), 128.4 (C^{ar}), 128.45 (C^{ar}), 128.7 (C^{ar}), 136.8 (C^{ar}), 174.7 (COO*t*Bu).

HRMS (ESI) m/z berechnet für C₁₆H₂₆O₄N₃⁺ 324.19178, gefunden 324.19151.

 $[\alpha]^{26}_{D}$ +9.4 (*c* = 0.2, EtOAc).

2-(Benzyloxy)-1-((S)-5-(tert-butoxy)-4-((4S,5R)-2-((S)-1-(dimethylamino)ethyl)-5-methyl-4,5dihydrooxazol-4-carboxamido)-5-oxopentyl)diazen-1-oxid (203)

Methyl (4*S*,5*R*)-2-((*S*)-1-(dimethylamino)ethyl)-5-methyl-4,5-dihydrooxazol-4-carboxylat (**161**) (18 mg, 84 μ mol, 1.0 Äquiv.), wird vorgelegt und in 0.7 mL THF gelöst. Es wird CsOH x H₂O (28 mg, 168 μ mol, 2.0 Äquiv.) zugegeben und der Ansatz 45 Min bei Raumtemperatur gerührt (DC EtOAc/EtOH 6:4 + 0.1% NH₄OH-Lsg.). Die Reaktionslösung wird im Vakuum einkonzentriert.

Das getrocknete Cs-Salz wird unter Argon in 0.2 mL THF (abs) gelöst. Eine Lösung des Amins (*S*)-1-(4-Amino-5-(*tert*-butoxy)-5-oxopentyl)-2-(benzyloxy)diazen 1-oxid (**201**) (27 mg, 84 μ mol, 1.0 Äquiv.) in 0.8 mL THF (abs) wird zugegeben und der Ansatz auf 0 °C gekühlt. Es wird HOBt (11 mg, 84 μ mol, 1.0 Äquiv.), DIPEA (57 μ L, 336 μ mol, 4.0 Äquiv.) und EDCI (32 μ mol, 168 μ mol, 2.0 Äquiv.) zugegeben und der Ansatz langsam auf Raumtemperatur gebracht. Reaktionskontrolle erfolgt mittels DC (Al₂O₃,

basisch, EtOAc), wobei der Spot des freien Amins innerhalb von 24 h nicht mehr nachweisbar ist. Der Ansatz wird mit EtOAc verdünnt, mit gesättigter NaHCO₃-Lösung gewaschen und die Organik über Na₂SO₄ getrocknet. Es erfolgt eine säulenchromatographische Aufreinigung über Al₂O₃ (CH/EtOAc 1:1) und über deaktiviertem SiO₂ (7.5 Gew.-% NH₄OH-Lösung 25%; CH/EtOAc 3:7 -> EtOAc + 0.2% NH₄OH-Lösung 25%). Es kann eine kleine Fraktion des gewünschten Produktes von der Säule zur Analytik eluiert werden (19 mg, 45%).

Chemical Formula: C₂₅H₃₉N₅O₆ Molecular Weight: 505,62

R_f (Al₂O₃) 0.38 CH/EtOAc 1:1, (Al₂O₃, basisch) 0.63 EtOAc; R_f (SiO₂) 0.09 CH/EtOAc 3:7.

IR 2979, 2931, 2866, 2782, 1732, 1678, 1655, 1649, 1507, 1454, 1369, 1310, 1256, 1222, 1157, 1034, 1014, 962, 846, 749, 700.

¹H NMR (500 MHz, CD₃OD) 1.33 (d, *J* = 7.0 Hz, 3H, NCHCH₃^{β-Ala}), 1.44 (d, *J* = 7.0 Hz, 3H, OCHCH₃^{γ-Thr}), 1.46 (s, 9H, COOC(CH₃)₃), 1.65-1.73 & 1.81-1.88 (je m, 1H, NCHCH₂^{β-Glu}), 1.89-1.96 (m, 2H, NCHCH₂CH₂^{γ-Glu}), 2.33 (s, 6H, N(CH₃)₂), 3.38 (q, *J* = 7.0 Hz, 1H, NCHCH₃^{α-Ala}), 4.07-4.14 (m, 2H, ONCH₂^{δ-Glu}), 4.23 (d, *J* = 6.7 Hz, 1H, NCH^{α-Thr}), 4.77 (qd, *J* = 7.0, 6.7 Hz, 1H, NCHCHO(CH₃)^{β-Thr}), 5.30 (s, 2H, OCH₂Ph), 7.32-7.41 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, CD₃OD) 15.5 (NCH*C*H₃^{β-Ala}), 21.5 (OCH*C*H₃^{γ-Thr}), 24.1 (NCHCH₂*C*H₂^{γ-Glu}), 28.2 (COOC(*C*H₃)₃), 29.2 (NCH*C*H₂^{β-Glu}), 42.2 (N(CH₃)₂), 53.7 (NCH^{α-Glu}), 59.3 (N*C*HCH₃^{α-Ala}), 63.7 (ONCH₂^{δ-Glu}), 75.5 (NCH^{α-Thr}), 77.0 (O*C*H₂Ph), 81.3 (O*C*HCH₃^{β-Thr}), 83.4 (COO*C*(CH₃)₃), 129.6 (C^{ar}), 129.7 (C^{ar}), 129.8 (C^{ar}), 137.1 (C^{ar}), 171.4 (N=CO), 171.9 (*C*OOC(CH₃)₃^{Glu}), 173.3 (NHCO^{Thr}).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₂₅H₄₀O₆N₅⁺ 506.29731, gefunden 506.29650.

Dibenzyl N,N-dibenzyl-L-Glutamat (220)

 K_2CO_3 (37.6 g, 272 mmol, 4.0 Äquiv.) und NaOH (5.5 g, 137 mmol, 2.0 Äquiv.) werden in 120 mL H₂O gelöst und L-Glutaminsäure (**186**) (10.0 g, 68 mmol, 1.0 Äquiv.) zugegeben. Die entstehende farblose Lösung wird unter Rückfluss erhitzt und Benzylbromid (32.3 mL, 272 mmol, 4.0 Äquiv.) langsam zugegeben. Die Reaktion wird unter Rückfluss gerührt, bis eine Reaktionskontrolle per Dünnschichtchromatographie einen vollständigen Umsatz des Benzylbromides anzeigt (CH/EtOAc 9:1). Nun wird der Ansatz auf Raumtemperatur abgekühlt, die beiden Phasen getrennt und die wässrige Phase mit Et₂O extrahiert (2x). Die vereinigten organischen Phasen werden mit gesättigter NaHCO₃-Lösung, gesättigter NH₄Cl-Lösung und gesättigter NaCl-Lösung gewaschen und über Na₂SO₄getrocknet. Nach Entfernung des Lösungsmittels im Vakuum, wird das Rohprodukt via Säulenchromatographie (CH/EtOAc 95:5) aufgereinigt und das gewünschte Produkt als farbloses Öl erhalten (19.4 g, 56%).^[143]

Chemical Formula: C₃₃H₃₃NO₄ Molecular Weight: 507,63

R_f (SiO₂) 0.20 CH/EtOAc 95:5

IR 3064, 3031, 2926, 2850, 1729, 1603, 1495, 1454, 1379, 1259, 1211, 1153, 1075, 1028, 959, 913, 825, 732, 695, 619, 579.

¹H NMR (500 MHz, CDCl₃) 2.06 (dd, J = 14.9, 7.6 Hz, 2H, NCHCH₂^{β-Glu}), 2.30-2.39 (m, 1H, NHCHCH₂CHH^{γ-Glu}), 2.46-2.54 (m, 1H, NHCHCH₂CHH^{γ-Glu}), 3.40 (t, J = 7.6 Hz, 1H, NCH^{α-Glu}), 3.49 (d, J = 13.7 Hz, 2H, N(CHHPh)₂), 3.87 (d, J = 13.7 Hz, 2H, N(CHHPh)₂), 4.94 (d, J = 12.3 Hz, 1H, CO₂^{δ-Glu}CHHPh), 4.99 (d, J = 12.3 Hz, 1H, CO₂^{δ-Glu}CHHPh), 5.15 (d, J = 12.3 Hz, 1H, OCHHPh), 5.25 (d, J = 12.3 Hz, 1H, OCHHPh), 7.18-7.42 (m, 20H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) 24.4 (NCHCH₂^{β-Glu}), 30.8 (NHCHCH₂CH₂^{γ-Glu}), 54.5 (N(CH₂Ph)₂), 59.9 (NCH^{α-Glu}), 66.3 (CO₂^{δ-Glu}CH₂Ph), 66.4 (OCH₂Ph), 127.2 (C^{ar}), 127.9 (C^{ar}), 128.3 (C^{ar}), 128.45 (C^{ar}), 128.52 (C^{ar}), 128.6 (C^{ar}), 128.7 (C^{ar}), 128.8 (C^{ar}), 129.0 (C^{ar}), 136.0 (C^{ar}), 136.1 (C^{ar}), 139.3 (C^{ar}), 172.3 (COO), 173.0 (COO).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₃₃H₃₄NO₄⁺ 508.24824, gefunden 508.24612. [α]²²_D -78.7 (*c* = 1.49, CHCl₃), Lit^[143]: [α]²⁰_D -70.8 (*c* = 1.3, CHCl₃).

Benzyl (S)-2-(dibenzylamino)-5-hydroxypentanoat (221)

Dibenzyl *N*,*N*-Dibenzyl-L-Glutamat (**220**) (5.1 g, 10 mmol, 1.0 Äquiv.) wird unter Argon in 50 mL THF (abs) gelöst und auf -10 °C gekühlt. Zum Ansatz wird DIBAL-H (1M in Hexan, 30 mL, 30mmol, 3.0 Äquiv.) zugegeben und die Lösung auf 0 °C erwärmt. Nach 1.5 h werden 4 mL H₂O zugegeben und für weitere 30 Minuten gerührt. Dabei entsteht eine dickflüssige Suspension, die nicht mehr gerührt werden kann. Es werden weitere 20 mL THF sowie 2 g Na₂SO₄ zugegeben und erneut 30 Minuten lang gerührt. Anschließend wird die Suspension über Celite abfiltriert. Die flüchtigen Bestandteile des Filtrats werden im Vakuum entfernt und das Rohprodukt säulenchromatographisch aufgereinigt (CH/EtOAc 9:1 -> CH/EtOAc 8:2) um das gewünschte Produkt zu erhalten (2.9 g, 71%).^[143]

Chemical Formula: C₂₆H₂₉NO₃ Molecular Weight: 403,52

R_f (SiO₂) 0.16 CH/EtOAc 8:2.

IR 3374, 3063, 3032, 2927, 2850, 1727, 1603, 1495, 1454, 1373, 1210, 1156, 1130, 1054, 1027, 966, 912, 825, 743, 731, 695, 596.

¹H NMR (500 MHz, CDCl₃) 1.45 (dtt, J = 13.9, 7.1, 6.1 Hz, 1H, NHCHCH₂CHH^{y-Glu}), 1.66 (dtt, J = 13.9, 7.1, 6.1 Hz, 1H, NHCHCH₂CHH^{y-Glu}), 1.77 (ddt, J = 7.6, 7.3, 7.1 Hz, 2H, NCHCH₂^{β-Glu}), 3.34 (dd, J = 7.6, 7.3 Hz, 1H, NCH^{α -Glu}), 3.38-3.50 (überlappt, m, 2H, CH₂OH^{δ -Glu}), 3.48 (d, J = 13.7 Hz, 2H, N(CHHPh)₂), 3.87 (d, J = 13.7 Hz, 2H, N(CHHPh)₂), 5.12 (d, J = 12.2 Hz, 1H, OCHHPh), 5.23 (d, J = 12.2 Hz, 1H, OCHHPh), 7.17-7.42 (m, 15H, H^{ar}).

¹³C NMR (75 MHz, CDCl₃) 25.9 (NCHCH₂^{β-Glu}), 29.5 (CH₂OH^{γ-Glu}), 54.7 (N(CH₂Ph)₂), 60.7 (NCH^{α-Glu}), 62.5 (CH₂OH^{δ-Glu}), 66.2 (OCH₂Ph), 127.2 (C^{ar}), 128.4 (C^{ar}), 128.5 (C^{ar}), 128.7 (C^{ar}), 128.8 (C^{ar}), 129.1 (C^{ar}), 136.2 (C^{ar}), 139.5 (C^{ar}), 172.8 (COO).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₂₆H₃₀NO₃⁺ 404.22202, gefunden 404.22070.
$[\alpha]^{23}_{D}$ -90.2 (*c* = 0.9, CHCl₃), Lit^[186]: $[\alpha]^{20}_{D}$ -81.4 (*c* = 0.9, CHCl₃).

Benzyl (S)-2-(dibenzylamino)-5-((triisopropylsilyl)oxy)pentanoat (222)

Zu einer Lösung aus Benzyl (*S*)-2-(dibenzylamino)-5-hydroxypentanoat (**221**) (500 mg, 1.2 mmol, 1.0 Äquiv.) in 1 mL DMF wird Imidazol (211 mg, 3.1 mmol, 2.5 Äquiv.) und TIPSCI (316 μ L, 1.5 mmol, 1.2 Äquiv.) zugegeben. Die leicht gelbe Lösung wird bei Raumtemperatur über Nacht gerührt. Dann wird die Reaktionslösung mit EtOAc verdünnt und mit gesättigter NH₄Cl-Lösung und gesättigter NaCl-Lösung gewaschen. Die organische Phase wird über Na₂SO₄ getrocknet und die flüchtigen Bestandteile im Vakuum entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (CH/EtOAc 100:1), wobei das gewünschte Produkt als farbloses Öl erhalten wird (625 mg, 90%).^[187]

Chemical Formula: C₃₅H₄₉NO₃Si Molecular Weight: 559,87

R_f (SiO₂) 0.25 (CH/EtOAc 98:2)

IR 3064, 3032, 2942, 2891, 2865, 1731, 1495, 1454, 1381, 1247, 1211, 1161, 1131, 1103, 1068, 1028, 1013, 994, 917, 882, 780, 745, 731, 696, 679, 658.

¹H NMR (300 MHz, CDCl₃) 1.40-1.54 (m, 1H, NCHCHH^{β-Glu}), 1.64-1.92 (m, 3H, NCHCHH^{β-Glu} & SiOCH₂CH₂^{γ-Glu}), 3.39 (t, *J* = 7.2 Hz, 1H, NCH^{α-Glu}), 3.53 (überlappt, d, *J* = 13.7 Hz, 2H, N(CHHPh)₂), 3.48-3.65 (überlappt m, 2H, SiOCH₂^{δ-Glu}), 3.93 (d, *J* = 13.7 Hz, 2H, N(CHHPh)₂), 5.16 (d, *J* = 12.3 Hz, 1H, OCHHPh), 5.26 (d, *J* = 12.3 Hz, 1H, OCHHPh), 7.18-7.46 (m, 15H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) 12.1 (SiCH(CH₃)₂), 18.2 (SiCH(CH₃)₂), 25.9 (SiOCH₂CH₂^{γ-Glu}), 29.7 (NCHCH₂^{β-Glu}), 54.6 (N(CH₂Ph)₂), 60.7 (NCH^{α-Glu}), 62.8 (SiOCH₂^{δ-Glu}), 66.0 (OCH₂Ph), 127.1 (C^{ar}), 128.3 (C^{ar}), 128.4 (C^{ar}), 128.5 (C^{ar}), 128.7 (C^{ar}), 129.0 (C^{ar}), 136.3 (C^{ar}), 139.8 (C^{ar}), 173.1 (COO).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₃₅H₅₀O₃NSi⁺ 560.35545, gefunden 560.35382.

 $[\alpha]^{23}_{D}$ -59.2 (*c* = 1.1, CHCl₃).

(S)-2-(Dibenzylamino)-5-((triisopropylsilyl)oxy)pentan-1-ol (223)

Zu einer gekühlten Suspension aus LiAlH₄ (51 mg, 1.34 mmol, 1.2 Äquiv.) in 2 mL THF (abs) wird eine Lösung aus Benzyl (*S*)-2-(Dibenzylamino)-5-((triisopropylsilyl)oxy)pentanoat (**222**) (625 mg, 1.12 mmol, 1.0 Äquiv.) in 2 mL THF (abs) unter Argon zugegeben. Die Reaktion wird bei 0 °C 2 h lang gerührt. Nach Ende der Reaktion (Dünnschichtchromatographie CH/EtOAc 9:1) wird vorsichtig unter Kühlung H₂O (50 µL) zugegeben, dann 1M NaOH (50 µL) und nochmals H₂O (150 µL). Dabei fällt ein Feststoff aus, welcher über Celite abfiltriert wird. Der Filterkuchen wird mit viel EtOAc nachgewaschen. Das Filtrat wird im Vakuum einkonzentriert und der Rückstand via Säulenchromatographie aufgereinigt (CH/EtOAc 10:1). Das gewünschte Produkt wird als farbloses Öl erhalten (458 mg, 90%).^[188]

Chemical Formula: C₂₈H₄₅NO₂Si Molecular Weight: 455,76

R_f (SiO₂) 0.42 (CH/EtOAc 9:1)

IR 3467, 3029, 2941, 2864, 1495, 1455, 1383, 1365, 1247, 1210, 1100, 1071, 1028, 1013, 996, 920, 882, 781, 746, 729, 697, 679, 657.

¹H NMR (300 MHz, CDCl₃) 1.03-1.19 (m, 21H, OSi(CH(CH₃)₂)₃), 1.21-1.36 (m, 1H, NCHCHH^{β -Glu}), 1.46-1.57 (m, 2H, SiOCH₂CH₂^{γ -Glu}), 1.83-2.01 (m, 1H, NCHCHH^{β -Glu}), 2.74-2.88 (m, 1H, NCH^{α -Glu}), 3.16 (s, 1H, OH), 3.43 (überlappt, d, *J* = 13.2 Hz, 2H, N(CHHPh)₂), 3.43-3.58 (überlappt, m, 2H, CH₂OH), 3.63-3.77 (m, 2H, SiOCH₂^{δ -Glu}), 3.84 (d, *J* = 13.2 Hz, 2H, N(CHHPh)₂), 7.21-7.38 (m, 10H, H^ar).

¹³C NMR (75 MHz, CDCl₃) 12.2 (Si(*C*H(CH₃)₂)₃), 18.2 (Si(CH(*C*H₃)₂)₃), 21.3 (NCH*C*H₂^{β-Glu}), 30.8 (SiOCH₂*C*H₂^{γ-Glu}), 53.4 (N(*C*H₂Ph)₂), 59.1 (NCH^{α-Glu}), 61.1 (CH₂OH), 63.3 (SiOCH₂^{δ-Glu}), 127.4 (C^{ar}), 128.6 (C^{ar}), 129.2 (C^{ar}), 139.5 (C^{ar}).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₂₈H₄₆O₂NSi⁺ 456.32923, gefunden 456.32846.

 $[\alpha]^{23}_{D}$ +64.6 (*c* = 1.1, CHCl₃).

(S)-2-(Dibenzylamino)-5-((triisopropylsilyl)oxy)pentanal (224)

0.35 mL Oxalylchlorid (4.11 mmol, 1.3 Äquiv.) werden in 8 mL CH₂Cl₂ (abs) unter Argon vorgelegt und auf -78 °C gekühlt. Zur Lösung wird DMSO (abs, 0.54 mL, 7.57 mmol, 2.3 Äquiv.) gegeben und 15 Minuten lang gerührt. (*S*)-2-(Dibenzylamino)-5-((triisopropylsilyl)oxy)pentan-1-ol (**223**) (1.5 g, 3.29 mmol, 1.0 Äquiv.), wird in 8.5 mL CH₂Cl₂ gelöst und zugegeben. Nach 15 Minuten werden 1 mL Triethylamin (abs) zugegeben und weitere 15 Minuten lang gerührt. Dann erfolgt nochmals Zugabe von 1.1 mL Triethylamin (2.1 mL, 15.13 mmol, 4.6 Äquiv.) und der Ansatz wird auf 0 °C gebracht. Weitere 15 Minuten später erfolgt ein Reaktionsabbruch durch Zugabe von H₂O. Die wässrige Phase wird drei Mal mit CH₂Cl₂. Die vereinigte organische Phase wird mit 1M HCl, mit gesättigter NaHCO₃-Lösung sowie mit gesättigter NaCl-Lösung gewaschen, anschließend über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Es wird ein gelbliches Öl erhalten, welches ohne weitere Aufreinigung verwendet wird (1.41 g, 94%).

