CLASSIFICATION OF INDECOMPOSABLE 2^r -DIVISIBLE CODES SPANNED BY BY CODEWORDS OF WEIGHT 2^r

SASCHA KURZ

ABSTRACT. We classify indecomposable binary linear codes whose weights of the codewords are divisible by 2^r for some integer r and that are spanned by the set of minimum weight codewords.

Keywords: linear codes, divisible codes, classification

MSC: 94B05.

1. Introduction

A binary $[n,k]_2$ code C is a k-dimensional subspace of the n-dimensional vector space \mathbb{F}_2^n , i.e., we consider linear codes only. Elements $c \in C$ are called codewords and n is called the length of the code. The support of a codeword c is the number of coordinates with a non-zero entry, i.e., $\mathrm{supp}(c) = \{i \in \{1,\ldots,n\}: c_i \neq 0\}$. The (Hamming-) weight $\mathrm{wt}(c)$ of a codeword is the cardinality $|\operatorname{supp}(c)|$ of its support. A code C is called Δ -divisible if the weight of all codewords is divisible by some positive integer $\Delta \geq 1$, see e.g. [8] for a survey. A classification of all Δ -divisible codes seems out of reach unless the length is restricted to rather small values.

Given an $[n,k]_2$ code C, the $[n,n-k]_2$ code $C^\perp=\{x\in\mathbb{F}_2^n:x^Ty=0\ \forall y\in C\}$ is called the orthogonal, or dual of C. A code is self-orthogonal if $C\subseteq C^\perp$ and self-dual if $C=C^\perp$. A self-orthogonal code is 2-divisible. In [6] self-orthogonal codes which are generated by codewords of weight 4, which then are 4-divisible, are completely characterized. Here we want to generalize that result, see [6, Theorem 6.5], and characterize 2^r -divisible codes that are generated by codewords of weight 2^r . Further related work includes the classical result of Bonisoli characterizing one-weight codes [1] and the generalization to two-weight codes where one of the weights is twice the other [3].

2. Preliminaries

We call a code C non-trivial if its dimension $\dim(C) = k$ is at least 1. Using the abbreviation $\operatorname{supp}(C) = \bigcup_{c \in C} \operatorname{supp}(c)$, we call $|\operatorname{supp}(C)|$ the effective length n_{eff} of C. Here we assume that all codes are non-trivial and that the effective length n_{eff} equals the length n (or n(C) to be more precise). We emphasize this by speaking of an $[\underline{n}, k]_2$ code. A matrix G with the property that the linear span of its rows generate the code C, is a generator matrix of C. A generator matrix G is called systematic if it starts with a unit matrix. Each code admits a systematic generator matrix. The assumption that the effective length n_{eff} is equal to the length n is equivalent to the property that generator matrices do not contain a zero-column. By $A_i(C)$ we denote the number of codewords of weight i in C and by $B_i(C)$ the number of codewords of weight i in C and by $B_i(C)$ the number of codewords of weight i in C and $B_i(C)$ the number of codewords of weight $B_i(C)$ in general, the $B_i(C)$ is clear from the context. In our setting we have $A_0 = B_0 = 1$ and $B_1 = 0$. In general, the A_i and the B_i are related by the so-called MacWilliams identities, see e.g. [4]. The first four MacWilliams identities can be

1

2 SASCHA KURZ

rewritten to:

$$\sum_{i>0} A_i = 2^k - 1, (1)$$

$$\sum_{i\geq 0}^{i>0} iA_i = 2^{k-1}n,$$

$$\sum_{i\geq 0}^{i^2} A_i = 2^{k-1}(B_2 + n(n+1)/2),$$

$$\sum_{i\geq 0}^{i^3} A_i = 2^{k-2}(3(B_2n - B_3) + n^2(n+3)/2).$$
(4)

$$\sum_{i>0} i^2 A_i = 2^{k-1} (B_2 + n(n+1)/2), \tag{3}$$

$$\sum_{i\geq 0} i^3 A_i = 2^{k-2} (3(B_2 n - B_3) + n^2 (n+3)/2).$$
(4)

In this special form they are also called the first four (Pless) power moments, see [5]. The weight distribution of C is the sequence A_0, \ldots, A_n and the weight enumerator of C is the polynomial w(C) = $w(C;x) = \sum_{i=0}^{n} A_i x^i.$

Two codes C, C' are equivalent, notated as $C \simeq C'$, if there exists a permutation in S_n sending C into C'. The direct sum of an $[\underline{n},k]_2$ code C and an $[\underline{n'},k']_2$ code C' is the $[\underline{n+n'},k+k']_2$ code $C\oplus C'=\{(c_1+c_1',\ldots,c_n+c_n'):(c_1,\ldots,c_n)\in C,(c_1',\ldots,c_n')\in C'\}$. If D can be written as $C\oplus C'$ it is called decomposable, otherwise indecomposable [7].

Lemma 2.1. Let C be an indecomposable $[\underline{n}, k]_q$ code. If $k \geq 2$, then C contains an indecomposable $\left[\leq n-1, k-1 \right]_a$ code C' as a subcode.

