CLASSIFICATION OF INDECOMPOSABLE 2^{r}-DIVISIBLE CODES SPANNED BY BY CODEWORDS OF WEIGHT 2^{r}

SASCHA KURZ

Abstract

We classify indecomposable binary linear codes whose weights of the codewords are divisible by 2^{r} for some integer r and that are spanned by the set of minimum weight codewords. Keywords: linear codes, divisible codes, classification MSC: 94B05.

1. Introduction

A binary $[n, k]_{2}$ code C is a k-dimensional subspace of the n-dimensional vector space \mathbb{F}_{2}^{n}, i.e., we consider linear codes only. Elements $c \in C$ are called codewords and n is called the length of the code. The support of a codeword c is the number of coordinates with a non-zero entry, i.e., $\operatorname{supp}(c)=$ $\left\{i \in\{1, \ldots, n\}: c_{i} \neq 0\right\}$. The (Hamming-) weight $\mathrm{wt}(c)$ of a codeword is the cardinality $|\operatorname{supp}(c)|$ of its support. A code C is called Δ-divisible if the weight of all codewords is divisible by some positive integer $\Delta \geq 1$, see e.g. [8] for a survey. A classification of all Δ-divisible codes seems out of reach unless the length is restricted to rather small values.

Given an $[n, k]_{2}$ code C, the $[n, n-k]_{2}$ code $C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \cdot x^{T} y=0 \forall y \in C\right\}$ is called the orthogonal, or dual of C. A code is self-orthogonal if $C \subseteq C^{\perp}$ and self-dual if $C=C^{\perp}$. A self-orthogonal code is 2-divisible. In [6] self-orthogonal codes which are generated by codewords of weight 4 , which then are 4 -divisible, are completely characterized. Here we want to generalize that result, see [6, Theorem 6.5], and characterize 2^{r}-divisible codes that are generated by codewords of weight 2^{r}. Further related work includes the classical result of Bonisoli characterizing one-weight codes [1] and the generalization to two-weight codes where one of the weights is twice the other [3].

2. PRELIMINARIES

We call a code C non-trivial if its dimension $\operatorname{dim}(C)=k$ is at least 1 . Using the abbreviation $\operatorname{supp}(C)=\cup_{c \in C} \operatorname{supp}(c)$, we call $|\operatorname{supp}(C)|$ the effective length $n_{\text {eff }}$ of C. Here we assume that all codes are non-trivial and that the effective length $n_{\text {eff }}$ equals the length n (or $n(C)$ to be more precise). We emphasize this by speaking of an $[\underline{n}, k]_{2}$ code. A matrix G with the property that the linear span of its rows generate the code C, is a generator matrix of C. A generator matrix G is called systematic if it starts with a unit matrix. Each code admits a systematic generator matrix. The assumption that the effective length $n_{\text {eff }}$ is equal to the length n is equivalent to the property that generator matrices do not contain a zero-column. By $A_{i}(C)$ we denote the number of codewords of weight i in C and by $B_{i}(C)$ the number of codewords of weight i in C^{\perp}. Mostly, we will just write A_{i} and B_{i}, whenever the code C is clear from the context. In our setting we have $A_{0}=B_{0}=1$ and $B_{1}=0$. In general, the A_{i} and the B_{i} are related by the so-called MacWilliams identities, see e.g. [4]. The first four MacWilliams identities can be
rewritten to:

$$
\begin{align*}
\sum_{i>0} A_{i} & =2^{k}-1 \tag{1}\\
\sum_{i \geq 0} i A_{i} & =2^{k-1} n \tag{2}\\
\sum_{i \geq 0} i^{2} A_{i} & =2^{k-1}\left(B_{2}+n(n+1) / 2\right) \tag{3}\\
\sum_{i \geq 0} i^{3} A_{i} & =2^{k-2}\left(3\left(B_{2} n-B_{3}\right)+n^{2}(n+3) / 2\right) . \tag{4}
\end{align*}
$$

In this special form they are also called the first four (Pless) power moments, see [5]. The weight distribution of C is the sequence A_{0}, \ldots, A_{n} and the weight enumerator of C is the polynomial $w(C)=$ $w(C ; x)=\sum_{i=0}^{n} A_{i} x^{i}$.

Two codes C, C^{\prime} are equivalent, notated as $C \simeq C^{\prime}$, if there exists a permutation in \mathcal{S}_{n} sending C into C^{\prime}. The direct sum of an $[\underline{n}, k]_{2}$ code C and an $\left[\underline{n^{\prime}}, k^{\prime}\right]_{2}$ code C^{\prime} is the $\left[\underline{n+n^{\prime}}, k+k^{\prime}\right]_{2}$ code $C \oplus C^{\prime}=\left\{\left(c_{1}+c_{1}^{\prime}, \ldots, c_{n}+c_{n}^{\prime}\right):\left(c_{1}, \ldots, c_{n}\right) \in C,\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \in C^{\prime}\right\}$. If D can be written as $C \oplus C^{\prime}$ it is called decomposable, otherwise indecomposable [7].

Lemma 2.1. Let C be an indecomposable $[\underline{n}, k]_{q}$ code. If $k \geq 2$, then C contains an indecomposable $[\leq n-1, k-1]_{q}$ code C^{\prime} as a subcode.

