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1 | INTRODUCTION

The time evolution of a collisionless plasma is modeled by the relativistic Vlasov-Maxwell system. Collisions among
the plasma particles can be neglected if the plasma is sufficiently rarefied or hot. The particles only interact through
electromagnetic fields created collectively. We consider the following setting: there are N species of particles, all of which
are located in a container Q C R3, which is a bounded domain, for example, a fusion reactor. Thus, boundary conditions
on 0Q have to be imposed. In the exterior of Q, there are external currents, for example, in electric coils, that may serve as a
control of the plasma if adjusted suitably. In order to model materials that are placed somewhere in space, for example, the
reactor wall, electric coils, and (almost perfect) superconductors, we consider the permittivity € and permeability x, which
are functions of the space coordinate, take values in the set of symmetric, positive definite matrices of dimension three,
and do not depend on time, as given. With this assumption, we can model linear, possibly anisotropic materials that stay
fixed in time. We should mention that in reality, € and x4 will on the one hand additionally depend on the particle density
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inside Q and on the other hand additionally locally on the electromagnetic fields, typically via their frequencies (maybe
even nonlocally because of hysteresis). However, this would cause further nonlinearities which we avoid in this work.

The unknowns are on the one hand the particle densities f* = f*(t,x,v), « = 1, ... ,N, which are functions of time
t> 0, the space coordinate x € Q, and the momentum coordinate v € R3. Roughly speaking, /* (¢, x, v) indicates how many
particles of the ath species are at time ¢ at position x with momentum v. On the other hand, there are the electromagnetic
fields E = E (t,x), H = H (t,x), which depend on time ¢ and space coordinate x € R3. The D- and B-fields are computed
from E and H by the linear constitutive equations D = ¢E and B = uH. We will only view E and H as unknowns in the
following.

The Vlasov—-Maxwell system on a time interval with given final time 0 < T. < o0, equipped with boundary conditions
on 0Q and initial conditions for t = 0, is then given by the following set of equations; we explain the appearing notation
afterwards:

Of* +Vy - 0cf* +eq (E+VgXH) -0,/ =0 on Ir, X QX R, (VM.1)
fE=Kofi+gtonys, (VM.2)

£20) = f* on QxR3, (VM.3)

€0,E — curl,H = —4xj on Iy, x R, (VM.4)

udH + curl,E =0 on Iy, x R3, (VM.5)

(E,H)(0)= (E,H) on R?, (VM.6)

where (VM.1) to (VM.3) have to hold for all « = 1, ... ,N and Iy, denotes the given time interval. Here and in the
following, It := [0, T] for 0 < T< o0 and I, := [0, co[. Additionally, the divergence equations

div, (¢E) = 4zp onlr, X R3, (1a)

div, (uH) =0 only, x R3 (1b)
have to hold. In (VM.3) and (VM.6), f* (0) and (E, H) (0) denote the evaluation of f* and (E, H) at time ¢ = 0, that is, to
say the functions f“ (0, -, -) and (E, H) (0, -). We will use this notation often, also similarly for other functions.

Note that throughout this work, we use modified Gaussian units such that the speed of light (in vacuum) is normalized
to unity and all rest masses m, of a particle of the respective species are at least 1. In (VM.1), e, is the charge of the ath
particle species and v, the velocity, which is computed from the momentum v via

A v
Vg = —,
\/me+ v?

according to special relativity. Clearly, [V,| < 1, that is, the velocities are bounded by the speed of light. Moreover, we
assume that ¢ = y = Id on Q, Id denoting the 3 x 3-identity matrix. Thus, the speed of light is constant in Q and B = H
on Q.

Equation (VM.2) describes the boundary condition on dQ. Typically, one imposes specular boundary conditions. Thus,
it is natural to consider the following decompositions:

7t = {(x 1) € 0Q xR} v-n(x) 20}, 7° = {(x,v) € 0Qx R*|v - n(x) = 0},
+
x

~+ ~ + ~+ ~
:=[0,00[x7, ¥° 1=[0,00[x7°, y3 :=Ir X 7T, v :=Ir x7°,

where n (x) is the outer unit normal of 0Q at x€ 0Q and 0 < T < co. In (VM.2), f{ are the restrictions of f* to y;—': . The
operator K, maps functions on y;. to functions on y_ . In Section 3, we deal with the case that

K h = a®(Kh), (2)

where
(Kh) (t,x,v) = h(t,x,v—2(v nx)))
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describes reflection on the boundary and a*, satisfying 0 < a® < 1, describes how many of the particles hitting the boundary
at time t at x with momentum v are reflected (and not absorbed); g* > 0 is the source term according to how many particles
are added from outside. We will deal with purely reflecting (a* = 1 and g* = 0) and partially absorbing (a* < ag for some
ay < 1) boundary conditions and also with a “hybrid” of these two (there is no such ag, and g* = 0).

In (VM.4) and (1a), j and p are the current and charge density. Typically, they are the sum of the internal current and
charge densities

N N
jint .= Zea/ﬁaf"dv, pint ::Zea/f"dv
a=1 R a=1 [

and some external current density u, which is supported in some open setI' C R3, and charge density p* resulting from u.
We will always extend j™™, p™™ (u) by zero outside Q (I'). Usually, the divergence Equations (1) are known to be redundant
if all functions are smooth enough, local conservation of charge is satisfied, that is,

6tp + diij =0,

and (1) holds initially, which we then view as a constraint on the initial data. Therefore, in the first sections, we ignore (1)
and discuss in Section 4 in what sense (1) is satisfied in the context of a weak solution concept.

The paper is organized as follows: In Section 2.3, we state our main two theorems. The first regards the existence of
weak solutions to (VM). In Section 3, we prove this theorem. To this end, we state some basic results about linear Vlasov
and Maxwell equations (Section 3.1), approximate the given functions in a proper way (Section 3.2), consider a cut-off
system (Section 3.3), and finally remove the cut-off (Section 3.4). The second main result regards the redundancy of the
divergence equations in our weak solution concept. We prove this theorem in Section 4 and give some comments on the
physical interpretation of the obtained equations.

In Section 3, we proceed similarly to Guo,! who proved existence of weak solutions in the case thate = y = Id, u = 0,and
the electromagnetic fields are subject to perfect conductor boundary conditions on 0€Q, that is, E X n = 0. However, there
is no need of artificially inserting the factor e™* as is done throughout that paper. The more important motivation of our
paper is the following: the papers concerning plasma in a domain we are aware of deal with perfect conductor boundary
conditions for the electromagnetic fields. Such a setup can model no interaction between this domain and the exterior.
However, considering fusion reactors, there are external currents in the exterior, for example, in field coils. These external
currents induce electromagnetic fields and thus influence the behavior of the internal plasma. Even more important, the
main aim of fusion plasma research is to adjust these external currents “suitably.” Thus, we impose Maxwell's equations
globally in space and model objects like the reactor wall, electric coils, and almost perfect superconductors via € and p. In
order to make use of an energy consideration, we note that for classical solutions of (VM) one can easily derive the energy

balance
N
d 2 2 ra 1
= \/ — E-E+uH-H <Cc- | E-
T ;// ma+|v|fdvdx+8ﬂ/(e +u ydx|<C / udx,
R3

Q R3 R3
where C is some expression in the g%; if a* = 1 for all «, equality holds above. In order to apply a quadratic Gronwall
argument and to conclude that the left bracket is bounded for each time, the map

(E,H) —~ /(£E'E+HH'H)dx
R3

should be a norm on L? (R3; R"’) which is equivalent to the standard L?>-norm. Thus, assumptions about uniform positive
definiteness of € and y will be made.

Especially, the second main result, regarding the redundancy of the divergence part of Maxwell's equations, in our
setting is much harder to prove than a similar result in the setting that was considered in Guo.! The main difficulty is
that (1) has to hold on whole space R? in the sense of distributions. Thus, we have to extend the weak formulation of
(VM) to a larger class of test functions and somehow have to “cross over” 0Q.

Vlasov-Maxwell systems have been studied extensively. In case of no reactor wall, that is, the Vlasov equation is imposed
globally in space (as well as Maxwell's equations), global well-posedness of the Cauchy problem is a famous open problem.
Global existence and uniqueness of classical solutions has been proved in lower dimensional settings; see Glassey and
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Schaeffer.> In the full three-dimensional setting, a continuation criterion was given by Glassey and Strauss.® Further-
more, global existence of weak solutions was proved by Di Perna and Lions.” Their momentum-averaging lemma is
fundamental for proving existence of weak solutions in any setting (with or without boundary, with or without perfect
conductor boundary conditions, etc.), since it handles the nonlinearity in the Vlasov equation. However, uniqueness of
these weak solutions is not known. The regularity of such weak solutions in free space was studied by Bouchut et al® and
by Besse and Bechouche.® However, in case of the presence of boundary conditions for the plasma particles, one can-
not expect C!-solutions in general; this was observed by Guo!® even in a one-dimensional setting. For a more detailed
overview, we refer to Rein!! and to the book of Glassey,'? which also deals with other PDE systems in kinetic theory.

2 | PRELIMINARIES

2.1 | Some notation

Throughout this work, C*-spaces (k € N U {c0}) on the closure of some open set U are defined to be the space of

C*-functions h on U such that all derivatives of h of order less or equal k can be continuously extended to U. Moreover,

the index b in C’}j indicates that all derivatives of order less or equal k of such functions shall be bounded, and the index c

in C¥ indicates that such functions shall be compactly supported. As usual, C** (k € Ny, 0 < s < 1) denotes Holder spaces.
It will be convenient to introduce the surface measure

dys = |Va - n(x)| dvdSidt

on [0, co[x0Q x R3.
Furthermore, we denote by yj, the characteristic function of some set M and by yr the characteristic function of [0, T1].
For 1 <p < o0, we define

LP

akin

(A,da) := ueLP(A,da)|/v2|u|Pda<oo ,
A

equipped with the corresponding weighted norm. Here, A ¢ R3 x R? or A ¢ R x R x R3 is some Borel set equipped with

a measure a, and the weight 19 is given by
Vo= /m2 + v

By m, > 1, we have 12 > 1. Moreover, we write

LY (A.da) :={u : A - R|yru € I’ (A, da) forall T >0}

for 1 <p <. If a is the Lebesgue measure, we write Li in Q) and Lﬁ (A), respectively. A combination Li in.lt (A,da) is
defined accordingly. Furthermore, we abbreviate

Gu(I;X) :={u:I—X|lueG(0,T];X)forall T eI},

where 0 € I C [0, oo[ is some interval, G is some C* or L?, and X is a normed, separable vector space. Also, the somewhat
sloppy notation
LY {;L* (A)) :=L* (I xA)
and
GI;XNY):=GIX) NG Y)

(and likewise with index “It”, respectively) occur.

