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1. Zusammenfassung 

Wolf-Lamm Katalysatoren sind miteinander inkompatible Katalysatoren, die sich bei 

aufeinander treffen deaktivieren würden. Um diese in mehrstufigen ein-Topf Reaktionen zu 

nutzen, ist es somit notwendig die Katalysatoren zu immobilisieren und voreinander zu 

schützen. Durch diese Immobilisation können dann mehrstufige Reaktionen ohne Aufreinigung 

von Intermediaten katalysiert werden, die anders nicht zugänglich wären. Die aktuell 

existierenden Systeme enthalten meist Triblockcopolymere, Kern-Schale Mizellen, 

Sternenpolymere oder anorganische Partikel, welche die Anwendung solcher Systeme stark 

einschränkt, entweder aufgrund von mehrstufigen Syntheseprozeduren oder die auf zwei-

stufige Katalyse Systeme beschränkt sind. 

Ziel dieser Arbeit ist es neue wiederverwendbare Trägersysteme für solche Wolf-Lamm 

Katalysatoren zu entwerfen. Diese sollen einfach herzustellen und innerhalb von „ein-

Topf“ Reaktionen modular verwendbar sein. Innerhalb der ersten Stufen werden 

Modellsysteme untersucht, welche auf dem sauren Copolymer Polystyrol-co-

Styrolsulfonsäure-co-Methacrylbenzophenon und dem basischen Copolymer Polystyrol-co-4-

Vinylpyridine-co-Methacrylbenzophenon basieren. Diese polymeren Katalysatoren wurden 

innerhalb einer „ein-Topf“, zwei-Stufen Reaktion verwendet. Diese war die sauer katalysierte 

Deacetalisierung von Dimethoxybenzyl zu Benzaldehyd gefolgt von der basisch katalysierten 

Carbonbildenden Reaktion mit Ethylcyanoformat zu Cyano(phenyl)methylethylcarbonat. Die 

Kinetik der zwei-stufigen Reaktion wurde hierbei über anfitten der zugrundeliegenden 

Differentialgleichungen untersucht. Die Polymeren Katalysatoren wurden hierbei zu 

selbstständigen Materialien über Elektrospinnen zu porösen Membranen oder über 2D Druck 

auf neutrale Netzstrukturen prozessiert. Die polymeren Säure- und Basenkatalysatoren wurden 

hierbei über freie radikalische Polymerisation mit der für die Prozessierbarkeit notwendigen 

molekularen Masse mit den Comonomeren Styrol, Styrolsulfonsäure (für das saure Polymer) 

bzw. 4-Vinylpyridin (für das basische Polymer) und Methacrylbenzophenon (als Vernetzer) 

synthetisiert. 

Für die elektrogesponnenen Membranen wurde festgestellt, dass das saure Copolymer als das 

polymere Salz (Poly(styrol-co-Natriumstyrolsulfonat-co-methacrylbenzophenon)) verarbeitet 

werden musste, da sonst die Aktivität des Katalysators aufgrund der Salzbildung während des 

Prozesses reduziert wurde. Die katalytischen Membranen wurden mit UV-Licht photovernetzt 

und die saure Membran durch Zugabe von Salzsäure in Methanol protoniert. Das System 

funktionierte für die zwei-Stufen Reaktion und es wurde innerhalb von 360 Minuten eine 
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Ausbeute von 95% für die erste Stufe und 80% für die zweite Stufe erreicht. Die kinetischen 

Studien zeigten, dass ein Parameter Δt implementiert werden musste, da der zweite Schritt einen 

deutlich verzögerten Start hatte, da dieser erst begann, nachdem genügend Benzaldehyd zur 

Verfügung stand. 

Da Elektrospinnen ein komplexer Prozess ist, der von 15 verschiedenen internen und externen 

Parametern beeinflusst wird, wurde eine einfachere Methode mit 2D-Druck getestet. Ein 

Vorteil dieser Methode bestand darin, dass der saure Katalysator direkt gedruckt werden kann 

und nach der Verarbeitung nicht protoniert werden musste. Die Ergebnisse waren gegenüber 

dem Elektrospinnverfahren vergleichbar. Innerhalb eines kürzeren Zeitrahmens von 240 

Minuten wurde eine Ausbeute von 95% für den ersten Schritt und etwa 65% für den zweiten 

Schritt erreicht. Der geringere Umsatz innerhalb des zweiten Schritts kann auf die niedrige 

Basizität von 4-Vinylpyridin zurückzuführen sein sowie mögliche Beschränkungen durch das 

voluminösere gedruckte Material. Die angepasste Kinetik zeigte, dass der Parameter Δt 

ebenfalls notwendig ist und der zweite Reaktionsschritt der geschwindigkeitsbestimmende 

Schritt ist. 

Diese Untersuchungen zeigten, dass beide Systeme vielversprechend waren. Daher waren 

eingehendere Untersuchungen erforderlich, um festzustellen, ob Elektrospinnen oder 2D-Druck 

das nützlichere System ist. Um die Anwendungsmöglichkeiten weiter zu erweitern, wurde das 

Basische Copolymer in Richtung Poly(styrol-co-4-vinylbenzylamin-co-acrylamid-

benzophenon) geändert. Dieses spezifische Polymer ist durch die radikalische Polymerisation 

nicht direkt verfügbar, was es zu einem idealen Kandidaten für die weitere Erforschung der 

Möglichkeiten macht das Copolymer nach der Verarbeitung chemisch zu modifizieren, um in 

Zukunft weitere modulare Systeme zu entwickeln. 4-Vinylbenzylphtalimid ist ein möglicher 

Kandidat, da es durch eine Reaktion mit Hydrazin leicht zum primären Amin modifiziert 

werden kann. Es konnte gezeigt werden, dass die Behandlung mit Hydrazin die Stabilität der 

Strukturen weder für das gedruckte noch für das elektrogesponnene System beeinflusst. Als 

Reaktion wurde die Deacetalisierung von Dimethoxybenzyl zu Benzaldehyd gefolgt von einer 

basisch katalysierten Knoevenagel-Reaktion mit Ethylcyanacetat zu Ethyl-2-cyano-3-

phenylacrylat in Toluol und DMF verwendet. Die katalytischen Studien zeigten, dass die 2D 

gedruckten Strukturen zu schnelleren Reaktionen führen. Die kinetischen Studien zeigten eine 

Abnahme des Parameters Δt innerhalb dieser Systeme, und die Reaktionsgeschwindigkeit war 

für die Reaktion im ersten Schritt zehnmal höher und für die Reaktion im zweiten Schritt 

fünfmal höher von gedruckten Systemen zu elektrogesponnen Systemen. Obwohl es zunächst 
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überraschend ist, da elektrogesponnene Materialien eine größere Oberfläche aufweisen, ist es 

durch die Quellung der Materialien erklärbar, die zu einem besseren Massentransport durch das 

System führt und die Erreichbarkeit der funktionellen Gruppen innerhalb der gedruckten 

Strukturen verbessert.  
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2. Abstract 

Wolf-Lamb type catalysts are mutually incompatible catalysts. Hence, to use such catalysts 

within a multi-step one-pot reaction, immobilization through site-isolation of the catalysts is 

necessary to protect them from each other. Through such immobilization, reaction sequences 

can be catalysed which otherwise would not be available without an intermediate purification 

step. The existing Wolf-Lamb type carrier systems contain tri-block copolymeric core-shell 

micelles, star polymers or inorganic particles which utilise multi-step procedures or procedures 

valid only for two-step catalysts.  

In this thesis, it is the aim to study new recyclable carrier systems of these Wolf-Lamb type 

catalysts, which are easy to prepare and can be used in one-pot reactions in a modular way. 

Within the first step, model systems were investigated based on the acidic copolymer 

poly(styrene-co-styrene sulfonic acid-co-methacryl benzophenone) and the basic copolymer 

poly(styrene-co-4-vinylpyridine-co-methacryl benzophenone) for the use in the one-pot two-

step, deacetylation of dimethoxybenzyl to benzaldehyde followed by a carbon building reaction 

with ethylcyanoformate to cyano(phenyl)methyl ethyl carbonate. The polymeric catalysts were 

processed to self-standing materials by either electrospinning to porous membranes or 2D 

printing on a neutral mesh substrate. The polymer acid and base catalyst were prepared in high 

molecular masses, which is required for processing, by free-radical polymerization of styrene, 

styrene sulfonic acid (for acidic catalyst) or 4-vinylpyridine (for basic copolymer) and 

methacryl benzophenone (crosslinking agent). The resulting two-step kinetics were 

investigated by fitting of the underlying differential equations. 

For the electrospun membranes, it was determined that the acidic copolymer needed to be 

processed as the polymeric salt (poly(styrene-co-sodium styrene sulfonate-co-methacryl 

benzophenone)) as otherwise the activity of the catalyst was reduced due to salt formation 

during the process. The catalytic membranes were photo-crosslinked with UV-light and the 

acidic membrane protonated by addition of hydrochloric acid in methanol. The system worked 

for the two-step reaction and a yield of 95% for the first step and 80% within 360 minutes was 

achieved. The kinetic studies showed that a parameter Δt needed to be implemented as the 

second step had a significant retarded start as it only started after enough benzaldehyde was 

available. 

As electrospinning is a complex process, which is influenced by 15 different internal and 

external parameters, a simpler method was tested with 2D printing. An advantage of this method 
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was, that it is possible to directly print the acidic catalyst and it was not necessary to protonate 

it after processing. The results were comparable towards the electrospinning process. A yield 

of 95% for the first step and around 65% for the second step, but within a shorter time frame of 

only 240 minutes. The lower conversion within the second step can be due to the low basicity 

of 4-vinylpyridine and possible due to the bulkier structure. The fitted kinetics showed that the 

parameter Δt is also necessary and the second reaction step is the speed determining step. 

Through these investigations, it was shown that both systems were promising. Therefore, more 

in-depth studies were necessary to establish whether electrospinning or 2D printing is the more 

useful system. To further broaden possible applications, the basic polymer was changed towards 

poly(styrene-co-4-vinylbenzylamine-co-N-(4-benzoylphenyl)acrylamide). This specific 

polymer is not directly available through free radical polymerization, which makes it an ideal 

candidate to further research the possibilities of post-processing treatment to develop further 

modular systems in the future. N-(4-vinylbenzyl)phtalimide is a possible candidate, as it can be 

easily modified to the primary amine by a reaction with hydrazine. It was shown that the 

treatment with hydrazine influenced the stability of the structures neither for the printed nor for 

the electrospun system. As a reaction the deacetylation reaction of dimethoxybenzyl to 

benzaldehyde followed by a basic catalysed Knoevenagel reaction with ethyl cyanoacetate to 

ethyl-2-cyano-3-phenylacrylate in toluene was used. The catalytic studies showed that the 2D 

printed structures lead to faster reactions. The kinetical studies showed a decrease of the 

parameter Δt within these systems and the reaction rate was 10 times higher for the first step 

and 5 times higher for the second step reaction. While it is surprising at first, as electrospun 

materials show a higher surface area, it is explainable through the swelling of the substances 

leading to better mass transport throughout the system and the reachability of the functional 

groups is improved within printed structures.  
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3. Introduction 

In the 1960s and 70s, polymers were used as carriers for catalysts in organic synthesis due to 

advantages such as easier purification and possible reusability. The concepts researched were 

mainly using styrene-based copolymers which were intensively crosslinked using 

p-divinylbenzene. The styrene containing backbone was further functionalized to catalyze the 

corresponding reactions.1,2 The investigation did not stop at that time, however, and has been 

continued in different forms until the present days, greatly broadening possibilities by 

functionalizing part of the repeat units or immobilization of catalysts within systems such as 

complexes or nanoparticles.3–6 

In 1977, Cohen et al. used these described systems for heterogeneous catalysis to start the work 

in multi-step one-pot Wolf-Lamb type reactions. Through the experiences with the 

immobilization of organic catalysts on polymers to achieve heterogeneous catalytic activities, 

it was a logical next step to immobilize incompatible catalysts on polymeric substrates, which 

is described by his concept shown in Scheme 1.7,8 

 

Scheme 1: Concept of Cohen et al. for the multi-step one-pot reaction. (1) If A (Acid) and B 

(Base) were not immobilized on the polymer deactivation would be observable, (2) bound on a 

polymeric (P) structure they would not interact with each other. (3) By addition of a Substrate 

(S) both steps can take place and the one-pot multi-step reaction occurs.8 

Normally, catalyst A and catalyst B would react with each other (e.g. Acid and Base) and hence 

deactivate each other. Through the immobilization, this reaction is prevented and the reaction 

with reagent S can be observed. Through this, it was possible to open the field for further studies 

of such multi-step one-pot reactions within different concepts.8,9 

In the following, we want to use the concept of immobilization of catalyst by the use of 2D 

printing and electrospinning as common processing techniques.10,11 The general concept is 

focused on applicability, which means that the polymerization techniques should be easily 

up-scalable, such as with free radical polymerization.12,13 To enable stability in an organic 

solvent, a crosslinking unit was included as they are an easy way to implement post-processing 

crosslinking by exposure to UV light.14,15 These structures could be further treated or 
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chemically modified to obtain necessary functionalities, either by protonation or chemical 

modification such as deprotection reactions. In this case, the chemical functionalities must be 

chosen correspondingly. The obtained functional materials can be applied easily in catalytic 

studies and the kinetics can be observed to enhance the understanding of such model systems. 
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3.1. Wolf-Lamb type catalysis 

Wolf-Lamb type catalysis, as described within the introduction, are catalysts which are 

mutually incompatible with each other. To use them in multi-step one-pot reactions, it is 

necessary to immobilize these incompatible catalysts within a matrix, which helps to protect 

them from each other to prevent deactivation. Depending on the systems, the concept can be 

divided in inorganic porous material such as metal-organic frameworks (MOF)16 and zeolites17, 

nanoparticles as carrier material18 or polymeric materials in which a variety of concepts exist, 

starting from microcapsules19,20 and star polymers21 to hyper-crosslinked networks22 showing 

different advantages and disadvantages. In more recent studies, the development of such 

systems can be described in different ways. Mainly, but not exclusively20,23, acid and base 

reactions are investigated as easy approachable conceptional reactions.22,24  

The systems used for organocatalysis23,25 or redox systems are generally complex self-

assembled or multi-layered particles20. With such systems, it is possible to combine reactions 

such as a reduction followed by a Diels-Alder as done by Ueda et al. (Figure 1).23 This 

combination shows the possibilities of such site-immobilization in catalysis. Nevertheless, it 

also clearly shows the downside as the structures are difficult to obtain and reuse. 

 

Figure 1: Tandem reaction of the reduction followed by Diels-Alder with the corresponding 

site-isolation strategy in self-assembled spheres. Reprinted with permission of the publisher.23 
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This clearly shows the necessity of further studies. To work around the problem of expensive 

organo-catalyst which are difficult to synthesize, acid-base reactions are an easy and up-

scalable system for such model reaction. The studied reactions with the use of such acid-base 

reactions mainly contain a deacetylation followed by a C-C bonding reaction such as a Henry 

reaction (Scheme 2 (I/II)) or a Knoevenagel condensation (Scheme 2 (III)). 26–28 

 

Scheme 2:Most commonly studied acid-base reactions within two-step one-pot reactions. 

Generally, the first reaction contains a deacetylation of dimethoxybenzyl followed by a C C 

forming Knoevenagel or alternatively Henry reaction.26–28  

3.1.1. Inorganic Wolf-Lamb type catalysts 

Highly porous materials such as MOFs29–31 and Zeolites32–34 are widely used as inorganic 

carrier systems for catalysis as they show a high intrinsic surface area promoting catalytic 

activity. Consequently, it is not surprising that these advantages are also studied and converted 

towards incompatible catalyst containing one-pot multi-step reactions. Both catalysts have 

similar advantages as they have the aforementioned high porosity and a general composition 

which can be directly used as the immobilization site for the catalyst. In case of zeolites, the 

group of Shi showed that the silica surface can be chemically modified to obtain a surface with 

amine groups as Lewis bases and protonated aluminium silica oxide groups as Bronsted acids.17 

These silica materials can further interact with each other, leading to a hierarchically structured 
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material. Through the combination of zeolites and polymers, it is also possible to obtain the 

desired functionalities. Here, Kalbasi et al. showed a system containing a hierarchical zeolite 

as the acidic component combined with poly(vinylimidazol) as a basic catalyst leading to 

promising and interesting results with the combination of the deacetylation, followed by a 

Henry reaction as well as Aldol condensation (Figure 2).35 However, not only are hierarchically 

structured zeolites investigated, but also zeolitic materials with modifications leading to 

sulfonic acid and amine groups within the structure to obtain highly mesostructured acid-base 

dual catalyst showing high catalytic activity and selectivity for the Knoevenagel reaction 

product as well as overall interesting and promising results.36 

 

Figure 2: Layered zeolite used as a catalyst for acid-base two-step reactions by Kalbasi et al. 

Reprinted with permission of the pusblisher.35 

Similar to zeolites, MOFs are also used as catalytic carrier materials due to their high intrinsic 

porosity. MOFs are built from metal cluster as secondary building units combined with bridge 

ligands as linkers leading towards a 3-dimensional porous crystalline network.37 In the case of 

multi-step one-pot reactions, the secondary building units as well as the linkers offer 

opportunities for chemical modification and immobilization of catalytic sites such as acids and 

bases.16,25,38,39 A commonly studied MOF for catalytical studies is MIL-101.40,41 This specific 

MOF is built with terephthalic acid groups as the linkers, which were modified with nitro groups 

to enable later reduction towards a primary amino group. The sulfonic acid group is coordinated 

at the Chromium ion. Used for the SBUs, it is leading towards a bifunctional material.42 As for 

zeolites, the same concept of the combination of porous material with in situ polymerization 
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within the porous structure exist as shown by Zhao et al. In this case, they incorporated 

separately within MIL-101 poly(styrene sulfonic acid) and poly(4-

vinylbenzylmethylaminopyridine), obtaining basic and acidic modified MOFs showing the 

protection of the catalytic sites from each other.43 Other MOFs used for multi-step one-pot 

catalysis are Lanthanoid based as by Zhang et al.38 where they used Carboxylic acid groups on 

the SBUs and Amine groups on the linkers. Another newly synthesized material contains 

cadmium-based metal centres which, in itself, has Lewis acidity and base groups through azine 

and pyridine groups immobilized on the specific linkers.44 

While porous materials are interesting, further inorganic layer structures are another possible 

immobilization way with high surface area. Comparable to the aforementioned layered zeolites, 

(organo)aluminosilicate layers are another structure on which functional groups such as 

sulfonic acid and amine groups can be immobilized and further investigated (Figure 3).45,46 

These structures, however, are not limited to only (organo)aluminosilicates but also to other 

layered carrier system structures such as chrome supported magnesium-aluminium hydroxide.47 

Other similar concepts contain layered clays48 and mesoporous materials such as 

carbonitrides.49,50 

 

Figure 3: Concept of layered systems for acid-base one-pot reaction, the surface can be used as 

the acidic catalyst and basic catalysts are immobilized within. Reprinted with permission of the 

publisher.46 

Nanoparticles have similar advantages as the previously described mesoporous materials. They 

have a very high surface area, which can be further functionalized to obtain the desired catalytic 

sites. Nevertheless, stability of such nanoparticles are of the utmost importance as nanoparticles 

either without polymeric or charge stabilizer tend to agglomerate.51 One type of the 
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nanoparticles used are mesoporous silica nanoparticles.52 These nanoparticles contain within 

pores of 20 -25 Å, either amine or phenyl sulfonic acid groups.18 Through these placements of 

catalytic sites, the catalytic groups are separated and can be used actively. A higher complexity 

is achieved through immobilization within core-shell nanoparticles as done by Li et al.,53 where 

they synthesized the core first and, after an oxidation step, they coated it with the amino groups 

containing silica.54 One of the problems with such systems is the recyclability and reusability 

of such particles. While they should theoretically stay active, the recyclability of such 

nanoparticles can be difficult. To solve this specific problem, the group of Hyeon introduced 

Magnetite within these mesoporous particles and the particles showed good reusability while 

being easily recovered with a magnet (Figure 4).55 A similar concept was used by Zhang et al. 

where they grafted sulfonic acid and amino groups directly on the surface of the Magnetite 

nanoparticles.56 

 

Figure 4: Preparation of nanoparticles as carriers for acid-base catalysis with a core of magnitite. 

