
1. Introduction
The mantle transition zone is considered to be a water reservoir because its dominant minerals, wad-
sleyite, and ringwoodite, contain up to ∼1.0 wt.% based on several lines of evidence, including elec-
trical conductivity (Kelbert et al.,  2009), mineral viscosity (Fei et al.,  2017), and naturally formed wa-
ter-rich ringwoodite inclusion (Pearson et al., 2014). In contrast, the lower mantle is considered to be dry 
(Hirschmann, 2006) because bridgmanite and ferropericlase can contain ≤0.1 wt.% water in their crystal 
structures (e.g., Bolfan-Casanova et al., 2000; Fu et al., 2019). Dehydration melting should therefore oc-
cur during the phase transformation of hydrous ringwoodite to bridgmanite and ferropericlase by mass 
convection when crossing the 660-km boundary (Schmandt et al., 2014). Such a dehydration melting layer 
has been interpreted to explain the seismic velocity reduction at the topmost lower mantle (Schmandt 
et al., 2014).

The question arises regarding whether this melting layer is stabilized at 660-km depth or gravitationally un-
stable. This problem should be determined by the melt viscosity, wetting of mineral grain-boundaries, and 
most importantly density because the density contrast among the transition zone, lower mantle, and hy-
drous melt is the driving force for upward or downward melt migration. Melt density is known to decrease 
with increasing melt

H O2C  (e.g., Matsukage et al., 2005; Sakamaki et al., 2006). Therefore, although dry melt 
[4.0–4.4 g/cm3 after correction to 23 GPa and 1600–2000 K (Bajgain et al., 2015; Ohtani & Maeda, 2001; San-
loup et al., 2013)] is denser than the mantle transition zone [3.9–4.0 g/cm3 (Dziewonski & Anderson, 1981)], 
hydrous melt could be either comparable or less dense depending on its melt

H O2C . Understanding melt
H O2C  at 

660-km depth is therefore essential for evaluating its density and stability.
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Nakajima et al. (2019) reported melt
H O2C  ≈ 30 wt.% at 660-km depth conditions and no clear temperature 

effect. However, melt
H O2C  is difficult to calculate precisely using mass balance owing to the small melt frac-

tions in their samples. Their melt
H O2C  values were obtained as the deviation from 100% of the total weight 

percent in the energy dispersive spectrometry analysis, which may contain large uncertainties because the 
weight percent of quenched melt is correlated not only with melt

H O2C  but also porosity and Fe3+/ΣFe, both of 
which are highly uncertain. Additionally, the compositional dependence of melt

H O2C  is also unclear.

In this study, melt
H O2C  of hydrous silicate melt using multi-anvil experiments at 1600–2300  K and 23–

23.5 GPa by mass balance calculation was estimated. To minimize experimental uncertainty, samples with 
a simple system (MgO-SiO2-H2O-FeO) and high melt fraction (>20 vol.%) were used; the melt consequen-
tially coexists with minimized solid phases (majorly ringwoodite and bridgmanite). The results indicate that 

melt
H O2C  systematically decreases with increasing temperature, but is relatively insensitive to FeO and SiO2 

contents and coexisting phases.

2. Methods
2.1. High-Pressure Experiments

Mixtures with bulk compositions of (Mg,Fe)2SiO4 and (Mg,Fe)SiO3 plus 5–22 wt.% H2O (Table 1) were pre-
pared from MgO, SiO2, Mg(OH)2, and FeO powders. After drying in a vacuum furnace at 400 K, the mix-
tures were sealed in Pt-Rh or Pt capsules by arc-welding (Fei & Katsura, 2020). The inner and outer diam-
eters (ID/OD) of the Pt-Rh capsules were 1.0/1.2 mm for the 23 GPa runs, whereas Pt capsules with ID/
OD = 0.8/1.0 mm were used for the 23.5 GPa runs. The high-pressure experiments were performed using a 
Kawai-type multi-anvil apparatus with standard 10/4 and 7/3 cell assemblies at the Bayerisches Geoinstitut 
(supporting information). The experimental temperatures ranged between 1600 and 2300 K, measured by a 
D-type (W/Re) thermocouple, with annealing durations of 5–1800 min (Table 1).

