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1. Summary 

This thesis aims for the synthesis and characterisation of coordination polymer (CP)/block 

copolymer (BCP) nanocomposites. The used coordination polymers are either based on Schiff 

base-like ligands with an iron(II) centre connected by bis(monodentate) bridging ligands. 

Alternatively, zinc(II) complexes are also reacted with bis(monodentate) bridging ligands. The 

diblock copolymer consists of one block polystyrene and another block poly(4-vinylpyridine) 

resulting in polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP). The PS-b-P4VP polymer self-

assembles in suitable solvents like tetrahydrofuran or toluene to micelles where PS is building up 

the shell of the micelles and P4VP is forming the core. These block copolymer micelles are used as 

a size template for the formation of nanoparticles of the respective coordination polymer. The size 

of the micelle cores can be enlarged by raising the percentage of P4VP of the block copolymer. 

Above a certain ratio also the shape of the micelles can be altered to rods and worm-like 

structures. The synthesis method for the formation of nanocomposites is as follows: The block 

copolymer is dissolved together with the respective complex in the suitable solvent and the 

reaction mixture is heated to reflux. After the addition of the bridging ligand and the subsequent 

heating the solvent can either be removed by cold distillation or the complex and the bridging 

ligand can be added simultaneously up to four times. Thus, several different nanocomposites were 

obtained. The sizes in the solid state and in solution, the crystallinity, the composition and, 

additionally for iron(II)-based CPs, the spin crossover (SCO) properties were analysed. 

Nanocomposites of three different one-dimensional iron(II) CPs [FeL(bpea)]n@BCP, 

[FeL(bpee)]n@BCP, and [FeL(bpey)]n@BCP with varying bridging ligands were synthesised. Their 

size, magnetic, and SCO properties were investigated. Transmission electron microscopy (TEM) 

images and dynamic light scattering (DLS) revealed that the sizes of the nanoparticles were equal 

in size independent from the formed CP (TEM: ~50 nm, DLS: ~150 nm). Microcrystals were 

observed for some samples in TEM images. The appearance of microcrystals was explained by the 

stability of the CPs regarding their ligand field splitting, their electronic configuration, and the 

rigidity of the bridging ligands. The magnetic measurements showed that samples with 

microcrystals exhibit a bulk-like behaviour, whereas the nanocomposites without microcrystals 

undergo a gradual spin transition. In the case of the nanocomposite [FeL(bpey)]n@BCP a gradual, 

two-step spin transition was found whereas the bulk [FeL(bpey)]n features an abrupt, half 

complete spin transition with a hysteresis width of 10 K. Powder X-ray diffraction explained the 

variation in the spin transitions of the nanocomposite which showed a different polymorph than 

the bulk material. 
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By utilising another BCP as template, the particle core size of the BCP and the nanocomposite with 

the CP [FeL(bipy)]n could be reduced to 15 nm and 16 nm, respectively. The magnetic properties 

of these smaller particles were investigated and the influence of a stepwise increase of the 

annealing temperature on the SCO properties was evaluated. The SCO properties of the annealed 

nanocomposite improved compared to the as-synthesised product. The hysteresis width was 

broadened from 7 K to 14 K, while shifting the spin transition from 163 K to 203 K and lowering 

the residual high-spin fraction at 50 K from 52 % to 32 %. The change of the magnetic properties 

was supported by temperature-dependent Mössbauer spectroscopy, which also detected a 

decrease of the residual high-spin fraction. Furthermore, temperature-dependent powder X-ray 

diffraction revealed that the pattern of the nanocomposite resembled the bulk pattern after 

annealing. The integrity of the particles after the annealing was proven by subsequent TEM, DLS, 

and scanning electron microscopy measurements. The processability of the nanocomposite was 

demonstrated by electrospinning of fibres and non-woven. 

The templated synthesis using BCPs is not only limited to one-dimensional iron-based CPs. This 

was demonstrated by the synthesis of nanocomposites with the one-dimensional 

[Zn(OAc)2(bipy)]n CP and the two-dimensional [Zn(TFA)2(bppa)2]n coordination network. Two 

different PS-b-P4VP BCPs were used for this approach. Nanocomposites particle core sizes of 

47 nm for the [Zn(OAc)2(bipy)]n CP in only one BCP and sizes of 46 nm and 15 nm for the 

[Zn(TFA)2(bppa)2]n coordination network in two BCPs were achieved. TEM images revealed 

chain-like structures for the particles of the nanocomposites of [Zn(TFA)2(bppa)2]n in the smaller 

particles and a tendency to worm-like structures in the larger particles. This is supported by DLS 

measurements showing an increase of the hydrodynamic diameter and a broadening of the size 

distribution in solution. The successful formation of the CP and the coordination network was 

confirmed by powder X-ray diffraction, by infrared measurements supported by computational 

calculations, and by scanning electron microscopy images. 

Since BCPs are also known for their possibility to form all kinds of structures five different BCPs 

and their resulting nanocomposites with [FeL(bipy)]n were tested for the size and shape control. 

The BCPs were varied in the ratio between polystyrene and poly(4-vinylpyridine). Raising the 

poly(4-vinylpyridine) fraction to 61% resulted in an increase of the spherical particle core size 

verified by TEM, DLS, and cryo-TEM measurements. Introducing the CP into the BCPs also resulted 

in spherical particles when using the BCPs with poly(4-vinylpyridine) fractions up to 42 % and in 

worm-like structures with a fraction of 61 %. The magnetic properties of the nanocomposites 

were investigated regarding the particle size and shape. It was found that the abruptness of the 

spin transition increased in the larger particles and in the worm-like structures and that the 

residual high-spin fraction can be reduced to 14 % in the worm-like micelles. The spatial 
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distribution of the iron inside the nanocomposite with worm-like structures was detected by 

transmission electron microscopy – energy dispersive X-ray scattering showing that iron was only 

incorporated into the polymeric structure. 
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2. Zusammenfassung 

Ziel dieser Dissertation ist die Synthese und Charakterisierung von Koordinationspolymer-

Blockcopolymer Nanokompositen. Die dafür eingesetzten Koordinationspolymere basieren auf 

Schiff-Base ähnlichen Liganden mit einem Eisen(II) Zentrum welches über bismonodentate 

Brückenliganden verknüpft wird. Alternativ werden Zink(II) Komplexe mit bismonodentaten 

Liganden umgesetzt. Das Blockcopolymer besteht aus einem Block Polystyrol und einem Block 

Poly(4-vinylpyridin) (PS-b-P4VP). Durch Selbstassemblierung bildet dieses PS-b-P4VP Polymer 

in einem geeigneten Lösungsmittel Mizellen, z.B. in Tetrahydrofuran oder Toluol. In diesen 

Mizellen bildet das Polystyrol die Hülle und der Poly(4-vinylpyridin) Block den Kern. Diese 

Blockcopolymermizellen werden als Templat verwendet, um eine Größenkontrolle bei der 

Bildung von Nanopartikeln eines Koordinationspolymers zu ermöglichen. Der Mizellkern kann 

dabei durch die Erhöhung des P4VP Anteils vergrößert werden. Oberhalb eines gewissen Anteils 

kann auch die Form der Mizellen zu Stäbchen oder wurmartigen Strukturen verändert werden. 

Die Synthese der Nanokomposite läuft wie folgt ab: Das Blockcopolymer wird zusammen mit dem 

jeweiligen Komplex im geeigneten Lösungsmittel gelöst und die Reaktionslösung unter Rückfluss 

erhitzt. Nach der Zugabe des Brückenliganden und nachfolgenden Siedens kann das 

Lösungsmittel entweder über eine Kältedestillation entfernt oder der Komplex und der 

Brückenligand bis zu vier weitere Male simultan hinzugegeben werden. Dadurch können viele 

verschiedene Nanokomposite erhalten werden. Für diese Nanokomposite werden die Größen im 

getrockneten und gelösten Zustand, die Kristallinität und die Zusammensetzung analysiert. 

Zusätzlich werden für die eisenbasierten Koordinationspolymere die Spin Crossover (SCO) 

Eigenschaften der Proben gemessen. 

Die Größe und die SCO Eigenschaften der Nanokomposite von drei verschiedenen 

eindimensionalen Eisen(II) Koordinationspolymeren [FeL(bpea)]n@BCP, [FeL(bpee)]n@BCP und 

[FeL(bpey)]n@BCP mit verschiedenen Brückenliganden wurden untersucht. 

Transmissionselektronenmikroskopie (TEM) Bilder und dynamische Lichtstreuung (DLS) 

ergaben, dass die Größen der Nanopartikel unabhängig vom gebildeten Koordinationspolymer 

waren (TEM: ~50 nm, DLS: ~150 nm). Auf den TEM Bildern wurden Mikrokristalle beobachtet. 

Deren Auftreten konnte über die Stabilität der Koordinationspolymere hinsichtlich der 

Ligandenfeldaufspaltung, der Elektronenkonfiguration und der Steifigkeit der Brückenliganden 

erklärt werden. Für die Proben mit Mikrokristallen wurden in den Magnetmessungen ein 

Verhalten ähnlich dem des Festkörpers beobachtet. Die Nanokomposite ohne Mikrokristalle 

zeigten einen graduellen Spinübergang. Im Falle des Nanokomposits [FeL(bpey)]n@BCP wurde 

ein gradueller, zweistufiger Spinübergang erhalten, wohingegen der Festkörper [FeL(bpey)]n 

einen abrupten, unvollständigen Spinübergang mit einer Hysteresenbreite von 10 K aufweist. 
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Über die Messung der Pulverdiffraktogramme konnte der Unterschied erklärt werden, da im 

Nanokomposite ein anderes Polymorph gebildet wurde. 

Durch die Verwendung eines anderen Blockcopolymers als Templat konnte die Partikelkerngröße 

reduziert und Blockcopolymermizellen mit einen Kerndurchmesser von 15 nm erhalten werden. 

Der Kerndurchmesser der Nanokomposite mit [FeL(bipy)]n lag bei 16 nm. Die magnetischen 

Eigenschaften dieser kleineren Partikel und der Einfluss des Temperns mit einer schrittweisen 

Temperaturerhöhung auf die SCO Eigenschaften wurden untersucht. Die SCO Eigenschaften des 

getemperten Nanokomposits verbesserten sich im Vergleich zum Produkt direkt aus der 

Synthese. Die Hysteresenbreite vergrößerte sich von 7 K auf 14 K, die Spinübergangstemperatur 

verschob sich von 163 K auf 203 K und der finale high-spin Anteil bei 50 K verringerte sich von 

52 % auf 32 %. Die Änderung der SCO Eigenschaften konnte mittels temperaturabhängiger 

Mößbauerspektroskopie bestätigt werden und zeigte ebenfalls eine Abnahme des high-spin 

Anteils. Zudem konnte durch die Messung temperaturabhängiger Pulverdiffraktogramme gezeigt 

werden, dass sich das Diffraktogramm des Nanokomposits beim Tempern dem Diffraktogramm 

des Festkörpers angleicht. Die Stabilität der Partikel wurde anschließend durch TEM, DLS und 

Rasterelektronenmikroskopie gezeigt. Die Verarbeitbarkeit des Nanokomposits wurde zudem 

durch Elektrospinnen von Fasern und Faservliesen demonstriert. 

Die Templatsynthese mit Blockcopolymeren ist nicht auf eindimensionale eisenbasierte 

Koordinationspolymere limitiert. Dies konnte durch die Synthese von Nanokompositen mit dem 

eindimensionalen Koordinationspolymer [Zn(OAc)2(bipy)]n und dem zweidimensionalen 

Koordinationsnetzwerk [Zn(TFA)2(bppa)2]n gezeigt werden. Hierfür wurden zwei verschiedene 

PS-b-P4VP Blockcopolymere verwendet. Für die Synthese der Nanokomposite mit dem 

[Zn(OAc)2(bipy)]n Koordinationspolymer wurde nur eines der BCPs verwendet und 

Partikelkerngrößen von 47 nm erhalten. Für die Synthese von Nanokompositen mit 

[Zn(TFA)2(bppa)2]n wurden beide BCPs verwendet und Partikelgrößen von 46 nm und 15 nm 

erhalten. Die TEM Bilder der Nanokomposite mit [Zn(TFA)2(bppa)2]n zeigten eine kettenartige 

Struktur für die kleineren Partikel und eine Tendenz zu wurmartigen Strukturen für die größeren 

Partikeln. Diese Beobachtung wird durch die DLS Messungen unterstützt, welche eine Zunahme 

des hydrodynamischen Durchmessers und eine breitere Größenverteilung in Lösung zeigt. Die 

erfolgreiche Bildung des Koordinationspolymers und -netzwerks wird durch 

Pulverdiffraktometrie, infrarotspektroskopische Messungen, unterstützt durch theoretische 

Rechnungen, und Rasterelektronenmikroskopie bestätigt. 

Nachdem Blockcopolymere dafür bekannt sind viele verschiedene Formen anzunehmen, wurden 

fünf verschiedene Blockcopolymere hergestellt und die Größen- und Formkontrolle der 

resultierenden Nanokomposite mit [FeL(bipy)]n untersucht. Die Blockcopolymere unterscheiden 
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sich im Verhältnis Polystyrol zu Poly(4-vinylpyridin). Durch eine Erhöhung des 

Poly(4-vinylpyridin)-Anteils auf 61 % konnte die Größe der sphärischen Partikel kontinuierlich 

erhöht werden, was durch TEM, DLS und cryo-TEM Messungen verifiziert wurde. Beim 

Einbringen des Koordinationspolymers in die BCPs zeigten sich ebenfalls sphärische Partikel bis 

zu einem Anteil von 42 % P4VP im BCP und wurmartige Strukturen für die Nanokomposite mit 

dem BCP mit 61 % P4VP Anteil. Die magnetischen Eigenschaften wurden hinsichtlich der Größe 

bzw. Form untersucht. Dabei zeigte sich, dass der Spinübergang in den größeren Partikeln und 

auch in den wurmartigen Strukturen abrupter ist und dass der high-spin Anteil in den 

Wurmstrukturen auf 14 % gesenkt werden konnte. Die räumliche Verteilung des Eisens innerhalb 

der wurmartigen Nanokomposite wurde über eine TEM Messung gekoppelt mit einer 

energiedispersiven Röntgenstreuung nachgewiesen. Diese detektierte das Eisen des 

Koordinationspolymers nur innerhalb der Polymerstruktur. 
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3. Introduction 

The miniaturisation of materials and compounds and their potential in different applications is, 

among others, one of the most investigated field of research. This fact can be visualised by the 

number of scientific articles and publications involving nanoparticles in the past 15 years 

(1995-2019). An increasing trend can be seen even until today reaching more than 80 000 

publications in 2019, underlining the actuality of this topic. 

 

Figure 1: Increasing evolution of the number of publications per year in the time span from 1995 to 2019 (Data 

extracted from ISI Web of Knowledge, search term: nanoparticles). 

Several scientific articles, books, and book chapters on the application of nanoparticles in 

catalysis[1–3], energy conversion[1,4–6] and energy storage[2,5,6], sensors[1,6–8], display or light 

emitting devices[1,6,9], contrast agents[10–12], drug delivery[1,13], and data storage[1,6,14] have been 

published during this time period. 

Spin crossover (SCO) compounds correspond to the class of functional materials that have a 

potential field of application in sensors[15,16], display devices[17,18], contrast agents[19–21] and data 

storage[17,18] and this thesis aims for the combination of both fields. 
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3.1. Spin crossover in 3d transition metal complexes 

The spin crossover phenomenon is a remarkably interesting effect in transition metal complexes. 

A SCO is mostly observed in octahedral complexes with an electronic configuration of d4–7. 

Typically, the metal centre in a complex is either low-spin (LS) or high-spin (HS) depending on the 

spin pairing energy P and the ligand field splitting ΔO (in case of an octahedral coordination sphere 

of the metal centre). If P is smaller than ΔO, the electrons of the metal centre prefer to pair, 

resulting in a LS compound. Thus, a HS compound with unpaired electrons is on hand with P being 

larger than ΔO. However, it is possible that the spin pairing energy P and the ligand field splitting 

ΔO are of the same order of magnitude (P ≈ ΔO). As a result, reversible switching between the LS 

and the HS state is possible by external stimuli such as temperature[22,23], pressure[24,25], light 

irradiation[22,26], or the adsorption of guest molecules[27]. 

 

Scheme 1: Presentation of the SCO of an iron(II) complex with a d6 electronic configuration showing the diamagnetic 

LS state with a total spin of S = 0 (left) and the paramagnetic HS state with a total spin of S = 2 (right).  

The total spin of an iron(II) complex changes from S = 2 to S = 0 when changing the spin state from 

HS to LS. As a result, the magnetism of the compound alters from paramagnetic in the HS state to 

diamagnetic in the LS state. Besides the variation in magnetism, other physical properties are also 

influenced. The metal-ligand bond lengths are elongated in the HS state compared to the LS state 

since the antibonding eg* orbitals are occupied in the HS state. This also leads to a volume change 

of the compound upon spin transition (ST). Furthermore, the colour of SCO compounds is altered 

drastically in the different spin states due to the dissimilar ligand field splitting.[28,29] 

Several parameters matter when describing the SCO: (1) the residual HS fraction γHS, (2) the 

effective magnetic moment µeff and (3) the transition temperature T1/2. For iron(II) complexes, the 

HS fraction γHS can easily be calculated from a selected, experimentally obtained susceptibility 

value χMTselect and the initial experimental value of the compound χMTinit. 

γHS = 
𝜒M𝑇select

𝜒M𝑇init
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The effective magnetic moment µeff can be estimated by the spin-only equation for first-row 

transition metals. In the first equation, the gyromagnetic factor ge of the electron and the total spin 

of the compound is used as follows:[30] 

µso = ge ∙ √𝑆(𝑆 + 1) 

Alternatively, when ge is fixed to the value 2, the before mentioned equation can be substituted by 

the successional equation. Here, the number of unpaired electrons n of the compound is used:[31] 

µso = √𝑛 ∙ (𝑛 + 2) 

Experimentally, µeff can be obtained from magnetic measurements via the molar magnetic 

susceptibility χMT and the following equation:[32] 

µeff = 2.83 ∙ √𝜒M𝑇 

In the latter equation, the constant 2.83 comes from the term √
3𝑘

𝑁µ𝐵
2 , where k is the Boltzmann 

constant, N is the Avogadro constant, and µB is the Bohr magneton. Since the SCO is 

thermodynamically driven, the Gibbs equation can be used to describe a SCO, where G is the Gibbs 

free energy, H is the enthalpy, T is the temperature, S is the entropy and Δ is the difference between 

the HS and LS state, respectively. 

ΔG = ΔH – TΔS 

The entropy in the HS state is higher than in the LS state due to the electronic configuration 

(5T vs. 1A) and due to the structural changes in the compound (elongation of the bond length, 

changes in bond angles) resulting in additional contributions of vibrational energies. If the spin 

transition is defined as a transition from HS to LS, ΔS is negative. Since only the non-bonding t2g 

orbitals are occupied in the LS state, ΔH is also negative. As a result, at low temperatures the 

influence of the term TΔS on ΔG is small leading to a negative ΔG and a favoured LS state because 

ΔS is also negative. In contrary, at elevated temperatures TΔS is the dominating term and since ΔS 

is negative, ΔG will be positive. Based on the preceding explanations, it is possible that ΔG = 0. At 

this point, the ratio between LS and HS is equal and T1/2 can be calculated by the following 

equation: 

𝑇1/2 =
𝛥𝐻

𝛥𝑆
 

A temperature-dependent SCO can be followed by several different methods. NMR measurements 

are especially useful when the compounds magnetism changes from paramagnetic to diamagnetic. 

In the case of a paramagnetic compound, signals in the vicinity of the paramagnetic centre get 
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shifted, sometimes up to several hundred ppm.[33] Moreover, the SCO can be detected by 

spectroscopic methods like UV-Vis, IR and Raman spectroscopy, or Mössbauer spectroscopy[34]. 

Another commonly used method is the single crystal X-ray diffraction. Here, both the crystal 

structure of the HS and the LS state may be accessible in a small fraction of cases, depending on 

the coolant and the transition temperature of the compound. Also, powder X-ray diffraction 

(PXRD) is possible. Most frequently, magnetic measurements with a SQUID magnetometer are 

performed because the magnetism of the samples is measured directly and the change in 

magnetism can be followed over a wide temperature range.[35] 

Several different types of SCOs are possible to describe the progression of the magnetic moment 

of a compound (Figure 2) and all of them were already observed in the literature. Gradual 

complete SCOs (A) are often observed in compound with low cooperativity.[36] Abrupt complete 

STs (B)[37] or abrupt complete STs with hysteresis (C)[38] occur in compounds with high 

cooperativity like coordination polymers. Stepwise STs (D)[39] are common in samples that 

incorporate different SCO active species and gradual incomplete SCOs (E)[39] are most common in 

solids but also in solution[40]. Moreover, combinations of all these SCOs are possible.[39–43] 

 

Figure 2: Different types of ST: gradual and complete (A), abrupt and complete (B), abrupt and complete with hysteresis 

(C), stepwise and complete (D), and gradual and incomplete (E). 
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3.2. Nanostructuring of SCO coordination polymers 

The investigation on SCO coordination polymers (CPs) started around 1998 and accelerated 

since.[43] They are built up by a metal complex and a bridging ligand. One-dimensional, two-

dimensional, and even three-dimensional CPs and coordination networks (CNs) can be realised 

depending on the used metal complex and the bridging ligand.[44] 

CPs often exhibit very abrupt STs upon temperature change due to their high cooperativity. CPs 

frequently experience cooperative behaviour through intramolecular interactions, which are 

almost entirely based on covalent bonds. Moreover, cooperativity can further be improved by 

additional intermolecular interactions like π-π stacking, van der Waals interactions, and/or 

hydrogen bond networks. The cooperativity of compounds can be explained by the commonly 

used mechanoelastic model in which springs represent the bridging ligands and spheres 

represent the metal complexes (Figure 3).[45] 

 

Figure 3: Progression of a thermally induced ST in a macroscopic material with the red spheres representing metal 

centre in the HS state, blue spheres representing metal centres in the LS state and the springs representing the bridging 

ligands. The compound is in the HS state and upon temperature change the SCO starts in the top left corner of the 

material and proceeds from this point on until the compound is completely LS (from left to right). 

Several examples for macroscopic SCO CPs with π-π stacking[46–48] and hydrogen bonds[49–51] have 

been reported showing abrupt STs with hysteresis. However, applications often demand the 

integration of the materials into devices. In many fields, macroscopic materials are not suitable 

because the space in the device is limited (e.g. sensors or displays) or the target use demands 

smaller materials (e.g. data storage, contrast agents). Therefore, miniaturising the macroscopic 

materials is key to meet the needs of the contemplated application. However, observations were 

made that the transition temperatures and the progression of the ST change or the hysteresis 

width diminish upon miniaturisation.[52–54] In some cases, the SCO properties are completely 

lost.[53] This can also be explained by the already mentioned mechanoelastic model. The number 

of covalently linked metal centres decreases upon miniaturisation and the cooperativity 
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decreases due to the smaller crystallites. As a result, in the ultimate size limit a single complex 

molecule exists (Figure 4). 

 

Figure 4: Miniaturisation of a macroscopic crystal of a CP over a microcrystalline system and a NP system to the 

ultimate size limit of a single molecule (from left to right). 

Even though the ultimate size limit is mostly a theoretical concept for SCO CPs, another factor 

must be taken into account: the surface molecules (Figure 5). These molecules lack the necessary 

coordination sphere to undergo SCO since these complex molecules are often coordinated by 

solvent molecules or other ligands. As a result, the residual HS fraction in nanoparticles (NPs) is 

higher than in the bulk materials. Also, it has been observed that it is possible that the transition 

temperature is shifted both to higher[55,56] and lower[57,58] temperatures in nanoparticles. 

 

Figure 5: Concept of the size limit of a SCO CP with metal centres on the surface (grey) that do not undergo SCO. 

Two different approaches for the synthesis of nanoparticles can be utilised: the top-down 

approach and the bottom-up approach (Figure 6). Mechanical grinding, lithography, chemical 

etching, and thermal decomposition are commonly considered as top-down approaches. Since this 

thesis solely uses the bottom-up approach, top-down methods will not be discussed in detail. 



3. Introduction 
 

 
- 15 - 

 

Figure 6: Schematic representation of the top-down and the bottom-up approach. The top-down approach is starting 

from a macroscopic bulk material (e.g. a crystal, left), which is scaled down to the desired NP size (e.g. by mechanical 

grinding, middle). The bottom-up approach starts from atoms and molecules (right) and assembles these starting 

materials to final NP size (middle). 

In general, several different synthetic methods attributed to the bottom-up approach have been 

established for the synthesis of NPs like the chemical vapor deposition[59], the solvo- and 

hydrothermal synthesis[60], the sol-gel process[61], the reduction of metal salts[1], the microfluidic 

synthesis[62], the layer-by-layer technique[63], the inverse micelle technique[64] and the synthesis 

in polymers[65]. However, not all these methods are applicable for the synthesis of SCO CP NPs. 

3.2.1. The microfluidic approach 

A rather new method for the synthesis of SCO CP NPs is the microfluidic method. It has been used 

in the formation of NPs of the known 3D SCO CP [Fe(pz)Pt(CN)4]n (pz = pyrazine)[66] and other 

materials[62]. Here, two solutions A and B were prepared. Solution A contained K2[Pt(CN)4] and 

pyrazine in water and solution B contained Fe(BF4)2 and pyrazine in water. The two reaction 

solutions were injected into the device together with an additional water stream. Droplets were 

formed by the injection of mineral oil (see Figure 7). The droplet containing liquid was collected 

at the exit, the excess of oil was removed, and the product was washed several times to yield NPs 

with an average size of 47 nm. As pointed out before, the material does not show a complete SCO 

and a HS fraction of 18 % remained in the synthesised NPs. Also, the transition temperature is 

shifted to lower temperatures and the hysteresis width decreases compared to the bulk 

material.[67]  
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Figure 7: Schematic representation of the synthetic setup and the designed device (top) and a digital photograph of the 

device in operation (bottom).[67] 

3.2.2. The layer-by-layer technique 

Other groups focused their interest on methods for the synthesis of nanostructures and the 

patterning of these structures. The layer-by-layer technique was already published for the 

synthesis of Hofmann clathrates.[63] This synthetic protocol was then transferred to Prussian Blue 

and Prussian Blue analogues to achieve nanostructures with a defined number of layers.[68–72] In 

the first published work for the synthesis of a layered SCO material, a silicon wafer with a gold 

layer was coated with an anchoring group of 4-mercaptopyridine. Subsequently, the wafers were 

soaked alternately in ethanol solutions of Fe(BF4)2, (TBA)2[Ni(CN)4] 

(TBA = tetrabutylammonium), and pyrazine to build up the 3D structure [Fe(pz)Ni(CN)4]. Instead 

of (TBA)2[Ni(CN)4], (TBA)2[Pt(CN)4] and (TBA)2[Pd(CN)4] were also used. Structures consisting of 

20 layers were realised.[73] The synthesis is schematically displayed in Figure 8. The SCO 

properties of the synthesised films by the layer-by-layer technique and the bulk material were 

compared by temperature-dependent Raman spectroscopy. It was found that the generated films 

exhibit a more gradual spin transition than the bulk material, however, a similar transition 

temperature is observed. Several follow-up works with different CPs were published since[74–79] 

and even the patterning of the CPs on the surface of a before treated wafer was possible[75,77,78]. 
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Figure 8: Reaction steps of the layer-by-layer synthesis of a 3D SCO CP [Fe(pz)M(CN)4] (M = Ni, Pt, Pd) on a silicon 

wafer coated with gold.[73] 

3.2.3. The inverse micelle technique 

Most frequently the inverse micelle technique is utilised for the formation of SCO CP NPs. This 

method was found to be suitable for the synthesis of 1D, 2D, and even 3D SCO CP NPs. Several 

different CP NPs were already published. However, the majority are based on the iron(II) 

tris(triazole) family, tris(triazole) derivatives or the iron(II) pyrazine family. 

In general, the synthetic protocol for the synthesis of NPs with inverse micelles involves two 

separate solutions A and B. For solution A, the iron(II) precursor is dissolved in water and added 

to a mixture of the respective surfactant in a nonpolar solvent like n-heptane or n-octane under 

vigorous stirring. Another solution is prepared by the dissolution of the organic ligand in a polar 

solvent like water, methanol or ethanol, or a mixture of these. This solution is also added to a 

solution of the respective surfactant in n-heptane or n-octane under stirring to yield solution B. 

Both solutions A and B are then combined under heavy stirring. The formation of the intended 

SCO CP is indicated by a colour change of the solution. The reaction product is precipitated by an 

antisolvent and the surfactant-free CP NPs are obtained after several steps of washing, dispersing, 

and centrifuging.[80] A representation of the different reaction steps is given in Figure 9. 
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Figure 9: Schematic representation of the synthetic approach for the formation of surfactant-free SCO CP NPs 

employing the inverse micelle technique. 

The size of the inverse micelles can easily be controlled in a wide range by the surfactant to solvent 

ratio, thus allowing a precise adjustment of the nanoparticle size and the study of the size-

dependent SCO properties. Additionally, it is possible that the template has an influence on the 

transition temperatures, the hysteresis width or the residual HS fraction which can be analysed 

as well. 

In this manner, NPs of the 1D SCO CP [Fe(NH2trz)3](Br)2∙3H2O∙0.03(surfactant) 

(surfactant = Lauropal, a secondary alcohol ethoxylate (Figure 10); NH2trz = 4-amino-1,2,4-
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triazole) were synthesised. The obtained NPs have a size of 69 ± 19 nm and show rather abrupt 

SCO behaviour with a ST above RT similar to the bulk material. However, the hysteresis width was 

found to be narrowed down to 8 K compared to the one of the bulk material which is about twice 

as large with 15 K.[80] Subsequently, a control of the particle size to larger and smaller particles 

was possible by the adjustment of the surfactant to water ratio. It was found that the ST becomes 

more gradual and the hysteresis nearly vanished upon reduction of the particle size below 

50 nm.[81] By changing the counterion to p-toluene sulfonate and the surfactant to Tergitol 15-S-3 

(Figure 10), another secondary alcohol ethoxylate, NPs of the 1D SCO CP [Fe(NH2trz)3](OTs)2 were 

prepared in the surfactant micelles. Besides NPs with a size of 100 – 200 nm, it was also possible 

to achieve particle sizes as small as 3.6 ±0.8 nm. Interestingly, these small particles show quite 

abrupt SCO behaviour with a transition temperature T1/2 = 295 K. Additionally, thermal treatment 

of the reaction products or solutions led to morphological changes of the NPs into rods or 

fibres.[82,83] Further NPs were prepared with the inverse micelle technique of the 1D SCO CP 

[Fe(Htrz)2(trz)](BF4) (Htrz = 4H-1,2,4-triazole). AOT (sodium dioctyl sulfosuccinate, Figure 10) 

was used as the surfactant in the reaction to yield particle sizes below 20 nm. The particles exhibit 

a SCO with a 43 K wide hysteresis above RT in the first measurement cycle. The hysteresis width 

stabilised in the following measurement cycles to 41 K.[84] 

 

Figure 10: Chemical structures of the commonly used surfactants for the formation of inverse micelles: secondary 

alcohol ethoxylates Lauropal (left), Tergitol 15-S-3 (middle) and sodium dioctyl sulfosuccinate (AOT, right). 

In accordance with the work of Forestier et al.[81] the particle sizes of the 1D CP 

[Fe(Htrz)2(trz)](BF4)∙H2O can be tuned by the ratio AOT : water. Thus, the synthetic approach 

yielded NPs with sizes ranging from 4 nm to 16 nm. The ST of 16 nm particles is almost equal to 

the bulk material. Remarkably, an abrupt ST above RT was also found in the 4 nm particles and 

the progression of the ST is similar to the larger particles. The residual HS fraction is only 

marginally higher than the bulk material and the hysteresis width is lowered to 24 K.[58]  

Other groups have also prepared 3D CP [Fe(pz)Pt(CN)4] NPs in AOT micelles. These obtained 

14 nm NPs showed a 6 K wide hysteresis with a transition temperature about 30 K below the bulk 

material[57], while particles of the CP [Fe(pz)Pt(CN)4]∙2.5 H2O with a sizes of 61 ±10 nm revealed 



3. Introduction 
 

 
- 20 - 

a 10 K wide hysteresis with T1/2 values 20 K below the bulk material.[85] The 2D CP 

[Fe(3-Fpy)2M(CN)4] (M = Ni, Pd, Pt, 3-Fpy = 3-fluoropyridine) was synthesised in AOT with 

similar sizes for all three metal ions (Ni: 444 ± 175 nm, Pd: 483 ± 128 nm, Pt: 481 ± 146 nm) and 

their SCO properties were located in a narrow temperature range (T1/2↓ Ni (Pd, Pt): 192 K (205 K, 

200 K), T1/2↑ Ni (Pd, Pt): 205 K (225 K, 219 K)). In Figure 11 the chemical structure of the 

[FeII(trz)3] family and an excerpt of the crystal structure of the [Fe(pz)M(CN)4] family is given and 

in Table 1 an overview over the SCO properties of the differently sizes NPs is given. Although 

several different SCO compounds were used, the trend can be seen that the hysteresis width is 

narrowed in smaller particles.  

 

Figure 11: Chemical structure of the [FeII(trz)3] family (R = different substituents, e.g. hydrogen, NH2, heptyl, left) and 

an excerpt of the crystal structure of the [Fe(pz)M(CN)4][86] family (right). 
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Table 1: Overview over several CP NPs synthesised in inverse micelles with three different surfactants (Lauropal, 

Tergitol 15-S-3, and AOT), the resulting particle sizes, and the SCO properties (T1/2↓, T1/2↑, and hysteresis width). 