Chemical Formula: C₂₈H₄₃NO₂Si Molecular Weight: 453,74200

R_f (SiO₂) 0.71 CH/EtOAc 9:1

IR 2941, 2891, 2865, 1729, 1681, 1495, 1462, 1455, 1382, 1366, 1248, 1101, 1070, 1028, 1013, 995, 917, 882, 745, 697, 678, 657, 608, 554.

¹H NMR (300 MHz, CDCl₃) 1.04-1.13 (überlappt m, 3H, Si(CH(CH₃)₂)₃), 1.06 (s, 18H, Si(CH(CH₃)₂)₃), 1.61 (dt, J = 6.6, 6.3 Hz, 1H, NCHCHH^{β-Glu}), 1.81 (tt, J = 6.3, 6.1 Hz, 1H, NCHCH₂CHH^{γ-Glu}), 1.81 (tt, J = 6.3, 6.1 Hz, 1H, NCHCH₂CHH^{γ-Glu}), 1.84 (tt, J = 6.3, 6.1 Hz, 1H, NCHCH₂CHH^{γ-Glu}), 3.21 (td, J = 6.6, 0.5 Hz, 1H, NCH^{α-Glu}), 3.63 (dt, J = 10.4, 6.1 Hz, 1H, SiOCHH^{δ-Glu}), 3.70 (dt, J = 10.4, 6.1 Hz, 1H, SiOCHH^{δ-Glu}), 3.74 (d, J = 14.0 Hz, 2H, N(CHHPh)₂), 3.82 (d, J = 14.0 Hz, 2H, N(CHHPh)₂), 7.22-7.42 (m, 10H, H^{ar}), 9.75 (d, J = 0.5 Hz, 1H, CHO).

¹³C NMR (125 MHz, C₆D₆) 12.3 (Si(*C*H(CH₃)₂)₃), 18.3 (Si(CH(*C*H₃)₂)₃), 20.8 (NCHCH₂*C*H₂^{γ-Glu}), 30.6 (NCH*C*H₂^{β-Glu}), 55.0 (N(CH₂Ph)₂), 63.2 (SiOCH₂^{δ-Glu}), 66.7 (NCH^{α-Glu}), 127.5 (C^{ar}), 128.7 (C^{ar}), 129.2 (C^{ar}), 139.8 (C^{ar}), 202.5 (CHO).

 $[\alpha]^{24}_{D}$ - 18.2 (*c* = 1.4, CHCl₃).

Ethyl (4S)-4-(dibenzylamino)-3-hydroxy-2,2-dimethyl-7-((triisopropylsilyl)oxy)heptanoat (225)

Zink-Pulver (1.79 g, 27.5 mmol, 1.1 Äquiv.) wird unter Argon in 5 mL Et₂O (abs) suspendiert. Dann werden 2 mL THF (abs) und 1,2-Dibromethan (0.22 mL, 2.5 mmol, 0.1 Äquiv.) zugegeben und 15 Minuten unter Rückfluss erhitzt. Ethyl α -Bromoisobutyrat (**226**) (3.67 mL, 25.0 mmol, 1.0 Äquiv.) wird in 5 mL Et₂O (abs) gelöst und zum Ansatz gegeben. Dieser wird 30 Minuten lang bei Raumtemperatur gerührt und 15 Minuten lang unter Rückfluss erhitzt. Das enstandene Reformatsky-Reagenz wird nach einer Methode von KNOCHEL^[147] anschließend titriert und eine Molarität von 1.5 mmol/ml bestimmt.

Nun wird der Aldehyd, (*S*)-2-(Dibenzylamino)-5-((triisopropylsilyl)oxy)pentanal (**224**) (124 mg, 273 μmol, 1.0 Äquiv.), in 3 mL THF (abs) unter Argon vorgelegt und mit der Reformatsky-Lösung (1.5м, 450 μL, 3.0 Äquiv.) versetzt. Der Ansatz wird bei Raumtemperatur gerührt und der Reaktionsfortschritt mittles Dünnschichtchromatographie kontrolliert (CH/EtOAc 95:5). Nach ca einer Stunde wird der Ansatz durch Zugabe von gesättigert NH₄Cl-Lösung abgebrochen, die organische Phase wird mit EtOAc verdünnt und die Phasen getrennt. Die wässrige Phase wird mit EtOAc extrahiert (3x) und die organischen Phasen vereinigt. Es wird über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wird wiederholt einer säulenchromatographischen Auftrennung unterworfen (CH/EtOAc 98:2), um jeweils eine kleine Menge der beiden Diastereomere in reiner Form zu erhalten (Diastereomer 1: 24 mg 15%, Diastereomer 2: 15 mg, 10%).

ÒН

Chemical Formula: C₃₄H₅₅NO₄Si Molecular Weight: 569,90

R_f (SiO₂) 0.22 CH/EtOAc 95:5

IR 3530, 3029, 2943, 2866, 1725, 1496, 1455, 1384, 1365, 1258, 1210, 1139, 1100, 1070, 1028, 996, 969, 914, 882, 779, 749, 699, 680, 657.

¹H NMR (500 MHz, C₆D₆) 1.01 (t, *J* = 7.0 Hz, 3H, OCH₂CH₃), 1.07 (s, 3H, C(CH₃)(CH₃)), 1.09-1.19 (überlappt m & s, 21H, Si(CH(CH₃)₂)), 1.39 (s, 3H, C(CH₃)(CH₃)), 1.41-1.49 & 1.66-1.75 (je m, 1H, NCHCHH^{β-Glu} & NCHCH₂CHH^{γ-Glu}), 1.81-1.92 (m, 2H, NCHCHH^{β-Glu} & NCHCH₂CHH^{γ-Glu}), 2.93 (ddd, *J* = 8.3, 8.2, 4.0 Hz, 1H, NCH^{α-Glu}), 3.46 (d, *J* = 12.8 Hz, 2H, N(CHHPh)₂), 3.62 (dt, *J* = 9.8, 6.4 Hz, 1H, CHHOSi^{δ-Glu}), 3.69 (dt, *J* = 9.8, 5.8 Hz, 1H, CHHOSi^{δ-Glu}), 3.92 (br d, *J* = 12.8 Hz, 2H, N(CHHPh)₂), 3.99 (d, *J* = 8.3 Hz, 1H, NCHCH(OH)), 4.01 (überlappt q, *J* = 7.0 Hz, 2H, OCH₂CH₃), 4.91 (s, 1H, OH), 7.02-7.15 & 7.19-7.38 (m, 10H, H^{ar}).

¹³C NMR (75 MHz, C₆D₆) 12.4 (Si(*C*H(CH₃)₂)), 14.2 (OCH₂*C*H₃), 18.4 (Si(CH(*C*H₃)₂)), 19.2 & 24.4 (C(*C*H₃)₂), 25.5 & 32.8 (NCH*C*H₂^{β-Glu} & NCHCH₂*C*H₂^{γ-Glu}), 46.4 (*C*(CH₃)₂), 55.0 (N(CH₂Ph)₂), 59.5 (NCH^{α-Glu}), 60.3 (O*C*H₂CH₃), 64.0 (CH₂OSi^{δ-Glu}), 74.8 (NCH*C*H(OH)), 127.6 (C^{ar}), 128.8 (C^{ar}), 129.8 (C^{ar}), 139.5 (C^{ar}), 177.1 (COO).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₃₄H₅₆O₄NSi⁺ 570.39731, gefunden 570.39668.

 $[\alpha]^{23}_{D}$ +18.2 (*c* = 1.8, CHCl₃).

Diastereomer 2:

R_f (SiO₂) 0.09 CH/EtOAc 95:5

IR 3534, 3028, 2942, 2866, 1719, 1495, 1454, 1386, 1365, 1260, 1208, 1140, 1099, 1071, 1028, 996, 970, 918, 882, 782, 745, 699, 680, 657.

¹H NMR (500 MHz, C₆D₆) 0.91 (t, J = 7.2 Hz, 3H, OCH₂CH₃), 1.06-1.14 (überlappt m & s, 21H, Si(CH(CH₃)₂)), 1.15 & 1.18 (je s, 3H, C(CH₃)₂), 2.75 (d, J = 6.3 Hz, 1H, OH), 2.78 (dd, J = 10.4, 2.2 Hz, 1H, NCHCH(OH)^{α -Glu}), 3.41 (d, J = 14.0 Hz, 2H, N(CHHPh)₂), 3.58 (dt, J = 10.2, 6.4 Hz, 1H, CHHOSi^{δ -Glu}), 3.64 (dt, J = 10.2, 5.3 Hz, 1H, CHHOSi^{δ -Glu}), 3.91 (q, J = 7.2 Hz, 2H, OCH₂CH₃), 4.07 (d, J = 14.0 Hz, 2H, N(CHHPh)₂), 4.25 (d, J = 6.3 Hz, 1H, NCHCH(OH)), 7.07-7.47 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, C₆D₆) 12.4 (Si(*C*H(CH₃)₂)), 14.1 (OCH₂*C*H₃), 18.4 (Si(CH(*C*H₃)₂)), 20.7 (C(*C*H₃)(CH₃)), 23.7 & 31.3 (NCH*C*H₂^{β-Glu} & NCHCH₂*C*H₂^{γ-Glu}), 23.9 (C(CH₃)(*C*H₃)), 47.3 (*C*(CH₃)₂), 54.4 (N(CH₂Ph)₂), 57.7 (N*C*HCH(OH)^{α-Glu}), 60.8 (O*C*H₂CH₃), 63.7 (CH₂OSi^{δ-Glu}), 73.9 (NCH*C*H(OH)), 127.1 (C^{ar}), 128.4 (C^{ar}), 129.4 (C^{ar}), 141.1 (C^{ar}), 177.7 (COO). $[\alpha]^{25}_{D}$ -3.3 (*c* = 0.4, CHCl₃).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₃₄H₅₆O₄NSi⁺ 570.39731, gefunden 570.39656.

1-Benzyl-4-hydroxy-3,3-dimethyl-5-(3-((triisopropylsilyl)oxy)propyl)-pyrrolidin-2-on (227)

Das Diastereomerengemisch, Ethyl (4*S*)-4-(dibenzylamino)-3-hydroxy-2,2-dimethyl-7-((triisopropylsilyl)oxy)heptanoat (**225**) (285 mg, 500 μmol, 1.0 Äquiv.), wird in 5 mL EtOAc gelöst und mit 50 μL Essigsäure versetzt. 10% Pd/C (28.5 mg) wird zugegeben und der Ansatz unter eine H₂-Atmosphäre gesetzt und über Nacht bei Raumtemperatur gerührt. Die Suspension wird über Celite abfiltriert und das Filtrat im Vakuum eingeengt. Mittels Säulenchromatographie wird der Rückstand aufgereinigt (CH/EtOAc 8.5:1.5). Nach Säulenchromatographie werden zwei kleine Fraktionen der cyclisierten Diastereomere abgetrennt (Hauptdiastereomer 63 mg, 29%; Nebendiastereomer 35 mg, 16%).

(4R,5S)-Diastereomer:

Chemical Formula: C₂₅H₄₃NO₃Si Molecular Weight: 433,71

R_f (SiO₂) 0.68 CH/EtOAc 1:3.

IR 3385, 2942, 2891, 2865, 1666, 1497, 1464, 1426, 1381, 1362, 1315, 1290, 1259, 1098, 1028, 1014, 920, 882, 801, 722, 699, 679, 658, 634, 561.

¹H NMR (500 MHz, CDCl₃) 1.00-1.07 (überlappt m & s, 21 H, Si(CH(CH₃)₂)₃), 1.09 (s, 3H, C(CH₃)(CH₃)), 1.26 (s, 3H, C(CH₃)(CH₃)), 1.54 (dddd, J = 13.6, 13.0, 9.0, 9.0 Hz, 1H, NCHCHH^{β-Glu}), 1.65 (überlappt dddd, J = 10.1, 9.9, 9.3, 9.0 Hz & dddd, J = 13.6, 7.2, 7.1, 5.7 Hz, 2H, NCHCH₂CH₂^{v-Glu}), 1.97 (dddd, J = 13.0, 9.3, 7.2, 3.7 Hz, 1H, NCHCHH^{β-Glu}), 2.40 (d, J = 5.2 Hz, 1H, CH(OH)), 3.19 (ddd, J = 9.0, 6.7,3.7 Hz, 1H, NCH^{α-Glu}), 3.64 (ddd, J = 9.9, 7.1, 4.7 Hz, 1H, SiOCHH^{δ-Glu}), 3.74 (überlappt ddd, J = 10.1, 5.7,4.7 Hz, 1H, SiOCHH^{δ-Glu}), 3.77 (überlappt dd, J = 6.7, 5.2 Hz, 1H, 1H, CH(OH)), 3.84 (d, J = 15.3 Hz, 1H, NCHHPh), 5.14 (d, J = 15.3 Hz, 1H, NCHHPh), 7.18-7.33 (m, 5H, H^{ar}). ¹³C NMR (125 MHz, CDCl₃) 12.0 (Si(*C*H(CH₃)₂)₃), 18.12 & 18.13 (Si(CH(*C*H₃)₂)₃ & C(*C*H₃)(CH₃)), 23.4 (C(CH₃)(*C*H₃)), 27.6 (NCHCH₂*C*H₂^{γ-Glu}), 28.6 (NCH*C*H₂^{β-Glu}), 43.4 (NCH₂Ph), 59.6 (NCH^{α-Glu}), 63.7 (SiOCH₂^{δ-Glu}), 79.4 (CH(OH)), 127.6 (C^{ar}), 128.0 (C^{ar}), 128.8 (C^{ar}), 136.5 (C^{ar}), 178.2 (NCO).

1D NOE Diff: 3.19 (ddd, J = 9.0, 6.7, 3.7 Hz, 1H, NCH^{α -Glu}) →1.54, 1.97.

3.77* (überlappt dd, J = 6.7, 5.2 Hz, 1H, 1H, CH(OH)) → 1.65, 2.40.

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₂₅H₄₄O₃NSi⁺ 434.30850, gefunden 434.30736.

 $[\alpha]^{24}_{D}$ -45.0 (*c* = 0.7, CHCl₃).

* da Signal mit 3.74 (SiOCHH^{δ-Glu}) überlappt, ist Experiment nicht aussagekräftig.

(4*S*,5*S*)-Diastereomer:

Chemical Formula: C₂₅H₄₃NO₃Si Molecular Weight: 433,71

R_f (SiO₂) 0.58 CH/EtOAc 1:3.

IR 3386, 2942, 2894, 2865, 1667, 1497, 1464, 1431, 1381, 1361, 1323, 1289, 1260, 1101, 1030, 1013, 919, 882, 800, 724, 701, 680, 657, 634, 565.

¹H NMR (500 MHz, CDCl₃) 1.02-1.10 (überlappt m & s, 21H, Si(CH(CH₃)₂)₃), 1.11 (s, 3H, C(CH₃)(CH₃)), 1.25 (s, 3H, C(CH₃)(CH₃)), 1.46-1.61 (m, 2H, NCHCH₂CH₂^{γ -Glu}), 1.64-1.74 (m, 1H, NCHCHH^{β -Glu}), 1.89 (dtd, J = 12.9, 6.3, 2.9 Hz, 1H, NCHCH H^{β -Glu}), 2.33 (d, J = 4.9 Hz, 1H, C(OH)H), 3.40 (ddd, J = 11.4, 4.3, 4.0 Hz, 1H, NCH^{α -Glu}), 3.64-3.73 (m, 2H, SiOCH₂^{δ -Glu}), 3.85 (dd, J = 4.9, 4.3 Hz, 1H, C(OH)H), 3.95 (d, J = 15.3 Hz, 1H, NCHHPh), 5.02 (d, J = 15.3 Hz, 1H, NCHHPh), 7.17-7.32 (m, 5H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) 12.0 (Si(*C*H(CH₃)₂)₃), 18.0 (C(*C*H₃)(CH₃)), 18.1 (Si(CH(*C*H₃)₂)₃), 22.68 ((C(CH₃)(*C*H₃)), 22.70 (NCH*C*H₂^{β-Glu}), 28.5 (NCHCH₂*C*H₂^{γ-Glu}), 43.9 (NCH₂Ph), 45.5 (*C*(CH₃)₂), 58.5 (NCH^{α-Glu}), 63.2 (SiOCH₂^{δ-Glu}), 74.6 (C(OH)H), 127.5 (C^{ar}), 127.8 (C^{ar}), 128.8 (C^{ar}), 136.9 (C^{ar}), 179.0 (NCO).

1D NOE Diff: 3.40 (dt, *J* = 11.4, 4.0 Hz, 1H, NCH^{α-Glu}) → 1.64-1.74, 1.89, <u>3.85</u>. 3.85 (dd, *J* = 4.9, 4.3 Hz, 1H, C(OH)*H*) → 2.33, 2.40, <u>3.40</u>. HRMS (ESI) m/z $[M+H]^+$ berechnet für C₂₅H₄₄O₃NSi⁺ 434.30850, gefunden 434.30745.

 $[\alpha]^{24}_{D}$ -43.5 (*c* = 0.8, CHCl₃).

Ethyl (4S)-4-(dibenzylamino)-3,7-dihydroxy-2,2-dimethylheptanoat (228)

In einem Schlenkkolben wird eine 1 Spatelspitze 4Å Molsieb ausgeheizt und unter Argon gesetzt, 0.36 mL TBAF-Lösung (1M in THF, 0.36 mmol, 1.2 Äquiv.) und 2.5 mL THF (abs) werden zugegeben und 30 min lang gerührt. Ethyl (3RS,4S)-4-(dibenzylamino)-3-hydroxy-2,2-dimethyl-7-((triisopropylsilyl)oxy)heptanoat (225) (171 mg, 0.30 mmol, 1.0 Äquiv.) wird in 5 mL THF (abs) gelöst und zum Ansatz gegeben. Die Reaktion rührt 1 h 20 min (DC CH/EtOAc 8.5:1.5) und wird anschließend abfiltriert. Das Filtrat wird im Vakuum eingeengt und in EtOAc aufgenommen. Die organische Phase wird mit H₂O und NaCl-Lösung Na_2SO_4 getrocknet. gesättigter gewaschen sowie über Es erfolgt säulenchromatographische Aufreinigung (CH_2CI_2/CH_3OH 97:3). Das Produkt wird als (3*R*,*S*)-Isomerengemisch erhalten (69 mg, 56%, farbloses Öl).

ÓН

Chemical Formula: C₂₅H₃₅NO₄ Molecular Weight: 413,5580

R_f (SiO₂) 0.07 CH/EtOAc 8.5:1.5, 0.57 CH₂Cl₂/CH₃OH 97:3.

IR 3415, 2973, 2939, 2872, 2808, 1714, 1495, 1471, 1454, 1364, 1263, 1173, 1142, 1115, 1070, 1052, 1027, 969, 863, 747, 729, 700, 582.

¹H NMR (500 MHz, CDCl₃) Hauptdiastereomer: 1.07 & 1.24 (je s, 3H, C(CH₃)₂), 1.26 (t, *J* = 7.0 Hz, 3H, OCH₂CH₃), 1.51-1.95 (m, 4H, NCHCH₂^{β-Glu} & NCHCH₂CH₂^{γ-Glu}), 2.70 (dd, *J* = 10.5, 2.3 Hz, 1H, NCHCH(OH)^{α -Glu}), 2.87 (d, *J* = 7.3 Hz, 1H, NCHCH(OH)), 3.43 (d, *J* = 14.0 Hz, 2H, N(CHHPh)₂), 3.45 (td, *J* = 6.4, 1.2 Hz, 2H, CH₂OH^{δ -Glu}), 3.99 (d, *J* = 14.0 Hz, 2H, N(CHHPh)₂), 4.10 (d, *J* = 7.3 Hz, 1H, NCHCH(OH)), 4.15 (q, *J* = 7.0 Hz, 2H, OCH₂CH₃), 7.18-7.37 (m, 10H, H^{ar}).