Proof. Let G be a systematic generator matrix of C. We will construct C^{\prime} by row-wise building up a generator matrix. To this end let \mathcal{R} be the set of rows and set $\mathcal{C}=\emptyset$. For the start pick some row $r \in \mathcal{R}$ add it to \mathcal{C} and remove it from \mathcal{R}. As long as $\#<k-1$ we choose some element $r \in \mathcal{R}$ with $\operatorname{supp}(r) \cap \operatorname{supp}(c) \neq \emptyset$ for at least one $c \in \mathcal{C}$. Since C is indecomposable such a row r must indeed exist. Again, add r to \mathcal{C} and remove it from \mathcal{R}.
In other words, indecomposable codes can always be obtained by extending indecomposable subcodes.
Corollary 2.2. Each indecomposable $[\underline{n}, k]_{q}$ code C contains a chain $C_{0} \subseteq C_{1} \subseteq \cdots \subseteq C_{k}=C$ of indecomposable subcodes such that $\operatorname{dim}\left(C_{i}\right)=i$ and the effective length is strictly increasing.

Given some $[\underline{n}, k]_{2}$ code C we can restrict the coordinates of the codewords to some subset $I \subseteq N:=$ $\{1, \ldots, n\}$, i.e., $C_{I}=\left\{c_{I}: c \in C\right\}$, where c_{I} denotes the codeword c restricted to the positions in I. Special cases are the code $C_{\operatorname{supp}(c)}$ restricted to some codeword $c \in C$ and the corresponding residual code $C_{N \backslash \operatorname{supp}(c)}$. Note that the dimensions of both codes is at most $k-1$ but can be strictly less. If C is 2^{r} divisible for some positive integer r, then a residual code of C is 2^{r-1}-divisible, see e.g. [9, Lemma 13], so that also the corresponding restricted code is 2^{r-1}-divisible.

If all non-zero codewords of a binary linear code have the same weight, then the code is a replication of a simplex code, see [1]. For the reader's convenience we prove a specialization of that result.

Lemma 2.3. Let C be an $[\underline{n}, k]_{2}$ code where all non-zero codewords have weight 2^{a}. Then, $k \leq a+1$ and $C \simeq S_{k-1}^{a+1-k}$.

Proof. By Lemma 3.1 there exists a code C^{\prime} with $C=C^{\prime a+1-k}$. By construction all non-zero codewords of C^{\prime} have weight 2^{k-1}. Using equations (1)-(3) we compute $n=2^{k}-1$ and $B_{2}=0$. Since there are only $2^{k}-1$ different non-zero vectors in \mathbb{F}_{2}^{k} we have $C^{\prime} \simeq S_{k-1}^{0}$, so that $C \simeq S_{k-1}^{a+1-k}$.

3. The Characterization

We want to prove our main characterization result for indecomposable 2^{r}-divisible $[\underline{n}, k]_{2}$ codes that are generated by codewords of weight 2^{r} in Theorem 3.7. To this end, we describe some families of
codes and then derive some auxiliary results. So, by S_{l} we denote the $(l+1)$-dimensional simplex code, i.e., $\operatorname{dim}\left(S_{l}\right)=l+1$ and $w_{S_{l}}(X)=1+\left(2^{l+1}-1\right) \cdot X^{2^{l}}$, where $l \geq 0$. So, S_{l} is 2^{l}-divisible and has effective length $n=2^{l+1}-1$. By A_{l} we denote the $\left[2^{l+1}, l+2,2^{l}\right] 1$ st-order Reed-Muller code, which geometrically corresponds to the affine $(l+1)$-flat, i.e., $S_{l+1}-S_{l}+$ in terms of point sets. So, $\operatorname{dim}\left(A_{l}\right)=l+2$ and $w_{A_{l}}(X)=1+\left(2^{l+2}-2\right) \cdot X^{2^{l}}+1 \cdot X^{2^{l+1}}$, i.e., it is 2^{l}-divisible and has effective length $n=2^{l+1}$. By R_{l} we denote the l-dimensional code generate by the l codewords having a 1 at position 1 and a second one at position $i+1$ for $1 \leq i \leq l$. So, R_{l} has dimension $\operatorname{dim}\left(R_{l}\right)=l$, effective length $n=l+1$ and is 2^{1}-divisible. If C is a code then by C^{m} we denote the code that arises if we replace every 0 by a block of 2^{m} consecutive zeroes and every 1 by a block of 2^{m} consecutive ones. So, especially we have $C^{0}=C$. In general the dimension does not change, the effective length is multiplied by 2^{m} and a 2^{l}-divisible code is turned into a 2^{l+m}-divisible code. For the weight enumerator we have $w\left(C^{m} ; x\right)=w\left(C ; x^{m}\right)$.

Lemma 3.1. Let $q=p^{e}$ be a prime power and C be a q-ary linear code (considered as a powerset of \mathbb{F}_{q}^{n}) that is q^{r}-divisible, where $r e \in \mathbb{N}_{\geq 0}$. For each $\emptyset \subseteq M \subseteq S \subseteq C$ with $1 \leq|S| \leq r+1$ we have that $q^{q+1-|S|}$ divides $\# I_{M, S}(C)$, where

$$
I_{M, S}(C)=\{i \in \operatorname{supp}(S): i \in \operatorname{supp}(c) \forall c \in M \wedge i \notin \operatorname{supp}(c) \forall c \in S \backslash M\}
$$