CP Surfactant 
Particle size 

[nm]a) 
T1/2↓ [K] T1/2↑ [K] 

Hysteresis 

width [K] 

[Fe(NH2trz)3](Br)2 

∙3H2O∙0.03(surfactant)[80] 
Lauropal 69 ± 19 303 311 8 

[Fe(NH2trz)3](Br)2∙3H2O[81] Lauropal 200 305 317 13 

[Fe(NH2trz)3](Br)2∙3H2O[81] Lauropal 50 310 312 2 

[Fe(NH2trz)3](Br)2∙3H2O[81] Lauropal 30 313 31 2 

[Fe(NH2trz)3](OTs)2[82] Tergitol 3.6 ± 0.8 295 295 0 

[Fe(Htrz)2(trz)](BF4)[84] AOT <20 343 384 41 

[Fe(Htrz)2(trz)](BF4)∙H2O[58] AOT 16 ± 4b) 341 379 38 

[Fe(Htrz)2(trz)](BF4)∙H2O[58] AOT 10 ± 3b) 343 374 31 

[Fe(Htrz)2(trz)](BF4)∙H2O[58] AOT 4 ± 2b) 343 367 24 

[Fe(pz)Pt(CN)4][57] AOT 14.7 ± 2.3 262 268 6 

[Fe(pz)Pt(CN)4]∙2.5 H2O[85] AOT 61 ± 10 265 275 10 

[Fe(3-Fpy)2Ni(CN)4][87] AOT 444 ± 175 192 205 13 

[Fe(3-Fpy)2Pd(CN)4][87] AOT 483 ± 128 205 225 20 

[Fe(3-Fpy)2Pt(CN)4][87] AOT 481 ± 146 200 219 19 

a) Analysed by TEM measurements as not stated otherwise; b) derived from DLS measurements. 

3.2.4. Inorganic and polymeric matrices 

In other publications, the influence of a matrices on the SCO properties of CP NPs were analysed. 

Matrices can not only be used as reactors for the formation of NPs, but they may have an influence 

on the SCO properties due to the generation of an external pressure. This can result in a shift of 

the transition temperature. 

Therefore, NPs of the CP [Fe(Htrz)2(trz)](BF4) with sizes between 87 ± 8 nm and 28 ± 6 nm were 

coated with a thin silica shell (3 nm). As a result, the hysteresis width is lowered from 37 K to 22 K. 

Here, a distinctive rise of the residual HS fraction to 41 % is observed for the smallest particles.[88] 

The matrix effect on the ST was also analysed for already prepared NPs of the 3D CP 

[Fe(pz)Pt(CN)4]. Three different matrices were chosen for the particles with a size of about 10 nm: 

a macrocyclic ligand based on a calixarene (calix8 = C192H264N8O16S8), a thin silica shell of 

approximately 2 nm, and a thicker silica shell of around 4.5 nm. It was found that the hysteresis 

of the material is lost completely with both the calix8 ligand and the thicker silica shell. Also, the 

latter particles showed a distinct shift of the transition temperature to lower temperatures 
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compared to the bulk material (~ 70 K) and a larger residual HS fraction at 50 K (~ 50 %). The 

particles in the thin silica shell showed a ST with a 15 K wide hysteresis. However, the transition 

temperature is also shifted about 30 K to lower temperatures and the residual HS fraction at 50 K 

is still quite high with about 30 %. All particles show a more gradual progression of the ST than 

the bulk material.[89] 

Some groups investigated the influence of polymers as matrices on the synthesis of SCO CP NPs. 

Besides synthesising The CP [Fe(3-Fpy)2M(CN)4] (M = Ni, Pd, Pt) in AOT, the same authors also 

used PVP as micelles and particle sizes of 209 ± 54 nm (Ni), 292 ± 43 nm (Pd), and 247 ± 43 nm 

are obtained. While the bulk materials undergo and (almost) complete STs with a hysteresis 

between 206 K and 234 K, the STs of the NPs in PVP are more gradual, no hysteresis is observed 

and the residual HS fraction rose to up to 38 % at 100 K as indicated by Mössbauer spectroscopy. 

Even smaller particles are prepared of the CP [Fe(3-Fpy)2Ni(CN)4] only showing the increase of 

the residual HS fraction.[87] NPs of the CP [Fe(hptrz)3](OTs)2 were prepared in PEG (polyethylene 

glycol) with particles sizes of 490 ± 70 nm, 250 ± 40 nm and 215 ± 30 nm, the SCO properties are 

similar to the bulk material.[90] The biopolymer chitosan was used in the formation of NPs of the 

3D SCO CP [Fe(pz)Ni(CN)4]. Particles as small as 3.8 ± 0.8 nm were achieved. Interestingly, a 10 K 

wide thermal hysteresis near room temperature is observed with T1/2↓ = 280 K and T1/2↑ = 290 K. 

The hysteresis of the NPs became 20 K narrower (bulk: 277 K and 302 K), but the transition 

temperatures lie between the ones of the bulk material. Mössbauer spectroscopy determined the 

residual HS fraction to 34 % in the NPs at 80 K.[91] The chemical structures of the repetition units 

of the used polymers are given in Figure 12.  

 

Figure 12: Chemical structures of the repetition units of the polymers used in the formation of 1D, 2D, and 3D SCO CP 

NPs. From left to right: chitosan, polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyvinylpyrrolidone (PVP).  

The SCO properties of the NPs synthesised with different matrices are summarised in Table 2. 

Comparing NPs of the CP [Fe(Htrz)2(trz)](BF4) synthesised without (see Table 1) and with a 3 nm 

thin silica shell show that the matrix has an influence on the hysteresis width. It is nearly halved 

(22 K vs. 41 K), although the particles with the silica shell are still larger than the ones without. 

Other examples showed that the matrices altered the transition temperature mostly to lower 

temperatures and the hysteresis width was narrowed. 
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Table 2: Overview over CP NPs synthesised with matrices (SiO2, calix8, PVP, PEG, and chitosan), the resulting particle 

sizes, and the SCO properties (T1/2↓, T1/2↑, and hysteresis width). 

CP@Matrix 
Thickness 

[nm] 

Particle 

size [nm]a) 
T1/2↓ [K] T1/2↑ [K] 

Hysteresis 

width [K] 

[Fe(Htrz)2(trz)](BF4)@SiO2[88] 3 87 ± 8 339 376 37 

[Fe(Htrz)2(trz)](BF4)@SiO2[88] 3 60 ± 8 344 373 29 

[Fe(Htrz)2(trz)](BF4)@SiO2[88] 3 38 ± 7 342 366 24 

[Fe(Htrz)2(trz)](BF4)@SiO2[88] 3 28 ± 6 342 364 22 

[Fe(pz)Pt(CN)4]@SiO2[89] 2 14.0 ± 2.4 ~260 ~275 15 

[Fe(pz)Pt(CN)4]@SiO2[89] 4.5 14.0 ± 2.4 ~220 ~220 0 

[Fe(pz)Pt(CN)4]@calix8[89] - 10.5 ± 1.8 ~260 ~260 0 

[Fe(3-Fpy)2Ni(CN)4]@PVP[87] - 209 ± 54 180 180 0 

[Fe(3-Fpy)2Pd(CN)4]@PVP[87] - 292 ± 43 190 190 0 

[Fe(3-Fpy)2Pt(CN)4]@PVP[87] - 247 ± 43 185 185 0 

[Fe(hptrz)3](OTs)2@PEG[90] - 490 ± 70 309 312 3 

[Fe(hptrz)3](OTs)2@PEG[90] - 215 ± 30 307 315 8 

[Fe(hptrz)3](OTs)2@PEG[90] - 250 ± 40 309 315 6 

[Fe(pz)Ni(CN)4]@chitosan[91] - 3.8 ± 0.8 280 290 10 

a) Analysed by TEM measurements. 

Polymers for the formation of NPs were also used in our group. At first, microcrystals were 

synthesised of the 1D SCO CP [FeL(bipy)]n on the surface of a poly(4-vinylpyridine) matrix. The 

SCO properties were found to be dependent on the amount and the size of the formed CP. No ST 

is detectable in the sample with a low amount of CP. Raising the content of the CP leads to an 

appearance of the ST. The transition temperature and the abruptness of the ST were similar to the 

bulk material and the residual HS fraction reached 28 %.[92] A follow-up work aimed for the 

incorporation of the CP [FeL(bipy)]n (L = [3,3′]‐[1,2‐phenylenebis(iminoethylidyne)]bis‐(2,4‐

pentanedionato)(2‐), bipy = 4,4’-bipyridine) into polymeric micelles which may enable an easy 

control of the particle size. Therefore, the polymer was changed to a diblock copolymer (BCP) 

consisting of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP). This block copolymer self-

assembles into micelles in THF with the poly(4-vinylpyridine) block forming the core and the 

polystyrene block forming the shell of the micelle. Figure 13 shows the starting materials and the 

synthesis route. The diblock copolymer and the iron(II) complex were heated under reflux for 2 h 

in THF. The bridging ligand was added afterwards, followed by another heating period of 1 h. 

Subsequently, the complex and the ligand can be added simultaneously (Figure 13 bottom). The 

core size of the spherical micelles was determined to 48 nm. It was possible to incorporate the 1D 
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SCO CP [FeL(bipy)]n into the micellar core to obtain a nanocomposite. The size of the micelles was 

independent from the amount of CP introduced into the core underlining the templating effect of 

the BCP. It was found that the hysteresis width is narrowed to 8 K and the transition temperature 

of the nanocomposite is shifted about 60 K to lower temperatures compared to the bulk 

material.[93] In preliminary results, a morphological change of the polymeric micelles from spheres 

to rods, worm-like micelles, or vesicles was observed. It is also predicted that this approach can 

be adapted to the synthesis of NPs of 2D and 3D CNs.[94] 

 

Figure 13: Schematic representation of the synthesis for the formation of SCO CP NPs inside the micellar core using a 

diblock copolymer as template.[93] 

Based on the latter results, this thesis deals with the size and shape control of [FeL(bipy)]n CP-

BCP nanocomposites. This can be achieved by altering the P4VP fraction the diblock copolymer 

PS-b-P4VP between 15 % and 61 %, while keeping a constant molecular weight. Since it is known 

that the transition temperature of the CP [FeL(bipy)]n is shifted about 60 K to lower temperatures 
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it is additionally investigated if elevated temperatures have an influence on the SCO properties of 

the [FeL(bipy)]n CP-BCP nanocomposites. In another step the prediction that the synthesis route 

can be extended to other 1D CP than [FeL(bipy)]n and even 2D CN is verified by the incorporation 

of several other 1D CPs and a 2D CN. 
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4. Synopsis 

This thesis includes four scientific articles (Chapters 6 – 9). Three are accepted publications 

(Chapters 6 – 8) and one is to be submitted to a scientific journal (Chapter 9). The contribution of 

each author to the joint publications is given in Chapter 5. 

This thesis follows up on the work of Ottokar Klimm who established a synthesis route employing 

the diblock copolymer (BCP) polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) as a micellar 

template for the formation of NPs of a 1D SCO CP. This work aims for an advancement in the use 

of diblock copolymers as micellar template by expanding the synthesis route to a variety of 

coordination compounds like other SCO and non-SCO CPs and CNs. Furthermore, a control of the 

particle size and shape of the nanocomposites is investigated and the improvement of the SCO 

properties by the synthesis of larger particles or a thermal annealing is described. 

Several different BCPs have been used throughout this thesis. The important characteristics 

(molecular weight Mn, weight fraction of the two blocks) and the indication in which chapter the 

polymer was used are given in Table 1. BCP-20 was provided by the workgroup of Prof. Förster. 

This BCP was used in the work of my predecessor Ottokar Klimm and was further utilized for the 

synthesis of the samples in chapter 6. During this time, it became clear that BCP-20 had to be 

reproduced for further synthetic use. This was done by the workgroup of Prof. Greiner resulting 

in the BCP S85V15154 (also SV-15). The characterisation of SV-15 revealed that the particle core 

sizes of SV-15 and BCP-20 differed greatly (15 nm vs. 45 nm). Due to this observation, BCP-20 was 

characterised again to find that the polymer contained an extensive amount of homopolymerised 

polystyrene. After extraction of the homopolymerised PS, the ratio of P4VP was found to be much 

greater than 15 wt% and the molecular weight was smaller than the stated 150 000 g mol-1. As a 

result, the polymer BCP-20 was discarded. The BCPs SV-21, SV-35, SV-42, and SV-61 were also 

provided by the workgroup of Prof. Greiner. Table 1 also states the use of these polymers in the 

different chapters. 
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Table 1: Overview over the used block copolymers in this thesis. 

BCPa) Abbreviation Mn [g mol-1] Fraction PS [wt%] Fraction P4VP [wt%] Used in chapter 

BCP-20b) - 150 000 85 15 6 

S85V15154 SV-15 154 000 85 15 7, 8, 9 

S79V21119 SV-21 119 000 79 21 9 

S65V35131 SV-35 131 000 65 35 9 

S58V42157 SV-42 157 000 58 42 8, 9 

S39V61162 SV-61 162 000 39 61 9 

a) subscripts denote the content of the respective block in wt%, superscript gives the number average 

molecular weight in kg mol-1, b) polymer characteristic provided by the workgroup of Prof. Förster. 

Chapter 6 deals with the adaption of the synthetic procedure to the NP formation of three further 

1D SCO CPs: [FeL(bpea)]n, [FeL(bpee)]n, and [FeL(bpey)]n (bpea = 1,2-di(4-pyridyl)ethane, 

bpee = (E)-1,2-di(4-pyridyl)ethene, bpey = 1,2-di(4-pyridyl)ethyne). Additionally, the influence 

of the flexibility of the bridging ligands on the formation of nanoparticles or microcrystals was 

investigated. At first, the respective CPs were prepared as bulk materials in tetrahydrofuran (THF) 

the characterisation was compared to the literature data in which the compounds were obtained 

from methanol (MeOH), since the SCO properties are often solvent dependent. All three CPs were 

obtained as crystalline powders from the reaction of the iron complex [FeL(MeOH)2] and the 

respective bridging ligand bpea, bpee, and bpey in THF. The magnetic properties of the CPs 

obtained from THF were nearly identical to their counterparts synthesised in MeOH. The CP 

[FeL(bpee)]n is a pure HS compound between 50 K and 300 K, whereas [FeL(bpey)]n undergoes 

an abrupt, but only half-complete SCO with a hysteresis width of 10 K at transition temperatures 

of T1/2↓ = 177 K and T1/2↑ = 187 K. The magnetic properties of the CP [FeL(bpea)]n synthesised in 

THF differ from its counterpart from MeOH. Obtained from MeOH, [FeL(bpea)]n shows a complete, 

two-step ST whereas from THF, the first transition step is identical to the CP from MeOH but the 

second transition step is gradual, incomplete, and shows a kinetic effect in the heating curve 

(Figure 1). 
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Figure 1: Magnetic susceptibility data χMT vs. T for the two bulk SCO CPs [FeL(bpea)]n (A) and [FeL(bpey)]n (B) obtained 

from the reaction in THF in the temperature range from 50 K to 300 K. 

The synthesis for the formation of the nanocomposites [FeL(bpea)]n@BCP, [FeL(bpee)]n@BCP, 

and [FeL(bpey)]n@BCP was carried according out to the published protocol by Klimm et al. The 

iron(II) complex [FeL(MeOH)2] and the BCP were dissolved in THF under an argon atmosphere 

and heated to reflux for 2 h. After a cooling to RT, the respective bridging ligand was added, and 

the solution was heated to reflux again for 1h. The amount of CP can be increased by up to four 

successive additions (called cycles) of the iron complex and the bridging ligand simultaneously 

and a subsequent 1 h reflux. After the reaction, the solvent was removed by cold distillation and 

the resulting product was dried in vacuo. It was proposed that the formation of NPs is dependent 

on the rigidity of the bridging ligand leading to the assumption that microcrystals should appear 

in the order [FeL(bpea)]n, [FeL(bpee)]n, and finally [FeL(bpey)]n. The 15 different nanocomposites 

were all characterised by TEM measurements proving the independence of the particle size from 

the incorporated CP and the number of cycles, resulting in core sizes of around 45 nm. However, 

microcrystals outside the micelles were observed for the nanocomposites [FeL(bpea)]n@BCP 

after five cycles and for [FeL(bpee)]n@BCP already after four cycles, proving our prediction 

wrong. Microcrystals were absent in all five nanocomposites of [FeL(bpey)]n@BCP. Although, 

microcrystals were observed for the other 10 samples, DLS measurements for all 15 samples only 

resulted in particle sizes of around 150 nm and no larger particle sizes were detected. The 

synthesis of the nanocomposites was also tested in toluene, but larger crystalline material was 

already observed after two cycles for all three CPs. This led to the hypothesis that the formation 

of microcrystals of the CP at an early stage in toluene can be explained by a better solubility of the 

CPs, favouring the formation of the CPs outside of the BCP micelle. However, the crystal formation 

of the CPs in THF cannot solely be explained by the flexibility of the bridging ligand, since the 

rigidity rises from bpea over bpee to bpey, but microcrystals first appeared in the 
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[FeL(bpee)]n@BCP composites. The second explanation is given by the stability of the CPs 

regarding the M-L ligand exchange and the ligand field splitting. Octahedral HS complexes with a 

weak ligand field splitting show a fast ligand exchange due to the occupation of the antibonding 

orbitals which support the break the M-L bonds, thus increasing the likelihood of microcrystal 

formation. This explains the first occurrence of microcrystals after four cycles for the 

nanocomposites synthesised with the CP [FeL(bpee)]n, since it is a pure HS compound. 

The magnetic properties of the nanocomposites with four and five cycles were also investigated. 

As expected, the nanocomposites with [FeL(bpee)]n remained in the HS state over the whole 

temperature range. The nanocomposite with [FeL(bpea)]n with four cycles undergoes a gradual 

ST, while the sample with five cycles revealed nearly bulk-like behaviour due to the existence of 

microcrystals (> 2 µm). Interestingly, the magnetic measurements of nanocomposite samples 

with [FeL(bpey)]n gave a two-step gradual SCO as indicated by the first derivation of the χMT vs. T 

plot showing two maxima. The first transition step occurs at a similar temperature as the bulk 

material, while the second step takes place at a lower temperature (~110 K). This is an effect of a 

different polymorph obtained in the NPs as indicated by the differences in the PXRD pattern of the 

bulk and the nanocomposite samples (Figure 2). 

 

Figure 2: Magnetic susceptibility measurement of the nanocomposite with [FeL(bpey)]n with 5 cycles showing a 

gradual two-step ST and the inset with the first derivative of the ST curve (A). Differences in the PXRD pattern of the 

bulk [FeL(bpey)]n and the nanocomposites with [FeL(bpey)]n (1–5) indicating the formation of a different polymorph 

in the NPs (B). 

In chapter 7 the incorporation of the 1D CP [FeL(bipy)]n (SCO CP) in smaller BCP micelles, the 

influence of a thermal annealing process on the SCO behaviour of the nanocomposites (SCO CP-

BCP) and the processability of the nanocomposite by electrospinning is investigated. For this 

purpose, a new PS-b-P4VP diblock copolymer S85V15154 (BCP, SV-15) was synthesised with a 
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composition of PS/P4VP of 85/15 (wt/wt), a total molecular weight of 154 000 g mol-1, and a 

polydispersity Ð = 1.02. This polymer forms narrowly dispersed, spherical micelles with a core 

diameter Dcore = 15 ± 2 nm and Dcryo = 26 ± 2 nm (Figure 3A, B) and a hydrodynamic diameter 

Dh = 75 ± 28 nm determined by TEM, cryo-TEM, and DLS measurements. The particle sizes of the 

SCO CP-BCP were also evaluated and spherical micelles were found in TEM and cryo-TEM with 

sizes of Dcore = 16 ± 2 nm and Dcryo = 34 ± 5 nm (Figure 3C, D). The hydrodynamic diameter Dh was 

determined to 87 ± 37 nm. Additional scanning electron microscopy (SEM) measurements on the 

SCO CP-BCP nanocomposite confirmed the absence of microcrystals on the surface of the sample. 
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Figure 3: TEM and cryo-TEM images of the neat PS-b-P4VP diblock copolymer SV-15 (A, B) and the SCO CP-BCP 

nanocomposite (C, D) showing spherical nanoparticles in all measurements. The measured core sizes are given in the 

respective insets. 

The magnetic properties of the nanocomposite were analysed by magnetic susceptibility 

measurements. The as-synthesised sample revealed a rather gradual SCO with transition 

temperatures T1/2↓ = 163 K and T1/2↑ = 170 K resulting in a hysteresis width of 7 K. The ST is 

shifted about 60 K to lower temperatures compared to the bulk material and is distinctly 

incomplete with a high residual HS fraction of γHS = 52 %. Interestingly, it was found that the SCO 

behaviour (transition temperature, hysteresis width and γHS) improved after the sample was 

heated stepwise to elevated temperatures (370 K, 380 K, and 400 K; Figure 4A) and measured 
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again. It was observed that the transition temperature is shifted back to higher temperatures 

ultimately reaching T1/2↓ = 203 K and T1/2↑ = 217 K and a hysteresis width of 14 K. The ST became 

gradually more complete – despite the value after heating to 370 K – and the residual HS fraction 

γHS is lowered to 32 %. The same behaviour is detectable by temperature-dependent Mössbauer 

spectroscopy where γHS is lowered after thermal annealing of the sample at 400 K (Figure 4B, C). 

 

Figure 4: Magnetic susceptibility measurements of the SCO CP-BCP nanocomposite showing the influence of the 

thermal annealing on the transition temperatures T1/2↓ and T1/2↑, the hysteresis width and the residual HS fraction γHS 

(A). Temperature-dependent Mössbauer spectroscopy also showed that γHS before annealing (B) was higher than after 

annealing at 400 K (C). 

The reason for the improved SCO properties was evaluated by temperature-dependent PXRD 

measurements. The powder patterns of the SCO CP-BCP nanocomposite, which were measured at 

four different temperatures, were compared to the bulk material. It was found that the pattern of 

the SCO CP-BCP nanocomposite at RT and 333 K are identical but differ distinctively from the bulk 

material. Two prominent reflexes at 9.6 °2Θ and 15.4 °2Θ of the bulk material are absent in the 

SCO CP-BCP nanocomposite, whereas the nanocomposite shows a reflex at 25.8 °2Θ which is non-

existent in the bulk material. Raising the temperature to 373 K or 398 K revealed reflexes at 

9.6 °2Θ and 15.4 °2Θ for the nanocomposite and the reflexes at 25.8 °2Θ diminished. The powder 

pattern of the SCO CP-BCP nanocomposite is persistent even after the cooldown to RT (Figure 5A). 

It was proposed that raising the temperature to and above the glass transition Tg of the PS shell of 

about 110 °C enabled a reorganisation of the CP inside the core of the polymeric micelle. This 
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enhanced the cooperativity between the separated strands of the CP, which led to a broadened 

hysteresis, a lower residual HS fraction and a shift of the transition temperature to higher 

temperatures. The nanocomposite was also characterised after the thermal annealing by TEM, 

DLS, and SEM. The particles remained intact, the NP sizes were found to be nearly identical and 

the surface of the sample was still crystal-free. Additionally, it was proven that the nanocomposite 

is processible by electrospinning. Fibres and non-woven were prepared from a PS/SCO CP-BCP 

mixture using this method. Raman imaging confirmed the presence of the CP inside the fibres. In 

Figure 5B, a single fibre is displayed, and the detected CP is coloured in red. 

 

Figure 5: Temperature-dependent PXRD of the SCO CP-BCP nanocomposite at four different temperatures and the 

powder pattern of the bulk material as comparison (A). Digital image of a single electrospun fibre with an overlay of the 

Raman measurement showing the presence of the CP in red (B). 

In chapter 8 the synthesis protocol is adapted to a 1D double-stranded CP [Zn(OAc)2(bipy)]n and 

a 2D layer-like CN [Zn(TFA)2(bppa)2]n (bppa = 1,2-di(4-pyridyl)propane). The published crystals 

structures are given in Figure 6. This work aimed to prove the hypothesis that the templated 

synthesis inside a diblock copolymer micelle’s core is neither limited to iron-based CPs nor to 1D 

CPs. Two different diblock copolymers were used for the formation of the nanocomposites. 

S85V15
154 (SV-15) was already utilized in Chapter 7. Additionally, S58V42

157 (SV-42) having a total 

molecular weight of 157 000 g mol-1, a composition of PS:P4VP of 58:42 (w/w), and a 

polydispersity Ð = 1.09 was used. The latter neat polymer also forms spherical nanoparticles like 

SV-15, but the particle core size Dcore and the hydrodynamic diameter Dh increased to 45 ± 5 nm 

and 125 ± 34 nm, respectively. 
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Figure 6: Excerpts of the crystal structures of the double-stranded 1D CP [Zn(OAc)2(bipy)]n (left, CCDC 290063) and 

the layer-like 2D CN [Zn(TFA)2(bppa)2]n (right, CCDC 947704). 

The synthetic protocol for the formation of NPs of the 1D CP [Zn(OAc)2(bipy)]n and the 2D CN 

[Zn(TFA)2(bppa)2]n had to be adapted to the limited solubility of the starting materials and the 

products. Both zinc complexes [Zn(OAc)2]∙2 H2O and [Zn(TFA)2]∙H2O are far less soluble in THF 

than the iron complex [FeL(MeOH)2]. Moreover, the CPs or CNs are less soluble, which may lead 

to a faster precipitation of microcrystals. Therefore, the amounts of the starting materials were 

decreased drastically to slow down the formation of the CP or CN. Additionally, the bridging ligand 

bppa was added dropwise during the reaction with [Zn(TFA)2]∙H2O to further decelerate the 

reaction speed. 

Only the BCP SV-42 was used for the synthesis of the 1D CP [Zn(OAc)2(bipy)]n nanocomposites 

and both BCPs SV-15 and SV-42 were used for the synthesis of the 2D CN [Zn(TFA)2(bppa)2]n 

nanocomposites. The successful synthesis of both types of nanocomposites was proven by IR and 

PXRD measurements. For the [Zn(OAc)2(bipy)]n nanocomposites, IR measurements revealed an 

increase of the characteristic C=O stretching mode at 1598 cm-1 in the nanocomposites. This is in 

good agreement with the C=O stretching mode of the bulk CP at 1600 cm-1 (Figure 7A) and differs 

distinctively from the precursor complex with its C=O stretching mode at 1549 cm-1. Although, the 

powder pattern of the nanocomposites showed that the samples are quite amorphous, PXRD 

pattern of the sample obtained after five reaction cycles contained five characteristic reflexes that 

correspond to the bulk material (Figure 7B). 
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Figure 7: IR spectra of the [Zn(OAc)2(bipy)]n nanocomposites (1–4) and the comparison of the bulk CP 

[Zn(OAc)2(bipy)]n and the precursor complex [Zn(OAc)2]∙2 H2O (A). The C=O stretching modes of the nanocomposites 

are marked with a dashed line. Comparison of the PXRD measurements of the nanocomposite samples (1–4) and the 

bulk material (B). The sample with five reaction cycles (sample 4 in image B) shows several characteristic reflexes that 

also exist in the bulk material. 

Samples 5 to 7 of the [Zn(TFA)2(bppa)2]n nanocomposites showed a single band for the C=O 

stretching mode at 1690 cm-1 in IR measurements. Only the sample 8 obtained after two reaction 

cycles in SV-42 showed two resolved bands for the C=O stretching mode identical to the bulk 

material. The two bands were detected at 1699 cm-1 and 1684 cm-1 which is in excellent 

agreement with the bulk material and different from the starting material [Zn(TFA)2]∙H2O 

(Figure 8A). PXRD measurements proved the formation of the desired CN inside the BCP by the 

detection of several characteristic reflexes for the samples 7 and 8 (Figure 8B). 
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Figure 8: IR spectra of the [Zn(TFA)2(bppa)2]n nanocomposites (5–8) and the comparison of the bulk CP 

[Zn(TFA)2(bppa)2]n and the precursor complex [Zn(TFA)2]∙H2O (A). The C=O stretching modes of the nanocomposites 

are marked with a dashed line. Comparison of the PXRD measurements of the nanocomposite samples (5–8) and the 

bulk material (B). The samples with two reaction cycles (samples 7 and 8 in image B) show several characteristic 

reflexes that also exist in the bulk material. 

The experimental IR spectra were supported by DFT for both the CP and CN samples. Mono- or 

oligonuclear models of the CP and CN yielded theoretical IR spectra that matched the ones 

experimentally observed. 

The size distribution of the nanocomposites was analysed by TEM and DLS. Spherical NPs of the 

CP [Zn(OAc)2(bipy)]n were achieved with a core size Dcore = 47 ± 5 nm (Figure 9A) and a 

hydrodynamic diameter Dh = 157 ± 46 nm. NPs of the CN [Zn(TFA)2(bppa)2]n in SV-42 also 

showed mostly spherical particles with a core size Dcore = 46 ± 6 nm but it seemed that 

morphological changes started to form worm-like structures (Figure 9B). The same behaviour is 

observed for the NPs in SV-15, where mostly spherical particles were imaged but also worm-like 

structures existed. The particle core size Dcore was determined to 15 ± 2 nm (Figure 9C). The 

observation of worm-like structures is also underlined by DLS measurements which resulted in 

considerably broader size distributions of the measured hydrodynamic diameters 

(Dh = 340 ± 153 nm and 177 ± 57 nm for the BCPs SV-42 and SV-15, respectively). 

 

Figure 9: TEM images of NPs of the CP [Zn(OAc)2(bipy)]n in SV-42 showing separated spherical particles (A), and NPs 

of the CN [Zn(TFA)2(bppa)2]n in SV-42 (B) and SV-15 (C) showing both spherical particles and worm-like structures. 

The particle core sizes are given in the insets.  
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The incorporation of the CPs into the BCP micelle cores was proven by scanning electron 

microscopy (SEM) imaging the surface of the nanocomposites. Microcrystals are absent on the 

polymers surface, indicating that the CP is build up inside the micelle core. 

Chapter 9 concentrates on the control of the particle size and the particle shape by the variation 

of the composition of the BCP. Five different PS-b-P4VP BCPs were used for this purpose (Table 2). 

SV-15 and SV-42 were used in prior work. Additionally, SV-21, SV-35 and SV-61 were synthesised 

and the BCPs were fully characterised in terms of composition, molecular weight Mn, and 

polydispersity Ð. The formed micelles were characterised by TEM, cryo-TEM, and DLS. 

Table 2: Overview over the used block copolymers in chapter 9. 

BCPa) Abbreviation Mn [g mol-1] Ratio PS [wt%] Ratio P4VP [wt%] 

S85V15154 SV-15 154 000 85 15 

S79V21119 SV-21 119 000 79 21 

S65V35131 SV-35 131 000 65 35 

S58V42157 SV-42 157 000 58 42 

S39V61162 SV-61 162 000 39 61 

a) subscripts denote the content of the respective block in wt%, superscript gives the number average 

molecular weight in kg mol-1. 

Only spherical particles were detected for all five BCPs by TEM and cryo-TEM. The core sizes of 

the neat BCPs correlate with the P4VP ratio and range from 15 ± 2 nm (SV-15) to 73 ± 9 nm 

(SV-61). The particle core diameters for the cryo-TEM samples are almost identical or slightly 

larger than the ones analysed by TEM, because the P4VP core is swollen in solution. Core 

diameters are 26 ± 2 nm for SV-15 to 71 ± 4 nm for SV-61. 

The synthesis of NPs inside these five BCPs was tested with [FeL(bipy)]n and five different 

nanocomposites were prepared with increasing cycle count with each BCP. Spherical particles are 

observed for the nanocomposites in SV-15 to SV-42 with sizes between 12 ± 2 nm and 58 ± 4 nm 

and the core sizes derived from TEM measurements also correlate with the P4VP ratio of the BCP 

but are independent from the number of reaction cycles. Morphological changes began to appear 

in nanocomposites with SV-61 and worm-like structures were imaged after 3 reaction cycles and 

became dominant with 5 reaction cycles (Figure 10A). The core width was analysed to 60 ± 8 nm. 

These worm-like structures were also detected in the cryo-TEM of the nanocomposite sample 

with five reaction cycles with SV-61 (Dcryo = 84 ± 10 nm, Figure 10B), whereas the cryo-TEM 

images of the nanocomposites with the other BCPs only revealed spherical particles (30 ± 3 nm to 
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65 ± 5 nm). The magnetic properties of the nanocomposites were analysed, showing the trend 

that the ST became more complete in the larger NPs (γHS = 14 % in SV-61 vs. 30% in SV-15) and 

that the ST became more abrupt (cf. Figure 4A and Figure 10C). 

 

Figure 10: TEM (A) and cryo-TEM image (B) of the nanocomposite in SV-61 showing the worm-like structures and the 

magnetic properties of the nanocomposite (C). 

The distribution of the iron inside the nanocomposite with SV-61 was analysed by transmission 

electron microscopy – energy dispersive X-ray (TEM-EDX) measurements (Figure 11). The high-

angle annular dark field (HAADF) image (A) displayed the worm-like structure and the further 

images show the HAADF overlaid with the distribution of iron (B), and the solitary distributions 

of iron (C), nitrogen (D), and carbon (E). Figures 11B and 11C show that the detection of iron 

copied the structure of the worm-like micelles and the signal of iron is absent in the interspaces. 

This proves the incorporation of the CP into the worm-like polymeric micelles. 