Reprinted with permission of the publisher.56 

3.1.2. Polymeric Wolf- Lamb type catalysts 

Just as the inorganic catalysts can be divided in different categories, polymeric multi-step one-

pot catalysts can also be divided in nanoreactors19, gels57 and some special forms which are 

mixed. In case of nanoreactors, complex polymeric architectures are used to immobilize the 

catalyst within the structure to obtain a homogeneous catalyst system which prevents 

deactivation through the special structure. One such example are the star polymers as 

investigated by the group of Fréchet.24,58 In this case, they used the core of the star polymers 

for the confinement of catalytic acid and base sites (Figure 5). 
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Figure 5: Immobilization of the incompatible catalysts within different star-polymers to prevent 

deactivation through steric repulsion. Reprinted with permission of the publisher.58 

Through steric hinderance, deactivation is prevented and the studies for the two-step one-pot 

reaction showed promising results. Micellar structures or crosslinked micelles are similar. The 

core of the micellar structure generally contains the base, while the outside part contains acid 

groups, leading to similar results (Figure 6).21 Alternatively, the micellar head contains both 

carboxylic acid and primary amine groups .59 

 

Figure 6: Crosslinked micellar structure containing bases within the head and acids on the tails 

of the structure used in one-pot acid-base reaction. Reprinted with permission of the publisher.21 

A special form of such mesostructured nanoreactors are crosslinked bottlebrushes.60 These 

special micellar structures either contain p-toluene sulfonic sulfonic acid or N,N-dimethyl-4-

pyridineamine which are prepared by adding  a RAFT agent to poly(glycidyl methacrylate) 

which works as a core for the brush material. The polymeric brushes are then prepared by 

sequential polymerization of the acid or basic groups together with a crosslinking unit, followed 

by N-isopropylacrylamide to enhance steric hinderance and stability.60 
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While these nanoreactors and micellar structures are as interesting as polymeric catalysts, they 

do have specific disadvantages as they have limited reusability and synthetic procedures for 

star polymers are difficult. One of the existing concepts to prevent these problems is the use of 

gels and porous polymeric structures. One commonly used approach is the synthesis of styrene-

based structures, which is extensively crosslinked through, e.g., divinyl benzyl units. 

Depending on the concept, there are two approaches as regards the functional material. The 

functionality can either be introduced in one material or two. If two materials are chosen, one 

polymer contains groups such as styrene sulfonic acid copolymerized with divinylbenzene as 

the acidic copolymer and N-vinylimidiazolate within the basic structure.61 In case of a single 

material, the functionality is achieved through the usage of styrene sulfonic acid as a 

comonomer and the later introduction of nitro-groups which are reduced towards amines within 

a second step.22 Such polymers can be achieved easily through free radical polymerization. The 

use of a reversed emulsion polymerization can lead to interesting results as shown by the group 

of Degirmenci. They developed a system to obtain highly porous structures with a phase volume 

ratio of 99% (Figure 7). The system itself contains styrene, divinylbenzene and 4-

vinylbenzylchloride and can be modified by ATRP with t-butyl acrylate which can be 

hydrolysed towards acrylic acid for the acidic catalyst. The basic catalyst was prepared by 

grafting glycidyl methacrylate which can be further modified with diethylamine to obtain the 

basic catalyst.62,63 

 

Figure 7: SEM images of the high internal phase emulsion templated polymer (PolyHIPE) 

material synthesized by the group of Degirmenci. High porosity with a phase/Volume ratio of 

99% was achieved. Reprinted with permission of the publisher.62 

Another approach towards such hyper-crosslinked polymers is the use of benzene and either 

acidic or basic functionalized benzene, which are polymerized with the addition of 

formaldehyde dimethyl acetal. In this case, it is possible to directly synthesize the 

corresponding acidic and basic copolymers without further treatment, having advantages in 
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terms of time and cost efficiency. The overall catalysts work reasonably well within 5h for full 

conversion.64  

Further special morphologies studied are hollow tubes and tube-networks, which might have 

advantages as a result of the mesostructures. Microporous organic nanotube networks are one 

of the promising mesostructured materials. The hollow tubes were synthesized by a template 

method through multiple steps, containing bottlebrush copolymers with functional brushes with 

either styrene sulfonic acid as acid groups or ethylamine as basic groups within the middle 

block.65 Further studies also showed a way to introduce both groups within one microporous 

organic nanotube network by reduction of introduced amino-groups.66 Another system of 

hollow tubes contains a system which is polymerized 4-tritylanilin with dimethoxymethane, 

which can later by carbonized through pyrolyzing and easily modified by grafting sulfonic acid 

groups.67 
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3.2. Kinetics of multi-step one-pot reactions 

One of the problems with the current studies is the lack of kinetic studies. While a vast variety 

of concepts exist, the reaction times seem to be chosen randomly for the most part or through 

experience. To further stretch out the use of such reaction, it is important that the underlying 

kinetics are observed and understood to optimize reaction times and compare systems with each 

other to find the optimal support for such catalysts. 

 

Figure 8: Kinetical studies performed by Wang et al. for an acid-base two-step one-pot reaction. 

Reprinted with the permission of the publisher.64 

Wang et al. was one of the few people showing the reaction kinetics of such a reaction (Figure 

8).64 Nevertheless, no further calculations of the studies are performed, thus limiting the overall 

help of the kinetics. With the help of kinetical parameters, it would be possible to compare the 

two-steps with information concerning the speed-determining step. Without this, the only 

information obtained is the timeframe of the reaction. While clearly necessary, further studies 

are important to compare different systems with each other and to improve the overall 

understanding.39 

The kinetic of a reaction can be described with the help of the general reaction equation 

depending on the reaction order. Reaction with a first order kinetic is a reaction only showing 

a unimolecular reaction (Equation 1) and hence the reaction kinetic is only dependent on the 

concentration of the initial material.68 
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(1) 

A general reaction described by this is the radioactive decay. The reaction equation can be 

converted towards a calculation describing the change of concentration cA (Equation 2) 

depending on the time t and the kinetical parameter k1. 

−𝑑𝑐𝐴

𝑑𝑡
= 𝑘1 ∙ 𝑐𝐴 

(2) 

While this is only limited to very few reactions, it is also true for reaction with a pseudo first 

order kinetic. This means that the second reaction partner is available in a theoretical unlimited 

amount, for example, if the second reaction partner is the solvent.69 

For the second order reactions, the reaction equation describes the involvement of two 

substrates within the reaction (Equation (3)). 

 

(3) 

For second order kinetics, the reaction rate is not only dependent on the concentration of 

substance A, but also on substance B. Hence, it can be calculated by the following differential 

equation (Equation 4). 

−𝑑𝑐𝐴

𝑑𝑡
= 𝑘1 ∙ 𝑐𝐴 ∙ 𝑐𝐵 

(4) 

With the help of this reaction, the kinetics of a reaction can be described. There are possibilities 

to further solve these differential equations. While this is enough for the general types of 

reaction, it is slightly different for reaction of the type observed within multi-step one-pot 

reactions. Within these reaction types, the dependence on the simultaneous working reactions 

is necessary to elaborate on this topic.68 While the reaction equation is comparable to the other 

aforementioned reactions, the second reaction step is highly dependent on the conversion from 

the first step leading through the reaction equation (Equation (5) towards Equation (6)). 

 

(5) 

−𝑑𝑐𝐶

𝑑𝑡
= 𝑘1 ∙ 𝑐𝐴 ∙ 𝑐𝐵 − 𝑘2 ∙ 𝑐𝐶 ∙ 𝑐𝐷 

(6) 
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3.3. Methods for polymer processing 

A vast variety of techniques exist to process polymers such as extrusion, melt-blowing and 

many more. The production of fibers and patterned materials are relevant in this thesis. Within 

the production of fibers, electrospinning is a technique wildly used for fiber formation, 

especially in research as it is easy to apply and reproduce. It is possible to obtain nanofibers to 

further study the properties of the material. For the pattering of polymers, a printing technique 

is desirable. The printing of the polymers leads to a good production speed and reproducibility. 

3.3.1. Electrospinning 

To obtain polymeric fibers, there are different possibilities, depending on the desired diameter 

of the fibers and the specific polymeric material used. Some of these techniques are melt 

spinning70,71, wet spinning72,73, dry spinning74,75 or gel spinning76,77. These interesting 

techniques, on which will be elaborated in the following, usually have diameters above 5 µm. 

Another method for polymeric fiber production is electrospinning, which can be easily applied 

in a lab space; fiber diameters from around 100 nm up to around 5 µm are reachable, thus 

making it an interesting technique to produce fibers within this diameter range. Due to the 

interesting and good mechanical properties of such fibers, the technique is reaching into 

industrial application, especially with new technologies such as nozzle-free electrospinning.78,79 

With such small diameter, the surface chemistry increases and is an important factor for their 

unique properties. Furthermore, special preparations even enable sub-nanometer diameters as 

shown by Jiang et al.80 

Generally speaking, in order to induce a spinning process, the polymer needs to be converted 

into a viscoelastic state to be processed into fibers without breakage of the polymers. For this, 

different techniques exist such as melting or dissolving the polymer, which will be briefly 

shown in the following steps.10,81 

Melt spinning: A melt spinning process (Scheme 3) can be used for polymers which can be 

extruded. In this case, the polymer is placed in an extruder, plasticized and extruded through a 

spinneret, which leads to multiple fibrillose structures. During the drawing process with 

multiple rolls, an orientation is obtained through the high speed of these. Within the first 50 cm, 

no orientation is observed, followed by an oriented meso phase until 140 cm, which leads to 

the building of molecular oriented fibers.70,82 
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Scheme 3: Example of a melt spinning process; the polymer pellets are plasticized and pressed 

through a spinneret. The polymer is then stretched through multiple rolls and heated to anneal 

and collect them. Reprinted with permission of the publisher.74 

Dry spinning: The viscoelastic state of the polymer cannot only be achieved through the melt 

but also through a solution with appropriate solvents. This is especially desirable in case no 

melt of the polymer is obtainable. During the spinning process, the solution is pumped through 

a spinneret and the polymeric solution is dried by hot air (Scheme 4). The requirement is that 

the evaporation pressure is high enough to enable quick drying. This heating then leads to the 

evaporation of the solvent and the fiber formation, which can be stretched and aligned with heat 

and a roll system.74 

  

 

Scheme 4: System for the dry spinning of a polymeric solution. The polymeric solution is then 

dried within a drying chamber and collected. Reprinted with permission of the publisher.74 
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Wet spinning: If the evaporation pressure is too high, dry spinning might not be possible. 

Therefore, the polymeric fibers can be processed by the wet spinning in which a coagulation 

bath of a chemical solution is used, which is not able to dissolve the polymer but the solvent. 

During the coagulation process, the polymer solidifies and is later dried outside of the bath to 

obtain polymeric fibers (Scheme 5).13 

 

Scheme 5: Wet spinning system. The fibres are obtained through the coagulation bath. 

Reprinted with permission of the publisher.74 

In the process of electrospinning, a polymer solution is placed in a syringe attached to a syringe 

pump which manages a constant flow rate through the needle. In such case, a high voltage is 

applied between the needle and the collector on which the fibers are collected (Scheme 6). 

Depending on the desired application, different collectors are possible such as a rotating round 

disc collector, which leads to a more homogeneous distribution of fibers as a membrane, a 

stationary plate collector which leads to randomly stationed fibers or a rotating wheel collector, 

which can be used to obtain homogeneously aligned fibers with a high orientation factor, which 

can be used, for example, in responsive polymers for switchable tubes.83,84 Not only is the 

collector changeable depending on the desired application, but the nozzle itself can also be 

changed. While the normal single nozzle is great to obtain homogeneous fibers from solution,81 

side-by-side nozzles can be used to spin different polymers on multicomponent fibers85 as well 

as to obtain unique morphologies such as nano springs86 or pearl-chain structures.87 Other 

nozzles are the coaxial or triaxial nozzles88,89, which can be used to obtain core-shell structures88, 
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hollow tubes89 with or without incorporation of other materials such as nanoparticles90, or to 

load polymeric fibers with different materials such as drugs or bacteria91,92 inside. In addition, 

fibers can be loaded with different structures such as nanostructures either within93 or on the 

surface94 for a multitude of applications. To obtain multicomponent membranes, multiple 

nozzles can be used at the same time.95 

 

 

Scheme 6: Setup for a conventional electrospinning experiment. a: Syringe pump, b: Syringe 

with polymer solution, c: Nozzle as electrode, d: DC current source with high voltage, 

e: collector as counter electrode. 

The process itself is influenced by external parameters such as temperature, humidity and air 

pressure as well as the applied high voltage and distance of electrode influencing the electronic 

field. Internal parameters which influence the process are the viscosity and conductivity as well 

as the surface tension of the polymeric solution. The polymer, with its molecular structure, the 

molecular weight distribution and its specific solubility, is also influencing the result. This 

explains that the process, while sounding generally easy to apply, can be influenced in many 

ways and difficult in some cases.11,81  

The general process is as follows: At the tip of the syringe, a polymeric solution droplet is found. 

From this, a jet is formed which stretches the polymeric solution towards the counter electrode. 

The jet is only stable for a very short distance until it becomes instable and moves laterally and 

forms a cone. This lateral movement is influenced by different physical instabilities such as the 

Rayleigh instability which depends on the applied electrical field, asymmetrical instability and 

kV 

a 

b 

c 

d 

e 



Methods for polyme
 

22 
 

the bending instability. These instabilities result in the stretching and bending of the jet, and 

thus playing an important role in the building of the nanofibers.11,81,96 

The Rayleigh instability97 is the result of to the opposing forces of the surface tension, which 

tries to decrease the jet diameter and the repulsion of the electrostatic charges on top of the 

surface of the jet. Depending on the fluid, at some point, one of these forces will be dominant. 

In case of polymers, with high molecular weight and high viscosity solutions, the diameter will 

decrease continuously until a solid fiber is obtained.96 The axisymmetric instability is generally 

driven by the change of surface charge density during the general spinning process at the jet, 

resulting in tangential forces, and can lead to the formation of beads.11,81 The bending 

instabilities are dependent on the applied electrical field and are modified by the conductivity 

of the electrospinning solution, for example through the addition of additives. During the 

process, the jet is bended in a lateral way, leading to a loop which increases with further distance. 

This loop formation further thinning the diameter of the resulting fiber. 11,81 

3.3.2. Printing of polymers 

The printing of polymers, also known as additive manufacturing, is a technique which mainly 

started in the early 2000s and is becoming continuously more important as it leads to structures 

which would otherwise not be available through standard processing techniques such as 

injection molding. It furthermore has great possibilities for fast prototyping without the 

necessity of new tools. Therefore, it is an ideal candidate for both industrial as well as research 

applications, as the scale of the 3D printer can be realized in a lab scale, explaining the success 

of this technique.98–100 

Generally, there are four different ways to print structures, namely material jetting101,102, vat 

polymerization103,104, powder bed fusion105,106 and material extrusion107,108 (Figure 9). The 

optimal technique depends on aspects such as the specific polymer, the desired application and 

form as well as the possible curing techniques. Hence, the optimal printing way can be chosen 

and adjusted individually. 
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Figure 9: Different methods for 3D printing of polymers. Reprinted with the permission of the 

publisher. (a) Vat polymerization (b) ink-jet printing and (c) powder bed fusion (d) and (e) 

material extrusion. Reprinted with permission of the publisher.109 

Material Extrusion: The printing material is extruded by mechanical force through a nozzle 

to form a continuous filament, but viscoelastic solutions are also possible. The filament is 

placed on top of a platform with either the nozzle or the platform being able to be moved in x-

y-z direction to form the desired structure within multiple layers. If necessary, the system can 

be modified by addition of a curing system to stabilize the structure. Different possible 

extrusion techniques exist while the most common one presumably is the use of a filament 

which is transported through rollers towards the heated liquefier. A pneumatic system also 

exists for viscoelastic liquids. In such case, it is melted, and the melt can be pressed through the 

nozzle to lead to the substrate. The optimal temperature depends on the polymer and, generally 

speaking, a higher temperature reduces the viscosity of the melt and is therefore better for the 

final product. It also increases the overall performance of the material. However, if the 

temperature chosen is too high, it can result in thermal degradation and the mechanical stability 

can drop significantly.101,110–112 

Material jetting: Material jetting can be called ink-jet printing. Droplets are formed which are 

deposited on a substrate in the desired form. Two different ways for Material jetting exist with 

Continuous Inkjet printing and Drop-on-Demand printing. For both systems, the substrate is 

placed on a platform, which is moveable x-y-z direction, and a curing system is available such 

as UV light or heat. Continuous Inkjet printing is, as the name suggests, a constant flow of 

droplets. These droplets are charged, and an electrical field is applied to deflect droplets which 

are not needed. For Drop-on-demand, droplets are only deposited on the substrate through a 

force such as air pressure when they are needed.110 While the deposition speed of the Drop-on-

Demand method is slowed, it has a higher resolution than the Continuous Inkjet printing. The 
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printing of 3D structures is more challenging as in other printing techniques as the material is 

still liquid during its deposition.110,113,114 

Vat polymerization: Vat polymerization is a technique used to print through light activated 

polymerization techniques. The process is introduced by the emission of light towards the 

polymerizable liquid photopolymer to form the desired structure in a layer-by-layer way. The 

targeted introduction of light can be achieved through different methods, e.g. through specific 

mirrors or liquid-crystal masks, which can improve the printing speed greatly. The material 

basically has two necessities. The first necessity is that it must be photocurable with a system 

sensitive to specific wavelength, leading to linking through radical, cationic or both reactions 

The second necessity is a low viscosity of the system as no distributor is used.104,110,115 

Powder bed fusion: Powder bed fusion is a three-step process: First, the powder is distributed 

homogeneously. Second, through a laser and heat, the polymer is melted as specified positions 

to obtain the desired structure. The last step is the down movement of the platform to restart the 

process. To obtain a high printing speed, the temperature within the printer is kept slightly lower 

than the softening point of the material to enhance the sintering speed with the laser as the 

material must not be heated from low temperatures. To prevent problems with quality through, 

e.g. shrinkage, the size of the polymeric powder is between 10-100 µm, leading to structures 

above 100 µm.110,116,117 
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3.4. Crosslinkable material for electrospinning and printing 

Crosslinking within materials is either used to obtain special mechanical properties or stability 

within water or organic solvents. It can be achieved either through physical linkers or covalent 

bonding. Both mechanisms are used in such materials and a variety of possible units exist to 

obtain the crosslinking properties. The mechanism which can be used as well as the crosslinking 

depend on the structure of the polymer, but it can only be crosslinked after processing, as 

otherwise the material would not show the necessary shear viscosity in solution which is a key 

property for successful printing and electrospinning.118 

Crosslinking through physical means can help to stabilize structures and increase the 

mechanical properties for both electrospun membranes and printed structures.119 If a 

polyelectrolyte is used as the material, physical crosslinking is possible through the use of ions 

as crosslinking units.120 Further heat treatment can be applied to melt together the structures 

and increase the mechanical stability through the connected junction points.121 Another way to 

apply a fusion within the structures, especially for electrospinning, is the use of junction fusion. 