Proof. For $M=\emptyset$ we have $I_{M, S}(C)=\emptyset$, so that $\# I_{M, S}(C)=0$ and the statement is trivially true. In the following we assume $M \neq \emptyset$ and prove by induction on $\# S$. For the induction start let $S=\{c\}$. Due to our assumption we have $M=\{c\}$, so that $I_{M, S}(C)=\# \operatorname{supp}(c)=\mathrm{wt}(c)$, which is divisible by $q^{r+1-|S|}=q^{r}$. Now let $|S| \geq 2$ and $\bar{c} \in M$ be arbitrary. With $I=\operatorname{supp}(\bar{c})$ we set $C^{\prime}=C_{I}$, i.e., the restricted code. As noted in Section 2, C^{\prime} is q^{r-1}-divisible (since $|S| \leq r+1$ implies $r \geq 1$). We set $M^{\prime}=\left\{c_{I}: c \in M \backslash\{\bar{c}\}\right\}$ and $S^{\prime}=\left\{c_{I}: c \in S \backslash\{\bar{c}\}\right\}$, so that $\emptyset \subseteq M^{\prime} \subseteq S^{\prime} \subseteq C^{\prime}$. Since $\# S^{\prime}=\# S-1$ and $I_{M, S}(C)=I_{M^{\prime}, S^{\prime}}\left(C^{\prime}\right)$ the statement follows from the induction hypothesis.
Corollary 3.2. In the setting of Lemma 3.1 we have that $q^{r+1-|S|}$ divides the cardinality of $\operatorname{supp}(S)$.
Proof. Since

$$
\operatorname{supp}(S)=\cup_{c \in S} \operatorname{supp}(c)=\sum_{\emptyset \subseteq M \subseteq S} I_{M, S}(C)
$$

the statement follows directly from Lemma 3.1
Lemma 3.3. Let $C=R_{l}^{a}$ for integers $l \geq 1$ and $a \geq 0, c^{\prime}$ be a further codeword with weight 2^{a+1} and $\emptyset \neq \operatorname{supp}\left(c^{\prime}\right) \cap \operatorname{supp}(C) \neq \operatorname{supp}(C)$. If $C^{\prime}:=\left\langle C, c^{\prime}\right\rangle$ is 2^{a+1}-divisible, then either $C^{\prime} \simeq R_{l+1}^{a}$ or $l=2$, $a \geq 1$, and $C^{\prime} \simeq S_{2}^{a-1}$.
Proof. As an abbreviation we set $\Delta:=2^{a+1}$ and note that C is Δ-divisible. If $l=1$, then $C=$ $\{0, c\}$, where $\mathrm{wt}(c)=\Delta$. From Lemma 3.1 we conclude that $\frac{\Delta}{2}$ divides $\left|\operatorname{supp}(C) \cap \operatorname{supp}\left(c^{\prime}\right)\right|$. Since $\operatorname{supp}(C)=\operatorname{supp}(c)$ and $\emptyset \neq \operatorname{supp}(C) \cap \operatorname{supp}\left(c^{\prime}\right) \neq \operatorname{supp}(C)$, we have $\left|\operatorname{supp}(C) \cap \operatorname{supp}\left(c^{\prime}\right)\right|=\frac{\Delta}{2}$. Thus, $C^{\prime} \simeq R_{2}^{a}=R_{l+1}^{a}$.

Now we assume $l \geq 2$. For $1 \leq i \leq l+1$ we set $P_{i}:=\left\{j \in \mathbb{N}: \frac{\Delta}{2}(i-1)+1 \leq j \leq \frac{\Delta}{2} i\right\}$ and $f_{i}(c):=\left|\operatorname{supp}(c) \cap P_{i}\right|$ for each codeword $c \in C^{\prime}$. Note that $f_{i}(c) \in\left\{0, \frac{\Delta}{2}\right\}$ for all $c \in C$ and all $1 \leq i \leq l+1$. Moreover, for each $1 \leq i<j \leq l+1$ there exists a codeword $c^{i, j} \in C$ with $f_{i}\left(c^{i, j}\right)=f_{j}\left(c^{i, j}\right)=\frac{\Delta}{2}$ and $f_{h}\left(c^{i, j}\right)=0$ otherwise. Now suppose that there is an index $1 \leq i \leq l+1$ with $0<f_{i}\left(c^{\prime}\right)<\frac{\Delta}{2}$. For each index $1 \leq j \leq l+1$ with $i \neq j$ we have

$$
\mathrm{wt}\left(c^{i, j}+c^{\prime}\right)=\mathrm{wt}\left(c^{i, j}\right)+\mathrm{wt}\left(c^{\prime}\right)-2 \cdot \mathrm{wt}\left(c^{i, j} \cap c^{\prime}\right)=2 \Delta-2 f_{i}\left(c^{\prime}\right)-2 f_{j}\left(c^{\prime}\right)
$$

so that $\operatorname{wt}\left(c^{i, j}+c^{\prime}\right)=\Delta$ and $f_{i}\left(c^{\prime}\right)+f_{j}\left(c^{\prime}\right)=\frac{\Delta}{2}$. Since $l \geq 2$ there exists at least another index in $\{1, \ldots, l+1\} \cap\{i, j\}$, so that this implies $f_{h}\left(c^{\prime}\right)=\frac{\Delta}{4}$ for all $1 \leq h \leq l+1$. Thus, $\Delta=\operatorname{wt}\left(c^{\prime}\right)>$ $\sum_{h=1}^{l+1} f_{h}\left(c^{\prime}\right)$ implies $l=2$ and $C^{\prime} \simeq S_{2}^{a-1}$. Otherwise we have $f_{h}\left(c^{\prime}\right) \in\left\{0, \frac{\Delta}{2}\right\}$ for all $1 \leq h \leq l+1$,
i.e., there exists an index $1 \leq i \leq l+1$ with $f_{i}\left(c^{\prime}\right)=\frac{\Delta}{2}$ and $f_{h}\left(c^{\prime}\right)=0$ otherwise. If $i \neq 1$ we consider $c^{\prime}+c^{1, i}$ to conclude that $C^{\prime}=R_{l+1}^{a}$.