 

Figure 11: HAADF image the nanocomposite with SV-61 showing the worm-like structures (A). The HAADF image 

overlaid with the iron signal (B), and the individual images of the iron (C), nitrogen (D) and carbon (E) signals from 

TEM-EDX. 
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The preceding paragraphs impressively show that block copolymers are excellent for the control 

of the size and shape of coordination polymers nanoparticles. Several different spin crossover 

coordination polymer nanoparticles are accessible by the templating effect of the block 

copolymers. Nanocomposites of [FeL(bipy)]n, [FeL(bppa)]n, [FeL(bpee)]n and [FeL(bpey)]n have 

been synthesised in the BCPs SV-15 to SV-42 in spherical polymeric micelle cores with sizes 

between 15 ± 2 nm and 58 ± 4 nm. A morphological change of the polymeric structure from 

spherical to worm-like was observed in the polymer SV-61 and the incorporation of the CP was 

proven by TEM-EDX. The spin crossover properties were altered by a thermal annealing of the 

nanocomposites leading to spin transitions close to the bulk material. Moreover, the synthesis 

procedure was adapted to the coordination polymer [Zn(OAc)2(bipy)]n and the coordination 

network [Zn(TFA)2(bppa)2]n. The latter one was incorporated in particles as small as 15 ± 2 nm. 

  



5. Contributions to joint publications 
 

 
- 45 - 

5. Contributions to joint publications 

This thesis and the presented results were obtained in collaboration with others. The respective 

contributions of each co-author and the publication state (published, in revision, to be submitted) 

is listed in this chapter. Author(s) marked with an asterisk are the corresponding authors. 

 

Chapter 6 

The work was published in the journal Beilstein Journal of Nanotechnology (Beilstein J. 

Nanotechnol. 2017, 8, 1318–1327) entitled: 

 

Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles 

Christoph Göbel, Ottokar Klimm, Florian Puchtler, Sabine Rosenfeldt, Stephan Förster, Birgit 

Weber* 

 

I reproduced the synthesis of the nanoparticle samples and synthesised the bulk materials 

presented in this work, characterised my samples by TEM, DLS, magnetic susceptibility 

measurements, Mössbauer spectroscopy, elemental analysis, and IR spectroscopy and wrote the 

manuscript. Ottokar Klimm did the initial synthesis of the nanoparticle samples and its 

characterisation. Florian Puchtler measured the PXRDs of the samples and I and Ottokar Klimm 

treated and interpreted the data. Sabine Rosenfeldt was involved in scientific discussions and the 

correction of the manuscript. Stephan Förster and Birgit Weber supervised this work and were 

involved in scientific discussions and the correction of the manuscript. 
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Chapter 7 

This work was published in the journal Angewandte Chemie Internation Edition (Angew. Chem. 

Int. Ed. 2020, 59, 5765–5770; doi: 10.1002/anie.201914343) entitled: 

 

Confined Crystallization of Spin‐Crossover Nanoparticles in Block‐Copolymer Micelles 

Christoph Göbel, Christian Hils, Markus Drechsler, Dirk Baabe, Andreas Greiner, Holger Schmalz,* 

Birgit Weber* 

 

I synthesised the nanocomposite samples, characterised them by TEM, DLS, temperature-

dependent PXRD, magnetic susceptibility measurements, room temperature Mössbauer 

spectroscopy, elemental analysis, IR spectroscopy, and paramagnetic NMR, and wrote the 

manuscript. Christian Hils performed the electrospinning and the characterisation of the fibres by 

optical microscopy. Markus Drechsler performed the cryo-TEM measurements and helped with 

the TEM measurements in general and the interpretation of the images. Dirk Baabe measured and 

interpreted the temperature-dependent Mössbauer spectroscopy. Andreas Greiner supervised 

the work. Holger Schmalz synthesised the block copolymer, characterised the block copolymer by 

GPC, DSC, NMR, and MALDI-ToF, characterised the nanocomposite and bulk samples by Raman 

spectroscopy, was involved in scientific discussions, helped with the correction of the manuscript 

and supervised the work. Birgit Weber supervised this work, was involved in scientific 

discussions and the correction of the manuscript. 
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Chapter 8 

This work was published in the journal Nanoscale Advances (Nanoscale Adv., 2020, 2, 4557–4565; 

doi: 10.1039/D0NA00334D) entitled: 

 

Synthesis of Zn-based 1D and 2D coordination polymer nanoparticles in block copolymer micelles 

Christoph Göbel, Gerald Hörner, Andreas Greiner, Holger Schmalz* and Birgit Weber* 

 

The samples were synthesised by me or under supervision by Samanta Jänsch, Thomas Bindig, 

and Magdalena Weber. I characterised them by TEM, DLS, PXRD, elemental analysis, and IR 

spectroscopy and wrote the manuscript. Gerald Hörner executed the computational calculations 

on the spectroscopic data. Andreas Greiner supervised the work. Holger Schmalz synthesised the 

block copolymers and characterised them by DSC, GPC, NMR, and MALDI-ToF and was involved 

in scientific discussions, the correction of the manuscript and the supervision of the work. Birgit 

Weber supervised the work, was involved in scientific discussions and the correction of the 

manuscript. 
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Chapter 9 

This work is to be submitted and is entitled: 

 

Size and Shape Control of Spin-Crossover Nanoparticles via Confined Crystallization in Block 

Copolymer Micelles 

Christoph Göbel, Katharina Marquardt, Markus Drechsler, Patrick Loch, Josef Breu, Holger 

Schmalz, Andreas Greiner,* Birgit Weber* 

 

I synthesised the samples, characterised them by TEM, DLS, PXRD, magnetic susceptibility 

measurements, room temperature Mössbauer spectroscopy, elemental analysis, and IR 

spectroscopy. Katharina Marquardt performed the TEM-EDX measurements and helped with the 

interpretation of the data and images. Markus Drechsler performed the cryo-TEM measurements 

and helped with the interpretation of the images. Patrick Loch performed the temperature-

dependent PXRD measurements and helped with the interpretation of the data. Josef Breu and 

Andreas Greiner supervised the work. Holger Schmalz synthesised the block copolymers and 

characterised them by DSC, GPC, NMR, and MALDI-ToF, was involved in scientific discussions, the 

correction of the manuscript and the supervision of the work. Birgit Weber supervised the work, 

was involved in scientific discussions and the correction of the manuscript. 
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Abstract: Spin-crossover compounds are a class of materials that can change their spin state from 

high spin (HS) to low spin (LS) by external stimuli such as light, pressure or temperature. 

Applications demand compounds with defined properties concerning the size and switchability 

that are maintained when the compound is integrated into composite materials. Here, we report 

the synthesis of [Fe(Leq)(Lax)]n coordination polymer (CP) nanoparticles using self-assembled 

polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) micelles as 

template. Variation of the solvent (THF and toluene) and the rigidity of the axial ligand Lax (Lax = 

1,2-di(pyridin-4-yl)ethane) (bpea), trans-1,2-di(pyridin-4-yl)ethene (bpee), and 1,2-di(pyridin-

4-yl)ethyne) (bpey); Leq = 1,2-phenylenebis(iminomethylidyne)-bis(2,4-pentanedionato)(2−)) 

allowed the determination of the preconditions for the selective formation of nanoparticles. A low 

solubility of the CP in the used solvent and a high stability of the Fe–L bond with regard to ligand 

exchange are necessary for the formation of composite nanoparticles where the BCP micelle is 

filled with the CP, as in the case of the [FeLeq(bpey)]n@BCP. Otherwise, in the case of more flexible 

ligands or ligands that lead to high spin complexes, the formation of microcrystals next to the CP–

BCP nanoparticles is observed above a certain concentration of [Fe(Leq)(Lax)]n. The core of the 

nanoparticles is about 45 nm in diameter due to the templating effect of the BCP micelle, 

independent of the used iron complex and [Fe(Leq)(Lax)]n concentration. The spin-crossover 

properties of the composite material are similar to those of the bulk for [FeLeq(bpea)]n@BCP while 

pronounced differences are observed in the case of [FeLeq(bpey)]n@BCP nanoparticles. 
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6.1. Introduction 

Nanomaterials and especially nanocomposites of coordination polymers (CPs) and (porous) 

coordination networks are of great interest in current research because of their various 

applications as sensors, data-storage devices, catalysts or contrast agents.[1-5] For these 

applications the formation of stable, uniform and monodisperse particles with defined properties 

is necessary. Synthetic procedures for nanoparticles with size control (gold[6,7], metal oxides[8,9]) 

and/or shape control (gold and silver[10]) are already well known. The reduction of metal salts is 

very common for noble metals[11], while (fast) precipitation or inverse-micelle technique are often 

used for metal oxides (mostly magnetite)[12]. For coordination polymers (CP) or networks a 

limited amount of methods are applicable because of the very demanding reaction conditions 

and/or incompatible reactants. Recently we demonstrated that the use of block copolymers 

(BCPs) is a highly promising and easy approach for the size control of CPs.[13] BCPs form micellar 

structures through self-assembly in specific solvents and can therefore be used as 

nanoreactors.[14-16] Using this approach, a very controlled miniaturisation of coordination 

polymers or networks can be envisioned, provided it is easily transferable to other systems. In 

this work we will analyse which preconditions need to be fulfilled for a successful synthesis of 

uniform CP–BCP nanoparticles. 

Coordination polymers with spin crossover (SCO) properties are well known in the 

literature[4,5,17,18], but their miniaturisation into precisely defined nanomaterials with SCO 

properties comparable to those of the bulk material is still in its infancy.[19-23] SCO materials can 

be switched by external stimuli such as temperature, pressure or light between a high spin (HS) 

and a low spin (LS) state.[5,18] Switching between these two states alters physical properties such 

as magnetism, structure or colour, which make these materials interesting for sensors[2,24-26], 

display devices[27-29] or as functional contrast agents[30-34]. The SCO properties deeply depend on 

the precise control of size and crystallinity of the nanocomposite. Most commonly the inverse-

micelle technique is used for the preparation of nanoparticles.[35-39] However, the spin crossover 

properties of the bulk are often lost upon miniaturisation and only few examples preserving the 

hysteresis (bistability) in a nanostructured system are known.[21,40-43] This is most likely due to a 

loss of the crystallinity of the particles. Especially SCO complexes are highly sensitive to small 

changes in the crystal packing and thus excellently suited to investigate the impact of 

nanostructuration of the material. In our recent work[13] we used the block copolymer 

polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) to prepare spherical nanoparticles of the 1D 

spin-crossover coordination polymer [FeLeq(bipy)]n. We were able control the crystallinity of the 

[FeLeq(bipy)]n core through successive addition of starting material and by variation of the 
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reaction time and temperature. Having a high crystallinity of the core, the SCO properties were 

closer to those of the bulk material (thermal hysteresis loop). 

We herein report the synthesis of three further coordination polymer block copolymer 

nanocomposites (CP–BCP) using the same synthesis strategy. This allows us to investigate the 

influence of the coordination polymer on the formation and the SCO activity of the final 

nanocompound. The CPs differ in the axial ligands (Lax), namely 1,2-di(pyridin-4-yl)ethane (bpea), 

trans-1,2-di(pyridin-4-yl)ethene (bpee) and 1,2-di(pyridin-4-yl)ethyne (bpey) (Scheme 1). The 

ligands were chosen because of their different flexibility. From the synthesis of the bulk complexes 

it is known, that an increasing flexibility of the ligand leads to an increase in solubility of the 

obtained CP.[44,45] This way we can investigate the impact of the solubility of the CP on the selective 

formation of nanoparticles in the BCP micelle cores. In Scheme 1, the general approach and the 

abbreviations used for the different samples are given. 

 

Scheme 1: Synthesis of the three different coordination polymers [FeLeq(bpea)]n (1), [FeLeq(bpee)]n (2) and 

[FeLeq(bpey)]n (3) and the respective coordination polymer–block copolymer composites (CP–BCP) 

[FeLeq(bpea)]n@BCP (1a–e), [FeLeq(bpee)]n@BCP (2a–e) and [FeLeq(bpey)]n@BCP (3a–e). 
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6.2. Results and Discussion 

6.2.1. Bulk complexes 

The magnetic properties of SCO coordination polymers often depend on solvent molecules 

included in the crystal packing.[46-49] To allow a comparison between bulk material and 

nanoparticles and to study the influence of nanostructuring on magnetism, the bulk complexes 

were synthesised in THF and their magnetic properties were investigated. [FeLeq(bpea)]n and 

[FeLeq(bpee)]n were already synthesised in methanol[44,50], the coordination polymer 

[FeLeq(bpey)]n is described here for the first time. The coordination polymers 1, 2 and 3 were 

synthesised by dissolving the iron(II) complex [FeLeq(MeOH)2] and the respective axial ligand in 

THF. The solution was refluxed for 1 h. After cooling down overnight, the fine crystalline 

precipitate was filtered off and dried in vacuo to yield brown or dark violet powders. The crystals 

were too small for single-crystal X-ray structure analysis. In Figure 1, the magnetic properties of 

[FeLeq(bpea)]n (1) and [FeLeq(bpey)]n (3) as plot of the χMT product (χM = magnetic susceptibility, 

T = temperature) as a function of the temperature is given. Sample 1 is paramagnetic at RT with a 

χMT value of 3.25 cm3·K·mol-1, typical for iron(II) in the HS state.[51] 

 

Figure 1: Magnetic susceptibility data for the coordination polymers [FeLeq(bpea)]n (1) and [FeLeq(bpey)]n (3), which 

undergo spin crossover. 

Upon cooling the χMT value remains constant down to 140 K where an abrupt, incomplete spin 

crossover occurs. In the first step, the χMT value descends to 1.78 cm3·K·mol-1 at 120 K 

corresponding to about 50% of the iron centres in the HS state. Further cooling reveals a second, 

gradual and incomplete step with a χMT value of 0.93 cm3·K·mol-1 at 50 K; about one third of the 

iron centres remains in the HS state. Upon heating, a 3 K wide hysteresis is observed in the region 
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of the first step with T1/2↑ = 127 K and T1/2↓ = 130 K. In the temperature range between 75 and 

100 K first a decrease and then an increase of the χMT product upon heating is observed. This is 

due to a kinetic trapping effect, often observed in this temperature region when the thermal spin 

transition temperature (T1/2) and the transition temperature for the thermally trapped exited spin 

state (TTIESST) are in close proximity.[44,52-54] In such a case the completeness of the spin crossover, 

in this case the second step, strongly depends on the scan rate used for the magnetic 

measurements. For the measurements presented in Figure 1, the settle mode was used, which 

corresponds to an approximate scan rate of 0.3 K·min-1. This allows the system to equilibrate at 

each temperature step where a measurement point is taken and kinetic effects can be considered 

to be almost irrelevant. Despite the very slow measurements, upon cooling a part of the iron 

centres remain trapped in the HS state. Upon slow heating they equilibrate to the LS state as long 

as the temperature is below the thermal spin transition temperature, which leads to the observed 

decrease of the χMT product upon heating. An even slower scan rate would lead to a more complete 

spin transition and the disappearance of the decrease of the χMT product upon heating while a 

higher scan leads to the complete disappearance of the second step. The two-step behaviour is 

similar to the one observed for {[FeLeqbpea)]·0.25MeOH}n , where the temperatures differ slightly 

and the second step is complete.[44] The differences due to the impact of the different solvents are 

also reflected in the powder diffraction patterns (Supporting Information File 1, Figure S1) in 

which some of the reflexes are shifted compared to the sample prepared in methanol. Sample 2 

([FeLeq(bpee)]n) is paramagnetic at room temperature with a χMT value of 3.20 cm3·K·mol-1 

(Supporting Information File 1, Figure S2). Upon cooling the sample remains in the HS state over 

the whole temperature range, as already reported for the complex synthesised from methanol.[50] 

Sample 3 ([FeLeq(bpey)]n) is paramagnetic at room temperature with a χMT value of 

3.23 cm3·K·mol-1, typical for iron(II) complexes in the HS state (bottom of Figure 1). Upon cooling 

the χMT value remains almost constant down to 190 K (χMT value: 3.14 cm3·K·mol-1), where an 

abrupt and incomplete spin transition occurs with about 50% of the iron centres involved. The 

χMT value drops to 1.73 cm3·K·mol-1 at 165 K and no further changes are observed down to 50 K 

(χMT value: 1.63 cm3·K·mol-1). Upon heating up to 300 K an abrupt spin transition takes place 

revealing a hysteresis with a width of 10 K and T1/2↓ = 177 K and T1/2↑ = 187 K. For the sake of 

completeness, the complex was also synthesised from methanol yielding the same spin crossover 

properties, in good agreement with the absence of solvent molecules in the crystal packing. 

Mössbauer spectra were collected for all three samples to verify the HS state at room temperature. 

The spectra (Supporting Information File 1, Figure S3) reveal one quadrupole split doublet in each 

case with parameters for the quadrupole splitting ΔEQ and an isomer shift δ (Supporting 

Information File 1, Table S1) in the range expected for iron(II) HS complexes of this ligand type.[55] 

The steps and the incomplete spin crossover observed in the magnetic measurements could be 
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due to inequivalent iron centres.[56,57] The Mössbauer spectra do not support this as no line 

broadening (FWHM Γ in Supporting Information File 1, Table S1) is observed and the doublet is 

very symmetric in each case. Thus, the steps observed in the transition curve are due to the 

packing of the CP in the crystal and will strongly depend on the crystallinity of the material. 

6.2.2. Synthesis of the nanocomposite 

For the CP–BCP composites [FeLeq(bpea)]n@BCP (1a–e), [FeLeq(bpee)]n@BCP (2a–e) and 

[FeLeq(bpey)]n@BCP (3a–e), the starting iron(II) complex [FeLeq(MeOH)2] and the block 

copolymer were dissolved in THF and refluxed for 2 h. After cooling down to room temperature, 

the respective bridging ligand was added and the mixture was refluxed again for 1 h. Depending 

on the number of additions of starting material, either the solvent is removed by cold distillation 

(1 cycle, samples 1a, 2a, 3a) or a further cycle of addition of [FeLeq(MeOH)2] and axial ligand 

(simultaneously for all further cycles) followed by reflux for 1 h was performed prior to solvent 

removal (samples 1b–e, 2b–e, 3b–e for 2 to 5 cycles). The resulting solids were dried in vacuo. IR 

spectroscopy was used to follow the formation of the coordination polymer in the BCP matrix. The 

corresponding spectra are given in Supporting Information File 1, Figure S4. The increasing 

relative intensity of the C=O stretching vibration of [FeLeq] clearly indicates the formation of the 

coordination polymer in the matrix. Elemental analysis also confirms the increasing concentration 

of the coordination polymer in the BCP micelle with an increasing nitrogen content. Room 

temperature Mössbauer spectra were collected of [FeLeq(bpea)]n@BCP after four and after five 

cycles (1d and 1e) and of [FeLeq(bpey)]n@BCP after four and five cycles (3d and 3e) to get a 

deeper insight into the sample composition. Due to the long measurement time of the very diluted 

(low iron content) and soft (low Lamb–Mössbauer factor) composite materials, only the more 

crystalline samples with a high CP amount (d and e) showing spin crossover were characterised. 

The corresponding spectra are given in Figure 3 (1d and 3e) and in Supporting Information File 1, 

Figure S5. The Mössbauer parameters are summarised in Supporting Information File 1, Table S2. 

For the composite materials, different iron species are possible due to the coordination of the 

starting complex [Fe(Leq)] to the vinylpyridine parts of the equatorial ligand, which can be 

distinguished using Mössbauer spectroscopy. Sample 1d shows two different doublets which 

correspond to an iron(II) HS and iron(II) LS species (75% and 25%). The LS species derives from 

two P4VP units coordinated to the iron centre as already shown[13,58], with the formula 

[Fe(Leq)(VP)2] (VP = vinyl pyridine) The HS species corresponds to the desired [Fe(Leq)(bpea)]n 

unit. For sample 1e again two doublets are observed with a similar HS/LS ratio (Supporting 

Information File 1, Table S2). The sample 3d also shows two different iron species of which one 

corresponds to an iron(II) in the HS state and the other one to an iron(II) in the LS state. However, 

the HS/LS ratio changes to 83%:17%. For sample 3e only one doublet is observed that can be 
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assigned to an iron(II) HS species. It concludes that in the case of [FeLeq(bpey)]n@BCP the HS 

fraction increases with higher cycles since more or longer coordination polymer is formed in the 

BCP micelle, in agreement with previous observations for [FeLeq(bipy)]n@BCP.[13,58] In the case of 

[FeLeq(bpea)]n@BCP a different behaviour is observed that is indicative for differences in the 

sample composition. 

6.2.3. Characterisation of the nanocomposite 

Particle sizes of the nanocomposites were determined by dynamic light scattering (DLS) in 

solution, transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD) in the 

solid. The hydrodynamic diameter of the polymeric micelles loaded with the CP measured by DLS 

is constant within the error of the measurement throughout all measured samples with sizes 

around 150 nm (Supporting Information File 1, Figure S6). This is in agreement with the results 

reported previously for similar composite nanoparticles with 4,4′-bipyridine as bridging axial 

ligand.[13] In Figure 2, a TEM picture and the size distribution obtained from TEM and DLS of 3e 

([FeLeq(bpey)]n@BCP, five cycles) is given as typical representative of all samples. A detailed 

characterisation of all samples with TEM is given in Supporting Information File 1, Table S3. The 

TEM picture of 3e in Figure 2a clearly reveals the formation of spherical nanoparticles with a core-

shell nature. The differences in contrast of the iron-containing CP and the BCP prove that the CP 

nanoparticles are solely formed in the core of the nanocomposite. 
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Figure 2: Characterisation of CP–BCP composite micelles. a) TEM picture of 3e ([FeLeq(bpey)]n@BCP, five cycles) 

illustrating the core–shell nature of the particles. b) Autocorrelation function from dynamic light scattering of 3e in THF 

(43 wt%) with size histogram. c) Size histogram of the core from the TEM picture given in panel a). 

The particle core diameter is significantly smaller than the hydrodynamic radius because of the 

polymeric nature of the BCP (solvent-swollen). Within the error of the measurement, the NP core 

size is in the same order of magnitude for all samples with an average size of 45 nm (Table 1), 

demonstrating the excellent size control by the micelles themselves. The NP core size is 

independent of the number of cycles and independent of the used coordination polymer clearly 

demonstrating the high potential of the templating effect of BCP micelles (cage effect). This in in 

very good agreement with our first observation on the similar system with 4,4′-biypridine as 

bridging ligand. It can be explained with the assumption, that the nanocomposite is very 

amorphous at the beginning with a low density in the core. With increasing coordination polymer 

concentration the crystallinity of the core and therefore its density increases, while the size does 

not change significantly.[13] 

In order to investigate, whether the flexibility of the used bridging ligand has an impact on 

regioselectivity of the nanoparticle core formation, the samples were carefully analysed for the 

observation of microcrystals as function of the increasing CP concentration (number of cycles, e.g., 

[FeLeq(bpea)]n@BCP = 1a–e for one to five cycles of addition of starting material) in the composite 

material. The results are summarised in Table 1. 
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The first microcrystals (3–6 µm) were observed for bpee as bridging ligand after four cycles of 

addition of starting material (2d), while for the more flexible bpea the first microcrystals are 

observed only after five cycles (1e, 1.5–2.0 µm). In the case of the more rigid bpey, no 

microcrystals are observed. This cannot solely be explained with the rigid nature of the ligand, 

which increases in the order bpea < bpee < bpey. One possibility to explain the observed order is 

to consider the stability of the complexes with regard to M-L ligand exchange with excess axial 

ligands and/or solvent molecules. For octahedral complexes, a weak ligand field splitting leads to 

the occupation of antibonding orbitals (HS complexes) and by this supports ligand exchange. A 

fast ligand exchange will increase the probability of the formation of microcrystals outside the 

BCP micelle. In this case the templating effect of the BCP micelles does not work. In agreement 

with this consideration, the pure HS complex [FeLeq(bpee)]n with the weakest ligand field splitting 

is the first one where microcrystals are observed, while for the spin crossover complexes 

[FeLeq(bpea)]n, [FeLeq(bpey)]n and the previously investigated [FeLeq(bipy)]n the expected order 

with regard to the rigid nature of the ligand is observed. With increasing solubility of the complex 

(increasing flexibility of the ligand) in the solvent used for the synthesis of the nanomaterial, the 

probability for the formation of microcrystals outside the BCP micelles increases. In agreement 

with this, it was not possible to synthesise nanoparticles of the coordination polymer 

[FeLeq(bppa)]n[44], when bppa = 1,3-di(pyridin-4-yl)propane, a very flexible ligand (high 

solubility), is used. Syntheses were also performed in toluene to investigate the influence of the 

solvent on the nanoparticle synthesis. It should be pointed out that previous investigations 

showed that the complexes have a higher solubility in toluene compared to tetrahydrofuran. In 

agreement with this, first microcrystals were observed already after two cycles for all ligands. In 

Supporting Information File 1, Figure S7, a TEM picture of [FeLeq(bpea)]n@BCP after two cycles 

synthesised in toluene is given as typical representative. Thus, the higher solubility of the 

coordination polymers in toluene favours the formation of microcrystals outside of the block 

copolymer micelle and reduces the regioselectivity. The influence of the CP concentration on the 

crystallinity of the CP-BCP nanocomposite core was investigated using PXRD. In Supporting 

Information File 1, Figure S8, the PXRD patterns of the composite materials are compared with 

those of the bulk materials 1-3. In all cases, the crystallinity of the particles increases with higher 

CP concentration, which is indicated by sharper reflexes. It should be pointed out, that in the case 

of the samples 3a–e even after five cycles some of the prominent reflexes observed for the bulk 

material are missing. Either the crystallinity of the obtained NPs is still very low or a different 

packing compared to the bulk material is obtained. 
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Table 1: Investigation of the core size [nm] and crystallinity of the CP-BCP composite obtained from TEM. “MC” denotes 

the observation of microcrystals. 

 

In Figure 3 (1d and 3e) and Supporting Information File 1, Figure S9 (1d,e, 2d,e and 3d,e) the 

χMT-versus-T plots of the composite materials after four and five cycles are given. Previous 

investigations showed, that amorphous nanoparticles of [FeLeq(bipy)]n (1–3 cycles) showed 

gradual and incomplete spin crossover very different to that of the bulk material.[13] Additionally, 

the samples a–c are magnetically very diluted and the change in the spin state of the few SCO-

active iron centres is difficult to be reliably detected. An increasing crystallinity of the 

nanoparticles did change the spin crossover behaviour towards that of the bulk complexes. 

Consequently, magnetic measurements were done for the samples d and e after four and five 

cycles of addition of complex in the temperature range between 50 and 300 K in the cooling and 

heating mode. In the case of 1d, a gradual spin transition is observed with about 30% of the iron 

centres involved and T1/2 = 122 K, close to the first step of the bulk material. In contrast, sample 

1e (containing microcrystals) shows a less gradual but still incomplete spin crossover with a small 

hysteresis of 5 K. The χMT value is 3.25 cm3·K·mol-1 at room temperature and decreases to 

1.03 cm3·K·mol-1 at 50 K with T1/2↓ of 109 K and T1/2↑ of 114 K. Interestingly, the step in the 

transition curve that is present in the bulk material is not observed for sample 1e. 3d shows a 

very gradual spin crossover in the temperature range between 100 and 225 K with about 30% of 

the iron centres involved. This is very different to the abrupt spin transition with hysteresis of the 

bulk material. For sample 3e, also a very gradual spin crossover is observed upon cooling. Two 

steps can be distinguished around 175 K and 110 K (see first derivative in Figure 2c). While the 

first step is in a similar range as the one observed for the bulk material, the second step has no 

relation to the spin-crossover properties of the bulk material. This is in good agreement with the 

results from the PXRD measurements, where pronounced differences between the diffraction 

pattern of the bulk CP and the nanocomposite are observed. Apparently, a different crystalline 

polymorph is obtained. The χMT value is 2.07 cm3·K·mol-1 at 50 K indicating that 65% of the iron 

centres are still in the HS state. 

cycles 

Lax 1 (a) 2 (b) 3 (c) 4 (d) 5 (e) 

bpea (1a-e) 42±5 46±4 49±4 46±4 49±4 /MC 

bpee (2a-e) 40±4 46±5 42±4 48±4 /MC 47±4 /MC 

bpey (3a-e) 48±5 46±4 49±6 49±4 49±4 

bipy[13] 52±8 57±8 62±13 44±6 49±5 
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Figure 3: Characterisation of the magnetic properties of 1d and 3e Top: Mössbauer spectra of 1d (left) and 3e (right). 

Bottom: Magnetic susceptibility data displayed as χMT vs T of 1d (left) and 3e (right). In the case of 3e in the inset the 

first derivative of the χMT vs T plot is given to illustrate the steps in the transition curve more clearly. 

6.3. Conclusion 

This work focused on the transfer of the concept for the formation of nanoparticles of 

coordination polymers in a block copolymer matrix. The central goal was to demonstrate that this 

concept of block copolymers as microreactors is not restricted to one specific coordination 

polymer and can easily be applied to other systems. Therefore, three coordination polymers have 

been chosen to be incorporated inside the block copolymer as nanoparticles. In our previous 

work[13] we did show that longer reaction times, higher reaction temperatures and higher 

amounts of CP in the BCP micelles (number of cycles) improve the crystallinity of the CP 

nanoparticle core while the cores size is almost constant. The improved crystallinity did change 

the SCO properties from gradual to abrupt with hysteresis. Here we show that the coordination 

polymer does not have an influence on the size of the CP-BCP composite and that the final size 

arises mainly from the BCP. In agreement with our previous observations, the NP size does not 

change significantly with increasing CP concentration in the BCP micelle. However, the formation 

of stable nanoparticles critically depends on the coordination polymer and the solvent used for 

the synthesis. The investigations reveal an interplay between two different effects: (1) The rigidity 
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and stacking features of the bridging ligand influences the solubility of the CP and a low solubility 

is favourable for the selective formation of crystalline nanoparticles in the BCP micelle. (2) Weak-

field ligands lead to HS complexes where anti-bonding orbitals are occupied. This supports ligand 

exchange and prevents the templating effect of the BCP micelle. We found that the CP–BCP 

composites with the most rigid ligand ([FeLeq(bpey)]n@BCP, 3a–e) form the most stable 

crystalline nanoparticles that are spin-crossover active. For the HS complexes 

[FeLeq(bpee)]n@BCP, (2a–e), first microcrystals are observed after four cycles and for 

[FeLeq(bpea)]n@BCP, (1a–e) with the most flexible ligand microcrystals are observed after five 

cycles in THF. The differences observed for the SCO properties and the PXRD data of the bulk 

material 3 and the composite material 3e are one further example for the influence of micelle 

formation on the crystallisation of a material.[59] 

6.4. Experimental 

All syntheses were performed under inert conditions using argon 5.0 (purity ≥ 99.999%) and 

Schlenk technique. The synthesis of all samples was repeated at least twice. Polystyrene-b-poly(4-

vinylpyridine) (PS-P4VP, purum, MW ≈ 150.000) was synthesised as described before.[15] 1,2-

di(pyridin-4-yl)ethane) (bpea) and trans-1,2-di(pyridin-4-yl)ethene (bpee) were obtained from 

Sigma-Aldrich and used as received. Tetrahydrofuran (THF) p.a. and toluene were obtained from 

Sigma-Aldrich and degassed with argon for at least 30 min. [FeLeq(MeOH)2] was synthesized as 

described before.[60] The ligand bpey was synthesised according to the literature.[61] 

6.4.1. Synthesis 

The same synthesis procedures were used for all samples independent of the used Lax. Therefore, 

the general procedures are given for [FeLeq(bpea)]n (1) and the composite materials 

[FeLeq(bpea)]n@BCP (1a–e), and the specific values for [FeLeq(bpee)]n (2)/[FeLeq(bpey)]n (3) and 

the composite materials [FeLeq(bpee)]n@BCP (2a–e)/[FeLeq(bpey)]n@BCP (3a–e) are given in 

brackets. The synthesis of the composite materials in toluene was done using the same procedures 

and amounts as described for THF. Due to the observation of microcrystals at a very early stage, 

the products were not characterized further. 

1 (2/3): 200 mg (0.45 mmol) [FeLeq(MeOH)2] and 206 mg (204 mg/202 mg) (1.125 mmol, 

2.5 equiv) bpea (bpee/bpey) were dissolved in 20 mL THF in a 50 mL flask. The solution was 

refluxed for 1 h. After cool-down to room temperature, the solution was let for crystallisation 

overnight. The solid was filtered, washed with THF once and dried in vacuo to yield a brown (dark 

violet) powder. Elemental analysis, Anal. calcd for C30H30N4O4Fe (1): C, 63.61; H, 5.34; N, 9.89; 

found: C, 62.91; H, 5.19; N, 9.22; (Anal. calcd for C30H28N4O4Fe (2): C, 63.84; H, 5.00; N, 9.93; found: 
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C, 63.15; H, 6.05; N, 9.18/Anal. calcd for C30H26N4O4Fe (3): C, 64.07; H, 4.66; N, 9.96; found: C, 

63.63; H, 4.77; N, 9.25). 

1a, one cycle (2a/3a): 50 mg (0.33 µmol) PS-b-P4VP and 6.7 mg (15 µmol) [FeLeq(MeOH)2] were 

dissolved in 20 mL THF in a 50 mL flask. The solution was refluxed for 2 h. After, 6.9 mg 

(6.8 mg/6.8 mg) (37.5 µmol, 2.5 equiv) bpea (bpee/ bpey) was added and refluxed again for 1 h. 

The solution was cooled down to room temperature and the solvent was removed via cold 

distillation to yield a brown, polymer-like solid. Elemental analysis, found: C, 64.96; H, 7.44; N, 

2.82; (C, 71.23; H, 7.24; N, 3.10/C, 59.99; H, 7.46; N, 2.48). 