Cross sections parallel to the axial directions of the capsules were prepared by polishing with sandpaper 
and diamond powder. The run products appear as coexisting crystals (majorly bridgmanite and ringwood-
ite) and quenched crystallized melts (Table 1), as confirmed by scanning electron microscope (SEM) and 
microfocus X-ray diffraction analyses (Figure 1). The compositions of the melts were analyzed by electron 
microprobe (EPMA) operated with an acceleration voltage of 15 kV, beam current of 15 nA, beam size of 
30–50 μm, and counting time of 20 s. The (Mg + Fe)/Si and Fe/(Fe + Mg) atomic ratios in the melts, which 
reflect the SiO2 and FeO concentrations, respectively, were calculated from the EPMA data (supporting 
information).

2.2. Melt Fraction and CH O
melt

2  Estimation

The melt and solid fractions were obtained from the SEM images using image processing software (Im-
ageJ). Images of all recovered capsules are provided in the supporting information. The melt

H O2C  values 
were calculated by mass balance using the initial bulk water content in the starting materials, water content 
in ringwoodite (Fei & Katsura, 2020), and fractions of melts and solids. The water content in bridgmanite 
(and akimotoite) is negligible in comparison with ringwoodite and melt (Bolfan-Casanova et al., 2000; Fu 
et al., 2019) and therefore has a negligible effect on melt

H O2C , although the water solubility in bridgmanite 
remains under debate (e.g., Fu et al., 2019; Litasov et al., 2002).

2.3. Experimental Uncertainty Evaluation

A critical assumption in the above mass balance calculation is no water loss during the experiments. To 
examine if this assumption is reasonable or not, information regarding how the bulk water content in the 
capsule changes with time is required. A time series was therefore performed under the same pressure and 
temperature conditions (23 GPa, 2000 K) with the same starting material (Fo90 + 15%H2O), but different du-
rations (5–1800 min). The melt fraction in the run products, which is controlled by the bulk water content, 
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is found to be independent of duration (Figure 2a), which indicates that water loss was insignificant. This 
is understandable because hydrogen may diffuse through Pt capsule walls in the form of H2, but not as 
hydroxyl or H2O (e.g., Eugster, 1957; Shaw, 1963), which is the case in this study. Although H2O could be 
partially reduced to H2 by Fe2+ in the Fe-bearing runs, even if all the Fe2+ were oxidized to Fe3+, the amount 
of H2O reduced to H2 would be very small (e.g., the bulk water content would decrease from 13.0% to 12.1% 
in the Fo90 + 15%H2O system).

Some may consider that a time series over a duration of 5–1,800 min does not indicate the extent water loss 
during the initial 5 min. However, if water loss had occurred, the loss rate should be controlled by the water 
fugacity contrast in and out of the capsule. As far as the melt phase presents, the water fugacity is constant 
and the loss rate should thus be constant. Therefore, if water loss were significant within the first 5 min, 
the melt phase should not be present over long-duration runs, which is clearly not the case in this study.

Another error source is the uncertainty of the melt fraction estimation. To minimize this uncertainty, (i) 
all capsules were polished to nearly the center; therefore, the melt fraction in the cross section most likely 
represents the entire capsule; (ii) only runs with high melt fractions (≳20%) were used; and (iii) the melt 
fractions based on SEM images were independently examined by mass balance calculations of MgO and 
SiO2 concentrations in the solids and melts (Tables S1 and S2). As shown in Figures 2a and 2b, the melt frac-
tions estimated by different methods follow the same trend and agree well with each other. The uncertainty 
of the melt fraction estimation is therefore limited.

Additional potential error sources include the following: (i) Uncertainty of the water content in solid phas-
es. This should be negligible because the majority of water (>90%) within the capsule is stored by melt. 