PROOF. Let G be a systematic generator matrix of C. We will construct C' by row-wise building up a generator matrix. To this end let \mathcal{R} be the set of rows and set $\mathcal{C} = \emptyset$. For the start pick some row $r \in \mathcal{R}$ add it to \mathcal{C} and remove it from \mathcal{R} . As long as # < k-1 we choose some element $r \in \mathcal{R}$ with $\operatorname{supp}(r) \cap \operatorname{supp}(c) \neq \emptyset$ for at least one $c \in \mathcal{C}$. Since C is indecomposable such a row r must indeed exist. Again, add r to C and remove it from R.

In other words, indecomposable codes can always be obtained by extending indecomposable subcodes.

Corollary 2.2. Each indecomposable $[\underline{n}, k]_q$ code C contains a chain $C_0 \subseteq C_1 \subseteq \cdots \subseteq C_k = C$ of indecomposable subcodes such that $\dim(C_i) = i$ and the effective length is strictly increasing.

Given some $[\underline{n}, k]_2$ code C we can restrict the coordinates of the codewords to some subset $I \subseteq N :=$ $\{1,\ldots,n\}$, i.e., $C_I=\{c_I:c\in C\}$, where c_I denotes the codeword c restricted to the positions in I. Special cases are the code $C_{\text{supp}(c)}$ restricted to some codeword $c \in C$ and the corresponding residual code $C_{N \setminus \text{supp}(c)}$. Note that the dimensions of both codes is at most k-1 but can be strictly less. If Cis 2^r divisible for some positive integer r, then a residual code of C is 2^{r-1} -divisible, see e.g. [9, Lemma 13], so that also the corresponding restricted code is 2^{r-1} -divisible.

If all non-zero codewords of a binary linear code have the same weight, then the code is a replication of a simplex code, see [1]. For the reader's convenience we prove a specialization of that result.

Lemma 2.3. Let C be an $[\underline{n}, k]_2$ code where all non-zero codewords have weight 2^a . Then, $k \leq a+1$ and $C \simeq S_{k-1}^{a+1-k}$.

PROOF. By Lemma 3.1 there exists a code C' with $C = C'^{a+1-k}$. By construction all non-zero codewords of C' have weight 2^{k-1} . Using equations (1)-(3) we compute $n=2^k-1$ and $B_2=0$. Since there are only 2^k-1 different non-zero vectors in \mathbb{F}_2^k we have $C'\simeq S_{k-1}^0$, so that $C\simeq S_{k-1}^{a+1-k}$.

3. THE CHARACTERIZATION

We want to prove our main characterization result for indecomposable 2^r -divisible $[\underline{n}, k]_2$ codes that are generated by codewords of weight 2^r in Theorem 3.7. To this end, we describe some families of codes and then derive some auxiliary results. So, by S_l we denote the (l+1)-dimensional simplex code, i.e., $\dim(S_l)=l+1$ and $w_{S_l}(X)=1+(2^{l+1}-1)\cdot X^{2^l}$, where $l\geq 0$. So, S_l is 2^l -divisible and has effective length $n=2^{l+1}-1$. By A_l we denote the $\left[2^{l+1},l+2,2^l\right]$ 1st-order Reed-Muller code, which geometrically corresponds to the affine (l+1)-flat, i.e., $S_{l+1}-S_l+1$ in terms of point sets. So, $\dim(A_l)=l+2$ and $w_{A_l}(X)=1+\left(2^{l+2}-2\right)\cdot X^{2^l}+1\cdot X^{2^{l+1}}$, i.e., it is 2^l -divisible and has effective length $n=2^{l+1}$. By R_l we denote the l-dimensional code generate by the l codewords having a 1 at position 1 and a second one at position i+1 for $1\leq i\leq l$. So, R_l has dimension $\dim(R_l)=l$, effective length n=l+1 and is 2^l -divisible. If C is a code then by C^m we denote the code that arises if we replace every 0 by a block of 2^m consecutive zeroes and every 1 by a block of 2^m consecutive ones. So, especially we have $C^0=C$. In general the dimension does not change, the effective length is multiplied by 2^m and a 2^l -divisible code is turned into a 2^{l+m} -divisible code. For the weight enumerator we have $w(C^m;x)=w(C;x^m)$.