1b, two cycles (2b/3b): The synthesis for one cycle was repeated. Prior to solvent removal, 6.7 mg 

(15 µmol) [FeLeq(MeOH)2] and 6.9 mg (6.8 mg/6.8 mg) (37.5 µmol, 2.5 equiv) bpea (bpee/bpey) 

were added for a new cycle and refluxed for another hour. The solvent was removed via cold 

distillation to yield a dark brown, polymer-like solid. Elemental analysis, found: C, 61.98; H, 7.35; 

N, 3.38; (C, 59.75; H, 7.43; N, 3.37/C, 57.18; H, 7.42; N, 3.05). 

1c, three cycles (2c/3c): The synthesis for two cycles was repeated and one more cycle was 

carried out. 6.7 mg (15 µmol) [FeLeq(MeOH)2] and 6.9 mg (6.8 mg/6.8 mg) (37.5 µmol, 2.5 equiv) 

bpea (bpee/bpey) were added and refluxed for another hour before the solvent was removed via 

cold distillation to yield a dark brown, polymer-like solid. Elemental analysis, found: C, 69.43; H, 

7.30; N, 5.00 (C, 63.08; H, 7.21; N, 3.71/C, 70.94; H, 6.67; N, 4.88). 

1d, four cycles (2d/3d): The synthesis for three cycles was repeated and one more cycle was run. 

6.7 mg (15 µmol) [FeLeq(MeOH)2] and 6.9 mg (6.8 mg/6.8 mg) (37.5 µmol, 2.5 equiv) bpea 

(bpee/bpey) were added and refluxed for another hour before the solvent was removed via cold 

distillation to yield a dark brown, polymer-like solid. Elemental analysis, found: C, 68.18; H, 6.55; 

N, 5.64 (C, 71.09; H, 6.79; N, 5.90/C, 68.04; H, 6.18; N, 5.48). 

1e, five cycles (2e/3e): The synthesis for four cycles was repeated and one more cycle was run. 

6.7 mg (15 µmol) [FeLeq(MeOH)2] and 6.9 mg (6.8 mg/6.8 mg) (37.5 µmol, 2.5 equiv) bpea 

(bpee/bpey) were added and refluxed for another hour before the solvent was removed via cold 

distillation to yield a dark brown, polymer-like solid. Elemental analysis, found: C, 68.09; H, 6.97; 

N, 5.86; (C, 68.12; H, 6.63; N, 6.09/C, 65.92; H, 6.04; N, 5.70). 

The colour of the samples became darker with increasing cycles due to the higher amount of iron 

inside the samples. The increasing nitrogen content in the elemental analysis from a–e also 

confirms the increasing amount of coordination polymer in the samples. 
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6.4.2. Characterisation methods 

Transmission electron microscopy: Transmission electron microscopy was carried out at a 

Zeiss CEM902 electron microscope (Zeiss, Oberkochen, Germany). Samples were dispersed in 

toluene applying vortex. The solution was dropped on a copper grid (mesh 200, Science Services, 

Munich). Electron acceleration voltage was set to 80 kV. Micrographs were taken with a MegaView 

III/iTEM image acquiring and processing system from Olympus Soft Imaging Systems (OSIS, 

Münster, Germany) and an Orius 830 SC200W/DigitalMicrograph system from Gatan (Munich, 

Germany). Particles size measurements were done with “ImageJ” image processing software by 

Wayne Rasband (National Institutes of Health, USA). 

Elemental analysis: Carbon, nitrogen and hydrogen content was measured using a Vario EL III 

with acetanilide as standard. The samples were placed in tin boats and measured at least twice. 

The average of the measurements was used. 

Infrared spectroscopy measurements: Transmission infrared spectra were collected using a 

Perkin Elmer Spectrum 100 FTIR (ATR). The samples were measured directly as solids. 

Magnetic measurements: Magnetic susceptibility measurements were performed with a 

Quantum Design MPMS-XL-5 SQUID magnetometer. Field strength of 3 T was applied and a 

temperature range of 50–300 K was used to determine the temperature dependency of the 

magnetism and the spin-crossover behaviour. Settle mode was used in all measurements with a 

cooling and heating rate of 5 K min-1. The samples were prepared in gelatine capsules placed in a 

plastic straw. The measured values were corrected for the diamagnetism of the sample holder, the 

polymer matrix (measured values) and the ligand (tabulated Pascal constants). 

Dynamic light scattering: The samples were measured using a Malvern Instruments Zetasizer 

Nano ZS90 in glass cuvettes from Carl Roth GmbH + Co. KG at 25 °C. One measurement consisted 

of three consecutive runs. 

Mössbauer spectroscopy: 57Fe Mössbauer spectra were recorded in transmission geometry 

under constant acceleration using a conventional Mössbauer spectrometer with a 50 mCi 

57Co(Rh) source. The samples were sealed in the sample holder in an argon atmosphere. The 

spectra were fitted using Recoil 1.05 Mössbauer Analysis Software.[62] The isomer shift values are 

given with respect to α-Fe as reference at room temperature. At present, only measurements at 

room temperature are possible with the instrumental setup. 

Powder X-ray diffraction: Powder X-ray diffraction data for all samples were collected at a STOE 

StadiP X-Ray diffractometer in transmission geometry in a 2Θ range of 5-30°. Samples 1, 2 and 3 

were placed in capillaries and composite samples 1a–3e were placed on flat surfaces. Cu Kα1 
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radiation was used for the measurement and the radiation was detected with a Mythen 1K 

detector. 
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6.7. Supporting Information 

 

Figure S1: Comparison of the powder X-ray diffraction pattern of [Fe(Leq)(bpea)]n (1) and 

{[Fe(Leq)(bpea)]⋅0.25 MeOH}n (synthesised in methanol, calculated from single crystal data)[1]. 

 

Figure S2: Plot of the χMT product versus temperature for 2. 
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Figure S3: Mössbauer spectra of 1 (top), 2 (centre) and 3 (bottom). In each case one single doublet is observed with 

Mössbauer parameters (Table S1) characteristic for an iron(II) HS complex. 

Table S1: Mössbauer parameters of the samples 1, 2 and 3. 

sample site δ [mm/s] ΔEQ [mm/s] Γ [mm/s] Area [%] 

1 Fe(II) HS 0.947(3) 2.210(6) 0.147(5) 100 

2 Fe(II) HS 0.966(4) 2.216(7) 0.164(6) 100 

3 Fe(II) HS 0.944(3) 2.240(6) 0.156(5) 100 
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Figure S4: IR spectra of 1a–e (top left), 2a–e (centre left) and 3a–e (bottom left) and the relevant area between 2000 

and 750 cm-1 to show the C=O vibration band the samples 1a–e (top right), 2a–e (centre right) and 3a–e (bottom right). 
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Figure S5: Mössbauer spectra of 1e (left) and 3d (right). The red doublet corresponds to and iron(II) HS species and 

the blue doublet corresponds to an iron(II) LS species. The Mössbauer parameters are given in Table S2. 

Table S2: Mössbauer parameters of the samples 1d, 1e, 3d and 3e. 

sample site δ [mm/s] ΔEQ [mm/s] Γ [mm/s] Area [%] 

1d 
Fe(II) LS 0.28(11) 0.65(18) 0.24(14) 26(9) 

Fe(II) HS 0.951(14) 2.21(3) 0.132(19) 74(9) 

1e 
Fe(II) LS 0.34(6) 0.79(12) 0.17(8) 28(9) 

Fe(II) HS 0.951(14) 2.21(3) 0.12(2) 72(9) 

3d 
Fe(II) LS 0.28(6) 0.90(12) 0.12(6) 17(6) 

Fe(II) HS 0.95(2) 2.15(4) 0.17(2) 83(9) 

3e Fe(II) HS 0.958(12) 2.17(2) 0.161(18) 100 
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Figure S6: DLS measurement of the nanocomposites in THF, 43 wt%. Correlation functions of 1a–e (top left), 2a–e 

(centre left) and 3a–e (bottom left) and the resulting hydrodynamic diameter of the polymeric micelles in THF of 1a–e 

(top right), 2a–e (centre right) and 3a–e (bottom right). 
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Table S3: Summarised characterisation for the different composite samples (1a–3e). An exemplary TEM picture and 

the size distribution are given for TEM measurements. The particle sizes are given in the pictures. 

Sample 
Reaction 

conditions 

TEM nanoparticles, TEM size distribution, TEM microcrystals (if any) and 

Mössbauer spectra (if any) 

1a 

1 cycle, 

THF, 

reflux 

 

1b 
2 cycles, THF, 

reflux 

 

1c 
3 cycles, THF, 

reflux 

 

1d 
4 cycles, THF, 

reflux 
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1e 
5 cycles, THF, 

reflux 

 

2a 
1 cycle, THF, 

reflux 

 

2b 
2 cycles, THF, 

reflux 
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2c 
3 cycles, THF, 

reflux 

 

2d 
4 cycles, THF, 

reflux 

 

 

2e 
5 cycles, THF, 

reflux 
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3a 
1 cycle, THF, 

reflux 

 

3b 
2 cycles, THF, 

reflux 

 

3c 
3 cycles, THF, 

reflux 

 

3d 
4 cycles, THF, 

reflux 
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3e 
5 cycles, THF, 

reflux 

 

 

 

 

Figure S7: Exemplary TEM picture of [FeLeq(bpea)]n@BCP after two cycles synthesised in toluene to show 

microcrystals of the coordination polymer. 



6. Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles 
 

 
- 77 - 

 

Figure S8: Powder X-ray diffraction pattern of 1 and 1a–e (top), 2 and 2a–e (centre) and 3 and 3a–e (bottom). 
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Figure S9: χMT vs T plots of the samples 1d (top left), 1e (top right), 3d (bottom left) and 3e (bottom right). The results 

for the samples 2d (centre left) to 2e (centre right) are identical to the bulk material [FeLeq(bpee)]n; the χMT product is 

constant in the temperature region investigated and no indication for spin crossover is observed. This is not surprising, 

as relatively large microcrystals are observed. 

References 

[1] W. Bauer, W. Scherer, S. Altmannshofer, B. Weber, Eur. J. Inorg. Chem. 2011, 2803–2818. 



7. Confined Crystallization of Spin‐Crossover Nanoparticles in Block‐Copolymer Micelles 
 

 
- 79 - 

7. Confined Crystallization of Spin‐Crossover Nanoparticles in Block‐

Copolymer Micelles 

Christoph Göbel, Christian Hils, Markus Drechsler, Dirk Baabe, Andreas Greiner, Holger Schmalz,* 

and Birgit Weber* 

 

C. Göbel, Prof. Dr. B. Weber, Department of Chemistry, Inorganic Chemistry IV, Universität 

Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany) 

C. Hils, Department of Chemistry, Macromolecular Chemistry II, Universität Bayreuth, 

Universitätsstr. 30, 95440 Bayreuth (Germany) 

Prof. Dr. A. Greiner, Dr. H. Schmalz, Department of Chemistry, Macromolecular Chemistry II and 

Keylab Synthesis and Molecular Characterization, Bavarian Polymer Institute, Universität 

Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany) 

M. Drechsler, Keylab Electron and Optical Microscopy, Bavarian Polymer Institute, Universität 

Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany) 

Dr. D. Baabe, Institut für Anorganische und Analytische Chemie, Technische Universität 

Braunschweig, Hagenring 30, 38106 Braunschweig (Germany) 

 

Published in Angew. Chem. Int. Ed. 2020, 59, 5765–5770 (doi: 10.1002/anie.201914343) and 

reproduced under the terms of the CC-BY-NC-ND 4.0 license. 

 

Abstract: Nanoparticles of the spin-crossover coordination polymer [FeL(bipy)]n were 

synthesized by confined crystallization within the core of polystyrene-block-poly(4-

vinylpyridine) (PS-b-P4VP) diblock copolymer micelles. The 4VP units in the micellar core act as 

coordination sites for the Fe complex. In the bulk material, the spin-crossover nanoparticles in the 

core are well isolated from each other allowing thermal treatment without disintegration of their 

structure. During annealing above the glass transition temperature of the PS block, the transition 

temperature is shifted gradually to higher temperatures from the as-synthesized product 

(T1/2↓ = 163 K and T1/2↑ = 170 K) to the annealed product (T1/2↓ = 203 K and T1/2↑ = 217 K) along 

with an increase in hysteresis width from 6 K to 14 K. Thus, the spin-crossover properties can be 

shifted towards the properties of the related bulk material. The stability of the nanocomposite 

allows further processing, such as electrospinning from solution. 
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7.1. Introduction 

The synthesis of nanoparticles (NPs) of functional materials is often considered an important step 

towards application.[1] A highly relevant aspect to consider is the stability of the obtained NPs, the 

conservation of their functional properties down to very small sizes (if possible the observation 

of additional size-dependent properties) and the suitability for integration into devices. The spin 

crossover (SCO) phenomenon has gained interest in many different fields over the last decades.[2-6] 

SCO complexes can be switched between two states, the high-spin (HS) and the low-spin (LS) 

state, by a wide range of external stimuli[7] such as temperature, pressure, light irradiation or the 

inclusion of guest molecules.[4,8] Furthermore, the physical properties of either the complex itself 

(e.g. color, magnetism, structure)[5,9] or associated properties in multifunctional systems (e.g. 

conductivity,[10] luminescence[11]) change upon switching and raise their interest for applications, 

especially as sensors.[12] In order to realize such applications, an easy processing of the complexes 

is indispensable for the integration in devices. This task (including down-sizing) is challenging as 

most of the SCO properties, especially the observation of wide thermal hysteresis loops, depend 

on the crystal packing.[6] So far, to our knowledge, only five examples are known in which thermal 

hysteresis loops can be maintained for particle sizes below 20 nm.[13–16] In general, SCO systems 

are excellently suited to investigate the influence of decreasing particle size,[15,17–19] crystallinity 

and matrix effects[16,20–22] on the nanomaterial as a wide range of different methods can be used to 

follow the SCO. Those investigations lead to the observation of different phenomena like the 

predicted re-appearance of hysteresis loops below a 8 nm particle size[18] or the stabilizing effect 

of a rigid SiO2 shell on the hysteresis for 10 nm[16] particles as well as larger ones.[22] In a prior 

work, we reported a new approach for the synthesis of narrowly distributed 50 nm SCO 

nanoparticles within the P4VP cores of PS-b-P4VP block copolymer (BCP) micelles, where a shift 

of the SCO transition temperature to lower temperatures and a significantly smaller thermal 

hysteresis loop was observed.[23,24] Herein, we show that it is possible to trigger the crystallization 

of even smaller nanoparticles in the micellar confinement, if the material is heated above the glass 

transition temperature of the PS shell. This leads to a significant improvement of the SCO 

properties down to particle sizes as small as 16 nm. 
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7.2. Results and Discussion 

The spin crossover coordination polymer–block copolymer (SCO CP-BCP) composite particles 

were synthesized as described previously by dissolving the PS-b-P4VP diblock copolymer 

(S85V15154 : subscripts denote content of the respective block in wt%, superscript gives the number 

average molecular weight in kg mol-1) and the complex [FeL(MeOH)2] in tetrahydrofuran (THF) 

followed by subsequent addition of the bridging ligand 4,4’-bipyridine (bipy) and iron complex 

under reflux conditions (Scheme 1, see Supporting Information for details).[20] 

 

Scheme 1: General synthesis approach and abbreviations used. 

In total five cycles of addition of complex and bridging ligand were carried out, leading to a ratio 

of about 33.5 mg of iron complex in 50 mg BCP. Raman measurements on the produced SCO CP-

BCP composite particles revealed identical Raman spectra compared to that observed for the neat 

SCO CP crystals, confirming the successful formation of SCO CP in the micellar core of the S85V15
154 

micelles (Figure S1 in the Supporting Information); also confirmed by IR spectroscopy 

(Figure S2). The average hydrodynamic diameter of the SCO CP-BCP particles in solution was 

determined to Dh = 87 ± 37 nm (Figure 1E, for corresponding autocorrelation function see 

Figure S3) by dynamic light scattering (DLS), which is slightly larger compared to that of the 

empty BCP micelles (Dh = 75 ± 28 nm, Figure 1C and Figure S3). This might be attributed to the 

incorporation of the SCO CP inside the P4VP core of the micelle. The different sizes are also 

reflected in the cryo-TEM pictures for the empty BCP micelles (Figure 1A) and the SCO CP-BCP 
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particles (Figure 1D). Cryo-TEM confirms the spherical shape of both the empty BCP micelle cores 

with a size of 26 ± 2 nm (Figure 1C) as well as the composite nanoparticles with a size of 34 ± 5 nm 

(Figure 1F). 

 

Figure 1: Cryo-TEM image of the narrowly dispersed spherical BCP micelles (A) with the hydrodynamic diameter 

distribution determined by DLS (B) and the size distribution derived from the image (C). Cryo-TEM image of the 

narrowly dispersed spherical SCO CP-BCP particles (D) with the hydrodynamic diameter distribution determined by 

DLS (E) and the size distribution derived from the image (F). (Corresponding DLS autocorrelation functions of both 

samples can be found in Figure S3.) 

  



7. Confined Crystallization of Spin‐Crossover Nanoparticles in Block‐Copolymer Micelles 
 

 
- 83 - 

TEM measurements of the SCO CP-BCP composite particles in the dry state, clearly reveal the core-

shell structure of the particles, with the dark appearing domains corresponding to the P4VP core 

containing the iron CP and the grey appearing domains to the PS block forming the shell 

(Figure 2C). For the size distribution of the particles only the core of the particles was measured 

and a core diameter of Dcore = 16 ± 2 nm is obtained (Figure 2E), while the empty BCP micelle cores 

have a diameter of Dcore = 15 ± 2 nm (Figure 2B). The coordination of the paramagnetic complex 

[FeL] to the P4VP units is also confirmed by the paramagnetic shift of the 4VP signals in the 1H 

NMR spectrum of the nanocomposite (Figure S11) compared to the pure BCP. 

 

Figure 2: TEM image of the empty BCP micelles (A) with size distribution of the P4VP cores (B). TEM image of the 

narrowly dispersed SCO CP-BCP particles at low (C) and high (D) magnifications with size distribution of the SCO CP-

BCP composite cores (E). 
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The magnetic properties of the SCO CP-BCP composite particles were analyzed using 

temperature-dependent magnetic measurements and Mössbauer spectroscopy. The room 

temperature Mössbauer spectrum of the composite allows to identify the different iron species 

that may occur during the synthesis and is given in Figure S4.[20] It shows one distinct doublet that 

can be attributed to a FeII HS species. The doublet has an isomer shift δ of 0.937(6) mm s-1, a 

quadrupole splitting ΔEQ of 2.177(13) mm s-1 and a line width (HWHM) of 0.193(10) mm s-1 that 

is characteristic for the CP [FeL(bipy)]n.[23] Figure 3 shows the χMT vs. T plot for the sample 

measured in sweep and settle mode to investigate the effect of the BCP confinement and thermal 

annealing on the SCO properties of the CP. Different cooling and heating cycles were performed 

to trace the change of the spin transition regarding final χMT values, transition temperature and 

hysteresis width. A pure FeII HS compound of the used CP typically has a χMT value of around 

3.25 cm3 K mol-1 at 300 K. Since the Mössbauer spectrum shows that the compound is a pure HS 

FeII species, the starting value of the as-synthesized product is adjusted to 3.25 cm3 K mol-1 at 

300 K. All information on cooling and heating cycles performed on the SCO CP-BCP are 

summarized in Table 1. Upon cycle 1 (black curve, Figure 3A) down to 50 K the χMT value stays 

approximately constant down to 200 K, where a rather gradual spin transition takes place with 

T1/2↓ = 163 K. The χMT value drops to 1.70 cm3 K mol-1 at 50 K leaving around 52% of the FeII 

centers in the HS state. Heating to 370 K reveals a 7 K wide hysteresis with T1/2↑ = 170 K. With 

cycles 2 to 5 the transition temperatures are shifted to higher temperatures, reaching 

T1/2↓ = 200 K and T1/2↑ = 217 K, while also lowering the χMT values at 50 K down to 

1.27 cm3 K mol-1 after cycle 5 (Table 1). Thus, the SCO is more complete after the annealing 

process revealing a molar fraction of high-spin molecules of γHS = 0.39. Although the CP is confined 

inside the micellar core, the hysteresis width of the SCO CP-BCP particles of 17 K is similar to the 

one of the bulk material (18 K). However, it is already known that a higher scan rate can lead to 

kinetic effects that broaden the hysteresis width.[6,26] These effects can be eliminated by using the 

settle mode because the effective scan rate is reduced, giving the system time to adapt to the 

changed temperature. Therefore, the final cooling and heating cycle 6 from 400 K to 50 K and back 

to 300 K is performed in settle mode to show that the change induced by the thermal treatment is 

persistent and the hysteresis is smaller in the composite particles (Figure 3A, pink). In fact, the 

transition is even more complete than the one measured in sweep mode with a χMT value of 

1.04 cm3 K mol-1 at 50 K (γHS = 0.32). This is in good agreement with the expected HS fraction of 

γHS = 0.22 for spherical 16 nm particles assuming that each iron center and the surrounding ligand 

occupies the space of 1 nm3. The hysteresis width is narrowed to 14 K with T1/2↓ = 203 K and 

T1/2↑ = 217 K (Table 1). 
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Figure 3: Magnetic susceptibility data for the SCO CP-BCP composite particles given as χMT vs. T plot measured in sweep 

and settle mode (A). The colors represent different cooling and heating cycles as stated in the bottom left corner. For 

comparison, the results for the bulk material[25] are included as well. TEM image of the SCO CO-BCP particles after 

annealing showing no agglomeration or enlargement of the particles (B). Size distribution of the particles derived from 

the given TEM image (C). 

Table 1: Data of the magnetic measurements for the different heating cycles. The measurement modes, transition 

temperatures, hysteresis widths and χMT values are given. 

# Heating cycle [K] Mode T1/2↓ [K] T1/2↑ [K] 
Hysteresis 

width [K] 

χMT at 50 K 

[cm³ K mol-1] 

1 300-50-370[a] sweep 163 170 7 1.70 

2 370-50-380[b] sweep 179 192 13 1.88 

3 380-50-400[c] sweep 192 207 15 1.69 

4 400-50-400[d] sweep 198 215 17 1.40 

5 400-50-300[e] sweep 200 217 17 1.27 

6 300-50-300[f] settle 203 217 14 1.04 

[a] Figure 3A, curve 1. [b] Figure 3A, curve 2. [c] Figure 3A, curve 3. [d] Figure 3A, curve 4. [e] Figure 3A, 

curve 5. [f] Figure 3A, curve 6. 



7. Confined Crystallization of Spin‐Crossover Nanoparticles in Block‐Copolymer Micelles 
 

 
- 86 - 

Temperature-dependent Mössbauer spectra were used to confirm the results from the magnetic 

measurements, the results are summarized in Table 2 and Table S1 and in Figure S12. Please note 

that due to the long measurement times only settle measurements are possible and the thermal 

annealing was done at 393 K for 1 h leading to HS fractions more comparable to curve 3 or 4 in 

Figure 3 (see Table 2). Thermogravimetric analysis (TGA) of the sample before the annealing 

process shows no significant mass loss (relative loss around 0.1% until 100 °C, Figure S5). This 

indicates that a loss of residual solvent cannot be responsible for the improved SCO behavior. 

Table 2: The molar fraction of high-spin molecules (γHS) determined by Mössbauer spectroscopy (see Table S1) and 

magnetic susceptibility measurements (see Figure 3). 

T [K] γHS[a] γHS[b] γHS[c] γHS[d] γHS[e] 

175[f] 0.80 0.86 0.68 0.63 0.58 

80 0.62 0.62 0.54 0.55 0.45 

175[g] 0.74 0.80 0.61 0.58 0.50 

[a], [d] Values determined by Mössbauer spectroscopy before and after annealing, respectively. [b], [c], [e] 

Values determined by magnetic susceptibility measurements (Figure 3, curves “1”, “3”, and “4”, 

respectively). [f] Data recorded upon cooling. [g] Data recorded upon heating. 

Moreover, the improved SCO behavior is also not a result of the formation of microcrystals or 

agglomerated particles due to the exposure to elevated temperatures as indicated by TEM and 

DLS measurements on the redispersed SCO CP-BCP particles taken after the magnetic 

measurement (Figure 3B and Figure S6). The TEM measurement of the sample after thermal 

annealing shows particles of similar size and shape compared to the ones before annealing with 

core sizes of 14 ± 2 nm (Figure 3C). Consequently, DLS underlines that the composite particles are 

still intact after annealing with an average Dh of 106 ± 67 nm (Figure S6). Further proof is given 

by SEM measurements that were performed before and after the annealing (Figure S7). No 

formation of microcrystals (>1 mm) or larger nanoparticles was observed. SEM-EDX 

measurements show that the iron is homogenously distributed throughout the sample. 

Temperature-dependent powder X-ray diffraction (PXRD) was measured to follow any change in 

the crystallinity of the sample caused by the annealing process (Figure 4). The sample was heated 

stepwise from RT to 333 K, 373 K, and 398 K and then cooled down back to RT to follow a possible 

change on the diffraction pattern induced by the temperature increase and to show that the 

changes are persistent after the annealing process. It was found that new reflexes appear at 

9.6 °2Θ and 15.4 °2Θ not before 373 K and remain when the sample was cooled down to RT. In 

contrast, a reflex at 25.8 °2Θ disappears at 373 K and above and remains absent back at RT. This 
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led to the conclusion that some sort of reorientation occurs inside the SCO CP-BCP composite 

particles at temperatures above the glass transition temperature of the PS (Tg (PS) = 383 K, 

Figure S9). After heating, the diffraction pattern shows more similarity with the one of the bulk 

material. 

 

Figure 4: Temperature-dependent powder X-ray diffraction of the SCOCP-BCP composite particles. 

The results indicate that by thermal treatment, especially when the composite particles are heated 

to and above Tg of the PS shell of 383 K, the crystallinity of the SCO CP inside the micellar core is 

improved because the PS chains become flexible, allowing the SCO CP to reorder inside the 

polymeric micelle. 

The synthesized SCO CP-BCP particles can be used to prepare PS/SCO CP composite fibers by 

electrospinning, a widely used technique employed for the production of polymer fibers of various 

shapes and properties.[27] Figure 5A shows PS/SCO CP composite fibers, which were spun from a 

mixture of PS (Mn = 97 000 g mol-1, Ð = 1.02) and SCO CP-BCP particles in THF on aluminum foil 

(details on electrospinning can be found in the SI). The obtained color is typical for iron complexes 

of this ligand type, however, probably due to the remaining HS fraction, no significant color change 

upon cooling was observed. The presence of the SCO complex particles in the fibers was confirmed 

by Raman imaging (Figure 5B,C). A very low laser power of 0.1 mW was employed, where only 

the SCO complex shows a Raman signal and, thus, a selective detection of the SCO complex in the 

composite fibers is possible. The overlay of the digital photograph with the Raman image clearly 

confirms the presence of the SCO complex (colored in red, Figure 5B) in the fibers. Moreover, the 
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Raman spectra of the SCO complex in the neat SCO CP-BCP particles and in the composite fibers 

are identical, showing that electrospinning does not alter the structure of the SCO complex. 

 

Figure 5: Digital photograph of electrospun PS/SCO CP composite fibers on aluminum foil (A), digital photograph of a 

single fiber overlaid with the color-coded 2D Raman image (B) and corresponding Raman spectra (C) of the SCO CP in 

the BCP micelles (black) and in PS fibers (red). As the SCO CP crystals in the micellar core are strong Raman scatterers, 

Raman imaging with a very low laser intensity of 0.1 mW allows a selective detection of the SCO CP particles in the 

composite fibers. Under these conditions PS shows no Raman signal. 

7.3. Conclusion 

In conclusion, we have shown that the transition temperature of the SCO CP-BCP [FeL(bipy)]n can 

be shifted gradually by thermal annealing. Starting with the as-synthesized product and the 

transition temperatures T1/2↓ and T1/2↑ of 163 K and 170 K respectively, the transition 

temperature is shifted 40 K to higher temperatures to reach its final state after several annealing 

steps with T1/2↓ = 203 K and T1/2↑ = 217 K. Furthermore, the hysteresis width is also broadened 

by the annealing process from 6 K (sweep) for the as-synthesized product to 17 K (sweep) for the 

annealed product. The subsequent susceptibility measurement in settle mode showed that the 
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change in the transition temperature is persistent with a hysteresis width of 14 K and an improved 

completeness of the spin transition from γHS = 0.52 to γHS = 0.32. Magnetic susceptibility, TGA and 

temperature-dependent PXRD data support the assumption that the transition temperature 

change is a consequence of the thermal annealing and recrystallization instead of a solvent loss of 

the sample or particle agglomeration. The demonstrated approach is potentially applicable to 

other polymeric SCO systems and offers an approach to fine-tune the transition temperatures by 

different polymer shells. It will be especially interesting to explore other linear polymers, such as 

the triazole-based systems that, with the methods used so far, often show stable hysteresis loops 

down to very small particle sizes.[13,19,20,22,28] The question arises if the different NP synthesis 

approaches (interaction with the polymer shell vs. surfactant) or differences in the SCO complexes 

(steric demand of the ligands, intermolecular interactions responsible of the observation of the 

hysteresis) are relevant factors. With regard to the relatively high remaining HS fraction observed, 

this can be clearly denoted to the ligand system, with the more bulky Schiff base-like ligands 

compared to the triazoles leading to a higher fraction of complexes on the surface not undergoing 

SCO. Thus, an increase in particle size should lead to a reduction of the remaining HS fraction. With 

the still relatively limited data available, the other questions can so far not be answered 

satisfactorily and are still under investigation. Furthermore, the SCO CP-BCP composite particles 

are suitable for polymer processing techniques, such as electrospinning, employing a mixture with 

PS as fiber-forming matrix. 
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7.7.2. General Procedures 

Materials: All SCO CP-BCP syntheses were performed under inert conditions using argon 5.0 

(purity ≥ 99,999%) using Schlenk tube technique. The synthesis of the sample was repeated at 

least twice. Tetrahydrofuran (THF, Fischer Scientific, ≥ 99.8%) for anionic polymerization was 

purified by successive distillation over calcium hydride (CaH2, Merck) and potassium (K, Sigma-

Aldrich) under N2 atmosphere. Styrene (S, Sigma-Aldrich, > 99%) was purified over dibutyl 

magnesium (Bu2Mg, Sigma-Aldrich, 1M in heptane) and 4-vinylpyridine (4VP, Acros Organics, 

95%) over triethyl aluminum (Et3Al, Sigma-Aldrich, 1M in heptane), respectively, followed by 

condensing into storage ampoules. 1,1-Diphenylethylene (DPE, Acros Organics, 98%) was 

purified by addition of sec-butyl lithium (sec-BuLi, Acros Organics, 1.3M in cyclohexane/hexane 

92/8) and subsequent distillation. 4,4´-bipyridine was obtained from Alfa Aesar and used as 

received. THF p.a. for the SCO synthesis was obtained from Bernd Kraft and degassed with argon 

for at least 30 min. [FeL(MeOH)2] was synthesized as described before.[1] THF for electrospinning 

(THF, ≥ 99.8%, Fisher Chemical, degassed with argon and consecutive freeze-pump-thaw cycles), 

polystyrene for electrospinning (PS, Mn = 97 000 g mol-1, Ð = 1.02, synthesized by anionic 

polymerization and reprecipitated from MeOH). 

Transmission electron microscopy (TEM) was taken at a Zeiss CEM902 electron microscope 

(Zeiss, Oberkochen, Germany) and a JEOL 2200FS electron microscope. Samples were dissolved 

in THF. The solution was dropped on a carbon coated copper grid (mesh 200, Science Services, 

Munich). Electron acceleration voltage was set to 80 kV (CEM902) and 200 kV (JEOL 2200FS). 

Micrographs were taken with a MegaView III / iTEM image acquiring and processing system from 

Olympus Soft Imaging Systems (OSIS, Münster, Germany) and an Orius 830 SC200W / 

DigitalMicrograph system from Gatan (Munich, Germany). Particles size measurements were 

done with “ImageJ” image processing software developed by Wayne Rasband (National Institutes 

of Health, USA). 

Dynamic light scattering (DLS) measurements were done at an AntonPaar Litesizer 500 in 

quartz glass cuvettes from Helma at 25 °C. One measurement consists of six consecutive runs. 

Temperature-dependent powder X-ray diffraction (T-PXRD) pattern were recorded using a 

Bragg-Brentano type diffractometer (X’PERT-Pro, PANalytical with CuKα-radiation (λ = 1.541 Å), 

equipped with a secondary monochromator to suppress fluorescence. The sample was placed on 

a flat surface in a flowing nitrogen atmosphere in an XRK chamber during the measurement. 

Magnetic susceptibility measurements were performed at a Quantum Design MPMS-XL-5 SQUID 

magnetometer. Field strength of 3 T was applied and a temperature range of 50 – 400 K was used 

to determine the temperature dependency of the magnetism and the spin crossover behavior. 
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Sweep mode was used for the five cycles with a cooling and heating rate of 5 K min-1. The final 

measurement was performed in settle mode with a cooling and heating rate of 5 K min-1 between 

50 K and 300 K. The samples were prepared in gelatin capsules placed in a plastic straw. The 

measured values were corrected for the diamagnetism of the sample holder, the polymer matrix 

(measured values) and the ligand (tabulated Pascal constants). 

