
DESIGNING CODES FOR STORAGE ALLOCATION

SASCHA KURZ

ABSTRACT. Service rates for storage allocation were considered in [11]. In this notes we consider the de-
sign of good or optimal codes with respect to this metric. The cases of two files is completely and the case of
three files is partially resolved, see also [8] where a subset of these results are presented in a more compact
way.

Keywords: distributed storage; linear codes; service rates of codes

1. PRELIMINARIES

Suppose there are k files f1, . . . , fk with request rates λ1, . . . , λk. The service rate region S(G, µ) ⊆
Rk≥0 is defined as the set of all request vectors λ that can be served by a coded storage system with
generator matrix G ∈ Fk×nq and service rate µ. In the following we assume µ = 1, i.e., µi = 1 for all
i ∈ [n], where [n] = {1, . . . , n} for each integer n, and abbreviate S(G,1) as S(G). In order to be more
precise we need to introduce more notation. A linear code C of dimension k over Fq can be described
by a generator matrix G ∈ Fk×nq . Note that there are usually generator matrices that span the same
linear code, i.e., whenever the row span of two matrices G and G′ coincides, the span the same code.
Another representation of a linear code C over Fq is a multiset G of points in PG(k− 1, q), where a point
is a 1-dimensional subspace of Fkq . In what follows, we restrict ourselves to the binary field F2, which
allows us to simplify the notation a bit. First we associate the points of PG(k − 1, 2) with the non-zero
vectors in Fk2 , then we interpret each such vector v as the binary expansion of a corresponding integer
1 ≤ i ≤ l := 2k − 1. We denote the vector corresponding to the integer i ∈ [l] by vi. As examples,
the vector v4 = (1, 0, 0) corresponds to the integer 4 and the vector v3 = (0, 1, 1) corresponds to the
integer 3. In order to uniquely characterize a multiset of points G in PG(k − 1, 2) we use multiplicities
ni ∈ N, where i ∈ [l], counting the number of occurrences of the vector vi in Fk2\{0}, where i ∈ [l], in
the generator matrix G. So, we have

∑
i∈[l] ni = n. The notion of a multiset of points G factors out the

symmetry of column permutations of corresponding generator matrices G. Due to the correspondence
between a generator matrix G and a multiset of points G we also write S(G) instead of S(G) for the
service rate region and remark that we will directly define S(G) later on.

A recovery set Y for file fi, where i ∈ [k], is a subset of S ⊆ [l] such that the span 〈{vj | j ∈ S}〉
contains the ith unit vector ei. We call a recovery set S reduced for i there does not exists a proper subset
S′ (S with ei ∈ 〈{vj | j ∈ S′}〉. For q = 2 and a reduced recovery set S there is no need to specify the
index i of the file that is recovered since

∑
j∈S vj = ei. However, in F3 the set {e1 + e2, e1 + 2e2} spans

a 2-dimensional subspace containing both e1 and e2, while none of these two unit vectors is contained in
the span of a proper subset. Since we assume q = 2, we will mostly speak just of a recovery set without
specifying i. By Yi we denote the set of all reduced recovery sets for file fi, where i ∈ [k]. For k = 3
and i = 2 we have

Y2 =
{
{2}, {4, 6}, {1, 3}, {5, 7}, {1, 4, 7}

}
,

which corresponds to{
{(0, 1, 0)}, {(1, 0, 0), (1, 1, 0)}, {(0, 0, 1), (0, 1, 1)}, {(1, 0, 1), (1, 1, 1)}, {(0, 0, 1), (1, 0, 0), (1, 0, 1)}

}
.

1

2 SASCHA KURZ

We remark that the maximum cardinality of a reduced recovery set is k, which can indeed be attained.
Given a multiset of points G in PG(k−1, 2), described by the multiplicities nj , the service rate region

S(G) is the set of all vectors λ ∈ Rk≥0 for which there exists αi,Y , satisfying the following constraints:∑
Y ∈Yi

αi,Y = λi, for all i ∈ [k], (1a)

k∑
i=1

∑
Y ∈Yi : j∈Y

αi,Y ≤ nj , for all j ∈ [l], (1b)

αi,Y ∈ R≥0, for all i ∈ [k], Y ∈ Yi. (1c)

The constraints (1a) guarantee that the demands for all files are served, and constraints (1b) ensure that
no node receives requests at a rate in excess of its service rate.

As noted before, for q = 2, each reduced recovery set uniquely characterizes the file it recovers. In
other words the Yi are pairwise disjoint and form a partition of Y := ∪i∈[k]Yi. With this we can simplify
the above characterization, i.e., the service rate region S(G) is the set of all vectors λ ∈ Rk≥0 for which
there exists αY , satisfying the following constraints:∑

Y ∈Yi
αY ≥ λi, for all i ∈ [k], (2a)

∑
Y ∈Y : j∈Y

αY ≤ nj , for all j ∈ [l], (2b)

αY ∈ R≥0, for all Y ∈ Y. (2c)

Note that constraint (2a) looks like a relaxation of constraint (1a), while it does not matter for the defini-
tion of S(G) if we use “=” or “≥”.

After these preparations we can come to the main questions of this paper. For each (bounded) subset
R ⊂ Rk≥0 we can ask for the minimum number n(R) of servers such that there exists a generator matrix
G ∈ Fk×n2 withR ⊆ S(G) (or alternatively, such that there exists a multiset of points G in PG(k− 1, 2)
with R ⊆ S(G)). So, we ask for lower bounds for n(R) and constructive upper bounds for n(R), i.e.,
the construction of good codes. Note that we can have S(G) 6= S(G′) or S(G) 6= S(G′) even if G,G′

or G,G′ generate the same linear code C, so that we have to speak of the construction of good generator
matrices or good multisets of points, in order to be more precise.

Before we give integer linear programming (ILP) formulations for the determination of n(R) we first
study a few structural properties.

Lemma 1.1. We have n(R) = n(conv(R)), where conv(R) is the convex hull ofR.

Proof. It suffices to observe that the service rate region S(G) of every generator matrix G ∈ Fk×n2 is
convex. �

The relation x ≤ y, i.e., xi ≤ yi for all 1 ≤ i ≤ k, forms a poset in Rk≥0 with the unique
minimal element 0. In that context, the lower set S ↓ of a subset S ⊆ Rk≥0 is defined via S ↓:={
x ∈ Rk≥0 | ∃y ∈ S : x ≤ y

}
. As an example we consider the set S = conv({(0, 0), (1, 2), (2, 1)}) ⊂

R2
≥0, which is a triangle with area 3

2 . Here, the corresponding lower set

S↓= conv({(0, 0), (0, 2), (2, 0), (1, 2), (2, 1)})

is a pentagon with area 7
2 .

Lemma 1.2. We have n(R) = n(R↓), whereR↓ is the lower set ofR.

DESIGNING CODES FOR STORAGE ALLOCATION 3

Proof. It suffices to observe that the service rate region S(G) of every generator matrix G ∈ Fk×n2 is its
own lower set, i.e., S(G) = S(G)↓. �

Taken the above two observations into account, we want to parameterize a large class of reasonable
subsets R ⊂ Rk≥0 by a function T : 2{1,...,k} → N that maps the subsets of {1, . . . , k} to integers, where
T (∅) = 0.

Definition 1.3. Let T : 2{1,...,k} → N with T (∅) = 0. With this, we set

R(T) :=

{
λ ∈ Rk≥0 |

∑
i∈S

λi ≤ T (S)∀∅ 6= S ⊆ {1, . . . , k}

}

and abbreviate n(R(T))) as n(T).

By construction R(T) is a polytope, i.e., a bounded polyhedron, which especially is convex, see
e.g. [7] for more details. Moreover, R(T)↓= R(T), i.e., R(T) is its own lower set. In some cases we
can modify values of the function T without changingR(T).

Lemma 1.4. Let T : 2{1,...,k} → N with T (∅) = 0 and let T ′ be given by the following algorithm:

for each S ⊆ {1, . . . , k} do
T ′(S)← T (S)

end for
changed← true
while changed = true do
changed← false
for each S ⊆ {1, . . . , k} do

for each ∅ 6= U (S do
if T ′(S) > T ′(U) + T ′(S\U) then
T ′(S)← T ′(U) + T ′(S\U)
changed← true

end if
end for
for each S (V ⊆ {1, . . . , k} do

if T ′(S) > T ′(V) then
T ′(S)← T ′(V)
changed← true

end if
end for

end for
end while

Then, we have R(T) = R(T ′). Moreover, if we apply the algorithm again on T ′ and obtain T ′′, then
T ′ = T ′′.

Proof. After the first initializing loop we obviously haveR(T) = R(T ′). Now we consider a single step
where T ′(S) is replaced by either T ′(U)+T ′(S\U) or T ′(V). Inductively we know that each λ ∈ R(T ′)
satisfies

∑
i∈S′ λi ≤ T ′(S′) for all S′ ⊆ {1, . . . , k}. Since this especially holds for S′ = U , S′ = S\U ,

and S′ = V we also have ∑
i∈S

λi ≤ T ′(U) + T ′(S\U)

4 SASCHA KURZ

and ∑
i∈S

λi
λ≥0

≤
∑
i∈V

λi ≤ T ′(V).

So, after each replacement we still haveR(T) = R(T ′).
In order to show that the algorithm terminates let

ε = min{T (U)− T (V) | ∅ ⊆ U, V ⊆ {1, . . . , k}, T (U)− T (V)}.

By induction over the number of replacements we can easily show that ε ≤ min{T ′(U) − T ′(V) |
∅ ⊆ U, V ⊆ {1, . . . , k}, T ′(U) − T ′(V)} at each time after the initialization loop. Thus, every replace-
ment reduces the value of

∑
S⊆{1,...,} T

′(S) by at least ε, so that the algorithm terminates after at least(∑
S⊆{1,...,} T (S)

)
/ε+ 1 iterations of the while loop.

Since in the last iteration of the while loop non of the if-conditions were true, this is also the case if
we apply the algorithm again. �

We remark that the function T ′ constructed by the algorithm of Lemma 1.4 is subadditive, i.e., we
have T ′(U) + T ′(V) ≥ T ′(U ∪ V) (since T ′ is non-negative it is no necessary to restrict to the cases
where U ∩ V = ∅), and monotone, i.e., we have T ′(U) ≤ T ′(V) for all ∅ ⊆ U ⊆ V ⊆ {1, . . . , k}.
Indeed, the proof of the following characterization is easy:

Lemma 1.5. A function T : 2{1,...,k} → N, with T (∅) = 0, satisfies T ′ = T , where T ′ is the result of the
algorithm of Lemma 1.4 applied to T , iff T is monotone and subadditive.

As an example we remark that a function for k = 1 each function T : 2{1,...,k} → N is monotone and
subadditive, while for k = 2 the conditions can be summarized to

max{T ({1}), T ({2})} ≤ T ({1, 2}) ≤ T ({1}) + T ({2}). (3)

Definition 1.6. LetR ⊆ Rk≥0 be a subset that cannot be enlarged by building the lower set, i.e. R↓= R.
Then, we say that a finite set S ⊆ Rk≥0 is a generating set of R if conv(S)↓= R. Moreover, we call S
minimal if no proper subset of S is a generating set ofR.

As an example we consider the function T : 2{1,2} → N given by T (∅) = 0, T ({1}) = T ({2}) = 2,
and T ({1, 2}) = 3. Here, a generating set of R(T) is given by {(1, 2), (1, 2)}. Actually, the generating
set of R(T) is always unique, since R(T) is a polytope that can be written as R(T) = conv(V), where
V is the set of vertices of the polytope, which is the unique minimal set with R(T) = conv(V). We
obtain a generating set ofR from V be removing all v ∈ V such there is a different v′ ∈ V with v ≤ v′.

Before we study bounds for n(R(T)), we give ILP formulations for the determination of n(R).

Proposition 1.7. Let
{
λ(1), . . . , λ(m)

}
be a generating set of R, i.e., we assume that R↓= R. Then,

n(R) coincides with the optimal target value of

min
∑
j∈[l]

nj

∑
Y ∈Y : j∈Y

αiY ≤ nj ∀j ∈ [l],∀i ∈ [m]

∑
Y ∈Yj

αiY ≥ λ
(i)
j ∀i ∈ [m], j ∈ [k]

nj ∈ N ∀j ∈ [l]

αiY ∈ R≥0 ∀i ∈ [m],∀Y ∈ Y,

DESIGNING CODES FOR STORAGE ALLOCATION 5

Proof. Let the multiset of points G be uniquely characterized by the integer multiplicities nj , j ∈ [l]. The
stated ILP formulation minimizes the code size n =

∑
j∈[l] nj and ensures that λ[(i)] ∈ S(G) by using

the characterization (2a)–(2c) for each i ∈ [m]. �

The drawback of the ILP formulation of Proposition 1.7 is that #Y grows doubly exponential, i.e.,
#Y gets quite large, even for moderate values of k.