FEI
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Figure 1. Characterization of run product (H4891). (a) Backscattered electron image of the whole capsule. (b) 
Quenched structure of the melt in the rectangular area in (a). (c) X-ray diffraction of different regions in (a). Brucite 
peaks are found in the melt, which should have formed by crystallization during quenching, whereas the Pt peak 
is from the sample capsule due to the limited spatial resolution of the X-ray diffractometer. Bdg: bridgmanite. Rw: 
ringwoodite.
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(ii) Water gain during sample preparation. The sample powder may absorb moisture from the air, but this 
amount (<<0.5 wt.%) is small in comparison with the bulk H O2C  in the starting materials. (iii) Pressure 
and temperature uncertainties. The appearance of both Fe-free and Fe-bearing ringwoodite at 2000 K and 
the coexistence of ringwoodite and bridgmanite in H4891 indicate a pressure uncertainty of less than 
1.5 GPa (Presnall, 1995). The temperature gradient in a typical multi-anvil experiment is ∼100 K/mm 
(Hernlund et al., 2006). Considering the capsule lengths of 1.2–1.3 mm located at the center, the temper-
ature uncertainty in this study should be less than 70 K. Because the magnitude of each error source is 
unknown, it is impossible to quantitatively evaluate the error bar for each data point. Nevertheless, the 
systematic variation of melt

H O2C  with temperature and reproducible melt
H O2C  from different runs demon-

strate that the uncertainty of melt
H O2C  is relatively small, which should be within the scatter range of the 

data points.

3. Melt Fraction and CH O
melt

2  in the Run Products

The melt
H O2C  values based on mass balance calculations do not show a clear correlation with the total mass 

from the EPMA analysis (supporting information), which is not surprising because, as explained in Sec-
tion 1, the melt

H O2C  estimated from the EPMA analysis is likely highly uncertain. Therefore, the melt frac-
tion and melt

H O2C  based on mass balance calculation are plotted in Figure 2 as functions of run duration 
(Figure  2a), starting material (Figures  2b and 2c), temperature (Figure  2d), and melt composition (Fig-
ures 2e and 2f). The melt fraction increases with increasing initial water content in the starting material, 
but melt

H O2C  remains unchanged (Figures 2b–2d). This is reasonable because the water partition coefficient 
between melt and solid should be constant at a given temperature. As shown in Table 1, the partition coef-
ficient is nearly constant (18–25) at 2000 K even with various starting compositions (except runs H4711 and 
H4775, in which ringwoodite has a lower water content than the other runs because of different SiO2-activ-
ity conditions [Fei & Katsura, 2020]).

melt
H O2C  clearly decreases with increasing temperature, but shows no meaningful dependence of (Mg + Fe)/

Si and Fe/(Mg + Fe) ratios (Figures 2c, 2e, and 2f). Additionally, although the melt coexists with various sol-
id phases in the run products (Table 1), the melt

H O2C  values do not show a clear difference. It is thus conclud-
ed that melt

H O2C  has strong temperature dependence, but is relatively insensitive to chemical composition, 
coexisting phases, and bulk water content in the system. Therefore, even though experiments in this study 
were performed with a simple system (MgO-SiO2-FeO-H2O) and high bulk water content, they should still 
be able to represent melt

H O2C  in the lower mantle.

4. Temperature Dependence of CH O
melt

2

As shown in Figure 3, melt
H O2C  systematically decreases from 52 to 12 wt.% with increasing temperature 

from 1600 to 2300 K. The absolute values of melt
H O2C  are basically consistent with that of 29.9 ± 4.1 wt.% 

reported by Nakajima et al. (2019) (Figure 3). However, their experimental temperature range was relatively 
small (1570–1870 K), which may mask the temperature dependence.