In such case, the distance of the electrospinning process is adjusted in a way that a slight amount 

of solvent stays at the fibers and thus leads to the fusion of the fibers.122 

In contrast to physical cross-linking, the strength of covalent bonded materials is increased, but 

the brittleness can increase as well. Click-chemistry is a possible way to introduce covalent 

bonding within polymeric structures. It is interesting to see that it is highly selective in this case 

and, due to their thermodynamically favorability, mild conditions are possible. One possible 

reaction is the introduction of thiol-ene click chemistry. The thiol group can be activated 

through a radical reaction, which then reacts with alkene groups, followed by the abstraction of 

thiol-hydrogens for the continuous reaction. The fact that the reaction is not inhibited by oxygen 

(Scheme 7)123,124is advantageous for the use of this crosslinking method within fibers or printed 

structures. 

 

Scheme 7: Thiol-Ene click chemical reaction. The radical reacts with the thiol-group by 

hydrogen abstraction which can then react with the alkene group and start a new reaction by 

hydrogen abstraction. 
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Another widely used method for covalent crosslinking is the use of methyl acryloyl anhydride 

as a crosslinking agent. This unit can react with functional groups of the polymeric material, 

e.g. amine or hydroxy-groups, leading to a photo-polymerizable functional group within the 

polymeric backbone. Especially for printing techniques, the crosslinking can be achieved 

directly during the process, enabling solutions with low viscosity, however, similar effects can 

be achieved in electrospinning.125–127 For copolymers, it is possible to incorporate crosslinking 

units directly within the polymer by functionalization with, e.g., benzophenone as a UV-

crosslinking unit. Under UV radiation, a diradical is built which can abstract hydrogen of any 

place within the polymer, leading to good covalent crosslinking (Scheme 8).128 

 

Scheme 8: Mechanism of the crosslinking procedure of benzophenone. Under UV radiation, a 

diradical is built from the carbonyl-group and can abstract hydrogen from hydrocarbons of the 

polymeric backbone. The resulting single radical can then be used for covalent crosslinking 

with other radicals. Reprinted with permission of the publisher.129 
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5. Synopsis 

In this thesis, a new way for site-isolation with an easy and up-scalable approach of 

incompatible Wolf-Lamb type catalysis for two-step one-pot reactions was investigated. The 

focus was on applicability to reach these properties through easy-to-apply methods as well as a 

modular system to access necessary catalysts in future studies. Hence, free radical 

polymerization was chosen and an easy-to-apply crosslinking unit was used within the 

copolymers. The first part of the thesis was the establishment of model systems for Wolf-Lamb 

type catalysts processed through electrospinning and 2D printing to obtain the procedures and 

a general understanding of the catalysis by calculation of the kinetical reaction parameters. The 

second part compares the methods and further broadens the applicability by the studying of a 

possible post-process treatment to investigate the stability of the obtained materials through the 

modifications. Overall, this thesis consists of three linked individual papers. 

The first two papers use commercial acidic and basic monomers from which the copolymers 

with poly(styrene-co-styrene sulfonic acid-co-meth acryl benzophenone) as acidic copolymer 

and poly(styrene-co-4-vinylpyridine-co-methacrylbenzophenone) as basic copolymer were 

synthesized. In the first paper, the polymers were electrospun while poly(styrene-co-styrene 

sulfonic acid-co-meth acryl benzophenone) was used as the synthesized poly(styrene-co-

sodium styrene sulfonate -co-meth acryl benzophenone) and later protonated in methanol by 

immersion and hydrochloric acid was added dropwise. Investigations of the catalysis showed 

that the second reaction step started only after enough of the intermediate was built 

(Publication 1). 

In the second paper, the same copolymers were used to test the system with printed structures. 

In this case, it was possible to print the poly(styrene-co-styrene sulfonic acid-co-meth acryl 

benzophenone) directly to obtain the catalyst. The substrate for printing was a PET mesh and 

similar results were obtained. The time for the second reaction step was reduced, but the overall 

conversion decreased (Publication 2). The results were in good alignment with the previous 

publication. 

Lastly, the systems were made comparable by keeping the same concentrations and amounts. 

The basic copolymer was changed to poly(styrene-co-4-vinylbenzylamine-co- N-(4-

benzoylphenyl)acrylamide). The developed processing and treatment methods from the first 

two publications were used again and the overall performance of the catalysts show that the 
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printed catalyst has a better performance because of diffusion within the polymers 

(Publicaation 3).  
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5.1. Wolf-Lamb type catalysis in one-pot using electrospun polymeric catalyst 

membranes 

This paper was published by Martin O. Pretscher, Stephan Gekle, Seema Agarwal, in 

Macromolecular Rapid Communication, 2019, 1900148; DOI: 

https://doi.org/10.1002/marc.201900148. 

The aim of this paper was the use of catalytic porous fibrous membranes made directly from 

the corresponding Wolf-Lamb type catalyst by the process of electrospinning for one-pot two-

step reactions. This approach offers several unique advantages in cascade reactions, especially 

with Wolf-Lamb type catalysts, such as 1) the direct use of catalytic membranes for one-pot 

cascade reactions with Wolf-Lamb type catalysts – even for multistep reactions in the future; 

2) the preparation of catalytic membranes in large amounts and sizes, and 3) the preparation of 

catalytic membranes by direct spinning of polymeric acid and bases synthesized by simple 

radical polymerization, avoiding the need for any precise chemistry for the immobilization of 

catalytic functional groups. 

The catalytic copolymers were electrospun from DMF, photo-crosslinked and used as separate 

membranes for the catalytic studies. Poly(styrene-co-sodium styerene sulfonate-co-methacryl 

benzophenone) was used as acidic copolymer while poly(styrene-co-4-vinylpyridine-co-

methacrylbenzophenone) was used as a basic copolymer catalyst. The separation between the 

Wolf-Lamb type catalysts is easily achieved by fixing individual membranes in frames and 

inserting them in a reaction medium in one-pot. 

 

Figure 10: Electrospun membranes A) acidic membrane B) basic membrane. 

The acidic electrospun membrane (Figure 10A) was further protonated and then, together with 

the basic membranes (Figure 10B), used for the catalytic one-pot reaction with a deacetylation 

A B 

https://doi.org/10.1002/marc.201900148
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of dimethoxybenzyl to benzaldehyde, followed by a carbonate building reaction towards 

cyano(phenyl)methyl ethyl carbonate (Scheme 9). 

 

Scheme 9: Reaction scheme for a two-step, one-pot reaction; first step is the acidic catlysed 

deacetylation of dimethoxybenzyl to benzaldehyde, which reacts basic catalysed to 

cyano(phenyl)methyl ethyl carbonate in the second step. 

The reaction was monitored by gas chromatography measurements to observe the conversion 

over time and the resulting data was fitted to the corresponding reaction equations (Figure 11). 

Only by the addition of a parameter Δt the fit shows a reasonable alignment with the reaction. 

The first step takes until 180 minutes for a conversion of 80% is achieved after 360 minutes. 

 

Figure 11: Time-concentration diagram obtained by the monitoring of the reaction. (A) The fit 

without the parameter Δt (B) with the parameter Δt. 

Overall, it was shown that the electrospun membranes are a promising material for site-isolation 

of Wolf-Lamb type catalysts. A high conversion is achieved, and the kinetic studies showed 

that only with the implementation of a parameter Δt = 67 min a reasonable fit of the underlying 

differential equations is possible. The reaction rate of the first step is k1 = 0.081 mol (L min)-1 

and for the second-step reaction k2 = 0.013 mol (L min)-1. This shows that the second reaction 

step only starts after a significant amount of benzaldehyde is obtained or the reagent needs to 

diffuse towards the second catalytic membrane and that the second step is significantly slower.  

A B 
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5.1.1. Individual Contribution of Joint Publications 

The synthesis of the copolymers and the characterization and the catalytic studies were done by 

me. The manuscript was jointly written with the contribution of all authors. Prof. Dr. Gekle 

performed the fitting of the catalytic data and helped with the discussion. Prof. Dr. Agarwal 

(corresponding author) was responsible for supervising, helping with the design of the concept 

as well as with the discussion. 
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5.2. Precise 2D-Patterned Incompatible Catalysts for Reactions in One-Pot 

This paper was published by Martin O. Pretscher, Tingting Chen, Gabriel Sitaru, Stephan Gekle, 

Jian Ji and Seema Agarwal in Chemistry A European Journal, 2019, 25, 13640. DOI: 

https://doi.org/10.1002/chem.201903486 

2D printing offers the possibility of precise material structuring, size and shape modulations 

that can be of high utility in heterogeneous catalysis. These unique possibilities were used for 

the site-isolation of new Wolf-Lamb type catalysts. The aim is to research if these properties 

can be used within such catalytic materials. Therefore, it was elaborated on the possibility of 

printed materials as carrier for Wolf-Lamb type catalyst. In this case, the same polymers as in 

the first paper were used, however, the amount of styrene sulfonic acid within the polymers was 

reduced to 15 mol%. The procedure for printing made it possible to directly print the acidic 

catalyst without the protonation step. The acidic poly(styrene-co-styrene sulfonic acid-co-

methacryl benzophenone) was printed from a mixture of THF/DMF (8/2) and the basic 

copolymer poly(styrene-co-4-vinylpyridine-co-methacryl benzophenone) from a mixture of 

THF/DMF (9/1) on PET meshes to stabilize the printed structure. The resulting prints are shown 

in Figure 12. 

 

 

Figure 12: Printed structure of the acidic copolymer poly(styrene-co-styrene sulfonic acid-co-

methacryloylbenzophenone) (A) and the basic copolymer poly(styrene-co-4-vinylpyridine-co-

methacryloylbenzophenone)  (B). 

With the help of Raman-imaging, it was possible to determine the distribution of the polymer 

on the PET mesh. In this case, it could be established that most of the polymer is within the 

meshes and only a very small amount is on top of it. As it is the dissolved form of the polymeric 

material, it flows towards these cavities and hardens there (Figure 13).  
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Figure 13: Microscopy image of the 3D-printed basic polymer (A) with a white line indicating 

the measured position in Raman imaging, the Raman spectrum for PET (blue), basic polymer 

(green) and for the white box in the image the Raman imaging (red), in which the red part is 

the PET mesh and the blue part the 3D-printed polymer (C). 

The materials could be used in the same reaction as in the first publication and the reaction was 

monitored through gas chromatography and the results were again fitted to the reaction equation. 

The results of the catalytic experiment are comparable with the first results and the necessity of 

the parameter Δt = 39 min is shown once again (Figure 14). The yield is 95% within the first 

step and around 65% for the second step. The determined reaction rate of the first step is k1 = 

0.51 mol (L min)-1 and k2 = 0.01 mol (L min)-1. Further showing the problem with the second 

reaction step within this system. Nevertheless, the reaction was finished after 240 minutes and 

hence, faster than the electrospun membrane. Overall, it was shown that printed structures were 

a suitable site-isolated material for Wolf-Lamb type catalysis, which might need further 

optimization towards higher yield. 
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Figure 14: Kinetical fitted parameters of the two-step cascade reaction catalyzed by 

incompatible acid-base catalysts: red, blue and green are the amounts of (dimethoxy)methyl 

benzene, benzaldehyde and cyano(phenyl)methyl ethyl carbonate, respectively. 

5.2.1. Individual Contribution of Joint Publications 

The synthesis and analysis of the copolymers as well as the kinetical studies were done by me. 

The development of the printing file was done by Dr. Tingting Chen under the supervision of 

Prof. Jian Ji. The printing was executed by Dr. Tingting Chen and me. Gabriel Sitaru did the 

fitting of the reaction equation under the supervision of Prof. Dr. Stephan Gekle. The 

manuscript was written with the contribution of all authors. Prof. Dr. Seema Agarwal 

(corresponding author) was responsible for supervising, helping with the design of the concept 

as well as with the discussion. 
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5.3. Comparison of post-process functionalized catalytic electrospun membranes and 

2D printed structures in Wolf-Lamb type catalysis 

This paper is ready to be submitted and the participating authors are Martin O. Pretscher, 

Gabriel Sitaru, Markus Dietel, Holger Schmalz, Stephan Gekle, Seema Agarwal 

As the model systems showed promising results, this paper focused on the modular system by 

investigating post-processing treatment of the material by chemical modification. The aim was 

to answer the question about reusability of such materials, the direct comparison of the printed 

and electrospun system as well as the broadening of possible applications. Hence, the basic 

copolymer was changed towards a primary amine with higher basicity, which makes post-

process treatment necessary. In this case, the Gabriel synthesis was used to obtain N-(4-

vinylbenzyl)phtalimide as a precursor monomer which can react with hydrazine towards the 

primary amine. The crosslinking unit was based on N-(4-benzoylphenyl)acrylamide to prevent 

reactions of the hydrazine with the ester bond of the previously used crosslinking monomer. 

The system was tested for electrospinning and printing in toluene as well as for electrospun 

materials in DMF. 

For the copolymerization, free radical polymerization was used to produce the polymeric 

catalyst. The copolymer with the primary amine (poly(styrene-co-4-vinylbenzylamine-co- N-

(4-benzoylphenyl)acrylamide) could not be used directly as the solubility is too low for the 

processing techniques. A polyamide net was used as the material for printing to obtain stability 

against bases as well as to obtain good adhesion with the polymeric substrate. The material was 

analyzed by solid state NMR for electrospun material and Raman spectroscopy for printed 

structures, by comparing it with prior analyzed deprotected electrospun material and for both 

systems a successful deprotection was observed (Figure 15). 
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Figure 15: (A) Solid state NMR shows that the signal for the carbonylic and bezylic Carbon 

disappears, showing the successful reaction in electrospun membranes. (B) shows the primary 

amine peak between 2500 cm-1 and 3000 cm-1 and the carboxylic peak at 1800 cm-1. 

The material was used for the catalytic studies of the acidic catalyzed deacetylation reaction, 

followed by a basic catalyzed Knoevenagel condensation (Scheme 10). 

 

Scheme 10: Deacetylation of dimethoxybenzyl to benzaldehyde, followed by the Knoevenagel 

condensation with cyanoethyl acetate towards ethyl-2-cyano-3-phenylacrylate. 

The catalytic reaction was monitored through gas chromatography and the different catalytic 

results were compared. It overall showed that the system made reactions possible which were 

not available, due to the weak character of 4-vinylpyridine. While the difference between the 

system in toluene and DMF only differed slightly. Both systems were finished with full 

conversion around 150 Minutes with the catalytic experiment in DMF being slightly faster. In 

comparison the printed structure showed full conversion already after 40 minutes. Showing an 

advantage of such printed structures compared to electrospun material. While theoretically the 

electrospun material as a fiber material should have advantages, the gel character of such 

polymeric material lead to advantages for mass transport within the printed material. The results 

of the fitted differential equations further show that the first step is ten times faster than for the 

electrospun materials and around five times faster for the second reaction step (Table 1). 

Overall, while both systems are viable, there are clear advantages for the printed structures. 

Only a slight influence of solvent towards the reactivity of the material is observed and for 

A B 
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further studies, the systems can be chosen in accordance with the properties of the substrates. 

The modular character was shown as post-process treatment through chemical modification is 

possible and the structures stay stable due to the crosslinking. 

 

 

Figure 16 (A) shows the time conversion curve for catalytic membranes in toluene, (B) is the 

time concentration diagram for catalytic membrane in DMF and (C) is the time-concentration 

curve of the printed structure in toluene. Red is the amount of dimethoxy benzyl, blue is the 

amount of benzaldehyde and C is the amount of ethyl-2-cyano-3-phenylacrylate. 

Table 1: Fitted parameters for the first cycle of different solvent and structure. 

 

 

Electrospun DMF Electrospun toluene 

 

Printed toluene 

[mol (L min)-1] 

𝑐𝐴0 0.50 mol L-1 0.49 mol L-1 0.50 mol L-1 

𝑐𝐵0 1.27 mol L-1 1.10 mol L-1 0.80 mol L-1 

𝑐𝐷0(fixed) 0.6 mol L-1 0.6 mol L-1 0.6 mol L-1 

𝑘1 0.067 (mol L min)-1 0.073 mol L-1 0.94 mol (L min)-1 

𝑘2 0.035 (mol L min)-1 0.059 mol L-1 0.250 mol (L min)-1 

 

 

  

A 
B 

C 
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5.3.1. Individual Contribution of Joint Publications 

The synthesis and analysis of the copolymers as well as the kinetical studies and the processing 

of the polymeric materials were done by me. Markus Dietel helped with the development of the 

N-(4-vinylbenzyl)phtalimide containing copolymer. The Raman imaging and spectroscopy was 

done by Dr. Holger Schmalz. Gabriel Sitaru did the fitting of the reaction equation under the 

supervision of Prof. Dr. Stephan Gekle. The manuscript was written with the contribution of all 

authors. Prof. Dr. Seema Agarwal (corresponding author) was responsible for supervising, 

helping with the design of the concept as well as with the discussion. 
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6. Reprint of publications 

6.1. Wolf-Lamb-type Catalysis in One Pot Using Electrospun Polymeric Catalyst 

Membranes 

 

 

 

Abstract  

Multistep catalytic transformations using incompatible catalysts (Wolf-Lamb-type) in a one-

pot reaction cascade requires site isolation of different catalysts by compartmentalization. In 

this work, we show the use of different electrospun catalytic membranes in a modular way as 

individual compartments are shown for one-pot Wolf-Lamb-type reaction cascades. The data 

are presented for one-pot cascade reaction sequences catalyzed by acidic and basic membranes 

made by electrospinning of polymeric acid (poly (styrene-co-styrene sulfonic acid-co-4-

methacryloyl-oxybenzophen)) and basic (poly(styrene-co-4-vinylpyridine-co-4-methacryloyl-

oxybenzophen)) catalysts, respectively. The two-step one-pot system used is the acidic 

catalyzed deacetylation of dimethoxybenzylacetale to benzaldehyde to result in a high yield of 

product (over 90%) under base-catalyzed conditions. The reaction kinetics are further 

monitored and evaluated by using differential equations showing the necessity of a parameter 

Δt to represent a retarded start for the second reaction step. The concept provides an easy and 

up-scalable approach for use in Wolf-Lamb-type systems. 

 

Wolf-Lamb-type catalysis is a concept for the parallel use of incompatible catalysts as 

already investigated by Cohen et al. in 1977.1 Here, the incompatible catalysts are 
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immobilized and separated from each other while staying in the same reaction 

chamber.2,3 Hence, it is possible to prevent deactivation and obtain multi-step one-pot 

reactions. One of the major challenges in the field of one-pot Wolf-Lamb-type catalysis 

is the use of appropriate catalytic carriers that prevent the contact and, hence, the 

deactivation of catalysts while being easy to make and up-scalable. The known concepts 

of immobilizing the wolf-lamb-type catalysts utilize both homogenous and heterogenous 

catalysis. In homogenous catalysis, mainly star polymers as investigated by Voit4 or 

microcapsules as shown by Jones et al., were mainly used.2-5 The problems here are 

time- and energy-consuming synthetical procedures and the difficult separation of the 

catalysts.6 To prevent such problems, a common approach is the immobilization of the 

catalyst on a heterogenous substrate, leading to an easy separable system.2,7 Different 

concepts are used, such as metal organic frameworks by Park et al.,8 which have great 

possibilities in catalytic reactions based on the cavities inside, which enables 

immobilization of nanoparticles, or alternatively, the sites themselves can contain acidic 

or basic functionalities having great advantages for multi-step reactions.8,9 Nevertheless, 

the crystalline structure can be damaged by solvents or reaction conditions, while the 

pore size might be too small for some reagents leading to a deactivation through limited 

mass transport.9 Further, commonly approached systems are silica10 and gels.6 These 

architectures require multi-step synthetic procedures that are possible only in small 

amounts.  