Since ¢ is already used for the permittivity, the letter 7, and not &, will always denote a small positive number.

For a matrix A € R™" (n € N) and a positive number o > 0, we write A > 6 (A < 6) if Ax-x > o|x|* (Ax-x < o|x|*) for all
x € R". For a measurable A : R" - R"™" and ¢ >0, we write A>c (A<0c)if A(x) > 6 (A (x) < o) for almost all x € R".

Finally, for a normed space X, some x€ X, and r> 0, B, (x) denotes the open ball in X with center x and radius r.
Furthermore, we abbreviate B, := B, (0).
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2.2 | Weak formulation

The space of test functions for (VM.1) to (VM.3) will be ¥, where

Y= {q/ ec” (IT X Q X R3) |supp y C [0, T [xﬁ x R*compact, dist (supp v, 75) > 0,
dist (supp w, {0} x 0Q x R*) > 0}

for 0 < T < o0. On the other hand, ®7, will be the space of test functions for (VM.4) to (VM.6), where
Or := {9 € C* (Ir x R*; R?) |supp 9 C [0, T[ XR* compact}
for0<T< 0.

We start with the definition of what we call solutions to (VM).

Definition 1. Let 0<T.<oo,u € L, (R*R?). We call a tuple ((f, f$) - E H, j) a weak solution of (VM) on the
time interval I, with external current u if (for all «):

() f*elL]

loc

(ii) Forall y € ¥r, it holds that

loc loc

(IT, xﬁxRZ’),fjj el <y;.,dya),E,H,j €Ll (Ir, xR R?).

Te
O=—///(dty/+’13a-axt//+e,,(E+’ﬁa><H)-()vn//)f"dvdxdt
CeE (3)

; / Fopdye - / (Kuf® +g°) wdya - / / ey (0) dvdx

}/;. "Te Q Rs3

(in particular, especially the integral of (E +V XxH ) f* - oy is supposed to exist).
(iii) Forall 9 € Or,, it holds that

Te
0=//(5E~at19—H'curlx19—47rj~8)dxdt+/e]°5-:9(0)dx, (4a)
0 R3 R3
Te
0= / / (uH - 0,9 + E - curl,9) dxdt + / uH - 9(0) dx. (4b)
0 Rs3 R3

(iv) The currentj is the sum of the internal and the external currents, that is,

N
J=j"tu = Zea/ﬁaf”’dv+u.
a=1
R3

We easily derive this weak formulation after multiplying the respective equations of (VM) with the respective test
function and integrating by parts, assuming all functions are smooth enough.

2.3 | Statement of main results

We have two main results: the first is about existence of weak solutions in the case of partially absorbing boundary condi-
tions for particle species 1, ... , N’ and purely reflecting or “hybrid” boundary conditions for particle speciesN’ +1, ... ,N.
We assume that the following conditions hold:

Condition 1.

« 0< fre (L}

L NL®) (QxR3) foralla =1, ... ,N;
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+ Kyisgivenby(2)fora =1, ... ,N;

c0<a el (ry, ) az = 0%l ) < 1O <g € (B I5) (77, ) fora =1, ... .\

. 0<a®eL® (y;. ) la“l,.
- E,HeL?(R:R?);

« &4 € L™ (R3 R¥3) such that there are ¢, ¢’ > 0 satisfying 6 <e, y <o’,and e = y =Id on Q;
« uell (Ir,; L* (T;R3)).

\v=1,g¢*=0fora=N"+1, ... ,N;
)

Then, our first main result is (see Section 3):
Theorem 1. Let T. € ]0,00], Q C R3 be a bounded domain such that 0 is of class C** for some 0 <k <1, and let

Condition 1 hold. Then, there exist functions

s fYeLy (It ; (L}, NL>) (QxR3)), foe <Likm’h n L;’f) (y}:,dy,,), a =1, ... N, all nonnegative,
« freL™ (Ir, x QX R3) NnL7 (I, LY (Qx R3)), freL® (y}“. >, a =N'+1, ... ,N, all nonnegative,
. (E.H) € LY (Ir,; L* (R%;R%))
such that ((f*, f¥),.E.H.j) is a weak solution of (VM) on the time interval Ir, with external current u in the sense of
Definition 1, where

N
j=imsu= Zea/ﬁaf"’dv+u, ey (In: (1Lt ) (@),
a=1
R3

Furthermore, we have the following estimates forany 1 <p<ocoand0< T € I, :
Estimateson f°, f:

||fa”L°°([O,T];LP(Q><R3)) < |'fa”Lp(QXR3) + (1 - ag);_lllga“U’(y;,dn)’ ®)

f°a

”f-(:”LP(y;,dya) < (1 - ag)_;| p(QxR?) + (1 - ag)_lllgallm(}';,d}’a)’ (©)

fora=1,...,N and

||fa”L°°([0,TJ;LP(Q><R3)) < Hfa p(QxR?)’ ™
||fﬁ”L‘”(ﬁ) < Hfa Lo(QxR3)’ ®
fora=N'"+1, ... ,N.
Energy-like estimate:
N’ N :
a a o o
Y (-a) [srtdrn+ |3 [ [ o s+ ENEDOR, g
= v o ® L=(0.T) ©)

2
2

1
LZ(R3;R5) + vV 2o 2 ”u”Ll([O,T];Lz(F;Rs)).

N N
< Z//vgfo"‘dvdx+z;/v2g"’dy,,+%”(E,Iil)
(S a=1"_

a=1
R3 ’r
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Estimate on ji":

-int

J

L® ([O,T];L% (Q;R3)>
1

y gl a<N'\'|

Zle |4<4—ﬂ e +1+ {3(1—03) E =Gy - >

e 3 L= (QxR3) 1

a=1 O, a > N (10)

N
Z//vgfo"dvdx+2/vag"dya+—ﬂ
a=1 Q a=

R3

o o2 -1
|(E,H) + ‘\/ZG 2||u||L1([O,T];L2(F;R3))

12(R3;Rs)

The second main result answers the question whether the divergence equations (1) are automatically satisfied if we
have a weak solution of (VM). To this end, we have to introduce an external charge density p* corresponding to u and
assume that local conservation of the external charge holds:

Condition 2. Thereare p* € L} (Ir, xT') and 3* € L, (I') such that d;p* + div,u = 0 on ]0, T+ [XR? and p* (0) = p*
on I', which is to be understood in the following weak sense:

Te
=//(p”0zu/+u'6xu/) dxdt+//3“w(0)dx
0 R3 R3

for any y € C*® (IT, X R3) with suppy C [0, T« [XR* compact. Here, p* and p* are extended by zero outside I'.

We should point out that this condition very mild: on the one hand, from a physical point of view, there always exists
an external charge density, and it is very natural to assume local conservation of external charge. On the other hand, if

the charge density is known (or prescribed) initially and div,u is locally integrable, then one can integrate d;p* = —div,u
in time to obtain a suitable external charge density on the whole time interval.
Our second main result is (see Section 4):
Theorem 2. Let Q C R? be a bounded domain with boundary 0Q of class Ct n W?®. Furthermore, let, for all a €
{1,....N}, f* € <L1 N2 nL;;) (Ir. x QX R?), f% € L2 (y;“. ) (E.H) € LY (Ir,; 12 (R RS)) for some g> 2,

akin,lt
Koo L2 (vt ) = 13 () & € I3 (2, ) /o € (L L) (@xR), (1) € L2 (R%RS), e, € LS, (R%RY)
withe = y =IdonQ, andu € L, (Ir, x I';R?) such that the tuple ((f"‘,ff)a,E, H,j™ + u) is a weak solution of
(VM) on the time interval I, with external current u in the sense of Definition 1. Furthermore, assume that Condition 2

holds. Moreover, let initially

N
dive (e£) = 4n (p™ + p*) :=4n Zea/fo“dv+[3“ ,
a=1 5
divy (/,tlgI) =0,

on R3 be satisfied in the sense of distributions. Then,

(i) It holds that
divy (uH) =
on 10, T« [XR3 in the sense of distributions. (For this, only Equation (4b) is needed.)
(ii) We have
div, (¢E) = 4z (p™ + p*)
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on 10, Te[x (R3\0Q) in the sense of distributions, that is,

T.
0= // (¢E - dcp + 4z (p™ + p*) @) dxdt
0 T3

forall p € C® (10, T+ [x (R*\0Q)).
(iii) If, additionally to the given assumptions, f? € Lllt<y;.,dya>, g € Lllt<y;.,dya>, and K,

(L L) (v, dra) = (Lh L) (77, dre) foralla € (1, ... .N), then
div, (¢E) = 4z (p™ + p* + Sog) (11)

on 10, T« [XR3 in the sense of distributions, that is,

Te
0= // (¢E - 0w + 4m (0™ + p*) @) dxdt + 47Ss00
0 R

forallgp € CP (]O, T. [XR3). Here, the distribution S,q, satisfying suppSsq C Ir, X 09, is given by

N
Sag¢=//co(t,x)/n(x)- e / VoS (8,%,0) dv
) 0 o=l {veR3|n(x)v>0)

+Zea / Vo (Ko fy +g") (s,x,v) dv | dsdS,dt.

{veR3|n(x)v<0}

Note that we do not need Condition 1 in Theorem 2; in particular, K, need not take the form (2).