The room temperature 57Fe Mössbauer spectrum was recorded in transmission geometry with 

constant acceleration using a conventional Mössbauer spectrometer with a 50 mCi 57Co(Rh) 

source. The samples were sealed in the sample holder in an argon atmosphere. The spectra were 

fitted using Recoil 1.05 Mössbauer Analysis Software.[2] The isomer shift values are given with 

respect to a α-Fe reference at room temperature. 

Additional zero-field 57Fe Mössbauer measurements on polycrystalline powders of SCO CP-BCP 

were also conducted at variable temperatures between T = 80 and 300 K. A conventional 

transmission spectrometer with sinusoidal velocity sweep and a CryoVac continuous-flow 

cryostat were used for these measurements. After positioning the sample container, the sample 

chamber was evacuated, flushed five times with nitrogen gas, and kept at ca. 50 – 100 mbar during 

the measurement. The temperature was measured with a calibrated silicon diode located close to 

the sample container, providing a temperature stability of better than 0.1 K. The nominal activity 

of the 57Fe Mössbauer source used was 50 mCi of 57Co in a rhodium matrix, stored at ambient 

temperatures during the measurement. Velocity calibration was done with an α-iron foil at 

ambient temperature and the minimum experimental line width (FWHM) was < 0.24 mm s-1. 

Isomer shifts (δ) were specified relative to metallic iron at room temperature but were not 

corrected in terms of the second-order Doppler shift. The spectra were analyzed by least-square 

fits using doublets of Lorentzian lines utilizing the software package NORMOS.[3] 

Carbon, nitrogen and hydrogen contents were collected at a Vario EL III with acetanilide as 

standard. The samples were placed in tin boats and measured at least twice. The average of the 

measurements was used. 

Transmission infrared (IR) spectra were collected from a Perkin Elmer Spectrum 100 FT-IR 

(ATR). The samples were measured directly as solids. 

Raman spectra were recorded with a confocal WITec Alpha 300 RA+ Raman microscope equipped 

with a UHTS 300 spectrometer and a back-illuminated Andor Newton 970 EMCCD camera. A 

frequency-doubled Nd-YAG laser with a wavelength of λ = 532 nm was used as the excitation 

source. All measurements were conducted using a 50 × long working distance (NA = 0.7, lateral 

resolution ca. 500 nm) Zeiss objective. The laser power used was 0.1 mW for the neat SCO CP 

crystals as well as the SCO CP-BCP particles and 10 mW for the neat S85V15154 diblock copolymer, 
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respectively. The instrument was operated by the integrated Witec Control Five software (version 

5.1). All spectra were subjected to a cosmic ray removal routine and baseline correction using 

Witec Project Five software (version 5.1). 

Thermogravimetric analysis (TGA) was performed on a Netzsch TG 209F1 Libra under 

nitrogen. The samples were heated from 25-600 °C at a heating rate of 10 K min-1. 

For gel permeation chromatography (GPC) in N,N-dimethylformamide (DMF) with lithium 

bromide (5 g L-1), GRAM columns (300 x 8 mm, 10 µm particle size, PSS Mainz) with 100 and 

3000 Å pore sizes were used. The sample was measured on a SEC 1260 Infinity system (Agilent 

Technologies) at a flow rate of 0.5 mL min-1 at 23 °C, using a refractive index detector (Agilent 

Technologies). The calibration was done with narrowly distributed polystyrene standards (PSS 

calibration kit) and toluene (HPLC grade) was used as internal standard. 

MALDI-ToF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) 

measurements were performed on a Reflex III (Bruker) equipped with a N2 laser (λ = 337 nm). An 

acceleration voltage of 20 kV was used in linear mode and the samples were prepared according 

to the dried droplet method. Therefore, matrix (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene]malononitrile (DCTB), 10 g L-1 in THF), analyte (10 g L-1 in THF) and salt (silver 

trifluoroacetate, 10 g L-1) were dissolved and mixed in the ratio of 20 : 5 : 1 and 0.5 µL of the 

mixture was placed and dried on the target plate. 

1H-NMR spectra were acquired with a Bruker Ultrashield 300 spectrometer using CDCl3 as 

solvent. 

For cryo transmission electron microscopy studies, a sample droplet of 2 µL was put on a lacey 

carbon filmed copper grid (Science Services, Munich, Germany). Subsequently, most of the liquid 

was removed with blotting paper leaving a thin film stretched over the lace holes. The specimens 

were instantly shock frozen by rapid immersion into liquid nitrogen cooled to approximately 90 K 

in a temperature-controlled freezing unit (Zeiss Cryobox, Carl Zeiss Microscopy GmbH, Jena, 

Germany). The temperature was monitored and kept constant in the chamber during all the 

sample preparation steps. The specimen was inserted into a cryotransfer holder (CT3500, Gatan, 

Munich, Germany) and transferred to a Zeiss / LEO EM922 Omega EFTEM (Zeiss Microscopy 

GmbH, Jena, Germany). Examinations were carried out at temperatures around 90 K. The TEM 

was operated at an acceleration voltage of 200 kV. Zero-loss filtered images (DE = 0 eV) were 

taken under reduced dose conditions (100 – 1000 e/nm2). All images were registered digitally by 

a bottom mounted CCD camera system (Ultrascan 1000, Gatan, Munich, Germany) combined and 

processed with a digital imaging processing system (Digital Micrograph GMS 1.9, Gatan, Munich, 

Germany). 
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The differential scanning calorimetry (DSC) measurements were performed on a Phoenix 204 

F1 (Netzsch) under nitrogen atmosphere, using aluminum crucibles (temperature range: 

20 – 200 °C, scanning rates: 10, 20 and 30 K min-1). 

Scanning electron microscopy (SEM) micrographs were taken on a Zeiss LEO 1530 GEMINI. The 

acceleration voltage was set to 3 kV and the sample was sputter-coated with a 1.3 nm platinum 

layer. Scanning electron microscopy – energy dispersive X-Ray spectroscopy (SEM-EDX) were 

performed on the same device with an acceleration voltage of 15 kV. 

7.7.3. Synthesis Procedures 

Synthesis of the BCP S85V15154 

The PS-b-P4VP diblock copolymer (S85V15154, ratio PS/P4VP = 85/15 (w/w), Mn = 154 000 g mol-1, 

Ð = 1.02 (DMF-GPC)) was synthesized by sequential living anionic polymerization in THF using a 

laboratory autoclave (1 L, Büchi AG). Styrene was polymerized first for 30 min using sec-BuLi as 

initiator at-80 °C. After complete conversion of styrene a sample was taken for GPC and MALDI-

ToF analyses. Subsequently, 1,1-diphenylethylene was added to the living polystyryllithium 

(equimolar amount to initiator), followed by the addition of 4-vinylpyridine (4VP). After 4 h the 

polymerization was terminated with degassed methanol followed by precipitation in deionized 

water to isolate the diblock copolymer. The molecular weight of the PS-b-P4VP diblock copolymer 

was determined from 1H-NMR (CDCl3, Figure S10), employing the absolute molecular weight of 

the PS precursor obtained by MALDI-ToF MS (Mn (PS) = 131 000 g mol-1) for signal calibration. 

Synthesis of the SCO CP-BCP composite 

50 mg S85V15154 and 6.7 mg (15 µmol) [FeL(MeOH)2] were dissolved in 20 mL THF in a 50 mL 

Schlenk flask. The solution was refluxed for 2 h. After cooling, 5.9 mg (37.5 µmol, 2.5 eq) 

4,4’-bipyridine was added and the solution refluxed again for 1 h. After a short cool down to RT, 

6.7 mg (15 µmol) [FeL(MeOH)2] and 5.9 mg (37.5 µmol, 2.5 eq) 4,4’-bipyridine were added 

simultaneously and the solution was refluxed again for 1 h. The simultaneous addition of the 

reactants and the subsequent reflux of the solution were repeated three more times. In total, 

33.5 mg [FeL(MeOH)2] and 29.5 mg 4,4’-bipyridine were added to the 50 mg polymer. 

Consecutively, the solvent was removed by cold distillation and the resulting dark brown 

polymeric solid was dried in vacuo. Elemental anal. (%) found: C 67.06, H 6.59, N 5.85. 

Electrospinning 

For the preparation of PS/SCO CP composite fibers the SCO CP-BCP particles were dispersed in 

degassed THF (2.5 g L-1), followed by the addition of PS (19 wt%). The fibers were spun on a 



7. Confined Crystallization of Spin‐Crossover Nanoparticles in Block‐Copolymer Micelles 
 

 
- 98 - 

rotating disk collector (D = 13 cm, 60 rpm) placed at a distance of 11 cm from the stainless-steel 

needle (d = 0.90 mm) at a temperature of 21.7 °C and a relative humidity of ca. 30%. For 

electrospinning, a high voltage of 10.5 kV at the needle and -1.0 kV at the collector were applied. 

The feed rate of the solution was 1.2 mL h-1. 

7.7.4. Characterization 

Raman 

Figure S1: A) Digital photograph of neat SCO CP crystals, the position for Raman measurements is indicated by a red 

cross. B) Raman spectra of the neat S85V15154 diblock copolymer and the neat SCO CP with polarization of the excitation 

laser parallel (red) and vertical (blue) to the long axis of the SCO CP crystal shown in A). C) Raman spectra of SCO CP-

BCP particles taken at different positions, showing identical Raman spectra with respect to that observed for the neat 

SCO CP crystals. The spectra in B) and C) were shifted vertically for a better comparison. The neat SCO CP crystals are 

strong Raman scatterers, which allows measurements at very low laser intensities of 0.1 mW. Under these conditions 

the neat S85V15154 diblock copolymer gives almost no Raman signals. Thus, for the SCO CP-BCP particles only Raman 

bands attributable to the SCO CP are visible. 

 



7. Confined Crystallization of Spin‐Crossover Nanoparticles in Block‐Copolymer Micelles 
 

 
- 99 - 

IR 

Figure S2: IR spectrum of the SCO CP-BCP composite (green), the bulk [FeL(bipy)]n (red) and the S85V15154 diblock 

copolymer (BCP, black). 

 

DLS autocorrelation functions of the empty BCP micelles and the SCO CP-BCP composite 

particles 

Figure S3: Autocorrelation function g2(t)-1 of the empty BCP micelle (left) and the SCO CP-BCP particles (right) 

corresponding to the size distribution graphs of Figure 1B and 1E in the manuscript. 
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Mössbauer spectroscopy of the SCO CP-BCP composite particles 

Figure S4: Room temperature 57Fe Mössbauer spectrum of the SCO CP-BCP composite showing only one doublet for 

the CP. The spectrum is displayed in respect to α-Fe as reference. 

 

TGA of the SCO CP-BCP composite particles 

Figure S5: TGA measurement of the SCO CP-BCP showing no significant mass loss until 100 °C indicating that no 

residual solvent is present in the composite. 
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DLS of the SCO CP-BCP composite particles after annealing 

Figure S6: Autocorrelation function g2(t)-1 vs. t (left) and the size distribution of the particles (right) of redissolved 

sample after the thermal annealing process. 
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SEM and SEM-EDX of the SCO CP-BCP composite particles before and after annealing 

Figure S7: SEM images and SEM-EDX measurements of the sample before (left) and after thermal annealing (right). 

SEM-EDX measurements showing homogeneously distributed iron indicated by the green color. No indication for the 

formation of agglomerates or larger crystallites is observed. 
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DSC of the BCP 

Figure S8: DSC measurement of the pure PS-b-P4VP showing the glass transition temperature Tg for PS at 110 °C and 

P4VP at 156 °C. 

 

GPC of the BCP 

Figure S9: Size distribution of the pure S85V15154 measured by DMF-GPC. 
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NMR of the BCP 

Figure S10: 1H-NMR spectrum of S85V15154 diblock copolymer showing signals for the pyridine, styrene and aliphatic 

hydrogen atoms. 

Signal a has been normalized to 2 protons from the 4-vinylpyridine. Signal c from the 5 styrene protons and signal b 

from 2 remaining 4-vinylpyridine overlap. 

30.71 – 2 = 28.71 (styrene protons) 

28.71 / 5 = 5.742 

➔ P4VP : PS = 1 : 5.742 ➔ S85V15 
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NMR of the SCO CP-BCP 

Figure S11: 1H-NMR spectrum of SCO CP-S85V15154 diblock copolymer showing signals for the pyridine, styrene and 

aliphatic hydrogen atoms. The signals of the pyridine protons a and b are shifted to 10.96 ppm and 9.52 ppm (compared 

to 8.34 ppm and 6.5 ppm for the pure polymer, see Figure S10) due to the coordination of the paramagnetic iron center 

while the signal of the styrene protons c do not change. 
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Temperature-dependent Mössbauer spectra of the SCO CP-BCP composite particles 

Figure S12: Zero-field 57Fe Mössbauer spectra of SCO CP-BCP recorded at temperatures between T = 300 and 80 K 

before (A) and after (B) annealing at T = 393 K for 1 h under nitrogen atmosphere. The measurements on both 

compounds were carried out starting at T = 300 K and then at T = 175, 80, 175 and 300 K. Symbols: Experimental data. 

Lines: Fit with one or two doublets of Lorentzian lines, respectively. The parameters of the fit are summarized in 

Table S1. The colored lines represent the corresponding sub-spectra of the fit, which are attributed to the Fe(II) low-

spin (green) and Fe(II) high-spin sites (red), respectively. 
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Table S1: Summary of Mössbauer parameters determined for SCO CP-BCP before and after annealing at T = 393  K for 

1 h (under nitrogen atmosphere) by a fit with one or two doublets of Lorentzian lines, respectively, with isomer shift δ, 

quadrupole splitting ΔEQ and Lorentzian line width ΓFWHM (full width at half maximum). A2/A1 describes the relative 

intensities of the two corresponding lines of a given doublet, while AREA quotes the relative (integral) intensities of the 

individual doublets, attributed to the molar fraction of the high-spin and low-spin Fe species in SCO CP-BCP, 

respectively. The measurements on both compounds were carried out starting at T = 300 K and then at T = 175, 80, 175 

and 300 K. 

Before annealing 

T [K] δ[a] [mm s-1] ΔEQ [mm s-1] ΓFWHM [mm s-1] A2/A1[b] AREA [%] 

300 0.951(5) 2.200(9) 0.44(1) 1.23(4) 100 

175 
1.020(2) 

0.412(7) 

2.224(5) 

1.22(1) 

0.264(4) 

0.28(2) 

1.20(2) 

1* 

79.7 

20.3 

80 
1.071(1) 

0.437(1) 

2.265(2) 

1.263(3) 

0.262(4) 

0.254(5) 

0.94(1) 

1* 

60.1 

39.9 

175 
1.022(2) 

0.420(6) 

2.230(3) 

1.232(9) 

0.268(5) 

0.28(1) 

1.17(3) 

1* 

74.0 

26.0 

300 0.959(4) 2.184(7) 0.44(1) 1.13(4) 100 

 

After annealing 

T [K] δ[a] [mm s-1] ΔEQ [mm s-1] ΓFWHM [mm s-1] A2/A1[b] AREA [%] 

300 0.9551(2) 2.225(4) 0.277(5) 1.24(2) 100 

175 
1.027(2) 

0.402(3) 

2.263(3) 

1.268(6) 

0.264(5) 

0.242(8) 

1.07(2) 

1* 

63.2 

36.8 

80 
1.071(1) 

0.424(3) 

2.292(3) 

1.236(3) 

0.287(4) 

0.252(4) 

0.97(2) 

1* 

54.7 

45.3 

175 
1.020(1) 

0.400(2) 

2.260(3) 

1.260(3) 

0.283(5) 

0.239(5) 

1.00(2) 

1* 

58.0 

42.0 

300 0.955(2) 2.224(4) 0.285(7) 1.27(3) 100 

Values marked with an asterisk (*) were fixed in the fit. [a] The isomer shifts (δ) were specified relative to 

metallic iron at room temperature but were not corrected in terms of the second-order Doppler shift. [b] In 

case of a polycrystalline powder with random orientations of the crystallites, the expectation value of this 

parameter A2/A1 = 1.[4] Deviations from this value, which are clearly observed at T = 300 K, are attributed 

to the presence of texture effects due to partial orientations of crystallites on compacting the powder in the 

sample containment. 
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Abstract: Nanoparticles of the 1D and 2D coordination polymers [Zn(OAc)2(bipy)]n and 

[Zn(TFA)2(bppa)2]n were prepared, employing polystyrene-block-poly(4-vinylpyridine) diblock 

copolymers with different weight fractions of the 4-vinylpyridine (4VP) block and comparable 

overall molecular weights of Mn ≈ 155 kg mol-1 as template (SV-15 and SV-42 with 15 and 42 wt% 

4VP, respectively). [Zn(OAc)2(bipy)]n nanoparticles were successfully synthesised within the 4VP 

core of SV-42 micelles, showing a core size of Dcore = 47 ± 5 nm and a hydrodynamic diameter of 

Dh = 157 ± 46 nm, determined by transmission electron microscopy (TEM) and dynamic light 

scattering (DLS). The crystallinity of the composite is quite low, showing only low intensity 

reflexes in the powder X-ray diffraction (PXRD) pattern with the highest particle load. No 

indications for larger microcrystals were detected by scanning electron microscopy (SEM), 

proving the successful integration of the coordination polymer nanoparticles within the micellar 

cores. Nanocomposites of the 2D coordination network [Zn(TFA)2(bppa)2]n were synthesised 

using both diblock copolymers. The particle core sizes (from TEM) and hydrodynamic diameters 

(from DLS) correlate with the 4VP fraction of the micelles, resulting in Dcore = 46 ± 6 nm for SV-42 

and 15 ± 2 nm for SV-15 and Dh = 340 ± 153 nm and 177 ± 57 nm, respectively. The successful 

synthesis was proven by PXRD and SEM images, confirming the absence of larger crystallites. 

Hence, it is possible to synthesise nanocomposites of Zn-based 1D and 2D coordination polymers 

by a direct approach utilising diblock copolymer micelles as template. 
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8.1. Introduction 

Devices built up from functional molecular materials are an interesting approach to realize new 

functionalities for new fields of applications. Examples for promising molecule-based systems are 

porous coordination networks (MOFs, metal organic frameworks), Prussian blue based materials, 

or molecular magnetic materials including spin crossover coordination polymers.[1–9] 

Nanoparticles and nanocomposites of such materials are often considered to play a key role in 

future device engineering.[10–15] However, the synthesis of well-defined, stable nanoparticles or 

nanocomposites of molecule-based materials is a highly demanding task, as a wide range of 

techniques successfully used for solid state materials (e.g. the reduction of metal salts16–20 or 

the hydrothermal synthesis[21–23]) are inapplicable. For molecular materials, some synthetic 

procedures like the inverse micelle technique[24–28] or micro-fluidic approaches using fast 

precipitation[29–31] have already been established to achieve that task. However, each new material 

has its needs regarding the reaction conditions (e.g. reaction temperature, solvent, reactant 

solubility, air, or moisture sensitivity). Furthermore, some of the approaches have limitations 

regarding the size limits that can be reached. This makes a fine-tuning of the reaction conditions 

indispensable to not only achieve a successful synthesis of the nanomaterial of the desired size, 

but also to preserve the desired properties. Furthermore, some synthesis procedures have been 

proven more suitable for the formation of functional materials than others, because they allow for 

example the even distribution of the nanomaterial or nanocomposite on surfaces or prevent the 

aggregation of the formed nanoparticles.[32,33] 

Nanoparticles of 2D[34–36] or 3D[24,37,38] coordination networks (CNs) have been prepared with a 

wide range of bridging ligands and metal ions. However, the formation of 2D and 3D CN 

nanoparticles directly in the core of block copolymer micelles is quite rare. To the best of our 

knowledge, only 6 examples of 2D or 3D CN nanoparticles formed in a polymer matrix can be 

found in the literature.[39–44] A more commonly used technique is the immobilization of pre-

formed nanoparticles in block copolymer micelles or polymer matrices (bulk polymers, gels, 

etc.),[45–55] in some cases even size-selective employing polymer cages.[56] 

We have previously shown that the use of polystyrene-block-poly(4-vinylpyridine) (PS b P4VP) 

diblock copolymers (BCPs) is ideal for the size-controlled synthesis of 1D Fe(II) spin crossover 

(SCO) coordination polymer (CP) nanoparticles with core sizes of 16 ± 2 nm and 48 ± 4 nm. It was 

possible to retain the SCO properties with hysteresis at both particle sizes. Thermal treatment of 

the 16 nm particles triggers a confined crystallization of the NPs leading to SCO properties 

comparable to those of the bulk material.[57,58] In other cases, the synthesis in confinement results 

in different morphologies for NPs and bulk material and therefore different SCO properties.[59] 
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Herein, we report the successful adaptation of our general synthetic concept to a completely new 

type of CPs and for the first time to a 2D CN to illustrate its general applicability. The double-

stranded 1D CP [Zn(OAc)2(bipy)]n
[60] (bipy = 4,4’-bipyridine) and the layer-like 2D CN 

[Zn(TFA)2(bppa)2]n[61] (TFA = trifluoroacetic acid, bppa = 1,3-di(4-pyridyl)propane) were used 

for the formation of Zn-CP/CN-BCP nanocomposites. The nanocomposites were synthesised using 

two PS b P4VP diblock copolymers (SV-15 and SV-42) as templates, which have an almost identical 

molecular weight but differ in the weight fraction of the 4VP blocks (see Table 1). 

Table 1: Overview of the used BCPs in this work. 

BCP Mn [g mol-1]a) Ðb) PS:P4VP [w/w]c) Dcore [nm]d) Dh [nm]e) 

SV-15 154 000 1.02 85:15 15 ± 2 75 ± 28 

SV-42 157 000 1.09 58:42 45 ± 5 125 ± 34 

a) calculated from proton nuclear magnetic resonance (1H NMR) measurements, using the molecular weight 

of the PS precursor measured by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-

ToF MS); b) from gel permeation chromatography (GPC) in N,N-dimethylformamide using narrowly 

distributed PS standards for calibration; c) calculated from 1H NMR measurements; d) core diameters of 

empty BCP micelles, see Fig. S1 for TEM images and core size distributions; e) hydrodynamic diameters of 

the empty BCP micelles, see Fig. S2 for DLS measurements. 

8.2. Results and Discussion 

8.2.1. Synthetic procedures 

The synthesis procedure was adapted from the literature and adjusted to the requirements of the 

Zn-based CPs (Scheme 1).[27] Dissolving the diblock copolymer in THF leads to the formation of 

BCP micelles due to the significantly lower solubility of the P4VP block compared to the PS block. 

Thus, the less-soluble P4VP core, where the synthesis of the NPs takes place, is surrounded by 

soluble PS corona chains. The nanocomposite samples containing the 1D CP [Zn(OAc)2(bipy)]n 

were synthesised employing SV-42 diblock copolymer micelles in THF (Table 2). The Zn(II) 

precursor [Zn(OAc)2] · 2 H2O was added and the solution was refluxed for 1h. Subsequently, the 

solution was cooled down, the bridging ligand bipy was added and the solution was refluxed again 

for 1h. At this point, the synthesis can be stopped by removal of the solvent via rotary evaporation 

(sample 1; 1 cycle) or [Zn(OAc)2] · 2 H2O and bipy can be added simultaneously up to 4 more times 

(samples 2 to 4; 3 – 5 cycles). The resulting light-yellow solids were dried in vacuo. 
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The BCPs SV-15 and SV-42 were used for the synthesis of nanocomposites containing the 2D CN 

[Zn(TFA)2(bppa)2]n (Table 2). Here, the synthesis protocol had to be adapted due to the very low 

solubility of the desired 2D CN. The respective BCPs were dissolved under reflux in THF to trigger 

the self-assembly to micelles, [Zn(TFA)2] · H2O was added and the mixture was heated to reflux 

for 1h to initiate the coordination of the zinc(II) precursor at the pyridine units in the P4VP core 

of the micelle. 

 

Scheme 1: Synthetic approach for the preparation of Zn-based CP-BCP nanocomposites. An excerpt of the crystal 

structures of both CP bulk materials is given below (left: [Zn(OAc)2(bipy)]n, right: [Zn(TFA)2(bppa)2]n). 



8. Synthesis of Zn-based 1D and 2D coordination polymer nanoparticles in block copolymers 
 

 
- 113 - 

To avoid a precipitation of the CN and to decelerate its formation, the bridging ligand bppa was 

dissolved in THF and added dropwise to the reaction solution over 15 min, followed by a 1h reflux. 

The solvent was removed by rotary evaporation and subsequent drying in vacuo to yield light-

yellow samples 5 and 6 (1 cycle each). The reaction procedure can be repeated to yield samples 7 

and 8 (2 cycles each) with a higher complex loading. The formation of nanocomposites with higher 

cycle counts (>2) was tested, but the formation of microcrystals was observed by SEM (see 

Fig. S3). Therefore, no further addition of reactants was conducted after the second addition of 

bppa (for experimental details see experimental section). 

Table 2: Overview of the synthesised nanocomposites. 

Sample CP/CN BCP cycles Dcore [nm]a) Dh [nm]b) 

1 

[Zn(OAc)2(bipy)]n SV-42 

1 50 ± 4 141 ± 48 

2 3 47 ± 4 155 ± 42 

3 4 47 ± 4 152 ± 41 

4 5 47 ± 5 157 ± 46 

5 

[Zn(TFA)2(bppa)2]n 

SV-15 1 13 ± 1 139 ± 39 

6 SV-42 1 49 ± 4 160 ± 46 

7 SV-15 2 15 ± 2 177 ± 57 

8 SV-42 2 46 ± 6 340 ± 153 

a) core diameters of the nanocomposite particles; b) hydrodynamic diameters of the nanocomposite 

particles. 

8.2.2. Characterisation of nanocomposites 

In total, eight different nanocomposites have been synthesised (Table 2), of which four contain 

the 1D CP [Zn(OAc)2(bipy)]n (samples 1 – 4) and another four the 2D CN [Zn(TFA)2(bppa)2]n 

(samples 5 – 8). All nanocomposite materials were characterised by transmission electron 

microscopy (TEM) and dynamic light scattering (DLS) to evaluate the particle sizes in the dry state 

and in dispersion. Furthermore, the nanocomposites were analysed by elemental analysis 

(C, H, N), infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and scanning electron 

microscopy (SEM). IR measurements were supported by computational calculations. 
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8.2.3. [Zn(OAc)2(bipy)]n nanocomposites 

IR measurements of the starting material [Zn(OAc)2] · 2 H2O, the bulk material [Zn(OAc)2(bipy)]n 

and the samples 1 – 4 are displayed in Fig. 1A. The nanocomposites show a characteristic band at 

1598 cm-1, which increases in intensity relative to other bands when higher cycle counts are 

reached. This is in excellent agreement with the spectrum of independently synthesised bulk 

[Zn(OAc)2(bipy)]n, which features a band at 1600 cm-1. Thus, this band can be safely assigned to 

the C=O stretching mode of the neat CP. Peak assignment in the fingerprint area between 

1400 cm-1 and 1800 cm-1 proved valuable to identify the nature and purity of the nanocomposites, 

which was further supported by numerical frequency calculations of optimized model structures. 

The CP was approximated as binuclear [Zn2(OAc)4(py)4], whereas the H-bond network of the 

precursor was taken into account in pentanuclear [Zn(OAc)2(OH2)] ⨯ 4 [Zn(OAc)2(OH2)] (see 

Experimental Section for computational details, animations of diagnostic modes are given in the 

SI, anim_1-6). In fact, the calculated C=O stretching mode in the CP model [Zn2(OAc)2(py)2]n is 

located at 1601 cm-1, almost identical to samples 1 – 4 and the bulk material. This is a distinct 

difference to the C=O band of the precursor [Zn(OAc)2] · 2 H2O, which is experimentally found at 

1549 cm-1 (computed value: 1534 cm-1). The formation of single-stranded [Zn(OAc)2(bipy)]n can 

be similarly ruled out, as C=O based stretching modes computed for the model [Zn(OAc)2(py)2] 

are predicted at 1500 cm-1, proving the successful synthesis of the 1D CP in the P4VP core of the 

SV-42 micelles.  

 

Fig. 1: IR spectra of the starting material [Zn(OAc)2] · 2 H2O, the CP [Zn(OAc)2(bipy)]n and the four [Zn(OAc)2(bipy)]n 

nanocomposite samples 1 – 4 (A) and a comparison of the PXRD patterns of the bulk material [Zn(OAc)2(bipy)]n and 

the [Zn(OAc)2(bipy)]n nanocomposite samples 1 – 4 (B). PXRD reflexes that correlate with the bulk material are marked 

with a dashed line. 



8. Synthesis of Zn-based 1D and 2D coordination polymer nanoparticles in block copolymers 
 

 
- 115 - 

Further proof is given by the PXRD patterns of the samples 1 – 4. Samples 1 – 3 are highly 

amorphous as indicated by the powder diffraction patterns. Only sample 4 with five reaction 

cycles shows five reflexes that also correspond to the dominant reflexes of the bulk material 

(Fig. 1B) indicating a successful formation of the CP inside the micellar core. 

Exemplary for all nanocomposites with the [Zn(OAc)2(bipy)]n CP, the TEM and DLS measurements 

of sample 4 are displayed in Fig. 2. The corresponding core diameter and hydrodynamic diameter 

of all samples are summarized in Table 2. The DLS measurement shows narrowly distributed 

nanocomposite particles with a hydrodynamic diameter of Dh = 157 ± 46 nm. As the electron-rich 

[Zn(OAc)2(bipy)]n CP is incorporated inside the micelle core of the BCP, only the core of 

nanocomposite particles is clearly visible in TEM, resulting in notably smaller diameters 

compared to DLS. The TEM image of sample 4 shows spherical particle cores with a core size of 

Dcore = 47 ± 5 nm (Fig. 2). In line with the results for other coordination polymers reported so 

far,[57–59] particles core sizes and hydrodynamic diameters of samples 1 – 3 are nearly identical 

and slightly increased compared to the empty template. Respective data of all samples confirming 

these results can be found in Fig. S4 and Fig. S5 together with the autocorrelation function of 

sample 4 (Fig. S6). 

 

Fig. 2: (A) TEM image of sample 4, the cores of the micelles with the embedded [Zn(OAc)2(bipy)]n CP nanoparticles 

appear black, (B) an inset with a zoom on a single nanoparticle, (C) core size distribution Dcore (from TEM) and (D) 

hydrodynamic diameter distribution Dh (from DLS) of the nanocomposite sample 4 (for DLS autocorrelation function 

see Fig. S6). 
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The samples 1 – 4 were also characterised by SEM, revealing the absence of microcrystals on the 

sample surface (Fig. S7). Thus, the CP is regioselectively formed inside the cores of the BCP 

micelles. 

8.2.4. [Zn(TFA)2(bppa)2]n nanocomposites 

IR measurements were also performed for the four nanocomposites containing the 

[Zn(TFA)2(bppa)2]n CN (samples 5 – 8, Fig. 3A, S8) and were compared to the starting material 

[Zn(TFA)2] · H2O and the bulk material [Zn(TFA)2(bppa)2]n. The starting material shows a C=O 

band at 1695 cm-1 with a shoulder at 1715 cm-1, whereas the bulk CN shows two characteristic 

bands in the range of C=O vibrations at 1698 cm-1 and 1681 cm-1. Computation of a truncated 

mononuclear model of the CN, [Zn(TFA)2(py)4], similarly gives two bands at 1668 cm-1 and 

1662 cm-1. For samples 5 – 7 only one band was detected at 1690 cm-1, which is exactly between 

the two bands of the bulk CN. For sample 8 two bands for the CN were determined at 1699 cm-1 

and 1684 cm-1, being in good agreement with the bulk material. Again, a relative increase in 

intensity of the carbonyl band is detectable with higher cycles. Thus, it was possible to incorporate 

the 2D CN into the 4VP cores of both micellar templates (SV-15 and SV-42). In line with the PXRD 

results of the [Zn(OAc)2(bipy)]n CP nanocomposites, the samples 5 and 6 (one loading cycle) are 

completely amorphous as represented by the diffraction patterns. Nevertheless, samples 7 and 8 

(two loading cycles) already show some reflexes at positions that match with the bulk material, 

indicating the successful formation of the desired CN inside the BCP micelles (Fig. 3B). 
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Fig. 3: Detailed view on the spectral range of 1900 cm-1 to 1400 cm-1 of the IR spectra of the starting material 

[Zn(TFA)2] · H2O, the CN [Zn(TFA)2(bppa)2]n and the four [Zn(TFA)2(bppa)2]n nanocomposite samples 5 – 8 (A). The 

complete spectra can be found in Fig. S8. Comparison of the PXRD patterns of the bulk material [Zn(TFA)2(bppa)2]n and 

the [Zn(OAc)2(bipy)]n nanocomposite samples 5 – 8 (B). Most intense PXRD reflexes that correlate with the bulk 

material are marked with a dashed line. 

Particle sizes of the nanocomposites were also analysed by TEM and DLS (Fig. 4, 5; Fig. S9-S11). 

While sample 5 only shows spherical particles with core sizes of Dcore = 13 ± 1 nm (Fig. S9), 

sample 7 shows spherical particles which, however, tend to form chain-like aggregates (Fig. 4). 

This behaviour was also observed in other samples of the same nanocomposite (Fig. S12). In fact, 

the formation of spherical particles rather than worm-like micelles in THF would be expected due 

to the low 4VP fraction of the utilised SV-15 diblock copolymer.[62,63] The presence of the 

anisotropic 2D CN together with the limited space available in the P4VP core of the highly 

asymmetric SV-15 BCP micelles (Dcore = 15 ± 2 nm, Dh = 177 ± 57 nm for sample 7) could trigger  

the formation of chain-like structures, even at comparably low 4VP fractions. This may be an effect 

that occurs during drying of the sample on the TEM grid, since the hydrodynamic diameter 

distribution of sample 7 is rather narrow (Fig. 4C) and Dh is only slightly increased compared to 

that of sample 5 (Table 2). 