Example 1.8. For q = 2, k = 2 consider the desired service rate region

R =
{

(λ1, λ2) ∈ R2
≥0 : λ1 ≤ 2, λ2 ≤ 2, λ1 + λ2 ≤ 3

}
.

and generating set
{
λ(1), λ(2)

}
of cardinalitym = 2, where λ(1) = (2, 1) and λ(2) = (1, 2). The possible

columns of a generator matrix G, i.e., the non-zero vectors in F2
2 are

v1 = (0, 1), v2 = (1, 0), and v3 = (1, 1).

The recovery sets are given by

Y1 =
{
{2}, {1, 3}

}
.

and

Y2 =
{
{1}, {2, 3}

}
With this, the ILP of Proposition 1.7 for the determination of n(R) is:

minn1 + n2 + n3

α1
{1} + α1

{1,3} ≤ n1

α1
{2,3} + α1

{2} ≤ n2

α1
{2,3} + α1

{1,3} ≤ n3

α2
{1} + α2

{1,3} ≤ n1

α2
{2,3} + α2

{2} ≤ n2

α2
{2,3} + α2

{1,3} ≤ n3

α1
{2} + α1

{1,3} ≥ 2

α1
{1} + α1

{2,3} ≥ 1

α2
{2} + α2

{1,3} ≥ 1

α2
{1} + α2

{2,3} ≥ 2

n1, n2, n3 ∈ N
αi{1}, α

i
{2,3}, α

i
{2}, α

i
{1,3} ∈ R≥0 ∀i ∈ [2]

An optimal solution is given by n1 = 2, n2 = 2, and n3 = 0, i.e., a code of length n = 4 with generator
matrix (

1 1 0 0
0 0 1 1

)
.

Optimal multipliers for the recovery sets are given by α1
{1} = 2, α1

{2,3} = 0, α1
{2} = 1, α1

{1,3} = 0 and
α2
{1} = 1, α2

{2,3} = 0, α2
{2} = 2, α2

{1,3} = 0. For the optimal multiset of points there are two further
possibilities: (n1, n2, n3) = (2, 1, 1) and (n1, n2, n3) = (1, 2, 1).

6 SASCHA KURZ

If we only want to obtain an easier to computer lower bound for n(R), then we can consider the LP
relaxation of the ILP of Proposition 1.7:

min
∑
j∈[l]

nj

nj −
∑

Y ∈Y : j∈Y
αiY ≥ 0 ∀j ∈ [l],∀i ∈ [m]

∑
Y ∈Yj

αiY ≥ λ
(i)
j ∀i ∈ [m], j ∈ [k]

nj ∈ R≥0 ∀j ∈ [l]

αiY ∈ R≥0 ∀i ∈ [m],∀Y ∈ Y,

The LP relaxation of the ILP in Example 1.8 is given by

minn1 + n2 + n3

n1 − α1
{1} − α

1
{1,3} ≥ 0

n2 − α1
{2,3} − α

1
{2} ≥ 0

n3 − α1
{2,3} − α

1
{1,3} ≥ 0

n1 − α2
{1} − α

2
{1,3} ≥ 0

n2 − α2
{2,3} − α

2
{2} ≥ 0

n3 − α2
{2,3} − α

2
{1,3} ≥ 0

α1
{2} + α1

{1,3} ≥ 2

α1
{1} + α1

{2,3} ≥ 1

α2
{2} + α2

{1,3} ≥ 1

α2
{1} + α2

{2,3} ≥ 2

n1, n2, n3 ∈ R≥0

αi{1}, α
i
{2,3}, α

i
{2}, α

i
{1,3} ∈ R≥0 ∀i ∈ [2]

and has the unique optimal solution n1 = 3
2 , n2 = 3

2 , and n3 = 1
2 with optimal multipliers α1

{1} = 3
2 ,

α1
{2,3} = 1

2 , α1
{2} = 1, α1

{1,3} = 0 and α2
{1} = 1, α2

{2,3} = 0, α2
{2} = 3

2 , α2
{1,3} = 1

2 for the recovery
sets. The optimal target value n = n1 + n2 + n3 = 7

2 can be rounded to 4 taking into account that the
length of the code has to be an integer.

As mentioned before, the ILP formulation of Proposition 1.7 underlies a massive combinatorial ex-
plosion. To be more precise, the number of variables grows exponentially and the number of constraints
grows doubly exponentially.

Lemma 1.9. Let G ∈ Fk×nq be the generator matrix of an [n, k]q code C and G be the corresponding
multiset of points of cardinality n described by point multiplicities nj . If

{
λ(1), . . . λ(m)

}
is a generating

set ofR, then we have

∑
vj∈PG(k−1,2)\H

nj ≥ max

 ∑
s∈E(H)

λ(i)
s | 1 ≤ i ≤ m

 , (4)

whereH is a hyperplane of PG(k − 1, 2) and

E(H) = {h ∈ [k] | eh /∈ 〈{v | v ∈ H}〉}

DESIGNING CODES FOR STORAGE ALLOCATION 7

is the set of indices h such that the hyperplane H does not contain the unit vector eh, i.e., eh lies in
PG(k − 1, 2) \ H .

Proof. Let 1 ≤ i ≤ m be an arbitrary index. From the ILP of Proposition 1.7 we conclude∑
Y ∈Ys

αiY ≥ λ(i)
s (5)

for each s ∈ E(H) and

nj ≥
∑

Y ∈Y : j∈Y
αiY

αiY ≥0

≥
∑

s′∈E(H)

∑
Y ∈Ys′ : j∈Y

αiY (6)

for each j ∈ [l] with vj ∈ PG(k − 1, 2) \ H. Thus, we have∑
vj∈PG(k−1,2)\H

nj ≥
∑

vj∈PG(k−1,2)\H

∑
s∈E(H)

∑
Y ∈Ys : j∈Y

αiY =
∑

s∈E(H)

∑
vj∈PG(k−1,2)\H

∑
Y ∈Ys : j∈Y

αiY .

The unit vectors es with index s in E(H) are not contained in the chosen hyperplane H, so that for each
Y ∈ Ys with s ∈ E(H) there exists an index j ∈ [l] with j ∈ Y and vj ∈ PG(k − 1, 2) \ H. Thus, we
conclude ∑

vj∈PG(k−1,2)\H

nj ≥
∑

s∈E(H)

∑
Y ∈Ys

αiY ≥
∑

s∈E(H)

λ(i)
s

from Inequality (5). �

Corollary 1.10. If
{
λ(1), . . . , λ(m)

}
is a generating set ofR, then n(R) is lower bounded by the optimal

target value of

min
∑
j∈[l]

nj

∑
vj∈PG(k−1,2)\H

nj ≥ max

 ∑
s∈E(H)

λ(i)
s | 1 ≤ i ≤ m

 ∀ hyperplanesH of PG(k − 1, 2)

nj ∈ N ∀j ∈ [l].

Note that the ILP of Corollary 1.10 contains exactly 2k − 1 constraints and (integer) variables. So
we have obtained a, with respect to Proposition 1.7, smaller formulation for the determination of n(R).
However, we only obtained a lower bound on n(R). Indeed, from the context of private information
retrieval (PIR) codes, see [9], we know that the optimal target value of the ILP of Corollary 1.10 can
differ from n(R), i.e., it can be strictly smaller.

Example 1.11. For λ = (3, 4, 5) the ILP of Corollary 1.10 reads

n4 + n5 + n6 + n7 ≥ 3,

n2 + n3 + n6 + n7 ≥ 4,

n1 + n3 + n5 + n7 ≥ 5,

n2 + n3 + n4 + n5 ≥ 7,

n1 + n3 + n4 + n6 ≥ 8,

n1 + n2 + n5 + n6 ≥ 9,

n1 + n2 + n4 + n7 ≥ 12.

An integral solution is e.g. given by n5 = 7, n6 = 8, n7 = 12, and ni = 0 for the remaining i ∈
{1, 2, 3, 4}. If G is the multiset of points in PG(3 − 1, 2) that is uniquely described by the ni, then we
have λ ∈ S(G). We have v5 = (1, 0, 1), v6 = (1, 1, 0), and v7 = (1, 1, 1), so that the only usable

8 SASCHA KURZ

recovery set for e1 is given by {5, 6, 7}, for e2 we only can use {5, 7}, and for e3 the only possibility is
{6, 7}. Taking these recovery sets with multiplicities 3, 4, and 5 uses all available servers and is indeed
the unique solution of the ILP of Proposition 1.7.

Lemma 1.12. Let {λ} be a generating set of R ⊆ R2
≥0 and n be an integral solution of the ILP of

Corollary 1.10. If λ ∈ R2
≥0 and G is the multiset corresponding to n, then λ ∈ S(G), i.e., there exists a

feasible choice of αY satisfying (2a)-(2c).

Proof. The constraints of the ILP of Corollary 1.10 read

n2 + n3 ≥ λ1,

n1 + n3 ≥ λ2,

n1 + n2 ≥ λ1 + λ2

and the recovery sets are given by

Y1 =
{
{2}, {1, 3}

}
,

Y2 =
{
{1}, {2, 3}

}
.

Setting

α{2} = min {n2, λ1} ,
α{1} = min {n1, λ2} ,
α{1,3} = max {0, λ1 − n2} ,
α{2,3} = max {0, λ2 − n1}

we have

α{2} + α{1,3} = λ1,

α{1} + α{2,3} = λ2,

α{1} + α{1,3} ≤ n1,

α{2} + α{2,3} ≤ n2, and
α{1,3} + α{2,3} ≤ n3.

Only the latter inequality needs a short case analysis. If n2 ≥ λ1 and n1 ≥ λ2, then α{1,3} + α{2,3} =
0 ≤ n3. Since n1 + n2 ≥ λ1 + λ2 we cannot have n2 < λ1 and n1 < λ2. So, let us assume n2 < λ1 and
n1 ≥ λ2. Then, α{2,3} = 0, α{1} = λ2, α{2} = n2, α{1,3} = λ1 − n2, and α{1,3} + α{2,3} = λ1 − n2,
which is at most n3 due to n2 +n3 ≥ λ1. The other case n2 ≥ λ1 and n1 < λ2 follows analogously. �

In order to apply Corollary 1.10 to Example 1.8 we writeH = {j ∈ [k] | vj ∈ H} for each hyperplane
H and obtain:

H1 = {e2} , H1 = {1} ⇒ n2 + n3 ≥ 2,

H2 = {e1} , H2 = {2} ⇒ n1 + n3 ≥ 2,

H3 = {e1 + e2} , H1 = {3} ⇒ n1 + n2 ≥ 3.

Summing up all three inequalities and dividing by two yields n = n1 + n2 + n3 ≥ 7
2 , sot that n ≥ 4. As

3.5 is the optimal target value of the LP relaxation of the ILP from Proposition 1.7, it also has to be the
optimal target value of the LP relaxation of the ILP from Corollary 1.10. Again the optimal ILP solutions
are given by

(n1, n2, n3) ∈
{

(2, 2, 0), (2, 1, 1), (1, 2, 1)
}
,

where all corresponding generator matrices G indeed achieve a service rate region S(G) ⊇ R.

DESIGNING CODES FOR STORAGE ALLOCATION 9

Let us consider another example in order to illustrate that solving the LP relaxation and uprounding
the target value can yield a weaker bound than solving the corresponding ILP.

Example 1.13. For q = 2, k = 3 consider the desired service rate region R = R(T), where T (∅) = 0
and T (S) = #S + 1 for ∅ 6= S ⊆ [3], i.e.,

R =
{

(λ1, λ2, λ2) ∈ R3
≥0 : λ1 ≤ 2, λ2 ≤ 2, λ3 ≤ 2, λ1 + λ2 ≤ 3, λ1 + λ3 ≤ 3, λ2 + λ3 ≤ 3, λ1 + λ2 + λ3 ≤ 4

}
.

A generating set
{
λ(1), λ(2), λ(3)

}
orR of cardinalitym = 3 is given by λ(1) = (2, 1, 1), λ(2) = (1, 2, 1),

and λ(3) = (1, 1, 2). The possible columns of a generator matrix G, i.e., the non-zero vectors in F3
2 are

v1 = (0, 0, 1), v2 = (0, 1, 0), v3 = (0, 1, 1), v4 = (1, 0, 0), v5 = (1, 0, 1), v6 = (1, 1, 0), and v7 = (1, 1, 1).