3 | EXISTENCE OF WEAK SOLUTIONS

In this section, we proceed similarly to Guo! with necessary modifications being made, who considered the problem with
€ = u =1d, u = 0, and perfect conductor boundary conditions for the electromagnetic fields on d€2. Citations of this paper
always refer to the relativistic version of the respective lemma, theorem, and so on; see Guo.,! section 5

3.1 | Results about linear Vlasov and Maxwell equations

The strategy is to consider an iteration scheme where we decouple Vlasov's equations from Maxwell's equations in each
iteration step and hence only have to solve linear problems. Thus, it is natural to consider linear Vlasov and Maxwell
equations first. Regarding the Vlasov part, we refer to Beals and Protopopescu.!* Considering the linear problem (on some
[0, T1)

Yf =0 f +9,-0cf +F-0,f =0, (12a)
fo=Kfi+g. (12b)
f0) =7, (12¢0)

with a Lipschitz continuous, bounded force field F, that is divergence free with respect to v, they introduced a space of
test functions associated to F. As in Guo,! lemma 2.1. we can show that our test function space ¥r belongs to that test
function space for each F and T, where one needs the assumption that dQ be of class C** and that the support of any
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y € ¥ be away from y% and {0} x 0Q x R3. In Beals and Protopopescu,!* “strong” solutions in a set of LP-functions for
which a trace on the boundary exists in the sense of the following extended Green's identity were searched for:

T
///(¢Yf+fY¢)dvdxdt=/f+¢dv+—/f—¢dv-,
0 Q R: D: D;

which is supposed to hold for all test functions ¢. Here, D% are the outgoing/incoming sets associated to the characteristic
flow of Y and dv* are associated measures. In our case, we can split D; ~ y;f U ({T} X QX R3), D~y U ({O} X QX R3)
up to negligible sets (cf. Beals and Protopopescu'?). Then, dv* =dy, on yTi and dv® =dvdx on {t =0} and {t = T}, and
we decompose f* = (f4, £ (T)), f~ = (f-, f (0)) accordingly.

Proposition 1. Consider a fixed « € {1,... ,N} and K = akK, where0 < a € L% (y;. ) such that ag :=

||a||Lm (y_ ) < 1. Let F be Lipschitz continuous, bounded, and divergence free with respect to v, and let =
Te

(L'nL®) (@xR3), g € (L, nLY) (y;. , dya> both be nonnegative. Then, there is a unique, nonnegative strong solu-

tion f € L (Ir,; (L' N L) (Q x R?)) of (12) on Ir, with nonnegative trace f+ € (L} N L) (y;—': , dy,,). In particular,
Definition 1(ii) holds for (f, f-.), where the Lorentz force is replaced by F. Moreover, we have

(= a0 1l 1 Dlls@ei) < [ gy + @ =0 el (13)

)

forany0 < T € Ir, and 1 <p < . If additionally f € L. (QxR3)andgeL! <yi ,dYe ), then

akin,lt

T
1 - ap) / v2f+dya+//vgf(T) dvdxs//vgfdvdx+/v2gdy,,+///F-ﬁafdvdxdt (14)
yin{IvI<R} Q By Q R3 rr 0 Q B
and
. ar || £ ar 1 0
/ fTevd| < ( ey + 5090 ||g||Lm(y;)+1> / / W (T) dvdx (15)
Br Li© Q By

forany0 < T € Iy, and 0 <R < oo.

Proof. By Beals and Protopopescu,!® theorem 1 there is a unique, strong solution of (12) for each 0 < T € Ir, . Since
T is arbitrary, we get f € Lﬁ (IT, X QX R3) and f+ € Lﬁ <y;—': , dy,,) for all 1 <p < 0. By Beals and Protopopescu,!3
proposition 1 we have the following p-norm estimate for T € Ir, :

/ffdya+//f(T)Pdvdx§//fopdvdx+/(aKf++g)pdya
vi Q R3 Q R rr
s//ff’dvdx+ao/fi’dya+(1—ao)1‘P/gdea

Q R3

o ’r
using the convexity of the pth power. This yields

(l—ao)/ffdya+//f(T)pdvdx$//fapdvdx+(1—a0)1_p/gpdy,,,
vE o Rs Q R

T
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and therefore (13) for 1 < p < oo. Letting p — oo, we deduce (13) also for p = oo. For this, note that n (x) -V, = 0 on s
which is why L® (yTi. ) =L* (yTi. , dya> and the respective norms coincide.
To prove the second estimate, let

V0 [v| <R,

. TR3 =4 %
B:R AR,ﬁ(V)—{\/m, [v| > R.

Noticing that Y (ff) = F - £V and using the 1-norm balance of Beals and Protopopescu,!® proposition 1 we get by
p>0:

T
/ﬂf+dya+//ﬂf(T)dvde//ﬁfdvdx+/ﬂ(aKf++g)dya+///F-fVﬁdvdxdt
v R o R v

Q 0 Q R3
T
5//ﬂfdvdx+a0/ﬂf+dya+/ﬂgdya+///F~fVﬂdvdxdt.
Q R v T 0 Q Rs

Writing the terms explicitly and using the fact that v is monotonically increasing in |v|, we arrive at (14).
For (15), we have

/fde/fdv+ / fdvs4?”r3||f(T)||Lm(QXR3)+%/vgfdvdx
BR Br

r<|v|<R By

: (16)
A 4 _
< / vafdv ({Hf + 30 -a) 1||g||Lw(,,)+1>,

By

L= (QxR?)

1

where we optimize r := < [f dv) in the standard manner. This yields (15).
BR

O
Regarding the linear Maxwell part
e0,E — curllH = —4xj, (17a)
1o:H + curl,E = 0, (17b)
(E.H)(0) = (E.H), (17¢)

on Iy, for given j, the following basic result holds:

Proposition 2. Lete, u € H, (R3; R®3) have the following properties: £ (x), u (x) are symmetric for each x € R* and
there is a o > 0 such that & (x) , u (x) > o for all x € R*. Moreover, let j € L}, (Ir,; H* (R*R?)) n Cy; (Ir, ; H* (R%; R?))
andE,H € H? (R3;R®). Then, there is a unique solution (E, H) € Cy; (Ir, ; H* (R%; R%)) alen (Iry; H? (R3;R®)) of (17).
Furthermore, we have

T
Si/(eEoE+/4HoH)(T)dx=8i/(£§~ﬁ+yﬁ[~ﬁ1)dx—//E-jdxdt (18)
T T

R3 R3 0 R3

and
ICE, H) (Dl o (rersy 2= (IIE(T)IIiz(Ra;Rs) + ||H(T>||§z(]R3;R3))E

H (19)
1 o o 0 o 1
<oz / (eE-E+ uH-H) dx| +4no 1||j||L1([0qT];L2(R3;R3))

R3
forany0 < T € Iy,.
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Proof. For the existence theory (and a definition of uniform local Sobolev spaces H' El), we refer to Kato.'* Equation (18)
is derived straightforwardly by differentiating both sides and using the symmetry of € and x. We then get (19) by
applying Lemma 1 using the uniform positive definiteness of € and . O

Here and later, we need the following version of the quadratic Gronwall lemma, which is a slight improvement of
Dragomir!3, theorem 5:

Lemmal. Leta,b € R,a<b, y,h : [a,b] > [0,c0[and g : |a,b] — R be continuous, andy : [a,b] - R. Assume

that the following inequality holds for all t € [a, b]:

t

%?(t)z + %y(t)z < %g(t)2 + / h(s)y(s) ds.

a

Then, we have
t

VIO + ¥ < g @) + / h(s) ds

a

forallt € [a,b].
Proof. Let:> 0 and choose G, € C! ([a, b]) such that G, >0 and |G, — g*| < 1 on [a, b]. Now, consider

t

A [a, b] —]0, 00[, y,(t) = %(G, ®+n+ /h(s)y(s) ds.

a

By assumption, we have y (t) < V3(t)* + y(t)* < 1/2y, (t). Furthermore, /2y, is differentiable with

3G (O +h®y@) ._GOo

V2y, () " 24/G,(t) +1

+h(D).

42y 0=

Integrating this estimate from a to ¢ yields

\/y(t) +y)? < \/2y, < \/Zy, (a)+/ A0 ds+ [ h(s)ds

G, (8)+1

t t t
=G, (@) +1+ \/G,(t)+l—\/G,(a)+z+/h(s)dss\/g(t)2+zz+/h(s)dss|g(t)|+\/5+/h(s)ds.

a

Since 1> 0 is arbitrary, the proof is finished. O

3.2 | Approximations of the data

Throughout this section, we assume that Condition 1 is satisfied. We have to modify the data as follows to be able to apply
the statements of Section 3.1: For @ = 1, ... ,N, we define a;: :=a%and fora = N' +1, ... ,N, we define aZ = kkla

Hence, all a¥ are bounded away from 1. Furthermore, choose approximating sequences (Ey), (Hi) ¢ H? (R*;R?) with
Ey—E, H,— Hin L2 (]R3; R3) for k — co. Additionally, we have to smooth £ and u. In the following, have in mind that

for a symmetric, positive definite matrix A € R¥®3 and some C > 0 we have the equivalence

A<LC <= |Allp» <C,
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where we use the norm
lAllgss = sup |Ax| = max {4 € R|ieigenvalue of A},
Jx|<1

where the last equality holds for symmetric, positive definite A. Thus, for some measurable A : R® — R3*3 such that
A (x) is symmetric and positive definite for almost all x € R3, the property A (x) < C for almost all x € R? is equivalent to
||A”Loo(R3;R3><3) <C.

We want to construct sequences of smooth e, u with o < &g, ux <6’ in such a way that these sequences converge to &,
u in a certain sense. We perform the construction of (ex), the one for (4) works totally analogously. Let w € C® (R3),

>0, suppw C By, fRBa)dx = 1 be a Friedrich's mollifier and define g := s3w ( > for s> 0. Now, let

= —old, x € By,
ek(x):={8’(x) ¢ iﬁBi

for k € N. Clearly, &, € L* (R3; R¥>?®) and &, vanishes on R*\By. This implies w; * & € C* (R3; R>3) (the convolution
understood component-wise) for any s > 0. By & € L? (Bi; R>?), we know @, * & — & in L* (By; R¥®) for s — 0. Hence,

we can choose s; > 0 such that
1

s, * & — §k||L2(Bk;R3x3) <%
Finally, define gx := wy, * &+0ld. Note that £, is smooth and constant for |x| large and hence of class HSI' By construction,
£k (x) is symmetric for all x € R? and

1
le = el (s moe) <3 (20)

Furthermore, for any E,x € R3, it holds that

sk(x)E-E=/wsk (x—y)ék(y)E-EdyMlElz=/wsk (x—y)e(y)E-Edy—dlElz/wsk (x—y) dy+ol|E]?
R3 Bk Bk

> o|E|? fwsk(x y) dy — o|E|? /wsk(x y) dy + o|E|* = o|E|*,

<o'|E] fwsk(x y)dy - o|E? /wsk(x y)dy+o|E* < o'|E|.
By By

Note that for the last line, we used the fact that the integral of w; over whole R? equals 1 for any s > 0.