The particle core sizes of samples 6 (Dcore = 49 ± 4 nm, Fig. S9) and 8 (Dcore = 46 ± 6 nm, Fig. 5) are 

in good agreement with the core sizes of samples 1 – 4 (Dcore ≈ 47 – 50 nm, Fig. 2, S4), which were 

synthesised using the same BCP (SV-42, Table 2). This underlines the fact that the BCP determines 

the size of the nanocomposites. Again, the formed nanocomposite particles tend to form chain-

like structures for sample 8 (2 loading cycles), as observed by TEM. Another interesting 

phenomenon arises upon comparing the DLS measurements of samples 6 and 8. While the 
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average hydrodynamic diameter of sample 6 was determined to Dh = 160 ± 46 nm (Fig. S10), 

which correlates well with the hydrodynamic diameters of the samples 1 – 4, the average 

hydrodynamic diameter of sample 8 is more than twice as large (Dh = 340 ± 153 nm, Fig. 5) and 

the hydrodynamic diameter distribution is significantly broadened. This might point to the 

presence of chain-like (worm-like) structures already in solution. The shorter soluble PS blocks 

in the corona of SV-42 micelles might be less efficient in shielding the highly anisotropic CN in the 

micellar core and, thus, favouring the formation of chain-like structures. This assumption is 

supported by the fact that in Fig. 5A individual spherical CN nanoparticles can be recognized in 

the chain-like micellar structures. 

 

Fig. 4: (A) TEM image of sample 7. (B) An inset with a zoom on a single nanoparticle. (C) Core size distribution Dcore 

(from TEM) and (D) hydrodynamic diameter distribution Dh (from DLS) of nanocomposite sample 7 (for DLS 

autocorrelation function see Fig. S11). 



8. Synthesis of Zn-based 1D and 2D coordination polymer nanoparticles in block copolymers 
 

 
- 119 - 

 

Fig. 5: (A) TEM image of sample 8. (B) An inset with a zoom on a single nanoparticle. (C) Core size distribution Dcore 

(from TEM) and (D) hydrodynamic diameter distribution Dh (from DLS) of sample 8 (for DLS autocorrelation function 

see Fig. S11). 

The SEM images for the samples 5 – 8 (Fig. 6, S13) show the absence of microcrystals on the 

surface of the nanocomposites, proving that the 2D CN is incorporated inside the P4VP cores of 

the micellar BCP. However, if samples with more than 2 reaction cycles were synthesised, the very 

low solubility of the 2D CN [Zn(TFA)2(bppa)2]n led to a fast precipitation of the CN, thus, resulting 

in the formation of microcrystals on the polymer surface and in the reaction solution. 

Consequently, the formation of truncated cuboctahedron crystals on the nanocomposite surface 

was observed by SEM (Fig. S3). 
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Fig. 6: SEM images of sample 7 (left) and sample 8 (right) at two different magnifications. No microcrystals can be 

observed on the polymer surface for both samples. 

8.3. Conclusions 

The synthesis of well-defined 1D, 2D and 3D coordination polymer (CP) and network (CN) 

nanoparticles is highly challenging. Self-assembled polymeric micelles derived from block 

copolymers (BCPs) that offer coordination sites inside the micellar core may be an elegant and 

generally applicable concept for the direct synthesis of these CP and CN nanoparticles (NPs). We 

were able to show that our established synthetic approach can be adapted to other 1D CP like the 

double-stranded [Zn(OAc)2(bipy)]n and more importantly to the 2D CN [Zn(TFA)2(bppa)2]n. 

Employing micelles of the BCP SV-42 as template, it was possible to achieve spherical NPs of the 

1D CP [Zn(OAc)2(bipy)]n and the 2D CN [Zn(TFA)2(bppa)2]n with nanocomposite core sizes of 

Dcore = 47 ± 5 nm and Dcore = 46 ± 6 nm, respectively. The average hydrodynamic diameter was 

determined to Dh = 157 ± 46 nm for the [Zn(OAc)2(bipy)]n and to Dh = 340 ± 153 nm for the 

[Zn(TFA)2(bppa)2]n nanocomposites. Moreover, even smaller composite NPs of the 2D CN 

[Zn(TFA)2(bppa)2]n were successfully prepared in SV-15 micelles, having a core size Dcore as small 

as 15 ± 2 nm and a hydrodynamic diameter of Dh = 139 ± 39 nm. No microcrystals were found on 

the nanocomposite surface as proven by SEM measurements. The crystallinity of the 
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nanocomposite samples increases with the loading cycles, showing characteristic reflexes in the 

PXRD at positions identical to the bulk materials. Since it was possible to synthesise NPs of the 

double-stranded 1D CP [Zn(OAc)2(bipy)]n and particularly the 2D CN [Zn(TFA)2(bppa)2]n, we are 

convinced that our synthetic approach can be adapted to a wide range of other 1D, 2D, and even 

3D CP and CN nanoparticles, which will be investigated in future work. 

8.4. Experimental section 

8.4.1. Materials 

4,4´-Bipyridine (bipy, 98 %), 1,3-di(4-pyridyl)propane (bppa, 98 %) and [Zn(OAc)2] · 2 H2O 

(97+ %) were obtained from Alfa Aesar and used as received. For the synthesis of 

[Zn(TFA)2] · H2O, zinc oxide (ZnO, 99.9%) from Sigma Aldrich, trifluoroacetic acid (TFA, 99%) 

from Alfa Aesar and ethanol (EtOH, p.a., Fisher Chemical) were used as received. Tetrahydrofuran 

(THF, p.a.) was obtained from Fisher Chemical and used as received in the synthesis of the 

coordination polymers and the nanocomposites. 

The two polystyrene-block-poly(4-vinylpyridine) diblock copolymers (SV-15 and SV-42) were 

synthesised by sequential anionic polymerization of styrene and 4-vinylpyridine according to our 

previously published method.[57] 

For gel permeation chromatography (GPC) in N,N-dimethylformamide (DMF) with lithium 

bromide (5 g L-1), GRAM columns (300 x 8 mm, 10 µm particle size, PSS Mainz) with 100 and 

3000 Å pore sizes were used. The samples were measured on a SEC 1260 Infinity system (Agilent 

Technologies) at a flow rate of 0.5 mL min-1 at 23 °C, using a refractive index detector (Agilent 

Technologies). The calibration was done with narrowly distributed polystyrene standards (PSS 

calibration kit) and toluene (HPLC grade) was used as internal standard. 

MALDI-ToF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) 

measurements were performed on a Reflex III (Bruker) equipped with a N2 Laser (λ = 337 nm). 

An acceleration voltage of 20 kV was used in linear mode and the samples were prepared 

according to the dried droplet method. Matrix (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene]malononitrile (DCTB, 10 g L-1 in THF), analyte (10 g L-1 in THF) and salt (silver 

trifluoroacetate, 10 g L-1) were dissolved and mixed in the ratio of 20 : 5 : 1 and 0.5 µL of the 

mixture was placed and dried on the target plate. 

1H-NMR spectra were acquired with a Bruker Ultrashield 300 spectrometer using CDCl3 as 

solvent. 
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Transmission electron microscopy (TEM) was conducted on a Zeiss CEM902 electron 

microscope (Zeiss, Oberkochen, Germany). Samples were dispersed in THF at a concentration of 

2 g L-1. The unfiltered solution was dropped on a carbon coated copper grid (mesh 200, Science 

Services, Munich). Electron acceleration voltage was set to 80 kV. Micrographs were taken with a 

MegaView III / iTEM image acquiring and processing system from Olympus Soft Imaging Systems 

(OSIS, Münster, Germany) and an Orius 830 SC200W / DigitalMicrograph system from Gatan 

(Munich, Germany). Particles size measurements were done with “ImageJ” image processing 

software developed by Wayne Rasband (National Institutes of Health, USA). 

Scanning electron microscopy (SEM) micrographs were taken on a Zeiss LEO 1530 GEMINI. The 

acceleration voltage was set to 3 kV and the sample was sputter-coated with a 1.3 nm platinum 

layer. 

Dynamic light scattering (DLS) measurements were done with an AntonPaar Litesizer 500 in 

quartz glass cuvettes from Helma at 25 °C in backscattering mode (175°). One measurement 

consists of six consecutive runs. Samples were dispersed in THF at a concentration of 2 g L-1. The 

unfiltered solution was used. 

Room temperature powder X-ray diffraction (PXRD) data were collected with a STOE StadiP X-

Ray diffractometer in transmission geometry between 5° and 30° 2Θ for all samples, which were 

placed on flat surfaces. Cu-Kα1 radiation (λ = 1.541 Å) was used for the measurements together 

with a Mythen 1K detector. 

For elemental analysis, the carbon, nitrogen, and hydrogen contents were determined with a 

Vario EL III (Elementar Analysensysteme GmbH) with acetanilide as standard or at a Unicube 

(Elementar Analysensysteme GmbH) with sulfanilamide as standard. The samples were placed in 

tin boats and measured at least twice. The average of the measurements was used. 

Transmission infrared spectra (IR) were collected on a Perkin Elmer Spectrum 100 FT-IR (ATR). 

The samples were measured directly as solids. 

8.4.2. Computation setting 

Theoretical structure calculations on the zinc(II) precursor complexes and coordination 

polymer/network models have been performed through density-functional theory (DFT) 

methods using the ORCA program package.[64] For all optimizations triple-ξ-valence TZVP[65] basis 

sets were used with the generalized gradient approximated functional BP86.[66] Grimme’s third 

generation D3 correction of dispersion was used.[67,68] Medium effects were included in a dielectric 

continuum approach (COSMO), parameterized for acetonitrile;[69] the inclusion of a stationary 

dielectric background proved beneficial for the match between experimental and theoretically 
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observed structures. Optimized structures have been identified as stationary points through the 

absence of imaginary modes in harmonic frequency calculations; spurious low-frequency 

imaginary modes in some calculations due to -CH3 rotations are typical artefacts of DFT-based 

numerical frequency scans. Coordinates of the computed structures are assembled in the SI, 

Tables S1 to S4. Graphical presentation of the vibrational modes are also available (anim_1-6.gif). 

Phenomenological approach. The input structure of [Zn(TFA)2(OH2)4] was extracted from the 

available XRD data.[70] In order to reduce computational cost, we have approximated the 

coordination polymers and the bulk [Zn(OAc)2] · 2 H2O precursor as truncated model complexes. 

Thereby we have put emphasis on the conservation of the first coordination sphere of the zinc 

centres. The bidentate bridging ligands were mimicked as monodentate pyridine ligands. In 

particular we employed the settings: 

[Zn(TFA)2(bppa)2]n  [Zn(TFA)2(py)4] 

[Zn(OAc)2(bipy)2]n  [Zn2(OAc)4(py)4] 

[Zn(OAc)2(OH2)2]  [Zn(OAc)2(OH2)2]5 

The highly H-bonded nature of the molecular modules in [Zn(OAc)2] · 2 H2O made it necessary to 

extract a pentanuclear motif from the crystal structure. Herein the central module possesses a 

conserved H-bond network (C=O and coordinated water) to serve as the theoretical probe; H-

bond donor and acceptor sites of the terminal modules remained unsaturated. As a matter of fact, 

this model gives very satisfying agreement with the experimental IR spectrum. Graphical 

representations of the DFT optimized structure models are given in the SI, Figures S14 and S15. 

8.4.3. Synthesis 

Synthesis of [Zn(TFA)2] ∙ H2O. [Zn(TFA)2] ∙ H2O was synthesized by dissolving 1 g (12.3 mmol, 

1 eq) ZnO in 10 mL EtOH and 1.9 mL (2.8 g, 24.6 mmol, 2 eq) TFA in an ice bath and stirred until 

complete dissolution. The solution was filtered and the solvent was evaporated on a heating plate 

at 120 °C for several days. The resulting white powder was transferred into a Schlenk flask, dried 

in vacuo, and stored under argon. Yield: 3.42 g (11.7 mmol, 90 %). Elemental anal. (%) calc: C 

16.49, H 0.65, found: C 16.51, H 0.70. 

Synthesis of [Zn(OAc)2(bipy)]n nanocomposites (samples 1 – 4). 50 mg of the diblock 

copolymer SV-42 were placed and dissolved in a 50 mL flask in 20 mL THF under reflux until 

complete dissolution. The polymer solution was cooled down to rt, 2.2 mg (10 µmol, 1 eq) 

[Zn(OAc)2] · 2 H2O were added and the solution was refluxed for 1h. Subsequently, the reaction 

mixture was cooled down to rt and 2.4 mg (15 µmol, 1.5 eq) 4,4’-bipyridine were added to the 
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solution which was refluxed again for 1h. At this point, the synthesis can be stopped by removal 

of the solvent by rotary evaporation to obtain sample 1 (1 cycle). Alternatively, 2.2 mg 

[Zn(OAc)2] · 2 H2O and 2.4 mg 4,4’-bipyridine can be added simultaneously up to 4 more times 

(samples 2 to 4; 3 – 5 cycles). All resulting light-yellow solids were dried in vacuo. 

Elemental anal. (%) found: 

Sample 1: C 68.85, H 7.96, N 4.17. 

Sample 2: C 65.98, H 7.06, N 4.50. 

Sample 3: C 68.61, H 6.92, N 5.38. 

Sample 4: C 71.02, H 6.67, N 5.68. 

Synthesis of [Zn(TFA)2(bppa)2]n nanocomposites (samples 5 – 8). 50 mg of the diblock 

copolymer SV-15 were placed in a 50 mL flask fitted with a magnetic stir bar. 20 mL THF were 

added and the polymer was dissolved under reflux until complete dissolution. The polymer 

solution was cooled down to rt and 2.0 mg (6.5 µmol, 1 eq) [Zn(TFA)2] ∙ H2O were added and the 

solution was refluxed again for 1h. Subsequently, the reaction solution was cooled down to rt. 

2.8 mg (14 µmol, 2.2 eq) 1,3-di(4-pyridyl)propane (bppa) were dissolved in 10 mL THF and the 

solution was added dropwise over 15 min. After the addition of the ligand solution, the reaction 

mixture was refluxed again for 1h. The synthesis can be stopped by removal of the solvent by 

rotary evaporation to obtain sample 5 (1 cycle). Alternatively, the synthesis procedure can be 

repeated exactly as before to synthesise sample 7 (2 cycles). The resulting light-yellow solids were 

dried in vacuo. 

Besides the adjustment of the reactants, the synthetic procedure for samples 6 and 8 using the 

diblock copolymer SV-42 is identical to sample 5 and 7, respectively. 5.8 mg (19 µmol, 1 eq) 

[Zn(TFA)2] ∙ H2O and 8.3 mg (42 µmol, 2.2 eq) 1,3-di(4-pyridyl)propane were used during the 

synthesis. 

Elemental anal. (%) found: 

Sample 5: C 84.08, H 7.66, N 2.42. 

Sample 6: C 70.81, H 8.26, N 4.82. 

Sample 7: C 67.24, H 7.36, N 2.64. 

Sample 8: C 64.40, H 7.02, N 5.05. 
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8.8. Supporting Information 

TEM of the empty micelles 

 

Fig. S1: TEM images of the empty SV-15 (top left) and SV-42 (top right) BCP micelles and the corresponding core size 

distributions (bottom row). 
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DLS of empty BCP micelles 

 

Fig. S2: DLS measurements of the empty SV-15 (left) and SV-42 (right) BCP micelles. The autocorrelation functions 

g2(t)-1 vs. t are given in the top row and the hydrodynamic diameter distributions are given in the bottom row, 

respectively. 
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SEM of a [Zn(TFA)2(bppa)2]n composite with microcrystals 

 

Fig. S3: SEM image of a [Zn(TFA)2(bppa)2]n composite showing truncated cuboctahedron crystals of the CP on the 

sample surface. 
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TEM of [Zn(OAc)2(bipy)]n nanocomposites (samples 1 – 3) 

 

Fig. S4: TEM images (top row) of the [Zn(OAc)2(bipy)]n nanocomposite samples 1 (left), 2 (middle) and 3 (right) and 

the corresponding core size distributions (bottom row). 
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DLS of [Zn(OAc)2(bipy)]n nanocomposites (samples 1 – 3) 

 

Fig. S5: DLS measurements of the [Zn(OAc)2(bipy)]n nanocomposite samples 1 (left), 2 (middle) and 3 (right). The 

autocorrelation functions g2(t)-1 vs. t are given in the top row and the hydrodynamic diameter distributions of the three 

samples are given in the bottom row, respectively. 

DLS of [Zn(OAc)2(bipy)]n nanocomposite sample 4 

 

Fig. S6: Autocorrelation function g2(t)-1 vs. t of [Zn(OAc)2(bipy)]n nanocomposite sample 4. 
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SEM of [Zn(OAc)2(bipy)]n nanocomposites (samples 1 – 4) 

 

Fig. S7: SEM images of the [Zn(OAc)2(bipy)]n nanocomposite samples 1 – 4 (from left to right), showing the absence of 

microcrystals on the surface of the polymer. 

FT-IR of [Zn(TFA)2(bppa)2]n nanocomposites (samples 5 – 8), starting material 

[Zn(TFA)2] · H2O and bulk material [Zn(TFA)2(bppa)2]n 

 

Fig. S8: IR spectra of the starting material [Zn(TFA)2] · H2O, the bulk material [Zn(TFA)2(bppa)2]n and the 

[Zn(TFA)2(bppa)2]n nanocomposite samples 5 – 8 in the spectral region of 4000 cm-1 to 550 cm-1 (left). Each material 

shows a C=O band at 1698 cm-1. This band is increasing in intensity compared to other bands in the samples 5 – 8 with 

higher cycle count. Additionally, the bulk material and sample 8 show a second C=O band at 1681 cm-1. A detailed view 

on the spectral region of 1900 cm-1 to 1400 cm-1 is also given (right). 
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TEM of [Zn(TFA)2(bppa)2]n nanocomposites (samples 5 and 6) 

 

Fig. S9: TEM images (top row) of the [Zn(TFA)2(bppa)2]n nanocomposite sample 5 (left) and sample 7 (right) with the 

corresponding core size distributions (bottom row). 
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DLS of [Zn(TFA)2(bppa)2]n nanocomposites (samples 5 and 6) 

 

Fig. S10: DLS measurements of the [Zn(TFA)2(bppa)2]n nanocomposite sample 5 (left) and sample 7 (right). The 

autocorrelation functions g2(t)-1 vs. t (top) are given together with the hydrodynamic diameter distributions (bottom), 

respectively. 

  



8. Synthesis of Zn-based 1D and 2D coordination polymer nanoparticles in block copolymers 
 

 
- 140 - 

DLS of [Zn(TFA)2(bppa)2]n nanocomposites (samples 7 and 8) 

 

Fig. S11: DLS autocorrelation functions g2(t)-1 vs. t for the [Zn(TFA)2(bppa)2]n nanocomposite sample 7 (left) and 

sample 8 (right). 

TEM image of [Zn(TFA)2(bppa)2]n nanocomposite particles showing a chain-like structure 

 

Fig. S12: TEM image of a [Zn(TFA)2(bppa)2]n nanocomposite showing spherical nanoparticles agglomerating into a 

chain-like structure. 
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SEM of [Zn(TFA)2(bppa)2]n nanocomposites (samples 5 and 6) 

 

Fig. S13: SEM images of the surfaces of the [Zn(TFA)2(bppa)2]n nanocomposite sample 5 (left) and 6 (right), showing 

the absence of microcrystals. 
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Table S1 Cartesian coordinates of optimized mononuclear [Zn(TFA)2(py)4].

Zn -0.276558 2.13155 -0.688121 

  C -2.558684 2.321083 1.34992 

  C -3.634943 1.947722 2.152391 

  H -4.126515 2.689182 2.782108 

  C -4.06365 0.617259 2.126218 

  C -3.396773 -0.289531 1.298695 

  C -2.328578 0.162712 0.524653 

  N -1.916161 1.446384 0.551077 

  H -4.904818 0.293244 2.740859 

  H -3.697914 -1.335982 1.247617 

  C -1.325065 5.107707 -1.324931 

  C -2.680554 5.826038 -1.669412 

  O -1.504187 3.886117 -1.042195 

  O -0.290773 5.795446 -1.356083 

  F -3.514455 5.83803 -0.58362 

  F -3.34782 5.189126 -2.677001 

  F -2.520068 7.119454 -2.05771 

  O 0.948072 0.38585 -0.282998 

  C 0.899188 -0.86024 -0.504605 

  F 2.575286 -1.504364 1.128004 

  O -0.033477 -1.584279 -0.890865 

  C 2.278471 -1.556079 -0.208062 

  F 2.304245 -2.867454 -0.566749 

  F 3.306825 -0.943911 -0.866857 

  H -2.193003 3.347177 1.321902 

  H -1.765515 -0.505185 -0.133403 

  N 1.336027 2.837767 -1.937289 

  H 0.02806 3.615491 -3.342848 

  C 1.080161 3.491539 -3.086259 

  H 2.767066 2.098145 -0.640641 

  C 2.618426 2.648793 -1.569005 

  C 2.091016 3.981129 -3.909787 

  C 3.688449 3.11057 -2.3337 

  C 3.421095 3.78947 -3.525942 

  H 1.835119 4.502036 -4.832005 

  H 4.710714 2.935822 -1.998467 

  H 4.236617 4.16198 -4.147007 

  H -2.933268 -0.358319 -5.511315 

  H -0.487621 -0.74814 -5.048261 

  C -2.4503 0.096526 -4.645458 

  C -1.093617 -0.122938 -4.392552 

  C -3.177244 0.911292 -3.772627 

  H -4.23595 1.112887 -3.935328 

  C -0.516221 0.475802 -3.27481 

  H 0.538265 0.336595 -3.036538 

  C -2.522687 1.475067 -2.678918 

  N -1.21524 1.259285 -2.431962 

  H -3.033678 2.132821 -1.975917 

  H 0.889926 4.843032 0.20706 

  N 0.669849 2.971744 1.072421 

  C 1.080579 4.256022 1.109497 

  C 0.865196 2.193684 2.155951 

  H 0.52628 1.162019 2.06669 

  C 1.69735 4.805904 2.233376 

  H 2.013104 5.848952 2.222128 

  C 1.474964 2.66792 3.315821 

  C 1.899086 3.999282 3.356466 

  H 1.614264 2.002657 4.16792 

  H 2.379917 4.400631 4.249703 
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Table S2 Cartesian coordinates of optimized mononuclear [Zn(TFA)2(OH2)4].

Zn -0.199982 2.219365 -0.819565 

C -2.437158 3.974124 -1.711991 

C -3.118371 5.383708 -1.658205 

O -1.363785 3.928002 -1.031129 

O -2.9979 3.091999 -2.390561 

F -2.279444 6.345047 -2.139725 

F -3.433185 5.72459 -0.375359 

F -4.259515 5.441048 -2.384408 

O 0.880295 0.501668 -0.317929 

C 0.610443 -0.659197 -0.763656 

F 1.448851 -1.848981 1.163788 

O -0.277888 -1.026652 -1.556466 

C 1.569144 -1.758962 -0.192398 

F 1.32034 -2.988172 -0.703597 

F 2.870924 -1.46113 -0.465698 

O 1.378556 2.990389 -2.088653 

O -0.97931 1.354651 -2.574225 

O 0.76385 3.132065 0.856188 

H 1.148309 2.724078 -2.99955 

H 2.254866 2.593604 -1.927477 

H -1.900113 1.738023 -2.607127 

H -1.005062 0.386665 -2.336373 

H 1.097118 4.03721 0.714768 

H 1.525826 2.619938 1.185344 

H -1.455476 0.838923 1.167272 

H -2.195995 2.184962 1.006609 

O -1.773578 1.469986 0.495266 
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Table S3 Cartesian coordinates of optimized binuclear [Zn2(OAc)4(py)4]. 

Zn -1.040115 2.513125 -0.382913 

C -2.96243 1.875928 1.916033 

C -4.134951 1.494851 2.567773 

H -4.152581 1.425702 3.655584 

C -5.269548 1.210607 1.804093 

C -5.191061 1.325613 0.413793 

C -3.983273 1.71735 -0.161824 

N -2.88689 1.986713 0.575294 

H -6.201922 0.910837 2.284923 

H -6.053171 1.119917 -0.220738 

C -2.116779 4.472185 -2.532806 

C -2.773595 4.505906 -3.902184 

O -2.219648 3.398193 -1.864961 

O -1.539702 5.537509 -2.147051 

H -3.804072 4.877354 -3.787503 

H -2.821974 3.500561 -4.336463 

H -2.241607 5.19167 -4.572485 

O -0.118666 0.618096 0.222624 

C -0.49666 -0.005734 -0.830268 

H -0.844955 -2.058756 -0.31609 

O -1.160765 0.576392 -1.74323 

C -0.160394 -1.481965 -0.956534 

H -0.274406 -1.829548 -1.990281 

H 0.861934 -1.67791 -0.606167 

H -2.047497 2.121448 2.455141 

H -3.864027 1.843107 -1.237368 

N 0.727106 3.092937 -1.480848 

H -0.233699 2.708939 -3.27163 

C 0.694219 3.069126 -2.829138 

H 1.85829 3.468648 0.212487 

C 1.861236 3.490497 -0.875332 

C 1.773496 3.468255 -3.612598 

C 2.986207 3.907784 -1.58462 

C 2.93991 3.90701 -2.979376 

H 1.695647 3.437278 -4.699437 

H 3.876862 4.230122 -1.046522 

H 3.798987 4.237735 -3.564046 

H -5.696923 4.506213 2.811207 

H -5.792694 4.57468 0.295651 

C -4.851112 4.874377 2.229801 

C -4.906976 4.906796 0.835845 

C -3.693585 5.331081 2.866621 

H -3.610323 5.33908 3.953461 

C -3.797708 5.369292 0.130142 

H -3.800846 5.417363 -0.956798 

C -2.630992 5.778233 2.086707 

N -2.671043 5.78305 0.738308 

H -1.710544 6.154208 2.531562 

Zn -0.899269 6.353721 -0.347928 

H 0.104237 4.690391 3.906177 

H -2.88528 10.440265 0.342268 

O -1.827178 8.279209 -0.999132 

O -0.433894 3.348217 1.407383 

O 0.28441 5.475333 1.137303 

C 0.183202 4.390372 1.789039 

C -1.433592 8.879969 0.058689 

C 0.835138 4.340433 3.160139 

C -1.793617 10.344863 0.23991 

O -0.763442 8.27368 0.954519 

H 1.119525 3.314394 3.421208 

H -1.498757 10.917626 -0.651125 

H 1.705015 5.006294 3.202147 

H -1.311181 10.770675 1.127254 

H 0.160066 6.631741 -3.209967 

N 0.952176 6.847868 -1.317088 

C 1.060466 6.901399 -2.658548 

C 2.030619 7.151074 -0.565864 

H 1.884325 7.073591 0.510861 

C 2.247496 7.257683 -3.298217 

H 2.290634 7.280232 -4.387279 

C 3.251508 7.51875 -1.128899 

C 3.36328 7.575124 -2.520706 

H 4.098034 7.752546 -0.483299 

H 4.306923 7.855114 -2.991314 
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Table S4 Cartesian coordinates of optimized pentanuclear [Zn(OAc)2(OH2)2]5. 

Zn 5.726065 0.494003 8.327941 

C 7.576767 2.061351 7.338346 

O 7.329943 2.275238 8.561747 

O 6.942583 1.102215 6.738581 

C 8.562674 2.904475 6.58257 

O 4.438492 -0.788251 7.453453 

H 8.804238 2.477104 5.603851 

H 9.479234 3.012023 7.176843 

H 8.145813 3.917608 6.447091 

H 4.72249 -1.014434 6.500523 

H 4.406257 -1.678066 7.923202 

C 4.141839 2.400161 9.244153 

O 4.378142 2.48832 8.009765 

O 4.590109 1.356521 9.887231 

C 3.363211 3.446047 9.984888 

O 6.893206 -0.741045 9.412241 

H 3.314978 3.234069 11.058328 

H 2.343323 3.483797 9.575683 

H 3.812754 4.43848 9.821852 

H 6.386333 -1.210457 10.153373 

H 7.270564 -1.489555 8.848251 

Zn 6.247793 -0.797615 3.210782 

C 4.769857 -2.457133 4.43252 

O 5.120717 -2.658191 3.231423 

O 5.217017 -1.403892 5.041139 

C 3.823919 -3.382797 5.142773 

O 7.173139 0.819177 4.143284 

H 2.864806 -2.864106 5.289876 

H 3.653864 -4.291828 4.557834 

H 4.211275 -3.641221 6.135749 

H 7.040393 0.926808 5.142661 

H 6.989443 1.682529 3.733616 

C 8.034098 -1.242865 1.52291 

O 8.140504 -1.7695 2.680803 

O 7.019975 -0.505152 1.245944 

C 9.077077 -1.500526 0.463673 

O 4.495698 0.328396 2.655941 

H 9.290131 -0.579866 -0.094676 

H 9.997967 -1.898719 0.903236 

H 8.679713 -2.237793 -0.251084 

H 4.605858 0.988915 1.947703 

H 4.003741 0.779634 3.365792 

Zn 4.350915 -0.93309 12.711542 

C 2.777247 -1.352889 14.591116 

O 2.844574 -2.211846 13.649791 

O 3.501032 -0.29099 14.537697 

C 1.882804 -1.58569 15.782008 

O 5.438882 0.895884 12.434796 

H 1.491772 -0.636173 16.166626 

H 1.059888 -2.263437 15.527825 

H 2.480734 -2.051965 16.580676 

H 5.233813 1.588927 13.087954 

H 5.208776 1.263051 11.539718 

C 6.3786 -2.445955 12.309049 

O 6.104527 -2.257003 13.521653 

O 5.635395 -1.887297 11.39184 

C 7.523575 -3.308126 11.853612 

O 2.986926 -0.379035 11.191187 

H 8.211867 -2.714045 11.234647 

H 8.065827 -3.730242 12.70531 

H 7.127656 -4.113954 11.218365 

H 3.3805 0.319323 10.604158 

H 2.098017 -0.078456 11.450437 

Zn 6.386117 -4.548498 8.085357 

C 7.804019 -2.936456 6.766183 

O 7.67498 -2.818637 8.049295 

O 7.260591 -3.931461 6.193439 

C 8.594842 -1.911402 6.01111 

O 5.302876 -5.999501 6.982302 

H 8.533403 -2.069319 4.930095 

H 9.644913 -1.95798 6.336053 

H 8.221455 -0.910359 6.264804 
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H 5.712069 -6.269124 6.140037 

H 5.035959 -6.824538 7.427039 

C 4.399596 -3.909588 9.511644 

O 4.616195 -3.231135 8.443049 

O 5.206657 -4.859403 9.805394 

C 3.190224 -3.642464 10.356453 

O 7.916924 -5.812738 8.801265 

H 3.340347 -3.995439 11.381807 

H 2.339579 -4.187481 9.918048 

H 2.951738 -2.573056 10.362591 

H 7.632825 -6.616835 9.273145 

H 8.594608 -6.108401 8.165734 

Zn 6.084227 6.088493 8.057789 

C 8.248823 6.985807 7.092639 

O 7.906957 7.50041 8.198146 

O 7.499802 6.097775 6.524928 

C 9.542791 7.3679 6.414416 

O 4.839964 4.82196 6.923366 

H 10.24172 6.519467 6.477942 

H 9.997542 8.241923 6.892488 

H 9.367612 7.568917 5.349024 

H 5.188761 4.666444 6.028251 

H 4.60035 3.92058 7.30779 

C 4.202729 7.54232 8.895012 

O 4.671409 7.822676 7.748668 

O 4.705653 6.571988 9.58065 

C 3.042024 8.31419 9.47475 

O 7.022274 4.741686 9.365302 

H 2.154206 7.663994 9.489471 

H 2.821819 9.207264 8.880314 

H 3.257687 8.597344 10.513423 

H 6.644483 4.730826 10.261422 

H 7.205003 3.78504 9.098501 
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Graphical representation of DFT optimized structures 

 

Fig. S14: DFT-optimised structure of CP models; left: [Zn2(OAc)4(py)4] as a model of 1D CP [Zn(OAc)2(bipy)2]n; right: 

[Zn(TFA)2(py)4] as a model of 2D CN [Zn(TFA)2(bppa)2]n. 

 

Fig. S15: DFT-optimised structure of precursor models; left: [Zn(OAc)2(OH2)2]5 as a model of bulk Zn(OAc)2 × 2H2O 

(terminal Zn centres given in white); right: [Zn2(TFA)5] as a model of Zn(TFA)2. 
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Abstract: Five polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers have 

been used as template for the confined synthesis of the coordination polymer (CP) [FeL(bipy)]n. 

The size and shape of the block copolymers and the nanocomposites with [FeL(bipy)]n were 

investigated by transmission electron microscopy (TEM), cryo-TEM, and dynamic light scattering 

(DLS). Moreover, the magnetic properties of the nanocomposites were analyzed by susceptibility 

measurements in a SQUID magnetometer. The block copolymers differ in their weight fractions of 

PS and P4VP ranging from 85/15 to 39/61 (w/w, SV-15 to SV-61). All five neat block copolymers 

show spherical micelles in the TEM images with core sizes between 15 ± 2 nm and 73 ± 9 nm and 

in cryo-TEM images with sizes between 26 ± 2 nm and 71 ± 4 nm. The nanocomposites also show 

spherical particles until SV-42 with core sizes between 14 ± 2 nm and 58 ± 4 nm in TEM images 

and 30 ± 3 nm and 65 ± 5 nm in cryo-TEM images. The nanocomposites with SV-61 show worm-

like structures in TEM and cryo-TEM measurements and the width was analyzed to 60 ±8 nm and 

84 ± 10 nm, respectively. The magnetic properties of the spin crossover material improve in the 
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larger particles and in the worm-like structures resulting in transition temperatures of 

T1/2↓ = 211 K and T1/2↑ = 224 K, a 13 K wide hysteresis and a residual high-spin fraction as low as 

γHS = 14 %. The worm-like structures were further analyzed by transmission electron microscopy 

– energy dispersive X-ray spectroscopy and the incorporation of the CP was proven by the 

presence of iron inside the polymeric structure. 