Lemma 3.4. Let C be a binary, non-trivial, indecomposable 2^{1}-divisible linear code that is spanned by codewords of weight 2 . Then, $C \simeq R_{l}^{0}$ for some integer $l \geq 1$.

Proof. We will prove by induction on the dimension k of C. The induction start $k=1$ is obvious. For the induction step let C^{\prime} be an indecomposable subcode of C with dimension $k-1$, see Lemma 2.1 . From the induction hypothesis we conclude $C^{\prime} \simeq R_{k-1}^{0}$, so that Lemma 3.3 gives $C \simeq R_{k}^{0}$.
Note that $S_{0}^{1} \simeq R_{1}^{0}, S_{1}^{0} \simeq R_{2}^{0}$, and $A_{1}^{0} \simeq R_{3}^{0}$.
Lemma 3.5. Let C be a binary, non-trivial, indecomposable Δ-divisible linear code that is spanned by codewords of weight Δ, where $\Delta=2^{a}$ and $a \in \mathbb{N}_{>0}$. Let c^{\prime} be a further codeword with weight Δ and $\emptyset \neq \operatorname{supp}\left(c^{\prime}\right) \cap \operatorname{supp}(C) \neq \operatorname{supp}(C)$ such that $C^{\prime}:=\left\langle C, c^{\prime}\right\rangle$ is Δ-divisible.
(1) If $C \simeq S_{a}^{0}$ then $C^{\prime} \simeq A_{a}^{0}$.
(2) If $C \simeq S_{a-1}^{1}$ then $C^{\prime} \simeq S_{a}^{0}$ or $C^{\prime} \simeq A_{a-1}^{1}$.
(3) If $a \geq 1$ and $C \simeq A_{a}^{0}$ then $a=1$ and $C^{\prime}=R_{4}^{0}$.
(4) If $a \geq 2$ and $C \simeq A_{a-1}^{1}$ then $a=2$ and $C^{\prime} \simeq R_{4}^{1}$.
(5) If $a \geq 3$ and $C \simeq A_{a-2}^{2}$ then $a=3$ and $C^{\prime} \simeq R_{4}^{2}$.

Proof. We note that $1 \leq n\left(C^{\prime}\right)-n(C) \leq \Delta-1$. Since $n(C) \leq 2 \Delta$ in all cases the non-zero weights in C^{\prime} are either Δ or 2Δ.
(1) From equations (1)-2] we compute $A_{2 \Delta}=2 n\left(C^{\prime}\right)-4 \Delta+1$, i.e., $A_{2 \Delta} \geq 1$. Let D be the residual code of a codeword of weight 2Δ in $C^{\prime}\left(C^{\prime} \backslash C\right)$. By construction D is $\frac{\Delta}{2}$-divisible, projective, and has an effective length of at most $\Delta-2<2 \cdot \frac{\Delta}{2}-1$. Thus, Lemma 2.3 implies that D is a trivial code, i.e., $n(D)=0$ and $n\left(C^{\prime}\right)=2 \Delta$. With this we have $A_{2 \Delta}=1$ and $C^{\prime} \simeq A_{a}^{0}$.
(2) From equations $\sqrt{1}$ - $\sqrt{2}$ we compute $A_{\Delta}=4 \Delta-2-n\left(C^{\prime}\right)$ and $A_{2 \Delta}=n\left(C^{\prime}\right)-2 \Delta+1$, i.e., $n\left(C^{\prime}\right) \geq 2 \Delta-1$. If $n\left(C^{\prime}\right)=2 \Delta-1$ then $A_{2 \Delta}=0$ and Lemma 2.3 gives $C^{\prime} \simeq S_{a}^{0}$. If $n\left(C^{\prime}\right)=2 \Delta$ then $A_{2 \Delta}=1$ and adding the all-one word to C gives $C^{\prime} \simeq A_{a-1}^{1}$. In the remaining cases we have $n\left(C^{\prime}\right)>2 \Delta$ and $A_{2 \Delta} \geq 1$. Let D be the residual code of a codeword of weight 2Δ in $C^{\prime}\left(C^{\prime} \backslash C\right)$. By construction D is $\frac{\Delta}{2}$-divisible, has column multiplicity at most 2 , and has an effective length of at most $\Delta-3<2 \cdot \frac{\Delta}{2}-2$. Thus, Lemma 2.3 implies that D is a trivial code - contradiction. (The two possibilities with column multiplicity 1 or 2 would have an effective length of $\Delta-1$ or $\Delta-2$, respectively.)
(3) From equations (17- 27 we compute $A_{\Delta}=16 \Delta-2-4 n\left(C^{\prime}\right)$ and $A_{2 \Delta}=4 n\left(C^{\prime}\right)-8 \Delta+1$. Let D be the residual code of a codeword of weight 2Δ in $C^{\prime} \backslash C$. By construction D is $\frac{\Delta}{2}$-divisible, projective, contains the all-1 codeword, and has an effective length of at most $\Delta-1$. Thus, Lemma 2.3 implies that $D \simeq S_{0}^{a-1}$, where $a=1$. So, $C=R_{3}^{0}$ and Lemma 3.3 yields $C^{\prime}=R_{4}^{0}$.
(4) From equations (1)-(2) we compute $A_{\Delta}=8 \Delta-2-2 n\left(C^{\prime}\right)$ and $A_{2 \Delta}=2 n\left(C^{\prime}\right)-4 \Delta+1$. Let D be the residual code of a codeword of weight 2Δ in $C^{\prime} \backslash C$. By construction D is $\frac{\Delta}{2}$-divisible, has maximum column multiplicity at most 2 , contains the all- 1 codeword, and has an effective length of at most $\Delta-1$. Thus, Lemma 2.3 implies that either $D \simeq S_{0}^{0}$ or $D \simeq S_{0}^{1}$. In the first case we have $\Delta=2$ and $a=1$, which is not possible. In the second case we have $\Delta=4, a=2$, and $C \simeq A_{1}^{1} \simeq R_{3}^{1}$, so that Lemma 3.3 implies $C^{\prime} \simeq R_{4}^{1}$.
(5) From equations $\sqrt{1}-22$ we compute $A_{\Delta}=4 \Delta-2-n\left(C^{\prime}\right)$ and $A_{2 \Delta}=n\left(C^{\prime}\right)-2 \Delta+1$. Let D be the residual code of a codeword of weight 2Δ in $C^{\prime} \backslash C$. By construction D is $\frac{\Delta}{2}$-divisible, has maximum column multiplicity at most 4 , contains the all- 1 codeword, and has an effective length of at most $\Delta-1$. Thus, Lemma 2.3 implies that either $D \simeq S_{0}^{0}, D \simeq S_{0}^{1}$, or $D \simeq S_{0}^{2}$. Since we assume $a \geq 3$, only $a=3$ and $\Delta=8$ is possible, where $C \simeq R_{3}^{2}$, so that Lemma $3.3 \mathrm{implies} C^{\prime} \simeq R_{4}^{2}$.