In order to write down the inequalities from Lemma 1.9 we describe a hyperplane H as a set of vectors
(x1, x2, x3) ∈ F3

2 \ {0} satisfying a certain constraint
∑3
i=1 cixi, where (c1, c2, c3) ∈ F3

2 \ {0}:

H1 : x1 = 0 ⇒ e1 /∈ H1 ⇒ n4 + n5 + n6 + n7 ≥ 2 = max(λ
(1)
1 , λ

(2)
1 , λ

(3)
1) (7)

H2 : x2 = 0 ⇒ e2 /∈ H2 ⇒ n2 + n3 + n6 + n7 ≥ 2 = max(λ
(1)
2 , λ

(2)
2 , λ

(3)
2) (8)

H3 : x3 = 0 ⇒ e3 /∈ H3 ⇒ n1 + n3 + n5 + n7 ≥ 2 = max(λ
(1)
3 , λ

(2)
3 , λ

(3)
3) (9)

H4 : x1 + x2 = 0 ⇒ e1, e2 /∈ H4 ⇒ n2 + n3 + n4 + n5 ≥ 3 = max
(∑
j=1,2

λ
(i)
j : i ∈ [3]

)
(10)

H5 : x1 + x3 = 0 ⇒ e1, e3 /∈ H5 ⇒ n1 + n3 + n4 + n6 ≥ 3 = max
(∑
j=1,3

λ
(i)
j : i ∈ [3]

)
(11)

H6 : x2 + x3 = 0 ⇒ e2, e3 /∈ H6 ⇒ n1 + n2 + n5 + n6 ≥ 3 = max
(∑
j=2,3

λ
(i)
j : i ∈ [3]

)
(12)

H7 : x1+x2+x3 =0 ⇒ e1, e2, e3 /∈ H7 ⇒ n1+n2+n4+n7 ≥ 4 = max
(∑
j=[3]

λ
(i)
j : i ∈ [3]

)
(13)

Summing up inequalities (7)-(13) and dividing by four gives n ≥
⌈

19
4

⌉
= 5. Indeed, the LP relaxation of

the ILP from Corollary 1.10 has an optimal solution n1 = n2 = n4 = 5
4 , n3 = n5 = n6 = n7 = 1

4 with
target value 19

4 . Next we will show n ≥ 6 for the ILP and assume that there exists an integral solution
with n = 5. Summing the inequalities over all hyperplanes Hi containing v1 = e3, i.e., (7), (8), and
(10), and dividing by two gives

∑
j∈[l]\{1} nj ≥ 3.5, so that n1 ≤ 1. By symmetry, we also conclude

n2, n4 ≤ 1. Summing the inequalities over all hyperplanes Hi not containing v1 = e3, i.e., (9), (11),
(12), and (13), and dividing by two gives 2n1 +

∑
j∈[l]\{1} nj ≥ 6, so that n1 ≥ 1. Thus, n1 = 1 and,

by symmetry, also n2 = n4 = 1. Summing inequalities (10)-(12), plugging in the known values, and
dividing by two gives n3 + n5 + n6 ≥ 1.5, so that n7 ≤ 0.5, i.e., n7 = 0. However, this contradicts
Inequality (13).

An integral solution for n = 6 can indeed be attained by n1 = n2 = n4 = 2, n3 = n5 = n6 = n7 = 0.
It can be easily checked that the corresponding generator matrix

G =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 .

satisfies S(G) ⊇ R.

In Proposition 2.14 we will give a general result that directly yields n(R) ≥ 6 for Example 1.13.

10 SASCHA KURZ

2. BOUNDS FOR n(T)

Let T : 2[2] → N be monotone, subadditive, and satisfy T (∅) = 0, i.e., by Inequality (3)

max{T ({1}), T ({2})} ≤ T ({1, 2}) ≤ T ({1}) + T ({2}).
The corresponding generating sets ofR(T) can be easily described:

Lemma 2.1. If T : 2[2] → N is monotone, subadditive, and satisfies T (∅) = 0, then a generating set of
R(T) is given by

S =
{(
T ({1}), T ({1, 2})− T ({1})

)
,
(
T ({1, 2})− T ({2}), T ({2})

)}
.

Proof. First, we check that each λ ∈ S satisfies the constraints λ1 ≤ T ({1}), λ2 ≤ T ({2}), and
λ1 + λ2 ≤ T ({1, 2}).

For the other direction let λ ∈ R2
≥0 satisfying the constraints λ1 ≤ T ({1}), λ2 ≤ T ({2}), and λ1 +

λ2 ≤ T ({1, 2}). W.l.o.g. we assume that at least one of these three inequalities is satisfied with equality,
since we could increase λ otherwise. If λ1 + λ2 = T ({1, 2}), then λ ∈ conv(S) since λ1 ≤ T ({1}) and
λ2 ≤ T ({2}). So let us now consider the case λ1 = T ({1}). If λ2 < T ({2}) and λ1 + λ2 < T ({1, 2})
then we could increase λ, so that we can assume λ2 < T ({2}) and conclude λ1 + λ2 = T ({1, 2}) from
the subadditivity of T . The case λ2 = T ({2}) can be treated analogously. �

We remark that the generating set of Lemma 2.1 has cardinality 2 or 1, where the latter happens if the
two vectors coincide, which happens iff T ({1}) = T ({2}) and T ({1, 2}) = 2T ({1}).

Definition 2.2. For a set ∅ 6= S ⊂ N>0 of positive integers we denote by Simpl(S) the set of non-zero
vectors in 〈{ei | i ∈ S}〉 over F2.

We remark that Definition 2.2 defines binary simplex codes, which can be easily generalized to arbi-
trary finite fields Fq .

The following is well-known:

Lemma 2.3. For each ∅ 6= S ⊆ [k] ⊂ N>0 we have # Simpl(S) = 2s − 1 and S(Simpl(S)) = R(T),
where s = #S and T : 2[k] → N is given by T (U) = 2s−1 if U ∩ S 6= ∅ and T (U) = 0 otherwise (for
all U ⊆ [k]).

As an abbreviate we write 1
2 · Simpl({i, j}) = {ei, ej} for two different positive integers i and j.

Note that the cardinality is
⌈

1
2 ·# Simpl({i, j})

⌉
= 2 and the service rate region contains the service rate

region of Simpl({i, j}) scaled by a factor of 1
2 , i.e.,

S({ei, ej}) =
{
λ ∈ Rk≥0 | λi ≤ 1, λj ≤ 1

}
)
{
λ ∈ Rk≥0 | λi ≤ 1, λj ≤ 1, λi + λj ≤ 1

}
.

Theorem 2.4. For the service rate region

R =
{
λ ∈ R2

≥0 : λ1 ≤ X,λ2 ≤ Y, λ1 + λ2 ≤ Σ
}
,

where X,Y,Σ are non-negative integers with max{X,Y } ≤ Σ ≤ X + Y , we have n(R) =
⌈
X+Y+Σ

2

⌉
.

Proof. Note that the condition of Inequality (3) is satisfied, so that we can apply Lemma 2.1. The in-
equalities from Lemma 1.9 read

n1 + n3 ≥ X = max{X,Σ− Y },
n2 + n3 ≥ Y = max{Y,Σ−X},
n1 + n2 ≥ Σ = max{Σ,Σ},

so that summing up and dividing by two gives

n = n1 + n2 + n3 ≥
X + Y + Σ

2
.

DESIGNING CODES FOR STORAGE ALLOCATION 11

Since n is an integer, we obtain n(R) ≥
⌈
X+Y+Σ

2

⌉
.

For the upper bound on n(R), i.e., the constructive part, we let G(1) consist of Σ − Y copies of
Simpl({1}), G(2) consist of Σ−X copies of Simpl({2}), and G(3) consist of X+Y−Σ

2 copies of Simpl({1, 2}).
Now, we set G = ∪i∈[3]G(i), which is a multiset of point in PG(2− 1, 2) of cardinality

(Σ− Y) + (Σ−X) +

⌈
3(X + Y − Σ)

2

⌉
=

⌈
X + Y + Σ

2

⌉
.

By construction we have R(G) ⊇ R(T) for T (∅) = 0, T ({1}) = X , T ({2}) = Y , and T ({1, 2}) =
Σ. �

Of course, we might give a more direct proof of Theorem 2.4. Instead of basing the constructive
part on the “subcodes” introduced in Definition 2.2 we can directly write down the multiplicities for the
columns e1, e2, and e1 + e2.

Conjecture 2.5. n(R(T)) can be attained by a union of Simpl
(
S(i)

)
.

Lemma 2.6. If T : 2[3] → N is monotone, subadditive, satisfies T (∅) = 0 and T ([3]) + T ({i}) ≤∑
j∈[3]\{i} T ({i, j}), then a generating set ofR(T) is given by

S =
{(
T (π≤1)− T (π<1), T (π≤2)− T (π<2), T (π≤1)− T (π<3)

)
| π is a bijection [3]→ [3]

}
,

where π≤i = {j ∈ [k] | π(j) ≤ π(i)} and π<i = {j ∈ [k] | π(j) < π(i)}.

Proof. First, we need to check that each λ ∈ S satisfies the constraints
∑
i∈U λi ≤ T (U) for all U ⊆ [3].

In explicit form the elements of S in Lemma 2.6 are given by(
T ({1}), T ({1, 2})− T ({1}), T ({1, 2, 3})− T ({1, 2})

)
,(

T ({1}), T ({1, 2, 3})− T ({1, 3}), T ({1, 3})− T ({1})
)
,(

T ({1, 2})− T ({2}), T ({2}), T ({1, 2, 3})− T ({1, 2})
)
,(

T ({1, 2, 3})− T ({2, 3}), T ({2}), T ({2, 3} − T ({2}))
)
,(

T ({1, 3})− T ({3}), T ({1, 2, 3})− T ({1, 3}), T ({3})
)
, and(

T ({1, 2, 3})− T ({2, 3}), T ({2, 3})− T ({3}), T ({3})
)
.

It can be easily verified that under the conditions of Lemma 2.6, each λ ∈ S satisfies the constraints∑
i∈U λi ≤ T (U) for all U ⊆ [3]. For the other direction, we need to show that each λ ∈ R3

≥0 satisfying
the constraints

∑
i∈U λi ≤ T (U) for all U ⊆ [3], is in conv(S)↓. The proof is similar to the proof of

Lemma 2.1. W.l.o.g. we assume that at least one of these seven inequalities is satisfied with equality, since
we could increase λ otherwise. If λ1 + λ2 + λ3 = T ({1, 2, 3}), then λ ∈ conv(S) since all other six
inequalities are satisfied. So now let us consider the case λ1 = T ({1}). If λ2 < T ({2}), λ3 < T ({3}),
λ1+λ2 < T ({1, 2}), λ1+λ3 < T ({1, 3}), λ2+λ3 < T ({2, 3}), and λ1+λ2+λ2 < T ({1, 2, 3}), then we
could increase λ, so that λ1 + λ2 = T ({1, 2}) and λ1 + λ2 + λ3 = T ({1, 2, 3}) from the subadditivity
and T ([3]) + T ({i}) ≤

∑
j∈[3]\{i} T ({i, j}) properties of T . All other cases can be treated analogously.

�

12 SASCHA KURZ

The notion of Lemma 2.6 can also be used to characterize the generating set in Lemma 2.1. In explicit
form the elements of S in Lemma 2.6 are given by(

T ({1}), T ({1, 2})− T ({1}), T ({1, 2, 3})− T ({1, 2})
)
,(

T ({1}), T ({1, 2, 3})− T ({1, 3}), T ({1, 3})− T ({1})
)
,(

T ({1, 2})− T ({2}), T ({2}), T ({1, 2, 3})− T ({1, 2})
)
,(

T ({1, 2, 3})− T ({2, 3}), T ({2}), T ({2, 3} − T ({2}))
)
,(

T ({1, 3})− T ({1}), T ({1, 2, 3})− T ({1, 3}), T ({3})
)
, and(

T ({1, 2, 3})− T ({2, 3}), T ({2, 3})− T ({3}), T ({3})
)
.

Under the conditions of Lemma 2.6 none of the constraints
∑
i∈U λi ≤ T (U), for ∅ 6= U ⊆ [3], is strictly

redundant, i.e., each inequality can be attained with equality by some λ ∈ R3
≥0 without violating one of

the other constraints.

Example 2.7. For k = 3 the function T : 2[k] → N, given by

T (U) =


0 : #U = 0,
4 : #U = 1,
5 : #U = 2,
7 : #U = 3

,

is monotone and subadditive but does not satisfy the last condition of Lemma 2.6. A generating set of
R(T) is given by {

(4, 1, 1), (1, 4, 1), (1, 1, 4), (3, 2, 2), (2, 3, 2), (2, 2, 3)
}
.

We have n(R(T)) = 9.

Lemma 2.6 can be generalized in the sense that we can characterize some elements of R(T) at the
very least.

Lemma 2.8. If T : 2[k] → N is monotone and satisfies T (∅) = 0 for some positive integer k, then
R(T) contains the vector xπ for every bijection π of [k], where the components of xπ can be computed
recursively in the ordering of π:

xπi = min

T (U ∪ {i})−
∑
j∈U

xj | U ⊆ π<i

 ,

where π<i = {j ∈ [k] | π(j) < π(i)}.