9.1. Introduction 

Spin crossover (SCO) compounds are a fascinating class of materials. They have been studied 

intensively over the last decades because of their unique switching properties by different 

external stimuli (e.g. temperature, pressure, light irradiation) between a high-spin (HS) and a low-

spin (LS) state.[1] Switching between these two states changes physical properties like magnetism, 

structure, or color.[2] This offers interesting applications, e.g. as sensors[3], display devices[4], data 

storage[4], or contrast agents[5]. 

Another highly investigated field of research is the formation of nanoparticles of all kinds of 

compounds, because the properties of nanosized materials differ considerably compared to their 

bulk analogues (e.g. catalytic activity in noble metals[6] or photoluminescence in CdSe[7]), paving 

the way for new applications.[8] However, forming stable nanoparticles with defined properties 

(e.g. size, shape or magnetism)[9] is a key problem that needs to be addressed before application. 

Several methods like the inverse micelle technique, the reduction of metal salts, or a microfluidic 

approach have already been established for the synthesis of noble metal or metal oxide 

nanoparticles regarding the control of the particles size and shape.[10,11] 

Syntheses of nanoparticles of SCO coordination polymers (CPs) and particularly networks have 

already been successfully performed. However, these syntheses are vastly depending on the 

reaction conditions and not all established methods are applicable. The key problem of predicting 

the size of the desired CP nanoparticles remains an unresolved issue. Since the properties of SCO 

nanoparticles are also dependent on their size, a size control is highly important. Typically, a 

higher residual HS fraction remains, the hysteresis is narrowed, and the transition temperature 

may be shifted in smaller particles.[12] Predictable and tunable properties become accessible by 

controlling the size of the resulting SCO nanoparticles. For applications as molecular actuators[13], 

nanosized rod like structures are desirable to realize anisotropic volume expansion. Block 

copolymers (BCPs) are very promising for the formation of size- and shape-controlled SCO CP-

BCP nanocomposites. BCPs can be used as micro- or nanoreactors because of their self-assembly 

properties into micelles with a defined size and shape in a suitable solvent.[14] Besides the 

formation of spherical particles, phase separation of BCPs also allows a defined structuring of the 

desired nanocomposite into rods, worm-like structures, gyroids, or lamellas or even the formation 
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of membranes.[15] Moreover, the formation of polymer-encapsulated composite materials may 

promise facile processing by established methods like electrospinning for the formation of fibers 

and fiber mats[16] or spin-coating or drop-casting for surface coating[17]. 

Our recent works already had shown the potential of the BCP polystyrene-block-poly(4-

vinylpyridine) (PS-b-P4VP) as a nanoreactor for the synthesis of different one dimensional spin 

crossover coordination polymers [FeL(bipy)]n
[18], [FeL(bpea)]n, [FeL(bpee)]n, [FeL(bpey)]n

[19] and 

other coordination polymers[20]. Besides, the influence of the block copolymer shell on the 

crystallization and the SCO properties of the CP in the composite and the possibility of fiber 

formation by electrospinning was investigated.[21] We herein report the size and shape control of 

[FeL(bipy)]n SCO CP-BCP nanocomposites via confined crystallization and its influence on the 

magnetic properties. Five different BCPs were used for the syntheses of the SCO CP-BCP 

nanocomposites that vary in the weight fraction of the P4VP block. Spherical particles with 

Dcore = 14 nm to 58 nm can be synthesized in BCPs with 15 wt% to 42 wt% P4VP. A change in 

morphology from spheres to worm-like structures is observed for the nanocomposite samples 

employing a BCP with 61 wt% P4VP. 

9.2. Results and Discussion 

9.2.1. Characterization of PS-b-P4VP BCPs: size and shape 

The influence of an increasing P4VP fraction on the particle size and particle morphology of a 

PS-b-P4VP block copolymer and the resulting polymeric micelles was investigated. The formation 

of rods and worm-like micelles of PS-b-P4VP BCPs was already reported for solvent annealed thin 

films.[22] Additionally, PS-b-P4VP BCPs showed morphological changes in solvent mixtures with 

THF or in solvents other than THF.[23] In some cases, the introduction of organic or inorganic 

material into the BCPs triggered the formation of rods.[24] In most cases the molecular weights 

used in the literature were only ranging from 20 000 g mol-1 to 70 000 g mol-1 with varying P4VP 

content, often accompanied by the presence of spheres.[23-25] 

Phase separation of BCPs can also occur in solution depending on the affinity of the solvent to the 

different blocks. Therefore, spherical micelles can often be observed for BCPs but also the 

formation of rods, worm-like micelles, or vesicles is possible. In general, THF is a very good solvent 

for the PS block, while the solubility of P4VP is quite low.[26] With the P4VP fraction of the BCP 

being notably smaller than the PS fraction, P4VP will form the micelle core while the chains of the 

PS blocks will be elongated leading to spherical micelles.[22-25] Raising the fraction of the less 

soluble part of the block copolymer alters the packing parameter of the polymer chain which can 

lead to the before mentioned structures like rods, worms, or vesicles.[27] 
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Five different BCPs with a target molecular weight between 120 000 g mol-1 and 160 000 g mol-1 

with varying ratios of PS to P4VP have been synthesized. The composition, the used abbreviations, 

the molecular weight Mn, the dispersity Ð, and the weight fractions of the two blocks can be found 

in Table 1. The general characterization of the BCPs by NMR, gel permeation chromatography 

(GPC), dynamic scanning calorimetry (DSC) and dynamic light scattering (DLS) can be found in 

Figure S1 to Figure S4. 

Table 1: Overview over the used block copolymers in this work. 

BCPa) Abbreviation Mn [g mol-1]b) Ðc) Fraction PS [wt%]d) Fraction P4VP [wt%]d) 

S85V15154 SV-15 154 000 1.02 85 15 

S79V21119 SV-21 119 000 1.05 79 21 

S65V35131 SV-35 131 000 1.06 65 35 

S58V42157 SV-42 157 000 1.09 58 42 

S39V61162 SV-61 162 000 1.24 39 61 

a) subscripts denote the content of the respective block in wt%, superscript gives the number average 

molecular weight in kg mol-1; b) calculated from NMR measurements employing the total molecular weight 

of the PS precursor derived from MALDI-ToF MS; c) from GPC (Figure S2); d) calculated from NMR (for an 

exemplary calculation see Figure S1). 

All five BCPs were successfully synthesized with the target molecular weight and the P4VP 

fractions of the BCPs are ranging from 15 wt% (SV-15) to 61 wt% (SV-61). The particle size and 

the morphology of the five BCPs was characterized both in the dry state and in THF solution by 

TEM, DLS, and cryo-TEM. It is expected that they only show spherical micelles since the P4VP 

fraction is still too low to induce the formation of anisotropic structures like rods. In fact, only 

spherical particles were found by TEM measurements for all BCPs. However, the core diameter 

Dcore of the particles increases continuously starting at 15 ± 2 nm for SV-15 and reaching 73 ± 9 

nm for SV-61 (see Table 2). In addition, narrowly distributed particles were detected by DLS. At 

first, the measured hydrodynamic diameters Dh of the BCPs correlate with both the molecular 

weight and the P4VP fraction. The hydrodynamic diameters start at 75 ± 28 nm for SV-15 and 

increase with the P4VP fraction up to SV-42 with 125 ± 34 nm. Although having the highest 

molecular weight and P4VP content of all analyzed BCPs SV-61 does not show the largest 

hydrodynamic diameter. Instead, it is similar to SV-42 with 119 ± 29 nm (Figure S4). The BCPs 

were also imaged by cryo-TEM to evaluate the particle size and shape in solution. Again, spherical 

particles were imaged for all five neat BCPs and diameters ranging from 26 ± 2 nm for SV-15 to 

71 ± 4 nm for SV-61 were measured (Table 2). 
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Figure 1: TEM and cryo-TEM images of the BCPs SV-15 (A, B), SV-21 (C, D), SV-35 (E, F), SV-42 (G, H), and SV-61 (I, J). 

Only spherical nanoparticles are imaged for all neat BCPs. The size distributions are given in the insets. 

Table 2: Hydrodynamic diameter Dh measured by DLS, core size Dcore derived from TEM and core diameter/width 

evaluated from cryo-TEM measurements of the 5 different BCPs. 

BCP Hydrodynamic 
diameter Dh [nm] Core diameter TEM Dcore [nm] Core diameter cryo-TEM Dcryo [nm] 

SV-15 75 ± 28 15 ± 2 26 ± 2 

SV-21 90 ± 28 19 ± 2 29 ± 3 

SV-35 102 ± 29 35 ± 4 36 ± 3 

SV-42 125 ± 34 42 ± 5 46 ± 3 

SV-61 126 ± 36 73 ± 9 71 ± 4 

 

9.2.2. Characterization of SCO CP-BCP nanocomposites: size, shape, and magnetism 

25 different SCO CP-BCP nanocomposites have been prepared utilizing the five before mentioned 

BCPs through the incorporation of a SCO CP with different reaction cycles (5 samples each). A 

complete sample overview is given in Table 3. The reaction procedure is as follows: The block 

copolymer and the iron(II) complex [FeL(MeOH)2] are dissolved in THF under argon atmosphere 

and heated to reflux for 2 h. After cooling, the bridging ligand 4,4’-bipyridine (bipy) is added and 

the reaction mixture is refluxed for 1h. At this stage, the solvent can either be removed by cold 

distillation to yield a brown, polymeric solid (1 cycle, samples #a). Alternatively, up to four more 

reaction cycles can be executed by the simultaneous addition of the iron(II) complex and the 

bridging ligand and a subsequent heating to reflux for 1 h. After each reaction cycle the solvent 

can be removed to obtain the polymeric nanocomposites with 3 to 5 cycles (samples with two 

reaction cycles have not been prepared). The numbers 1 to 5 of the sample notation correspond 
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to the used BCP, while the cycle count (1, 3, 4, and 5) is denoted by the letters a to d. Additionally, 

samples with five cycles were prepared with a reduced excess of the bridging ligand bipy. These 

samples are labeled with the letter e. The reaction scheme is displayed in Scheme 1. 

 

Scheme 1: Synthetic approach for the preparation of Fe-based CP-BCP nanocomposites. 

On the one hand, the influence of the incorporation of the CP on the size and shape of the 

nanocomposites in comparison to the neat BCPs was investigated by TEM, DLS, and cryo-TEM. On 

the other hand, the influence of the different particle sizes and shapes on the magnetic properties 

was analyzed by magnetic susceptibility measurements and (temperature-dependent) Mössbauer 

spectroscopy. Further characterization was performed by (temperature-dependent) powder X-

ray diffraction ((T-)PXRD), scanning electron microscopy (SEM), elemental analysis, and infrared 

measurements (IR). The detailed characterization of the sample #e is given in the following as 

typical representatives, while the characterization of the samples 1a-d, 2a-d, 3a-d, 4a-d, and 5a-d 

is displayed in the SI, Figure S5 to Figure S40. 
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Table 3: Complete overview of the as-prepared composite samples. 

Samplea) BCP Number 
of cycles 

Hydrodynamic 
diameter Dh [nm] 

Core diameter/width 
TEM Dcore [nm] 

Core diameter/width 
cryo-TEM Dcryo [nm] 

1a SV-15 1 85 ± 33 12 ± 2 - 

1b SV-15 3 89 ± 32 15 ± 3 - 

1c SV-15 4 121 ± 43 17 ± 2 - 

1d SV-15 5 119 ± 62 16 ± 2 - 

1e* SV-15 5 113 ± 67 14 ± 2 30 ± 3 

2a SV-21 1 99 ± 33 23 ± 2 - 

2b SV-21 3 113 ± 34 26 ± 3 - 

2c SV-21 4 116 ± 36 26 ± 3 - 

2d SV-21 5 125 ± 38 26 ± 3 - 

2e* SV-21 5 118 ± 39 26 ± 2 34 ± 5 

3a SV-35 1 112 ± 32 37 ± 3 - 

3b SV-35 3 125 ± 34 41 ± 4 - 

3c SV-35 4 112 ± 32 40 ± 3 - 

3d SV-35 5 131 ± 39 40 ± 3 - 

3e* SV-35 5 139 ± 38 48 ± 4 49 ± 6 

4a SV-42 1 131 ± 34 53 ± 5 - 

4b SV-42 3 146 ± 46 52 ± 5 - 

4c SV-42 4 168 ± 57 53 ± 4 - 

4d SV-42 5 153 ± 46 53 ± 4 - 

4e* SV-42 5 139 ± 36 58 ± 4 65 ± 5 

5a SV-61 1 129 ± 33 61 ± 7 - 

5b SV-61 3 260 ± 113 62 ± 9 - 

5c SV-61 4 218 ± 78 58 ± 7 - 

5d SV-61 5 - 56 ± 6 - 

5e* SV-61 5 214 ± 75 60 ± 8 84 ± 10 

a) Samples marked with an asterisk (*) were also characterized by TEM, DLS, and SEM after thermal 

annealing. 

The core sizes Dcore and the hydrodynamic diameter Dh were determined for all SCO CP-BCP 

nanocomposites by TEM, cryo-TEM, and DLS, respectively. The core sizes Dcryo in solution were 

analyzed by cryo-TEM for the samples #e. The 21 samples 1a to 5a all show spherical particles in 

TEM measurements, whereas rods and worm-like structures started to form with sample 5b and 

following. The worm-like structures become predominant with sample 5c and 5d (Figure S5 to 

Figure S9). The average core diameter Dcore increases continuously with rising P4VP fraction from 
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14 ± 2 nm (1e) to 58 ± 4 nm (4e) (Table 3 and Figure 2). However, Dcore (micelle width) of the 

worm-like structures remained nearly identical to the particle size of sample 4e with 60 ± 8 nm 

(5e, Figure 3). The core diameter of the composite samples does not change significantly with an 

increased cycle count (Table 3). 

Cryo-TEM measurements reflect the growth in the core sizes with increasing P4VP content. 

Spherical particles were observed for the SCO CP-BCP nanocomposite samples 1e, 2e, 3e, and 4e 

which were also slightly larger in diameter than the empty BCPs. Rods and worm-like structures 

were only observed in nanocomposites with SV-61, also marginally larger than the spherical 

particle cores observed for the neat BCP (71 ± 4 nm (SV-61) vs. 84 ± 10 nm (5e)). 

The hydrodynamic diameter Dh of the composites was analyzed by DLS. It increased along the 

series from 113 ± 67 nm (1e) to 242 ± 147 nm (5e) (Table 3 and Figure S10 to Figure S14). It is 

observed that the hydrodynamic diameter slightly increases with a higher cycle count which may 

be an effect of the crystallization of the CP inside the BCP’s core. In addition, the hydrodynamic 

diameter of the SCO CP-BCP composite micelles is significantly larger than the empty BCP micelles 

due to an increase in the aggregation number of the polymer chains leading to an increased 

stretching of the polymer chains and, thus, a larger hydrodynamic diameter (see Figure S4 and 

Figure S10 to Figure S14). This effect diminishes in the composite particles when going from 

SV-15 to SV-42 because of the shorter PS chains. The formation of rods in sample 5e is also 

indicated by the DLS measurement because of the larger size distribution. 

The formation of rods or worm-like structures in sample 5e in contrast to the formation of only 

spherical particles in the neat polymer SV-61 can be explained by considering the weight fractions 

of the soluble (PS) and the less soluble or insoluble parts (P4VP, CP) of the resulting 

nanocomposite. Due to the introduction of the CP into the P4VP core, the weight fraction of the 

latter parts increases. 

Exemplarily, a calculation of the weight fraction of these parts is given for sample 5e by adding up 

the weight of the P4VP, the complex and one equivalent of the bridging ligand (the excess of 0.5 

equivalents ligand are being considered soluble) and dividing it by the total weight of the sample. 

As a result, the total weight of the nanocomposite is 250.7 mg and the weight of insoluble part is 

205.9 mg (82 %, Table 4). This indicates that the fraction of less soluble or insoluble parts needs 

to be about 80 % for the formation of rods or worm-like structures. This behavior has been 

observed in PS-b-P4VP micelles before.[25] 
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Table 4: Model calculations on the fraction of the insoluble parts of the sample. 

Insoluble parts Whole sample 

Fraction Calculation 
Weight 

[mg] 
Fraction Calculation 

Weight 
[mg] 

P4VP 50 mg∙0.61 wt% 30.5 BCP 50 mg∙1 50 

Complex [FeL]a) 0.86∙5∙29 mg 124.7 Complex [FeL]a) 0.86∙5∙29 mg 124.7 

Ligand bipyb) 5∙15.2 mg/1.5 50.7 Ligand bipyb) 5∙15.2 mg 76 

Total  205.9 Total  250.7 

a) MeOH replaced by 4,4’-bipyridine during the synthesis and therefore considered as a solvent which is 

removed after the reaction; b) only 1 equivalent bipy is involved in the formation of the CP, the excess is 

regarded soluble. 
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Figure 2: TEM and cryo-TEM images of the SCO CP-BCP nanocomposite samples 1e (A, B), 2e (C, D), 3e (E, F), and 4e 

(G, H) that show spherical nanoparticles in both characterization methods. The size distributions are given in the insets. 
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Figure 3: TEM images of SCO CP-BCP samples 5a (A), 5b (B), and 5e (C) visualizing the transformation from spheres 

to worm-like micelles. Cryo-TEM conforms the presence of worm-like micelles in solution for sample 5e (D). The 

corresponding size distributions are given in the insets. 

The samples 1c-d, 2c-d, 3c-d, 4c-d, and 5c-d were studied by room temperature Mössbauer 

spectroscopy. Samples 1e, 2e, 3e, 4e, and 5e were additionally analyzed by temperature-

dependent Mössbauer spectroscopy. Magnetic susceptibility measurements were performed on 

samples 1c-e, 2c-e, 3c-e, 4c-e, and 5c-e with a SQUID magnetometer. (Temperature-dependent) 

Mössbauer spectroscopy gives an insight on the oxidation and spin states of the SCO CP-BCP 

composites. All Mössbauer spectra measured at rt only show one distinct doublet that 

corresponds to a Fe(II) HS species.[28] The spectra of all samples are presented in Figure S17 to 

Figure S21 along with the chemical shift δ, the quadrupole splitting ΔEQ and the line width Γ 

(Table S1). 

The magnetic properties are displayed as χMT vs. T plots for the samples 1e and 5e in the 

temperature range from 50 K to 400 K in Figure 4. Samples 1c-e, 2c-e, 3c-e, 4c-e, and 5c-e are 

displayed in the complete temperature range from 50 K to 400 K in Figure S22 to Figure S26. 

Moreover, the residual HS fraction is calculated from the measurements by dividing the χMT value 
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at 50 K by the starting value at 300 K. All samples were measured in six consecutive cooling and 

heating cycles (Table 5 and Table S2). It was already shown that the SCO properties (hysteresis 

width, transition temperature, HS fraction) of the as-synthesized product can be altered by 

thermal annealing. This effect occurred due to the recrystallisation of the CP inside the polymeric 

micelles at annealing temperatures above the glass transition temperature Tg of PS proven by 

temperature-dependent powder X-ray diffraction (T-PXRD).[21] Here, we can also show that not 

only the enlargement of the particles and the morphological changes into rods or worm-like 

structures alters the SCO to be more complete from γHS = 30% for sample 1e to γHS = 14% for 

sample 5e. In addition, the optimization of the synthesis by reducing the amount of bridging ligand 

bipy improves the completeness of the SCO CP-BCP composite indicated by the residual HS 

fraction with γHS = 23% vs. γHS = 14% for samples 5d and 5e, respectively. T-PXRD pattern were 

measured for the samples #e and proved the recrystallisation of the CP. The relative intensity of 

the newly detected reflexes after thermal annealing increased continuously from sample 1e to 5e 

(Figure S27). 

 

Figure 4: Comparison of the magnetic susceptibility measurements in the temperature range from 50 K to 300 K of the 

samples 1e (A) and 5e (B) in sweep mode (measurements 1 – 5) and settle mode (measurement 6) showing the 

lowering of the χMT value and the increase in the abruptness of the spin transition in the larger particles. Detailed 

information about the cooling and heating cycles are noted in Table 5. The complete temperature range from 50 K to 

400 K can be found in Figure S22 and Figure S26. 

  



9. Size and Shape Controlled Synthesis of Spin Crossover – Block Copolymer Nanocomposites 
 

 
- 162 - 

Table 5: Summary of the cooling and heating cycles and the data derived from the magnetic measurements for the 

samples 1e, 2e, 3e, 4e, and 5e showing the transition temperatures T1/2↓ and T1/2↑, the hysteresis width, the χMT value 

at 50 K, and the γHS value at 50 K. 

Sample Temperature 
range [K] Mode T1/2↓ [K] T1/2↑ [K] Hysteresis 

width [K] 
χMT at 50 K 
[cm³Kmol-1] γHS [%] 

1e 

300-50-370a) 

sweep 

160 166 6 1.71 53 

370-50-380b) 171 181 10 1.74 54 

380-50-400c) 186 201 15 1.63 50 

400-50-400d) 199 216 17 1.41 43 

400-50-300e) 204 222 18 1.18 36 

300-50-300f) settle 208 221 13 0.97 30 

5e 

300-50-370a) 

sweep 

169 174 5 1.61 50 

370-50-380b) 183 210 27 1.42 44 

380-50-400c) 195 218 23 1.09 34 

400-50-400d) 203 223 20 0.77 24 

400-50-300e) 207 226 19 0.62 19 

300-50-300f) settle 211 224 13 0.47 14 

a) Figure 4, curve 1; b) Figure 4, curve 2; c) Figure 4, curve 3; d) Figure 4, curve 4; e) Figure 4, curve 5; 

f) Figure 4, curve 6. 

Zero-field, temperature-dependent Mössbauer spectra were measured for the as-synthesized 

sample 5e at 290 K, 250 K, 175 K, and 80 K and for the annealed ample 5e* at 250 K, 175 K, and 

80 K. This allows a correlation between the magnetic and Mössbauer measurements by 

comparing the residual HS fractions. 

As expected, the as-synthesized sample shows only one doublet at 290 K that represents an 

iron(II) HS species corresponding to the formed iron(II) CP [FeL(bipy)]n inside the BCP.[28] Upon 

cooling of the sample in the spectrometer, a second doublet corresponding to an iron(II) LS 

species arises. The residual HS fraction is lowered to 92% at 250 K and 69% at 175 K to reach its 

final value of 43 % at 80 K (see Figure 5, Figure S28, and Table S4), which is in good agreement 

with the residual HS fraction of the magnetic measurement of 51 % at 80 K. After thermal 

annealing, the measurement procedure was repeated (Figure 5 and Figure S28). As expected, it 

was found that upon cooling the HS fractions of the annealed sample are lower than the ones of 

the as-synthesized at the same temperatures. Additionally, the HS fraction of sample 5e* is 

decreased to 35% at 80 K. However, the γHS values of the annealed sample 5e* differ noticeably 

from the ones obtained from the magnetic measurements. The residual HS fraction is calculated 

to 81% from the Mössbauer spectrum while for the magnetic measurement the sample is almost 
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entirely in the HS state with a value of 99%. In contrary, at 80 K the γHS value is higher for the 

Mössbauer measurement with 35% than for the magnetic measurement with 15% (Table S5). 

The lower γHS value at 250 K for the Mössbauer measurement can be explained by matrix effect 

due to the mixing of the composite sample with Na2SO4 for an even distribution of the sample. 

The higher γHS value can be explained by the different annealing environments for the two 

measurements. For the magnetic measurements, the neat sample was annealed over several 

measurement cycles inside the magnetometer under He/vacuum atmosphere until its final 

annealing temperature of 400 K, remaining inside the device for about 25 h. In contrast, the 

sample for the Mössbauer measurement was mixed with Na2SO4 for a better distribution inside 

the sample holder. The annealing of the mixed Mössbauer sample was performed by heating the 

sample holder inside a Schlenk tube with nitrogen atmosphere in a drying oven at 393 K for 1 h. 

The measurements at the other temperatures can be found in Figure S28. The chemical shift δ, the 

quadrupole splitting ΔEQ, the line width Γ, the asymmetry A2/A1, and the area of the doublets are 

given in Table S4. 

 

Figure 5: Mössbauer spectra of sample 5e at two different temperatures (250 K and 80 K) before thermal annealing 

(as-synthesized, left) and after thermal annealing (right). 

SEM was additionally performed on the samples #e to analyze the surface of the nanocomposites. 

The surface was found to be crystal-free for the five nanocomposites before thermal annealing, 

indicating the successful incorporation of the CP into the polymeric micelles. (Figure S30 to 

Figure S34). 

The nanocomposites were again analyzed by TEM and DLS after annealing to exclude the 

formation of the CP outside the polymeric micelles. The samples were redispersed to prove that 

the particles are still narrowly dispersed after annealing and no formation of nano- or 

microcrystals can be observed. The average hydrodynamic diameters Dh after annealing range 
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from 106 ± 67 nm (1e*) to 246 ± 149 nm (5e*) (Figure S35). Particle core sizes and core widths 

of the annealed products Dcore are 14 ± 2 nm (1e*) to 65 ± 5 nm (5e*) (Table 6 and Figure S36). 

In Table 6 the comparison of the core size/core width and the hydrodynamic diameter of the as-

synthesized and the annealed samples is given. The particles after annealing were found to be 

identical in size both in solution and in the dry state compared to the as-synthesized 

nanocomposites. Microcrystals were absent for both characterization methods. This indicates that 

the crystals found in the SEM measurements are not CP crystals but rather crystals of the excess 

of bipy which is rapidly dissolved upon the sample preparation process for TEM and DLS. 

Magnetic measurements also point to the fact that no CP microcrystals are present in the sample. 

The change in the SCO properties is similar for sample 1e and 5e. In addition, a sample 

synthesized in toluene containing CP microcrystals in TEM measurements showed bulk-like 

behavior even without thermal annealing (Figure S37). Moreover, a toluene solution with 

microcrystals and a THF nanocomposite solution were kept until complete evaporation of the 

solvents. As expected, CP crystals precipitated from the toluene solution, while the THF 

nanocomposite solution resulted in the formation of a polymeric solid/film (Figure S38). 

The five before mentioned samples were again characterized by SEM after thermal annealing 

(Figure S29 to Figure S33). While the surface of the annealed samples 1e* and 2e* remained 

crystal-free, crystals were observed for the samples 3e*, 4e*, and 5e*. Interestingly, the presence 

of crystals on the surface of sample 5e* is less prominent than for the other two samples, which 

may be an effect of an improved formation of the CP inside the elongated worm-like micelles. 

Additionally, optical light microscopy was performed with two different dried up solutions from 

THF (BCP/bipy and SCO CP-BCP solutions), a powdered sample of the CP [FeL(bipy)]n, and a 

micrometer crystal of [FeL(bipy)]n obtained from a dried up SCO CP-BCP solution from toluene. 

The bipyridine crystallized in a starshaped structure, which was also detected for the dried up 

SCO CP-BCP solution from THF (see Figure S39A, B). Images of the powdered CP and the crystal 

obtained from a dried up SCO CP-BCP solution from toluene revealed unshaped structures 

(Figure S39C) and block shaped crystals (Figure S39D), respectively. Both latter CP samples 

were additionally much darker in color than the SCO CP-BCP sample from THF, supporting the 

assumption that the crystals observed by optical light microscopy and SEM are the crystallized 

excess of bipy used in the reactions. 
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Table 6: Comparison of the hydrodynamic diameter and the core diameter/width measured by DLS and TEM before 

annealing (as-synthesized samples; 1e, 2e, 3e, 4e, and 5e) and after thermal annealing (1e*, 2e*, 3e*, 4e*, and 5e*). 

Sample Hydrodynamic diameter Dh[nm] Core diameter/width Dcore [nm] 

1e 113 ± 67 14 ± 2 

1e* 106 ± 67 14 ± 2 

2e 118 ± 55 28 ± 3 

2e* 109 ± 39 27 ± 3 

3e 139 ± 38 48 ± 4 

3e* 123 ± 34 48 ± 5 

4e 139 ± 36 58 ± 4 

4e* 140 ± 39 53 ± 4 

5e 242 ± 147 60 ± 8 

5e* 246 ± 149 65 ± 5 

 

Transmission electron microscopy – energy dispersive X-ray (TEM-EDX) measurements were 

additionally performed on the sample 5d to evaluate the spatial distribution of iron inside the SCO 

CP-BCP. It was expected that the iron can only be detected inside the polymeric structure. 

Figure 6 shows the high-angle annular dark field (HAADF) image of sample 5d (A) and the 

respective overlay of the HAADF image with the iron signal from EDX (B). The images of the 

distribution of only iron (C), nitrogen (D), and carbon (E) are presented as well. Iron was only 

detected inside the SCO CP-BCP composite and is homogenously distributed throughout the 

polymer structure. Image C shows that the iron signal is identical to the signals of nitrogen and 

carbon of the BCP. Two energy spectra were calculated by the integration of two different areas 

identical in size of the sample. One spectrum was taken on the area of the SCO CP-BCP composite 

and the other one outside of the SCO CP-BCP (Figure S40). The results confirm that iron was only 

found inside the SCO CP-BCP, indicating an incorporation of the SCO CP into the BCP. 
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Figure 6: HAADF image of sample 5d showing the worm-like structures (A),an overlay of the iron signal received from 

TEM-EDX measurements and the HAADF image (B), and the individual images of the iron (C), nitrogen (D), and carbon 

(E) signals from TEM-EDX. 

9.3. Conclusion 

Five different BCPs with a varying P4VP content (SV-15 to SV-61) have been prepared. The TEM 

and cryo-TEM images of the neat BCPs showed spherical micelles with core sizes Dcore of 15 ± 2 nm 

(SV-15) to 73 ± 9 nm (SV-61) and Dcryo of 26 ± 2 nm (SV-15) to 71 ± 4 nm (SV-61). These polymers 

were also utilized as nanoreactors in the synthesis of iron(II)-based CP NPs, well-defined in terms 

of size and shape. The nanocomposite particles with the BCPs SV-15 to SV-42 are also spherical 

and the size is similar to the neat BCP particles, underlining the templating effect of the BCPs. 

Interestingly, the morphology of the micelles changed to rods or worm-like micelles for the 

nanocomposites synthesized with SV-61 and the particle core widths were determined by TEM 

(Dcore = 60 ± 8 nm) and cryo-TEM (Dcryo = 84 ± 10 nm), respectively. These results indicated that 

the introduction of the CP induced a morphological change by increasing the insoluble parts of the 

nanocomposite. Additionally, it was shown that the magnetic properties of the SCO CP-BCP 

nanocomposites can be altered by several factors to approximate a bulk-like behavior: (1) the 

reduction of the amount of the bridging ligand bipy from 2.5 eq to 1.5 eq. This resulted in a lower 

residual HS fraction γHS in all samples. (2) The enlargement of the spherical particle cores from 14 

nm to 58 nm also resulted in a decrease of γHS from 30 % (1e) to 21 % (4e). (3) The thermal 

annealing of the SCO CP-BCP composites led to a shift in the transition temperature and, again, in 

a decrease of γHS. (4) The change of the morphology of the nanocomposite particles to rods or 

worm-like micelles allowed the CP to crystallize in longer strands. As a result, the γHS value 

ultimately reached 14 % (5e). In addition, TEM EDX of a nanocomposite containing worm-like 

structures (5d) proved that the iron containing SCO CP is only located inside the polymeric 

structure and no iron can be detected outside of the micelles. 
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9.6. Supporting Information 

9.6.1. General Procedures 

Materials: All SCO CP-BCP syntheses were performed under inert conditions using argon 5.0 

(purity ≥ 99,999%) using Schlenk tube technique. The synthesis of the sample was repeated at 

least twice. Tetrahydrofuran (THF) p.a. for the SCO syntheses was obtained from Bernd Kraft and 

degassed with argon for at least 30 min. [FeL(MeOH)2] was synthesized as described before.[1] 

4,4´-bipyridine was obtained from Alfa Aesar and used as received. 

THF (Fischer Scientific, ≥99.8%) for anionic polymerization was purified by successive distillation 

over calcium hydride (CaH2, Merck) and potassium (K, Sigma-Aldrich) under N2 atmosphere. 

Styrene (S, Sigma-Aldrich, > 99%) was purified over dibutyl magnesium (Bu2Mg, Sigma-Aldrich, 

1M in heptane) and 4-vinylpyridine (4VP, Acros Organics, 95%) over triethyl aluminum (Et3Al, 

Sigma-Aldrich, 1M in heptane), respectively, followed by condensing into storage ampoules. 1,1-

Diphenylethylene (DPE, Acros Organics, 98%) was purified by addition of sec-butyllithium (sec-

BuLi, Acros Organics, 1.3M in cyclohexane/hexane 92/8) and subsequent distillation. 

For gel permeation chromatography (GPC) in N,N-dimethylformamide (DMF) with lithium 

bromide (5 g L-1), GRAM columns (300 x 8 mm, 10 µm particle size, PSS Mainz) with 100 and 

3000 Å pore sizes were used. The sample was measured on a SEC 1260 Infinity system (Agilent 

Technologies) at a flow rate of 0.5 mL min-1 at 23 °C, using a refractive index detector (Agilent 

Technologies). The calibration was done with narrowly distributed polystyrene standards (PSS 

calibration kit) and toluene (HPLC grade) was used as internal standard. 