Note that if we drop the condition $\operatorname{supp}\left(C^{\prime}\right) \neq \operatorname{supp}(C)$, then A_{a-1}^{1} can be extended to A_{a}^{0} and A_{a-2}^{2} can be extended to A_{a-1}^{1}.
Lemma 3.6. Let C be a binary, non-trivial, indecomposable 2^{2}-divisible linear code that is spanned by codewords of weight 4 . Then, $C \simeq R_{l}^{1}$ for some integer $l \geq 1$ or either $C \simeq S_{2-l}^{l}$ or $C \simeq A_{2-l}^{l}$ for some $l \in\{0,1\}$.

Proof. First note that the mentioned families of codes satisfy all assumptions. If $\operatorname{dim}(C) \leq 2$ then Lemma 3.1 implies that there is some code C^{\prime} with $C=C^{\prime 1}$, i.e., we can apply Lemma 3.4. If $\operatorname{dim}(C) \geq$ 3 we apply Corollary 2.2 and consider the corresponding chain $C_{0} \subsetneq C_{1} \subsetneq \cdots \subsetneq C_{k}=C$, where $k=\operatorname{dim}(C)$. Lemma 3.1 gives the existence of a binary, non-trivial, indecomposable 2^{1}-divisible linear code C^{\prime} with $C_{2}=C^{\prime 2}$ that is spanned by codewords of weight 2 . Thus, Lemma 3.4 gives $C^{\prime} \simeq R_{2}^{0}$ and $C_{2} \simeq R_{2}^{1}$. Lemma 3.3 then gives $C_{3} \simeq R_{3}^{1}$ or $C_{3} \simeq S_{2}^{0}$. If $C_{3} \simeq R_{3}^{1}$ then recursively applying Lemma 3.3 yields $C_{l} \simeq D_{l}^{1}$ for all $3 \leq l \leq k$. If $C_{3} \simeq S_{2}^{0}$ and $k \geq 4$, then Lemma 3.5 gives $C_{4} \simeq A_{2}^{0}$ and $k=4$ (since A_{2}^{0} cannot be extended).
Note that $S_{1}^{1} \simeq R_{2}^{1}$ and $A_{1}^{1} \simeq R_{3}^{1}$.
Theorem 3.7. For a positive integer a let C be a binary, non-trivial, indecomposable 2^{a}-divisible linear code that is spanned by codewords of weight 2^{a}. Then, $C \simeq R_{l}^{a-1}$ for some integer $l \geq 1$ or either $C \simeq S_{a-l}^{l}$ or $C \simeq A_{a-l}^{l}$ for some $l \in\{0,1, \ldots, a-1\}$.

Proof. We prove by induction on a. Lemma 3.4 and Lemma 3.6 give the induction start, so that we can assume $a \geq 3$ in the following. First note that the mentioned families of codes satisfy all assumptions. If $\operatorname{dim}(C) \leq a$ then Lemma 3.1 implies that there is some code C^{\prime} with $C=C^{\prime 1}$, i.e., we can apply the induction hypothesis. If $\operatorname{dim}(C) \geq a+1$ we apply Corollary 2.2 and consider the corresponding chain $C_{0} \subsetneq C_{1} \subsetneq \cdots \subsetneq C_{k}=C$, where $k=\operatorname{dim}(C)$. Lemma 3.1 gives the existence of a binary, non-trivial, indecomposable 2^{a-1}-divisible linear code C^{\prime} with $C_{a}=C^{\prime 2}$ that is spanned by codewords of weight 2^{a-1}. Then the induction hypothesis gives that either $C_{a} \simeq R_{a}^{a-1}, C_{a} \simeq S_{a-1}^{1}$, or $C_{a} \simeq A_{a-2}^{2}$. In the first case recursively applying Lemma 3.3 yields $C_{l} \simeq R_{l}^{a-1}$ for all $a \leq l \leq k$. If either $C_{a} \simeq S_{a-1}^{1}$ or $C_{a} \simeq A_{a-2}^{2}$ we can apply Lemma 3.5 to conclude $C_{a+1} \simeq S_{a}^{0}, C_{a+1} \simeq A_{a-1}^{1}$, or $a=3$ and $C_{4} \simeq R_{4}^{2}$. In the latter case we have $C_{l} \simeq R_{l}^{2}$ for all $4 \leq l \leq k$ due to Lemma 3.3. Otherwise either $k=a+1$ or $C_{a+2} \simeq A_{a}^{0}$ and $k=a+2$ due to Lemma 3.5 .