Proof. Directly from the definition of the xπi and the ordering π of the evaluation we conclude that the xπi
are uniquely defined. Next we want to show xπ ≥ 0. So, assume to the contrary that i is the with respect
to π earliest index in [k] with xπi < 0. Now let U ⊆ π<0 a subset with xπi = T (U ∪ {i}) −

∑
j∈U xj .

By construction we have
∑
j∈U xj ≤ T (U), so that monotonicity of T , i.e., T (U ∪ {i}) ≥ T (U), yields

xπi ≥ 0, which is a contradiction. Finally we show that
∑
j∈U xj ≤ T (U) for all ∅ 6= U ⊆ [k]. So, let

such a subset U be given and let i be the with respect to π latest element in U . By construction we have

xπi ≤ T (U ′ ∪ {i})−
∑
j∈U ′

xj ,

where U ′ = U \ {i}, so that
∑
j∈U xj ≤ T (U). �

DESIGNING CODES FOR STORAGE ALLOCATION 13

If T : 2[3] → N is monotone, subadditive and satisfies T (∅) = 0, then the formula for xπ of Lemma 2.8
can be simplified to

xππ(1) = T ({π(1)}),
xππ(2) = T ({π(1), π(2)})− T ({π(1)}), and

xππ(3) = min {T ([3])− T ({π(1), π(2)}), T ({π(1), π(3)})− T ({π(1)})} .

Example 2.9. Let k = 3 and T : 2[k] → N by defined by T (∅) = 0, T ({1}) = 13, T ({2}) = 14,
T ({5}) = 15, T ({1, 2}) = 18, T ({1, 3}) = 21, T ({2, 3}) = 22, and T ({1, 2, 3}) = 30. From
Lemma 2.8 we conclude {

(13, 5, 8), (4, 14, 8), (6, 7, 15)
}
⊆ R(T).

We can easily check that also (9, 9, 12) ∈ R(T), while (9, 9, 12) /∈ conv({(13, 5, 8), (4, 14, 8), (6, 7, 15))})
since

13a+ 4b+ 6c ≥ 9 (14)
5a+ 14b+ 7c ≥ 9 (15)
8a+ 8b+ 15c ≥ 12 (16)

with a, b, c ∈ R≥0 and a + b + c = 1 implies a + b ≥ 1 (summing the first two inequalities), so that
c = 0, which contradicts the last inequality. A generating set ofR(T) is given by{

(13, 5, 8), (4, 14, 8), (6, 7, 15), (9, 9, 12), (8, 10, 12), (8, 9, 13)
}

as we will see in the subsequent lemma. The ILP of Corollary 1.10 has an optimal solution n1 = 10,
n2 = 9, n3 = 1, n4 = 8, n5 = 1, n6 = 2, and n7 = 3, so that n(R(T)) ≥ 34. We remark that
Proposition 2.12 gives n(R(T)) ≥ d33.25e = 34.

Proposition 2.10. Let T : 2[3] → N with T (∅) = 0 and none of the constraints
∑
i∈U xi ≤ T (U) is

strictly redundant in Rk≥0 for ∅ 6= U ⊆ [3]. Then, the following list of vectors gives a generating set of
R(T):

• Γ1 =
(
T (1), T (12)− T (1),min

{
T (123)− T (12), T (13)− T (1)

})
;

• Γ2 =
(
T (1),min

{
T (123)− T (13), T (12)− T (1)

}
, T (13)− T (1)

)
;

• Γ3 =
(
T (12)− T (2), T (2),min

{
T (123)− T (12), T (23)− T2)

})
;

• Γ4 =
(

min
{
T (123)− T (23), T (12)− T (2)

}
, T (2), T (23)− T (2)

)
;

• Γ5 =
(
T (13)− T (3),min

{
T (123)− T (13), T (23)− T (3)

}
, T (3)

)
;

• Γ6 =
(

min
{
T (123)− T (23), T (13)− T (3)

}
, T (23)− T (3), T (3)

)
;

• Γ7 =
(
T (12)+T (13)−T (123), T (123)−T (13), T (123)−T (12)

)
if T (12)+T (13) ≤ T (123)+

T (1);

• Γ8 =
(
T (123)−T (23), T (12)+T (23)−T (123), T (123)−T (12)

)
if T (12)+T (23) ≤ T (123)+

T (2);

• Γ9 =
(
T (123)−T (23), T (123)−T (13), T (13)+T (23)−T (123)

)
if T (13)+T (23) ≤ T (123)+

T (3).

Proof. Due to our assumption T is monotone and subadditive. The first six vectors of our list are con-
tained in R(T) due to Lemma 2.8. Given the assumption T (12) + T (13) ≤ T (123) + T (1) we have
for (x1, x2, x3) = Γ7 that x1 + x2 = T (12), x1 + x3 = T (13), and x1 + x2 + x3 = T (123). The

14 SASCHA KURZ

condition x2 + x3 ≤ T (23) follows from 2T (123) ≤ T (12) + T (13) + T (23) since x2 + x3 =
2T (123) − T (12) − T (13). The conditions x2 ≤ T (2) and x3 ≤ T (3) follow from the subadditivity of
T and the condition x1 ≤ T (1) is equivalent to the assumption. Thus, given the assumption, Γ7 ∈ R(T).
By symmetry, we have the analogues statement for Γ8 and Γ9. The polytope R(T) is described by four
types of inequalities:

(i) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(ii) x1 ≤ T (1), x2 ≤ T (2), x3 ≤ T (3);

(iii) x1 + x2 ≤ T (12), x1 + x3 ≤ T (13), x2 + x3 ≤ T (23);
(iv) x1 + x2 + x3 ≤ T (123).
Since we assume that no constraint is strictly redundant the vertices of R(T) are given by each triple of
linear independent inequalities, i.e., the coefficient vectors of the inequalities are linearly independent.
Next we will check all possible cases taking the symmetry of the symmetric group on 3 elements into
account. Note that Γ1, . . . ,Γ6 form indeed an orbit under this group action. The vectors Γ7, . . . ,Γ9 form
another orbit under this group action.

Three times type (i) gives the vertex (0, 0, 0) ≤ Γ1. If type (i) occurs two times, then we assume
x1 = x2 = 0 w.l.o.g. Since min{T (3), T (13), T (23), T (123)} = T (3) the corresponding vertex is given
by (0, 0, T (3)) ≤ Γ5. If type (i) occurs exactly one time, then we assume x3 = 0 w.l.o.g. Moreover
for the other two inequalities we only need to consider those which do not involve x3. If the other two
are x1 ≤ T (1) and x2 ≤ T (2), then the corresponding vertex is given by (T (1), T (2), 0) ≤ Γ1 since
T is subadditive, i.e., T (12) − T (1) ≤ T (2). If the other two are x1 ≤ T (1) and x1 + x2 ≤ T (12),
then the corresponding vertex is (T (1), T (12) − T (1), 0) ≤ Γ1. If the other two are x2 ≤ T (2) and
x1 +x2 ≤ T (12), then the corresponding vertex is (T (12)−T (2), T (2), 0) ≤ Γ2. Thus, in the following
we can assume that type (i) does not occur at all.

If type (ii) is attained at least once then we assume x1 = T (1) w.l.o.g. If either x3 ≤ T (3) or
x1 + x3 ≤ T (13) occurs then we assume w.l.o.g. that x2 ≤ T (2) or x1 + x2 ≤ T (12). Due to
subadditivity of T we then have x1 + x2 = T (12), i.e., x2 = T (12)− T (1). For x3 we then have

x3 = min
{
T (3), T (13)− T (1), T (123)− T (12), T (23)− T (12) + T (1)

}
,

so that the corresponding vertex equals Γ1. Otherwise, neither x2 = T (2), x3 = T (3), x1 + x3 =
T (13), nor x2 + x3 = T (23) are valid. The only two remaining possibilities are x2 + x3 = T (23) and
x1 + x2 + x3 = T (123), which, however, are linearly dependent.

In the remaining cases types (i) and (ii) do not occur at all. If type (iii) is attained three times, then we
have x1 =

(
T (12)+T (13)−T (23)

)
/2, x2 =

(
T (12)+T (23)−T (13)

)
/2, and x3 =

(
T (13)+T (23)−

T (12)
)
/2, so that x1 +x2 +x3 =

(
T (12) +T (13) +T (23)

)
/2. Since the inequalities x1 +x2 ≤ T (12),

x1 + x3 ≤ T (13), and x2 + x3 ≤ T (23) imply T (123) ≤
(
T (12) + T (13) + T (23)

)
/2, so that

T (123) =
(
T (12) + T (13) + T (23)

)
/2. In this situation our vector (x1, x2, x3) equals Γ7 = Γ8 = Γ9.

Next, we assume x1 + x2 = T (12), x1 + x3 = T (13), and x1 + x2 + x3 = T (123), i.e., x3 =
T (123) − T (12), x2 = T (123) − T (13), and x1 = T (12) + T (13) − T (123). So, the corresponding
vertex equals Γ7. Due to our symmetry assumptions we also have to consider Γ8 and Γ9. �

While it might be hard to give explicit formulas for the generating set of R(T),1 we can easily gener-
alize the lower bound of Theorem 2.4 if we assume that none of the constraints is (strictly) redundant.

Definition 2.11. Let P =
{
x ∈ Rk | Ax ≤ b, x ≥ 0

}
be a polyhedron in Rk with description (A, b). We

say that a constraint a(i)x ≤ bi is redundant, where a(i) denotes the ith row ofA, ifP =
{
x ∈ Rk | A′x ≤ b′, x ≥ 0

}
,

1In general a polytope {x ∈ Rn : Ax ≥ b} described by m “≥”-inequalities has at most
(m−

⌊
n+1
2

⌋
m−n

)
+
(m−

⌈
n+1
2

⌉
m−n

)
extreme

points [10], which are vertices in the case of a polytope. This upper bound is attained by the so-called cyclic polytopes, see [4]. If
the entries of A are all contained in {0, 1}, then there is an upper of n!, see [3].

DESIGNING CODES FOR STORAGE ALLOCATION 15

where A′ and b′ arise from A and b by removing the ith row, respectively. We say that a constraint
a(i)x ≤ bi is strictly redundant if there does not exist x̄ ∈ P with a(i)x̄ = bi.

As an example consider T : 2[2] → N defined via T (∅) = 0 and T ({1}) = T ({2}) = T ({1, 2}) = 1.
With this we consider the polyhedron in R2

≥0 defined by the inequalities
∑
i∈U λi ≤ T (U) (choosing λ

as variable) for all ∅ 6= U ⊆ [2]. Since the vectors (1, 0) and (0, 1) are contained in the polyhedron, no
inequality is strictly redundant. The inqualities λ1 ≤ T ({1}) and λ2 ≤ T ({2}) are redundant, while the
inequality λ1 + λ2 ≤ T ({1, 2}) is not redundant since e.g. (1, 1) is not contained in the polyhedron.

Proposition 2.12. We have

n(R(T)) ≥

⌈∑
∅6=U⊆[k] T (U)

2k−1

⌉
,

where T : 2[k] → N for some positive integer k and none of the constraints
∑
i∈U λi ≤ T (U) is strictly

redundant in Rk≥0.

Proof. We want to apply the ILP formulation of Corollary 1.10. First we observe that each hyperplaneH
in PG(k − 1, 2) can be uniquely characterized by a set ∅ 6= S ⊆ [k] such that {i ∈ [k] | ei /∈ H} = S.
So, we will write S(H) for this set S in the following. Due to our assumption that no constraint (of the
ILP formulation of Corollary 1.10) is strictly redundant, we can choose T (S) as right hand side, i.e.,∑

j∈[l] : vj /∈H

nj ≥ T (S(H)),

where S(H) = {i ∈ [k] : ei /∈ H}, as described above. For each j ∈ [l] we have vj /∈ H for exactly
2k−1 hyperplanesH. Thus, summing all of the above 2k − 1 inequalities and dividing by 2k−1 yields

n =
∑
j∈[l]

nj ≥
∑
∅6=U⊆[k] T (U)

2k−1
.

Finally, we observe that n has to be an integer. �

We remark that the lower bound of Proposition 2.12 is indeed tight (if k = 2 and T is monotone and
subadditive), see Theorem 2.4. However, it is not tight in general, e.g., in Example 1.13 n(R(T)) is
one larger than the corresponding lower bound of Proposition 2.12, while none of the constraints strictly
redundant.

Corollary 2.13. We have

n(R(T)) ≥

⌈
X ·

(
2k − 1

)
2k−1

⌉
,

where T : 2[k] → N for some positive integer k, X ∈ N, T (∅) = 0, and T (U) = X for all ∅ 6= U ⊆ [k].
redundant in Rk≥0. Moreover, if X = t · 2k−1 for some integer t, then the lower bound is tight.

Proof. We can easily check that none of the constraints is strictly redundant, so that we can apply Propo-
sition 2.12. Indeed, a generating set of R(T) is given by {X · ei | i ∈ [k]}. A t-fold k-dimensional
binary simplex code Simpl([k]) achieves the desired service rate region. �

We remark that the situation of T (U) = X ∈ N for all ∅ 6= U ⊆ [k] is equivalent to the situation of
PIR codes, see e.g. [9] for some recent lower bounds.