3.3 | A cut-off problem

In order to construct a weak solution of (VM), we first turn to a cut-off problem where we consider bounded time and
momentum domains. Whereas the cut-off in time is no real drawback, the cut-off in momentum space is on the one hand
unpleasant but on the other hand necessary. To understand this necessity, we should recall (19). Consider there j to be the
sum of some external current and the current j™ induced by the particle densities. In an iteration scheme, we would like
to have an estimate like (19) for the fields where the right-hand side is uniformly bounded along the iteration. Then, we
could extract some weakly converging subsequence. However, for this uniformity, we would need that j™ is uniformly
bounded in L! ([0, T]; L? (R?;R?)) along the iteration. This would require a better estimate than (15) where we only can

put our hands on the L3 (R3;R®)-norm of ji (at each time). Moreover, in an energy balance along the iteration, the
crucial terms describing the energy transfer due to the internal system will not cancel out; this would only be the case if
we solve (VM) simultaneously along an iteration.

Now, if we consider a cut-off problem (the cut-off referring to momentum space), we can simply estimate the L?-norm
of ji"t with respect to x by a linear combination of the L?-norms of the f* with respect to (x, v), cf. (23), and then use (13) for
p = 2 so that we get the desired uniform boundedness along the iteration. Later, adding the limit versions of (14) and (18),
we observe that the problematic terms on the right-hand side, that is to say, the terms *E - ji™, cancel out. Thus, now (after
a Gronwall argument) having a full energy estimate with only expressions of the given functions on the right-hand side,
we find that a posteriori the cut-off does not substantially enter this estimate so that we will be able to get a solution of
the system without a cut-off by considering a sequence of solutions corresponding to larger and larger cut-off domains.
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We differ from Guo! as follows: first, we do not have to cut off Q, since we only consider a bounded Q. Second, we solve
the linear Vlasov equation on whole momentum space R* and not only on a cut-off domain. Our cut-off only appears in
the definition of the internal current j,i(m. Third, as already said in the introduction, there is no need of the factor e™*, and
without this factor the estimates are more “natural.”

To make things more precise, let 0 <R < o0, define R* := min {R, T. }, and start the iteration with Ey, Hy : [0, R*] X
R3 — R3 (Ey,Hy) (t,x,v) = (on, FIO) (x,v). We assume that we already have iterates of the kth satisfying Ex, Hy €
L* ([0,R*];L* (R3;R?)) n C%! ([0, R*] x R3; R?). We first solve the Vlasov part

Of) + V- Oufi, +FY-0uf,, =0 on [0,R*]| xQxR?, (21a)
flil+1,— = aZ+1KfI?+1,+ + ga on yl;*’ (21b)
fE,(0) = f* on QxR? (21c)

with given force field F! 1= e, (Ek + 7, X Hk), which is Lipschitz continuous and bounded on [0, R*] X Q x R3, and
divergence free with respect to v. Indeed, we can solve (21) applying Proposition 1 (with final time R*) and noticing that

a s - o 0 *7 . 1 © a
at, | isbounded away from 1 on .. Therefore, we have 0 < f, € L ([0,R*]; (Lakin NL®) (QxR3))and 0 < fk+1,i e

1 oo +
(Lo N L) (YRw dra)-
Next, we want to solve the Maxwell part. Now, the cut-off appears: we define the current

N
Jka1 :=j}{‘jf1 +u:= Zea /ﬁ(,,f,‘{ﬁr1 dv +u, (22)
a=1
BR
where we integrate only over the cut-off domain By rather than over the whole momentum space. Note that j}{’jrtl (w) is

defined to be 0 outside Q (I"). By

: N
int |2 4r
[lisfa] <3/
a=1

Q Q R3

2
S| dvex (23)

and f7 € L® ([0,R*];L? (2 x R?)), we have ji.1 € L' ([0,R*];L* (R3R?)). In order to apply Proposition 2, we

approximate ji.1 by a ji,; € C2 (10, R*[xR?; R?) such that

. - 1
47[“Jk+1 - jk+1||L1([0,R*];L2(R3;R3)) < K+l (24)
With this smoothed current as the source term in the Maxwell system, we solve
ek10Eks1 — curlyHipn = —47ji, on [0,R*] x R?, (25a)
Hi10:His1 + curlyEry1 =0 on [0,R*] X R?, (25b)
(Ei1, Hiern) (0) = (B, Hern) on R, (25¢)

Indeed, applying Proposition 2, we see that there is a unique solution (Exs1,His1) € C([0,R*]; H? (R%R®)) n
C' ([0,R*]; H* (R3;R®) ). By Sobolev's embedding theorems it holds that Ej.1, His1 € C*! ([0, R*] X R3; R?). Altogether,
the induction hypothesis is satisfied so that we can proceed with the next iteration step.

In order to extract some weakly converging subsequence, we have to establish suitable estimates. To this end,
consider (13) and (19) applied to (21) and (25):

<1_

! 1

1 -1
L”(VR*)> flfﬂ fe (xR + <1 — | a |L°°(yR*)> Ilg"llu(y;,dh) (26)

(T)||LP(Q><R3) < | ka1

a a
ak+1 fk+1,+“Lp(y;’dya)’
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and

I Ekr1> Hierr) (Dl 2 (rs sy S 072 / (ekn1Birt - Bt + mni Hirr - Hirn ) dx | + 47[0'_1”7k+1||L1([0 TLA(RAR)) 27)
R3
Note that we need e (x) , px (x) > o uniformly in x and k to get (27).
Fora =1, ... ,N’,(26) reduces to
(1-a)7 |7 |7, )| < | (1= a) g s, (28)
0 kbt [l oy ay, ) Il K1 Lr(QxR3) = 1r(QxR?) 0 Lr(y7.dr,)
and to
-2 a a < pa

k+2) | fk+1’+HLP(y;,dy“)7 | Ten (T)“Lp(sz><R3) - | ! 1r(xR?) 29

fora = N’ +1, ... ,N. Thus, we conclude that any sequence (f;*) is bounded in any L? ([0, R*] x Q X R?), 1<p < o0, s0
that we may extract a subsequence (also denoted by ( flf)) that converges weakly in LP ([0, R*Ix Q x R3) forl<p<o
and weak-* in L* ([0, R*] x Q x R?) to some nonnegative /2. As in (22), we define

N

JR =M u = Zea/ﬁafgdv+u.
a=1
By
As for the boundary values, we have to distinct absorbing and reflecting boundary conditions. For « = 1, ... ,N’, (28)

yields the boundedness of < f ;’Jr) in any LP (y;*, dya), 1 <p < o0, so we may extract a subsequence that converges weakly

in I? (y7..dya) for 1< p < oo and weak-* in L* (y;;.. dy,) to some nonnegative fg . Fora = N’ +1, ... ,N, (29) yields a
uniform estimate only for p = o0, so here, we may extract a subsequence that only converges weak-* to some nonnegative
fi L (o dra).

Letting k — o0, we deduce for 1 <p < oo

1
a pao 1—a%)» ”ga” - ’aSN,
“fR ||L°°([O,T];LP(Q><R3)) = ”f HLP(QXRz) + { ((), 0) Le(ridre) a>N (0)
o Fa (l_aa)_lnga”Lm( ~.d )v (XSN/
|fR’+ Lo(ridr,) |f eyt Vo, T S N (31)
and for ¢ = 1, ... , N’ additionally
a a -1 Fa a\“ Ly«
|va+ Lp(r7dr.) < (1-a) 7]l Lr(QxR?) +1-a) llg lzn(yy ) (2)

Next, we turn to an estimate on the electromagnetic fields. To examine (27) further, we insert the properties of j;,; on
the right-hand side to get

= 1 ;
||Jk+1“Ll([O,T];LZ(R3;R3)) < Zk+D + ke o ro.repze(ReR )

N
4r
<1+4+4/—R3 e
<1+4/3 ;m

for 0 < T<R* using (23). The right-hand side is bounded uniformly in k. Moreover, the first term on the right-hand side
of (27) is bounded uniformly in k by &, ux < ¢’ and the L?-convergence of the approximating initial data. Thus, we may
extract a subsequence (Ey, Hy) that converges weakly in L? ([0, R*] X R3;R®) to some (Eg, Hg).

a
Jien

’Ll([O,R*];LZ(QxR3)) Flull o rjz2(rime))-
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We now show that (( fr: IR +> ,Egr, Hg, jR> satisfies Definition 1(i)-(iii) with final time R*. Clearly, all functions are

of class Llloc. The main task is to show that we may pass to the limit in (3) and (4) applied to the iterates: we have for all
v € Y, 9 € O, and k>1

%

R
- / / / (30 + P - ey + € (Ei+ 90 X Hy) - dyr) f2., dvcdedt
0 Q

R?
a a a a o (33)
+ / SV e — / <ak+1ka+L+ +g ) wdy, — / / Sy (0) dvdx,
Tre T Q R3
R
= / / <6kEk - 0,8 — Hi - curl,,d — 47Tjk . 19) dxdt + / Ekﬁ'k -9(0) dx, (34)
0 R3 Rs3
R
/ / (uHy - 0,9 + Ey - curl,d) dxdt + / Mka 9 (0) dx. (35)
0 R3

We can pass to the limit in (34) and (35): whereas the terms including the curl are easy to handle by weak convergence
of Ey, Hy, we have to take more care about the terms including &g, uy, and j,. For the first ones, let L € N such that 8
vanishes for |x| > L so that we in fact only integrate over B;. For k > L, we have

1
||6 — 5k”L2(BL;]R3X3) < ||€ - 5k”L2(Bk;]R3X3) < E

by (20) so that ey — £ in L? (BL; R3X3) . This is enough for passing to the limit in the terms including &, since we additionally
have E;, — EzinL? ([O, R*1x R3; R3), even strong convergence of the approximating initial data, and the boundedness of
the time interval [0, R*]. Similarly, we argue for the terms with . So there only remains the term including j,.. To tackle
this one, we estimate

N
/ / i) 00t < [Fo = o i oo + 3 [ ] [oet-10) av-oasar.