4. An application to projective 3-weight codes

When deciding the question whether a code with certain parameters exist one often checks whether the MacWilliams identities admit a non-negative integer solution. If so, then sometimes more combinatorial are necessary. In the proof of e.g. [2], Lemma 24] the existence of an $[\underline{51}, 9]_{2}$ code with weight enumerator $w(C)=1+2 x^{8}+406 x^{24}+103 x^{32}$ had to be excluded in a subcase. Since the sum of two codewords of weight 8 would have a weight between 8 and 16 this is impossible. Using the classification result of Theorem 3.7 this can easily be generalized.
Proposition 4.1. Let C be a Δ-divisible $[\underline{n}, k]_{2}$ code, where $\Delta=2^{r}$ for some positive integer r. If C does not contain a codeword of weight 2Δ, then $A_{\Delta} \in\left\{2^{i}-1: 0 \leq i \leq r+1\right\}$.
Proof. Let C^{\prime} be the subcode of C spanned by the codewords of weight Δ and $C^{\prime}=C_{1} \oplus \cdots \oplus C_{l}$ the up to permutation unique decomposition into indecomposable codes. Since C^{\prime} does not contain a codeword of weight 2Δ we have $l \leq 1$. For $l=0$ we obviously have $A_{\Delta}=0$. If $l=1$, then Theorem 3.7 gives $C_{1} \simeq S_{i}^{r-i}$, where $0 \leq i \leq r$, and $A_{\Delta}=2^{i+1}-1$.

In general, if we know that an $[n, k]_{2}$ code is $\Delta:=2^{r}$-divisible and contains some codewords of weight Δ one can consider the decomposition $C^{\prime}=C_{1} \oplus \cdots \oplus C_{l}$ of the subcode C^{\prime} spanned by codewords of weight Δ. Obviously, we have
(1) $w\left(C^{\prime}\right)=\prod_{i=1}^{l} w\left(C_{i}\right)$, i.e., especially $A_{\Delta}\left(C^{\prime}\right)=\sum_{i=1}^{l} A_{\Delta}\left(C_{i}\right)$;
(2) $\operatorname{dim}(C) \geq \operatorname{dim}\left(C^{\prime}\right)=\sum_{i=1}^{l} \operatorname{dim}\left(C_{i}\right)$;
(3) $n(C) \geq n\left(C^{\prime}\right)=\sum_{i=1}^{l} n\left(C_{i}\right)$;
(4) $\omega(C) \geq \omega\left(C^{\prime}\right)=\sum_{i=1}^{l} \omega\left(C_{i}\right)$, where $\omega(D)$ denotes the maximum weight of a codeword in D.

With respect to Theorem 3.7 we remark
(1) $A_{\Delta}\left(S_{r-l}^{l}\right)=2^{r+1-l}-1, \operatorname{dim}\left(S_{r-l}^{l}\right)=r+1-l, n\left(S_{r-l}^{l}\right)=2^{r+1}-2^{l}$, and $\omega\left(S_{r-l}^{l}\right)=\Delta$ for $0 \leq l \leq r ;$
(2) $A_{\Delta}\left(A_{r-l}^{l}\right)=2^{r+2-l}-2, \operatorname{dim}\left(A_{r-l}^{l}\right)=r+2-l, n\left(A_{r-l}^{l}\right)=2 \Delta=2^{r+1}$, and $\omega\left(A_{r-l}^{l}\right)=2 \Delta$ for $0 \leq l \leq r-1 ;$
(3) $A_{\Delta}\left(R_{l}^{r-1}\right)=\binom{l+1}{2}, \operatorname{dim}\left(R_{l}^{r-1}\right)=l, n\left(R_{l}^{r-1}\right)=\frac{\Delta}{2} \cdot(l+1)$, and $\omega\left(R_{l}^{r-1}\right)=\lceil l / 2\rceil \cdot \Delta$ for $l \geq 1$.

A more sophisticated example, compared to Proposition 4.1, occurs in the area of binary projective 3weight codes. Projective codes, i.e., those with $B_{2}=0$, having few weights have a lot of applications and have been studied widely in the literature. Here we consider $[\underline{n}, k]_{2}$ codes with weights in $\{0, \Delta, 2 \Delta, 3 \Delta\}$ and length $n=4 \Delta$, where $\Delta=2^{r}$ for some positive integer r.