In the light of Example 1.13 we want to give further general lower bounds similar to the bound of
Proposition 2.12.

16 SASCHA KURZ

Proposition 2.14. For some positive integer k ≥ 2 let T : 2[k] → N be a function such that none of
the constraints

∑
i∈U λi ≤ T (U) is strictly redundant in Rk≥0. For each i ∈ [k] we have n(R(T)) ≥⌈

αi+βi
2

⌉
where

αi =

⌈∑
∅6=U⊆[k]\{i} T (U)

2k−2

⌉
and

βi =

⌈∑
{i}⊆U⊆[k] T (U)

2k−2

⌉
.

Proof. We proceed similar as in the proof of Proposition 2.12 and utilize∑
j∈[l] : vj /∈H

nj ≥ T (S(H)), (17)

where S(H) = {i ∈ [k] : ei /∈ H}. We can also parameterize those constraints by subsets ∅ 6= U ⊆ [k]
by uniquely characterizing H by S(H) = U . Now let i ∈ [k] be arbitrary but fix and ī = 2k−i, so that
vī = ei. Summing Inequality (17) for all ∅ 6= U ⊆ [k] \ {i} gives

2k−2 ·
∑

j∈[l]\{ī}

nj ≥
∑

∅6=U⊆[k]\{i}

T (U).

Summing Inequality (17) for all {i} ⊆ U ⊆ [k] gives

2k−1 · nī + 2k−2 ·
∑

j∈[l]\{ī}

nj ≥
∑

{i}⊆U⊆[k]

T (U).

Since the nj are integers we have
∑
j∈[l]\{ī} nj ≥ αi and 2nī +

∑
j∈[l]\{ī} nj ≥ βi. Dividing the sum

of these two inequalities by 2 gives

n = nī +
∑

j∈[l]\{ī}

nj ≥
αi + βi

2
,

where we again can upround the right hand side since n is an integer. �

We remark that Proposition 2.14 implies Proposition 2.12 (for k ≥ 2). However, for Example 1.13
also Proposition 2.14 implies only n(R) ≥ 5 since we have αi = 4 and βi = 6 for all i ∈ [3]. We remark
that Proposition 3.10 gives the tight lower bound n(R) ≥ 6.

Proposition 2.15. For some positive integer k ≥ 2 let T : 2[k] → N be a function such that none of the
constraints

∑
i∈U λi ≤ T (U) is strictly redundant in Rk≥0. For each j ∈ [l] we have

n(R(T)) ≥

⌈∑
∅6=U⊆[k] : #(U∩J)≡0 (mod 2) T (U)

2k−2

⌉
,

where J ⊆ [k] such that vj =
∑
h∈J eh.

Proof. We proceed similar as in the proof of Proposition 2.12 and utilize∑
j∈[l] : vj /∈H

nj ≥ T (S(H)), (18)

where S(H) = {i ∈ [k] : ei /∈ H}. We can also parameterize those constraints by subsets ∅ 6= U ⊆ [k]
by uniquely characterizing H by S(H) = U . Now let j ∈ [l] by arbitrary but fix. Our aim is to sum

DESIGNING CODES FOR STORAGE ALLOCATION 17

Inequality (18) over all 2k−1 − 1 hyperplanes H that contain vj . We claim that vj =
∑
h∈J eh ∈ H iff

#(U ∩ J) ≡ 0 (mod 2), where U = S(H). If #U ≥ 2, then for some arbitrary element x ∈ U the set

{ei | i ∈ [k]\U} ∪ {ex + ei | i ∈ U \ x}

is a basis ofH. So, we have vj =
∑
h∈J eh ∈ H iff #(U ∩ J) ≡ 0 (mod 2). In the remaining cases we

have #U = 1 and choose x ∈ [k] such that U = {x}. A basis ofH is given by {eh | h ∈ [k] \ {x}}. So,
vj ∈ H iff x /∈ J , i.e., #(U ∩ J) = 0 ≡ (mod 2). Thus, we obtain

2k−2 ·
∑

a∈[l]\{j}

na =
∑

hyperplaneH : vj∈H

∑
a : va /∈H

na ≥
∑

∅6=U⊆[k] : #(U∩J)≡0 (mod 2)

T (U).

Since
∑
a∈[l]\{j} na is not larger than n and an integer, we obtain the stated lower bound. �

Example 2.16. Let x be a positive integer and T : 2[3] → N be defined by T ({1}) = T ({2}) = T ({3}) =
T ({1, 2}) = T ({1, 3}) = x and T ({2, 3}) = T ({1, 2, 3}) = 2x. Proposition 2.12 gives n(R(T)) ≥⌈

9x
4

⌉
. For j = 3 Proposition 2.15 gives n(R(T)) ≥

⌈
5x
2

⌉
.

So, there for k = 3 (and indeed for all k ≥ 3) there is no finite upper bound on the deviation of the
lower bound of Proposition 2.12 and the exact value of n(R(T)).

3. PARTIAL RESULTS FOR THREE FILES

For k = 3 files the possible reduced recovery sets are given by

Y1 =
{
{4}, {1, 5}, {2, 6}, {3, 7}, {5, 6, 7}, {2, 3, 5}, {1, 3, 6}, {1, 2, 7}

}
,

Y2 =
{
{2}, {4, 6}, {1, 3}, {5, 7}, {3, 6, 7}, {1, 5, 6}, {3, 4, 5}, {1, 4, 7}

}
, and

Y3 =
{
{1}, {4, 5}, {2, 3}, {6, 7}, {3, 5, 7}, {2, 5, 6}, {3, 4, 6}, {2, 4, 7}

}
.

Lemma 3.1. Let {λ} be a generating set ofR and n be an integral solution of the ILP of Corollary 1.10
with n1 = n2 = n4 = 0. If λ ∈ R3

≥0, and G is the multiset corresponding to n, then λ ∈ S(G), i.e., there
exists a feasible choice of αY satisfying (2a)-(2c).

Proof. Plugging in n1 = n2 = n4 = 0 the constraints of Corollary 1.10 read

n5 + n6 + n7 ≥ λ1,

n3 + n6 + n7 ≥ λ2,

n3 + n5 + n7 ≥ λ3,

n3 + n5 ≥ λ1 + λ2,

n3 + n6 ≥ λ1 + λ3,

n5 + n6 ≥ λ2 + λ3, and
n7 ≥ λ1 + λ2 + λ3.

We choose

α{3,7} = min {λ1, n3} ,
α{5,7} = min {λ2, n5} ,
α{6,7} = min {λ3, n6} ,
α{5,6,7} = λ1 − α{3,7},
α{3,6,7} = λ2 − α{5,7}, and
α{3,5,7} = λ3 − α{6,7},

18 SASCHA KURZ

so that we can clearly recover λ. It remains to be checked that the node capacities of Inequality (2b)
are satisfied. Since α{3,7} + α{5,6,7} = λ1, α{5,7} + α{3,6,7} = λ2, α{6,7} + α{3,5,7} = λ3, and
n7 ≥ λ1 +λ2 +λ3 Inequality (2b) is valid for j = 7. Since we do not use the corresponding nodes at all,
Inequality (2b) is valid for j ∈ {1, 2, 4}. If λ1 ≤ n3, λ2 ≤ n5, and λ3 ≤ n6, then α{5,6,7} = α{3,6,7} =
α{3,5,7} and Inequality (2b) is valid for j ∈ {3, 5, 6}.

So, let us assume n3 < λ1. Due to n3 + n5 ≥ λ1 + λ2 we have n5 > λ2 and due to n3 + n6 ≥
λ1 + λ3 we have n6 > λ3, so that α{5,7} = λ2, α{6,7} = λ3, and α{3,6,7} = α{3,5,7} = 0. Thus,
Inequality (2b) is valid for j = 3. Since α{5,6,7} = λ1 − n3, we can use n3 + n5 ≥ λ1 + λ2 to
conclude n5 ≥ (λ1 − n3) + λ2 = α{5,6,7} + α{5,7} + α{3,5,7}, i.e., Inequality (2b) is valid for j = 5.
Similarly, Since α{5,6,7} = λ1−n3, we can use n3 +n6 ≥ λ1 +λ3 to conclude n6 ≥ (λ1 − n3) +λ3 =
α{5,6,7} + α{6,7} + α{3,6,7}, i.e., Inequality (2b) is valid for j = 6.

The cases n5 < λ2 and n6 < λ3 can be treated analogously. �

Lemma 3.2. Let {λ} be a generating set ofR and n be an integral solution of the ILP of Corollary 1.10,
λ ∈ R3

≥0, and G is the multiset corresponding to n. If one of the following three conditions is satisfied,
then λ ∈ S(G), i.e., there exists a feasible choice of αY satisfying (2a)-(2c):
• n1 = 0, n2 = 0, λ1 = 0;
• n1 = 0, n4 = 0, λ2 = 0;
• n2 = 0, n4 = 0, λ3 = 0.

Proof. We only treat the first case, i.e., n1 = 0, n2 = 0, and λ1 = 0. The other two cases can be handled
analogously. Plugging in n1 = n2 = 0 and λ1 = 0 the constraints of Corollary 1.10 read

n4 + n5 + n6 + n7 ≥ 0,

n3 + n6 + n7 ≥ λ2,

n3 + n5 + n7 ≥ λ3,

n3 + n4 + n5 ≥ λ2,

n3 + n4 + n6 ≥ λ3,

n5 + n6 ≥ λ2 + λ3, and
n4 + n7 ≥ λ2 + λ3.

We assume n4 > 0 since we can otherwise apply Lemma 3.1.
If n7 = 0, then we have n4 ≥ λ2 + λ3, n3 + n6 ≥ λ2, n3 + n5 ≥ λ3, and n5 + n6 ≥ λ2 + λ3.

Due to n5 + n6 ≥ λ2 + λ3 we have n5 ≥ λ3 or n6 ≥ λ2. If n5 ≥ λ3 and n6 ≥ λ2, then we
choose α{4,5} = λ3 and α{4,6} = λ2, which is feasible since n4 ≥ λ2 + λ3 = α{4,5} + α{4,6},
n5 ≥ λ3 = α{4,5}, and n6 ≥ λ2 = α{4,6}. If n5 ≥ λ3 and n6 < λ2, then we choose α{4,5} = λ3,
α{4,6} = n6 ≤ λ2, and α{3,4,5} = λ2 − n6, which is feasible since n3 ≥ λ2 − n6 = α{3,4,5},
n4 ≥ λ2 + λ3 = α{4,5} + α{4,6} + α{3,4,5}, and n5 ≥ λ2 + λ3 − n6 = α{4,5} + α{3,4,5}. Similarly,
if n5 < λ3 and n6 ≥ λ2, then we choose α{4,6} = λ2, α{4,5} = n5 ≤ λ3, and α{3,4,6} = λ3 − n5,
which is feasible since n3 ≥ λ3 − n5 = α{3,4,6}, n4 ≥ λ2 + λ3 = α{4,5} + α{4,6} + α{3,4,6}, and
n6 ≥ λ2 + λ3 − n5 = α{4,6} + α{3,4,6}. Thus, we can assume n7 > 0.

If n5 = 0, then we have n6 ≥ λ2 + λ3, n3 +n7 ≥ λ3, n3 +n4 ≥ λ2, and n4 +n7 ≥ λ2 + λ3. Due to
n4 + n7 ≥ λ2 + λ3 we have n7 ≥ λ3 or n4 ≥ λ2. If n7 ≥ λ3 and n4 ≥ λ2, then we choose α{6,7} = λ3

and α{4,6} = λ2, which is feasible since n4 ≥ λ2 = α{4,6}, n6 ≥ λ2 + λ3 = α{6,7} + α{4,6},
and n7 ≥ λ3 = α{6,7}. If n7 ≥ λ3 and n4 < λ2, then we choose α{6,7} = λ3, α{4,6} = n4, and
α{3,6,7} = λ2 − n4, which is feasible since n3 ≥ λ2 − n4 = α{3,6,7} = λ2 − n4, n4 = α{4,6}, n6 ≥
λ2 +λ3 = α{6,7}+α{4,6}+α{3,6,7}, and n7 ≥ λ2 +λ3−n4 = α{6,7}+α{3,6,7} = λ2−n4. If n4 ≥ λ2

and n7 < λ3, then we choose α{4,6} = λ2, α{6,7} = n7, and α{3,4,6} = λ3 − n7, which is feasible since
n3 ≥ λ3 − n7 = α{3,4,6} = λ2 − n4, n4 ≥ λ2 = α{4,6}, n6 ≥ λ2 + λ3 = α{6,7} + α{4,6} + α{3,4,6},
and n7 = α{6,7}. Thus, we can assume n5 > 0.