0 R3 By

where the first term on the right-hand side converges to 0 for k — co by construction of j, and each summand of the
second term by weak convergence of the f/*; note that v, - 9 y(ju<r) € L* ([0,R*] xR X R3).

Passing to the limit in (33) is more complicated, especially because of the nonlinear product term including Ej, Hy, and
/- The other terms are easy to handle due to weak convergence of f and weak (or weak-*) convergence of fl‘:+. The
nonlinear term is handled as in Guo?, proof of lemma 3.1 by a highly nontrivial tool, namely, the momentum-averaging
lemma (see Di Perna and Lions’ or Rein!! for a shortened proof). For this, it is important that the sequences ( f;’) are
bounded in the L2- and L*-norm and (E, Hy) is bounded in the L?-norm.

Altogether, (( frof, 1‘;’ +) ,Er, Hg, jR> satisfies Definition 1(i)-(iii) with final time R* (but of course Definition 1(iv) is
not yet satisfied). ‘

In order to have good estimates for R — oo, the right-hand side of an energy inequality should not depend on R. To this
end, consider (14) and (18) applied to the k-iterated functions. Note that the estimate on the term on the left-hand side
of (14) including the boundary values is only worth anything for k — co for « = 1, ... , N’. Therefore, it is convenient to
introduce

ren{vI<R}

(1-a2) [ Vff . dyea=1,.. N
. . 0 at 4 5 ) )
b (T) =
0, a=N+1, ... ,N
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and similarly by (T) where k is replaced by R. Now, we have

bg(T)+//vgf,g(T)dvdxg//vgfadvdx+/v2gadya+
Q By

/ / eq (Ex-1 + Vo X Hi—1) - Do ff dvdoxdt
Q B

T
Q RR3 rr 0 R
r (36)
=//vgfo"’dvdx+/v2g"dya+//Ek_1~/eaﬁ(,f}‘§dvdxdt
Q R vr 0@ By
and
T
1 1 . . _
g/(skEk'Ek‘i'ﬂka'Hk)(T)dx: g/(skEk'Ek'i'Mka'Hk) dx—//Ek'Jkdde (37)
R3 R3 0 R3

for k>1and any T € ]0, R*]. We consider the right-hand sides of (36) and (37) further. The term including the initial data
of the electromagnetic fields is bounded uniformly in k due to

/ (exEi - B + mcHyc - Hy) dx < 6,/ <|j!5"|2 - ’ﬁk'2> ' 6,/ ('Er * ’HF) e
R3 R R’

After approximating e,", in L? (Bg; R®) by C2° (Bg; R®)-functions and using the momentum averaging lemma again, we
have, up to a subsequence,

T

T
klim / Ej_1 - / eaVe f dvdxdt = /ER . / eqVq [ dvdxdt. (38)
0 0 ‘o

Q By By

Summing (38) over « yields
T T
Jim / / Ej—y - j" dvdxdt = / / Eg - jp" dxdt.
0 Q 0 Q

T

T
Jim / / Ey - ji™ dvdxdt = / / Eg - jp" dxdt,
0 Q 0 Q

Similarly,

whence, we have

k—co

T
lim / / (Ex-1 - ™ = Ex - j™) dxdt = 0. (39)
0 Q

Unfortunately, this is not enough since we in fact have to consider Ej_; - j}{m —E; ;k To get hands on this term, choose

oL, 97 € C (10, R*[xR?) with

. . 1
-int 1 -int 2
Evo1-j™ — ¢ Ep-j™— o 2 40
” k=17 Jk k||L1(]O,R*[><R3)’ ” ki k||L1(]0,R*[><R3)< k (40)

and choose uy € C (10, R*[XI'; R®) such that

1
”u - uk”Ll([O,R*];LZ(F;R3)) < E (41)
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Using these approximations and (22) and (24), we estimate

T T T T
//(Ek_l-j,im—Eka)dxdt < //Ek-ukdxdt+ //Ek-(u—uk)dde //(coi—coi)dxdt
0 R3 0o I 0 Q
T T T
+ // By - j™ - l) dxdt| + // — By - j™) dxdt| + //Ek.(jk—jk)dxdt
0 Q 0 Q 0 R3
. . (42)
C
S/IIEk Ol 2(rere) Uk Oll 2 sy At + // ~ @) dxdt e
0 0
T

= [ B Oyl Oy i + D,
0

where C>0 does not depend on k since we already have a uniform bound on the Ej in L* ([0,R*];L? (R3;R3)).
Furthermore, h; is continuous with respect to T and

hi (T) — Ofork — oofor each T € [0, R*] (43)
by (39) and (40). Moreover, we have
< < -int -int
0<h (D= 2+ “E 1k | pgorxay T ” K || o et (44)
C+2 -int 3
St (”Ek-l”Lm([osRﬂ:v(R%RS» # 1B o) ) [ oy < €

where C > 0 does not depend on k (and T) by the uniform boundedness of the E; in L* ([0,R*];L? (R R?)) and (23)
(combined with (28) and (29), respectively).
Now, let 0 < T< T’ < R*. Exploiting ¢ < &, up < o’, summing (36) over a, adding (37), and then using (42) yields

N N
a a o
g{bk (T)+; / B/ Ve () dvelx + = [|Eie, Hi) (D7, o o)

N

N
1
< bZ(T)‘*‘Z//nglg(T)dde+g/(ekEk'Ek+#ka'Hk)(T)dx
a=1 Q B 5

a=1

<

M =

1l
—

a

T
NI
//vgf”dvdx+2/v2g”dya+$/ (EkEO:k-Ek+MkﬁIk-ﬁIk) dx+//(Ek_1 j;{nt—Ek-jk> dxdt
o R =1y R’

0 Rs
// af“dvdx+2/ e dro+ 2 (E
=

N
_2// af“dvdx+2/ Wg" dr,
a=1 o

(B 1) ||

12(R3;R)

IA
||M2

T
# B Ol e Ol ey do -+ e (1)
0

LZ(R3 Re)

T
+Vazo~: / \/%u(Ek,Hw (Ol (@) 1tk Ollz(ripey de + i (T)
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By Ey, Hy € C([0,R*];L? (R%R?)), uy € C([0,R*];L? (I';IR?)), and by continuity of hy, we can apply Lemma 1 and
thus obtain

1

N N
2sz (T) + 2 / / llfk (T) dvdx + — ||(Ek,Hk) (T)”LZ(R3 R6)
a=1 a=1 Q By

Jat 2 -1
(B, Hy) +h ()| + Vazo 2 luelip o iz (rrs))

12(R¥Rs)

a=1

S\/Ei// af”dvdX+Z/ wgdr+ 2|

+ hy (T)

12(R¥:Rs)

N N
S\/EZ//vgfadvdx+2/v d70+_HEk, )2
a=1 Q R a=1 7,

maz

+ V dro 2 ||u||L]([0 Tl Lz(r RS)) + —

by (41) so that
N N
Y+ Y [ [ 0 dvx b SN HO (DI, o
a=1 a=1
Q By
N N o 5 :
0 fa o o i & 45
< Z{/ WF dvdx+z_;/ 0g% dy, + o ”(Ek,Hk) Lz(Rs;Rﬁ)+hk(T) (45)
o R =
- Varrt\
_1 o 2
+V2zno zllullLl([O,T];LZ(l";R3))+T)
altogether.

For k— oo, let A C [0 T ] be measurable and integrate (45) over A. As for Za 1 k *(T), we note that Za 1 b (T) is
the pointwise limit of Za 1 by (T) by weak convergence and we have a pointwise bound uniformly in T and k by (45).
Additionally, exploiting weak convergence and weak lower semi-continuity, respectively, the strong convergence of the
initial electromagnetic fields, (43) and (44), we may pass to the limit and conclude, since A was arbitrary, that

N’ N
a 0 ra 0 ra o 2
azl (1 - a()) / vafRﬂ_ d7a + [;1 / / vafR () dvdx + g ”(ER’ HR) (')”LZ(R%RG)
- Fn{lvI<R} T Q By ([0,
Y , Le([0,TT) (46)
o o\ [12 [~ 1
//vaf dvdx + Z/ g d]/a ” (E H) LZ(R3;R5) + 2rwo” 2 “u”Ll([O’T];Lz(F;]RS))
Q

for all T € ]0, R*], after taking T = T’. This is exactly the energy estimate we wanted to derive since R does no longer
appear on the right-hand side.
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Lastly, we show that, up to a subsequence, j}{m - jitin L ([0,R*]x & R3) for k—oco and derive an
L® ([0, R*];L: (Q; R3)> -bound for ji*. To this end, applying (15) yields

N

D] s ey < Dbl | [ STy

<3 (%

Léi(g)
2 (1-a8) Mgy, @=1 . N
a 3 0 L>(r;)’
1=(axks) T {0, a=N +1, ‘leal // Vel (T) dvdx

for 0 < T < R* and the right-hand side is bounded in L§ ([0, R*]) uniformly in k by virtue of (46). Therefore, we may assume
that jmt converges weakly in L3 ([0,R*] x Q;IR3). It is easy to see that the weak limit has to be ji™. As for the desired
bound we proceed similarly to (15) and (16), respectively, sum over «, apply a Holder estimate for the sum, and use the
known estimates to get

jll’lt
. LW(lo,TJ;L%(g;R3)>
anl

N 4 ,

< e |* A7 || 2a 114 m”ga”Lw(y;), a<N

<| Yleal*( ZF) e o
= 3R 0, a>N (47)

: :
3 @ o o 2 1
2//Vaf dVdJC"‘Z_/ g d)’a o ||(E,H) LZ(R3'R5) + VZTL'O' 2||u||Ll([0,T];L2(F;R3))
a=1 (o) :
for any 0 < T<R*.