Nebendiastereomer: 0.75 & 1.11 (je s, 3H, C(CH₃)₂), 1.24-1.29 (m, überlappt, 3H, OCH₂CH₃), 1.51-1.95 (m, 4H, NCHCH₂^{β-Glu} & NCHCH₂CH₂^{γ-Glu}), 2.80 (td, J = 8.5, 3.5 Hz, 1H, NCHCH(OH)^{α-Glu}), 3.56 (d, J = 13.1 Hz, 2H, N(CHHPh)₂), 3.66 (td, J = 6.2, 2.3 Hz, 2H, CH₂OH^{δ-Glu}), 3.69 (d, J = 8.5 Hz, 1H,

NCHC*H*(OH)), 3.93 (d, *J* = 13.1 Hz, 2H, N(CH*H*Ph)₂), 4.11 (überlappt m, 2H, OC*H*₂CH₃), 7.18-7.37 (m, 10H, H^{ar}).

¹³C NMR (125 MHz, CDCl₃) Hauptdiastereomer: 14.2 (OCH₂CH₃), 21.0 (C(CH₃)(CH₃)), 22.9 (NCHCH₂CH₂^{γ-Glu}), 24.5 (C(CH₃)(CH₃)), 30.0 (NCHCH₂^{β-Glu}), 46.8 (C(CH₃)₂), 54.1 (N(CH₂Ph)₂), 56.1 (NCHCH(OH)^{α-Glu}), 61.3 (OCH₂CH₃), 62.8 (CH₂OH^{δ-Glu}), 74.4 (NCHCH(OH)), 127.0 (C^{ar}), 128.3 (C^{ar}), 129.1 (C^{ar}), 140.4 (C^{ar}), 178.0 (COO).

Nebendiastereomer: 14.2 (OCH₂CH₃), 18.3 & 24.2 (C(CH₃)₂), 25.2 (NCHCH₂CH₂^{γ-Glu}), 32.0 (NCHCH₂^{β-Glu}), 45.8 (C(CH₃)₂), 54.1 (N(CH₂Ph)₂), 58.4 (NCHCH(OH)^{α-Glu}), 60.7 (OCH₂CH₃), 62.9 (CH₂OH^{δ-Glu}), 74.3 (NCHCH(OH)), 127.6 (C^{ar}), 128.7 (C^{ar}), 129.5 (C^{ar}), 140.4 (C^{ar}), 178.0 (COO).

HRMS ESI (m/z) [M+H]⁺ berechnet für C₂₅H₃₆O₄N⁺ 414.26389, gefunden 414.26303.

5.3.5 Vorschriften zu Abschnitt 3.2.6

(R)-4,4-Dimethyl-3-((trimethylsilyl)oxy)dihydrofuran-2(3H)-on (253)

(*R*)-Pantolacton (*R*-**235**) (325 mg, 2.5 mmol, 1.0 Äquiv.) wird unter Argon in THF (1 mL, abs) gelöst und Triethylamin (0.42 mL, 3.0 mmol, 1.2 Äquiv.) zugegeben, dann TMSCI (0.38 mL, 3.0 mmol, 1.2 Äquiv.). Ein weißer Feststoff fällt aus und die entstandene Suspension wird für 24h gerührt. Dem Ansatz wird H₂O und EtOAc zugegeben und die Phasen getrennt. Die wässrige Phase wird mit EtOAc extrahiert und die vereinigte Organik mit wenig gesättigter NaCl-Lösung gewaschen. Nach dem Trocknen über Na₂SO₄ und Entfernen des Lösungsmittels wird der Rückstand mittels Säulenchromatographie (CH/EtOAc 9:1) aufgereinigt. Das gewünschte Produkt wird als farbloser Feststoff erhalten (420 mg, 83%).

_si_0,,

Chemical Formula: C₉H₁₈O₃Si Molecular Weight: 202,33

Schmelzpunkt 37.7 – 38.3 °C.

R_f (SiO₂) 0.29 CH/EtOAC 9:1.

IR 2979, 2963, 2934, 2912, 2874, 1799, 1778, 1485, 1462, 1402, 1376, 1369, 1359, 1299, 1272, 1250, 1208, 1184, 1134, 1009, 994, 960, 948, 920, 882, 842, 812, 761, 748, 694, 638, 619, 556.

¹H NMR (300 MHz, CDCl₃) 0.21 (s, 9H, Si(CH₃)₃), 1.05 & 1.14 (je s, 3H, C(CH₃)₂), 3.90 (d, *J* = 8.6 Hz, 1H, CHHO), 3.98 (s, 3H, SiOCH), 4.01 (d, *J* = 8.6 Hz, 1H, CHHO).

¹³C NMR (75 MHz, CDCl₃) 0.17 (Si(CH₃)₃), 19.2 & 23.1 (C(CH₃)₂), 40.8 (*C*(CH₃)₂), 76.0 (CH₂O), 76.7 (SiOCH), 176.0 (COO).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₉H₁₉O₃Si⁺ 203.10980, gefunden 203.10935.

 $[\alpha]^{28}_{D}$ +19.9 (*c* = 1.4, CHCl₃).

(3R)-4,4-Dimethyl-3-((trimethylsilyl)oxy)tetrahydrofuran-2-ol (254)

(*R*)-4,4-Dimethyl-3-((trimethylsilyl)oxy)dihydrofuran-2(3*H*)-on (**253**) (309 mg, 1.53 mmol, 1.00 Äquiv.) wird in 4.70 mL Toluol (abs) unter Argon vorgelegt und auf -78 °C gekühlt. DIBAL-H (1M in THF, 1.60 mL, 1.60 mmol, 1.05 Äquiv.) wird langsam zugetropft und der Ansatz 25 Minuten lang gerührt. Es erfolgt eine Reaktionskontrolle mittels Dünnschichtchromatographie (CH/EtOAc 9:1). Da neben dem gewünschten Produkt ein anderes entsteht, wird die Reaktion vorzeitig durch Zugabe von CH₃OH abgebrochen und 5 Minuten lang bei -78 °C gerührt. Der Ansatz wird auf Raumtemperatur gebracht und über Celite abfiltriert. Das Filtrat wird im Vakuum eingeengt und der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 9:1 -> 3:2). Das gewünschte Produkt wird als farbloses Öl erhalten (143 mg, 46%), daneben 15% des Nebenproduktes (3*R*)-4,4-dimethyl-2-((trimethylsilyl)oxy)tetrahydrofuran-3-ol (47 mg) sowie 4% des re-isolierten Eduktes (12 mg).

Chemical Formula: C₉H₂₀O₃Si Molecular Weight: 204,34

R_f (SiO₂) 0.18 CH/EtOAc 9:1.

IR 3404, 2958, 2875, 1468, 1393, 1368, 1251, 1200, 1133, 1099, 1021, 986, 949, 927, 884, 838, 750, 686, 624, 568.

¹H NMR (300 MHz, CDCl₃) Mischung aus Isomeren, Hauptisomer: 0.19 (s, 9H, Si(CH₃)₃), 0.99 & 1.05 (je s, 3H, C(CH₃)₂), 3.41 (d, *J* = 8.2 Hz, 1H, C*H*HO), 3.63 (d, *J* = 4.1 Hz, 1H, SiOCH), 3.70 (d, *J* = 8.2 Hz, 1H, CHHO), 3.83 (d, *J* = 10.2 Hz, 1H, OH), 5.39 (dd, *J* = 10.2, 4.1 Hz, 1H, HOC*H*).

¹³C NMR (125 MHz, CDCl₃) Mischung aus Isomeren, Hauptisomer: 0.26 (Si(CH₃)₃), 20.0 & 26.0 (C(CH₃)₂), 41.3 (*C*(CH₃)₂), 77.9 (CH₂O), 78.9 (SiOCH), 98.3 (HOCH).

 $[\alpha]^{25}_{D}$ +23.4 (*c* = 0.9, CHCl₃). Zeigt Mutarotation, Messung nach ca 20 Minuten Equilibrierung.

(3R)-4,4-Dimethyl-2-((trimethylsilyl)oxy)tetrahydrofuran-3-ol (256)

Chemical Formula: C₉H₂₀O₃Si Molecular Weight: 204,34

R_f (SiO₂) 0.60 CH/EtOAc 9:1.

IR 3514, 2961, 2878, 1470, 1390, 1366, 1311, 1251, 1194, 1128, 1086, 1038, 1004, 945, 934, 897, 839, 755, 689.

¹H NMR (500 MHz, CDCl₃) 0.20 (s, 9H, Si(CH₃)₃), 1.07 (s, 6H, C(CH₃)₂), 2.80 (d, *J* = 6.7 Hz, 1H, *H*OCH), 3.47 (d, *J* = 8.2 Hz, 1H, CHHO), 3.61 (dd, *J* = 6.7, 4.9 Hz, 1H, HOCH), 3.74 (d, *J* = 8.2 Hz, 1H, CHHO), 5.45 (d, *J* = 4.9 Hz, 1H, SiOCH).

¹³C NMR (125 MHz, CDCl₃) 0.30 (Si(CH₃)₃), 20.0 (C(*C*H₃)(CH₃)), 26.0 (C(CH₃)(*C*H₃)), 41.3 (*C*(CH₃)₂), 77.9 (CH₂O), 78.9 (SiOCH), 98.3 (HOCH).

 $[\alpha]^{25}_{D}$ +173.8 (*c* = 0.7, CHCl₃).

(3R)-2,2-Dimethyl-3-((trimethylsilyl)oxy)hept-6-en-1,4-diol (255)

(3*R*)-4,4-Dimethyl-3-((trimethylsilyl)oxy)tetrahydrofuran-2-ol (**254**) (50 mg, 0.25 mmol, 1.0 Äquiv.) wird unter Argon vorgelegt und mit 2.5 mL CH₂Cl₂ (abs) versetzt. Die Lösung wird auf —70 °C gekühlt und Allylmagnesiumchlorid (2.0M in THF) zugetropft. Der Ansatz wird über Nacht langsam auf 15 °C aufgetaut (ca 17 h). Anschließend erfolgt ein Reaktionsabbruch durch Zugabe von gesättigter NH₄Cl-Lösung. Der Ansatz wird mit EtOAc verdünnt. Die wässrige Phase wird drei Mal mit EtOAc extrahiert und die organischen Phasen vereinigt. Nach Trocknung über Na₂SO₄, wird das Lösungsmittel im Vakuum entfernt und der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 9:1). Die beiden Diastereomere des gewünschten Produktes werden jeweils als farblose Öle in 19% Ausbeute (12 mg, Diastereomer 1) und in 55% Ausbeute (33 mg, Diastereomer 2) erhalten.

Chemical Formula: C₁₂H₂₆O₃Si Molecular Weight: 246,42 Diastereomer 1:

 $R_{\rm f}\,(SiO_2)$ 0.49 CH/EtOAc 7:3.

IR 3344, 2959, 2909, 2903, 2874, 1642, 1475, 1436, 1252, 1091, 1047, 910, 878, 840, 751, 688.

¹H NMR (500 MHz, CDCl₃) 0.21 (s, 9H, Si(CH₃)₃), 0.85 & 0.97 (je s, 3H, C(CH₃)₂), 2.13 (dddt, *J* = 14.0 Hz, 7.4, 7.0, 0.9 Hz, 1H, HOCHCH*H*), 2.34 (dddt, *J* = 14.0, 7.6, 6.2, 1.5 Hz, 1H, HOCHCH*H*), 3.09 (d, *J* = 11.6 Hz, 1H, C*H*HOH), 3.33 (s, 1H, SiOCH), 3.64 (d, *J* = 11.6 Hz, 1H, CH*H*OH), 3.85 (dd, *J* = 7.6, 7.0 Hz, 1H, HOC*H*), 5.120 (ddd, *J* = 17.8, 1.5, 0.9 Hz, 1H, CH=C*H*H), 5.124 (ddd, *J* = 10.2, 1.5, 0.9 Hz, 1H, CH=CH*H*), 5.80 (dddd, *J* = 17.8, 10.2, 7.4, 6.2 Hz, 1H, C*H*=CH₂).

¹³C NMR (125 MHz, CDCl₃) 1.1 (Si(CH₃)₃), 21.6 & 25.1 (C(*C*H₃)₂), 39.7 (*C*(CH₃)₂), 41.1 (HOCH*C*H₂), 66.7 (CH₂OH), 68.7 (HOCH), 80.3 (SiOCH), 117.7 (CH=*C*H₂), 134.9 (*C*H=CH₂).

HRMS (ESI) m/z berechnet für $C_{21}H_{27}O_3Si^+$ 247.17240, gefunden 247.17235.

 $[\alpha]^{25}_{D}$ +1.6 (*c* = 0.8, CHCl₃).

Diastereomer 2:

R_f (SiO₂) 0.42 CH/EtOAc 7:3.

IR 3344, 2958, 2910, 2904, 2880, 1641, 1475, 1432, 1252, 1099, 1041, 911, 874, 838, 751, 683.

¹H NMR (300 MHz, CDCl₃) 0.17 (s, 9H, Si(CH₃)₃), 0.94 & 0.96 (je s, 3H, C(CH₃)₂), 2.13 (dddt, *J* = 14.0, 10.3, 9.6, 0.9 Hz, 1H, HOCHC*H*H), 2.53 (dddt, *J* = 14.0, 5.5, 2.6, 1.4 Hz, 1H, HOCHC*HH*), 3.43 (d, *J* = 11.3 Hz, 1H, C*H*HOH), 3.48 (d, *J* = 11.3 Hz, 1H, CH*H*OH), 3.54 (d, *J* = 5.0 Hz, 1H, SiOCH), 3.75 (ddd, *J* = 10.3, 5.0, 2.7 Hz, 1H, HOC*H*), 5.19 (ddd, *J* = 17.5, 1.5, 0.9 Hz, 1H, CH=C*H*H), 5.20 (ddd, *J* = 9.0, 1.5, 0.9 Hz, 1H, CH=CH*H*), 5.85 (dddd, *J* = 17.5, 9.6, 9.0, 5.5 Hz, 1H, CH=CH₂).

¹³C NMR (125 MHz, CDCl₃) 0.9 (SiCH₃), 21.8 & 23.6 (C(CH₃)₂), 38.7 (HOCHCH₂), 39.7 (C(CH₃)₂), 70.4 (CH₂OH), 71.0 (HOCH), 82.5 (SiOCH), 119.1 (CH=CH₂), 135.5 (CH=CH₂).

HRMS (ESI) m/z berechnet für $C_{21}H_{27}O_3Si^+$ 247.17240, gefunden 247.17226.

 $[\alpha]^{25}_{D}$ -7.0 (*c* = 1.5, CHCl₃).

(R)-4,4-Dimethyl-3-((triisopropylsilyl)oxy)dihydrofuran-2(3H)-on (257)

Zu einer Lösung aus (*R*)-Pantolacton (*R*-**235**) (260 mg, 2.0 mmol, 1.0 Äquiv.) in 0.52 mL DMF wird Imidazol (340 mg, 5.0 mmol, 2.5 Äquiv.) und Triisopropylsilylchlorid (0.51 mL, 2.4 mmol, 1.2 Äquiv.) zugegeben. Die entstehende gelbe Lösung wird zwei Tage lang gerührt. Dann wird gesättigte NaCl-Lösung und EtOAc zugegeben, die Phasen werden getrennt und die organische Phase einmal mit gesättigter NH₄Cl-Lösung und gesättigter NaCl-Lösung gewaschen. Nach Trocknung über Na₂SO₄, werden die flüchtigen Bestandteile im Vakuum entfernt und das Rohprodukt säulenchromatographisch (CH/Et₂O 9:1) aufgereinigt. Das gewünschte Produkt wird als farbloses Öl erhalten (515 mg, 90%).

Chemical Formula: C₁₅H₃₀O₃Si Molecular Weight: 286,49

R_f (SiO₂) 0.57 (CH/Et₂O 9:1)

IR 2944, 2894, 2868, 1793, 1789, 1464, 1367, 1349, 1269, 1203, 1124, 1070, 1026, 1012, 994, 942, 919, 882, 836, 805, 679, 556.

¹H NMR (500 MHz, CDCl₃) 1.09 (überlappt s, 3H, C(CH₃)(CH₃)), 1.10 & 1.11 (je d, *J* = 7.3 Hz, 18H, Si(CH(CH₃)(CH₃))₃), 1.18 (s, 3H, C(CH₃)(CH₃)), 1.21 (überlappt, spt, *J* = 7.6 Hz, 3H, Si(CH(CH₃)₂)₃), 3.88 (d, *J* = 8.9 Hz, 1H, CHHO), 3.99 (d, *J* = 8.9 Hz, 1H, CHHO), 4.18 (s, 1H, SiOCH).

¹³C NMR (125 MHz, CDCl₃) 12.7 (Si(CH(CH₃)₂)₃), 18.1 & 18.2 (Si(CH(CH₃)₂)₃), 19.3 & 23.4 (C(CH₃)₂), 41.6 (C(CH₃)₂), 75.8 (CH₂O), 77.2 (SiOCH), 175.9 (COO).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₁₅H₃₁O₃Si⁺ 287.20370, gefunden 287.20384.

 $[\alpha]^{24}_{D}$ +20.1 (*c* = 0.9, CHCl₃).

(3R)-4,4-Dimethyl-3-((triisopropylsilyl)oxy)tetrahydrofuran-2-ol (258)

(*R*)-4,4-Dimethyl-3-((triisopropylsilyl)oxy)dihydrofuran-2(3*H*)-on (**257**) (222 mg, 0.78 mmol, 1.0 Äquiv.) wird in 2.3 mL Toluol (abs) unter Argon gelöst. Die Lösung wird auf -78 °C gekühlt und DIBAL-H (1.0M in Hexan, 1.01 mL, 1.01 mmol, 1.3 Äquiv.) zugegeben. Die Reaktion wird für 15 Minuten gerührt und per Dünnschichtchromatographie kontrolliert (CH/EtOAc 9:1). Anschließend wird die Reaktion durch Zugabe von CH₃OH abgebrochen und nochmals für 5 Minuten bei -78 °C gerührt. Der Ansatz wird nun auf Raumtemperatur gebracht und der entstehende weiße Niederschlag über Celite abfiltriert. Das Filtrat wird im Vakuum eingeengt und das Rohprodukt säulenchromatographisch (CH/EtOAc 9:1) aufgereinigt. Das gewünschte Produkt wird als farbloses Öl erhalten (207 mg, 93%).

Chemical Formula: C₁₅H₃₂O₃Si Molecular Weight: 288,50

R_f (SiO₂) 0.30 CH/EtOAc 9:1

IR 3395, 2943, 2867, 1465, 1390, 1367, 1245, 1201, 1116, 1017, 948, 921, 881, 835, 678, 657, 584.

¹H NMR (500 MHz, CDCl₃) Hauptisomer: 1.07 (s, 3H, C(CH₃)(CH₃)), 1.09 (s, 3H, Si(CH(CH₃)₂)₃), 1.11 (überlappt, s, 3H, C(CH₃)(CH₃)), 1.12 (überlappt, s, 18H, Si(CH(CH₃)₂)₃), 3.45 (d, *J* = 8.5 Hz, 1H, CHHO), 3.74 (d, *J* = 8.5 Hz, 1H, CHHO), 3.88 (d, *J* = 7.6 Hz, 1H, OH), 3.95 (d, *J* = 4.7 Hz, 1H, SiOCH), 5.36 (dd, *J* = 7.6, 4.7 Hz, 1H, HOCH).

Nebenisomer: 1.07 (s, 3H, C(CH₃)(CH₃)), 1.10 (s, 18H, Si(CH(CH₃)₂)₃), 1.12 (ovl, s, 6H, C(CH₃)(CH₃) & Si(CH(CH₃)₂)₃), 2.64 (d, *J* = 4.0 Hz, 1H, OH), 3.67 (d, *J* = 8.2 Hz, 1H, CHHO), 3.81 (d, *J* = 8.2 Hz, 1H, CHHO), 3.88 (d, *J* = 2.7 Hz, 1H, SiOCH), 5.22 (dd, *J* = 4.0, 2.7 Hz, 1H, HOCH).