Organic fibers and textile immobilized with organocatalysts have also been explored as 

heterogenous catalysts.11 The textile fibers, such as cotton, polypropylene, nylon, and 

polyethylene terephthalate, are modified either with the functional groups for catalysis 

by photo grafting or immobilized with metal nanoparticles.12-16  

Our approach focused on the use of catalytic porous fibrous membranes made directly 

from the corresponding polymeric acid and base catalysts by the process of 

electrospinning in a simple way.17-19 This approach offers several unique advantages for 

using electrospun membranes in cascade reactions, especially with Wolf-Lamb-type 

catalysts. The separation between the Wolf-Lamb-type catalysts is easily achieved by 

fixing individual membranes in frames and inserting them in a reaction medium in one-

pot. The approach offers several other unique advantages, such as 1) the direct use of 

catalytic membranes for one-pot cascade reactions with Wolf-Lamb-type catalysts even 

for multistep reactions in the future; 2) the preparation of catalytic membranes in large 

amounts and sizes, and 3) the preparation of catalytic membranes by direct spinning of 
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polymeric acid and bases synthesized by simple radical polymerization avoiding the 

need for any precise chemistry for the immobilization of catalytic functional groups. The 

electrospun membranes, also generally have an inherent porosity of more than 60 – 70% 

which could be an additional add-on for better mass transport for catalytic uses.20-23 The 

stability of the electrospun catalytic membranes in solution will be provided by photo 

crosslinking. 

We show the proof of concept by using an acidic copolymers catalyst of styrene (S), 

sodium styrene sulfonic acid (SSA), and 4-benzoylphenyl methacrylate (MABP) 

p(S-co-SSA-co-MABP)). As a basic catalyst, a copolymer of S, 4-vinylpyridine (4VP) 

and MABP (p(S-co-4VP-co-MABP)).  

The polymers were synthesized through free radical polymerization, and photo crosslinkable 

MABP was incorporated in polymers to make the electrospun catalytic membranes stable in 

solvents by photocrosslinking. The MABP is widely used for crosslinking of macromolecular 

chains in the literature.24,25 Determination of the amount of sodium styrene sulfonate in the 

copolymer with the help of 1H-NMR was not possible due to the overlay of the protons of the 

phenyl ring of comonomers, S and SSNa. Therefore, a combination of elemental analysis and 

1H-NMR was used for copolymer composition calculation. The acidic catalyst (p(S-co-SSNa-

co-MABP)) has 27 mol% SSNa, 58 mol% S and 15 mol% MABP (Table S1 and Figure S2, 

Supporting Information). The molecular weight, det 

ermined through gel permeation chromatography (GPC) in DMF, is (number average molecular 

weight) 𝑀𝑛
̅̅ ̅̅  = 170000 with a dispersity of Đ = 2.0 (Figure S1, Supporting Information). The 

p(4VP-co-S-co-MABP) has a copolymer composition (determined through 1H-NMR in CDCl3; 

Figure S4, Supporting Information) of 50 mol% 4VP, 40 mol% styrene and 11 mol% MABP. 

The molecular weight, determined through GPC in DMF, is 𝑀𝑛
̅̅ ̅̅  = 60000 with a dispersity Đ = 

1.5 (Figure S3, Supporting Information). 
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Figure 17: Scanning electron microscope images of A) p(S-co-SSNa-co-MABP) and B) p(S-

co-4VP-co-MABP) as electrospun membranes with a homogenous fiber structure. 

The polymers obtained were processed by electrospinning to produce a heterogenous catalytic 

system in the form of a porous membrane. The electrospun p(S-co-4VP-co-MABP) (thickness 

150 ±10 µm, density: 160 mg cm-3) was used directly, while the acidic catalyst p(S-co-SSNa-

co-MABP) (thickness: 180 ± 20 µm, density: 40 mg cm-3) was further protonated by immersion 

in methanol and dropwise addition of concentrated hydrochloric acid to obtain p(S-co-SSA-co-

MABP). The electrospun fibrous membranes were crosslinked by exposure to UV-light (2 h 

per side with 60 mW cm-2). The obtained crosslinked fibers are displayed in Figure 17, showing 

a homogenous randomly laid fiber structure (average fiber diameter for p(S-co-SSNa-co-

MABP) (Figure 17 A) is 340 ± 80 nm and for p(S-co-4VP-co-MABP) (Figure 17 B) is 240 ± 

60 nm). The membranes were stable after immersion in DMF (reaction solvent) due to the 

photo-crosslinking. 

 

Scheme 11. Reaction scheme for the two-step one-pot reaction used. The first reaction is the 

acidic catalyzed deacetylation of dimethoxybenzylacetale to benzaldehyde, which reacts with 

ethyl cyanoformate basic catalyzed to cyano(phenyl)methyl ethyl carbonate. 

A two-step one-pot acid-base catalyzed reaction sequence was tested for the catalytic 

experiment (Scheme 11). The first reaction step is the acidic catalyzed deacetylation of 

dimethoxybenzylacetale to benzaldehyde, which reacts with ethyl cyanoformate in the presence 

of the basic catalyst to cyano(phenyl)methyl ethyl carbonate. Dimethoxybenzylacetale (0.5 mol 

A B 
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L-1), water (1 mol L-1) and ethyl cyanoformate (0.6 mol L-1) were used for the reactions. The 

amount of catalytic site was 5 mol% in case of the p(S-co-SSA-co-MABP) and 25 mol% for 

p(S-co-4VP-co-MABP). These values correspond to 62 wt% electrospun catalytic membrane 

of p(S-co-4VP-co-MABP) with respect to the amount of dimethoxybenzylacetale. The 

depletion of the dimethoxybenzylacetale, the depletion and increase of benzaldehyde and the 

overall increase of cyano(phenyl)methyl ethyl carbonate were monitored with gas 

chromatography (Figure 18). Undecane was used as an internal standard.  

A yield of over 90% is obtained for the first step (deacetylation). The deacetylation reaches a 

conversion of over 50% within the first 30 minutes and is finished at around 150 minutes, as 

seen by measuring the amount of dimethoxybenzyl acetate by GC (Figure 18, red curve). The 

individual acid and base catalyzed reactions were also carried out under similar conditions as 

those used in the cascade reaction (Figure S7, Supporting Information). The reaction were 

slowed down in one-pot compared to the individual reaction steps. Although a slight 

deactivation of the acid catalyst might occur due to the proton conduction by water in the 

presence of base membrane within the reaction mixture slowing down the reaction, the reaction 

was still completed within a reasonable time frame. A maximum amount of benzaldehyde is 

reached at 60 minutes, after which, it decreased below to around 20% due to the start of the 

second-step reaction with ethyl cyanoformate, in which an induction time of around 60 min is 

observed. The induction time is also observed for the base catalyzed reaction carried out 

individually in a separate experiment, but the time is shorter (about 30 min) compared to the 

ascade reaction (Figure S7B, Supporting Information). The overall yield of 

cyano(phenyl)methyl ethyl carbonate isabout 80%. The induction effect in the ZnO-catalyzed 

Knoevenagel condensation reaction between benzaldehyde and ethyl cyanoacetate is reported 

in the literature.26 In the present work, the polymer (p(S-co-4VP-co-MABP)) is a weak base. 

This might be due to the diffusion.controlled local enrichment of the reactants on the polymeric 

catalytic membrane leading to the start of the reaction after an induction period. The local 

enrichment effect of the reactants is used to explain the unexpected increase in catalytic reaction 

rates in some reactions in the literature.27 

By comparison, the p-toluene sulfonic acid and 4VP used with no further immobilization 

showed, that no conversion of cyano(phenyl)methyl ethyl carbonate was achieved after 6h, 

proving the necessity of the immobilized polymeric materials.  
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Figure 18. Obtained data of the two-step reaction. “Red plus” are the amount of 

dimethoxybenzylacetate, “Blue circles” are the amount of the product of the first reaction: 

benzaldehyde. “Green triangles” show the conversion to the final product, 

cyano(phenyl)methyl carbonate. 

The data obtained were further investigated through different differential fitting functions to 

obtain a better understanding of the underlaying reaction dynamics. Therefore, the reaction 

equation (Scheme 11) was separated in the following reactions and equations to determine these 

parameters (Scheme 12).  

 

Scheme 12: Separated reaction equations for the solution of the differential equations. A is 

dimethoxybenzylacetale, B is water, C is benzaldehyde, D is ethyl cyanoformate and E is 

cyano(phenyl)methyl ethyl carbonate. 𝑘1 and 𝑘2 are the reaction kinetical parameters for the 

first, respectively second reaction step. 

With the help of these reaction equations (Equation 2 and Equation 4 in Scheme 2), it is possible 

to develop the differential equations for the calculations (Equation 5 – Equation 9).  

𝑑𝑐𝐴

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)                                      (5) 
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𝑑𝑐𝑩

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)                                        (6) 

𝑑𝑐𝐶

𝑑𝑡
= 𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)  − 𝑘2𝑐𝐶(𝑡 − 𝛥𝑡)𝑐𝐷(𝑡)       (7) 

𝑑𝑐𝐷

𝑑𝑡
= −𝑘2𝑐𝐶(𝑡 − 𝛥𝑡)𝑐𝐷(𝑡)                              (8) 

𝑑𝑐𝐸

𝑑𝑡
= 𝑘2𝑐𝐶(𝑡 − 𝛥𝑡)𝑐𝐷(𝑡)                                 (9) 

 

Fitting these equations to the time conversion curves obtained lead to the results shown in 

Figure 3. Through Figure 19A (Δt = 0), it was possible to determine that the second reaction 

has a retarded starting time, which is expressed with the parameter Δt in Equation 7 – 

Equation 9. The fit for the amount of dimethoxy benzyl acetal and benzaldehyde showed a good 

alignment with the experimental values, but the fitted curve did not show a reasonable 

alignment for the amount of compound E (cyano(phenyl)methyl ethyl carbonate) (values are 

shown in the Table S2, Supporting Information), furthermore, the obtained value for 𝑐𝐷 
0 = 252 

mol L-1 is clearly too high. 

It can be seen that the second reaction step started only after the conversion of benzaldehyde 

reached a sufficient amount and cyano(phenyl)methyl ethyl carbonate was obtained. It seems 

that, while C is produced quickly by the first reaction, it requires a certain amount of time before 

it becomes available for the second reaction. A fit can be achieved through the addition of a 

fitting parameter Δt to describe the delayed start of the second reaction step, which shows the 

conversion of the product within a reasonable error (Figure S8 and Table S3, Supporting 

Information). The value of 𝑐𝐷
0  = 20.4 mol L-1 gets closer to the starting value but is still too high. 

In the next step, therefore, it was fixed at 0.6 mol L-1 to stay at the experimental starting value 

(Figure 19B). 
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Figure 19: Kinetic study of the catalytic reaction. A shows the obtained values fitted through a 

second order kinetic. The obtained fit function shows a good validity for the amount of 

dimethoxybenzyl acetal as well as the benzaldehyde, but the fit for the cyano(phenyl)methyl 

ethyl carbonate, does not show a good validity. Through the addition of a Δt parameter for a 

retarded reaction start, a fit is obtained showing good results for all parameters (B).   

The alignment of the fitted amount of product (𝑐𝐸(𝑡)) is much better through the addition of 

the fixed value of 𝑐𝐷 
0 ,  and the intermediate benzaldehyde ( 𝑐𝐶(𝑡) ) fitted is only changed 

minimally but stays within a reasonable mistake resulting in 𝑐𝐴
0 = 0.43 mol L-1, 𝑐𝐵

0 = 

0.43 mol L-1, 𝑐𝐷
0  = 0.6 mol L-1, 𝑘1 = 0.081 mol (L min)-1, 𝑘2 = 0.013 mol (L min)-1 and  𝛥𝑡 = 

67 min.  Fixing 𝑐𝐴 
0  and 𝑐𝐵 

0  leads to worse results. 

Two conclusions can be drawn from these parameters. First, the amount of water for the reaction 

is lower than expected. It seems water is not available in the amount intended and it is possibly 

adsorbed at the catalytic membranes and, thus, further investigations are needed. Second, the 

implementation of a retarded start parameter Δt already leads to a reasonable fit. This, 

furthermore, shows that the delay is not due to special mechanisms, but the second reaction step 

starts only after sufficient amount of 𝑐𝐶(𝑡) is reached. 

In our work, we were able to show the successful production of catalytic membranes by direct 

electrospinning of acid and base polymers individually. These catalytic membranes were then 

photo crosslinked with UV light to ensure stability in organic solvents. A successful two-step 

reaction was established with an acidic catalyzed deacetylation followed by a basic catalyzed 

reaction with ethyl cyanoformate to cyano(phenyl)methyl ethyl carbonate. The overall yield 

obtained was approximately 80% and it was shown that polymeric electrospun membranes are 

a promising material for Wolf-Lamb-type catalysis. Kinetic observation showed that the second 

reaction step has a retarded start. A more complex modeling effort, including full numerical 

A 

 

B 
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simulations of material flows, is currently on-ongoing and will be presented in a future 

publication. Other polymeric catalysts will be investigated in the future for broadening the 

application of such systems in a modular way. 
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Experimental Section 

Materials  

THF (p.a. grade), DMF (p.a. grade) and DMSO (p.a. grade) were purchased from Alfa Aesar. 

4-vinylpyridine (98%, Alfa Aesar) and styrene (98%, Alfa Aesar) was distilled in vacuo prior 

to use. Sodium styrene sulfonate (90%, Alfa Aesar) was recrystallized from a mixture of ethanol 

and water. For catalytic experiments ethyl cyanoformate (98% Alfa Aesar), dimethoxybenzyl 

acetal (99%, Alfa Aesar) and undecane (>99%, Alfa Aesar) were used as received.  

Methods 

Nuclear magnetic resonance (NMR) spectroscopy: 1H-NMR experiments were recorded on a 

Ultrashield-300 spectrometer at room temperature in either CDCl3 or DMSO-d6. Spectra were 

calibrated according to the residue protons of the deuterated solvent signal. Evaluation of 

spectra was done with MestReNova (Mestrelab research, version 6.1). 

Electrospinning experiments were performed with an electrospinning machine built by the 

electronic and mechanical workshop of University of Bayreuth. For making p(S-co-SSNa-co-

MABP) fibers, a solution of 20 wt% in DMF was prepared and electrospinning was conducted 

with a conventional one-needle setup at a high voltage of 14 kV. The fibers were collected on 

a rotational disc collector on baking paper with a flow rate of 150 µL h-1.  

For p(S-co-4VP-co-MABP) membrane, the solution used was 40wt% and a high voltage of 

12 kV is used. The flow rate was 300 µL h-1.   

Scanning electron microsocopy (SEM): The surface morphology was observed with a Zeiss 

LEO 1530, operating at an acceleration voltage of 3 kV employing an Everhart-Thornley 

secondary electron detector. Before imaging, the samples were sputtered with a thin platinum 

layer of 2 nm (Sputter Coater 208HR, Cressington).  

Gel Permeation Chromatography (GPC) measurements were performed in DMF (HPLC grade) 

with lithium bromide (5 g L-1) as eluent and solvent and an internal standard of toluene on 2 

PSS-GRAM gel columns (particle size = 10 µm) with a porosity of 100 to 3000 Å with a flow 

rate of 0.5 mL min-1 and a refractive index detector (Agilent Technologies) on a SEC 1260 

Infinity (Agilent Technologies). For calibration narrowly distributed polystyrene homo-

polymer were used (PSS calibration kit).  

Gas Chromatography (GC): GC measurements were performed on a GC-FID system (GC-2010 

Plus, Shimadzu), using Nitrogen as a carrier gas. 10 µL of the reaction mixture was dissolved 
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in 1 mL acetonitrile. 1 µL was injected with a split ratio of 1:50 and measured from 50 °C (2 

min hold) up to 300 °C with a heating rate of 15K min-1. 

Mathematical operations for fitting of reaction parameters were done with Matlab Version 

R2015a. 

 

Synthesis of p(S-co-SSNa-co-MABP) 

 

Scheme S1: Reaction scheme for the free radical polymerization of styrene, sodium styrene 

sulfonate and 4-methacryloyl-oxybenzophenone to p(S-co-SSNa-co-MABP). 

0.1 eq 4-methacryloyl-oxybenzophen and 0.25 eq recrystallized sodium styrene sulfonate were 

placed in a round bottle Schlenk flask and dissolved in DMSO (c = 4 mol L-1). To the solution, 

0.65 eq styrene was added and the reaction mixture was degassed with argon, heated to 70 °C 

and 0.6 wt% AIBN was added. The polymer was then precipitated in Isopropanol and dried at 

60 °C in vacuo. 

1H NMR (300 MHz, CDCl3): δ/ppm: 1.0-1.6 (polymer backbone, -CH2-; -CH3); 1.6-2.5 

(polymer backbone -CH-); 6.0-6.6 (aromatic, -C-CH=C-H; -CH-CH=CH-; -C-CH=CH-SO3); 

6.6-7.2 (aromatic, -CH-CH=CH-); 7.4-7.7 (aromatic -C-CH=CH-; -CH-CH=C-) 

DMF-GPC measurements 
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Figure S1: DMF-GPC measurement of p(S-co-SSNa-co-MABP). 

 

Elemental analysis 

Table S2: Elemental analysis for the calculation of the amount of sodium styrene sulfonate. 

Element Amount [wt%] 

H 5.939 

C 70.310 

N 0.025 

S 4.429 

O 16.146 

 

Amount of styrene sulfonic acid calculated through chemical elemental analysis: 27% 

Calculation were as follows: 

First, all amounts were calculated into mol% (equation 1 and 2).  

𝑚𝑜𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 =
𝑤𝑡𝑠𝑎𝑚𝑝𝑙𝑒∗𝑤𝑡%

100∗𝑀𝐸𝑙𝑒𝑚𝑒𝑛𝑡
    (S1) 

𝑚𝑜𝑙% =  
𝑚𝑜𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑚𝑜𝑙𝐶+𝑚𝑜𝑙𝑆+𝑚𝑜𝑙𝑂
    (S2) 

Second, from these amounts the corresponding amount of carbon of the different monomers 

were calculated, based on sodium styrene sulfonate. 

𝑚𝑜𝑙%𝐶(𝑆𝑆𝐴) =  𝑚𝑜𝑙%𝑆  ×  8     (S3) 

𝑚𝑜𝑙%𝐶(𝑀𝐴𝐵𝑃) =  (𝑚𝑜𝑙%0 − 𝑚𝑜𝑙%𝐶  ×  3)  × 17   (S4) 
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𝑚𝑜𝑙%𝐶(𝑆) =  𝑚𝑜𝑙%𝐶 − 𝑚𝑜𝑙%𝐶(𝑆𝑆𝐴) − 𝑚𝑜𝑙%𝑀𝐴𝐵𝑃    (S5) 

The obtained value of 𝑚𝑜𝑙%𝑆𝑆𝐴 was used as a fixed value and the amount of styrene and methyl 

acrylbenzophenone was calculated with the help of 1H-NMR (Figure S2). 

To calculate the values by use of 1H-NMR following assumptions were used: ∫ "1 − 5" is the 

amount of styrene and styrene sulfonic acid and equals 2.21. ∫ "6 − 19" equals the integral of 

MABP. To calculate the amount of MABP and Styrene sulfonic acid following equation was 

used: 

 

 

Figure S2: 1H-NMR of the copolymer p(S-co-SSNa-co-MABP) measured in DMSO-d6 and 

referenced to the residue protons of the deuterated solvent. 

 

𝑚𝑜𝑙%𝑆𝑆𝐴 =  
𝑥
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4

     (S6) 

With x the amount of SSA of ∫ "1 − 5". By using 𝑚𝑜𝑙%𝑆𝑆𝐴 = 0,27, x equals 0,61. With that 

the equation can be solved for mol% of styrene and MABP leading to the following values: 

Styrene = SSA = 27% MABP = 15% Styrene = 58%. 

Overall, the amount of MABP is slightly higher than in the feed, leading to the assumption, that 

it is preferably used in the polymer. 
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Synthesis of p(S-co-4VP-co-MABP) 

 

Scheme S2: Reaction scheme of the free radical polymerization of styrene, 4-vinylpyridine and 

4-methacryloyl-oxybenzophenone to p(S-co-4VP-co-MABP). 