3.4 | Removing the cut-off

Finally, we obtain a solution of (VM) on the time Interval I, by letting R — 0. To this end, it is crucial that the right-hand
sides of the obtained estimates of the previous section do not depend on R; see (30) to (32), (46), and (47). Take the sequence
(Rm)m = (m),,, then we see by a diagonal sequence argument that, for certain limit functions and up to a subsequence,

se X paingp ([o MAIXQXR3), ££ = fin L ([0, M*] X @ X R?), (Ep, Hp) — (E, H) in L? ([0, M*] x R?; RS), and
jine s jint inL3 (10, M*] x Q; R3) foreach 1<p<o0,M>0(where M* = min {M, T.}).Fora =1, ... ,N’, we additionally
have f; . — fiinL? ([0, M*]1x QX R3) for 1 < p < o0. We may pass to the limit in the respective estimates to obtain (5)
to (10). Passage to the limit in the weak formulation of (VM) works in the same way as in Guo.! theorem 4.1 That the
weak limit of the jo is indeed the current density j™ induced by the f* is proved in the same way as in Rein!!, proposition

4 exploiting the energy estimate.
Altogether, Theorem 1 is proved.

4 | THE REDUNDANT DIVERGENCE EQUATIONS AND THE CHARGE
BALANCE

In this section, we shall discuss in what sense the divergence equations (1) hold for a solution of (VM) in the sense of
Definition 1. This is much more difficult than in Guo!, lemma 4.2 since we consider these divergence equations on whole
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R?3 instead of Q. The weak formulation of (1) is

Te
0= / / (eE - Ov@ + 4rmpe) dxdt, (48a)
0 Rs
T.
0 =//p¢H~0x(pdxdt, (48b)

0 R3

forall ¢ € C (]0, T. [x]R3). Obviously, (48) is equivalent to (1) be satisfied on ]0, T. [XR3 in the sense of distributions.
For (1) should propagate in time, we have to demand that (1) holds initially as a constraint on the initial data, that is to say

div (¢E) = 4z, div (uH) =0

on R? in the sense of distributions, or, equivalently,

0= / (eE - 0c& + 4npé) dx, (492)
R3
0= / WH - 0c& dx (49b)
R3

forall £ € C (R?).
Now, let ((/“ f¥) . E.H, j) be a weak solution of (VM) on the time interval Ir, with external current u. It is easy to
see that (48b) holds: define
T.
9 Iy, xR3 5 R3, 9(t,x) = —/ax(p(s,x) ds.
t

Te

Clearly, 9 € ©r, . Hence, (4b) and & = / @ (s,-) ds € C2 (R?) in (49b) yields
0

Te
O=//(ﬂH~6ﬂ9+E-curlx19)dxdt+/,uﬁl-&(O)dx
0 R3 R3
Te Te Te
=// uH~6xqo—E-/curlxax(p(s,x) ds dxdt—/ﬂﬁz-axgdx=//MH~ax<pdxdt
0 R3 t R3 0 Rs3

and we are done.

As for (48a), we have to exploit local conservation of charge and have to determine what p is. Therefore, we have to
make use of (3) in order to put the internal charge density into play. However, the test functions there have to satisfy
v € Y., but a test function of (48a) does not depend on v. Consequently, we, on the one hand, have to consider a cut-off
in momentum space and, on the other hand, have to show that (3) also holds if the support of y is not away from yg_ or
{0} x 0Q x R3. To this end, the following technical lemma is useful. There and throughout the rest of this section, we
assume that Q c R3 is a bounded domain such that 0 is of class C! n W>*. Here, 0Q being of class C! N W>* means
that it is of class C' and all local flattenings are locally of class W,

Lemma?2. Let1<p<2andy € C' (Iy, X R* X R3) with supp y C [0, T+[xR3XR? compact. Then, there is a sequence
(yr) € Y7, such that

”Wk - Wllwl,pﬂxlv (I’r. XQXR3) -0 (50)
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for k — oo, and there is 0 < r < co such that w and all y vanish for t > r. Here,

Te 2 2 P

Wl iy ) = | | ] ] 1+ 1o o+t | x| as

0\ Q \R3

Proof. First, we extend y to a C*-function on R x R3 x R3 such that suppy C ]—T., T.[ x R3 x R? is compact (which
can be achieved since the hyperplane where ¢t = 0 is smooth).

By assumption about 0%, for each x € 9Q, there exist open sets Uy, U, ¢ R3 with x € U, and a C'-diffeomorphism
F* : U, — U, that has the property F* € W (Uy; U}), such that F* (U, n 0Q) = U, n (R? x {0}). For any x € 0Q,
we choose an open set U, C R? such thatx € U, and U, cC U, (here, A C CBis shorthand for “A bounded andA C B”).
Then, 0QC |, .,oUx, whence there are a finite number of points, say x; €0Q, i = 1, ... m, such that 0Q c Ul"il Ui,
since dQ is compact. Here and in the following, we write U; := Uy, U, := fJx,., and F' := F%. Since it holds that
Q\ U, U; cc Q, there is an open set U, C R satisfying Q\ ", U; cC Uy cC Q. Therefore, we have Q c J, Ui
Finally, we choose an open set M C R? such that QcMcc Ui, U

Now, let ¢;,i =0, ... ,m, be a partition of unity on M subordinate to U;, i =0, ... ,m, that is, the {; are of class C*,
0<¢; <1, supp¢; c U, and z;io ¢ =1 on M (and hence on Q, in particular). Furthermore, let # € C* (R) such that
0<n<1,n(y) =0for|y| < 3,andn(y)=1for |yl > 1.

Next, fori =1, ... ,mdefine G' : U;xR> - R, G' (x,v) = (F'(x),A’ (x)v), where the rows A; x),j =1,2,3,0f
A (x) are given by

Ao VF} (x) X VF (x) A VFL (x) x (VF! (x) X VF. (x)) . VFL (%)
X) = , X) = s X)) = ——
' VF} (x) x VF. (x)| ’ ‘VF; ) X (VFL (x) x VF. (x))' ’

’VFé (x)| '

Note that the rows are orthogonal and have length one and that A’ is of class CNW"* on U; since F' is of class
C'nW?* on U;, det DF' # 0 on U;, and hence, the denominators in A’ (x) are bounded away from zero on U; because
of U; cc U,. Therefore, G is of class CN W"* on U, x Bg for any R > 0.

The key idea is that, for any (x,v) € U; X R3, x€0Q is equivalent to Gi3 (x,v) = 0, and, moreover, (x,v) € 7° is
equivalent to G; (x,v) = G, (x,v) = 0, since n (x) and VF; (x) are parallel (and both nonzero). Thus, since the supports
of the approximating functions y shall be away from yg. and {0} x dQ x R?3, it is natural to consider the following
C*>-function in the variables (¢, G), that cuts off a region near the two sets where G; = G¢ = 0 and where t = G3 =0

¢ RXRS > R, i (t.G) = n (K (G2 +G2)) n (2 (2 + G2)) .

For k € N, we then define

it RXRP X R = R, e (6x,0) = G )y (6 0) + DG w (Gx,w g (6x.v),

i=1

where
n¢ t RxUixR® = R, 7% (t,x,v) = e (£ G () .

We should mention that, according to §; € C® (U;), i = 0, ... ,m, the ith summand is (by definition) zero if x ¢ U;.
Note that we can apply the chain rule for nkGi since 7, is smooth and G' € W' (U; x Bg; R®) for any R > 0. Therefore,
i is of class CN Wh*,

First, we show that (50) holds for , (instead of y). By 2:10 {i=1on Q, we have

3

(51)

Gy (

m
e -]
i=1

”Wk - WHWlpﬂxlv I XQXR3 2 )HWLszXlV(]O,R[XUiXBR) Wl.p[leu(]o,R[inxBR)’

i=1
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where C > 0 depends on the (finite) C})-norms of w (and ¢;) and where R > 0 is chosen such that y vanishes for t > R
or [v] > R. Forfixed i € {1, ... ,m} and (¢, x,v) € R x U; x R3, the implications

nC (6x,v) # 12 K (G, v + Gl 1) <1V (£ +Giev?) <1 |F; (x)| <k A <|Gi6 (x,v)| <klvi < k-1>

hold. Therefore, we have, recalling that 0 <n <1,

R 2 2 0

// /’nki—1|dv dx| dt

o\ U \ B

1 1
R 2 "2) P - § P
4 3 2

< dv| dx| de| + <?R>dx dt
0 \ {xeUjl|Fi)| <k-1 } \ {veBgl|GLexv) | <k} 0\ {xeU||Fix)| <k}

_. 7k 7k

=L+

In the following, we will heavily make use of the facts that A’ (x) is orthogonal for any x € U;, |det DF’| is bounded
away from zero on U;, and F! (U;) is bounded. Thus,

P
2 2 P

1’;30/ / dw| dy| dt| <ck: =0

O \{vert(Ul|ys| <kt } \ {weBgl [ws | <k~ }

for k — co. Here and in the following, C denotes a positive, finite constant that may depend on p, R, and Fi, and that
may change in each step. Similarly,

k-t 2

I"<C/ / dy| dt <Ckir 50

2 =

O\ {»eFi(U)I]ys| <k}

for k —» co0. Next, we turn to the derivatives and start with the ¢-derivative. By
oS (t,x,v) = 2k*tn (kK (Gi(x,v)* + Gi(x,1)?)) ' (K2 (£ + GL(x,v)?))

we have
|aﬂ1kGi (t,x, v)| < Ck*t
and

ol (tx,v) #0= kK (£ +Gv?) <1 [t <kt A |F;' (x)’ <k
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Hence,
1

R 2 5 ‘l’ k™ 2 :

// /)am,‘j"]dv dx| dt SCkz/ tdv| dx| dt

0\ \ Bg 0 | {xeU/||Fieo)| <k} \ Br
CY (e}

kaz/ 2dy| dt| <ck /tht =Ck%‘§,

O\ {yer (U)l]ys] <kt } 0

which converges to 0 for k — oo by p < 2. This procedure can be performed for the x- and v-derivatives accordingly,
where one needs that G' is of class W»* on U, X Bg, resulting in

R 2 N5 R 2 N5 )

i 11 1 i 1
// /axjn,f|dv dx| dt| <cCk>7r+Ck3, // /avjn,fidv dx| dt| <ck:
o \'u, \'B, o \'u, \'B,

for j =1, 2, 3. Altogether, we have shown that

tim |9 - 1] _
k—oo Weexely (J0,R[XU;XBy )
foranyi=1, ... ,m, and thus,
kh—?olo ”li/k - ll/”WLPﬂxlv (IT. XQXR3> =0 (52)
by (51).