DESIGNING CODES FOR STORAGE ALLOCATION 19

For the case n6 = 0 we can proceed similarly as for the case n5 = 0, so that we can assume n6 > 0.

As argued above we can assume n4, n5, n6, n7 > 0 w.l.o.g. Now assume that at least of of the
equations n3 + n6 + n7 ≥ λ2, n3 + n5 + n7 ≥ λ3, n3 + n4 + n5 ≥ λ2, or n3 + n4 + n6 ≥ λ3

is tight, i.e., satisfied with equality. Here we consider only the case n3 + n6 + n7 = λ2 and remark
that the other three cases can be treated analogously. If also n3 + n5 + n7 = λ3, then summing yields
2n3 +n5 +n6 +2n7 = λ2 +λ3, so that n5 +n6 ≥ λ2 +λ3 gives n7 = 0 – contradiction. If, alternatively,
also n3 +n4 +n6 = λ3, then summing yields 2n3 +n4 +2n6 +n7 = λ2 +λ3, so that n4 +n7 ≥ λ2 +λ3

gives n6 = 0 – contradiction. Thus, we have n3 + n5 + n7 ≥ λ3 + 1 and n3 + n4 + n6 ≥ λ3 + 1. If
n3 + n5 + n7 = λ3 + 1, then n3 + n6 + n7 = λ2 yields 2n3 + n5 + n6 + 2n7 = λ2 + λ3 + 1. Since
n5 + n6 ≥ λ2 + λ3, we conclude n7 = 0 – contradiction. Thus, we have n3 + n5 + n7 ≥ λ3 + 2.
Next we choose α{5,7} = 1 and set n′1 = n1 = 0, n′2 = n2 = 0, n′3 = n3, n′4 = n4, n′5 = n5 − 1,
n′6 = n6, n′7 = n7 − 1, λ′1 = λ1 = 0, λ′2 = max {0, λ2 − 1}, and λ′3 = λ3. With this we have
n′ = (n′1, . . . , n

′
7) ∈ N7 and λ′ = (λ′1, λ

′
2, λ
′
3) ∈ N3 satisfying

n′4 + n′5 + n′6 + n′7 ≥ 0,

n′3 + n′6 + n′7 ≥ λ′2,

n′3 + n′5 + n′7 ≥ λ′3,

n′3 + n′4 + n′5 ≥ λ′2,

n′3 + n′4 + n′6 ≥ λ′3,

n′5 + n′6 ≥ λ′2 + λ′3,

n′4 + n′7 ≥ λ′2 + λ′3,

n′1 = 0, and
n′2 = 0.

If none of the four inequalities n3 + n6 + n7 ≥ λ2, n3 + n5 + n7 ≥ λ3, n3 + n4 + n5 ≥ λ2, or
n3 + n4 + n6 ≥ λ3 is tight, i.e., satisfied with equality, then we can choose α{4,5} = 1

2 , α{4,6} = 1
2 ,

α{5,7} = 1
2 , α{6,7} = 1

2 and set n′1 = n1 = 0, n′2 = n2 = 0, n′3 = n3, n′4 = n4 − 1, n′5 = n5 − 1,
n′6 = n6 − 1, n′7 = n7 − 1, λ′1 = λ1 = 0, λ′2 = max {0, λ2 − 1}, and λ′3 = max {0, λ3 − 1}. With this
we have n′ = (n′1, . . . , n

′
7) ∈ N7 and λ′ = (λ′1, λ

′
2, λ
′
3) ∈ N3 satisfying

n′4 + n′5 + n′6 + n′7 ≥ 0,

n′3 + n′6 + n′7 ≥ λ′2,

n′3 + n′5 + n′7 ≥ λ′3,

n′3 + n′4 + n′5 ≥ λ′2,

n′3 + n′4 + n′6 ≥ λ′3,

n′5 + n′6 ≥ λ′2 + λ′3,

n′4 + n′7 ≥ λ′2 + λ′3,

n′1 = 0, and
n′2 = 0.

Thus, in all remaining cases we can iteratively decrease the value of
∑
i∈[7] ni by at least one and receive a

smaller instance satisfying the same assumptions as the original one. So, the proof if finished by induction
on
∑
i∈[7] ni. �

We remark that in Lemma 3.2 it is essential, that we allow fractional αY , since for λ = (0, 1, 1) and
n = (0, 0, 0, 1, 1, 1, 1) no integral solution of the constraints (2a)-(2c) exists.

20 SASCHA KURZ

Lemma 3.3. Let {λ} be a generating set ofR and n be an integral solution of the ILP of Corollary 1.10,
λ ∈ R3

≥0, and G is the multiset corresponding to n. If one of the following three conditions is satisfied,
then λ ∈ S(G), i.e., there exists a feasible choice of αY satisfying (2a)-(2c):
• n1 = 0, n3 = 0, n5 = 0, min {n6, n7} = 0, λ1 = 0, λ2 = 0;
• n2 = 0, n3 = 0, n6 = 0, min {n5, n7} = 0, λ1 = 0, λ3 = 0;
• n4 = 0, n5 = 0, n6 = 0, min {n3, n7} = 0, λ2 = 0, λ3 = 0.

Proof. We only treat the first case, i.e., n1 = 0, n3 = 0, n5 = 0, min {n6, n7} = 0, λ1, and λ2 =
0. The other two cases can be handled analogously. Plugging in these assumptions the constraints of
Corollary 1.10 read

n4 + n6 + n7 ≥ 0,

n2 + n6 + n7 ≥ 0,

n7 ≥ λ3,

n2 + n4 ≥ 0,

n4 + n6 ≥ λ3,

n2 + n6 ≥ λ3, and
n2 + n4 + n7 ≥ λ3.

If n7 = 0, then λ3 = 0. In this case we have λ = 0 for which the statement is satisfied by choosing
αY = 0 for all reduced recovery sets Y . Thus, we have n6 = 0, n7 ≥ λ3, n4 ≥ λ3, and n2 ≥ λ3, so that
we can choose α{2,4,7} = λ3. �

Lemma 3.4. Let {λ} be a generating set ofR and n be an integral solution of the ILP of Corollary 1.10,
λ ∈ R3

≥0, and G is the multiset corresponding to n. If one of the following three conditions is satisfied,
then λ ∈ S(G), i.e., there exists a feasible choice of αY satisfying (2a)-(2c):
• n1 = 0, λ1 = 0, λ2 = 0;
• n2 = 0, λ1 = 0, λ3 = 0;
• n4 = 0, λ2 = 0, λ3 = 0.

Proof. We only treat the first case, i.e., n1 = 0, λ1, and λ2 = 0. The other two cases can be handled
analogously. Plugging in n1 and λ1 = λ2 = 0 the constraints of Corollary 1.10 read

n4 + n5 + n6 + n7 ≥ 0,

n2 + n3 + n6 + n7 ≥ 0,

n3 + n5 + n7 ≥ λ3,

n2 + n3 + n4 + n5 ≥ 0,

n3 + n4 + n6 ≥ λ3,

n2 + n5 + n6 ≥ λ3, and
n2 + n4 + n7 ≥ λ3.

We choose

α{2,3} = min {n2, n3} ,
α{4,5} = min {n4, n5} ,
α{6,7} = min {n6, n7}

DESIGNING CODES FOR STORAGE ALLOCATION 21

and set

n′1 = n1,

n′2 = n2 − α{2,3},
n′3 = n3 − α{2,3},
n′4 = n4 − α{4,5},
n′5 = n5 − α{4,5}
n′6 = n6 − α{6,7},
n′7 = n7 − α{6,7},
λ′1 = λ1,

λ′2 = λ2, and
λ′3 = max

{
0, λ3 − α{2,3} − α{4,5} − α{6,7}

}
.

With this we have n′ = (n′1, . . . , n
′
7) ∈ N7 and λ′ = (λ′1, λ

′
2, λ
′
3) ∈ N3 satisfying

n′4 + n′5 + n′6 + n′7 ≥ λ′1,

n′2 + n′3 + n′6 + n′7 ≥ λ′2,

n′1 + n′3 + n′5 + n′7 ≥ λ′3,

n′2 + n′3 + n′4 + n′5 ≥ λ′1 + λ′2,

n′1 + n′2 + n′5 + n′6 ≥ λ′2 + λ′3,

n′1 + n′3 + n′4 + n′6 ≥ λ′1 + λ′3,

n′1 + n′2 + n′4 + n′7 ≥ λ′1 + λ′2 + λ′3,

n′1 = 0,

λ′1 = 0,

λ′2 = 0,

n′2 = 0 ∨ n′3 = 0,

n′4 = 0 ∨ n′5 = 0, and
n′6 = 0 ∨ n′7 = 0.

If n′2 = 0 or n′4 = 0, then we can apply Lemma 3.2. Otherwise we have n′3 = n′5 = 0 and can apply
Lemma 3.3. �

Theorem 3.5. Let {λ} be a generating set ofR and n be an integral solution of the ILP of Corollary 1.10.
If λ ∈ R3

≥0, and G is the multiset corresponding to n, then λ ∈ S(G), i.e., there exists a feasible choice
of αY satisfying (2a)-(2c).

Proof. The constraints of Corollary 1.10 read

n4 + n5 + n6 + n7 ≥ λ1,

n2 + n3 + n6 + n7 ≥ λ2,

n1 + n3 + n5 + n7 ≥ λ3,

n2 + n3 + n4 + n5 ≥ λ1 + λ2,

n1 + n3 + n4 + n6 ≥ λ1 + λ3,

n1 + n2 + n5 + n6 ≥ λ2 + λ3, and
n1 + n2 + n4 + n7 ≥ λ1 + λ2 + λ3.

22 SASCHA KURZ

We choose

α{4} = min {n4, λ1} ,
α{2} = min {n2, λ2} ,
α{1} = min {n1, λ3}

and set

n′1 = n1 − α{1},
n′2 = n2 − α{2},
n′3 = n3,

n′4 = n4 − α{4},
n′5 = n5,

n′6 = n6,

n′7 = n7,

λ′1 = λ1 − α{4},
λ′2 = λ2 − α{2}, and

λ′3 = λ3 − α{1}.

With this we have n′ = (n′1, . . . , n
′
7) ∈ N7 and λ′ = (λ′1, λ

′
2, λ
′
3) ∈ N3 satisfying

n′4 + n5 +′ n′6 + n′7 ≥ λ′1,

n′2 + n′3 + n′6 + n′7 ≥ λ′2,

n′1 + n′3 + n′5 + n′7 ≥ λ′3,

n′2 + n′3 + n′4 + n′5 ≥ λ′1 + λ′2,

n′1 + n′2 + n′5 + n′6 ≥ λ′2 + λ′3,

n′1 + n′3 + n′4 + n′6 ≥ λ′1 + λ′3,

n′1 + n′2 + n′4 + n′7 ≥ λ′1 + λ′2 + λ′3,

n′4 = 0 ∨ λ′1 = 0,

n′2 = 0 ∨ λ′2 = 0, and
n′1 = 0 ∨ λ′3 = 0.

If λ′ = 0, then our choice of the αY is feasible. If n′1 = n′2 = n′4 = 0, then we can apply Lemma 3.1.
If exactly one value in {n′1, n′2, n′4} is equal to zero, then we can apply Lemma 3.4, if there exactly two
zero values, then we can apply Lemma 3.2. �

In the following we assume that T : 2[3] → N is a function such that that T (∅) = 0 and none of the
constraints

∑
i∈U λi ≤ T (U) is strictly redundant in R3

≥0. Especially, we have that T is monotone and
subadditive. As an abbreviation we write T (∅) = T (0), T ({1}) = T (1), T ({2}) = T (2), T ({3}) =
T (3), T ({1, 2}) = T (12), T ({1, 3}) = T (13), T ({2, 3}) = T (2, 3), and T ({1, 2, 3}) = T (123). Next,
we start to study the LP relaxation of the ILP of Corollary 1.10. Under certain conditions the optimal
target value is

∑
∅6=U⊆[3] T (U)

4 , which is used in Proposition 2.12.

DESIGNING CODES FOR STORAGE ALLOCATION 23

Due to our assumption that none constraint is strictly redundant the constraints of the ILP of Corol-
lary 1.10 are given by

n4 + n5 + n6 + n7 ≥ T (1),

n2 + n3 + n6 + n7 ≥ T (2),

n1 + n3 + n5 + n7 ≥ T (3),

n2 + n3 + n4 + n5 ≥ T (12),

n1 + n3 + n4 + n6 ≥ T (13),

n1 + n2 + n5 + n6 ≥ T (23), and
n1 + n2 + n4 + n7 ≥ T (123).