MALDI-ToF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) 

measurements were performed on a Reflex III (Bruker) equipped with a N2 Laser (λ = 337 nm). 

An acceleration voltage of 20 kV was used in linear mode and the samples were prepared 

according to the dried droplet method. Therefore, matrix (trans-2-[3-(4-tert-butylphenyl)-2-

methyl-2-propenylidene]malononitrile (DCTB), 10 g L-1 in THF), analyte (10 g L-1 in THF) and salt 

(silver trifluoroacetate, 10 g L-1) were dissolved and mixed in the ratio of 20 : 5 : 1 and 0.5 µL of 

the mixture was placed and dried on the target plate.  

1H-NMR spectra were acquired with a Bruker Ultrashield 300 spectrometer using CDCl3 as 

solvent. 

The differential scanning calorimetry (DSC) measurements were performed on a Phoenix 204 

F1 (Netzsch) under nitrogen atmosphere, using aluminum crucibles (temperature range: 

20 – 200 °C, scanning rates: 10, 20 and 30 K∙min-1). 
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Transmission infrared (IR) spectra were collected from a Perkin Elmer Spectrum 100 FT-IR 

(ATR). The samples were measured directly as solids. 

For elemental analysis, the carbon, nitrogen, and hydrogen contents were determined with a 

Vario EL III (Elementar Analysensysteme GmbH) with acetanilide as standard or at an Unicube 

from Elementar Analysensysteme GmbH with sulfanilamide as standard. The samples were placed 

in tin boats and measured at least twice. The average of the measurements was used. 

Magnetic susceptibility measurements were performed at a Quantum Design MPMS-XL-5 SQUID 

magnetometer. Field strength of 3 T was applied and a temperature range of 50 – 400 K was used 

to determine the temperature dependency of the magnetism and the spin crossover behavior. 

Sweep mode was used for the five cycles with a cooling and heating rate of 5 K min-1. The final 

measurement was performed in settle mode with a cooling and heating rate of 5 K min-1 between 

50 K and 300 K. The samples were prepared in gelatin capsules placed in a plastic straw. The 

measured values were corrected for the diamagnetism of the sample holder, the polymer matrix 

(measured values) and the ligand (tabulated Pascal constants). 

The room temperature 57Fe Mössbauer spectrum was recorded in transmission geometry with 

constant acceleration using a conventional Mössbauer spectrometer with a 50 mCi 57Co(Rh) 

source. The samples were sealed in the sample holder in an argon atmosphere. The spectra were 

fitted using Recoil 1.05 Mössbauer Analysis Software.[2] The isomer shift values are given with 

respect to a α-Fe reference at room temperature. 

Temperature-dependent zero-field 57Fe Mössbauer measurements on polycrystalline powder 

of SCO CP-BCP were conducted at variable temperatures between T = 80 and 300 K. A 

conventional transmission spectrometer with sinusoidal velocity sweep. The temperature-

dependent measurements between T = 80 and 300 K were conducted on a CryoVac continuous-

flow cryostat with He or N2 contact gas. After positioning the sample container (made of Teflon or 

PEEK), the sample chamber was evacuated, flushed five times with He or N2 gas, and kept at ca. 

50 – 100 mbar during the measurement. The temperature was measured with a calibrated silicon 

diode located close to the sample container, providing a temperature stability of better than 0.1 K. 

The nominal activity of the 57Fe Mössbauer source used was 50 mCi of 57Co in a rhodium matrix, 

which was stored at ambient temperature during the measurement. Velocity calibration was done 

with an α-iron foil at ambient temperature and the minimum experimental line width (FWHM) 

was < 0.24 mm s-1. Isomer shifts (δ) were specified relative to metallic iron at room temperature 

but were not corrected in terms of the second-order Doppler shift. The spectra were analysed by 

least-square fits using doublets of Lorentzian lines utilizing the software package NORMOS.[3] 
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Scanning electron microscopy (SEM) micrographs were taken on a Zeiss LEO 1530 GEMINI and 

a Zeiss Ultra plus. The acceleration voltage was set to 3 kV (with a Schottky-field-emission gun) 

using an in-lens secondary electron detector. The sample was sputter-coated with a 1.3 nm 

platinum layer. 

Room temperature powder X-ray diffraction (PXRD) data were collected with a STOE StadiP X-

Ray diffractometer in transmission geometry between 5° and 30° 2Θ for all samples, which were 

placed on flat surfaces. Cu-Kα1 radiation (λ = 1.541 Å) was used for the measurements together 

with a Mythen 1K detector. 

Temperature-dependent powder X-ray diffraction (T-PXRD) pattern were recorded using a 

Bragg-Brentano type diffractometer (X’PERT-Pro, PANalytical with CuKα1-radiation (λ = 1.541 Å), 

equipped with a secondary monochromator to suppress fluorescence. The sample was placed on 

a flat surface in a flowing nitrogen atmosphere in an XRK chamber during the measurement. 

Transmission electron microscopy: Transmission electron microscopy was taken at a Zeiss 

CEM902 electron microscope (Zeiss, Oberkochen, Germany) and a JEOL 2200FS electron 

microscope. Samples were dispersed in THF. The dispersion was dropped on a carbon coated 

copper grid (mesh 200, Science Services, Munich). Electron acceleration voltage was set to 80 kV 

(CEM902) and 200 kV (JEOL 2200FS). Micrographs were taken with a MegaView III / iTEM image 

acquiring and processing system from Olympus Soft Imaging Systems (OSIS, Münster, Germany) 

and an Orius 830 SC200W / DigitalMicrograph system from Gatan (Munich, Germany). Particles 

size measurements were done with “ImageJ” image processing software developed by Wayne 

Rasband (National Institutes of Health, USA). 

For cryo transmission electron microscopy studies, a sample droplet of 2 µL was put on a lacey 

carbon filmed copper grid (Science Services, Munich, Germany). Subsequently, most of the liquid 

was removed with blotting paper leaving a thin film stretched over the lace holes. The specimens 

were instantly shock frozen by rapid immersion into liquid nitrogen cooled to approximately 90 K 

in a temperature-controlled freezing unit (Zeiss Cryobox, Carl Zeiss Microscopy GmbH, Jena, 

Germany). The temperature was monitored and kept constant in the chamber during all the 

sample preparation steps. The specimen was inserted into a cryotransfer holder (CT3500, Gatan, 

Munich, Germany) and transferred to a Zeiss / LEO EM922 Omega EFTEM (Zeiss Microscopy 

GmbH, Jena, Germany). Examinations were carried out at temperatures around 90 K. The TEM 

was operated at an acceleration voltage of 200 kV. Zero-loss filtered images (DE = 0 eV) were 

taken under reduced dose conditions (100 – 1000 e/nm2). All images were registered digitally by 

a bottom mounted CCD camera system (Ultrascan 1000, Gatan, Munich, Germany) combined and 

processed with a digital imaging processing system (Digital Micrograph GMS 1.9, Gatan, Munich, 

Germany). 
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Dynamic light scattering (DLS) measurements were done at an AntonPaar Litesizer 500 in 

quartz glass cuvettes from Helma at 25 °C. One measurement consists of six consecutive runs. 

Optical light microscopy was performed on a Keyence VHX-950F equipped with a VH-Z250F 

objective lens. Samples were prepared on a glass microscope slides from solution or directly as 

solids. 

9.6.2. Synthesis Procedures 

Synthesis of the PS-b-P4VP diblock copolymers 

The PS-b-P4VP diblock copolymers were synthesized by sequential living anionic polymerization 

in THF using a laboratory autoclave (1 L, Büchi AG). Styrene was polymerized first for 30 min 

using sec-BuLi as initiator at -80 °C. After complete conversion of styrene, a sample was taken for 

GPC and MALDI-ToF analyses. Subsequently, 1,1-diphenylethylene was added to the living 

polystyryllithium (equimolar amount to initiator), followed by the addition of 4-vinylpyridine 

(4VP). After 4 h the polymerization was terminated with degassed methanol followed by 

precipitation in deionized water to isolate the diblock copolymer. The number average molecular 

weights of the PS-b-P4VP diblock copolymers were determined from 1H-NMR (CDCl3), employing 

the absolute molecular weight of the PS precursor obtained by MALDI-ToF MS for signal 

calibration. As the solubility of the P4VP block in THF strongly decreases with its chain length[4], 

micellization and, thus, a significant increase in solution viscosity occurred during the synthesis 

of the diblock copolymers with high P4VP fractions. Nevertheless, polymerization of 4VP proceeds 

within the core of the formed micelles to yield the desired diblock copolymers. However, this 

resulted in an increase in dispersity with increasing P4VP weight fraction (Table 1). The diblock 

copolymer S39V61
162 was additionally purified by extraction with cyclohexane/THF (1/1 v/v) over 

night to remove a small fraction of PS homopolymer formed by termination upon addition of 4VP. 
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Synthesis of the SCO CP-BCP nanocomposites in SV-15 

50 mg S85V15154 and 6.7 mg (15 µmol) [FeL(MeOH)2] were dissolved in 20 mL THF in a 50 mL 

Schlenk flask. The solution was refluxed for 2 h. After cooling, 5.9 mg (37.5 µmol, 2.5 eq) 

4,4’-bipyridine was added and the solution was refluxed again for 1 h. After reaching RT, 6.7 mg 

(15 µmol) [FeL(MeOH)2] and 5.9 mg (37.5 µmol, 2.5 eq) 4,4’bipyridine were added 

simultaneously and the solution was refluxed again for 1 h. The simultaneous addition of the 

reactants and the subsequent reflux of the solution were repeated up to three more times 

(samples 1a to 1d). Consecutively, the solvent was removed by cold distillation and the resulting 

dark brown polymeric solid was dried in vacuo. For sample 1e the amount of 4,4’-bipyridine for 

each reaction cycle was reduced to 3.5 mg (22.5 µmol, 1.5 eq). 

1a: Elemental anal. (%) found: C 72.16, H 7.40, N 2.65. 

1b: Elemental anal. (%) found: C 57.90, H 6.83, N 3.37. 

1c: Elemental anal. (%) found: C 66.14, H 6.81, N 5.10. 

1d: Elemental anal. (%) found: C 67.06, H 6.59, N 5.85. 

1e: Elemental anal. (%) found: C 64.27, H 6.43, N 4.70. 

Synthesis of the SCO CP-BCP nanocomposites in SV-21 

50 mg S79V21119 and 9.4 mg (21 µmol) [FeL(MeOH)2] were dissolved in 20 mL THF in a 50 mL 

Schlenk flask. The solution was refluxed for 2 h. After cooling, 8.2 mg (52.5 µmol, 2.5 eq) 

4,4’-bipyridine was added and the solution was refluxed again for 1 h. After reaching RT, 9.4 mg 

(21 µmol) [FeL(MeOH)2] and 8.2 mg (52.5 µmol, 2.5 eq) 4,4’bipyridine were added 

simultaneously and the solution was refluxed again for 1 h. The simultaneous addition of the 

reactants and the subsequent reflux of the solution were repeated up to three more times 

(samples 2a to 2d). Consecutively, the solvent was removed by cold distillation and the resulting 

dark brown polymeric solid was dried in vacuo. For sample 2e the amount of 4,4’-bipyridine for 

each reaction cycle was reduced to 4.9 mg (31.5 µmol, 1.5 eq). 

2a: Elemental anal. (%) found: C 71.85, H 6.33, N 4.11. 

2b: Elemental anal. (%) found: C 68.00, H 6.80, N 6.20. 

2c: Elemental anal. (%) found: C 66.92, H 6.64, N 6.61. 

2d: Elemental anal. (%) found: C 68.88, H 5.77, N 7.52. 

2e: Elemental anal. (%) found: C 62.13, H 6.21, N 5.77. 
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Synthesis of the SCO CP-BCP nanocomposites in SV-35 

50 mg S65V35131 and 14.8 mg (33 µmol) [FeL(MeOH)2] were dissolved in 20 mL THF in a 50 mL 

Schlenk flask. The solution was refluxed for 2 h. After cooling, 12.9 mg (82.5 µmol, 2.5 eq) 

4,4’-bipyridine was added and the solution was refluxed again for 1 h. After reaching RT, 14.8 mg 

(33 µmol) [FeL(MeOH)2] and 12.9 mg (82.5 µmol, 2.5 eq) 4,4’bipyridine were added 

simultaneously and the solution was refluxed again for 1 h. The simultaneous addition of the 

reactants and the subsequent reflux of the solution were repeated up to three more times 

(samples 3a to 3d). Consecutively, the solvent was removed by cold distillation and the resulting 

dark brown polymeric solid was dried in vacuo. For sample 3e the amount of 4,4’-bipyridine for 

each reaction cycle was reduced to 7.8 mg (50 µmol, 1.5 eq). 

3a: Elemental anal. (%) found: C 68.70, H 7.12, N 5.36. 

3b: Elemental anal. (%) found: C 64.67, H 6.15, N 6.88. 

3c: Elemental anal. (%) found: C 63.66, H 6.56, N 7.18. 

3d: Elemental anal. (%) found: C 66.60, H 6.27, N 8.29. 

3e: Elemental anal. (%) found: C 60.99, H 5.96, N 6.88. 

 

Synthesis of the SCO CP-BCP nanocomposites in SV-42 

50 mg S58V42157 and 17.9 mg (40 µmol) [FeL(MeOH)2] were dissolved in 20 mL THF in a 50 mL 

Schlenk flask. The solution was refluxed for 2 h. After cooling, 15.6 mg (100 µmol, 2.5 eq) 

4,4’-bipyridine was added and the solution was refluxed again for 1 h. After reaching RT, 17.9 mg 

(40 µmol) [FeL(MeOH)2] and 15.6 mg (100 µmol, 2.5 eq) 4,4’bipyridine were added 

simultaneously and the solution was refluxed again for 1 h. The simultaneous addition of the 

reactants and the subsequent reflux of the solution were repeated up to three more times 

(samples 4a to 4d). Consecutively, the solvent was removed by cold distillation and the resulting 

dark brown polymeric solid was dried in vacuo. For sample 4e the amount of 4,4’-bipyridine for 

each reaction cycle was reduced to 9.4 mg (60 µmol, 1.5 eq). 

4a: Elemental anal. (%) found: C 66.51, H 6.63, N 5.63. 

4b: Elemental anal. (%) found: C 69.14, H 5.74, N 8.67. 

4c: Elemental anal. (%) found: C 64.83, H 6.35, N 8.22. 

4d: Elemental anal. (%) found: C 66.19, H 6.20, N 9.04. 

4e: Elemental anal. (%) found: C 61.64, H 5.85, N 7.63. 
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Synthesis of the SCO CP-BCP nanocomposites in SV-61 

50 mg S39V61162 and 29 mg (65 µmol) [FeL(MeOH)2] were dissolved in 20 mL THF in a 50 mL 

Schlenk flask. The solution was refluxed for 2 h. After cooling, 25.4 mg (162.5 µmol, 2.5 eq) 

4,4’-bipyridine was added and the solution was refluxed again for 1 h. After reaching RT, 29 mg 

(65 µmol) [FeL(MeOH)2] and 25.4 mg (162.5 µmol, 2.5 eq) 4,4’bipyridine were added 

simultaneously and the solution was refluxed again for 1 h. The simultaneous addition of the 

reactants and the subsequent reflux of the solution were repeated up to three more times 

(samples 5a to 5d). Consecutively, the solvent was removed by cold distillation and the resulting 

dark brown polymeric solid was dried in vacuo. For sample 5e the amount of 4,4’-bipyridine for 

each reaction cycle was reduced to 15.2 mg (97.5 µmol, 1.5 eq). 

5a: Elemental anal. (%) found: C 69.01, H 6.14, N 9.11. 

5b: Elemental anal. (%) found: C 64.66, H 5.46, N 9.68. 

5c: Elemental anal. (%) found: C 65.97, H 5.50, N 10.49. 

5d: Elemental anal. (%) found: C 66.22, H 5.70, N 10.64. 

5e: Elemental anal. (%) found: C 62.60, H 5.62, N 8.93. 
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9.6.3. Characterization of the BCPs 

NMR of the BCPs 

 

Figure S1: NMR spectra of the five BCPs SV-15 (A), SV-21 (B), SV-35 (C), SV-42 (D), and SV-61 (E) and an exemplary 

calculation for the composition of the BCPs. 
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GPC of the BCPs 

 

Figure S2: GPC data for the five BCPs SV-15 (black), SV-21 (red), SV-35 (green), SV-42 (blue), and SV-61 (light blue). 

DSC of the BCPs 

 

Figure S3: DSC measurements of the five BCPs SV-15 (black), SV-21 (red), SV-35 (green), SV-42 (blue), and SV-61 

(light  blue) showing the glass transition temperature Tg of PS and P4VP at 109 °C and 157 °C, respectively. 

  



9. Size and Shape Controlled Synthesis of Spin Crossover – Block Copolymer Nanocomposites 
 

 
- 180 - 

DLS of the BCPs 

 

Figure S4: DLS autocorrelation functions and hydrodynamic diameters of the five BCPs SV-15 (black), SV-21 (red), 

SV-35 (green), SV-42 (blue), and SV-61 (light blue). 
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9.6.4. Characterization of the SCO CP-BCP nanocomposites 

TEM 

 

Figure S5: TEM images of the samples 1a (A), 1b (B), 1c (C), and 1d (D). The size distribution of each sample is given 

in the insets. 
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Figure S6: TEM images of the samples 2a (A), 2b (B), 2c (C), and 2d (D). The size distribution of each sample is given 

in the insets. 
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Figure S7: TEM images of the samples 3a (A), 3b (B), 3c (C), and 3d (D). The size distribution of each sample is given 

in the insets. 
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Figure S8: TEM images of the samples 4a (A), 4b (B), 4c (C), and 4d (D). The size distribution of each sample is given 

in the insets. 
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Figure S9: TEM images of the samples 5a (A), 5b (B), 5c (C), and 5d (D). The size distribution of each sample is given 

in the insets. 

DLS 

 

Figure S10: DLS autocorrelation functions (left) and the hydrodynamic diameter (right) of the nanocomposite samples 

1a (black), 1b (red), 1c (green), 1d (blue), and 1e (light blue). 
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Figure S11: DLS autocorrelation functions (left) and the hydrodynamic diameter (right) of the nanocomposite samples 

2a (black), 2b (red), 2c (green), 2d (blue), and 2e (light blue). 

 

Figure S12: DLS autocorrelation functions (left) and the hydrodynamic diameter (right) of the nanocomposite samples 

3a (black), 3b (red), 3c (green), 3d (blue), and 3e (light blue). 

 

Figure S13: DLS autocorrelation functions (left) and the hydrodynamic diameter (right) of the nanocomposite samples 

4a (black), 4b (red), 4c (green), 4d (blue), and 4e (light blue). 
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Figure S14: DLS autocorrelation functions (left) and the hydrodynamic diameter (right) of the nanocomposite samples 

5a (black), 5b (red), 5c (green), 5d (blue), and 5e (light blue). 
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IR 

 

Figure S15: IR spectra of the samples 1a-1e (A), 2a-2e (B), 3a-3e (C), 4a-4e (D), and 5a-5e (E). 
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PXRD 

 

Figure S16: PXRD pattern of the samples 1a-1e (A), 2a-2e (B), 3a-3e (C), 4a-4e (D), and 5a-5e (E). 
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Mössbauer spectroscopy 

 

Figure S17: Room temperature 57Fe Mössbauer spectrum of the sample 1d showing only one doublet characteristic for 

the CP. The spectrum is displayed in respect to α-Fe as reference. 

 

Figure S18: Room temperature 57Fe Mössbauer spectrum of the samples 2c and 2d showing only one doublet 

characteristic for the CP. The spectrum is displayed in respect to α-Fe as reference. 

 

Figure S19: Room temperature 57Fe Mössbauer spectrum of the samples 3c and 3d showing only one doublet 

characteristic for the CP. The spectrum is displayed in respect to α-Fe as reference. 
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Figure S20: Room temperature 57Fe Mössbauer spectrum of the samples 4c and 4d showing only one doublet 

characteristic for the CP. The spectrum is displayed in respect to α-Fe as reference. 

 

Figure S21: Room temperature 57Fe Mössbauer spectrum of the samples 5c and 5d showing only one doublet 

characteristic for the CP. The spectrum is displayed in respect to α-Fe as reference. 

Table S1: Chemical shift δ, quadrupole splitting ΔEQ, line width Γ, and the area of the iron(II) HS sites of the samples 1d, 

2c-d, 3c-d, 4c-d, and 5c-d. 

Sample δ [mm s-1] ΔEQ [mm s-1] Γ [mm s-1] Area [%] 

1d 0.937(6) 2.177(13) 0.193(10) 100 

2c 0.951(10) 2.16(2) 0.191(15) 100 

2d 0.962(17) 2.20(3) 0.20(3) 100 

3c 0.940(7) 2.158(13) 0.176(10) 100 

3d 0.944(6) 2.157(11) 0.173(9) 100 

4c 0.940(9) 2.151(18) 0.216(14) 100 

4d 0.934(7) 2.186(15) 0.184(11) 100 

5c 0.939(5) 2.16(10) 0.160(7) 100 

5d 0.930(6) 2.166(12) 0.186(10) 100 
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Magnetic measurements 

 

Figure S22: Magnetic susceptibility data for the samples 1c (left), 1d (middle), and 1e (right) given as χMT vs. T plot 

measured in sweep (measurement 1-5) and settle mode (measurement 6) in the whole measured temperature range 

from 50 K to 400 K. 

 

Figure S23: Magnetic susceptibility data for the samples 2c (left), 2d (middle), and 2e (right) given as χMT vs. T plot 

measured in sweep (measurement 1-5) and settle mode (measurement 6) in the whole measured temperature range 

from 50 K to 400 K. 

 

Figure S24: Magnetic susceptibility data for the samples 3c (left), 3d (middle), and 3e (right) given as χMT vs. T plot 

measured in sweep (measurement 1-5) and settle mode (measurement 6) in the whole measured temperature range 

from 50 K to 400 K. 
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Figure S25: Magnetic susceptibility data for the samples 4c (left), 4d (middle), and 4e (right) given as χMT vs. T plot 

measured in sweep (measurement 1-5) and settle mode (measurement 6) in the whole measured temperature range 

from 50 K to 400 K. 

 

Figure S26: Magnetic susceptibility data for the samples 5c (left), 5d (middle), and 5e (right) given as χMT vs. T plot 

measured in sweep (measurement 1-5) and settle mode (measurement 6) in the whole measured temperature range 

from 50 K to 400 K. 
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Table S2: Summary of the cooling and heating cycles and the data derived from the magnetic measurements for the 

samples 2e, 3e, and 4e, showing the transition temperatures T1/2↓ and T1/2↑, the hysteresis width, the χMT value at 50 K, 

and the γHS value at 50 K. 

Sample Temperature 
range [K] Mode T1/2↓ [K] T1/2↑ [K] Hysteresis 

width [K] 
χMT at 50 K 
[cm³Kmol-1] γHS [%] 

2e 

300-50-370a) 

sweep 

163 172 9 1.78 55 

370-50-380b) 170 182 12 1.79 55 

380-50-400c) 185 200 15 1.60 49 

400-50-400d) 201 216 15 1.26 39 

400-50-300e) 209 225 16 0.98 30 

300-50-300f) settle 212 223 11 0.85 26 

3e 

300-50-370a) 

sweep 

162 167 5 1.76 54 

370-50-380b) 172 186 14 1.81 56 

380-50-400c) 189 205 16 1.57 48 

400-50-400d) 200 216 16 1.26 39 

400-50-300e) 205 222 17 1.05 32 

300-50-300f) settle 208 220 12 0.87 27 

4e 

300-50-370a) 

sweep 

164 170 6 1.79 55 

370-50-380b) 174 193 19 1.82 56 

380-50-400c) 193 212 19 1.47 45 

400-50-400d) 202 220 18 1.10 34 

400-50-300e) 206 224 18 0.92 28 

300-50-300f) settle 209 222 13 0.69 21 

a) Figure 4, curve 1; b) Figure 4, curve 2; c) Figure 4, curve 3; d) Figure 4, curve 4; e) Figure 4, curve 5; 

f) Figure 4, curve 6.  
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Temperature-dependent PXRD of the samples #e 

 

Figure S27: Temperature-dependent power X-ray diffraction pattern of the samples 1e (A), 2e (B), 3e (C), 4e (D), and 

5e (E) at five different temperatures and their comparison with the bulk material [FeL(bipy)]n. 
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Temperature-dependent Mössbauer spectroscopy of the sample 5e and 5e* 

 

Figure S28: Zero-field 57Fe Mössbauer spectra of the as-synthesized sample 5e (left) and the annealed sample 5e* 

(right) recorded at 290 K (sample 5e only), 250 K, 175 K, and 80 K and back. The measurements were carried out upon 

zero-field cooling (ZFC) and zero-field warming (ZFW). γHS describes the determined molar fraction of Fe(II) HS 

molecules. Symbols: Experimental data. Lines: Fit with doublets of Lorentzian lines (expect for the measurements at 

250 K where an alternative fit was used, cf. Figure S29 and Table S3). The colored lines illustrate the corresponding 

sub-spectra of the fit, which are attributed to the Fe(II) low-spin (green) and Fe(II) high-spin sites (red), respectively. 

The parameters of the fits are summarized in Table S3 and Table S4. 
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Figure S29: Distribution of quadrupole splitting values, determined by an alternative fit of the Mössbauer spectrum of 

sample 5e at 250 K after ZFC (left) and ZFW (right). 

Table S3: Chemical shift δ, quadrupole splitting ΔEQ, line width Γ, the area of the different iron(II) sites, and the 

distribution width σ of the alternative fit of sample 5e before annealing (as-synthesized) in ZFC and ZFW mode. 

T [K] Site δa) [mm s-1] ΔEQ [mm s-1] Γ [mm s-1] Area [%] σ [mm s-1] 

250b) 
Iron(II) HS 0.970(38) 2.168 0.35* 91.8 0.167 

Iron(II) LS 0.407(49) 1.037 0.35* 8.2 0.087 

250c) 
Iron(II) HS 1.025(71) 2.171 0.3* 87.7 0.122 

Iron(II) LS 0.391(21) 1.013 0.3* 12.3 0.078 

The fits were performed by assuming a distribution of quadrupole splitting values with distribution widths 

σ (cf. Figure S29). Values marked with an asterisk (*) were fixed in the fit. a) Isomer shifts (δ) were specified 

relative to metallic iron at room temperature but were not corrected in terms of the second-order Doppler 

shift. b) ZFC. c) ZFW. 
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Table S4: Chemical shift δ, quadrupole splitting ΔEQ, line width Γ, and the area of the different iron(II) sites of the sample 

5e before annealing (as-synthesized) in ZFC and ZFW mode. 

As-synthesized 

T [K] Site δa) [mm s-1] ΔEQ [mm s-1] Γ [mm s-1] A2/A1b) Area [%] 

290 Iron(II) HS 0.956(3) 2.177(8) 0.388(10) 0.87(4) 100 

250c) 
Iron(II) HS 0.970(38) 2.168 0.35* - 91.8 

Iron(II) LS 0.407(49) 1.037 0.35* - 8.2 

175 
Iron(II) HS 0.987(2) 2.247(4) 0.286(7) 0.95(2) 69.0 

Iron(II) LS 0.490(5) 1.056(11) 0.297(14) 1* 31.0 

80 
Iron(II) HS 1.005(4) 2.362(6) 0.262(10) 0.93(3) 43.0 

Iron(II) LS 0.512(3) 1.118(6) 0.283(8) 1* 57.0 

175 
Iron(II) HS 0.998(3) 2.273(5) 0.279(6) 0.90(3) 59.8 

Iron(II) LS 0.497(5) 1.050(10) 0.305(13) 1* 40.2 

250c) 
Iron(II) HS 1.025(71) 2.171 0.3* - 87.7 

Iron(II) LS 0.391(21) 1.013 0.3* - 12.3 

 

After annealing 

T [K] Site δa) [mm s-1] ΔEQ [mm s-1] Γ [mm s-1] A2/A1b) Area [%] 

290 Iron(II) HS - - - - - 

250c) 
Iron(II) HS 0.956(4) 2.167(7) 0.258(11) 0.94(5) 80.6 

Iron(II) LS 0.47(3) 0.94(5) 0.33(6) 1* 19.4 

175 
Iron(II) HS 0.981(4) 2.262(8) 0.258(11) 0.96(4) 52.1 

Iron(II) LS 0.470(5) 1.068(10) 0.289(15) 1* 47.9 

80 
Iron(II) HS 0.995(6) 2.368(13) 0.65(18) 0.99(4) 35.0 

Iron(II) LS 0.489(4) 1.110(7) 0.292(10) 1* 65.0 

175 
Iron(II) HS 0.969(3) 2.302(6) 0.259(13) 0.94(5) 46.3 

Iron(II) LS 0.479(6) 1.071(10) 0.291(15) 1* 53.7 

250c) 
Iron(II) HS 0.965(4) 2.182(8) 0.301(12) 0.88(4) 82.8 

Iron(II) LS 0.49(3) 0.86(6) 0.35(7) 1* 17.2 

Values marked with an asterisk (*) were fixed in the fit. a) Isomer shifts (δ) were specified relative to metallic 

iron at room temperature but were not corrected in terms of the second-order Doppler shift. b) In case of 

polycrystalline powders with random orientations of the crystallites, the expectation value of this 

parameter is A2/A1 = 1.[5] Deviations from this value, which are clearly observed e.g. at 290 K, are attributed 

to the presence of texture effects due to partial orientations of crystallites on compacting the powder in the 

sample containment. c) The fits were performed by assuming a distribution of quadrupole splitting values 

with distribution widths σ (cf. Figure S29 and Table S3). 
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Table S5: Comparison of the molar fraction of high-spin molecules γHS determined by Mössbauer spectroscopy and 

magnetic susceptibility measurements of the samples 5e and 5e*. 

T [K] 
γHS Mössbauer 

as-synthesiseda)  
γHS Mössbauer 

annealeda) 
γHS SQUID 

as-asynthesisedb) 
γHS SQUID 
annealedb) 

290 1.00 1.00 1.00 1.00 

250 0.92 0.81 0.99 0.99 

175 0.69 0.52 0.80 0.23 

80 0.43 0.35 0.51 0.15 

175 0.60 0.46 0.76 0.19 

250 0.88 0.83 0.99 0.98 

290 - - 1.00 1.00 

a) Values determined by Mössbauer spectroscopy upon zero-field cooling (290 K to 80 K) and zero-field 
warming (80 K to 250 K) (cf. Table S4). b) Values determined by magnetic susceptibility measurements upon 
field cooling (3 T, 300 K to 50 K) and field warming (3 T, 50 K to 300 K), assuming that the value of 
χMT = 3.25 cm3 mol-1 K measured at T = 300 K corresponds to γHS = 1.00. 

SEM before and after thermal annealing of the samples #e 

 

Figure S30: SEM image of the samples 1e before (left) and 1e* after thermal annealing (right) showing the absence of 

microcrystals on the polymer surface. 
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Figure S31: SEM image of the samples 2e before (left) and 2e* after thermal annealing (right) showing the absence of 

microcrystals on the polymer surface. 

 

Figure S32: SEM image of the samples 3e before (left) and 3e* after thermal annealing (right) showing the absence of 

microcrystals on the polymer surface. 
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Figure S33: SEM image of the samples 4e before (left) and 4e*after thermal annealing (right) showing the absence of 

microcrystals on the polymer surface. 

 

Figure S34: SEM image of the samples 5e before (left) and 5e* after thermal annealing (right) showing the absence of 

microcrystals on the polymer surface. 
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DLS after thermal annealing 

 

Figure S35: DLS autocorrelation functions (left) and the hydrodynamic diameter (right) of the nanocomposite samples 

1e* (black), 2e* (red), 3e* (green), 4e* (blue), and 5e* (light blue) after thermal annealing. 
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TEM after thermal annealing 

 

Figure S36: TEM images of the samples 1e* (A), 2e* (B), 3e* (C), 4e* (D), and 5e* (E) after thermal annealing. The size 

distribution of each sample is given in the insets. 
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TEM and magnetic properties of a sample in toluene with microcrystals 

 

Figure S37: TEM image of an exemplary sample synthesized in toluene containing microcrystals of the SCO CP (A) and 

the corresponding magnetic measurement revealing bulk-like behaviour in the as-synthesized sample before thermal 

annealing (B). 

Comparison between dried up toluene and THF solutions 

 

Figure S38: Photographs of two different dried up solutions for TEM preparation. In the sample from toluene solution 

on the left, large microcrystals precipitated upon drying. In the nanocomposite sample from THF on the right, a 

polymeric solid/film remained. 
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Optical light microscopy 

 

Figure S39: Images taken by optical light microscopy from dried up solutions of BCP/bipy showing the crystallization 

of bipy (A) and SCO CP-BCP nanocomposite from THF showing a similar crystallization behavior like pure bipy (B). 

Additionally, the powder sample of the CP [FeL(bipy)]n (C) and a crystal (D) obtained from a dried up toluene solution 

(cf. Figure S37, were imaged showing much darker colors, indicating that the crystals in image B are bipy crystals. 
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TEM-EDX spectra 

 

Figure S40: TEM-EDX HAADF image of sample 5d with the overlays of the iron, nitrogen, carbon, and silicon signals. 

The areas marked 1 (on the polymeric structure) and 2 (area without polymer) are equal in size and correspond to the 

respective spectra showing that iron is only found inside the polymeric structure. 
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