¹³C NMR (125 MHz, CDCl₃) Hauptisomer: 12.5 (Si(*C*H(CH₃)₂)₃), 18.2 (Si(CH(*C*H₃)₂)₃), 20.6 & 26.5 (C(CH₃)₂), 41.8 (C(CH₃)₂), 77.0 (CH₂O), 80.0 (SiOCH), 98.0 (HOCH).

Nebenisomer: 12.5 (Si(CH(CH₃)₂)₃), 18.2 (Si(CH(CH₃)₂)₃), 20.5 & 24.2 (C(CH₃)₂), 43.0 (C(CH₃)₂), 78.9 (CH₂O), 85.9 (SiOCH), 105.2 (HOCH).

 $[\alpha]^{24}_{D}$ +14.8 (*c* = 1.0, CHCl₃).

(((3R)-2-Ally-4,4-dimethyltetrahydrofuran-3-yl)oxy)triisopropylsilan (261)

(3*R*)-4,4-Dimethyl-3-((triisopropylsilyl)oxy)tetrahydrofuran-2-ol (**258**) (50 mg, 0.173 mmol, 1.0 Äquiv.) wird unter Argon in 1 mL CH₂Cl₂ (abs) gelöst und auf -70 °C gekühlt. Anschließend wird TiCl₄ (0.02 mL, 0.173 mmol, 1.0 Äquiv.) zugegeben und 10 Minuten lang gerührt, dann Allyltrimethylsilan (0.03 mL, 0.173 mmol, 1.0 Äquiv.). Nach 20 Minuten wird der Ansatz durch Zugabe von 1M HCl abgebrochen. Die wässrige Phase wird mit CH₂Cl₂ und EtOAc extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet. Nach Entfernen der flüchtigen Bestandteile im Vakuum, wird der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 99:1). Die Verbindung wird als Mischung zweier Diastereomere erhalten, die nicht weiter aufgetrennt werden (25 mg, 46%).

Chemical Formula: C₁₈H₃₆O₂Si Molecular Weight: 312,57

R_f (SiO₂) 0.41 & 0.31 CH/EtOAc 99:1 (Diastereomerengemisch).

IR 2963, 2945, 2894, 2867, 1642, 1465, 1390, 1365, 1249, 1114, 1057, 1014, 997, 911, 882, 828, 677, 654, 575.

¹H NMR (500 MHz, CDCl₃) Hauptdiastereomer: 1.038 & 1.042 (je s, 3H, C(CH₃)₂), 1.09 (br s, 21H, Si(CH(CH₃)₂)₃ & Si(CH(CH₃)₂)₃), 2.12 (dddt, *J* = 14.2, 8.8, 6.8, 1.5 Hz, 1H, OCHCHH), 2.38 (dddt, *J* = 14.2, 6.4, 3.1, 1.5 Hz, 1H, OCHCHH), 3.53 (d, *J* = 8.5 Hz, 1H, CHHO), 3.56 (d, *J* = 8.5 Hz, 1H, CHHO), 3.66 (d, *J* = 5.2 Hz, 1H, SiOCH), 3.75 (ddd, *J* = 8.8, 5.2, 3.1 Hz, 1H, OCHCH₂), 5.09 (dtd, *J* = 10.7, 1.5, 0.8 Hz, 1H, CH=CHH), 5.13 (dtd, *J* = 17.0, 1.5, 0.8 Hz, 1H, CH=CHH), 5.90 (dddd, *J* = 17.0, 10.7, 6.8, 6.4 Hz, 1H, CH=CH₂).

Nebendiastereomer: 1.06 & 1.07 (je s, 3H, C(CH₃)₂), 1.11 (br s, 21H, Si(CH(CH₃)₂)₃ & Si(CH(CH₃)₂)₃), 2.22-2.40 (ovl, m, 2H, OCHCH₂), 3.40 (d, *J* = 8.2 Hz, 1H, CHHO), 3.63 (d, *J* = 8.2 Hz, 1H, CHHO), 4.09 (ddd, *J* = 15.2, 5.8, 3.0 Hz, 1H, OCHCH₂), 4.10 (d, J = 5.8 Hz, 1H, SiOCH), 5.07 (ddt, *J* = 10.0, 2.1, 1.1 Hz, 1H, CH=CHH), 5.12 (ddt, *J* = 17.0, 2.1, 1.1 Hz, 1H, CH=CHH), 5.92 (dddd, *J* = 17.0, 10.0, 6.7, 6.4 Hz, 1H, CH=CH₂).

¹³C NMR (125 MHz, CDCl₃) Hauptdiastereomer: 13.0 (Si(CH(CH₃)₂)₃), 18.3 (Si(CH(CH₃)₂)₃), 20.1 & 25.3 (C(CH₃)₂), 38.8 (OCHCH₂), 43.1 (C(CH₃)₂), 78.7 (CH₂O), 83.8 (SiOCH), 86.0 (OCHCH₂), 116.9 (CH=CH₂), 135.5 (CH=CH₂).

Nebendiastereomer: 13.4 (Si(CH(CH₃)₂)₃), 18.4 (Si(CH(CH₃)₂)₃), 20.6 & 25.8 (C(CH₃)₂), 35.4 (OCHCH₂), 43.4 (C(CH₃)₂), 77.8 (CH₂O), 81.5 (SiOCH), 82.0 (OCHCH₂), 116.3 (CH=CH₂), 136.7 (CH=CH₂).

HRMS (ESI) m/z [M+H]⁺ berechnet für $C_{18}H_{37}O_2Si^+$ 313.25573, gefunden 313.25486.

(3R)-2,2-Dimethyl-3-((triisopropylsilyl)oxy)hept-6-en-1,4-diol (259)

Eine Lösung aus (3R)-4,4-Dimethyl-3-((triisopropylsilyl)oxy)tetrahydrofuran-2-ol (258) (210 mg, 0.73 mmol, 1.0 Äquiv.) in 7.3 mL THF (abs) wird auf -70 °C gekühlt und Allylmagnesiumchlorid (2.0м in THF, 2.91 mmol, 4.0 Äquiv.) wird unter Argon zugegeben. Der Ansatz wir 15 h lang gerührt und dabei auf +15 °C langsam erwärmt. Anschließend wird die Reaktion durch Zugabe von 1M HCl abgebrochen und die wässrige Phase wird mit EtOAc extrahiert (4x). Die vereinigten organischen Phasen werden mit gesättigter NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und die flüchtigen Bestandteile im Vakuum entfernt. Das Rohprodukt enthält die (4R/S)-Diastereomere, die mittels Säulenchromatographie (CH/EtOAc 8:2) getrennt werden. Zwei farblose Feststoffe werden erhalten (211 mg, 88%), das (4R)-Isomer (27 mg) und das (4S)-Isomer (184 mg).

Chemical Formula: C₁₈H₃₈O₃Si Molecular Weight: 330,58

(3R,4R)-Diastereomer 1:

Schmelzpunkt 57-63 °C.

R_f (SiO₂) 0.36 CH/EtOAc 8:2.

IR 3183, 2959, 2942, 2866, 2854, 1645, 1463, 1384, 1365, 1311, 1258, 1086, 1069, 1051, 1013, 988, 973, 931, 921, 884, 817, 787, 676, 647, 625, 569.

¹H NMR (500 MHz, CDCl₃) 0.92 & 1.00 (s, 6H, C(CH₃)₂), 1.11-1.25 (überlappt, m, 3H, Si(CH(CH₃)₂)₃), 1.15 (überlappt, s, 18H, Si(CH(CH₃)₂)₃), 2.23 (ddd, *J* = 13.8, 6.9, 6.3 Hz, 1H, CH₂=CHCHH), 2.41 (ddd, *J* = 13.8, 8.1, 6.9 Hz, 1H, CH₂=CHCHH), 3.10 (d, *J* = 11.6 Hz, 1H, CHHOH), 3.57 (s, 1H, CHOSi), 3.76 (d, *J* = 11.6 Hz, 1H, CHHOH), 3.90 (dd, *J* = 8.1, 6.3 Hz, 1H, CHOH), 5.09-5.16 (m, 2H, CH₂=CH), 5.82 (ddt, *J* = 17.1, 10.4, 6.9 Hz, 1H, CH₂=CH).

¹³C NMR (125 MHz, CDCl₃) 13.7 (Si(*C*H(CH₃)₂)₃), 18.7 (Si(CH(*C*H₃)₂)₃), 22.4 & 24.7 (C(*C*H₃)₂), 40.5 (*C*(CH₃)₂), 40.9 (CH₂=CHC*H*₂), 66.9 (CH₂OH), 69.3 (CHOH), 80.5 (CHOSi), 117.8 (*CH*₂=CH), 135.1 (CH₂=*C*H).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₁₈H₃₉O₃Si⁺ 331.26630, gefunden 331.26600.

 $[\alpha]^{24}_{D}$ +3.4 (*c* = 0.5, CHCl₃).

(3R,4S)-Diastereomer 2:

Schmelzpunkt 68-73 °C.

R_f (SiO₂) 0.34 (CH/EtOAc 8:2)

IR 3180, 2958, 2942, 2866, 2844, 1644, 1459, 1385, 1367, 1303, 1256, 1089, 1067, 1049, 1012, 988, 972, 936, 913, 883, 823, 790, 678, 650, 633, 565.

¹H NMR (300 MHz, CDCl₃) 1.00 & 1.05 (s, 6H, C(CH₃)₂), 1.05-1.23 (überlappt, m, 3H, Si(CH(CH₃)₂)₃), 1.13 (überlappt, s, 18H, Si(CH(CH₃)₂)₃), 2.32-2.49 (m, 2H, CH₂=CHCH₂), 3.32 (d, *J* = 11.3 Hz, 1H, CHHOH), 3.62 (d, *J* = 11.3 Hz, 1H, CHHOH), 3.77 (d, *J* = 3.5 Hz, 1H, CHOSi), 3.87 (dt, *J* = 9.6, 3.5 Hz, 1H, CHOH), 5.11-5.23 (m, 2H, CH₂=CH), 5.77-5.94 (m, 1H, CH₂=CH).

¹³C NMR (75 MHz, CDCl₃) 13.6 (Si(CH(CH₃)₂)₃), 18.6 (Si(CH(CH₃)₂)₃), 23.2 & 24.3 (C(CH₃)₂), 38.2 (CH₂=CHCH₂), 40.9 (C(CH₃)₂), 68.9 (CH₂OH), 74.3 (CHOH), 82.1 (CHOSi), 118.2 (CH₂=CH), 135.8 (CH₂=CH).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₁₈H₃₉O₃Si⁺ 331.26630, gefunden 331.26578.

 $[\alpha]^{24}_{D}$ -0.82 (*c* = 1.0, CHCl₃).

(4S,4R)-7-((Tert-butyldimethylsilyl)oxy)-6,6-dimethyl-5-((triisopropylsilyl)oxy)hept-1-en-4-ol (262)

(3R,4S)-2,2-Dimethyl-3-((triisopropylsilyl)oxy)hept-6-en-1,4-diol (**259b**) (117 mg, 354 µmol, 1.00 Äquiv.), wird in 3.5 mL CH₂Cl₂ unter Argon vorgelegt und die Lösung auf 0 °C gekühlt. Es werden Imidazol (48 mg, 708 µmol, 2.00 Äquiv.) sowie TBSCl (56 mg, 372 mg, 1.05 Äquiv.) zugegeben und der Ansatz auf Raumtemperatur gebracht. Nach 24 h Reaktionszeit wird der Ansatz mit CH₂Cl₂ vergrößert und die organische Phase mit H₂O gewaschen. Nach Trocknung über Na₂SO₄, wird die organische Phase im Vakuum einkonzentriert und der Rückstand säulenchromatographisch gereinigt (CH/Et₂O 95:5). Es wird ein farbloser Feststoff erhalten (144 mg, 91%).

Chemical Formula: C₂₄H₅₂O₃Si₂ Molecular Weight: 444,8470

R_f (SiO₂) 0.81 CH/EtOAc 95:5.

IR 3158, 2959, 2942, 2866, 2844, 1458, 1385, 1367, 1305, 1256, 1182, 1088, 1067, 1051, 1012, 988, 972, 936, 913, 833, 791, 823, 791, 679, 652, 633, 579, 563.

¹H NMR (500 MHz, CDCl₃) 0.06 (s, 6H, Si(CH₃)₂), 0.91 (s, 9H, SiC(CH₃)₃), 0.92 & 1.00 (je s, 3H, C(CH₃)₂), 1.09-1.19 (m, 21H, Si(CH(CH₃)₂)₃), 2.30-2.44 (m, 2H, HOCHCH₂), 3.34 (d, J = 10.1 Hz, 1H, CHHOSi), 3.52 (d, J = 10.1 Hz, 1H, CHHOSi), 3.81 (ddd, J = 9.8, 3.5, 3.1 Hz, 1H, HOCH), 3.84 (d, J = 3.1 Hz, 1H, CHOSi), 5.08-5.15 (m, 2H, CH=CH₂), 5.85-5.95 (m, 1H, CH=CH₂).

¹³C NMR (125 MHz, CDCl₃) -5.3 (Si(CH₃)₂), 13.6 (Si(CH(CH₃)₂)₃), 18.7 (Si(CH(CH₃)₂)₃), 22.6 & 22.9 (C(CH₃)₂), 26.0 (SiC(CH₃)₃), 38.5 (HOCHCH₂), 41.0 (C(CH₃)₂), 69.6 (CH₂OSi), 74.1 (HOCH), 80.6 (CHOSi), 117.2 (CH=CH₂), 136.6 (CH=CH₂).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₂₄H₅₃O₃Si₂⁺ 445.35277, gefunden 445.35198.

(4R,5R)-5-Allyl-3,3-dimethyl-4-((triisopropylsilyl)oxy)dihydrofuran-2(3H)-on (264a)

Eine Lösung aus (3*R*,4*R*)-2,2-Dimethyl-3-((triisopropylsilyl)oxy)hept-6-en-1,4-diol (**259a**) (24 mg, 73 µmol, 1.0 Äquiv.) in 0.75 mL CH₂Cl₂ unter Argon wird auf 0 °C gekühlt und (Diacetoxyiod)benzol (70 mg, 218 µmol, 3.0 Äquiv.) sowie (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (4.5 mg, 3 µmol, 0.4 Äquiv.) werden zugegeben. Die Reaktion wird 15 Minuten lang unter Kühlung gerührt, anschließend wird das Eisbad entfernt und über Nacht bei Raumtemperatur gerührt (Dünschichtchromatographie CH/EtOAc 8:2). Da das Edukt noch nicht vollständig abreagiert ist, wird nochmals (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (4.5 mg, 3 µmol, 0.4 Äquiv.) zugegeben und weitere 4 h gerührt. Dann wird eine wässrige Lösung aus Na₂S₂O₃ (10 wt.%) zugegeben und mit Et₂O (3x) extrahiert. Die vereinigten organischen Phasen werden mit wenig gesättigter NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wird mittels Säulenchromatographie aufgereinigt (CH/Aceton 98:2). Nach zweimaliger Säulenchromatographie wird eine kleine Fraktion des sauberen Produkts erhalten (3 mg, 13%).

Chemical Formula: C₁₈H₃₄O₃Si Molecular Weight: 326,55

R_f (SiO₂) 0.79 CH/EtOAc 8:2, 0.19 CH/Aceton 9.8:0.2.

IR 2945, 2868, 1777, 1644, 1464, 1391, 1363, 1346, 1258, 1204, 1143, 1069, 1014, 997, 964, 916, 882, 856, 809, 741, 680, 615, 563.

¹H NMR (500 MHz, CDCl₃) 1.12 (s, 18H, Si(CH(CH₃)₂)), 1.09-1.16 (überlappt m, 3H, Si(CH(CH₃)₂)), 1.26 & 1.28 (je s, 3H, C(CH₃)₂), 2.479 (überlappt, ddtd, *J* = 6.9, 5.3, 1.4, 1.2 Hz, 1H, COOCHCHH) 2.482 (überlappt, ddtd, *J* = 8.3, 6.9, 1.4, 1.2 Hz, 1H, COOCHCHH), 4.39 (d, *J* = 5.2 Hz, 1H, SiOCH), 4.47-4.57 (m, 1H, COOCH), 5.14 (ddt, *J* = 10.4, 1.8, 1.4 Hz, 1H, CH=CHH), 5.17 (ddt, *J* = 17.1, 1.8, 1.4 Hz, 1H, CH=CHH), 5.93 (ddt, *J* = 17.1, 10.4, 6.9 Hz, 1H, CH=CH₂).

¹³C NMR (125 MHz, CDCl₃) 13.2 (Si(CH(CH₃)₂)₃), 18.3 (Si(CH(CH₃)₂)₃), 19.5 & 24.3 (C(CH₃)₂), 34.5 (COOCHCH₂), 44.8 (C(CH₃)₂), 78.4 (CHOSi), 81.3 (COOCH), 117.8 (CH=CH₂), 134.4 (CH=CH₂), 180.9 (COO).

HRMS (ESI) m/z [M+H]⁺ berechnet für C₁₈H₃₅O₃Si⁺ 327.23500, gefunden 327.23407.

 $[\alpha]^{26}_{D}$ +49.3 (*c* = 0.3, CHCl₃).

(4R,5S)-5-Allyl-3,3-dimethyl-4-((triisopropylsilyl)oxy)dihydrofuran-2(3H)-on (264b)

Eine Lösung aus (3R,4S)-2,2-Dimethyl-3-((triisopropylsilyl)oxy)hept-6-en-1,4-diol (**259b**) (50 mg, 0.15 mmol, 1.0 Äquiv.) in 1.5 mL CH₂Cl₂ unter Argon wird auf 0 °C gekühlt und (Diacetoxyiod)benzol (146 mg, 0.45 mmol, 3.0 Äquiv.) sowie (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (4.7 mg, 0.03 mmol, 0.2 Äquiv.) werden zugegeben. Die Reaktion wird 15 Minuten lang unter Kühlung gerührt, anschließend wird das Eisbad entfernt und für weitere 15 h bei Raumtemperatur gerührt (Dünschichtchromatographie CH/EtOAc 8:2). Eine wässrige Lösung aus Na₂S₂O₃ (10 wt.%) wird zugegeben und mit Et₂O (3x) extrahiert. Die vereinigten organischen Phasen werden mit wenig gesättigter NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wird mittels Säulenchromatographie aufgereinigt (CH/Et₂O 95:5) und das Produkt als leicht gelbes Öl erhalten (45 mg, 91%).

Chemical Formula: C₁₈H₃₄O₃Si Molecular Weight: 326,55

R_f (SiO₂) 0.79 (CH/EtOAc 8:2)

IR 2945, 2868, 1782, 1644, 1464, 1391, 1365, 1325, 1271, 1213, 1138, 1059, 1035, 998, 988, 918, 882, 854, 813, 741, 679, 613, 570.

¹H NMR (500 MHz, CDCl₃) 0.95-1.13 (überlappt, m, 3H, Si(CH(CH₃)₂)₃), 1.10 (ovl, s, 18H, Si(CH(CH₃)₂)₃), 1.20 & 1.28 (je s, 3H, C(CH₃)₂), 2.33 (dddt, *J* = 15.0, 8.5, 7.6, 1.4 Hz, 1H, COOCHCHH), 2.67 (dddt, *J* = 15.0, 6.8, 3.0, 1.4 Hz, 1H, COOCHCHH), 4.00 (d, *J* = 7.0 Hz, 1H, CHOSi), 4.15 (ddd, *J* = 8.5, 7.0, 3.0 Hz, 1H, COOCH), 5.17 (dtd, *J* = 10.0, 1.4, 1.2 Hz, 1H, CH=CHH), 5.18 (dtd, *J* = 17.1, 1.4, 1.2 Hz, 1H, CH=CHH), 5.87 (dddd, *J* = 17.1, 10.3, 7.6, 6.8 Hz, 1H, CH=CH₂).