Lemma 3.6. If

−T (123) + T (12) + T (13)− T (23) + T (2) + T (3)− T (1) ≥ 0,

−T (123) + T (12) + T (23)− T (13) + T (1) + T (3)− T (2) ≥ 0,

−T (123) + T (13) + T (23)− T (12) + T (1) + T (2)− T (3) ≥ 0, and

T (123)− T (12)− T (13)− T (23) + T (1) + T (2) + T (3) ≥ 0,

then the LP relaxation of the ILP of Corollary 1.10 admits

4n1 = T (123) + T (13) + T (23)− T (12)− T (1)− T (2) + T (3),

4n2 = T (123) + T (12) + T (23)− T (13)− T (1)− T (3) + T (2),

4n3 = −T (123) + T (12) + T (13)− T (23) + T (2) + T (3)− T (1),

4n4 = T (123) + T (12) + T (13)− T (23)− T (2)− T (3) + T (1),

4n5 = −T (123) + T (12) + T (23)− T (13) + T (1) + T (3)− T (2),

4n6 = −T (123) + T (13) + T (23)− T (12) + T (1) + T (2)− T (3),

4n7 = T (123)− T (12)− T (13)− T (23) + T (1) + T (2) + T (3),

as an optimal solution with target value
T (123) + T (12) + T (13) + T (23) + T (1) + T (2) + T (3)

4
.

Proof. As mentioned before, we have ∑
j∈[l] : vj /∈H

nj ≥ T (S(H)),

where S(H) = {i ∈ [k] : ei /∈ H}. We can easily check that the proposed vector n = (n1, . . . , n7)
satisfies all of these equations with equality so that

∑
i∈[7] ni clearly is minimal and has the stated value.

In remains to check n ≥ 0. From the monotonicity of T we conclude T (123) ≥ T (12), T (13) ≥ T (1)
and T (23) ≥ T (2), so that n1 ≥ 0. Applying the symmetries of the symmetric group on three elements
we similarly conclude n2 ≥ 0 and n4 ≥ 0. The conditions for n3, n5, n6, n7 ≥ 0 are equivalent to the
assumed constraints. �

We remark that the values of n3, n5, and n6 can indeed be negative as it is the case in Example 2.16.
For n7 such an example is given by:

Example 3.7. Let x be a positive integer and T : 2[3] → N be defined by T ({1}) = T ({2}) = T ({3}) =
x and T ({1, 2}) = T ({1, 3}) = T ({2, 3}) = T ({1, 2, 3}) = 2x. Proposition 2.12 gives n(R(T)) ≥⌈

11x
4

⌉
. For j = 7 Proposition 2.15 gives n(R(T)) ≥

⌈
6x
2

⌉
= 3x. In Lemma 3.6 the value for n7, i.e.,(

T (123)−T (12)−T (13)−T (23)+T (1)+T (2)+T (3)
)
/4, equals−x/4, which is negative for x > 0.

24 SASCHA KURZ

Conjecture 3.8. Given the assumptions of Lemma 3.6, we have

n(R(T)) ≤

⌈∑
∅6=U⊆[3] T (U)

4

⌉
+ 5

and a corresponding code is obtained by uprounding the values for the ni in Lemma 3.6.

Next we want to reduce the complexity of the problem an restrict ourselves to functions T : 2[3] → N,
where T (U) only depends on the cardinality of U , i.e., we set T (0) = 0, T (1) = T (2) = T (3) = X ,
T (12) = T (13) = T (23) = Y , and T (123) = Z for X,Y, Z ∈ N. Monotonicity of T is equivalent to
X ≤ Y ≤ Z and subadditivity is equivalent to Y ≤ 2X and Z ≤ X + Y . The latter constraint can be
tightened to Z ≤

⌊
3Y
2

⌋
, since λ1 + λ2 ≤ Y , λ1 + λ3 ≤ Y , and λ2 + λ3 ≤ Y imply λ1 + λ2 + λ3 ≤ 3Y

2 ,

which is upper bounded by X + Y due to Y ≤ 2X (in general: T (123) ≤
⌊
T (12)+T (13)+T (23)

2

⌋
).

In our situation the constraints
∑
j∈U λj ≤ T (i)(U) for all ∅ 6= U ⊆ [k] read

λ1 ≤ X, (19)
λ2 ≤ X, (20)
λ3 ≤ X, (21)

λ1 + λ2 ≤ Y, (22)
λ1 + λ3 ≤ Y, (23)
λ2 + λ3 ≤ Y, and (24)

λ1 + λ2 + λ3 ≤ Z. (25)

Before we study under which conditions non of these is strictly redundant, we state that the list of vectors
of Proposition 2.10 that form a generating set “simplifies” to:
• Γ1 =

(
X,Y −X,min{Z − Y, Y −X}

)
;

• Γ2 =
(
X,min{Z − Y, Y −X}, Y −X

)
;

• Γ3 =
(
Y −X,X,min{Z − Y, Y −X}

)
;

• Γ4 =
(

min{Z − Y, Y −X}, X, Y −X
)

;

• Γ5 =
(
Y −X,min{Z − Y, Y −X}, X

)
;

• Γ6 =
(

min{Z − Y, Y −X}, Y −X,X
)

;
• Γ7 = (2Y − Z,Z − Y,Z − Y) if 2Y ≤ X + Z;
• Γ8 = (Z − Y, 2Y − Z,Z − Y) if 2Y ≤ X + Z;
• Γ9 = (Z − Y, Z − Y, 2Y − Z) if 2Y ≤ X + Z.

Lemma 3.9. Given (X,Y, Z) ∈ N3, then none of the constraints (19)-(25) is strictly redundant iff X ≤
Y ≤ 2X and Y ≤ Z ≤

⌊
3Y
2

⌋
.

Proof. As shown above, the conditions X ≤ Y ≤ 2X and Y ≤ Z ≤
⌊

3Y
2

⌋
are necessary. It remains

to show that for each of the above seven constraints there there exists a vector λ ∈ N3 for which this
constraint is tight, i.e., satisfied with equality, and also the other six constraints are satisfied.

If 2Y ≥ X + Z we can easily check that the vectors
• Γ1 =

(
X,Y −X,Z − Y

)
;

• Γ2 =
(
X,Z − Y, Y −X

)
;

• Γ3 =
(
Y −X,X,Z − Y

)
;

DESIGNING CODES FOR STORAGE ALLOCATION 25

• Γ4 =
(
Z − Y,X, Y −X

)
;

• Γ5 =
(
Y −X,Z − Y,X

)
;

• Γ6 =
(
Z − Y, Y −X,X

)
satisfy all constraints (19)-(25). Moreover, all of them satisfy Inequality (25) with equality and for each
other constraint there exists an index i ∈ [6] such that it is tight for Γi.

If 2Y ≤ X + Z we can easily check that the vectors
• Γ1 =

(
X,Y −X,Y −X

)
;

• Γ3 =
(
Y −X,X, Y −X

)
;

• Γ5 =
(
Y −X,Y −X,X

)
;

• Γ7 = (2Y − Z,Z − Y,Z − Y);
• Γ8 = (Z − Y, 2Y − Z,Z − Y);
• Γ9 = (Z − Y, Z − Y, 2Y − Z)

satisfy all constraints (19)-(25). Moreover, for i ∈ {7, 8, 9} the vector Γi satisfies Inequality (25) with
equality and for each other constraint there exists an index i{1, 3, 5} such that it is tight for Γi. �

So, assuming X ≤ Y ≤ 2X and Y ≤ Z ≤
⌊

3Y
2

⌋
we have: Proposition 2.12 gives

n(R(T)) ≥
⌈

3X + 3Y + Z

4

⌉
, (26)

Proposition 2.14 gives

n(R(T)) ≥

⌈⌈
2X+Y

2

⌉
+
⌈
X+2Y+Z

2

⌉
2

⌉
, (27)

Proposition 2.15 gives

n(R(T)) ≥ max

{⌈
2X + Y

2

⌉
,

⌈
X + Y + Z

2

⌉
,

⌈
3Y

2

⌉}
= max

{⌈
X + Y + Z

2

⌉
,

⌈
3Y

2

⌉}
(28)

Note that the assumption that none of the constraints (19)-(25) is strictly redundant is indeed essential. To
this end consider (X,Y, Z) = (8n, 8n, 40n) for some integer n. Here Inequality (26) and Inequality (27)
both would give n(R(T)) ≥ 22n while the 3n-fold 3-dimensional simplex code gives n(R(T)) ≤ 21n.
Note that we also have

⌈
X+Y+Z

2

⌉
= 28n > 21n. These contradictory results are due to the fact that there

are indeed strictly redundant constraints. Similarly, for (X,Y, Z) = (4n, 16n, 16n), for some integer n,
we have

⌈
3Y
2

⌉
= 24n, while the 3n-fold 3-dimensional simplex code gives n(R(T)) ≤ 21n.

The constraints of the ILP of Corollary 1.10 simplify to

n4 + n5 + n6 + n7 ≥ X, (29)
n2 + n3 + n6 + n7 ≥ X, (30)
n1 + n3 + n5 + n7 ≥ X, (31)
n2 + n3 + n4 + n5 ≥ Y, (32)
n1 + n3 + n4 + n6 ≥ Y, (33)
n1 + n2 + n5 + n6 ≥ Y, and (34)
n1 + n2 + n4 + n7 ≥ Z. (35)

For the corresponding LP relaxation we can utilize the group action of the symmetric group S3 on 3
elements. More precisely, for a permutation π ∈ S3 and a vector x ∈ {0, 1}3 let xπ ∈ {0, 1}3 denote the
vector arising from x by permuting the coordinates according to π. Using this, we can write iπ for each

26 SASCHA KURZ

i ∈ [7] by setting iπ = j ∈ [7], where vπi = vj , i.e., we use the correspondence used in our indexing.
Next, we extend the notation to solution vectors n = (n1, . . . , n7) ∈ R7

≥0 by setting

nπ = (n1π , . . . n7π) .

Due to the underlying symmetry of the constraints (29)- (35) we have that n is a feasible solution iff nπ

is a feasible solution, where π ∈ S3 is arbitrary. Since the problem is convex, also

n? =
1

6
·
∑
π∈S3

nπ

is a feasible solution. (In this last step it is essential that we have removed the integrality conditions on
the ni.) The group action of the S3 partitions the variables into orbits{

n1, n2, n4

}
,
{
n3, n5, n6

}
, and

{
n7

}
,

so that we replace the variables of the first orbit by N1, those of the second orbit by N2, and, for con-
sistency, set n7 = N3. With this the target function

∑
i∈[7] ni translates to 3N1 + 3N2 + N3. Plugging

in these new variables into the constraints (29)- (35) yields several duplicates. (Also set of constraints is
partitioned by the group action into orbits and we only have to take one representant from each orbit.) So,
in our case the system reduces to

N1 + 2N2 +N3 ≥ X, (36)
2N1 + 2N2 ≥ Y, and (37)
3N1 +N3 ≥ Z, (38)

and X,Y, Z ≥ 0. We remark that this “symmetrization technique” is well known in the context of
semidefinite programming, see e.g. [1, 5]. For an application to symmetric linear programs we refer to
e.g. [2].

Proposition 3.10. If X,Y, Z ∈ N satisfy X ≤ Y ≤ 2X and Y ≤ Z ≤
⌊

3Y
2

⌋
, then for T : 2[3] → N

depending on X , Y , and Z as described above we have

n(R(T)) ≥

⌈
3 ·
⌈

3X+Y+Z
2

⌉
+ 3 ·

⌈
2X+3Y

2

⌉
+
⌈

3Y+2Z
2

⌉
− 7 · Ω

3

⌉
(39)

where Ω =
⌈

3X+3Y+Z
4

⌉
.

Proof. First we show⌈
3 ·
⌈

3X+Y+Z
2

⌉
+ 3 ·

⌈
2X+3Y

2

⌉
+
⌈

3Y+2Z
2

⌉
− 7 · Ω

3

⌉
≤ Ω + 1.

To this end we observe⌈
3 ·
⌈

3X+Y+Z
2

⌉
+ 3 ·

⌈
2X+3Y

2

⌉
+
⌈

3Y+2Z
2

⌉
− 7 · Ω

3

⌉
≤
⌈ 1

4 · (3X + 3Y + Z)− 7Ω + 7
2

3

⌉
. (40)

If Ω− 3X+3Y+Z
4 ≥ 1

4 , then the right hand side of Inequality (40) is at most⌈ 10
4 · (3X + 3Y + Z)− 7Ω + 7

2

3

⌉
=

⌈
3X + 3Y + Z

4
+

7

12

⌉
≤ Ω + 1.

Now, let us assume Ω = 3X+3Y+Z
4 , so that either two or none of the integers X , Y , and Z is odd. In

that case the left hand side of Inequality (40) is at most⌈ 10
4 · (3X + 3Y + Z)− 7Ω + 4

2

3

⌉
=

⌈
3X + 3Y + Z

4
+

2

3

⌉
≤ Ω + 1.