The melt
H O2C  determined in this study apparently follows an exponential function of reciprocal temperature 

(1/T). The data points are thus fitted to the equation,

 
  

 
melt

H O 02
ΔC exp GC
RT

 (1)
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Figure 2. Melt fraction and melt
H O2C  in the run products. (a) Melt fraction is independent from run duration, indicating no significant water loss during the 

experiments. (b) Melt fraction increases with increasing bulk H O2C  in the starting material. Melt fraction estimated from the SEM images is consistent with 
that based on MgO and SiO2 mass balance calculations. (c) melt

H O2C  is independent of bulk H O2C  in the starting material. (d) Melt fraction is correlated to the 
experimental temperature. Numbers next to the data points represent the bulk H O2C  in the starting material. (e) melt

H O2C  is independent of the (Mg + Fe)/Si 
ratio. (f) melt

H O2C  is relatively insensitive to the Fe/(Mg + Fe) ratio.
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where melt
H O2C  is the water content in wt.%, T is the temperature, R is the ideal gas constant, C0 is a constant, 

and ΔG is the chemical potential difference of H2O between melt and solid. By least square fitting, the C0 
and ΔG are found to be 10−0.32±0.17 and −61.5 ± 5.3 kJ/mol, respectively.

In the view of thermodynamics, the chemical potential of H2O in solid (solid
H O2 ) and melt (melt

H O2 ) phase is as 
follows:

   solid 0solid solid
H O H O H O2 2 2lnRT a (2)

   melt 0melt melt
H O H O H O2 2 2lnRT a (3)

where μ0 is the standard chemical potential of H2O in the hypothetical endmember and a is the activity of 
H2O in the solid or melt phases.

Under equilibrium, we have  solid melt
H O H O2 2 . By assuming an ideal mixing process for H2O incorporation, the 

H2O activity is identical to the concentration. Therefore,

  
  
 
 

0melt 0solid
H O H Omelt solid 2 2

H O H O2 2 expc c
RT

 (4)

Because the temperature dependence of solid
H O2C  is relatively small in comparison with melt

H O2C  (Fei & 
Katsura, 2020), melt

H O2C  apparently becomes an exponential function of 1/T.

5. Stability of the Melting Layer at 660-km Depth
A dehydration melting layer caused by downwelling flow (e.g., subducted slabs) is seismically interpreted 
at the topmost lower mantle near the 660-km discontinuity (Schmandt et al., 2014). The gravitational sta-
bility of this melting layer should be dominated by the melt density and therefore controlled by melt

H O2C  at 
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Figure 3. melt
H O2C  as a function of temperature at 23–23.5 GPa. Different symbols represent results from different 

starting materials, as listed in Table 1. The data by N19 (Nakajima et al., 2019) with peridotite + H2O as starting 
material are also shown for comparison.
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mantle temperatures. The geotherm of the topmost lower mantle is ∼2000 K (Katsura et al., 2010), whereas 
the slabs are 300–500 K lower, that is, ∼1600 K (Litasov et al., 2013; Tan et al., 2002). Sink/float experiments 
using multi-anvil techniques (Ohtani & Maeda, 2001; Sakamaki et al., 2006; Suzuki & Ohtani, 2003; Suzuki 
et al., 1995) suggest a melt density of 4.0 and 4.1 g/cm3 at 2000 and 1600 K, respectively, for both dry MORB 
and peridotitic melts after adjusting to 660-km depth pressure (∼23.5 GPa). However, this value might be 
slightly underestimated because small amounts of water are always inevitable in multi-anvil experiments. 
On the other hand, first-principle simulations (Bajgain et al., 2015) and X-ray diffraction in diamond anvil 
cell experiments (Sanloup et al., 2013) indicate a dry MORB melt density of 4.2–4.4 g/cm3 at 1600–2000 K 
(Figure 4).

According to the results from this study, melt
H O2C  is ∼20 and 50 wt.% at 2000 and 1600 K, respectively. Using a 

H2O partial mole volume of 6.2–6.4 cm3/mol in silicate melt (Sakamaki et al., 2006), the density of a hydrous 
melt with 20 wt.% water (2000 K) is estimated to be 3.7–3.9 g/cm3, and 3.4–3.5 g/cm3 for a melt with 50 wt.% 
water (1600 K). This is comparable with that reported by Nakajima et al. (2019) (3.6–3.9 g/cm3) at 23.5 GPa 
and 1570–1870 K, as shown in Figure 4. However, as explained previously, the absolute values of melt

H O2C  as 
well as the temperature and composition dependences were not well constrained in Nakajima et al. (2019).