¹³C NMR (75 MHz, CDCl₃) 13.0 (Si(CH(CH₃)₂)₃), 18.3 (Si(CH(CH₃)₂)₃), 18.8 & 23.4 (C(CH₃)₂), 37.1 (COOCHCH₂), 44.6 (C(CH₃)₂), 80.3 (CHOSi), 82.5 (COOCH), 118.7 (CH₂=CH), 133.0 (CH₂=CH), 180.1 (COO).

NOESY-DIFF 4.00 (d, J = 7.0 Hz, 1H, CHOSi) → 1.10, 1.28, 2.33, 2.67; 4.15 (ddd, J = 8.5, 7.0, 3.0 Hz, 1H, CHCH₂) → 1.20, 2.33, 2.67, 5.17, 5.18, 5.87. HRMS (ESI) m/z [M+H]⁺ berechnet für C₁₈H₃₅O₃Si⁺ 327.23500, gefunden 327.23459. $[\alpha]^{23}_{D}$ —59.9 (c = 0.8, CHCl₃).

(4R,5S)-5-Allyl-4-hydroxy-3,3-dimethyldihydrofuran-2(3H)-on (Dia2-265)

Unter Argon werden 0.3 mL THF (abs) vorgelegt und mit einer Spatelspitze 4Å Molsieb versetzt. Nach Zugabe von TBAI (1M in THF, 51 µL, 51 µmol, 1.2 Äquiv.), wird die Suspension 10 Minuten lang gerührt und dann (4*R*,5*S*)-5-Allyl-3,3-dimethyl-4-((triisopropylsilyl)oxy)dihydrofuran-2(3*H*)-on (Dia2-**261**) (14 mg, 43 µmol, 1.0 Äquiv.), gelöst in 0.8 mL THF (abs), zugegeben. Nach 30 Minuten ist das Edukt abreagiert und der Ansatz wird abfiltriert. Der Filterkuchen wird mit EtOAc nachgewaschen und die vereinigten organischen Phasen mit gesättigter NaCl-Lösung gewaschen. Nach Trocknung über Na₂SO₄ wird das Lösungmittel im Vakuum entfernt und der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 3:1 \rightarrow EtOAc 100%). Es wird ein farbloses Öl erhalten (6 mg, 82%).

Chemical Formula: C₉H₁₄O₃ Molecular Weight: 170,21

R_f (SiO₂) 0.24 CH/EtOAc 3:1.

IR 3429, 2978, 2936, 2874, 2856, 1754, 1645, 1466, 1431, 1389, 1334, 1274, 1223, 1140, 1100, 1054, 1007, 987, 921, 801, 754, 623, 593, 558.

¹H NMR (300 MHz, CDCl₃) 1.20 & 1.27 (je s, 3H, C(CH₃)₂), 2.55 (ddtd, *J* = 7.1, 6.2, 1.5, 1.1 Hz, 1H, OCHC*H*H), 2.56 (ddtd, *J* = 7.1, 6.2, 1.5, 1.1 Hz, 1H, OCHCH*H*), 3.87 (d, *J* = 7.8 Hz, 1H, HOC*H*), 4.17 (dt, *J* = 7.8, 6.2 Hz, 1H, OCHCH₂), 5.20 (dtd, *J* = 10.0, 1.6, 1.5 Hz, 1H, CH=CHH), 5.24 (dtd, *J* = 17.2, 1.6, 1.5 Hz, 1H, CH=CH*H*), 5.88 (ddt, *J* = 17.2, 10.0, 7.1 Hz, 1H, CH=CH₂).

¹³C NMR (125 MHz, CDCl₃) 17.9 & 22.9 (C(*C*H₃)₂), 37.2 (OCH*C*H₂), 43.8 (*C*(CH₃)₂), 79.5 (HOCH), 80.5 (OCHCH₂), 119.3 (CH=*C*H₂), 132.4 (*C*H=CH₂).

NOESY-DIFF: 3.87 (d, J = 7.8 Hz, 1H, HOCH) → 1.27, 2.55 & 2.56. 4.17 (dt, J = 7.8, 6.2 Hz, 1H, OCHCH₂) → 1.20, 2.55 & 2.56. HRMS (ESI) m/z [M+H]⁺ berechnet für C₉H₁₅O₃⁺ 171.10157, gefunden 171.10118.

 $[\alpha]^{26}_{D}$ -67.5 (*c* = 0.4, CHCl₃).

(R)-3-((2-Methoxyethoxy)methoxy)-4,4-dimethyldihydrofuran-2(3H)-on

Eine Lösung aus (*R*)-Pantolacton (*R*-**235**) (650 mg, 5.0 mmol, 1.0 Äquiv.) in 5 mL THF (abs) wird auf 0 °C gekühlt und NaH (60% in Mineralöl, 280 mg, 7.0 mmol, 1.4 Äquiv.) portionsweise zugegeben. Die Reaktion wird gerührt bis keine H₂-Entwicklung mehr erkennbar ist. Dann wird 2-Methoxyethoxymethylchlorid (0.68 mL, 6.0 mmol, 1.2 Äquiv.) zugegeben und die Reaktion wird bei 0 °C gerührt. Nach einer Stunde wird der Reaktionsfortschritt per Dünnschichtchromatographie kontrolliert (CH₂Cl₂/ MeOH 9:1) und die Reaktion mit H₂O abgebrochen. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ (3x) extrahiert. Die organischen Phasen werden vereint und über Na₂SO₄ getrocknet. Nach Entfernung der flüchtigen Bestandteile im Vakuum, wird der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 3:1). Das Produkt wird als farbloses Öl erhalten (763 mg, 70%).

Chemical Formula: C₁₀H₁₈O₅ Molecular Weight: 218,25

R_f (SiO₂) 0.19 CH/EtOAc 3:1; 0.33 CH/EtOAc 3:2.

IR 2964, 2932, 2896, 2876, 2820, 1783, 1466, 1398, 1369, 1298, 1234, 1201, 1151, 1119, 1097, 1058, 1027, 1011, 989, 944, 890, 847, 816, 709, 642, 558.

¹H NMR (300 MHz, CDCl₃) 1.11 & 1.21 (je s, 3H, C(CH₃)₂), 3.40 (s, 3H, OCH₃), 3.52-3.64 (m, 2H, OCH₂CH₂O), 3.79-3.84 (m, 2H, OCH₂CH₂O), 3.92 (d, *J* = 8.6 Hz, 1H, C(CH₃)₂CHH), 3.99 (d, *J* = 8.6 Hz, 1H, C(CH₃)₂CHH), 4.14 (s, 1H, OCH), 4.85 (d, *J* = 6.9 Hz, OCHHO), 5.09 (d, *J* = 6.9 Hz, OCHHO).

¹³C NMR (75 MHz, CDCl₃) 19.6 & 23.3 (C(CH₃)₂), 40.3 (*C*(CH₃)₂), 59.2 (OCH₃), 67.7 (OCH₂CH₂O), 71.8 (OCH₂CH₂O), 76.2 (C(CH₃)₂CH₂), 78.5 (OCH), 95.2 (OCH₂O), 175.1 (COO).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für C₁₀H₁₈O₅Na⁺ 241.10464, gefunden 241.10457.

 $[\alpha]^{22}_{D}$ +88.6 (*c* = 1.3, CHCl₃).

(3R)-3-((2-Methoxyethoxy)methoxy)-4,4-dimethyltetrahydrofuran-2-ol (266)

Eine Lösung aus (*R*)-3-((2-Methoxyethoxy)methoxy)-4,4-dimethyldihydrofuran-2(3*H*)-on (845 mg, 3.87 mmol, 1.00 Äquiv.) in 11 mL Toluol (abs) unter Argon wird auf -70 °C gekühlt und DIBAL-H (1.0 M in Hexan, 4.45 mmol, 1.15 Äquiv.) langsam zugetropft. Nach 10 Minuten wird die Reaktion per Dünnschichtchromatographie (CH/EtOAc 1:1) kontrolliert und die Reaktion durch Zugabe von CH₃OH abgebrochen. Der Ansatz wird auf Raumtemperatur gebracht, wobei ein weißer Feststoff ausfällt. Dieser wird über Celite abfiltriert. Das Filtrat wird im Vakuum eingeengt und mittels Säulenchromatographie (CH/EtOAc 1:1) aufgereinigt. Das Produkt wird als farbloses Öl (779 mg, 91%) erhalten.

Chemical Formula: C₁₀H₂₀O₅ Molecular Weight: 220,27

R_f (SiO₂) 0.27 CH/EtOAc 1:1.

IR 3410, 2932, 2876, 1468, 1367, 1242, 1200, 1167, 1115, 1096, 1028, 983, 948, 933, 908, 848, 613, 582, 561.

¹H NMR (300 MHz, C₆D₆) Hauptisomer: 0.98 & 1.08 (je s, 3H, C(CH₃)₂), 3.08 (s, 3H, OCH₃), 3.12-3.67 (m, 5H, OCH₂CH₂O & C(CH₃)₂CHH), 3.77-3.83 (m, 2H, C(CH₃)₂CHH & C(CH₃)₂CHO), 4.18 (d, *J* = 4.1 Hz, 1H, OH), 4.62 (d, *J* = 6.8 Hz, 1H, OCHHO), 4.76 (d, *J* = 6.8 Hz, 1H, OCHHO), 5.48-5.51 (m, 1H, HOCH). Nebenisomer: 0.83 & 1.05 (je s, 3H, C(CH₃)₂), 3.04 (s, 3H, OCH₃), 3.12-3.67 (m, 6H, OCH₂CH₂O & C(CH₃)₂CHH & (CH₃)₂CHO), 3.77-3.83 (m, 1H, C(CH₃)₂CHH), 4.27 (d, *J* = 8.0 Hz, 1H, OH), 4.49 (d, *J* = 6.7 Hz, 1H, OCHHO), 4.57 (d, *J* = 6.7 Hz, 1H, OCHHO), 5.49-5.54 (m, 1H, HOCH).

¹³C NMR (75 MHz, C₆D₆) Hauptisomer: 20.7 & 23.9 (C(CH₃)₂), 40.8 (C(CH₃)₂), 58.7 (OCH₃), 67.3 (OCH₂CH₂O), 72.03 (OCH₂CH₂O), 78.5 (C(CH₃)₂CH₂), 90.9 (C(CH₃)₂CHO), 95.7 (OCH₂O), 103.4 (HOCH).
Nebenisomer: 20.9 & 26.1 (C(CH₃)₂), 42.0 (C(CH₃)₂), 58.7 (OCH₃), 68.1 (OCH₂CH₂O), 72.07 (OCH₂CH₂O), 77.3 (C(CH₃)₂CH₂), 85.4 (C(CH₃)₂CHO), 96.7 (OCH₂O), 98.1 (HOCH).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für $C_{10}H_{20}O_5Na^+$ 243.12029, gefunden 243.12058.

 $[\alpha]^{23}_{D}$ –16.1 (*c* = 1.6, CHCl₃). Zeigt Mutarotation, 3 Stunden Equilibrierungszeit.

(3R,4R)-3-((2-Methoxyethoxy)methoxy)-2,2-dimethylhept-6-en-1,4-diol (267)

Unter Argon wird Allylmagnesiumchlorid (2.0M in THF, 0.91 mL, 1.82 mmol, 4.0 Äquiv.) vorgelegt und das Lösungsmittel der Grignard-Lösung unter Vakuum entfernt. Der Rückstand wird unter Argon gesetzt, 2 mL CH₂Cl₂ (abs) zugegeben sowie im Ultraschallbad suspendiert. Anschließend wird die Suspesion auf —40 °C gekühlt und eine Lösung des (3*R*)-3-((2-Methoxyethoxy)methoxy)-4,4-dimethyltetrahydrofuran-2-ol (**266**) (100 mg, 0.45 mmol, 1.0 Äquiv.) in 1 mL CH₂Cl₂ (abs) wird zugegeben. Der Ansatz wird anschließend über Nacht von —40 °C auf ca. 10 °C auftauen lassen. Die Reaktion wird durch Zugabe von 1M HCl-Lösung abgebrochen und das Gemisch drei Mal mit EtOAc extrahiert. Die vereinigten EtOAc-Phasen werden mit wenig gesättigter NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wird säulenchromatographisch in die beiden Diastereomere getrennt, die jeweils als farblose Öle erhalten werden (Diastereomer 1: 58 mg, 49%; Diastereomer 2: 38 mg, 32%).

(3R,4R)-Diastereomer 1:

Chemical Formula: C₁₃H₂₆O₅ Molecular Weight: 262,34600

R_f (SiO₂) 0.34 CH/EtOAc 1:3.

IR 3438, 2930, 2876, 1641, 1473, 1365, 1202, 1171, 1132, 1104, 1082, 1036, 915, 849, 580.

¹H NMR (300 MHz, CDCl₃) 0.92 & 0.94 (je s, 3H, C(CH₃)₂), 2.31 (dddt, *J* = 14.0, 7.8, 6.3, 1.4 Hz, 1H, HOCHCH*H*), 2.46 (dddt, *J* = 14.0, 7.8, 6.0, 1.4 Hz, 1H, HOCHC*H*H), 3.25 (s, 1H, HOCHC*HO*), 3.28 (d, *J* = 11.5 Hz, 1H, C*H*HOH), 3.39 (s, 3H, OCH₃), 3.50 (d, *J* = 11.5 Hz, 1H, CH*H*OH), 3.56-3.61 (m, 2H, OCH₂CH₂O), 3.73-3.86 (überlappt, m, 3H, OCH₂CH₂O), 3.85 (überlappt, dd, *J* = 7.8, 6.0 Hz, 1H, HOC*H*), 4.80 (d, *J* = 6.9 Hz, 1H, OC*H*HO), 4.88 (d, *J* = 6.9 Hz, 1H, OC*HH*O), 5.12 (dtd, *J* = 10.0, 1.4, 1.4 Hz, 1H, CH=C*H*H), 5.13 (dtd, *J* = 17.0, 1.4, 1.4 Hz, 1H, CH=C*H*H), 5.82 (dddd, *J* = 17.0, 10.0, 7.8, 6.3 Hz, 1H, C*H*=C*H*₂).

¹³C NMR (75 MHz, CDCl₃) 21.2 & 24.1 (C(CH₃)₂), 40.0 (C(CH₃)₂), 40.9 (HOCHCH₂), 59.1 (OCH₃), 68.0 (CH₂OH), 68.6 (OCH₂CH₂O), 68.8 (HOCH), 71.9 (OCH₂CH₂O), 86.4 (HOCHCHO), 98.8 (OCH₂O), 117.9 (CH=CH₂), 135.1 (CH=CH₂).

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₁₃H₂₆O₅Na⁺ 285.16725, gefunden 285.16737.

(3R,4S)-Diastereomer 2:

Chemical Formula: C₁₃H₂₆O₅ Molecular Weight: 262,34600

R_f (SiO₂) 0.21 CH/EtOAc 1:3.

IR 3440, 2932, 2879, 1642, 1473, 1365, 1200, 1156, 1130, 1103, 1076, 1038, 913, 848, 580.

¹H NMR (300 MHz, CDCl₃) 0.92 & 1.00 (je s, 3H, C(CH₃)₂), 2.19-2.32 (m, 1H, HOCHCHH), 2.41-2.51 (m, 1H, HOCHCH*H*), 3.30 (d, *J* = 11.3 Hz, 1H, CHHOH), 3.39 (s, 3H, OCH₃), 3.52 (d, *J* = 11.3 Hz, 1H, CHHOH), 3.55-3.60 (m, 3H, OCH₂CH₂O & HOCHCHO), 3.70-3.86 (m, 3H, OCH₂CH₂O & HOC*H*), 4.76 (d, *J* = 6.7 Hz, 1H, OCHHO), 4.92 (d, *J* = 6.7 Hz, 1H, OCHHO), 5.14 (dt, *J* = 10.4, 1.2 Hz, 1H, CH=CHH), 5.15 (dt, *J* = 16.8, 10.4, 7.7, 6.3 Hz, 1H, CH=CH₂).

¹³C NMR (75 MHz, CDCl₃) 21.4 & 22.8 (C(*C*H₃)₂), 38.4 (HOCH*C*H₂), 39.6 (*C*(CH₃)₂), 59.2 (OCH₃), 68.1 (O*C*H₂CH₂O), 70.1 (CH₂OH), 71.4 (HOCH), 71.8 (OCH₂CH₂O), 89.3 (HOCH*C*HO), 98.1 (OCH₂O), 117.6 (CH=CH₂), 136.1 (C*H*=CH₂).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für $C_{13}H_{26}O_5Na^+$ 285.16725, gefunden 285.16741.

 $[\alpha]^{23}_{D}$ -2.5 (*c* = 0.4, CHCl₃).

(4R,5R)-5-Allyl-4-((2-methoxyethoxy)methoxy)-3,3-dimethyldihydrofuran-2(3H)-on (268a)

Unter Argon wird (3*R*,4*R*)-3-((2-Methoxyethoxy)methoxy)-2,2-dimethylhept-6-en-1,4-diol (**267a**) (45 mg, 0.17 mmol, 1.0 Äquiv.) vorgelegt und in 0.86 mL CH₂Cl₂ (abs) gelöst. Die Lösung wird auf 0 °C gekühlt und (Diacetoxyiodo)benzol (166 mg, 0.51 mmol, 3.0 Äquiv.) sowie 2,2,6,6-Tetramethylpiperidinyloxyl (11 mg, 0.07 mmol, 0.4 Äquiv.) zugegeben. Der Ansatz wird langsam auf Raumtemperatur gebracht. Nach 24 h Reaktionszeit werden 2 mL einer Na₂S₂O₃-Lösung (10%) zugegeben und die entstehenden Phasen getrennt. Die wässrige Phase wird anschließend drei Mal mit EtOAc extrahiert und die vereinigten organischen Phasen mit wenig ges. NaCl-Lösung gewaschen. Nach Trocknen über Na₂SO₄ und anschließendem Entfernen der flüchtigen Bestandteile im Vakuum, wird der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 2:1 & CH₂Cl₂/CH₃OH 100:0.2). Das gewünschte Produkt wird als farbloses Öl (20 mg, 45%) erhalten.

Chemical Formula: C₁₃H₂₂O₅ Molecular Weight: 258,31400

R_f (SiO₂) 0.24 CH/EtOAc 2:1; 0.62 CH/EtOAc 1:2.

IR 2977, 2935, 2880, 2826, 1770, 1644, 1470, 1392, 1368, 1340, 1295, 1240, 1201, 1179, 1111, 1095, 1020, 1003, 920, 848, 752, 623.

¹H NMR (300 MHz, CDCl₃) 1.26 & 1.28 (je s, 3H, C(CH₃)₂), 2.45 (dddt, *J* = 14.6, 6.8, 4.9, 1.4 Hz, 1H, OCHCHH), 2.61 (dddt, *J* = 14.6, 8.8, 6.8, 1.4 Hz, 1H, OCHCHH), 3.40 (s, 3H, OCH₃), 3.53-3.58 (OCH₂CH₂O), 3.99 (d, *J* = 4.1 Hz, 1H, OCHC(CH₃)₂), 4.56 (ddd, *J* = 8.8, 4.9, 4.1 Hz, 1H, COOCH), 4.75 (*J*_{A2} = 7.4 Hz, 2H, OCH₂O), 5.14 (ddt, *J* = 10.3, 1.8, 1.4 Hz, 1H, CH=CHH), 5.19 (ddt, *J* = 17.0, 1.8, 1.4 Hz, 1H, CH=CHH), 5.89 (ddt, *J* = 17.0, 10.3, 6.8 Hz, 1H, CH=CH₂)

¹³C NMR (75 MHz, CDCl₃) 19.0 & 23.5 (C(CH₃)₂), 33.8 (OCHCH₂), 45.3 (C(CH₃)₂), 59.2 (OCH₃),
68.3 (OCH₂CH₂O), 71.8 (OCH₂CH₂O), 80.1 (COOCH), 83.0 (OCHC(CH₃)₂), 96.6 (OCH₂O), 118.1 (CH=CH₂),
133.6 (CH=CH₂), 180.3 (COO).