0.1 eq 4-methacryloyl-oxybenzophenone was placed in a round bottled Schlenk flask and 

dissolved in THF (𝑐𝑀𝑜𝑛𝑜𝑚𝑒𝑟 = 3 mol L-1). To the mixture subsequently 0.4 eq styrene and 0.5 eq 

4-vinylpyridine were added and the reaction mixture was degassed with Argon for 30 minutes. 

The reaction mixture was heated to 60 °C, 0.8 wt% AIBN was added and it was stirred for 16 h. 

The polymer was precipitated in diethyl ether.  The crude product was then dried at 40 °C in 

vacuo. 

1H NMR (300 MHz, CDCl3): δ/ppm: 1.0-1.6 (polymer backbone, -CH2-; -CH3); 1.6-2.5 

(polymer backbone -CH-); 6.0-6.6 (aromatic, -C-CH=C-H; -CH-CH=CH-; -C-CH=CH-N=); 

6.6-7.2 (aromatic, -CH-CH=CH-); 7.4-7.7 (aromatic -C-CH=CH-; -CH-CH=C-); 8.1-8.5 

(aromatic, -CH-CH=N-) 

13C NMR (75 MHz, CDCl3): δ/ppm: 20 (polymer backbone, -CH3), 36-50 (polymer backbone, 

-CH2-), 120-144 (aromatic, -CH=), 148-155 (aromatic, N-CH=), 174 (ester, -C-C-O-), 195 

(carbonyl -C-C-C-) 
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Figure S3: DMF-GPC measurement of p(S-co-4VP-co-MABP). 

 

 

Figure S4:  1H-NMR spectrum of p(S-co-4VP-co-MABP) measured in CDCl3. 

Copolymer composition was determined through 1H-NMR with the following formula: 

  

%4𝑉𝑃 =
∫ "5"
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+
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−
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5

× 100%     (S7) 

Here 
∫ "5"

2
 is the amount of 4VP, 

∫ "6−9"

8
 is the amount of 4-methacryloyl-oxybenzophenone, 

∫ "3/10/1/2/4"−
∫ 6-9/5

8
−

∫ "5"

2

5
 is the amount of styrene.  

Through the calculation following amounts were obtained: 
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49% 4VP, 11% MABP, 40% S. 

 

Figure S5: 13C-NMR of p(S-co-4VP-co-MABP) measured in CDCl3. 

 

Preparation of membrane for catalytic experiments 

The prepared membranes were crosslinked with UV light (Honle UVAHAND 250 GS) at a 

distance of 15 cm (23 mW cm-1 for 2h at each side) 

Membranes made of p(S-co-SSNa-co-MABP) were immersed in methanol and concentrated 

HCl solution was added dropwise. The membrane was washed with methanol and dried at room 

temperature overnight. 

TGA data of dried membranes are shown in Figure S6. 
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Figure S6: TGA data for p(S-co-SSH-co-MABP) (A) membranes and p(S-co-4VP-co-MABP) 

(B) after immersion in DMF and followed by drying the membranes in vacuo.  

 

Catalytic experiment two step system 

 

Scheme S3: Reaction scheme of the catalytic one-pot two-step reaction. 

 

Catalytic membranes were placed in metal meshes for easy separation from the reaction mixture 

and prevention of damaging the membranes with the magnetic stirrer bar. 

For the catalytic experiments, 1.89 mL (12.5 mmol, 1 eq) dimethoxybenzyl acetal was dissolved 

in 25 mL DMF (c = 0.5 mol/L) and subsequently 1.48 mL (15.0 mmol, 1.2 eq) ethyl 

cyanoformate and 450 µL (25.0 mmol, 2 eq) water (Milli-Q) and undecane as an internal 

standard were added. The reaction mixture was heated to 80 °C and the immobilized 

membranes (800 mg p(S-co-4VP-co-MABP) and 350 mg p(S-co-SSH-co-MABP)) were 

immersed in the reaction medium (25 mL DMF). 10 µL of the reaction mixture was dissolved 

in 1 mL Acetonitril in GC vials and the catalytic experiment was monitored through a GC, the 

product was determined through GC coupled with a mass spectrometer.   
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For a blind test, 376 µL (380 mg, 1 eq) dimethoxybenzyl acetal, 278 µL (297 mg, 1.2 eq) ethyl 

cyanoformate, 90 µL (90 mg, 2 eq) water and 296 µL Undecane were added in 5 mL DMF.  

21.5 mg (125µmol, 5mol%) p-toluene sulfonic acid and 53.2 µL (52.5 mg, 20 mol%) 4-

vinylpyridine were added.  

The resulting catalytic mixture was heated to 80 °C for 6h. 

 

One-step acidic and basic fiber mat catalyzed reactions 

 

 

Figure S7: Acidic (A) catalyzed reaction from dimethoxybenzyl acetal to benzaldehyde and 

basic catalyzed (B) reaction of benzaldehyde to cyano(phenyl)methyl ethyl carbonate. 

Concentration of reagents 0.5 mol L-1 dimethoxybenzyl acetal and 1 mol L-1 water in case of 

acidic reaction and 0.5 mol L-1 benzaldehyde and 0.6 mol L-1 ethyl cyanoformate. In both cases, 

undecane was used as internal standard at 80°C in DMF. 

Fitted Parameters 

Fitting of the reaction rates and the concentration based on the experimental values were 

performed with Matlab Version R2015a. 

 

 

 

A 

 

B 
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Table S2. Results of the fitted reaction parameters shown in Figure 4A. For calculation Matlab 

was used. 

Fitted parameter Fitted value 

𝒄𝑨
𝟎  0.45 mol∙L-1 

𝒄𝑩
𝟎  0.45 mol∙L-1 

𝒄𝑫
𝟎  252 mol∙L-1 

𝒌𝟏 8.51 ∙ 10-2 L ∙ (mol ∙ min)-1 

𝒌𝟐 1.81 ∙ 10-6 L∙ (mol ∙ min)-1 

𝜟𝒕 (fixed) 0 min 

 

 

Figure S8. Fitted values with free D and Δt. 

Table S3: Results of the fitted reaction parameters shown in Figure S8. For calculation Matlab 

was used. 

Fitted parameter Fitted value 

𝒄𝑨
𝟎  0.43 mol∙L-1 

𝒄𝑩
𝟎  0.43 mol∙L-1 

𝒄𝑫
𝟎  20.4 mol∙L-1 

𝒌𝟏 8.1 ∙ 10-2 L ∙ (mol ∙ min)-1 

𝒌𝟐 2.71 ∙ 10-5 L ∙ (mol ∙ min)-1 

𝜟𝒕 53 min 
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6.2. Precise 2D-patterned Incompatible Catalysts for Reactions in One-Pot 
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Abstract 

Precise and direct two-dimensional (2D) printing of the incompatible polymer acid-base 

catalysts and their utility in one-pot two-step reactions were shown. Multistep catalytic 

reactions using incompatible catalysts in a one-pot reaction cascade requires special methods 

and materials to isolate the catalysts from each other. In general, this is a tedious process 

requiring special polymer architectures as carrier for the catalysts to preserve the activity of 

otherwise incompatible catalysts. We propose the immobilization of incompatible polymer 

catalysts, such as polymer acid and base catalysts, on a substrate in variable sizes and amounts 

by precise 2D printing. The terpolymers with a basic (4-vinylpyridine) and acidic (styrene 

sulfonic acid) functionality and methacryloyl benzophenone as a UV crosslinking unit were 

used for 2D printing on poly (ethylene terephthalate) (PET). The printed meshes were immersed 

together in a reaction solution containing (dimethoxy methyl)-benzene and ethyl cyanoformate, 

resulting in a two-step acid-base catalyzed cascade reaction; that is, deacetylation followed by 

carbon-building reaction. The time-dependent consumption of (dimethoxymethyl)-benzene to 

the intermediate benzaldehyde and the product was monitored, and a kinetic model was 

developed to investigate the underlying reaction dynamics. The complexity of multi-step Wolf-

Lamb-type reactions was generally significantly decreased by using our approach because of 

the easy polymerization and immobilization procedure.   

 

1. Introduction 

Mutually incompatible functional groups, such as acid and base, deactivate each other in 

solution. When used as catalysts for organic reactions in one-pot, they lose their catalytic 

activity. Such catalysts are called Wolf-Lamb-type catalysts. The work of Patchornik opened 

up new possibilities for making one-pot reactions with incompatible catalysts of Wolf-Lamb-

type by immobilizing them on solid supports.[1,2] The catalysts become mutually active and do 

not interfere with each other’s catalytic activity if immobilized separately either on two 

different solid supports that do not come into contact or on one support in a site-isolated manner. 

This is highly desirable for cascade reactions in one-pot in which the catalysts (more than one) 

and reactants, combined in one reactor, undergo a sequence of precise catalytic steps. 

The site-isolated spatial positioning of the catalysts in a simple way to prevent their deactivation 

requires new concepts. Polymeric microcapsules are interesting carriers for the site-isolation of 

two incompatible catalysts.[3] Microporous organic nanotube networks made by hyper 

crosslinking core–shell bottlebrush copolymers immobilized with site-isolated acid and base 
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catalyst systems showed good catalytic performance for deacetylation-Knoevenagel cascade 

reactions.[4] The core and crosslinked shell of self-assembled amphiphilic triblock copolymers 

can also be used as separate compartments for the site-isolation of metal catalysts. Instead, the 

catalysts can be immobilized in the core of star polymers and a mixture of star polymers with 

different core catalysts (acids and bases) can also be used as site-isolated catalysts in one-pot 

reactions.[5,6] Mesoporous silica support with acid and basic groups and sol-gel have also been 

used for one-pot cascade reactions.[7-9] Compartmentalization by layered Pickering emulsion 

was recently achieved to carry out cascade reactions in one-pot. The acid and base catalysts 

were immobilized in droplets in different layers to avoid contact with each other.[10,11] Layer-

by-layer self-assembly is another interesting approach to build multicomponent thin films for 

cascade reactions.[12]  

Although some research progress has been achieved over the years, one-pot multistep reactions 

are still not generally applicable in chemo- or bio-catalysis because of the time-consuming 

special procedures required for making appropriate carriers. New, efficient and scalable carrier 

systems for cascade reactions that are experimentally feasible in a simple way are always sought.  

We recently used electrospun acid and base nonwovens, for a two-step Wolf-Lamb-type 

catalytic reaction sequence in one-pot. The individual acid and base nonwovens fixed on 

separate frames were inserted in the reaction medium in one-pot.[13]  

Three-dimensional (3D) printing offers the possibility of precise material structuring, size and 

shape modulations that can be of high utility in heterogeneous catalysis. Coelho et al. have 

combined the 3D printing of silica monolith and post-printing surface modifications with 

palladium and copper metals for catalysis.[14] The use of 3D printing in making structured 

catalysts and reaction reactors has been reviewed recently.[15] The inactive scaffolds are 

generally produced by 3D printing, followed by the incorporation of functional groups for 

catalysis in a post-printing step.[16,17] 

Slowing et al. printed directly functional monomers followed by ultraviolet (UV) crosslinking 

to make reactor parts for catalytic applications.[18] We show here the 2D patterning of Wolf-

Lamb-type catalysts on a neutral substrate by direct printing of Wolf-Lamb-type (acid and base) 

catalytically active polymers and their use in a two-step one-pot reaction. The reaction sequence 

tested was the standard deacetylation of (diemethoxymethyl)-benzene as the first step and C-C 

bond formation as the second step. The separation between the 2D printed acid-base catalysts 

is achieved by fixing individual printed membranes in a reaction flask in one-pot. The technique 



Precise 2D-
 

73 
 

can be easily extended in a modular way with more than two catalysts for multi-step reactions 

in the future.  

 

2. Discussion and Results 

The acidic and basic terpolymer catalysts were synthesized by free radical ter-copolymerization 

of styrene, 4-vinylpyridine (basic, Scheme 13 I) or styrene sulfonic acid (SSA) (acidic, 

Scheme 13 II/III) units and methacryloyl benzophenone (MABP) to enable post-processing 

crosslinking of the polymer to prevent it from dissolving and to let the 2D-printed structures 

swell in reaction solution, which is necessary to enable high accessibility to the catalytic sites 

in the bulk. MABP is a photoreactive crosslinker, that is very well-known in the literature for 

the crosslinking reactions.[19] The benzophenone unit of MABP forms radicals by photo-

illumination, followed by abstraction of C-H hydrogen from the polymer chain and then radical 

combination reactions leading to crosslinking, as shown in Scheme S1 in the Supporting 

Information. The molecular weight (Mn) was 52000 with a molar mass dispersity (Ð) 1.7 

(Supporting information, Figure S1). The terpolymer compositions as determined by 1H-NMR 

spectroscopic analysis for basic terpolymer was 47 % 4-vinylpyridine, 42 % styrene and 11 % 

4-benzoylphenyl methacrylate (Supporting information, Figure S2). The copolymer 

composition for acid terpolymer could not be determined by 1H-NMR alone (Figure S3, 

Supporting Information) because of the overlapping peaks. Therefore, elemental analysis was 

used to determine the amount of SSA to be around 16 mol%; with 1H-NMR, and the amount of 

styrene (71 mol%) and MABP (13 mol%) was calculated [eqxact calculation are shown in the 

Supporting Information Equation S2 – Equation S7]]. The molecular weight determined (Mn) 

was 124 000 with a molar mass dispersity (Ð) 1.7 (Figure S4, Supporting Information).  

 



Precise 2D-
 

74 
 

 

Scheme 13: Free radical ter-copolymerization for the formation of polymeric base (I) and acid 

(II/III).  

The terpolymers were individually dissolved in a mixture of Tetrahydrofuran (THF) and N,N-

dimethylformamide (DMF) [9 to 1 with 20 wt% in the case of acid terpolymer, viscosity at 26 

Pa s at a shear rate of 10 s-1 and 30 wt% in the case of base terpolymer, viscosity at 0.3 Pa s-1 at 

a shear rate of 10 s-1 (Figure S5, Supporting Information)).  

 

The polymers are separately patterned on commercial poly(ethylene terephthalate) (PET) mesh 

with a line width of 120 µm (Figure 20) followed by UV crosslinking. The patterned structure 

shows a good alignment with the printing file (Figure S6, Supporting information). The 3D 

printer Celllink Inkredible+ was used for patterning the catalysts.  



Precise 2D-
 

75 
 

 

Figure 20: Digital photographic image of the patterned printed structure used. (A) is for the acid 

copolymer and (B) is for the basic copolymer. 

The patterned crosslinked samples had about 3 mg of the catalytic polymers per cm², which 

leads to 12 µmol in the case of the basic catalyst (4VP units) and 6 µmol in the case of the 

acidic catalyst (SSA units) per cm². The samples were analyzed using microscopy and Raman 

imaging (Figure 21 and Figure 22; microscopic stitching images are shown in the supporting 

information, Figure S7). The position of the acid and basic polymer catalysts could be identified 

utilizing Raman measurements. The acid polymer catalyst p(S-co-SSA-co-MABP) was 

deposited between the cavities of the PET mesh (Figure 21 B and C) separated by PET spacers 

with only a very thin layer on top of the PET structure.  
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Figure 21: A) Microscopy image of the 3D-printed acid copolymer with a white line showing 

the place used for Raman imaging, B) the Raman spectrum for PET (red) and acid copolymer 

(blue) and C) the Raman imaging for the 2D-printed structure indicating high amounts of the 

copolymer in between the meshes. 

The microscopy images and the Raman spectra (Figure 22) showed the deposition of the 

polymer in the cavity between the PET spacers and on top of the PET for the basic polymeric 

catalyst. The polymer catalysts deposited between the PET spacers have a high accessibility 

from both sides. 
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Figure 22: Microscopy image of the 3D-printed basic polymer (A) with a white line indicating 

the measured position in Raman imaging, the Raman spectrum for PET (blue), basic polymer 

(green) and for the white box within image the Raman imaging (red), in which the red part is 

the PET mesh and the blue part the 3D-printed polymer (C). 

The patterned crosslinked polymer catalysts were immersed in DMF to check their solvent 

stability and the structures were monitored afterwards utilizing microscopy images (Figure S8, 

Supporting Information). The structures were stable after immersion in DMF and a swollen 

state was observed. The swelling of the polymers should be advantageous for the catalytic 

experiment because the swollen 2D-printed structure would allow good accessibility to catalytic 

sites.  

Subsequently, the patterned acid-base (Wolf-Lamb type) catalysts were tested for their activity 

by performing deacetalization and the formation of cyano(phenyl)methyl ethyl carbonate (two-

step) reactions in one-pot. The first step was catalyzed by acid and the second by base 

(Scheme 14). The reactions were followed by gas chromatography (GC) measurements with the 

help of undecane as an internal standard.  
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Scheme 14: Two-step reaction sequence catalyzed by incompatible acid and base catalysts : 

first step- deacetalization of (dimethoxy)methyl benzene to benzaldehyde (acid catalyzed), 

second step- C-C bond formation by reaction of ethyl cyanoformate and benzaldehyde (base 

catalyzed). 

Firstly, the individual acid catalysts were used in different amounts (Figure 23). The acid 

catalyzed deacetylation was fast: 50 % conversion into benzaldehyde was achieved in 10 min 

using 15 mg of the acid catalyst (16 µmol, 0.75 mol% SSA, Figure 23A green x). The rate 

increased further upon increasing the amount to 30 mg (32 µmol, 1.5 mol% SSA, Figure 23A 

blue cross) and 90 % benzaldehyde was produced in 10 min. Subsequently, the two-step system 

was established. The pure acidic reactions were compared with the acidic part of a Wolf-Lamb-

type two-step reaction leading to the result that the reaction was slower using the same amount 

of acidic catalyst (30 mg; Figure 23A green “x” for pure acidic reaction) but faster than using 

half of the amount (15 mg; Figure 23A blue “+” symbol), indicating a slight deactivation due 

to water within the reaction chamber, which is unavoidable as it is necessary for the 

deacetylation  reaction. Nevertheless, the reaction produced more than 90 % benzaldehyde in 

60 min.  

 

 

Figure 23. Consumption of the deacetalization from (dimethoxy)methyl benzene to 

benzaldehyde in a single step reaction. The reaction stops after 60 min with a consumption of 

over 95 % (A), the catalytic load was 1.5 mol% (green x) and, respectively, 0.75 mol% (blue 

+). A comparison shows that similar results are obtained for 2D-printed structures in two-step 

reactions. (B) Partial deactivation is observable as the resulting time consumption curve 
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(1.5 mol L-1 catalytic load) is faster than the blue crosses, but slower than the green x. The 

reaction condition for all experiments was 80 °C and consumption was monitored using GC; 

all reagents were dissolved at the beginning.  

As a model reaction, the deacetylation already described, was further followed by a basic 

catalyzed reaction of benzaldehyde and ethyl cyanoformate (Scheme 14), which led to the 

formation of a carbonate group. Here, the study was performed with 30 mg (1.5 mol% of SSA 

groups) of acidic catalyst and 60 mg (9.6 mol% of 4-vinylpyridine groups) of basic catalyst.  

 

 

Figure 24: Two-step Wolf-Lamb-type reaction showing the amount of benzaldehyde (blue 

circle) and cyano(phenyl)methyl ethyl carbonate (green triangles). The amount of catalyst used 

was 1.3 mol% (30 mg acid terpolymer) styrene sulfonic acid and 9.6 mol% 4-vinylpyridine (60 

mg base terpolymer). The catalytic reaction was performed at 80 °C, all reagents and catalysts 

were immersed at the beginning and the amount was monitored utilizing GC. 

As expected, the amount of benzaldehyde increased towards a maximum at around 60 min with 

an amount of around 80 % (Figure 24). The amount of cyano(phenyl)methyl ethyl carbonate 

increased significantly after 60 min until the maximum is reached at 250 min with a conversion 

of 62 %. The low conversion can be explained by the low basicity of 4-vinylpyridine, which 

can be improved in the future by using a strong base. Furthermore, it was possible to show that 

it is possible to restart the basic reaction by the addition of ethyl cyanoformate (Figure S10, 

Supporting Information), possibly due to an effect of equilibrium in combination with a low 

catalytic load. 