Theorem 4.2. For an integer $r \geq 2$ let $\Delta=2^{r}$ and C be a projective Δ-divisible $[\underline{\Delta}, k]_{2}$ code with non-zero weights in $\{\Delta, 2 \Delta, 3 \Delta\}$. Then $k \leq 2 r+3$. If $k=2 r+3$ and $r \geq 3$ then C is isomorphic to a code with generator matrix

$$
\left(\begin{array}{cccc}
A_{r-1}^{0} & A_{r-1}^{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & S_{r}^{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{0} & \mathbf{1} & 1
\end{array}\right)
$$

where $\mathbf{0}$ and $\mathbf{1}$ are matrices of approbriate sizes that entirely consist of 0's or 1's, respectively
Proof. Using equations (1)- $\sqrt{3}$ and $B_{2}=0$ we compute $A_{\Delta}=2^{k-r-1}-3 \geq 1$. Consider the decomposition $C^{\prime}=C_{1} \oplus \cdots \oplus C_{l}$ of the subcode C^{\prime} spanned by codewords of weight Δ. Since $\omega(C)=3 \Delta$, we have $1 \leq l \leq 3$. If $\omega\left(C_{i}\right)=\Delta$ for all $1 \leq i \leq l$, i.e., $C_{i}=S_{r-j_{i}}^{j_{i}}$ for some $0 \leq j_{i} \leq r-1$, then $A_{\Delta}\left(C^{\prime}\right)=\sum_{i=1}^{l} A_{\Delta}\left(C_{i}\right) \leq l \cdot(2 \Delta-1) \leq 3 \cdot\left(2^{r+1}-1\right)$, so that $k<2 r+4$. If $\omega\left(C_{1}\right)=2 \Delta$, then due to Theorem 3.7 we have either $C_{1} \simeq R_{3}^{r-1}, C_{1} \simeq R_{4}^{r-1}$, or $C_{1} \simeq A_{r-j}^{j}$ for some $0 \leq j \leq r-1$, so that $A_{\Delta}\left(C_{1}\right) \leq 2^{r+2}-2$. Since then $l \leq 2, \omega\left(C_{2}\right) \leq \Delta$, and $A_{\Delta}\left(C_{2}\right) \leq 2^{r+1}-1$, we have $A_{\Delta}\left(C^{\prime}\right)=\sum_{i=1}^{l} A_{\Delta}\left(C_{i}\right) \leq 3 \cdot\left(2^{r+1}-1\right)$, so that $k<2 r+4$. If $\omega\left(C_{1}\right) \geq 3 \Delta$, then $l=1$ and $\omega\left(C_{1}\right)=3 \Delta$, so that Theorem 3.7 gives $C_{1} \simeq R_{5}^{r-1}$ or $C_{1} \simeq R_{6}^{r-1}$, i.e., $A_{\Delta}\left(C^{\prime}\right) \leq 21 \leq 3 \cdot\left(2^{r+1}-1\right)$, so that $k<2 r+4$. Thus, we have $k \leq 2 r+3$ in all cases.

For $k=2 r+3$ we need a more detailed analysis of the possible decompositions $C^{\prime}=C_{1} \oplus \cdots \oplus C_{l}$. First we note $\omega\left(C_{i}\right) \in\{\Delta, 2 \Delta, 3 \Delta\}, A_{\Delta}=2^{r+2}-3 \geq 1$, so that $C_{i} \not 千 A_{r}^{0}$, and $1 \leq l \leq 3$. Let us start to consider the case $\omega\left(C_{i}\right)=\Delta$ for all i, i.e., $A_{\Delta}=2^{r+1-j_{i}}-1$ for some $0 \leq j_{i} \leq r\left(C_{i}=S_{r-j_{i}}^{j_{i}}\right.$ for some $\left.0 \leq j_{i} \leq r\right)$. If $j_{i} \geq 1$ for all i, then $A_{\Delta}\left(C^{\prime}\right) \leq 3 \cdot\left(2^{r}-1\right)<2^{r+2}-3$, so that we assume $j_{1}=0$. Since $2^{r+2}-3=2^{r+1}-1$ is equivalent to $r=0$, we have $l \geq 2$. If $l=2$ and $j_{2}=0$, then $A_{\Delta}\left(C^{\prime}\right) \geq 2^{r+2}-2>2^{r+2}-3$. If $l=2$ and $j_{2} \leq 1$, then $A_{\Delta}\left(C^{\prime}\right) \leq 2^{r+1}-1+2^{r}-1<2^{r+2}-3$ for $r \geq 1$. Thus, we have $l=3$. If $j_{2}=0$ or $j_{3}=0$, then $A_{\Delta}\left(C^{\prime}\right) \geq 2 \cdot\left(2^{r+1}-1\right)>2^{r+2}-3$. If $j_{2} \geq 1, j_{3} \geq 1$, and $j_{2}+j_{3} \geq 3$, then $A_{\Delta}\left(C^{\prime}\right) \leq 2^{r+1}-1+2^{r}-1+2^{r-1}-1<2^{r+2}-3$. The only possibility with $A_{\Delta}\left(C^{\prime}\right)=2^{r+2}-3$ is $j_{1}=0, j_{2}=j_{3}=1$. However, in this case we have $n\left(C^{\prime}\right)=\left(2^{r+1}-1\right)+\left(2^{r+1}-2\right)+\left(2^{r+1}-2\right)=2^{r+2}+\left(2^{r+1}-5\right)>2^{r+2}=n$ for $r \geq 2$.