NOESY-DIFF 3.99 (d, *J* = 4.1 Hz, 1H, OCHC(CH₃)₂) → 1.26 & 1.28, <u>4.56</u>, 4.75; 4.56 (ddd, *J* = 8.8, 4.9, 4.1 Hz, 1H, COOCH) → 2.45 & 2.61, <u>3.99</u>, 5.89.

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₁₃H₂₂O₅Na⁺ 281.13594, gefunden 281.13656.

 $[\alpha]^{23}_{D}$ +59.2 (*c* = 0.8, CHCl₃).

(4R,5S)-5-Allyl-4-((2-methoxyethoxy)methoxy)-3,3-dimethyldihydrofuran-2(3H)-on (268b)

Unter Argon wird (3*R*,4*S*)-3-((2-Methoxyethoxy)methoxy)-2,2-dimethylhept-6-en-1,4-diol (**267b**) (43 mg, 0.16 mmol, 1.0 Äquiv.) vorgelegt und mit 0.82 mL CH₂Cl₂ (abs.) gelöst. Die Lösung wird auf 0 °C gekühlt und (Diacetoxyiodo)benzol (166 mg, 0.51 mmol, 3.0 Äquiv.) sowie 2,2,6,6-Tetramethylpiperidinyloxyl (11 mg, 0.07 mmol, 0.4 Äquiv.) zugegeben. Der Ansatz wird langsam auf Raumtemperatur gebracht. Nach 24 h Reaktionszeit werden 2 mL einer Na₂S₂O₃-Lösung (10%) zugegeben und die entstehenden Phasen getrennt. Die wässrige Phase wird anschließend drei Mal mit EtOAc extrahiert und die vereinigten organischen Phasen mit wenig ges. NaCl-Lösung gewaschen. Nach Trocknen über Na₂SO₄ und anschließendem Entfernen der flüchtigen Bestandteile im Vakuum, wird der Rückstand säulenchromatographisch aufgereinigt (CH/EtOAc 3:1). Das gewünschte Produkt wird als farbloses Öl (23 mg, 54%) erhalten.

Chemical Formula: C₁₃H₂₂O₅ Molecular Weight: 258,31400

R_f (SiO₂) 0.37 CH/EtOAc 2:1; 0.28 CH/EtOAc 3:1.

IR 2975, 2934, 2886, 2820, 1776, 1644, 1465, 1392, 1366, 1331, 1274, 1242, 1214, 1179, 1117, 1097, 1043, 982, 924, 849, 752, 625.

¹H NMR (300 MHz, CDCl₃) 1.20 & 1.31 (je s, 3H, C(CH₃)₂), 2.43 (dddt, J = 14.9, 7.4, 6.9, 1.2 H, 1H OCHC*H*H), 2.67 (dddt, J = 14.9, 6.9, 4.4, 1.2 Hz, 1H, OCHCH*H*), 3.40 (s, 3H, OCH₃), 3.55-3.60 (m, 2H, OCH₂C*H*₂O), 3.72-3.77 (m, 2H, OC*H*₂CH₂O), 3.80 (d, *J* = 7.7 Hz, 1H, OC*H*C(CH₃)₂), 4.24 (ddd, *J* = 7.7, 7.4, 4.4 Hz, 1H, COOCH), 4.77 (d, J = 7.1 Hz, 1H, OCH*H*O), 4.79 (d, *J* = 7.1 Hz, 1H, OC*H*HO), 5.18 (ddt, *J* = 10.2, 1.6, 1.2 Hz, 1H, CH=C*H*H), 5.20 (überlappt ddt, *J* = 17.2, 1.6, 1.2 Hz, 1H, CH=CH*H*), 5.85 (1H, ddt, *J* = 17.2, 10.2, 6.9 Hz, C*H*=CH₂).

¹³C NMR (75 MHz, CDCl₃) 19.1 & 23.7 (C(*C*H₃)₂), 36.9 (OCH*C*H₂), 43.5 (*C*(CH₃)₂), 59.2 (OCH₃), 67.9 (OCH₂*C*H₂O), 71.7 (O*C*H₂CH₂O), 79.9 (COO*C*H), 85.1 (O*C*HC(CH₃)₂), 96.3 (OCH₂O), 119.0 (CH=*C*H₂), 132.5 (*C*H=CH₂), 179.7 (COO).

NOESY-DIFF 3.80 (d, *J* = 7.7 Hz, 1H, OCHC(CH₃)₂) → 1.20 & 1.31, 4.77 & 4.79; 4.24 (ddd, *J* = 7.7, 7.4, 4.4 Hz, 1H, COOCH) → 2.43 & 2.67, 5.85.

HRMS (ESI) m/z $[M+Na]^+$ berechnet für C₁₃H₂₂O₅Na⁺ 281.13594, gefunden 281.13700.

 $[\alpha]^{23}_{D}$ -59.3 (*c* = 1.9, CHCl₃).

(4R,5R)-7-((Tert-butyldimethylsilyl)oxy)-5-((2-methoxyethoxy)methoxy)-6,6-dimethylhept-1en-4-ol (269)

Eine Lösung aus (3*R*,4*R*)-3-((2-Methoxyethoxy)methoxy)-2,2-dimethylhept-6-en-1,4-diol (**267a**) (78 mg, 0.297 mmol, 1.00 Äquiv.) in 2.5 mL CH₂Cl₂ (abs) wird auf 0 °C gekühlt und Imidazol (40 mg, 0.595 mmol, 2.00 Äquiv.) sowie *Tert*-butyldimethylsilylchlorid (47 mg, 0.312, 1.05 Äquiv.) zugegeben. Die Reaktion wird auf Raumtemperatur gebracht und der Reaktionsfortschritt mittels Dünnschichtchromatographie bestimmt (CH/EtOAc 1:2). Nach 2 h wird die Reaktion abgebrachen durch Zugabe von H₂O und die Phasen werden getrennt. Die wässrige Phase wird drei Mal mit CH₂Cl₂ extrahiert und die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet. Nachdem die flüchtigen Bestandteile im Vakuum entfernt wurden, wird das Rohprodukt per Säulenchromatographie aufgereinigt (CH/EtOAc 6:1). Das Produkt wird als farbloses Öl erhalten (90 mg, 80%).

Chemical Formula: C₁₉H₄₀O₅Si Molecular Weight: 376,60900

R_f (SiO₂) 0.82 CH/EtOAc 1:2; 0.44 CH/EtOAc 4:1.

IR 3484, 2955, 2929, 2888, 2858, 1641, 1472, 1390, 1361, 1251, 1201, 1159, 1084, 1023, 938, 915, 835, 815, 774, 668, 634, 580.

¹H NMR (300 MHz, CDCl₃) 0.05 (s, 6H, Si(CH₃)₂), 0.90 (überlappt s, 12H, SiC(CH₃)₃ & C(CH₃)(CH₃)), 0.92 (s, 3H, C(CH₃)(CH₃)), 3.25 (d, *J* = 7.1 Hz, 1H, OH), 3.35 (d, *J* = 1.1 Hz, 1H, HOCHCHO), 3.36 (überlappt d, *J* = 10.0 Hz, 1H, CHHOSi), 3.40 (s, 3H, OCH₃), 3.42 (d, *J* = 10.0 Hz, 1H, CHHOSi), 3.55-3.60 (m, 2H, OCH₂CH₂O), 3.70-3.88 (ovl m, 3H, OCH₂CH₂O & HOCH), 4.84 (*J*_{A2} = 7 Hz, 2H, OCH₂O), 5.05-5.16 (m, 2H, CH=CH₂), 5.77-5.92 (m, 1H, CH=CH₂).

¹³C NMR (75 MHz, CDCl₃) -5.41 & -5.37 (Si(CH₃)₂), 18.4 (SiC(CH₃)₃), 22.2 & 22.8 (C(CH₃)₂), 26.0 (SiC(CH₃)₃), 40.3 (C(CH₃)₂), 40.9 (HOCHCH₂), 59.2 (OCH₃), 68.2 (OCH₂CH₂O), 69.0 (HOCH), 69.2 (CH₂OSi), 71.9 (OCH₂CH₂O), 84.9 (HOCHCHO), 98.7 (OCH₂O), 117.2 (CH=CH₂), 135.8 (CH=CH₂).

HRMS (ESI) m/z [M+Na]⁺ berechnet für $C_{19}H_{40}O_5SiNa^+$ 399.25372, gefunden 399.25222.

 $[\alpha]^{23}_{D}$ -14.3 (*c* = 1.5, CHCl₃).

(R)-8-((S)-1-Azidobut-3-en-1-yl)-9,9,12,12,13,13-hexamethyl-2,5,7,11-tetraoxa-12silatetradecan (270)

(4*R*,5*R*)-7-((*Tert*-butyldimethylsilyl)oxy)-5-((2-methoxyethoxy)methoxy)-6,6-dimethylhept-1-en-4-ol (**269**) (444 mg, 1.18 mmol, 1.0 Äquiv.), wird unter Argon vorgelegt und in 5.9 mL THF (abs) gelöst. Die Lösung wird auf 0 °C gekühlt, PPh₃ (0.93 g, 3.54 mmol, 3.0 Äquiv.) DEAD (0.55 mL, 3.54 mmol, 3.0 Äquiv.) zugegeben und 5 Minuten lang gerührt. Dann wird das Reaktionsgemisch mit DPPA (0.76 mL, 3.54 mmol, 3.0 Äquiv.) versetzt und über Nacht auf Raumtemperatur gebracht. Eine Kontrolle mittels Dünnschichtchromatographie (DC, CH/EtOAc 4:1) zeigte einen unvollständigen Reaktionsfortschritt und weitere 1.5 Äquivalente der Reagenzien PPh₃ (0.46 g), DEAD (0.28 mL) und DPPA (0.38 mL) wurden zugegeben und weitere 24 Stunden gerührt. Nun werden die flüchtigen Bestandteile im Vakuum entfernt und das Rohprodukt säulenchromatographisch aufgereinigt (CH/EtOAc 97:3). Es wird ein farbloses Öl erhalten (271 mg, 57%).

Chemical Formula: C₁₉H₃₉N₃O₄Si Molecular Weight: 401,62

R_f (SiO₂) 0.55 CH/EtOAc 4:1.

IR 2955, 2930, 2886, 2859, 2104, 1643, 1472, 1392, 1362, 1252, 1202, 1179, 1158, 1093, 1032, 938, 917, 837, 816, 776, 671.

¹H NMR (300 MHz, CDCl₃) 0.05 (s, 6H, Si(CH₃)₂), 0.91 (s, 9H, SiC(CH₃)₃), 0.93 & 0.94 (je s, 3H, C(CH₃)₂), 2.24-2.54 (m, 2H, NHCHCH₂), 3.29 (d, *J* = 9.9 Hz, 1H, CHHOSi), 3.40 (s, 3H, OCH₃), 3.44 (d, *J* = 9.9 Hz, CHHOSi), 3.58 (t, *J* = 4.7 Hz, 2H, OCH₂CH₂O), 3.64-3.68 (überlappt m, 1H, N₃CHCHO), 3.66-3.72 (überlappt m, 1H, N₃CH), 3.72-3.84 (überlappt m, 2H, OCH₂CH₂O), 4.80 (d, *J* = 7.0 Hz, 1H, OCHHO), 4.84 (d, *J* = 7.0 Hz, 1H, OCHHO), 5.13 (dq, *J* = 10.0, 1.4 Hz, 1H, CH=CHH), 5.18 (dq, *J* = 17.1, 1.6 Hz, 1H, CH=CHH), 5.89 (ddtd, *J* = 17.1, 10.0, 7.0, 0.8 Hz, 1H, CH=CH₂).

¹³C NMR (75 MHz, CDCl₃) -5.4 & -5.3 (Si(CH₃)₂), 18.4 (SiC(CH₃)₃), 21.5 & 21.8 (C(CH₃)₂), 26.1 (SiC(CH₃)₃), 35.5 (N₃CHCH₂), 40.3 (C(CH₃)₂), 59.2 (OCH₃), 63.9 (N₃CH), 68.2 (OCH₂CH₂O), 70.1 (CH₂OSi), 72.0 (OCH₂CH₂O), 84.2 (N₃CHCHO), 97.9 (OCH₂O), 117.6 (CH=CH₂), 135.5 (CH=CH₂).

HRMS (ESI) m/z [M+Na]⁺ berechnet für C₁₉H₃₉N₃O₄SiNa⁺ 424.26020, gefunden 424.25989.

 $[\alpha]^{20}_{D}$ -1.49 (*c* = 1.0, CHCl₃).

(4S,5R)-7-((Tert-butyldimethylsilyl)oxy)-5-((2-methoxyethoxy)methoxy)-6,6-dimethylhept-1en-4-amin (271)

(*R*)-8-((*S*)-1-Azidobut-3-en-1-yl)-9,9,12,12,13,13-hexamethyl-2,5,7,11-tetraoxa-12-silatetradecan (**270**) (55 mg, 137 µmol, 1.0 Äquiv.) wird in 1.0 mL THF gelöst und anschließend Triphenylphosphan (54 mg, 205 µmol, 1.5 Äquiv.) sowie 0.1 mL H₂O zugegeben. Der Ansatz rührt bei Raumtemperatur für zwei Tage und der Reaktionsfortschritt wird per Dünnschichtchromatographie kontrolliert (CH/EtOAc 4:1). Anschließend wird das Lösungsmittel unter Vakuum entfernt und der Rückstand mittels Säulenchromatographie aufgereinigt (CH₂Cl₂/CH₃OH 9:1-> CH₂Cl₂/CH₃OH 9:1 + 0.1%NEt₃). Das gewünschte Amin wird als farbloses Öl (45 mg, 87%) erhalten.

Chemical Formula: C₁₉H₄₁NO₄Si Molecular Weight: 375,63

R_f (SiO₂) 0.03 CH/EtOAc 4:1, 0.37 CH₂Cl₂/CH₃OH 9:1.

IR 3386, 2953, 2928, 2894, 2880, 2855, 1642, 1606, 1522, 1472, 1389, 1362, 1252, 1200, 1159, 1096, 1035, 937, 919, 838, 815, 776, 668, 575.

¹H NMR (300 MHz, CDCl₃) 0.04 (s, 6H, Si(CH₃)₂), 0.89 (überlappt s, 12H, SiC(CH₃)₃ & C(CH₃)(CH₃)), 0.96 (s, 3H, C(CH₃)(CH₃)), 2.14 (ddd, *J* = 14.5, 9.8, 8.3 Hz, 1H, H₂NCHCHH), 2.56 (dd, *J* = 14.5, 5.8 Hz, 1H, H₂NCHCHH), 3.24 (überlappt, br, d, *J* = 9.8 Hz, 2H, H₂NCH & CHHOSi), 3.41 (s, 3H, OCH₃), 3.46 (d, *J* = 9.8 Hz, 1H, CHHOSi), 3.52-3.66 (überlappt m, 3H, OCH₂CHHO), 3.66 (s, 1H, H₂NCHCHO), 3.88-3.94 (m, 1H, OCH₂CHHO), 4.75 (d, *J* = 6.5 Hz, 1H, OCHHO), 4.80 (d, *J* = 6.5 Hz, 1H OCHHO), 5.14 (überlappt, d, *J* = 16.5 Hz, 1H, CH=CHH), 5.15 (überlappt d, *J* = 10.6 Hz, 1H, CH=CHH), 5.92 (dddd, *J* = 16.5, 10.6, 8.3, 5.8 Hz, 1H, CH=CH₂).

¹³C NMR (75 MHz, CDCl₃) -5.38 & -5.32 (Si(CH₃)₂), 18.5 (SiC(CH₃)₃), 21.1 & 22.3 (C(CH₃)₂), 26.1 (SiC(CH₃)₃), 36.8 (H₂NCHCH₂), 40.5 (C(CH₃)₂), 51.7 (H₂NCH), 59.2 (OCH₃), 67.8 (OCH₂CH₂O), 69.6 (CH₂OSi), 71.7 (OCH₂CH₂O), 88.8 (H₂NCHCHO), 98.4 (OCH₂O), 118.2 (CH=CH₂), 135.9 (CH=CH₂).

HRMS (ESI) m/z $[M+H]^+$ berechnet für C₁₉H₄₂O₄NSi⁺ 376.28776, gefunden 376.28646.

 $[\alpha]^{20}_{D}$ -23.0 (*c* = 0.9, CHCl₃).

Tert-butyl ((4S,5R)-7-((tert-butyldimethylsilyl)oxy)-5-((2-methoxyethoxy)methoxy)-6,6dimethylhept-1-en-4-yl)carbamat (272)

(4*S*,5*R*)-7-((*Tert*-butyldimethylsilyl)oxy)-5-((2-methoxyethoxy)methoxy)-6,6-dimethylhept-1-en-4amin (**271**) (33 mg, 88 μmol, 1.0 Äquiv.) wird in 0.87 mL CH₃OH und 87 μL Triethylamin (10% NEt₃ in CH₃OH) gelöst. Anschließend wird Boc₂O (38 mg, 176 μmol, 2.0 Äquiv.) bei Raumtemperatur zugegeben. Der Ansatz rührt für 24 h und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (CH/EtOAc 20:1). Das Boc-geschützte Produkt wird als farbloses Öl erhalten (27 mg, 65%).

Chemical Formula: C₂₄H₄₉NO₆Si Molecular Weight: 475,74

R_f (SiO₂) 0.15 CH/EtOAc 20:1.

IR 3352, 2957, 2930, 2888, 2858, 1709, 1642, 1522, 1472, 1390, 1364, 1249, 1174, 1098, 1040, 911, 848, 836, 814, 775, 668, 620, 567.

¹H NMR (500 MHz, CDCl₃) 0.02 & 0.03 (je s, 3H, Si(CH₃)₂), 0.85 (s, 3H, C(CH₃)(CH₃)), 0.88 (s, 9H, SiC(CH₃)₃), 0.98 (s, 3H, C(CH₃)(CH₃)), 1.43 (s, 9H, COOC(CH₃)₃), 2.18 (ddd, *J* = 14.6, 10.5, 7.2 Hz, 1H, NHCHCHH), 2.38 (dd, *J* = 14.6, 7.2 Hz, 1H, NHCHCH*H*), 3.15 (d, *J* = 9.5 Hz, 1H, CHHOSi), 3.42 (s, 3H, OCH₃), 3.44 (d, *J* = 9.5 Hz, 1H, CHHOSi), 3.50 (br s, 1H, NHCHCHO), 3.55-3.65 (überlappt m, 3H, OCHHCH₂O), 3.87 (dd, *J* = 10.5, 9.8 Hz, 1H, NHCH), 3.92-4.00 (m, 1H, OCHHCH₂O), 4.71 (d, *J* = 7.0 Hz, 1H, OCHHO), 4.76 (d, *J* = 7.0 Hz, 1H, OCHHO), 4.99 (d, *J* = 9.9 Hz, 1H, CH=CHH), 5.03 (d, *J* = 16.9 Hz, 1H, CH=CH*H*), 5.85 (ddt, *J* = 16.9, 9.9, 7.2 Hz, 1H, CH=CH₂), 6.03 (d, *J* = 9.8 Hz, 1H, NH).

¹³C NMR (125 MHz, CDCl₃) -5.37 & -5.39 (Si(CH₃)₂), 18.4 (SiC(CH₃)₃), 20.4 (C(CH₃)(CH₃)), 22.6
(C(CH₃)(CH₃)), 26.1 (SiC(CH₃)₃), 28.7 (COOC(CH₃)₃), 36.4 (NHCHCH2), 40.2 (C(CH₃)(CH₃)), 50.7 (NHCH), 59.2 (OCH₃), 67.7 (OCH₂CH₂O), 69.8 (CH₂OSi), 71.9 (OCH₂CH₂O), 78.4 (COOC(CH₃)₃), 89.5 (NHCHCHO), 98.3 (OCH₂O), 116.1 (CH=CH₂), 136.5 (CH=CH₂), 157.0* (COO).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für C₂₄H₄₉NO₆SiNa⁺ 498.32214, gefunden 498.32184.

 $[\alpha]^{23}_{D}$ -49.1 (*c* = 1.5, CHCl₃).

* über 2D-NMR bestimmt.