Kinetic studies were carried out to gain a greater understanding of the process. The reactions 

were fitted with differential equations describing the reaction rates (Equation 1 – Equation 5).  
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𝑑𝑐𝐴

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)                                      (1) 

𝑑𝑐𝑩

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)                                        (2) 

𝑑𝑐𝐶

𝑑𝑡
= 𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)  − 𝑘2𝑐𝐶(𝑡 − 𝛥𝑡)𝑐𝐷(𝑡)       (3) 

𝑑𝑐𝐷

𝑑𝑡
= −𝑘2𝑐𝐶(𝑡 − 𝛥𝑡)𝑐𝐷(𝑡)                              (4) 

𝑑𝑐𝐸

𝑑𝑡
= 𝑘2𝑐𝐶(𝑡 − 𝛥𝑡)𝑐𝐷(𝑡)                                 (5) 

 

In which 𝑐𝐴  is the concentration of (dimethoxy)methyl benzene, 𝑐𝐵  is the concentration of 

water, 𝑐𝐶  is the concentration of benzaldehyde, and 𝑐𝐷  is the concentration of ethyl 

cyanoformate. k1 and k2 are the reaction rates of the first and second reaction step, respectively. 

The necessity of a parameter 𝛥𝑡 was already described in our previous work for this specific 

reaction.[13] There, we were able to show that the retarded start needed to be expressed by this 

specific parameter, as otherwise, no reasonable fits were obtained. A retarded start is generally 

expected for such reactions.[20,21] 

The resulting fitted parameters (Table 3) are close to the experimental values. Only the value 

for water (𝑐𝐵0) is much lower (0.44 mol L-1) compared to the experimental value of 1 mol L-1. 

A possible explanation is the adsorption of water within the printed structures leading to a 

decrease of its availability. The fits show a reasonable alignment with the data (Figure 25). 

 

Table 3: Resulting fitted parameters after solving equation 1-5. 

Parameter Fitted value 

𝑐𝐴0 0.48 mol L-1 

𝑐𝐵0 0.44 mol L-1 

𝑐𝐷0 (fixed) 0.6 mol L-1  

Δt 39 min 

𝑘1 0.51 mol (L min)-1 

𝑘2 0.01 mol (L min)-1 
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Figure 25: Kinetical fitted parameters of the two-step cascade reaction catalyzed by 

incompatible acid-base catalysts: red, blue and green are the amounts of (dimethoxy)methyl 

benzene, benzaldehyde and cyano(phenyl)methyl ethyl carbonate, respectively. 

3. Conclusion 

The 2D-printed structures were shown to be suitable carrier material for incompatible acid-base 

catalysts for one-pot cascade reaction sequence. The polymers reacting as acid and base 

catalysts were made by free radical polymerization and 2D printing on top of a PET mesh was 

done using a 3D printer. Here, we were able to characterize the 2D-printed structures by optical 

microscopy and Raman studies. The polymer-carrying meshes were immersed in the reaction 

solution for the two-step reaction. Although, both reaction steps were achieved in parallel, but 

the second step showed a retarded start of 50 min. The overall conversion was around 90 % for 

the first step and 62 % for the second step. Subsequently, a kinetic model was designed to 

observe the underlying reaction dynamics. The complexity of such systems was significantly 

decreased with our approach due to the easy polymerization and immobilization techniques 

used. 

The conversions need to be improved in future studies to obtain a higher overall yield. 

Functionality of the basic monomer can be changed towards, for example, amine-based 

comonomers, as done by other groups, to increase the amount of reactions that can be catalyzed. 

Overall, a great toolkit for such catalytic reactions was achieved which is usable for further 

studies. 
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4. Experimental Section 

Materials 

The DMSO (p.a. grade), THF (p.a. grade) and DMF (p.a. grade) were purchased from Alfa 

Aesar and used as received. The 4-vinylpyridine (98 %) and styrene were purchased from 

Sigma Aldrich and distilled in vacuo. Sodium styrene sulfonate (90 %, Alfa Aesar) was 

recrystallized from a mixture of ethanol and water (90/10 volume%). The ethyl cyanoformate 

(98 % Alfa Aesar), dimethoxybenzylacetal (99 %, Alfa Aesar) and undecane (> 99 %, Alfa 

Aesar) for the catalytic experiments were used as received.  

 

Methods 

Nuclear magnetic resonance (NMR) spectroscopy: 1H-NMR experiments were recorded on a 

Ultrashield-300 spectrometer at room temperature in either CDCl3 or DMSO-d6. Spectra were 

calibrated according to the residue protons of the deuterated solvent signal. Evaluation of 

spectra was carried out with MestReNova (Mestrelab research, version 6.1). 

The 3D printing was performed with a Celllink Inkredible+ with a one-needle setup. Solutions 

were 20 wt% for poly(S-co-SSA-co-MABP) and 30 wt% for poly(S-co-4VP-co-MABP) in 

THF/DMF (90/10). A pressure of 170 kPa was used for polymer solution flow through the 

syringe. The solutions were printed on a PET mesh with a mesh width of 120 µm. The printed 

structure was crosslinked for 3 h under UV light with an UV-F 400 F (honle UV technology) 

from the top side of the samples.   

Optical Microscope images were taken by a Smartzoom5 (Zeiss). 

Size exclusion chromatography (SEC) measurements were performed in DMF (HPLC grade) 

with lithium bromide (5 g L-1) as an eluent and solvent and an internal standard of toluene on 

two PSS-GRAM gel columns (particle size = 10 µm) with a porosity of 100 to 3000 Å, a flow 

rate of 0.5 mL min-1 and a refractive index detector (Agilent Technologies) on a SEC 1260 

Infinity (Agilent Technologies). A narrowly distributed polystyrene homopolymer was used 

(PSS calibration kit) for calibration. 

Gas chromatography (GC): The GC measurements were performed with a GC-FID system 

(GC-2010 Plus, Shimadzu), using nitrogen as a carrier gas. An amount of 10 µL of the reaction 
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mixture was dissolved in 1 mL acetonitrile. A volume of 1 µL was injected with a split ratio of 

1:50 and measured from 50 °C (2-min hold) up to 300 °C with a heating rate of 15 K min-1. 

Raman imaging Raman imaging was performed with a WITec alpha 300 RA+ imaging system 

equipped with an UHTS 300 spectrometer and a back-illuminated Andor Newton 970 EMCDD 

camera for measurements with an excitation wavelength of λ = 352 nm and an UHTS 400 

spectrometer and a back-illuminated deep depletion Andor iDUS CCD camera for 

measurements with an excitation wavelength of λ = 785 nm, respectively. The measurement on 

the p(S-cop-4VP-co-MABP) was conducted with an excitation wavelength of  λ = 352 nm and 

an integration time of 0.5 s pixel-1 using a laser power of 15 mW (10x objective, NA = 0.25, 

step with 2.5 µm pixel-1). The p(S-co-SSA-co-MABP) was measured with an excitation 

wavelength of λ = 785 nm and an integration time of 1.0 s pixel-1 using a laser power of 45 mW 

(10x objective, NA = 0.25, step with 2.5 µm pixel-1). All spectra were subjected to a cosmic ray 

removal routine and baseline correction using WITec project 5.1. The spatial distribution of the 

components was extracted from the Raman imaging data employing the Raman spectra of the 

neat components for the True Component Analysis in WITec project 5.1. 

Rheology Rheology measurements were made with a Modular Compact Rheometer MCR 302 

(Anton Paar) using a standard Measuring System CC17 (concentric cylinder) with a shear rate 

startin at 0.01 s-1 to 100 s-1 with 5 points per decade. Points were measured starting with 20 s 

down to 5 s during measurements. 

Curve fitting MatLab Version 2015a was used for the fitting of the differential equations. 

 

Synthesis of crosslinkable base polymer 

Methacryloyl benzophenone (0.1 equiv) was placed in a round-bottom Schlenk flask and 

dissolved in THF (42 mL). Styrene (0.4 equiv) and 4-vinylpyridine (0.5 equiv) were added to 

the mixture subsequently and the reaction mixture was degassed with Argon for 30 min (the 

concentration of monomers was 4 mol L-1). The reaction mixture was heated to 60 °C, 0.8 wt% 

AIBN was added and it was stirred for 16 h. The polymer was precipitated in diethyl ether, the 

resulting polymer was redissolved twice in DMSO and precipitated in diethyl ether. The crude 

product was then dried at 60 °C in vacuo. 
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1H NMR (300 MHz, CDCl3): δ = 1.0–1.6 (polymer backbone, CH2; CH3); 1.6–2.5 (polymer 

backbone CH); 6.0–6.6 (aromatic, CH); 6.6–7.2 (aromatic, CH); 7.4–7.7 (aromatic CH;); 8.1–

8.5 (aromatic, CH). 

 

Synthesis of crosslinkable acid polymer 

Methacryloyl benzophenone (0.1 equiv.) and recrystallized sodium styrene sulfonate (0.15 

equiv.) were placed in a round-bottom Schlenk flask and dissolved in DMSO (35 mL). Styrene 

(0.75 equiv) was added to the solution and the reaction mixture was degassed with argon, heated 

to 70 °C and 0.6 wt% AIBN was added. The polymer was then precipitated in isopropanol and 

dried at 60 °C in vacuo. 

The crude product obtained was dissolved in methanol and concentrated HCl solution was 

added dropwise to obtain a white solid. The product obtained was filtered and dried at 60 °C in 

vacuo. 

1H NMR (300 MHz, DMSO-d6): δ = 0–1.6 (polymer backbone, CH2; CH3); 1.6–2.5 (polymer 

backbone CH); 6.0–6.6 (aromatic, CH); 6.6–7.2 (aromatic, CH); 7.4–7.7 (aromatic, CH). 

 

Catalytic experiment two-step system 

The 3D-printed structures (30 mg (1.5 mol%) of the acidic poly(S-co-SSA-co-MABP)) and 60 

mg (9.6 mol% of (dimethoxymethyl)benzene) of the basic poly(S-co-4VP-co-MABP) on PET 

meshes were added into a 10 mL vial.  

A solution of dimethoxybenzylacetal (1 equiv.) was dissolved in DMF (c = 0.5 mol L-1) and, 

subsequently, ethyl cyanoformate (1.2 equiv), water (Milli-Q, 2 equiv.) and undecane as an 

internal standard were added for the catalytic experiments. The reaction mixture was heated to 

80 °C and the immobilized nonwoven structures were immersed in the reaction medium.  
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The 2D patterned structures were used as Wolf-Lamb-type catalysts. Here, an acid and base 

polymer were synthesized, printed on separate PET, crosslinked by UV light and then 

immersed in solution to monitor the kinetic of such a multi-step one-pot catalysis. The 

kinetical constants were calculated using differential equations. 

 

Keyword heterogenous catalysis 
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Precisely 2D patterned Wolf-Lamb-type catalysts for one-pot multistep reactions 

 

Martin O. Pretscher, Tingting Chen, Gabriel Sitaru, Stephan Gekle, Jian Ji and Seema 

Agarwal*  

 

 

 

Mechanism of cross-linking with benzophenone  

 

 

Scheme S1. Mechanism of radical cross-linking with benzophenone through UV-light. 
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Synthesis of cross-linkable base polymer 

 

 

Scheme S2. Reaction Scheme showing free radical polymerization of styrene, 4-vinylpyridine 

and methylacrylbenzophenone. 

 

Figure S1. DMF-SEC measurement of poly(styrene-co-4-vinylpyridine-co-methyl 

acrylbenzophenon). 
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Figure S2. 1H-NMR spectrum of the copolymer poly(styrene-stat-SSA-stat-methyl 

acrylbenzophenone). The spectrum was measured in DMSO-d6. The spectrum was normalized 

on the two protons of the 4-vinylpyridine unit next to the nitrogen. 

 

%4𝑉𝑃 =
∫ "𝑑"
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Synthesis of poly(styrene-stat-styrene sulfonic acid-stat-methyl acrylbenzophenone) 

 

Scheme S3. Reaction scheme of the free radical polymerization of styrene, sodiumstyrene 

sulfonate and methylacrylbenzophenone to acid polymer catalyst, followed by the protonation 

using concentrated hydrochloric acid. 
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Figure S3. 1H-NMR spectrum of the acid terpolymer using DMSO-d6 as the solvent. 

 

 

Figure S4. DMF-GPC measurement of poly(styrene-co-sodium styrene sulfonate-co-methyl 

acrylbenzophenon). 
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HCNS Elemental analysis 

 

Table S1. Elemental analysis for the calculation of the amount of sodium styrene sulfonate. 

Element Amount [wt%] 

H 6.2 

C 76.4 

N 0.0 

S 2.9 

O 14.5 

 

Carbon: 76.4 wt%; hydrogen 6.2 wt%; sulfur 2.9 wt%; oxygen 14.5 wt%; nitrogen 0 wt%. 

The amount of SSA determined based on these values: 15.5 mol%.  

Exact calculation of the copolymer composition based on elemental analysis was not possible 

due to a very high amount of oxygen. The latter is due to rest solvents, such as methanol and 

water. The value for SSA is within the range of the feed ratio and, hence, probable but slightly 

to high.  

 

All amounts were calculated in mol% (Equation S2 and S3). 

𝑚𝑜𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 =
𝑤𝑡𝑠𝑎𝑚𝑝𝑙𝑒∗𝑤𝑡%

100∗𝑀𝐸𝑙𝑒𝑚𝑒𝑛𝑡
         (S2) 

𝑚𝑜𝑙% =  
𝑚𝑜𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑚𝑜𝑙𝐶+𝑚𝑜𝑙𝑆+𝑚𝑜𝑙𝑂
    (S3) 

The amount of carbon of the different monomers used in the copolymerization was then 

determined to obtain information of the amount of SSA (Equation S4 – S6). 

𝑚𝑜𝑙%𝐶(𝑆𝑆𝐴) =  𝑚𝑜𝑙%𝑆  ×  8         (S4) 

𝑚𝑜𝑙%𝐶(𝑀𝐴𝐵𝑃) =  (𝑚𝑜𝑙%0 − 𝑚𝑜𝑙%𝐶  ×  3)  × 17      (S5) 
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𝑚𝑜𝑙%𝐶(𝑆) =  𝑚𝑜𝑙%𝐶 − 𝑚𝑜𝑙%𝐶(𝑆𝑆𝐴) − 𝑚𝑜𝑙%𝑀𝐴𝐵𝑃      (S6) 

The value of 𝑚𝑜𝑙%𝑆𝑆𝐴 obtained was used as a fixed value and the amount of styrene and methyl 

acrylbenzophenone was calculated with the help of 1H-NMR (Figure S4) by solving 

Equation S7. Equation S1 was then used to determine the corresponding amounts. 

𝑚𝑜𝑙%𝑆𝑆𝐴 =  
𝑥

4
1

9
+

2,11−𝑥

5
+

𝑥

4

         (S7) 

 

3D-printed structure 

 

 

Figure S5. Viscosity measurements for acid terpolymer (A) and base terpolymer (B). 

 

The printing file (Figure S6) shows a good alignment with the resulting patterned strucutres 

shown in Figure 1 and Figure S6. 
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Figure S6. Screenshot of the gcode file used for printing. 

 

Figure S7. Stitched microscopy images of base (A) and acid (B) terpolymers. 

The homogenous structures were also observable with the help of the stitching mode of an 

optical microscope showing the overall homogenous structure of base (A) and acid (B) printed 

terpolymers.  

 

 

 

A B 
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Figure S8. Microscopy images after immersion in DMF. Both acid (A) and base (B) 

terpolymers are in a swollen state after immersion and the structure is stable on top of the PET 

mesh. 

 

Reusability test for acidic catalyst 

 

Reusability was tested by reactivation of the catalyst. The catalyst was washed after the reaction, 

immersed in methanol and HCl was added dropwise. The resulting catalyst was then washed 

with methanol and diethyl ether and dried at room temperature. Catalytic experiments were 

performed, as mentioned previously. 

Deactivation of the catalytic reaction was observable (Figure S9).  

In the case of the second-step reaction in the Wolf-Lamb-type reaction, it was possible to restart 

the solution by the addition of ethyl cyanoformate (Figure S10).  

A B 



Precise 2D-
 

96 
 

 

Figure S9. Three cycles of the deacetalization reaction were observed during the first cycle and 

high conversion of more than 95 % was observed. The following cycles show less conversion, 

with around 80 % (cycle 2 blue) and 15 % (cycle 3 green). 

 

 

Figure S10. Addition of ethyl cyanoformate after the reaction finished shows that the reaction 

can be restarted and high yield is obtained. 
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catalysis  
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ABSTRACT. The process for preparing the active, strong base and acid self-standing 

individual membranes and printed structures are established by electrospinning and two-

dimensional (2D) printing of the corresponding polymeric base and polymeric acid on a neutral 

plastic substrate. The active polymeric acid and strong base used in this work were 

(poly(styrene-co-styrene sulfonic acid-co-methacryloyl benzophenone)) and  (poly(styrene-co-

4-vinylbenzylamine-co- N-(4-benzoylphenyl)acrylamide ), respectively. The active acid-base 

printed structures and membranes were compared for their activity in a standard two-step acidic 

catalyzed deacetalization reaction of dimethoxybenzyl acetal to benzaldehyde followed by a 

base-catalyzed Knoevenagel-condensation with ethyl cyanoacetate towards ethyl-2-cyano-3-

phenyl acrylate reaction in one pot in different solvents. Both 2D printed acid, base structures, 

and electrospun membranes could be arranged in one-pot to complete the two-step reaction 
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without destroying each other's activity. High conversions, fast reaction, and reusability make 

2D printed structures favorable in toluene over electrospun membranes.  The kinetic parameters 

were also calculated to address the solvent's influence and further strengthen the systems' 

understanding and comparison. 

KEYWORDS: catalysis, acid-base, one-pot, electrospinning, 3D printing 

 

INTRODUCTION 

Wolf-Lamb type catalyst systems contain mutually incompatible catalysts, in which the 

catalytic functionalities are site isolated and therefore protected from each other as otherwise, 

the catalytic centers would deactivate each other. These site-isolated Wolf-Lamb type catalysts 

can be used in organic multi-step one-pot reactions. This is desirable because, within one-pot 

reactions, the intermediate product's isolation is unnecessary, and less solvents for the reaction 

and purification are used. Hence time and costs are reduced.  

Cohen et al. were starting to study the possibilities of such systems already in 1977.[1,2] There, 

they discussed the use of polymeric materials for site-isolation carrier purposes. Since then, 

there are different approaches to optimize further and show new possible immobilization ways. 

One of the most extensively studied systems is the use of porous material such as metal-organic 

frameworks (MOFs)[3-6] and zeolites[7,8], which have a high intrinsic and desirable porosity and 

are widely used in catalytic studies due to these properties. The specialty of MOF like structures 

is the linking units, which can be used to immobilize the desired functionality. 

Nevertheless, while the concept is promising, MOFs' synthesis and treatment did not reach high 

applicability, and research still needs to focus on these. Another approach is the use of silica-

based particles. [9-11] Therefore, it is not surprising that polymers as catalytic carriers have 

moved into the focus of current research. Polymeric structures have a high amount of 

possibilities in which the site-isolation of catalysts can be achieved in different ways, such as 
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the use of star polymers[12-14] or microcapsules[15-17]. Nevertheless, they are limited in 

reusability, and synthetic work is challenging due to these special structures. Therefore, 

multiple other concepts for heterogeneous polymeric catalysts can be found, such as 

microporous organic nanotube networks with a core-shell structure[18,19] or gels as catalytic 

carriers.[20,21] The use of polymers as carriers for mesoporous structures is of high interest. 