Although density may increase with Fe content (Matsukage et al., 2005), the FeO wt.% in hydrous perid-
otitic melt that coexists with bridgmanite is even lower than anhydrous melt (Ito & Takahashi, 1987; Na-
kajima et al., 2019). The hydrous melt at the topmost lower mantle is therefore always less dense than the 
transition zone. It should be maintained by downward flow and moves upward by buoyancy. By upwelling, 
ringwoodite with ∼1 wt.% H2O is expected to crystallize from the melt. Because melt

H O2C  >>1%, the excess 
water (melt) may continuously move upward and reach the 410-km discontinuity where hydrous melt may 
be gravitationally stable (Matsukage et al., 2005; Sakamaki et al., 2006).
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Figure 4. Density contrast of the transition zone, topmost lower mantle, and hydrous melt at 660-km depth. The 
blue and yellow regions are MORB melt density ranges at 1600 K (slab) and 2000 K (ambient mantle), respectively. 
The upper limit of each region is based on the dry MORB melt density given by Bajgain et al. (2015) and Sanloup 
et al. (2013). The lower limit is based on dry MORB and peridotitic melt given by Ohtani and Maeda (2001) and 
Suzuki et al. (1995), with a partial mole volume of 6.2–6.4 cm3/mol for H2O at 23.5 GPa and 1600–2000 K (Sakamaki 
et al., 2006). All data are recalculated to 23.5 GPa and 1600 K (blue) or 2000 K (yellow) using their reported Birch-
Murnaghan equation of state parameters and corresponding temperature dependences. PREM: density of the 
preliminary reference Earth model (Dziewonski & Anderson, 1981).
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6. Melt Fraction at the Topmost Lower Mantle

The melt fraction at the topmost lower mantle can be estimated from melt
H O2C  by a given water-content in 

the mantle transition zone. If we consider 55 vol.% ringwoodite in the mantle transition zone with ∼1.0 wt.% 
water (e.g., Fei & Katsura, 2020; Fei et al., 2017; Pearson et al., 2014), using melt

H O2C  = 50 wt.% at 1600 K 
determined in this study, the melt fraction in the topmost lower mantle is estimated to be 1.3 vol.% based on 
mass balance by assuming negligible water in ferropericlase and bridgmanite (Bolfan-Casanova, 2000; Fu 
et al., 2019). Even if using a relatively dry transition zone model (∼0.4 wt.% water based on seismic velocity 
[Houser, 2016]), the melt fraction will be ∼0.5 vol.% (calculation details are given in the supporting infor-
mation). Note that the secondary minerals in the slabs and ambient mantle including CaSiO3-perovskite, 
garnet, and stishovite may also contain large amounts of water (Chen et al., 2020; Katayama et al., 2003; Lin 
et al., 2020; Nisr et al., 2020). However, they have no phase transition when crossing 660-km depth. Their 
water contents should therefore remain nearly constant and not affect the melt fraction estimation in this 
study.

Although the dihedral angle of the bridgmanite + silicate melt system is unknown, it is expected to decrease 
with increasing pressure and estimated to be < 10° or nearly 0° at 660-km depth when extrapolated from the 
dihedral angle in the olivine-silicate melt system (Freitas & Manthilake, 2019). With such a low dihedral an-
gle (<10°), 0.5–1.3 vol.% of melt is sufficient to completely wet the grain boundaries of bridgmanite, which 
will substantially affect the dynamics at the topmost lower mantle. For example, the melt may account 
for the seismic velocity reduction near 660-km depth (Schmandt et al., 2014). Another relevant example 
is viscosity. By complete wetting of grain boundaries, the viscosity of rocks could be significantly reduced 
by the pressure-solution creep mechanism, which may cause the topmost lower mantle to be rheologically 
much weaker (low viscosity) than the transition zone and deep lower mantle. Such a low-viscosity layer 
will largely prohibit whole mantle convection and may cause slab stagnation within the mantle transition 
zone (Fukao et al., 2009) because the resistance for horizontal flow is largely reduced (Mao & Zhong, 2018).

Data Availability Statement
The data sets for this research are given in Zenodo (10.5281/zenodo.4288962).
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