If $\omega\left(C_{i}\right)=3$ for some i, then $l=3$ and Theorem 3.7 gives $C_{1} \simeq R_{5}^{r-1}$ or $C_{1} \simeq R_{6}^{r-1}$, so that $A_{\Delta}\left(C^{\prime}\right)=\binom{6}{2}=15$ or $A_{\Delta}\left(C^{\prime}\right)=\binom{7}{2}=21$. Since $2^{r+2}-3<15$ for $r \leq 2$ and $2^{r+2}-3>21$ for $r \leq 3$, this is not possible. Thus, there exists an index i with $\omega\left(C_{i}\right)=2$. W.l.o.g. we assume $\omega\left(C_{1}\right)=2$. From Theorem 3.7 we conclude $C_{1} \simeq R_{4}^{r-1}$ or $C_{1} \simeq A_{r-j}^{j}$ for some integer $0 \leq j \leq r-1$. If $l=2$, then $\omega\left(C_{2}\right)=\Delta$, so that in any case we have $A_{\Delta}\left(C^{\prime}\right)=A_{\Delta}\left(C_{1}\right)+2^{x}-1$ for some integer $0 \leq x \leq r+1$. If $C_{1} \simeq R_{4}^{r-1}$, then the equation $A_{\Delta}\left(C^{\prime}\right)=2^{r+2}-3=10+2^{x}-1$ has the unique integer solution
$r=2$ and $x=2$, which corresponds to $C^{\prime} \simeq R_{4}^{1} \oplus S_{1}^{1} \simeq R_{4}^{1} \oplus R_{2}^{1}$. (The equation is equivalent to $2^{r+2}=12+2^{x}$, so that $r \geq 2$. For $r \geq 2$ we have $x \geq 5$, so that the left hand side is divisible by 8 while the right hand side is not.) In the remaining cases we have $C_{1} \simeq A_{r-j}^{j}$, so that $A_{\Delta}\left(C_{1}\right)=2^{r+2-j}-2$. Thus, we have to consider the Diophantine equation $A_{\Delta}\left(C^{\prime}\right)=2^{r+2}-3=2^{y}-2+2^{x}-1$, where $y=r+2-j$. The only integral solution is $y=x=r+1$, i.e., $j=1, C_{1} \simeq A_{r-1}^{1}$, and $C_{2}=S_{r}^{0}$.

To sum up, for $k=2 r+3$ and $r \geq 2$, up to permutations, the only possibility is $l=2, C_{1} \simeq A_{r-1}^{1}$, and $C_{2}=S_{r}^{0}$ with $\operatorname{dim}\left(C^{\prime}\right)=2 r+2$ and $n\left(C^{\prime}\right)=2^{r+2}-1=4 \Delta-1$. Having fixed $k=2 r+3$ we can use equations (1)-3] to compute $A_{\Delta}(C)=2^{r+2}-3$ and $A_{3 \Delta}(C)=2^{r+2}-1$. Since $\operatorname{dim}(C)-\operatorname{dim}\left(C^{\prime}\right)=1$ and $A_{3 \Delta}\left(C^{\prime}\right)=2^{r+1}-1<2^{r+2}-1$, we can assume that $C=\left\langle C^{\prime}, c^{\prime}\right\rangle$ with $\operatorname{wt}\left(c^{\prime}\right)=3 \Delta$. Since C is projective from the 2Δ coordinates of the $C_{1} \simeq A_{r-1}^{1}$-part exactly the half have to be ones (and the other half have to be zeroes) in c^{\prime}. Thus, c^{\prime} has a one in each of the remaining 2Δ coordinates, so that C is isomorphic to a code with generator matrix

$$
G=\left(\begin{array}{cccc}
A_{r-1}^{0} & A_{r-1}^{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & S_{r}^{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{0} & \mathbf{1} & 1
\end{array}\right)
$$

We remark that for $r=1$ there exists a corresponding code of dimension $2 r+4$, i.e., there is a unique projective $[\underline{8}, 6]_{2}$ code with weight enumerator $1+13 x^{2}+35^{4}+15 x^{6}$. For $r=2$ there exist more than one isomorphism types of codes of dimension $2 r+3$, i.e., there exist exactly two isomorphism types of projective $[\underline{16}, 7]_{2}$ codes with weight enumerator $1+13 x^{4}+99 x^{8}+14 x^{12}$. (For the additional code we have $C^{\prime}=R_{4}^{1} \oplus R_{2}^{1}, \operatorname{dim}\left(C^{\prime}\right)=6$, and $n\left(C^{\prime}\right)=16$. Since $n(C)=n\left(C^{\prime}\right), \operatorname{dim}(C)-\operatorname{dim}\left(C^{\prime}\right)=1$, and C is projective, we have $C=C^{\prime 2}$.) For $r=3$ the non-existence of a projective $[\underline{32}, 10]_{2}$ code with weight enumerator $1+61 x^{8}+899 x^{16}+63 x^{24}$ can not be concluded directly from the MacWilliam identities.

REFERENCES

[1] A. Bonisoli, Every equidistant linear code is a sequence of dual hamming codes, Ars Combinatoria 18 (1983), 181-186.
[2] T. Honold, M. Kiermaier, and S. Kurz, Partial spreads and vector space partitions, Network Coding and Subspace Designs, Springer, 2018, pp. 131-170.
[3] D. Jungnickel and V.D. Tonchev, The classification of antipodal two-weight linear codes, Finite Fields and Their Applications 50 (2018), 372-381.
[4] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, Elsevier, 1977.
[5] V. Pless, Power moment identities on weight distributions in error correcting codes, Information and Control 6 (1963), no. 2, 147-152.
[6] V. Pless and N.J.A. Sloane, On the classification and enumeration of self-dual codes, Journal of Combinatorial Theory, Series A 18 (1975), no. 3, 313-335.
[7] D. Slepian, Some further theory of group codes, Bell System Technical Journal 39 (1960), no. 5, 1219-1252.
[8] H. Ward, Divisible codes -a survey, Serdica Mathematical Journal 27 (2001), no. 4, 263-278.
[9] H.N. Ward, Divisibility of codes meeting the Griesmer bound, Journal of Combinatorial Theory, Series A 83 (1998), no. 1, 79-93.

Sascha Kurz, University of Bayreuth, 95440 Bayreuth, Germany
Email address: sascha.kurz@uni-bayreuth. de