Hence, multiple studies on mesoporous materials are made of hyper-crosslinked polymers to 

obtain a stable structure in solution.[22-25]   

To further unlock the potential of such multi-step one-pot cascade systems using Wolf-Lamb 

type catalysts, we wanted to obtain an easy to modify system which can be used in a modular 

way. We first studied two different ways to achieve such catalytic reactions by either 

electrospinning[26] or printing patterned polymer catalysts on a carrier material[27] with 

poly(styrene-co-styrene sulfonic acid-co-methacryloyl benzophenone) (P(S-co-SSA-co-

MABP)) and poly(styrene-co-4-vinyl pyridine-co-methacryloyl benzophenone) as acid and 

base incompatible catalysts. Electrospinning is a technique to obtain fibers with a diameter of 

a few hundred nm up to 5 µm. A high voltage is applied between a needle and a collector, and 

the polymeric solution is stretched towards the collector. During this process, the solvent 

evaporates, and a porous polymer membrane is obtained by random deposition of solid fibers 

(Scheme 1, E-spinning).[28,29] Precise patterning[30]  of polymers by the computer-controlled 3D 

printer from polymer melts or solutions provide easy access to the well-separated polymer acid 

and base catalysts on a neutral substrate. Both these methods are shown as appropriate simple 

tools for fixing the incompatible catalysts in the form of individual membranes called catalytic 

compartments that can be fixed in one reaction vessel without coming in contact with each 

other. Nevertheless, the system was limited due to a weak base (4-vinyl pyridine) in the base 

polymer catalyst.[31] Only a few reactions were possible such as a carbonate building reaction 

with a limited yield of around 80% with a starting induction period.[26,27]  
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The possibilities of primary amine-based copolymers were investigated in this work to broaden 

potential applications further and obtain a higher yield and a better working system. It was 

decided to use 4-vinylbenzylamine as the functional base comonomer. As primary amines 

cannot directly be used in the free-radical polymerization, protected amine N-(4-vinyl 

benzyl)phthalimide was used. The protected amine was deprotected to generate an active free-

amine catalyst only after processing the polymer, either by electrospinning or 2D printing. This 

was indispensable, as the free amine-containing polymer showed limited solubility in common 

organic solvents such as THF or DMF required for processing. Here, we present detailed studies 

regarding 1) preparation and characterization of post-process functionalized modular 

electrospun nonwoven and precisely printed Wolf-Lamb type catalysts carriers and 2) catalytic 

studies.  

 

EXPERIMENTAL: 

Materials 

Dimethylformamide (DMF, p.a. grade, Alfa Aesar), diethyl ether (technical grade, distilled 

before use), dichloromethane (DCM, technical grade) was dried over calcium hydride (CaH2) 

and distilled before use. Triethylamine (99.8% Acros) was fractionated distilled, dimethyl 

sulfoxide (DMSO, p.a. grade, Alfa Aesar), 4-vinylbenzylchlorid (90%, Sigma Aldrich), 

potassium phthalimide (98%, Alfa Aesar), 4-amino benzophenone (98%, Alfa Aesar), acryloyl 

chloride (96%, Alfae Aesar), dimethoxy methylbenzene (99%, Alfa Aesar), ethyl cyano acetate 

(98+%, Alfa Aesar) and n-undecane (99%, Alfa Aesar) were used as received. Dioxane (p.a. 

grade, Alfa Aesar) was freshly distilled, were used as received. Styrene (99%, Sigma Aldrich) 

was distilled in vacuo before use. MABP was synthesized according to the literature.[32]  
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Scheme 11. Concept of the preparation of post-process functionalized carriers for Wolf-amb 

type catalysts. After processing, electrospun and 2D-printed materials underwent treatment for 

cross-linking and deprotection in the case of a base catalyst.   

Synthesis of N-(4-vinylbenzyl)phthalimide 

In a Schlenk flask, 1.1 eq of potassium phthalimide was dissolved in dried DMF (c = 2 mol 

L-1). After 30 min of stirring, 1.0 eq 4-vinyl benzyl chloride was added, and the reaction mixture 

was heated to 50 °C for 16 h. The product was precipitated in a NaOH solution (pH = 10), 

followed by recrystallization from methanol. Colorless needles were obtained with a yield of 

60%. 

1H-NMR (300 MHz, CDCl3) δ = 7.83 (td, J=5.3, 2.1 Hz, 2H), 7.82(td, J = 5.3, 2.1 Hz, 2H), 7.44 

– 7.31 (m, 4H), 6.67 (dd, J = 17.6, 10.9 Hz, 1H), 5.76 (dd, J = 10.9, 0.9, 1H) 5.22 (dd, J = 10.9, 

0.9, 1H) 4.83 (s, 1H) ppm. (Supporting Information, Figure S1) 

13C-NMR (75 MHz, CDCl3) δ = 168.13, 137.27, 136.46, 135.94, 134.08, 132.18, 128.96, 

126.58, 123.45, 114.29 ppm. (Supporting Information, Figure S2) 
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Synthesis of N-(4-benzoylphenyl)acrylamide 

 

In a three-necked flask, 1 eq of 4-amino benzophenone was dissolved in dried DCM (c = 0.64 

mol L-1), and 1.0 eq of triethylamine was added. The reaction mixture was cooled to 0 °C with 

an ice bath, and 1.0 eq of acryloyl chloride dissolved in dried DCM (c = 3.2 mol L-1) was added 

dropwise through a dropping funnel. The reaction mixture was reheated to room temperature 

and stirred for 16 h. The resulting reaction mixture was washed with 5% NaHCO3 solution and 

two times with deionized water. The organic layer was dried with MgSO4, and the organic phase 

was evaporated under reduced pressure. The obtained crude product was recrystallized from 

methanol to get a yellow powder-like product with a yield of 71%. 

1H-NMR (300 MHz, DMSO) δ = 7.89 – 7.68 (m, 6H), 7.64 – 7,54 (m, 1H), 7.45-7.40 (m, 2H) 

7.44 (s, 1H), 6.50 (dd, J = 16,8, 1,2) 6.28 (dd, J = 16.8, 10.2 Hz, 1H), 5.85 (dd, J = 10.2, 1.2 Hz, 

1H) (Supporting Information, Figure S3) 

13C-NMR (75 MHz, DMSO) δ = 196, 164, 142, 137, 133, 132, 132, 131, 130, 128, 128, 

119 ppm. 

(Supporting Information, Figure S4) 

Synthesis of P(S76-co-4VBI15-co-BPAm9) 

0.15 eq 4VBI and 0.1 eq BPAm were placed in a Schlenk flask and dissolved in dioxane. 0.75 eq 

styrene was added, and the mixture was degassed with argon for 30 min (monomer 

concentration c = 3 mol L-1). The mixture was heated to 70 °C, and 0.3 wt% AIBN was added. 

After 16 h, it was precipitated in methanol redissolved in dioxane and precipitated in diethyl 

ether and dried overnight at 50 °C in vacuo. A colorless powder was obtained with a yield of 

57%.   

1H-NMR (300 MHz, CDCl3) δ = 0.5-2.3 (polymer backbone, CH2), 4.6 (H2C-CH2-N), 6.0-8.0 

(CH, aromatic), (Supporting Information, Figure S5)   

GPC (DMF) 𝑀𝑛
̅̅ ̅̅  = 54000; 𝑀𝑤

̅̅ ̅̅̅ = 81000; Ð = 1.5 (Supporting Information, Figure S6) 
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Synthesis of  P(S67-co-SSNa18-co-MABP15) 

0.15 eq sodium styrene sulfonate and 0.1 MABP were placed in a Schlenk flask and dissolved 

in DMSO. 0.75 eq styrene was added, and the mixture was degassed with argon for 30 min 

(monomer concentration c = 4 mol L-1). The mixture was heated to 70 °C, and 0.3 wt% AIBN 

was added. After 16 h, it was precipitated in isopropanol and washed with water and 

isopropanol. The resulting product was then dried overnight at 60 °C in vacuo, finally giving a 

yield of 58%.   

1H-NMR (300 MHz, DMSO-d6) δ = 0-2.5 (polymer backbone, CH2, CH),  6.0-8.0 (CH 

aromatic) (Supporting Information, Figure S7) 

GPC (DMF) 𝑀𝑛
̅̅ ̅̅  = 145000; 𝑀𝑤

̅̅ ̅̅̅ = 231000; Ð = 1.6 (Supporting Information, Figure S8) 

Synthesis of  P(S67-co-SSA18-co-MABP15) 

P(S67-co-SSNa18-co-MABP15) was dissolved in methanol, and a concentrated HCl solution was 

dropwise added to precipitate the protonated  P(S67-co-SSA18-co-MABP15). 

Post-process modification to  P(S76-co-4VBA15-co-BPAm9) 

3 g of either electrospun membrane or printed structure (PS76-co-4VBI15-co-BPAm9) was 

immersed in 50 mL DMF, and 10 mL hydrazine was added. The mixture was heated to 70 °C 

for three hours and washed three times with DMF and two times with diethyl ether. 

 

 

 

Electrospinning 

For electrospinning, a conventional one-needle setup was used, built by the University of 

Bayreuth's mechanical and electrical workshop. 

Solutions with 30 wt% of P(S67-co-SSA18-co-MABP15) and 35 wt% P(S76-co-4VBI15-co-

BPAm9) in DMF were prepared. The solutions were then electrospun at a flow rate of 300 µL 
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h-1 (P(S67-co-SSA18-co-MABP15)) and 750 µL h-1 (P(S76-co-4VBI15-co-BPAm9)) employing a 

current of 12 kV (P(S-co-SSA-co-MABP)) and 15 kV (P(S76-co-4VBI15-co-BPAm9)). The 

corresponding randomly oriented fibers were collected on a rotating disc collector with a 

current of -1 kV in the form of self-standing porous membranes for further use. 

2D-Printing 

A Cellink Inkredible+ was used as a 3D printer. A solutions of 30 wt% in a mixture of 

THF/DMF (90/10) of P(S76-co-4VBI15-co-BPAm9) was printed with an air pressure of 80 kPa 

on a polyamide mesh (Nylon, Buddeberg). For P(S67-co-SSA18-co-MABP15), a mixture of 

THF/DMF (80/20) was printed on a PET mesh with a mesh size of 120 µm for P(S67-co-SSA18-

co-MABP15). 

Cross-linking 

Electrospun membranes were cross-linked by UV-light from both sides for 2 h, and printed 

structures were cross-linked for 3 h with a UV-F 400 F (Jonle UV technology) at 15 cm 

(23 mW cm-1). 

Catalytic experiment 

In 5 mL of DMF or toluene 376 µL (2.5 mmol, 1 eq) dimethoxy methylbenzene and 320 µL 

(3 mmol, 1.2 eq) ethyl cyanoacetate, 300 µL undecane (as an internal standard for GC analysis, 

as it does not interact with any of the reaction components), and 90 µL (5 mmol, 2 eq) water 

were subsequently added. The electrospun acid and base polymers as individual porous 

membranes were used as catalysts. Each membrane weighed 80 mg. The acid and base catalyst 

membranes were fixed individually inside separate PET meshes (pore size 120 μm) to prevent 

damage by interaction with the magnetic stirrer, while the printed structures, which are on top 

of the mesh substrate, were directly immersed in the reaction solution. The solution was stirred 

for 5 h in case of membranes and 1 h in case of printed structures. 10 µL of the catalytic solution 
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was taken at intervals of 10 min during the first hour and afterward every 30 min until the end 

and placed in acetonitrile for GC analysis. Reusability was tested by reimmersing substrates in 

freshly prepared reaction mixtures under the same conditions.  

Gel permeation chromatography (GPC) 

GPC measurements were performed on an SEC 1260 Infinity (Agilent Technologies) in DMF 

(HPLC grade) with lithium bromide (c = 5 g L−1) as eluent, employing a flow rate of 0.5 

mL min−1 and toluene as an internal standard. The setup was equipped with two PSS‐GRAM 

gel columns (particle size = 10 µm) with a porosity of 100 to 3000 Å and a refractive index 

detector (Agilent Technologies). Narrowly distributed polystyrene homopolymers (PSS 

calibration kit) were used for calibration.  

Nuclear Magnetic Resonance (NMR) spectroscopy  

1H-NMR spectroscopy measurements were performed on a Bruker Ulrashield 300 system with 

either deuterated chloroform (CHCl3) or DMSO-d6 as solvent at 300 MHz. 

13C-NMR spectroscopy measurements were performed on the same system at 75 MHz. 

13C solid-State NMR was performed on a 400 MHz Bruker Avance III HD employing a 3.2 mm 

HXY MAS probe head using cross-polarization and magic angle spinning technique at 12.5 

kHz. 

Gas Chromatography (GC) 

GC measurements were performed on a Shimadzu GC-2010 plus a flame ionization detector 

using nitrogen as the carrier gas. For sample preparation, 10 µL of the reaction sample was 

dissolved in 1 mL of acetonitrile (p.a. grade, Alfa Aesar). 1 µL was injected with a split ratio 

of 1:50 and measured from 50 °C to 300 °C at a heating rate of 15 K min-1.  

Optical microscope 

Optical microscope images were taken by a Smartzoom5 (Zeiss). 
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Raman imaging 

 

A WITec alpha 300 RA+ imaging system, equipped with a UHTS 300 spectrometer and a back-

illuminated Andor Newton 970 EMCCD camera, was employed for confocal Raman imaging. 

The measurements were conducted at an excitation wavelength of  532 nm, using an 

integration time of 0.5 s pixel-1 (10x objective, NA = 0.25, step size 1.5 – 2 µm, software WITec 

Control FIVE 5.1). All spectra were subjected to a cosmic ray removal routine and baseline 

correction. The printed copolymers' spatial distribution on the polyamide mesh was determined 

using the tool “true component analysis” in the WITec Project FIVE 5.1 software. 

Scanning Electron Microscopy (SEM) 

SEM images were taken with a Zeiss LEO 1530 at an acceleration voltage of 3 kV, using an 

Everhart-Thornley secondary electron detector. Sample preparation was done by sputtering the 

sample with a 2 nm thin platinum layer (Sputter Coater 208 HR, Cressington).  

 

 

 

 

 

RESULTS AND DISCUSSION 

 

The preparation of acid and base polymers for catalysis was done by tercopolymerization of 

styrene with benzophenone derivative (as cross-linker) and functionalized styrene with acid and 

protected base units (Scheme 2) using the free radical polymerization method.  
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Scheme 2. Preparation of acid and base polymers to be used as Wolf-lamb type catalysts by 

free radical polymerization. (A) Acid catalyst: Poly(styrene-co-sodium styrene sulfonate-co-

methacryloyl benzophenone), (B) protected base catalyst: Poly(styrene-co-N-(4-vinyl benzyl) 

phthalimide-co-N-(4-benzoylphenyl)acrylamide). 

The desired comonomer with a protected primary amine, N-(4-vinyl benzyl)phthalimide (4VBI, 

3), was obtained by nucleophilic substitution of 4-vinyl benzyl chloride (1) with potassium 

phthalimide (2) (refer reaction equations and analytical data in supporting Information, Scheme 

S1, Figure S1, S2). This can be modified after processing to the primary amine by a reaction 

with hydrazine. The cross-linking unit was an amide based BPAm (6) (analytical data 

Supporting Information, Figure S3, S4), which was prepared from acryloyl chloride (4) and 4-

amino benzophenone (5). The use of an amide-based benzophenone is more suitable than an 

ester-based benzophenone unit to prevent reactions with hydrazine during the formation of 

primary amines (deprotection procedure) later on in the post-functionalization process. 

Benzophenone can react under UV-light towards a diradical, which later abstracts hydrogen 

A 

B 
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from polymer backbone and starts a chain reaction leading to intramolecular cross-linking (refer 

mechanism in supporting Information, Scheme S2). 

The amine protected polymer, P(S76-co-4VBI15-co-BPAm9), had a composition of 76 mol% of 

styrene, 15 mol% 4VBI units, and 9 mol% BPAm as determined by 1H NMR (Supporting 

information, Figure S5, Equation S1 –S3). The number average molecular weight determined 

by GPC was 𝑀𝑛
̅̅ ̅̅  = 54000, Ð = 1.5 (Supporting information, Figure S6). For the acidic P(S67-

co-SSNa18-co-MABP15) copolymer, a combination of elemental analysis and 1H-NMR was 

used to determine the copolymer composition (Supporting Information, Figure S7, Equation 

S4 –S9), resulting in a composition of 18 mol% sodium styrene sulfonate, 15 mol% 

methacryloyl benzophenone, and 67 mol% styrene. The number average molecular weight 

determined by GPC was 𝑀𝑛
̅̅ ̅̅ = 145000, Đ = 1.6 (Supporting Information, Figure S8).  

The copolymers were processed through two different techniques, electrospinning, and 2D 

printing, either as individual membranes or printed structures for use as active catalytic 

materials in one-pot reactions. The deprotected amine-containing base polymer showed bad 

solubility in common organic solvents making processing impossible. Also, the possibility of 

side reaction of the primary amine with the cross-linking unit made us use the protected base 

polymer P(S76-co-4VBI15-co-BPAm9) for processing. Therefore, a post-process reaction for 

functionalisation with an active strong amine catalyst by deprotection per Gravano et al. was 

performed, which was slightly modified towards DMF as a solvent within the reaction and the 

purification through multiple washing steps (Supporting Information, Scheme S3).[33]  

The printed structures and catalytic membranes were cross-linked with UV light for 3 h (in the 

case of the printed structure) and 2.5 h per side for the electrospun catalytic membrane and 

deprotected by hydrazinolysis in DMF. Electrospun P(S67-co-SSNa18-co-MABP15) was 

protonated with hydrochloric acid after membrane preparation as the catalytic activity is greatly 

reduced due to possible salt formation. For 3D printing, it was possible to use P(S67-co-SSA18-

co-MABP15) directly.  
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Through electrospinning, membranes with homogenously distributed copolymer fibers were 

obtained (fiber diameter for  P(S67-co-SSNa18-co-MABP15): 530 ± 80 nm and for P(S76-co-

4VBI15-co-BPAm9): 1.5 ± 0.6 µm, Figure 26A, C). The treatment of membranes in DMF for 

deprotection of amino groups and neutralization of acidic salt led to the swelling of fibers with 

a slight increase in the fiber diameter  (fiber diameter in deprotected membrane P(S76-co-

4VBA15-co-BPAm9) was 1.6 ± 0.4 µm) and especially in case of P(S67-co-SSA18-co-MABP15) 

a change of morphology was observed (Figure 26B, D). Although the overall morphology of 

these protonated fibers is not homogenous, most probably due to the presence of salt on the 

surface, they were further used as such for catalysis reactions.  

 

 

Figure 26. SEM images of the electrospun membranes before and after treatment. (A) P(S67-

co-SSNa18-co-MABP15), (B)  P(S67-co-SSA18-co-MABP15), (C) P(S76-co-4VBI15-co-BPAm9) 

and (D) P(S76-co-4VBA15-co-BPAm9). 

A B 

C D 
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Figure 27A showed the printed structure from S76-co-4VBI15-co-BPAm9.  The protected 

primary amine (4VBI units) in S76-co-4VBI15-co-BPAm9 were deprotected after printing. After 

the deprotection step, the printed structure remained intact and stable on top of the substrate 
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polyamide mesh (

 

 

Figure 27B). The slight cracking of the printed lines was unavoidable under present 

experimental conditions, which might be due to the polymer's brittleness and the chemical 

change from the protecting phthalimide group towards the active primary amine.  
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Figure 27. Digital microscopy images of the printed copolymer structure on a PA mesh (A) 

P(S76-co-4VBI15-co-BPAm9), (B) P(S76-co-4VBA15-co-BPAm9) and on a PET mesh (C) overview of 

P(S67-co-SSA18-co-MABP15) and (D) a higher magnification of P(S67-co-SSA18-co-MABP15). 

A continuous structure is obtained, leading to neatly aligned lines. 