The next step is to show that, for each k € N, the support of ¥ is away from yg. and {0} x 0Q x R3. As for

v9,, assume the contrary, that is, dist <supp Wi, 73, ) = 0. Then, we find sequences (7, %, ¥;) , € 72, and (t;,x,v), C
R x R3 x R3 such that { (f;,x;,v;) # 0 for alll € N and

llim |(fl,5cl,f)l) - (tl,xl,vl)| =0.

By compactness of supp @, C supp w, both sequences are bounded, whence we may assume without loss of gener-
ality that both sequences converge to the same limit, say (¢, x,v) € R x R? x R3. Since #° is closed and 7, > 0 for [ € N,
we have (x,v) € 7° and > 0. By dist (x, Uy) > 0 and since U:’;l U, is an open cover of dQ2, we may also assume that

xelJun U U (53)

ieluJ i€{0, ... m}\{IUJ)

whereI :={i€ {1, ..., m}|xe U;},J :={ie{l, ... ,m}|x € oU;} (for | large, at least). Clearly, ¢; (x;) = 0 for any
ieJand large I. Now, take i € I. Since G' is continuous and since G; (x,v) = Gi6 (x,v) = 0 by (x,v) € 7°, we have

lim G, (x;,v) = lim G, (x,v) = 0
>0 (B

and then
k* (G50, v)* + G, w)?) <

N | =

for [ large. But then ngi (t;,x;,v;) = 0 and therefore by (53)

0 # Wi (4, X1, V1) = 2 i () ll/(tl,xz,vz)ﬂfi (&, x1, 1) + Z ¢i () W(tl,xz,vz)ﬂgi (T, x,v1) = 0,

iel ie]
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which is a contradiction. As for {0} X dQ x R3, the proof works completely analogously.

There only remains one problem: the approximating functions are only of class Cn W with compact support
and not of class C*® as desired (which corresponds to the fact that dQ is only of class C* N W?* and not necessarily
smooth). To this end, take a Friedrich's mollifier ® € C& (R7), supp o C By, /R7wd (t,x,v) = 1, and denote ws :=

) (E) for 6> 0. By . € H' (R7), we know that s * i converges to . for § - 0 in H' (R7). Moreover, since

supp@x C ] — T., T [XR3 x R3, dist (supp Wi, 7y, ) ,dist (supp @i, {0} x 0Q x R?) > 0, these properties also hold for
s * Py instead of @ if § is small enough. Choose 0 < 6, <1 so small and such that

e

”w&k * P — ll?k”Hl(]}y) <
By p < 2, this implies

- - C
||a)5k * Wi — Y ”W‘-Pt2x1v(]0,R+1[><Q><BR+1) < T

where C >0 depends on p, Q, and R. After combining this with (52), noting that ¥ and y vanish for t>Ror [v| > R
and w;, * ¥y for t> R+ 1 (which implies the existence of r as asserted) or [v| > R + 1, and setting

Yk 1= g, * l/7k|IT. xaxR3s € ¥r.,

we are finally done. O

With this lemma, we can extend (3) to test functions y whose supports do not necessarily have to be away from yg. and
{0} x 0Q x R3 under a condition on the integrability of the solution.

Lemma 3. Forfixeda € (1, ... N} let f* € L® (I, x @ x R?), /% € ¥ (y;. ) (E.H) € L (Ir,; L (R% R%)) for

some q>2, Ky @ L? (y}:) - Ly (y;. ), g €LY (y;. ), f* € L* (Qx R?) such that Definition 1(ii) is satisfied.
Furthermore, let y € C* (I, x R3 X R*) with suppy C [0, T«[xR* x R* compact. Then, (3) still holds for y.

Proof. Let 1 <p <2 satisfy 11) + é = 1. In accordance with Lemma 2, let (wx) C ¥r, approximate y with respect to

the WiP%L-norm, 0 < r < co such that y and all yy vanish for t > r, and define R := min {r, T. }. By assumption, (3)
holds for y for all k € N. Hence, there remains to show that we can pass to the limit k — oo in (3). First, we have

T.
/ / / Oy — o) f* dvdxdt| < ||y — W“Wlﬂ(]o,R[xQst) ||fa||L°°([O,R]><QxR3)

0 O R3

< C(R’ Q’p’ fa) ||Wk - W||W1«P12x1v(]O,R[XQXR3) -0

for k — oo, since R is finite and Q is bounded. Similarly,

Tl
klim ///(ax-ax K — Vg - Oxyr) f@dvdxdt| =0

0 Q Rs3
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by [Vs| < 1. Next,

Te R
/ / / (B + 90 x H) - @ — ) £ dvddxde] < 1L o e / / (IE] + [H]) / |0y — | dvdxdt
0 Q R3 0 Q R3

R : 2 \3
sC(f“)/ /(IE|2+|H|2)dx / /l@vu/k—()vwl dv| dx| dt
0 Q Q \R3
R 2 H »
<C(Y ”(EvH)”L’J([O,R];LZ(RS;R6)) // /|0vl[/k—()vl//|dv dx| dt] -0
oo \rs

for k - oo. Note that this was the crucial estimate, for which we essentially needed the convergence of y to y in the
WlP2L_norm. As for the boundary terms on y;—t , we first have

/IWk—u/I(t,x,V) deSC(Q)/(IWk—WI+I0ka—6wa)(t,x,V)dx
0Q Q

forany T € I, , v € R?, since Q is bounded and dQ of class C*. Therefore, by |n (x) - V| < 1,

/ Wk —w) fLdya| < CQ) |y — W”Wl»l(]O,R[XQXR3)”ff”Lw(y;) -0

e
for k — oo. Similarly,
/ (Wi —w) (Ko fE+8%) dyva| < CQ) llwi — W w10 rixexR?) <||Kafz||L°°(yE) + ||ga||L°°(V§)) -0
Y7o
for k - oo. Lastly, by

R

0= Yk (R, X, V) -y (R7x7 V) =Yk (O,X, V) -y (O,X, v) + / (atll/k (t9x7 v) - atll/ (tv X, V)) dt
0

for any x€ Q, v € R3, it holds that

/ / (Wi (0) =y (0)) /* dvelxdt] < llyic = v Il oy | /|

Q R3

-0
Le(QxR3)

for k — oo, and the proof is complete. U
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The next step is to show that (3) still holds if y does not depend on v. This is done via a cut-off procedure in v. Note that
in the following lemma it is essential that f* is of class L' n Likin locally in time.

Lemma 4. Let « € {1,..,N}, f* € (Ll nLikmhnL;’;’> (Ir. xQXR?), f¢ € L (y;. ) (E.H) €
LZ (Ir,;L? (R3;R®)) for some > 2, Ky Ly (yT. > - L (yi >, g eLy <y;. ), and f* € (L' nL*®) (Qx R?) such
that Definition 1(ii) is satisfied. Furthermore, let y € C*® (IT, X ]R3) with supp w C [0, T.[ XIR3 compact.

(i) Ifsupp y C [0, To[ X (R*\0Q), we have

T.
=// atw/fadv+axw./ﬁafadv dxdt+/q/(0)/f”dvdx. (54)
0 Q R3 R3 Q R3

(i) If, additionally to the given assumptions, f¢ € L, (y;. , dy,,), g eL, (y;_ ,dy, ) and K, : (Lllt nLY) (y;:. , dya> -
(Lllt N Lff) <y;. , Ay, ) but y need not vanish on 0Q, then (3) is still satisfied for y, i.e.,

T.
~[ [|ow [ rrwvraw [ourea dxdt+/f+wd7a—/(ICaff+g")wd7a—/W(O)/f“dvdx
0 o R: i R:

R3 e Q

(55)

Proof. The proof works similarly to the proof of Guo.! lemma 4.2 First, consider a test function y that may have
support on 0Q. Take n € C® (R3),0<7<1,7 = 1o0n By, supp nCB,, and let n,, (v) :=n <ﬁ> form e N,v e R3.

Then, yin € C* (Ir, x R® x R3) with supp win C [0, To[ XR® X R® compact, where i, (£,X,0) 1= w (£,X) 1l (V).
Therefore, (3) holds for v, by Lemma 3. Now, we can show that we may pass to the limit m — oo in all terms of (3)
but the terms including integrals over y;—r. . Let R> 0 such that y vanishes for ¢ > R. First,

R
///f“a,y/mdvdxdt—//atw/f"dvdxdt <10l ey, e ///lnm—lllf“|dvdxdt "0
0 Q 0 Q [R3

by dominated convergence since 5, — 1 pointwise for m — oo and |5, — 1| |f*| < |f*| € L! ([O,R] X QX R3).
Similarly, by [V, | < 1,

TQ T.
lim / / / O - D £ dvdxdt = / / oy - / B, % dvdxdt.
0 Q R3 0 Q R3
By
1
On (t:%,9) = v (6.2 Vi (- )
m m
and

OWm (L, x,V) #0=> m < |v| £ 2m
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for (t,x,v) € It, X Q x R3, we get the following estimate, which is again the crucial one:

{veR3|m<|v|<2m}

Te R
o 1
[ ] [ (B40uxm) 1 oy dvasas < Il ) 1) [ o [ L
0 o R 0 o
2 3

R
1
SC(W,”)”(E,H)”LZ([O,R]XQ;RG) // / a|f | dv| dxdt
0 Q

{veR3|m<|v|<2m}

il (8m* —m?3)

< C(y,n,E,H) / / 2 | £ dvdxdt

mZ
0 Q {veR3|m<|v|<2m}

R
<C(y,n.E.H) // / W4 dvdxdt| — 0
0

Q {veR3|m<v|<2m}

for m — oo, since the last integral converges to zero by f* Likin ([O, Rl X Q x R3). As for the term including the
initial data, we see that

/ / W (0) /% dvelx — / v () / Fedvdx| < Iy Ol / / i — 1]
Rs3 R3

Q [R3 Q Q

£\ dvdx - 0

for m — oo as well by dominated convergence and f* € L (Q X R3).

Now, if suppy C [0, Te[ X (]R3\a§2), then y,, vanishes on 0L, too, and for y,, there vanish the integrals over y;—':
appearing in (3). Hence, (54) is satisfied.