Tert-butyl ((4S,5R)-7-hydroxy-5-((2-methoxyethoxy)methoxy)-6,6-dimethylhept-1-en-4yl)carbamat (273)

Zu einer Lösung aus Verbindung **272** (43 mg, 0.09 mmol, 1.0 Äquiv.) in 1 mL THF (abs) wird TBAF (1M in THF, 0.14 mL, 0.14 mmol, 1.5 Äquiv.) gegeben. Die gelbe Lösung rührt für 20 h. Eine Reaktionskontrolle (DC, CH/EtOAc 4:1) zeigt, dass das Edukt abreagiert ist. Ein Reaktionsabbruch erfolgt durch Zugabe von gesättigter NH₄Cl-Lösung. Die wässrige Phase wird dreimal mit EtOAc extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet. Nach Entfernung des Lösungsmittels im Vakuum wird das Rohprodukt per Säulenchromatographie aufgereinigt (CH/EtOAc 7:3). Das Produkt wird als farbloses Öl erhalten (28 mg, 86%).

Chemical Formula: C₁₈H₃₅NO₆ Molecular Weight: 361,48

R_f (SiO₂) 0.3 CH/EtOAc 7:3.

IR 3450, 3339, 2973, 2931, 2880, 2823, 1708, 1681, 1641, 1530, 1473, 1457, 1437, 1391, 1366, 1308, 1282, 1252, 1171, 1134, 1104, 1040, 913, 850, 802, 758, 636, 575.

¹H NMR (500 MHz, CDCl₃) 0.85 & 0.98 (je s, 3H, C(CH₃)₂), 1.43 (s, 9H, C(CH₃)₃), 2.19 (ddd, *J* = 15.5, 10.5, 7.5 Hz, 1H, NHCHC*H*H), 2.35 (dd, *J* = 15.5, 6.1 Hz, 1H, NHCHCH*H*), 3.34 (dd, *J* = 11.7, 8.4 Hz, 1H, CHHOH), 3.41 (s, 3H, OCH₃), 3.52 (s, 1H, NHCHC*H*O), 3.54-3.63 (überlappt m, 2H, OCH₂C*H*₂O), 3.66 (überlappt dd, *J* = 11.7, 8.4 Hz, 1H, CHHOH), 3.81 (dd, *J* = 10.5, 8.5 Hz, 1H, NHC*H*), 3.91-3.98 (m, 2H, OCH₂CH₂O), 4.63 (d, *J* = 7.1 Hz, 1H, OCHHO), 4.77 (d, *J* = 7.1 Hz, 1H, OCHHO), 5.03 (d, *J* = 10.1 Hz, 1H CH=CHH), 5.07 (d, *J* = 17.4 Hz, 1H, CH=CH*H*), 5.82 (dddd, *J* = 17.4, 10.1, 7.5, 6.1 Hz, 1H, CH=CH₂), 6.23 (d, *J* = 8.5 Hz, 1H, NH).

¹³C NMR (125 MHz, CDCl₃) 20.2 & 23.0 (C(CH₃)₂), 28.6 (C(CH₃)₃), 34.8 (NHCHCH₂), 40.6 (C(CH₃)₂), 50.9 (NHCH), 59.0 (OCH₃), 67.7 (OCH₂CH₂O), 70.8 (CH₂OH), 72.1 (OCH₂CH₂O), 79.4 (C(CH₃)₃), 90.3 (NHCHCHO), 98.1 (OCH₂O), 116.4 (CH=CH₂), 136.2 (CH=CH₂), 157.3 (COO).

HRMS (ESI) m/z $[M+Na]^+$ berechnet für C₁₈H₃₅O₆NNa⁺ 384.23566, gefunden 384.23495.

 $[\alpha]^{27}_{D}$ -101.3 (*c* = 1.0, CHCl₃).

165

Literaturverzeichnis

- [1] B. J. L. Royles, *Chem. Rev.* **1995**, *95*, 1981.
- [2] R. Schobert, A. Schlenk, *Bioorg. med. chem.* 2008, 16, 4203.
- [3] M. Zaghouani, B. Nay, *Nat. prod. rep.* **2016**, *33*, 540.
- [4] F. Hemmerling, F. Hahn, *Beilstein J. Org. Chem.* **2016**, *12*, 1512.
- [5] a) C. Gui, Q. Li, X. Mo, X. Qin, J. Ma, J. Ju, Org. Lett. 2015, 17, 628; b) K. M. Fisch, RSC Adv. 2013, 3, 18228.
- [6] Y.-C. Jeong, M. Anwar, Z. Bikadi, E. Hazai, M. G. Moloney, *Chem. Sci.* **2013**, *4*, 1008.
- [7] X. Mo, Q. Li, J. Ju, *RSC Adv.* **2014**, *4*, 50566.
- [8] a) L. A. Shaala, D. T.A. Youssef, K. L. McPhail, M. Elbandy, *Phytochem. Lett.* 2013, *6*, 183; b) T. T. Chang, S. V. More, I.-H. Lu, J.-C. Hsu, T.-J. Chen, Y. C. Jen, C.-K. Lu, W.-S. Li, *Eur. J. Med. Chem.* 2011, *46*, 3810.
- a) Y. Masui, C. Kawabe, K. Matsumoto, K. Abe, T. Miwa, *Phytochemistry* **1986**, *25*, 1470; b) P.
 Lorenz, J. Conrad, S. Duckstein, D. R. Kammerer, F. C. Stintzing, *Helv. Chim. Acta* **2014**, *97*, 1606-1623; c) D. L. Boger, C. M. Baldino, *J. Am. Chem. Soc.* **1993**, *115*, 11418.
- [10] J.-G. Shi, H.-Q. Wang, M. Wang, Y.-C. Yang, W.-Y. Hu, G.-X. Zhou, J. Nat. Prod. 2000, 63, 782.
- [11] S. Suntornchashwej, K. Suwanborirux, K. Koga, M. Isobe, Chem. Asian J. 2007, 2, 114.
- [12] J. H. Cardellina, F. J. Marner, R. E. Moore, J. Am. Chem. Soc. 1979, 101, 240.
- [13] K. E. Milligan, B. Márquez, R. T. Williamson, M. Davies-Coleman, W. H. Gerwick, J. Nat. Prod. 2000, 63, 965.
- [14] K. E. Milligan, B. Marquez, R. T. Williamson, M. Davies-Coleman, W. H. Gerwick, J. Nat. Prod. 2000, 63, 1598.
- [15] N. A. Moss, T. Leão, M. R. Rankin, T. M. McCullough, P. Qu, A. Korobeynikov, J. L. Smith, L. Gerwick, W. H. Gerwick, ACS chemical biology 2018, 13, 3385.
- [16] W. Jiang, W. Zhou, R. Othman, H. Uchida, R. Watanabe, T. Suzuki, B. Sakamoto, H. Nagai, Nat. Prod. Res. 2018, 32, 97.
- [17] Y. Kan, B. Sakamoto, T. Fujita, H. Nagai, J. Nat. Prod. 2000, 63, 1599.
- [18] G. Sodano, A. Spinella, *Tetrahedron Lett.* **1986**, *27*, 2505.
- [19] A. Giordano, C. Della Monica, F. Landi, A. Spinella, G. Sodano, *Tetrahedron Lett.* 2000, 41, 3979.
- [20] J. Wang, M. R. Prinsep, D. P. Gordon, M. J. Page, B. R. Copp, J. Nat. Prod. 2015, 78, 530.
- [21] R. Teta, E. Irollo, G. Della Sala, G. Pirozzi, A. Mangoni, V. Costantino, Mar. Drugs 2013, 11, 4451.

- [22] A. Caso, A. Mangoni, G. Piccialli, V. Costantino, V. Piccialli, ACS omega 2017, 2, 1477.
- [23] A. Caso, I. Laurenzana, D. Lamorte, S. Trino, G. Esposito, V. Piccialli, V. Costantino, Mar. Drugs 2018, 16, 206.
- [24] C. W. Via, E. Glukhov, S. Costa, P. V. Zimba, P. D. R. Moeller, W. H. Gerwick, M. J. Bertin, Front. Chem. 2018, 6, 316.
- [25] J. H. Cardellina, R. E. Moore, Tetrahedron Lett. 1979, 2007.
- [26] C. J. Simmons, F. J. Marner, J. H. Cardellina, R. E. Moore, K. Seff, Tetrahedron Lett. 1979, 2003.
- [27] a) G. D. James, G. Pattenden, *Tetrahedron Lett.* 1985, *26*, 3617; b) G. D. James, S. D. Mills, G. Pattenden, *J. Chem. Soc., Perkin Trans.* 1 1993, 2581.
- [28] G. Höfle, K. Gerth, H. Reichenbach, B. Kunze, F. Sasse, E. Forche, E. V. Prusov, *Chem. Eur. J.* 2012, 18, 11362.
- [29] M. D. Sadar, D. E. Williams, N. R. Mawji, B. O. Patrick, T. Wikanta, E. Chasanah, H. E. Irianto, R. van Soest, R. J. Andersen, Org. Lett. 2008, 10, 4947.
- [30] S. Carmeli, R. E. Moore, G. M. L. Patterson, *Tetrahedron* **1991**, *47*, 2087.
- [31] S. Paik, S. Carmeli, J. Cullingham, R. E. Moore, G. M. L. Patterson, M. A. Tius, *J. Am. Chem. Soc.* 1994, *116*, 8116.
- [32] W. Hofheinz, W. E. Oberhänsli, Helv. Chim. Acta 1977, 60, 660.
- [33] P. G. Williard, S. E. de Laszlo, J. Org. Chem. 1984, 49, 3489.
- [34] a) H. Köhler, H. Gerlach, *Helv. Chim. Acta* **1984**, *67*, 1783; b) E. A. Ilardi, A. Zakarian, *Chem. Asian J.* **2011**, *6*, 2260.
- [35] P. Phuwapraisirisan, S. Matsunaga, N. Fusetani, Org. Lett. 2005, 7, 2233.
- [36] a) W.-J. Bai, S. K. Jackson, T. R. R. Pettus, Org. Lett. 2012, 14, 3862; b) H.-Q. Lan, Y.-P. Ruan, P.-Q. Huang, Chem. Commun. 2010, 46, 5319.
- [37] T. L. Simmons, K. L. McPhail, E. Ortega-Barría, S. L. Mooberry, W. H. Gerwick, *Tetrahedron Lett.* 2006, 47, 3387.
- [38] R. G. Linington, B. R. Clark, E. E. Trimble, A. Almanza, L.-D. Ureña, D. E. Kyle, W. H. Gerwick, J. Nat. Prod. 2009, 72, 14.
- [39] K. Taori, Y. Liu, V. J. Paul, H. Luesch, *ChemBioChem* **2009**, *10*, 1634.
- [40] T. Conroy, J. T. Guo, N. H. Hunt, R. J. Payne, Org. Lett. 2010, 12, 5576.
- [41] M. L. Ciavatta, F. Lefranc, M. Carbone, E. Mollo, M. Gavagnin, T. Betancourt, R. Dasari, A. Kornienko, R. Kiss, *Med. Res. Rev.* 2017, 37, 702.
- [42] T. Niedermeyer, M. Brönstrup in *Microalgal Biotechnology* (Hrsg.: C. Walter, C. Posten), DE GRUYTER, Berlin, **2012**.
- [43] A. Maderna, C. A. Leverett, *Mol. Pharmaceutics* **2015**, *12*, 1798.
- [44] R. Preusentanz, O. Pando, L. Wessjohann, Nachr. Chem. 2010, 58, 526.
- [45] E. Hamel, *Pharmac. Ther.* **1992**, *55*, 31.
- [46] S. P. Gunasekera, L. Imperial, C. Garst, R. Ratnayake, L. H. Dang, V. J. Paul, H. Luesch, J. Nat. Prod. 2016, 79, 1867.
- [47] S. Y. Chun, C. Johnson, J. G. Washburn, M. R. Cruz-Correa, D. T. Dang, L. H. Dang, *Mol. Cancer* 2010, 9, 293.
- [48] J. A. Hrabie, L. K. Keefer, Chem. Rev. 2002, 102, 1135.
- [49] a) L. Cambi, Ber. dtsch. Chem. Ges. A/B 1936, 69, 2027; b) J. F. DuMond, S. B. King, Antioxid. Redox Signal. 2011, 14, 1637.
- [50] a) L. K. Keefer, D. Christodoulou, T. M. Dunams, J. A. Hrabie, C. M. Maragos, J. E. Saavedra, D. A. Wink in ACS symposium series, Vol. 553 (Hrsg.: R. N. Loeppky, C. J. Michejda), American Chemical Society, Washington, D.C., 1994, S. 136; b) H. Liang, P. Nacharaju, A. Friedman, J. M. Friedman, Future Sci. OA 2015, 1; c) M. R. Miller, I. L. Megson, Br. J. Pharmacol. 2007, 151, 305.
- [51] A. H. Lamberton, H. M. Yusuf, J. Chem. Soc. (C) 1969, 397.
- [52] G. Powis, J. S. Kovach, Biochem. Pharmacol. 1981, 30, 771.
- [53] Y. K. S. Murthy, J. E. Thiemann, C. Coronelli, P. Sensi, *Nature* 1966, 211, 1198.
- [54] a) G. C. Lancini, A. Diena, E. Lassari, *Tetrahedron Lett.* **1966**, 1769; b) C. N. Eaton, G. H. Denny, JR., M. A. Ryder, M. G. Ly, R. D. Babson, *J. Med. Chem.* **1973**, *16*, 289.
- [55] Y. Isowa, H. Kurita, M. Ohmori, M. Sato, K. Mori, Bull. Chem. Soc. Jpn. 1973, 40, 1847.
- [56] P. Strazzolini, M. G. Dall'Arche, M. Zossi, A. Pavsler, Eur. J. Org. Chem. 2004, 2004, 4710.
- [57] a) H. L. Kindler, H. A. Burris, A. B. Sandler, I. A. Oliff, *Invest. New Drugs* 2009, 27, 75; b) J. Yu, *Curr. Opin. Investig. Drugs* 2001, 2, 1623.
- [58] S. Fushimi, S. Nishikawa, N. Mito, M. Ikemoto, M. Sasaki, H. Seto, J. Antibiot. 1989, 42, 1370.
- [59] L. A. Dolak, T. M. Castle, B. R. Hannon, A. D. Argoudelis, R. Reusser, J. Antibiot. 1983, 36, 1425.
- [60] L. A. Dolak, T. M. Castle, J. Antibiot. 1983, 36, 916.
- [61] C. Jenul, S. Sieber, K. Gademann, L. Eberl, *Biospektrum* 2019, 25, 368.
- [62] C. A. Daeppen, *Total Syntheses of (-)-Fragin and Valdiazen, and Synthetic Studies Towards Complex Neuritogenic Terpenoids*. Dissertation, Universität Basel, **2017**.
- [63] M. Nishio, M. Hasegawa, K. Suzuki, Y. Sawada, D. J. Hook, T. Oki, J. Antibiot. 1993, 46, 193.
- [64] a) M. Ohno, H. Iinuma, N. Yagisawa, S. Shibahara, Y. Suhara, S. Kondo, K. Maeda, H. Umezawa, J. Chem. Soc., Chem. Commun. 1973, 147; b) H. Iinuma, T. Takeuchi, S. Kondo, M. Matsuzaki, H. Umezawa, M. Ohno, J. Antibiot. 1972, 25, 497.
- [65] T. Natori, Y. Kataoka, S. Kato, Kawai, Hiroyuki, Fusetani, Nobuhiro, *Tetrahedron Lett.* 1997, 38, 8349.
- [66] S. Tamura, A. Murayama, K. Hata, Agr. Biol. Chem. 1967, 31, 758.
- [67] a) A. Murayama, S. Tamura, Agr. Biol. Chem. 1970, 34, 122; b) A. Murayama, S. Tamura, Agr. Biol. Chem. 1970, 34, 130.

- [68] C. Jenul, S. Sieber, C. Daeppen, A. Mathew, M. Lardi, G. Pessi, D. Hoepfner, M. Neuburger, A. Linden, K. Gademann et al., *Nat. Commun.* 2018, *9*, 1297.
- [69] T. Kawahara, N. Kagaya, Y. Masuda, T. Doi, M. Izumikawa, K. Ohta, A. Hirao, K. Shin-ya, Org. Lett. 2015, 17, 5476.
- [70] R. S. Nho, P. Hergert, World J. Biol. Chem. 2014, 5, 346.
- [71] Y. Liu, X. Ao, W. Ding, M. Ponnusamy, W. Wu, X. Hao, W. Yu, Y. Wang, P. Li, J. Wang, *Mol. Cancer* 2018, 17, 104.
- [72] N. Patino, E. Frérot, N. Galeotti, J. Poncet, J. Coste, M.-N. Dufour, P. Jouin, *Tetrahedron* 1992, 48, 4115.
- [73] G. R. Pettit, T. J. Thornton, J. T. Mullaney, M. R. Boyd, D. L. Herald, S. B. Singh, E. J. Flahive, *Tetrahedron* **1994**, *50*, 12097.
- [74] J. Löffler, R. Schobert, J. Chem. Soc., Perkin Trans. 1 1996, 2799.
- [75] M. Hosseini, H. Kringelum, A. Murray, J. E. Tønder, Org. Lett. 2006, 8, 2103.
- [76] J. Coste, E. Frérot, P. Jouin, J. Org. Chem. 1994, 59, 2437.
- [77] E. Frérot, J. Coste, J. Poncet, P. Jouin, *Tetrahedron Lett.* **1992**, *33*, 2815.
- [78] a) P. Li in *Encyclopedia of reagents for organic synthesis*, WILEY, Chichester, **1995**, S. 8119; b) P. Li, J.-C. Xu, *Tetrahedron* **2000**, *56*, 8119.
- [79] a) A. El-Faham, F. Albericio, J. Pept. Sci. 2010, 16, 6; b) R. Subirós-Funosas, L. Nieto-Rodriguez, K. J. Jensen, F. Albericio, J. Pept. Sci. 2013, 19, 408.
- [80] a) R. Katakai, J. Org. Chem. 1975, 40, 2697; b) W. B. Fuller, M. P. Cohen, M. Shabankareh, R. K. Blair, J. Am. Chem. Soc. 1990, 112, 7414.
- [81] M. L. Di Gioia, A. Leggio, A. Liguori, J. Org. Chem. 2005, 70, 3892.
- [82] a) M. L. Di Gioia, A. Leggio, A. Liguori, F. Perri, C. Siciliano, M. C. Viscomi, *Amino acids* 2010, *38*, 133; b) A. Leggio, M. L. Di Gioia, F. Perri, A. Liguori, *Tetrahedron* 2007, *63*, 8164.
- [83] G. Chaume, O. Barbeau, P. Lesot, T. Brigaud, J. Org. Chem. 2010, 75, 4135.
- [84] C.-P. Xu, Z.-H. Xiao, B.-Q. Zhuo, Y.-H. Wang, P.-Q. Huang, Chem. Commun. 2010, 46, 7834.
- [85] M. Tajbakhsh, R. Hosseinzadeh, H. Alinezhad, S. Ghahari, A. Heydari, S. Khaksar, Synthesis 2011, 490.
- [86] A. M. King, M. de Ryck, R. Kaminski, A. Valade, J. P. Stables, H. Kohn, J. Med. Chem. 2011, 54, 6432.
- [87] a) I. Paterson, S. J. Fink, L. Y. W. Lee, S. J. Atkinson, S. B. Blakey, Org. Lett. 2013, 15, 3118; b) G.
 Yao, Z. Pan, C. Wu, W. Wang, L. Fang, W. Su, J. Am. Chem. Soc. 2015, 137, 13488.
- [88] A. Mitra, Seaton, Pamela, J., R. A. Assarpour, T. Williamson, Tetrahedron 1998, 54, 15489.
- [89] G. R. Pettit, Y. Kamano, C. Dufresne, R. L. Cerny, C. L. Herald, J. M. Schmidt, J. Org. Chem. 1989, 54, 6005.