As the base copolymer is not soluble after cross-linking and deprotection, the successful 

deprotection reaction could be proved by solid-state NMR (Figure 3; Supporting information, 

Figure S9, S10) and Raman spectroscopy (Figure 29). The solid-state NMR clearly shows the 

successful deprotection of the primary amine group, indicated by the shift of the peak at 168 

ppm for the carbonyl groups of the imide and 134 ppm for the two aromatic CH-groups of the 

phthalimide (Figure 3A red). Further, the shoulder at 48 ppm is the CH2 group next to the 

primary amine (Figure 3B turquoise). 



Precise 2D-
 

113 
 

Figure 28. Superimposed solid-state 13C-NMR spectra of P(S76-co-4VBI15-co-BPAm9) (red) 

(chemical structure A) and P(S76-co-4VBA15-co-BPAm9) (turquoise) (chemical structure B) in 

the region 110-190 ppm (left) and 12 – 72 ppm (right). The relevant peaks are marked as a, b, 

c both in the chemical structure and the NMR spectra. Successful deprotection can be seen.  

 

The successfully obtained primary amine within the 2D printed copolymer can be proven by 

cross-sectional Raman imaging of the polymeric material (Figure 4). The position of the 

measurement is shown in Figure 4A. The red Raman spectra on top show the peak's 

disappearance at 1800 cm-1, indicating the CO-bonds of the imide (Figure 4B). The placement 

of the copolymer on the mesh-like structure is shown in Figure 29C. Here, it shows that the 

deprotected polymer (red) is on top of the polyamide mesh in a thin layer and is mainly 

deposited between the meshes (blue).  

 

A 
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Figure 29. (A) Optical microscopy image of P(S76-co-4VBA15-co-BPAm9) with the position of 

Raman measurement. (B) Raman spectra for P(S76-co-4VBI15-co-BPAm9) (green) and  P(S76-

co-4VBA15-co-BPAm9) (red). (C) Raman cross-section of the mesh printed with deprotected 

P(S76-co-4VBA15-co-BPAm9), the printed primary amine-containing copolymer (colored in 

red), is mainly located within the cavities of the polyamide mesh (colored in blue) with only a 

thin layer on top of it. 

With these successfully obtained catalytic materials, a reaction was tested, which was not 

possible with a weak base such as 4-vinyl pyridine. Here, the acid-catalyzed deacetalization of 

dimethoxy methylbenzene to benzaldehyde followed by the base-catalyzed Knoevenagel 

condensation with ethyl cyanoacetate towards ethyl 2-cyano-3-phenyl acrylate was chosen as a 

commonly employed two-step reaction for Wolf-Lamb type catalysis in one-pot (Scheme 

12).[6,18,24]  

 

B 

C 
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Scheme 12. The catalytic Wolf-Lamb type reaction of dimethoxy methylbenzene to 

benzaldehyde to ethyl 2-cyano-3-phenyl acrylate in toluene and DMF at 80 °C.  

 

From previous works, it is known that the first reaction step with P(S67-co-SSA18-co-MABP15) 

works for either electrospun catalytic membrane or printed structures.[26,27] Therefore, the 

second reaction step needed to be tested (Figure 30) as this reaction needs higher basicity than 

it is provided by 4-vinyl pyridine as a base (pKa ~ 4.5) . Figure 30 clearly shows that the 

Knoevenagel reaction of benzaldehyde with ethyl cyanoacetate to ethyl-2-cyano-3-phenyl 

acrylate was successful with a high yield of more than 95% after around 180 min. Therefore, 

the polymeric base catalyst should be suitable for the Wolf-Lamb type two-step reaction 

sequence in one pot with the basic Knoevenagel condensation in the next steps.  

 

Figure 30. The reaction of benzaldehyde (green, circles) with ethyl cyanoacetate (red, triangles) 

to ethyl-2-cyano-3-phenyl acrylate (blue, squares) in DMF at 80 °C. 400 mg of  P(S76-co-

4VBA15-co-BPAm9) electrospun membrane was used, resulting in 3.9 mol% catalytically 

active repeating units. The concentration of benzaldehyde was 0.5 mol L-1, the concentration of 

ethyl cyanoacetate was 0.6 mol L-1. Undecane was used as an internal standard. 
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For the actual Wolf-Lamb type reaction, the electrospun and printed systems are compared with 

toluene as solvent as here reusability is possible (Figure 31A, 6B first cycle; Figure 6C, 6D 

third cycle, second cycle Supporting Information Figure S13). Comparing the reaction in 

toluene for electrospun membranes and 2D printed structures shows that the overall reaction 

time is lower for the printed structure (Figure 6A, B). After 10 min, the first reaction step of 

the conversion to benzaldehyde is finished, and the second reaction step is completed after 30 

min. In contrast, the electrospun membranes needed 90 min for the first step's full conversion 

and around 150 min for the second reaction step. Here, it clearly shows that the printed structure 

is more advantageous than the electrospun membrane (Supporting Information, Figure S11). 

The reachability of catalytic sites appears to be hindered due to the necessary mass transport 

within the fibrous gel network in electrospun membranes. The swelling of fibers in electrospun 

membranes in the reaction medium led to the formation of a gel.  In contrast, in the denser 

printed networks, the necessary diffusion length to reach catalytic sites is lower, resulting in an 

increase in performance. Both systems were reusable in toluene as high conversion (more than 

95%) was still obtained after 60 min (in case of 2D printed structure) and after 240 min for 

electrospun membranes (Figure 6C, D). Three test cycles were run for the reusability test. The 

group of Zhang reported a decrease of conversion from 100% down to 95% within the first 

three cycles and 90% for the fifth cycle[18] or by the group of Degirmenci who also observed a 

continuous decrease of conversion from 97% down to 93% within the first three cycles.[19] To 

further compare the systems, the reactions were fitted using differential equations (Supporting 

Information, Equation S11 – S14; Table 1). The fitted kinetic parameters also show that the 

reaction speed, especially for the first reaction step, is over 10 times higher for printed structures 

(Table 1, entry 4) than for electrospun membranes. The second step shows about 5 times higher 

value of k2 for the printed structures explaining the faster reaction rate observed in the time-

concentration curves (Table 1, entry 5; Figure 6B). 
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Figure 31. The two-step reaction system of the deacetalisation of dimethoxybenzyl acetate 

(blue circles) to benzaldehyde (red crosses), which reacts with ethyl cyanoacetate to ethyl-2-

cyano-3-phenyl acrylate (green squares). (A) First cycle and (C) third cycle for catalytic 

membrane in toluene, (B) first cycle and (D) third cycle for catalytic 2D printed structure in 

toluene, (E) catalytic membrane in DMF. Reaction conditions were 0.5 mol L-1 

dimethoxybenzyl acetate, 0.6 mol L-1 ethyl cyanoacetate, and 1 mol L-1 water with 80 mg of 

each acidic (3.6 mol%) and basic (3.9 mol%) catalytic material in 5 mL of solvent at 80 °C.  

 

A B 

C 
D 
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Comparison of toluene and DMF as solvents show that high conversion (more than 95%) is 

achieved after 180 min in DMF and is, therefore, slower than the reaction in toluene (150 min). 

The first reaction step is finished after 60 min in both cases. Nevertheless, the second reaction 

step is slower, monitored by the higher peak of benzaldehyde at 0.4 mol L-1 at 30 min for the 

catalysis in DMF compared to the peak at 0.35 mol L-1 at 30 min in toluene (Figure 6A, E). As 

the system is only reusable in toluene in which only a very small amount of water is miscible, 

which is different from DMF, for this specific system, toluene is more advantageous as a solvent 

because of the higher reaction rates. The fitted reaction rates (Table 1, entry 4) further show no 

significant difference between the reaction rates for the first step, but a 60% increase for the 

second reaction step reaction rate, showing that toluene is a better solvent for this specific 

system. 

 

Table 4. Fitted parameters of the first cycle for different solvents and structures. 

 

 

Electrospun 

membrane; reaction 

solvent: DMF 

Electrospun 

membrane; reaction 

solvent: toluene 

 

Printed structure; reaction 

solvent: Toluene 

 

𝑐𝐴0 a,b 0.50  0.49  0.50 

𝑐𝐵0 a,c 1.27 1.10  0.80 

𝑐𝐷0(fixed) a,d 0.6 0.6  0.6 

𝑘1 e,f 0.067 0.073  0.94 

𝑘2 e.g 0.035 0.059 0.250 

a) mol L-1, b) concentration of dimethoxy methyl benzene at t = 0 min, c) concentration of water 

at t= 0 min, d) concentration of ethyl cyano acetate at t = 0 min, e) mol (L min)-1, f) reaction rate 

constant of the first reaction step, g) reaction rate constant of the second reaction step 

Comparing this work to the porous polyHIPE catalyst used by the group of Degirmenci[19], the 

performance of the printed structures is better, while the electrospun membrane is less. They used 
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50 µmol of basic and acidic highly porous catalyst within their work, reaching a conversion of over 

95% within 3 hours. In contrast, our system with 90 µmol of acidic and basic catalyst reached a 

conversion of over 95% within 40 minutes for the printed structures, while the electrospun 

membranes needed around 4 hours. The higher amount of catalyst is influencing the reaction speed, 

but it is safe to assume that the printed catalyst would also perform better with a decreased amount. 

 

CONCLUSION 

Within this work, we were able to show that electrospun membranes and 2D-printed structures 

can be post-process functionalized to obtain active catalytic units for use in one-pot reactions 

using Wolf-Lamb type catalysts that are not achievable before processing. By solid-state NMR 

and Raman imaging, we were able to show that the post-processing functionalization was 

successfully achieved with high conversion. The catalytic materials were tested for a two-step 

reaction (acidic catalyzed deacetalization reaction of dimethoxy methylbenzene to 

benzaldehyde followed by the basic catalyzed Knoevenagel condensation to ethyl 2-cyano-3-

phenyl acrylate) in one-pot. The kinetics of the two-step reaction was calculated using a 

differential equation to compare these systems and understand the underlying reaction 

dynamics. These catalytic studies showed that the electrospun and printed materials achieved a 

high conversion, and reusability is dependent on the right solvent.  

Overall, this work opens the use of not only acid and base-catalysis for such Wolf-Lamb type 

reactions but further increases the applicability as a possible modular system for more-step 

reactions and carrier systems for organo-catalysts. The straight forward polymer synthesis via 

free-radical copolymerization combined with the general easy preparation of catalytic 

structures by electrospinning and 2D printing can be applied in different ways for future 

catalysts.  
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 Supporting Information. Detailed further analytical results and calculations are shown in 

the supporting information (file type PDF). 
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Monomer synthesis 

 
Scheme S13. Nucleophilic substitution of 4-vinyl benzyl chloride (1) with potassium 

phthalimide (2) in DMF at 50 °C for 16 h to obtain N-(4-vinyl benzyl)phthalimide (3) and of 

acryloyl chloride (4) with 3-amino benzophenone (5) in DCM at 0 °C for 2 h to get N-(4-

benzoylphenyl)acrylamide (6). 

 

Mechanism of crosslinking with Benzophenone 

 

 
Scheme S14: Crosslinking mechanism of Benzophenone. The direct coupling is not necessary 

and can further radically react with the polymer at different sites. 
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Deportection reaction 

 

Scheme S3. Deprotection of P(S76-co-4VBI15-co-BPAm9) with hydrazine to P(S76-co-4VBA15-

co-BPAm9), bearing pendant primary amine groups. 
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N-(4-vinylbenzyl)phthalimide 

 

Figure S1. 1H-NMR measurement of synthesized N-(4-vinyl benzyl)phthalimide measured in 

CDCl3.  

Figure S2. 13C-NMR measurement of synthesized N-(4-vinyl benzyl)phthalimide measured in 

CDCl3. 
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N-(4-benzoylphenyl)acrylamide  

 

Figure S3. 1H-NMR measurement of synthesized N-(4-benzoylphenyl)acrylamide measured in 

CDCl3.  

 

Figure S4. 13C-NMR measurement of synthesized N-(4-benzoylphenyl)acrylamide measured 

in CDCl3. 

Synthesis of P(S71-co-4VBI15-co-BPAm9) 

a 

f 

b c

 
d 

e e 

f 

h 

i 

h 

g 

g 

a 

d 

c

 
b 

h 

i 

g/e/f 

d 

i

c 

a 
b 

e e 

f f g 

h j 

k 

k 

l j 

i 

c 

h d 
g 

e 

a/b/e/

f/j/k/l 

a 
b 

a 
b 

a 
b 



Precise 2D-
 

131 
 

 

Figure S5. 1H-NMR of P(S71-co-4VBI15-co-BPAm9) was measured in CDCl3. 

 

The calculation was done as follows: 

mol%Styrene =

∫ 𝑐−4

5
∫ 𝑐−4

5
+1+

∫ 𝑑−9

9

× 100%     (S1) 

mol%4VBI    = 

∫ 𝑑−9

5
∫ 𝑐−4

5
+1+

∫ 𝑑−9

9

× 100%     (S2) 

mol%4VBPI  =
1

∫ 𝑐−4

5
+1+

∫ 𝑑−9

9

× 100%     (S3) 
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Composition determined through 1H-NMR with the help of equation S1-S3:  

Styrene: 76% 

4-vinylbenzylphtalimide: 15% 

Acrylamide benzophenone: 9% 

Resulting in P(S71-co-4VBI15-co-BPAm9). 

 

 

Figure S6. The apparent molecular weight distribution of P(S76-co-4VBI15-co-BPAm9) 

determined by DMF-GPC. 
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Synthesis of P(S67-co-SSNa18-co-MABP15) 

 

 

Figure S7. 1H-NMR of P(S67-co-SSNa18-co-MABP15) measured in DMSO-d6 and calibrated 

on the residue undeuterated protons of DMSO. 

 

Figure S8. The apparent molecular weight distribution of P(S67-co-SSNa18-co-MABP15) was 

determined by DMF-GPC. 
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Table S5. Elemental analysis for the calculation of the amount of sodium styrene sulfonate. 

Element Amount [wt%] 

H 6.2 

C 76.9 

N 0.0 

S 3.7 

O 13.1 
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The calculation of the amount of methacryloyl benzophenone was performed through the 

following equations. First, the amounts were calculated in mol% 

𝑚𝑜𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 =
𝑤𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡×𝑤𝑡%

100×𝑀𝐸𝑙𝑒𝑚𝑒𝑛𝑡
         (S4) 

𝑚𝑜𝑙%𝐸𝑙𝑒𝑚𝑒𝑛𝑡 =
𝑚𝑜𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝑚𝑜𝑙𝐶+𝑚𝑜𝑙𝑆+𝑚𝑜𝑙𝑂
        (S5) 

By calculating mol%, it is possible to determine the amount of involved sulfur and oxygen 

elements in the amount of styrene sulfonic acid. 

𝑚𝑜𝑙%𝐶(𝑆𝑆𝐴) = 𝑚𝑜𝑙%𝑆 × 8         (S6) 

𝑚𝑜𝑙%𝐶(𝑀𝐴𝐵𝑃) = (𝑚𝑜𝑙%𝑂 − 𝑚𝑜𝑙%𝑆 × 3) × 17      (S7) 

𝑚𝑜𝑙%𝐶(𝑆) = 𝑚𝑜𝑙%𝐶 − 𝑚𝑜𝑙%𝐶(𝑆𝑆𝐴) − 𝑚𝑜𝑙%𝐶(𝑀𝐴𝐵𝑃)     (S8) 

The value obtained for 𝑚𝑜𝑙%𝑆𝑆𝐴 was used as a fixed value and was used to calculate the amount 

of styrene and methacryl benzophenone with 1H-NMR. Here, equation S9 was used for 

calculation. 

𝑚𝑜𝑙%𝐶(𝑆𝑆𝐴) =
𝑥

4
1

9
+

2.99−𝑥

5
+

𝑥

4

         (S9) 

Through equation S1 – S3, the resulting amounts were then lastly calculated. 

Styrene: 67% 

Sodium styrene sulfonate: 18% 

Methacryl benzophenone: 15% 

Resulting in P(S67-co-SSNa18-co-MABP15). 
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Figure S9. 13CSolid-state NMR of P(S76-co-4VBI15-co-BPAm9).  

 

 

Figure S10. 13CSolid-state NMR of P(S76-co-4VBA15-co-BPAm9). 
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Printed structures on top of the mesh 

 

Figure S11. (A) Optical microscopy image of the printed P(S71-co-4VBI15-co-BPAm9) 

copolymer structure on a PA mesh with the position of Raman measurement. (B) Raman spectra 

for the polyamide mesh (bottom, red) and P(S71-co-4VBI15-co-BPAm9) (top blue). (C) Raman 

cross-section of the printed P(S71-co-4VBI15-co-BPAm9) (colored in red) on top of the 

polyamide mesh (colored in blue). The printed copolymer is mainly located in between the 

cavities of the mesh. (D) Extracted distribution of P(S71-co-4VBI15-co-BPAm9) within the mesh.    
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Catalytic studies 

 

Figure S122. 2nd cycle of the catalytic wolf-lamb-type reaction. (A) polymeric membranes, (B) 

printed structures. 

 

Equations S10 - S14 shows the differential equation for the fitting of the kinetical parameters. 

𝑑𝑐𝐴

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)                                      (S10) 

𝑑𝑐𝑩

𝑑𝑡
= −𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)                                        (S11) 

𝑑𝑐𝐶

𝑑𝑡
= 𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)  − 𝑘2𝑐𝐶(𝑡 − 𝛥𝑡)𝑐𝐷(𝑡)       (S12) 

𝑑𝑐𝐷

𝑑𝑡
= −𝑘2𝑐𝐶(𝑡 − 𝛥𝑡)𝑐𝐷(𝑡)                              (S13) 

𝑑𝑐𝐸

𝑑𝑡
= 𝑘2𝑐𝐶(𝑡 − 𝛥𝑡)𝑐𝐷(𝑡)                                 (S14) 
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7. Outlook 

In this thesis, the use of polymeric wolf-lamb type catalysts was shown through model systems 

with multiple advantages such as processability, high and fast conversion and overall good 

performance of the catalysts. As the system of 3D printed polymers ultimately showed better 

performance than the electrospun membranes, further studies should go along this way. 

Moreover, multiple possibilities are imaginable as the next steps. It would also be interesting to 

use common catalytic reaction reactors to make the systems further approachable for the use in 

industrial applications. 

Not only are two-step processes possible, but a third or fourth step could also be realized and 

could lead to interesting results and structures. The processing systems shown in this paper are 

ideal candidates for these studies as the modular character of it makes it easy to adapt to new 

systems. With the system and the reaction shown in Publication 3, it could be possible to 

immobilize nanoparticles directly through the amine groups to be used in hydration reactions 

to add a third step. Alternatively, the nanoparticles could be immobilized on the surface or 

within a separate structure. The hydration reagent needs to be chosen accordingly, making the 

use of Hydrogen necessary as other common hydration reagents would interfere with the acidic 

character of the systems. Further, it would also be possible to use another modular catalyst to 

use the existing π-bond for new structures. 

Secondly, while acid-base reactions are an easy-to-apply model system, the aim should be in 

the immobilization of incompatible organocatalysts, as acid and base reactions are limited in 

the usability of the structures and the incompatibility can be discussed as it is greatly influenced 

by the pkA value. The post-processing method with hydrazine set out in this paper shows that 

there is a possibility for later modification. By introduction of azide- or hydroxy-groups, the 

post-processing modification, either through common click-chemistry or ester bonds, is 

realizable. This would allow for the immobilization in a great variety of different catalysts 

which might even require inert conditions which are not easily accessible during processing. 

Lastly, it would be interesting to see the upscalability as the systems have easy-to-apply 

reactions. In such case, continuous processing must be realized on a large scale. As for 3D 

printing, which should be easily achievable for electrospun structures, the use of nozzle-free 

electrospinning could be interesting as it greatly increases the fibre production. 
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