If the additional assumptions of (ii) hold, but y need not vanish on 0£2, we consider the integrals over y;—': :

m-—oo
[ rvndr= [ srwan) <, gy [ 1m=11152 dn "0,

+

Y7o T R

and similarly,

m-oo
/ (Kafz +ga) Vmdya _/ (]Caf.(: +ga) wdy.| < ”W”L“(IT XR3) / [1m — 1] (llcaf-ﬂ + Igal) dya = 0
Y7 Y7 e
by dominated convergence and f* € L! (v}, dya), Ko f%,8* € L' (v, dya). Therefore, we obtain (55). O
In the following, we denote
N N
Pt = Zea/f”‘dv, jint = Zea/ﬁaf”dv
a=1 [ a=1 R:
and extend these functions by zero for x ¢ Q.

Equations (54) and (55) reflect the principle of local conservation of the internal charge and imply a global charge
balance after an integration:

Corollary 1. Let the assumptions of Lemma 4 hold forall a € {1, ... ,N}.
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(i) We have
0;p™ + divej™ =0
on 10, T.[ X Q in the sense of distributions.

If moreover the additional assumptions of Lemma 4(ii) are satisfied forall « € {1, ... ,N}, then

(i) It holds that
01p™ + Tyo + divej™ =0 (56)

on 0, T.[ x R3 in the sense of distributions. Here, the distribution Tyq describes the boundary processes via
N
Toy = ) eq /fi‘t//dya - / (Kaf$ +8%) wdya|.
= e

(ii) Foralmostall T € Ir,, we have

/ o (t.x) dx = / fride— Ye, / £y~ / (Kuf? +87) dra.

Q Q vt I3
Proof. As for (i) and (ii), simply multiply (54) and (55) with e, and sum over a. As for (iii), take ¢ € C (]0, T [).

Choose € C® (R?) with 7 = 1 on Q. We define

Te

v I, XRP S R, y(t,x) = —ﬂ(x)/(PdS-
t

Then, y € C* (IT, X R3) with supp w C [0, T.[ XR3 compact. Therefore, Lemma 4(ii) yields, after summing over «,

N Tl
0=Zea —// atw/f“dV+6xw-/ﬁaf"dv dxdt+/fi’wdm—/(lCaff+g")wdh—/u/(0)/f"dvdx
o=l 0 ‘o R3 v @ R

R3 "Te
Te Te N Te Te
= —/¢/pin‘dxdt+/(p/ﬁimdxds+ Zea —// / fe (t,x,v)/(p(s) dsn (x) -V, dvdS,dt
0 @ 0o o =1 0 00 {veR3|ne)v>0} t

T. T.
—/ / / (Kofs +8%) (t.x,v) /q) (s) dsn (x) - D, dvdS,dt
t

0 0Q {veR3|nx)v<0}

Te
=_/(p /pimdx—/ﬁimdx dt
0 Q Q

T

N [ N
+ Zea —/(p(s)// / Ft,x,v)n(x) -V, dvdS.dtds
a=1 0

0 9Q {veR3|n(x)v>0}

Te

- / @ (s) / / / (Kafs +8%) (t.x,v) n(x) - Vo dvdS,dtds |,

0 0 9Q {veR3|nx)v<0}
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from which the assertion follows immediately. O

We can finally show the remaining parts of Theorem 2 with the help of Lemma 4; the redundancy of div, (uH) = 0 has
already been proved. To this end, assume Condition 2.

Proof of Theorem 2. First take ¢ € CZ (10, T.[ X R?) arbitrary. Define

Te Te

w i Ir, xR > R, y(t,x) = —/(p(s,x) ds, 9 Iy, xR> > R?, 9(t,x) = —/Ox(p(s,X) ds,
t t
T.

ETRISR, E(x) = /(p(s,x) ds.

0

Clearly, y € C* (I, x R®) with supp y C [0, To[ X R* compact, d € Or,,and & € CZ (R?). By 9 € Or,, (4a) holds,
that is,

Oz//(eE~a,19—H-Curlx19—47t(jim+u)-19) dxdt+/eE~19(0)dx
0 R3

=// eE-ax(p+H-/curlxax(pds—4n(jim+u)-8 dxdt—/ef:"-()xédx (57)
0 TR3 t R3

T.
=//(£E~dx(p—47r(jim+u)-19) dxdt—/eE-axe:dx.

0 R3 R3
By Condition 2, we have

Te Ta
= / / (p" 0y + u - Opy) dxdt + / Ay (0) dx = / / ("o +u-9) dxdt — / pHEdx. (58)
0 R3 R3 0 R3 R3

To prove (i), assume that ¢ € C& (]0,T.[ X (R3\0Q)). Then, we have y € C* (I, X R*) with suppy C
[0, To[ X (R3\0Q) compact and Lemma 4(i) gives us, after multiplying with e, and summing over a,

T.
z//(PintazW+jint'axlI/) dxdt+/ oll’ltq/ (0) dx = // plnt(p+J1nt 19) dxdt — /ﬁimfdx. (59)
0 Q

Q

Multiplying (58) and (59) with 4z and adding them to (57) yields

// 6E 0x(p+4n(pmt+p) )dx:/(sE-6x§+4ﬂ(p‘m+p)§)dx=0
0

R3

by divy (e£) = 4z (5™ + p*) on R in the sense of distributions. Hence, divy (eE) = 47 (p™ + p*) on 10, T« [x (R*\0Q)
in the sense of distributions.

To prove (iii), let the additional assumptions stated there hold. The test function ¢ € C (]0, Te[ X R3) may now
not vanish on dQ. We have y € C* (IT, X R3) with supp w C [0, T.[ X R3 compact and Lemma 4(ii) gives us, after
multiplying with e, and summing over «,

Te

= / / (P™0y + j™ - Ocy) dxdt — Tooy + / Ay (0) dx = / (P™@+j™ - 9) dxdt — Tooy — / pMEdx.  (60)
Q
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We rewrite Tyoy:
N
Toow = Yeo| [ fiwdra= [ (Kurt+)win,
a=1 y;. y;.
N T' T.
= Zea —/ / / f(t,x,v) /(p (5,%) dsn (x) - U, dvdS,dt
o=l 0 9Q {veR3|n(x)v>0} t
T. L]
—/ / / (Kafs +8%) (t.x,v) /(p (s,x) dsn (x) - D, dvdS,dt
0 9Q {veR3|nx)v<0} t
/ / (s, x)/ / f3(t,x,v)n(x) -V, dvdtdSyds
0 0 {veRs3|n@x)v>0}
/ / (s, %) / / (Kafs +8%) (t.x,v) n(x) - Vo dvdtdScds
0 0 {veR3|nex)v<0}
= —=Ss00.
Similarly as before, multiplying (58) and (60) with 4z and adding them to (57) yields
// (eE-ax(p+47t (pmt+p ) ) dx +4xSs0p = / (eE-0x§+4n' (pmt+p )f) dx = 0.
0 R:
Hence, divy (eE) = 4x (p™ + p* + Saq) on 10, Te[ X R? in the sense of distributions. O

Remark 1. We discuss some assumptions and give some comments regarding Theorem 2 and Corollary 1:

« Clearly, we see by interpolation that f< € (L;km " mL1°t°> (Ire x @ xR?) implies f© €
<L1 nL?

2 inte N Lf;) (Ir, x @ x R*) and that (E, H) € L (I, ; L* (R*; R®)) implies (E, H) € L] (Ir,; L* (R* R®))
for any g > 2. Hence, Theorem 2(ii) can be applied to solutions constructed as in Section 3; cf. Theorem 1. How-
ever, the boundary values f¢ constructed there only satisfy f¢ € Lllt (y;. , dya> fora = 1, ... ,N’, that is, the
particles are subject to partially absorbing boundary conditions, and not necessarily for « = N’ + 1, ... ,N, that
is, the particles are subject to purely reflecting or hybrid boundary conditions. Therefore, whether the statement
of Theorem 2(iii) is true for solutions constructed as in Section 3, remains as an open problem, unless N’ = N,
that is, all particles are subject to partially absorbing boundary conditions.

« Conversely, the assumption f§ € Lllt <y;_ , dya> is necessary for Theorem 2(iii) (and for Lemma 4(ii)); otherwise,
the integral f Sy dy, will not exist in general since y need not vanish on 0Q and does not depend on v.

T

« The distribution S, can be interpreted as follows: the terms

N N
JSR(t,x) = Zea / VoS3 (t,x,0) dv, i (8,%) Zea / Do (KoL +8%) (1,x,v) dv,

a=1 a=1

{veR?nx)v>0} {veR3|nx)v<0}
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where (t,x) € Ir, X 0Q, can be interpreted as the outgoing and incoming boundary current density. Hence, Syq
can be rewritten as

Te t
Soap = / / @ (t,x) / nx) - (Joo (5.X) + ji, (5.)) dsdS,dt.
0 0Q 0

Thus, Ssq makes up the balance of how many particles have left and entered Q up to time t. On the other hand,
the distribution Tyo makes up the balance of how many particles leave and enter Q at time ¢ via

Te
Toay = / / w (LX) ) - (J5g (%) + g (6,)) dSydt.
0 0Q

We easily see that 0,530 = Taq on 10, T.[ X R? in the sense of distributions, which corresponds to the fact that Tyq
appears as “a part of 9,;p” in (56) and S,q appears as “a part of p” in (11).
The global charge balance, see Corollary 1(iii), can similarly been written as follows:

t
/pim(t,x)dx=/,3m‘dx—//n«(jgg+jg;2) dSyds
Q 0Q

Q 0

for almost all T € Iy, .

As mentioned in the introduction, in a more realistic model, € and u should depend on f*, E, and H (maybe even
nonlocally) and hence implicitly on time. In this situation, the weak formulation is the same as before, which
is stated in Definition 1. If we assume €, u € L5 (IT, x R3; R3X3) (and suitably introduce initial values for &, u),
viewed as explicit functions of t and x, the proofs of Theorem 2 and the lemmas before are still valid, and Theorem
2 remains true, as well as the redundancy of div, (uH) = 0.

Lastly, we emphasize that all results of this section hold, under the respective assumptions, for all weak solutions

of (VM) in the sense of Definition 1 and not only for the solutions constructed as in Section 3.
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