DESIGNING CODES FOR STORAGE ALLOCATION 27

Thus, we can assume

n1 + n2 + n3 + n4 + n5 + n6 + n7 ≤
⌈

3X + 3Y + Z

4

⌉
= Ω (41)

for a solution (n1, . . . , n7) for a moment (since for n1 + n2 + n3 + n4 + n5 + n6 + n7 ≥ Ω + 1 the
proposed inequality is satisfied). Now we combine the inequalities (29)(41):

n4 + n5 + n7 ≥
⌈

3X + Y + Z

2

⌉
− Ω (29) +

1

2
·
(

(31) + (32) + (35)
)
− (41);

n2 + n6 + n7 ≥
⌈

3X + Y + Z

2

⌉
− Ω (30) +

1

2
·
(

(29) + (34) + (35)
)
− (41);

n1 + n3 + n7 ≥
⌈

3X + Y + Z

2

⌉
− Ω (31) +

1

2
·
(

(30) + (33) + (35)
)
− (41);

n3 + n4 + n5 ≥
⌈

2X + 3Y

2

⌉
− Ω (32) +

1

2
·
(

(29) + (31) + (33)
)
− (41);

n1 + n3 + n6 ≥
⌈

2X + 3Y

2

⌉
− Ω (33) +

1

2
·
(

(30) + (31) + (34)
)
− (41);

n2 + n5 + n6 ≥
⌈

2X + 3Y

2

⌉
− Ω (34) +

1

2
·
(

(29) + (30) + (32)
)
− (41);

n1 + n2 + n4 ≥
⌈

3Y + 2Z

2

⌉
− Ω (35) +

1

2
·
(

(32) + (33) + (34)
)
− (41),

using the fact that the left hand sides are integers, so that summing up and dividing by three yields∑
j∈[l]

nj ≥

⌈
3 ·
⌈

3X+Y+Z
2

⌉
+ 3 ·

⌈
2X+3Y

2

⌉
+
⌈

3Y+2Z
2

⌉
− 7 · Ω

3

⌉
, (42)

since the left hand side is an integer. (So either n(R(T)) is at least Ω + 1 ∈ N or at least as large as
the right hand side of Inequality (42), which gives Inequality (39). Technically, if the right hand side of
Inequality (42) equals Ω + 1, then our assumption n1 + n2 + n3 + n4 + n5 + n6 + n7 ≤ Ω yields a
contradiction. So, in any case, Inequality (39) is a valid inequality.) �

Example 3.11. For (X,Y, Z) = (80, 105, 120) and a corresponding function T : 2[3] → N Inequal-
ity (26) and Inequality (27) both yield n(R(T)) ≥ 169. Inequality (28) yields n(R(T)) ≥ 158, while
Proposition 3.10 yields n(R(T)) ≥ 170, which is indeed attained.2 For (X,Y, Z) = (80, 104, 121)
Proposition 3.10 yields n(R(T)) ≥ 167 and Inequality (26) yields n(R(T)) ≥ 169, which is indeed
attained.

We remark that{
{4, 5, 7}, {2, 6, 7}, {1, 3, 7}, {3, 4, 5}, {1, 3, 6}, {2, 5, 6}, {1, 2, 4}

}
is a 2− (7, 3, 1) design, i.e., isomorphic to the Fano plane.

Proposition 3.12. If X,Y, Z are integers with X ≤ Y ≤ 2X , Y ≤ Z ≤
⌊

3Y
2

⌋
, and 3X − 3Y + Z ≥ 0

then for T : 2[3] → N depending on X , Y , and Z as described above we have

n(R(T)) = max

{
Ω,

⌈
3 ·
⌈

3X+Y+Z
2

⌉
+ 3 ·

⌈
2X+3Y

2

⌉
+
⌈

3Y+2Z
2

⌉
− 7 · Ω

3

⌉}
≤ Ω + 1,

2This instance is an example of a non-IRUP instance, see e.g. [6], i.e., the optimal target value of the ILP is strictly larger than
the uprounded optimal target value of the corresponding LP relaxation. In general, this happens frequently for ILPs. The interesting
case is when the ILP gap, i.e., the difference between both values, is small. So far, it is unclear what happens in our problem.

28 SASCHA KURZ

where Ω =
⌈

3X+3Y+Z
4

⌉
.

Proof. Using 3X − 3Y +Z ≥ 0 we conclude that an optimal solution of the symmetrized LP relaxation
of the ILP of Corollary 1.10, i.e., constraint (36)-(38), is given by

N1 =
−X + Y + Z

4
,

N2 =
X + Y − Z

4
,

N3 =
3X − 3Y + Z

4

with target value 3X+3Y+Z
4 . (I.e., all constraints (36)-(38) are tight. Since we do not need the optimality

but only feasibility, we will only show the latter.) Since Y ≥ X we have N1 ≥ 0. From 2X−Y ≥ 0 and
3Y −2Z ≥ 0 we conclude 2N2 = 2X+ 2Y −2Z ≥ 0. Let r = (r1, r2, r3) ∈ {0, 1, 2, 3}3 be defined by
r1 ≡ 4N1, r2 ≡ 4N2, and r3 ≡ 4N3. Depending on r we will define a code by (s1 s2 s4) (s3 s5 s6) (s7),
where si ∈

{
<,=, >

}
. The translation to (n1 n2 n4) (n3 n5 n6) (n7) is as follows: “<” means down-

rounding, “>” means uprounding, and “=” means no rounding of N1, N2, or N3 for the first, second or
third block, respectively.
(1) (0, 0, 0): (===)(===)(=)
(2) (0, 2, 0): (===)(<>>)(=)
(3) (1, 1, 1): (<<<)(<>>)(>)
(4) (1, 3, 1): (<<<)(>>>)(>)
(5) (2, 0, 2): (>>>)(===)(<)
(6) (2, 2, 2): (<<>)(<>>)(>)
(7) (3, 1, 3): (>>>)(<<<)(>)
(8) (3, 3, 3): (<>>)(>>>)(>)

Note that in the cases (1), (2), (4), (6), (7), and (8) the proposed value of n(R(T)) equals Ω and
n =

∑
j∈[l] nj also equals Ω. The lower bound n(R(T)) ≥ Ω is given by Proposition 2.12, i.e., Inequal-

ity (26). In the remaining cases (3) and (5) proposed value of n(R(T)) equals Ω + 1 and n =
∑
j∈[l] nj

also equals Ω + 1. The lower bound n(R(T)) ≥ Ω + 1 is given by Proposition 3.10, where we have to
check that the stated lower bound indeed equals Ω + 1 in the mentioned cases.

Thus, it remains to show that the desired service rate region is attained. Since the chosen n is integral
and satisfies the constraints of Corollary 1.10 in all cases we can apply Theorem 3.5 to every vector λ of
the desired service region (or to every vector of a generating set, where it is not necessary to known how
those vectors look like). �

(X,Y, Z) (n1, n2, n4) (n3, n5, n6) (n7) lb n(R(T))
(80, 104, 120) (36, 36, 36) (16, 16, 16) (12) 168 168
(80, 104, 121) (36, 36, 37) (15, 16, 16) (13) 169 169
(80, 104, 122) (36, 36, 37) (15, 16, 16) (13) 169 169
(80, 104, 123) (37, 37, 37) (15, 15, 15) (13) 169 169
(80, 105, 120) (36, 36, 36) (16, 17, 17) (12) 169 170
(80, 105, 121) (36, 37, 37) (16, 16, 16) (12) 169 170
(80, 105, 122) (36, 37, 37) (16, 16, 16) (12) 170 170
(80, 105, 123) (37, 37, 37) (15, 16, 16) (12) 170 170
(80, 106, 120) (36, 36, 37) (16, 16, 17) (11) 170 170

. . .
(83, 107, 123) (36, 37, 37) (17, 17, 17) (13) 174 174

DESIGNING CODES FOR STORAGE ALLOCATION 29

Proposition 3.13. If X,Y, Z are integers with X ≤ Y ≤ 2X , Y ≤ Z ≤
⌊

3Y
2

⌋
, and 3X − 3Y + Z < 0,

then for T : 2[3] → N depending on X , Y , and Z as described above we have

n(R(T)) =

⌈
3Y

2

⌉
.

Proof. Using 3X−3Y +Z ≤ −1 we conclude that an optimal solution of the symmetrized LP relaxation
of the ILP of Corollary 1.10, i.e., constraint (36)-(38), is given by

N1 = Y −X,

N2 =
2X − Y

2
,

N3 = 0

with target value 3Y
2 . (I.e., the constraints (36), (37), and N3 ≥ 0 are tight. Since we do not need the

optimality but only feasibility, we will only show the latter.) Since X ≤ Y we have N1 ≥ 0 and since
Y ≤ 2X we have N2 ≥ 0.

If Y is even, then we choose the multiset of points G by setting n1 = n2 = n4 = N1 = Y −X ∈ N,
n3 = n5 = n6 = X − Y

2 ∈ N, and n7 = 0, so that
∑
i∈[7] ni = 3Y

2 . If Y is odd, then we choose
the multiset of points G by setting n1 = n2 = n4 = N1 = Y − X ∈ N, n3 = n5 = X − Y−1

2 ∈ N,
n6 = X − Y+1

2 ∈ N, and n7 = 0, so that
∑
i∈[7] ni = 3Y+1

2 =
⌈

3Y
2

⌉
.

In both cases n is an integral solution of the ILP of Corollary 1.10 so that we can apply Theorem 3.5
to conclude n(R(T)) ≤

⌈
3Y
2

⌉
. The matching lower bound is given by Inequality (28) based on Proposi-

tion 2.15. �

An example where Proposition 3.13 can be applied is given by (X,Y, Z) = (5, 9, 9).

Theorem 3.14. If X,Y, Z are integers with X ≤ Y ≤ 2X and Y ≤ Z ≤
⌊

3Y
2

⌋
, and 3X − 3Y +Z < 0,

then for T : 2[3] → N given by

T (U) =


0 : #U = 0,
X : #U = 1,
Y : #U = 2,
Z : #U = 3

we have

n(R(T)) = max

{
Ω,

⌈
3 ·
⌈

3X+Y+Z
2

⌉
+ 3 ·

⌈
2X+3Y

2

⌉
+
⌈

3Y+2Z
2

⌉
− 7 · Ω

3

⌉
,

⌈
3Y

2

⌉}
≤ max

{
Ω + 1,

⌈
3Y
2

⌉}
,

where Ω =
⌈

3X+3Y+Z
4

⌉
.

Proof. We apply Proposition 3.12 and Proposition 3.13 noting that the corresponding lower bounds are
valid in both cases. �

We remark that for (X,Y, Z) = (n, 2n, 2n) we have⌈
3Y

2

⌉
= 3n and Ω + 1 =

⌈
11n

4

⌉
+ 1

and for (X,Y, Z) = (2, 2n, 2n) we have⌈
3Y

2

⌉
= 3n and Ω + 1 =

⌈
7n

2

⌉
+ 1.

30 SASCHA KURZ

REFERENCES

[1] C. Bachoc, D. C. Gijswijt, A. Schrijver, and F. Vallentin. Invariant semidefinite programs. In Handbook on semidefinite, conic
and polynomial optimization, pages 219–269. Springer, 2012.

[2] R. Bödi, K. Herr, and M. Joswig. Algorithms for highly symmetric linear and integer programs. Mathematical Programming,
137(1-2):65–90, 2013.

[3] J. Derks and J. Kuipers. On the number of extreme points of the core of a transferable utility game. In Chapters in game
theory, pages 83–97. Springer, 2002.

[4] D. Gale. Neighborly and cyclic polytopes. In Proc. Sympos. Pure Math, volume 7, pages 225–232, 1963.
[5] K. Gatermann and P. A. Parrilo. Symmetry groups, semidefinite programs, and sums of squares. Journal of Pure and Applied

Algebra, 192(1-3):95–128, 2004.
[6] V. M. Kartak, A. V. Ripatti, G. Scheithauer, and S. Kurz. Minimal proper non-IRUP instances of the one-dimensional cutting

stock problem. Discrete Applied Mathematics, 187:120–129, 2015.
[7] F. Kazemi, S. Kurz, and E. Soljanin. A geometric view of the service rates of codes problem and its application to the service

rate of the first order Reed-Muller codes. arXiv preprint 2001.09121, 2020.
[8] F. Kazemi, S. Kurz, E. Soljanin, and A. Sprintson. Efficient storage schemes for desired service rate regions. arXiv preprint

arXiv:2010.12614, 2020.
[9] S. Kurz and E. Yaakobi. PIR codes with short block length. arXiv preprint 2001.03433, 2020.

[10] P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17(2):179–184, 1970.
[11] M. Noori, E. Soljanin, and M. Ardakani. On storage allocation for maximum service rate in distributed storage systems. In

2016 IEEE International Symposium on Information Theory (ISIT), pages 240–244. IEEE, 2016.

SASCHA KURZ, UNIVERSITY OF BAYREUTH, 95440 BAYREUTH, GERMANY

Email address: sascha.kurz@uni-bayreuth.de

	1. Preliminaries
	2. Bounds for n(T)
	3. Partial results for three files
	References