- [90] G. R. Pettit, D. L. Herald, S. B. Singh, T. J. Thornton, J. T. Mullaney, J. Am. Chem. Soc. 1991, 113, 6693.
- [91] T. L. Suyama, W. H. Gerwick, K. L. McPhail, *Bioorg. med. chem.* 2011, 19, 6675.
- [92] A. Wunder, M. Rothemund, R. Schobert, Tetrahedron 2018, 74, 5138.
- [93] S. Tilvi, K. S. Singh, Curr. Org. Chem. 2016, 20, 898.
- [94] N. Galeotti, C. Montagne, J. Poncet, P. Jouin, *Tetrahedron Lett.* 1992, 33, 2807.
- [95] K. Yonetani, Y. Hirotsu, T. Shiba, Bull. Chem. Soc. Jpn. 1975, 48, 3302.
- [96] B. Wagner, D. Schumann, U. Linne, U. Koert, M. A. Marahiel, J. Am. Chem. Soc. 2006, 128, 10513.
- [97] R. Kondo, *Development of Catalytic Methods for the Synthesis of Oxa- and Thiazolines and Asymmetric Diels-Alder Catalysis Using Chiral Bis(oxazoline) Ligands*. Dissertation, Nagoya University, **2009**.
- [98] A. I. Meyers, D. Hoyer, *Tetrahedron Lett.* **1985**, *26*, 4687.
- [99] A. J. Phillips, Y. Uto, P. Wipf, M. J. Reno, D. R. Williams, Org. Lett. 2000, 2, 1165.
- [100] F. Yokokawa, Y. Hamada, T. Shioiri **1992**, *2*, 153.
- [101] F. Yokokawa, T. Shioiri, Tetrahedron Lett. 2002, 43, 8679.
- [102] a) P. Wipf, C. P. Miller, J. Org. Chem. 1993, 58, 1575; b) P. Wipf, C. P. Miller, J. Am. Chem. Soc. 1992, 114, 10975.
- [103] P. Wipf, C. P. Miller, Tetrahedron Lett. 1992, 33, 6267.
- [104] A. Sakakura, R. Kondo, K. Ishihara, Org. Lett. 2005, 7, 1971.
- [105] P. Wipf, X. Wang, J. Comb. Chem. 2002, 4, 656.
- [106] L. R. Reddy, P. Saravanan, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 6230.
- [107] P. Lafargue, P. Guenot, J.-P. Lellouche, Heterocycles 1995, 41, 947.
- [108] H. Liu, Y. Zhang, R. Wei, G. Andolina, X. Li, J. Am. Chem. Soc. 2017, 139, 13420.
- [109] a) E. Falb, A. Nudelman, A. Hassner, *Synth. Commun.* **1993**, *23*, 2839; b) S. Futagawa, T. Inui, T. Shiba, *Bull. Chem. Soc. Jpn.* **1973**, *46*, 3308; c) L. Williams, D. B. Hauze, M. M. Joullie, *Heterocycl. Commun.* **1996**, *2*, 55.
- [110] R. E. Bowman, H. H. Stroud, J. Chem. Soc. 1950, 1342.
- [111] I. Paterson, S. J. Fink, L. Y. W. Lee, S. J. Atkinson, S. B. Blakey, Org. Lett. 2013, 15, 3118.
- [112] a) A. Srinivasan, R. W. Stephenson, R. K. Olsen, J. Org. Chem. 1977, 42, 2256; b) A. Srinivasan, K.
 D. Richards, R. K. Olsen, Tetrahedron Lett. 1976, 17, 891.
- [113] H. Suga, K. Ikai, T. Ibata, J. Org. Chem. 1999, 64, 7040.
- [114] M. Gordon, J. G. Miller, A. R. Day, J. Am. Chem. Soc. 1948, 70, 1946.

- [115] A. M. Webster, C. R. Coxon, A. M. Kenwright, G. Sandford, S. L. Cobb, *Tetrahedron* 2014, 70, 4661.
- [116] M. R. Paleo, M. I. Calaza, P. Graña, F. J. Sardina, Organic letters 2004, 6, 1061.
- [117] L. Aurelio, J. S. Box, R. T. C. Brownlee, A. B. Hughes, M. M. Sleebs, J. Org. Chem. 2003, 68, 2652.
- [118] W. R. Li, W. R. Ewing, B. D. Harris, M. M. Joullie, J. Am. Chem. Soc. 1990, 112, 7659.
- [119] M. L. Shrestha, W. Qi, M. C. McIntosh, J. Org. Chem. 2017, 82, 8359.
- [120] Y. Matsumura, T. Suzuki, A. Sakakura, K. Ishihara, Angew. Chem. Int. Ed. 2014, 53, 6131.
- [121] J. J. Mills, K. R. Robinson, T. E. Zehnder, J. G. Pierce, Angew. Chem. Int. Ed. 2018, 57, 8682.
- [122] a) C. S. Pak, H. C. Yang, E. B. Choi, *Synthesis* **1992**, 1213; b) A. Ammendola, K. Aulinger-Fuchs, A. Gotschlich, B. Kramer, M. Lang, W. Saeb, U. Sinks, A. Wuzik, US20040235914A1, **2004**.
- [123] S. Bruckner, R. G. Haase, R. Schobert, Chem. Eur. J. 2017, 23, 5692.
- [124] J. L. Bloomer, F. E. Kappler, J. Chem. Soc. Perkin Trans 1 1976, 1485.
- [125] R. N. Lacey, J. Chem. Soc. 1954, 850.
- [126] a) M. Petermichl, R. Schobert, Chem. Eur. J. 2017, 23, 14743; b) P. G. M. Wuts, T. W. Greene, Protective groups in organic synthesis, 4. Aufl., WILEY, Hoboken, N.J., 2006.
- [127] S. V. Ley, S. C. Smith, P. R. Woodward, Tetrahedron 1992, 48, 1145.
- [128] A. Babu Kumar, R. Manetsch, Eur. J. Org. Chem. 2014, 2014, 3551.
- [129] O. P. Chevallier, M. E. Migaud, Beilstein J. Org. Chem. 2006, 2, 14.
- [130] G. Gu, M. Fang, Y. Du, Carbohydr. Res. 2011, 346, 2801.
- [131] T. Tuccinardi, A. Martinelli, E. Nuti, P. Carelli, F. Balzano, G. Uccello-Barretta, G. Murphy, A. Rossello, *Bioorg. med. chem.* 2006, 14, 4260.
- [132] a) K. Barlos, P. Mamos, D. Papaioannou, S. Patrianakou, J. Chem. Soc., Chem. Commun. 1987, 1583; b) K. Barlos, D. Papaioannou, D. Theodoropoulos, J. Org. Chem. 1982, 47, 1324.
- [133] S. S. More, R. Vince, J. Med. Chem. 2009, 52, 4650.
- [134] F. Buckingham, A. K. Kirjavainen, S. Forsback, A. Krzyczmonik, T. Keller, I. M. Newington, M. Glaser, S. K. Luthra, O. Solin, V. Gouverneur, Angew. Chem. Int. Ed. 2015, 54, 13366.
- [135] S. Fushiya, K. Maeda, T. Funayama, S. Nozoe, J. Med. Chem. 1988, 31, 480.
- [136] B. E. Haug, D. H. Rich, Org. Lett. 2004, 6, 4783.
- [137] D. B. Bryan, R. F. Hall, K. G. Holden, W. F. Huffman, J. G. Gleason, J. Am. Chem. Soc. 1977, 99, 2353.
- [138] S. Fenner, Z. E. Wilson, S. V. Ley, Chem. Eur. J. 2016, 22, 15902.
- [139] M. T. Reetz, Pure & Appl. Chem. 1992, 64, 351.
- [140] M. T. Reetz, M. W. Drewes, A. Schmitz, Angew. Chem. Int. Ed. 1987, 26, 1141.

- [141] P. Fischer, M. Jarman, E. Mcdonald, B. Nutley, F. Raynaud, S. Wilson, P. Workman, WO 2004/016612 A2, 2004.
- [142] J. M. Andrés, R. Pedrosa, A. Pérez, A. Pérez-Encabo, Tetrahedron 2001, 57, 8521.
- [143] M. Rodriquez, M. Taddei, Synthesis 2005, 493.
- [144] T. K. Chakraborty, A. K. Chattopadhyay, J. Org. Chem. 2008, 73, 3578.
- [145] Y. Hamada, T. Shioiri, Chem. Pharm. Bull. 1982, 30, 1921.
- [146] M. Gaudemar, Tetrahedron Lett. 1983, 24, 2749.
- [147] A. Krasovskiy, P. Knochel, Synthesis 2006, 890.
- [148] M. S. Newman, J. [J.] Evans, J. Am. Chem. Soc. 1955, 77, 946.
- [149] S. Zhu, S. L. Buchwald, J. Am. Chem. Soc. 2014, 136, 15913.
- [150] a) G. Silveira-Dorta, O. J. Donadel, V. S. Martín, J. M. Padrón, *J. Org. Chem.* 2014, *79*, 6775; b) S. Ueda, H. Terauchi, A. Yano, M. Matsumoto, T. Kubo, Y. Kyoya, K. Suzuki, M. Ido, M. Kawasaki, *Bioorg. med. chem.* 2004, *12*, 4101.
- [151] a) S. Kim, M. S. Jacobo, C.-T. Chang, S. Bellone, W. S. Powell, J. Rokach, *Tetrahedron Lett.* 2004, 45, 1973; b) T. Ikawa, K. Hattori, H. Sajiki, K. Hirota, *Tetrahedron* 2004, 60, 6901.
- [152] a) S. Aspin, A.-S. Goutierre, P. Larini, R. Jazzar, O. Baudoin, *Angew. Chem. Int. Ed.* 2012, 51, 10808; b) L. Birkofer, *Ber. Dtsch. Chem. Ges.* 1942, 75, 429.
- [153] S. G. Davies, J. A. Lee, P. M. Roberts, J. E. Thomson, J. Yin, Org. Lett. 2012, 14, 218.
- [154] R. Sakai, T. Koike, M. Sasaki, K. Shimamoto, C. Oiwa, A. Yano, K. Suzuki, K. Tachibana, H. Kamiya, *Org. Lett.* **2001**, *3*, 1479.
- [155] G. A. Crispino, K. S. Jeong, H. C. Kolb, Z. M. Wang, D. Xu, K. B. Sharpless, J. Org. Chem. 1993, 58, 3785.
- [156] B. M. Trost, H. Yang, G. D. Probst, J. Am. Chem. Soc. 2004, 126, 48.
- [157] T. Gregson, E. J. Thomas, *Tetrahedron* **2017**, *73*, 3316.
- [158] J. D. White, P. R. Blakemore, C. C. Browder, J. Hong, C. M. Lincoln, P. A. Nagornyy, L. A. Robarge,
 D. J. Wardrop, J. Am. Chem. Soc. 2001, 123, 8593.
- [159] a) S. F. Tlais, R. J. Clark, G. B. Dudley, *Molecules* 2009, 14, 5216; b) S. F. Tlais, G. B. Dudley, *Org. Lett.* 2010, 12, 4698; c) S. F. Tlais, G. B. Dudley, *Beilstein J. Org. Chem.* 2011, 7, 570.
- [160] E. J. Corey, B. B. Snider, J. Am. Chem. Soc. 1972, 94, 2549.
- [161] a) J. A. Marshall, Y. Tang, J. Org. Chem. 1994, 59, 1457; b) J. M. Lassaletta, R. R. Schmidt, Synlett 1995, 9, 925.
- [162] A. Schmitt, H.-U. Reißig, Chem. Ber. 1995, 128, 871.
- [163] T. R. Hoye, S. E. Erickson, S. L. Erickson-Birkedahl, C. R. H. Hale, E. C. Izgu, M. J. Mayer, P. K. Notz, M. K. Renner, Org. Lett. 2010, 12, 1768.
- [164] T. R. Hoye, C. S. Jeffrey, F. Shao, *Nat. Protoc.* **2007**, *2*, 2451.

- [165] J. B. Epp, T. S. Widlanski, J. Org. Chem. 1999, 64, 293.
- [166] K. Matcha, A. V. R. Madduri, S. Roy, S. Ziegler, H. Waldmann, A. K. H. Hirsch, A. J. Minnaard, ChemBioChem 2012, 13, 2537.
- [167] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155.
- [168] R. F. Borch, M. D. Bernstein, H. D. Durst, J. Am. Chem. Soc. 1971, 93, 2897.
- [169] E. J. Corey, J.-L. Gras, P. Ulrich, *Tetrahedron Lett.* **1976**, *17*, 809.
- [170] G. Höfle, W. Steglich, H. Vorbrüggen, Angew. Chem. Int. Ed. 1978, 17, 569.
- [171] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512.
- [172] a) S. Aime, E. Gianolio, D. Corpillo, C. Cavallotti, G. Palmisano, M. Sisti, G. B. Giovenzana, R. Pagliarin, *Helv. Chim. Acta* 2003, *86*, 615; b) T. Yamada, P. J. Lukac, T. Yu, R. G. Weiss, *Chem. Mater.* 2007, *19*, 4761.
- [173] H.-Q. Lan, J.-L. Ye, A.-E. Wang, Y.-P. Ruan, P.-Q. Huang, Chem. Eur. J. 2011, 17, 958.
- [174] Z. J. Anderson, D. J. Fox, Org. Biomol. Chem. 2016, 14, 1450.
- [175] K. J. M. Beresford, N. J. Church, D. W. Young, Org. Biomol. Chem. 2006, 4, 2888.
- [176] K. E. Kawulka, T. Sprules, C. M. Diaper, R. M. Whittal, R. T. McKay, P. Mercier, P. Zuber, J. C. Vederas, *Biochemistry* 2004, 43, 3385.
- [177] H. Kogen, T. Kiho, M. Nakayama, Y. Furukawa, T. Kinoshita, M. Inukai, J. Am. Chem. Soc. 2000, 122, 10214.
- [178] S. B. Cohen, R. L. Halcomb, J. Am. Chem. Soc. 2002, 124, 2534.
- [179] T. Suyama, S. Kanao, Yakugaku Zasshi 1965, 85, 284.
- [180] M. S. Lall, Y. K. Ramtohul, M. N. G. James, J. C. Vederas, J. Org. Chem. 2002, 67, 1536.
- [181] M. W. Walter, R. M. Adlington, J. E. Baldwin, C. J. Schofield, J. Org. Chem. 1998, 63, 5179.
- [182] V. B. Kurteva, C. A.M. Afonso, *Tetrahedron* **2005**, *61*, 267.
- [183] D. Zhu, Y. Yang, L. Hua, J. Org. Chem. 2006, 71, 4202.
- [184] C. Palomo, M. Oiarbide, J. M. García, A. González, R. Pazos, J. M. Odriozola, P. Bañuelos, M. Tello, A. Linden, J. Org. Chem. 2004, 69, 4126.
- [185] D. J. Miller, F. Yu, D. W. Knight, R. K. Allemann, Org. Biomol. Chem. 2009, 7, 962.
- [186] P.-Q. Huang, W. Chen, X. Zheng, Y.-P. Ruan, Heterocycles 2009, 79, 681.
- [187] R. F. Cunico, L. Bedell, J. Org. Chem. 1980, 45, 4797.
- [188] M. T. Reetz, M. W. Drewes, R. Schwickardi, Y. Dong, A. Laurenzano, S. Wolff, Org. Synth. 1999, 76, 110.

Anhang

NMR-Spektren ausgewählter Verbindungen

(5S)-Benzyl 4-methoxy-2,5-dihydropyrrol-2-on

(5S)-1-[(N-Boc,N-methyl)-L-Isoleucinoyl]-5-benzyl-4-methoxy-2,5-dihydropyrrol-2-on

pNosyl-I-Valin-(N-methyl-I-Isoleucin)-(5-benzyl-4-methoxy-2,5-dihydropyrrol-2-on)

PPM (F2) 8.4 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0

pNosyl-L-Valin-(N-methyl-L-Valin)-(N-methyl-L-Isoleucin)-(5-benzyl-4-methoxy-2,5dihydropyrrol-2-on)

HMBC-Spektrum

0.90

1.10

JMOD-Spektrum (125 MHz, CDCl₃)

HMBC-Spektrum (Vergrößerung)

 110 100 f1 (ppm)

 ò -10

зо

Methyl-L-allo-Threoninat

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Methyl (4S,5R)-2-((S)-1-(dimethylamino)ethyl)-5-methyl-4,5-dihydrooxazol-4-carboxylat

(S)-5-(2-(Benzyloxy)-1-hydroxy-3-methylbutyliden)-2,2-dimethyl-1,3-dioxan-4,6-dion

Ethyl N-((S)-4-hydroxy-5-methyl-3-oxohexanoyl)-N-methyl-L-Alaninat

HMBC-Spektrum (Vergrößerung)

¹³C-Spektrum (75 MHz, CD₃OD)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl(ppm)

(S)-1-Tert-butyl 2-(bis-(tert-butoxycarbonyl)amino) 5-((benzyloxy)amino)pentanoat

(S)-1-Tert-butyl 2-(bis-(tert-butoxycarbonyl)amino) 5-((benzyloxy)(nitroso)amino)pentanoat


```
HMBC-Spektrum
```


2-(Benzyloxy)-1-((S)-5-(tert-butoxy)-4-((4S,5R)-2-((S)-1-(dimethylamino)ethyl)-5-methyl-4,5dihydrooxazol-4-carboxamido)-5-oxopentyl)diazen-1-oxid

Ethyl (4S)-4-(dibenzylamino)-3-hydroxy-2,2-dimethyl-7-((triisopropylsilyl)oxy)heptanoat (Diastereomer 1)

¹³C-Spektrum (75 MHz, C₆D₆)

(R)-3-((2-Methoxyethoxy)methoxy)-4,4-dimethyldihydrofuran-2(3H)-on

(3R,4R)-3-((2-Methoxyethoxy)methoxy)-2,2-dimethylhept-6-en-1,4-diol

(R)-8-((S)-1-Azidobut-3-en-1-yl)-9,9,12,12,13,13-hexamethyl-2,5,7,11-tetraoxa-12silatetradecan

JMOD-Spektrum (125 MHz, CDCl₃)

Tert-butyl ((4S,5R)-7-hydroxy-5-((2-methoxyethoxy)methoxy)-6,6-dimethylhept-1-en-4yl)carbamat

ò -10 90 80 f1 (ppm)

Publikationen

Teile dieser Arbeit wurden veröffentlicht in

• A. Wunder, M. Rothemund, R. Schobert, *Tetrahedron* **2018**, *74*, 5138.

Weitere Publikationen

- A. Wunder, R. Schobert, Org. Biomol. Chem. 2016, 14, 9262.
- M. Daab, P. Loch, W. Milius, D. Schönauer-Kamin, M. Schubert, A. Wunder, R. Moos, F. E.
 Wagner, J. Breu, ZAAC 2017, 21, 1661.

Eidesstattliche Versicherungen und Erklärungen

(§ 8 Satz 2 Nr. 3 PromO Fakultät)

Hiermit versichere ich eidesstattlich, dass ich die Arbeit selbstständig verfasst und keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe (vgl. Art. 64 Abs. 1 Satz 6 BayHSchG).

(§ 8 Satz 2 Nr. 3 PromO Fakultät)

Hiermit erkläre ich, dass ich die Dissertation nicht bereits zur Erlangung eines akademischen Grades eingereicht habe und dass ich nicht bereits diese oder eine gleichartige Doktorprüfung endgültig nicht bestanden habe.

(§ 8 Satz 2 Nr. 4 PromO Fakultät)

Hiermit erkläre ich, dass ich Hilfe von gewerblichen Promotionsberatern bzw. –vermittlern oder ähnlichen Dienstleistern weder bisher in Anspruch genommen habe noch künftig in Anspruch nehmen werde.

(§ 8 Satz 2 Nr. 7 PromO Fakultät)

Hiermit erkläre ich mein Einverständnis, dass die elektronische Fassung der Dissertation unter Wahrung meiner Urheberrechte und des Datenschutzes einer gesonderten Überprüfung unterzogen werden kann.

(§ 8 Satz 2 Nr. 8 PromO Fakultät)

Hiermit erkläre ich mein Einverständnis, dass bei Verdacht wissenschaftlichen Fehlverhaltens Ermittlungen durch universitätsinterne Organe der wissenschaftlichen Selbstkontrolle stattfinden können.

Ort, Datum, Unterschrift