Lemma 3.1. Let $q=p^e$ be a prime power and C be a q-ary linear code (considered as a powerset of \mathbb{F}_q^n) that is q^r -divisible, where $re \in \mathbb{N}_{\geq 0}$. For each $\emptyset \subseteq M \subseteq S \subseteq C$ with $1 \leq |S| \leq r+1$ we have that $q^{r+1-|S|}$ divides $\#I_{M,S}(C)$, where

$$I_{M,S}(C) = \left\{ i \in supp(S) \, : \, i \in \operatorname{supp}(c) \, \forall c \in M \, \land \, i \notin \operatorname{supp}(c) \, \forall c \in S \backslash M \right\}.$$

PROOF. For $M=\emptyset$ we have $I_{M,S}(C)=\emptyset$, so that $\#I_{M,S}(C)=0$ and the statement is trivially true. In the following we assume $M\neq\emptyset$ and prove by induction on #S. For the induction start let $S=\{c\}$. Due to our assumption we have $M=\{c\}$, so that $I_{M,S}(C)=\#\operatorname{supp}(c)=\operatorname{wt}(c)$, which is divisible by $q^{r+1-|S|}=q^r$. Now let $|S|\geq 2$ and $\bar{c}\in M$ be arbitrary. With $I=\operatorname{supp}(\bar{c})$ we set $C'=C_I$, i.e., the restricted code. As noted in Section 2, C' is q^{r-1} -divisible (since $|S|\leq r+1$ implies $r\geq 1$). We set $M'=\{c_I:c\in M\setminus\{\bar{c}\}\}$ and $S'=\{c_I:c\in S\setminus\{\bar{c}\}\}$, so that $\emptyset\subseteq M'\subseteq S'\subseteq C'$. Since #S'=#S-1 and $I_{M,S}(C)=I_{M',S'}(C')$ the statement follows from the induction hypothesis. \square

Corollary 3.2. In the setting of Lemma 3.1 we have that $q^{r+1-|S|}$ divides the cardinality of supp(S).

PROOF. Since

$$\operatorname{supp}(S) = \cup_{c \in S} \operatorname{supp}(c) = \sum_{\emptyset \subseteq M \subseteq S} I_{M,S}(C),$$

the statement follows directly from Lemma 3.1.

Lemma 3.3. Let $C = R_l^a$ for integers $l \ge 1$ and $a \ge 0$, c' be a further codeword with weight 2^{a+1} and $\emptyset \ne \operatorname{supp}(c') \cap \operatorname{supp}(C) \ne \operatorname{supp}(C)$. If $C' := \langle C, c' \rangle$ is 2^{a+1} -divisible, then either $C' \simeq R_{l+1}^a$ or l = 2, $a \ge 1$, and $C' \simeq S_2^{a-1}$.

PROOF. As an abbreviation we set $\Delta:=2^{a+1}$ and note that C is Δ -divisible. If l=1, then $C=\{0,c\}$, where $\operatorname{wt}(c)=\Delta$. From Lemma 3.1 we conclude that $\frac{\Delta}{2}$ divides $|\operatorname{supp}(C)\cap\operatorname{supp}(c')|$. Since $\operatorname{supp}(C)=\operatorname{supp}(c)$ and $\emptyset\neq\operatorname{supp}(C)\cap\operatorname{supp}(c')\neq\operatorname{supp}(C)$, we have $|\operatorname{supp}(C)\cap\operatorname{supp}(c')|=\frac{\Delta}{2}$. Thus, $C'\simeq R_2^a=R_{l+1}^a$.

Now we assume $l \geq 2$. For $1 \leq i \leq l+1$ we set $P_i := \left\{j \in \mathbb{N} : \frac{\Delta}{2}(i-1)+1 \leq j \leq \frac{\Delta}{2}i\right\}$ and $f_i(c) := |\mathrm{supp}(c) \cap P_i|$ for each codeword $c \in C'$. Note that $f_i(c) \in \left\{0, \frac{\Delta}{2}\right\}$ for all $c \in C$ and all $1 \leq i \leq l+1$. Moreover, for each $1 \leq i < j \leq l+1$ there exists a codeword $c^{i,j} \in C$ with $f_i(c^{i,j}) = f_j(c^{i,j}) = \frac{\Delta}{2}$ and $f_h(c^{i,j}) = 0$ otherwise. Now suppose that there is an index $1 \leq i \leq l+1$ with $0 < f_i(c') < \frac{\Delta}{2}$. For each index $1 \leq j \leq l+1$ with $i \neq j$ we have

$$\operatorname{wt}(c^{i,j} + c') = \operatorname{wt}(c^{i,j}) + \operatorname{wt}(c') - 2 \cdot \operatorname{wt}(c^{i,j} \cap c') = 2\Delta - 2f_i(c') - 2f_i(c'),$$

so that $\operatorname{wt}(c^{i,j}+c')=\Delta$ and $f_i(c')+f_j(c')=\frac{\Delta}{2}$. Since $l\geq 2$ there exists at least another index in $\{1,\ldots,l+1\}\cap\{i,j\}$, so that this implies $f_h(c')=\frac{\Delta}{4}$ for all $1\leq h\leq l+1$. Thus, $\Delta=\operatorname{wt}(c')>\sum_{h=1}^{l+1}f_h(c')$ implies l=2 and $C'\simeq S_2^{a-1}$. Otherwise we have $f_h(c')\in\{0,\frac{\Delta}{2}\}$ for all $1\leq h\leq l+1$,

SASCHA KURZ

i.e., there exists an index $1 \le i \le l+1$ with $f_i(c') = \frac{\Delta}{2}$ and $f_h(c') = 0$ otherwise. If $i \ne 1$ we consider $c' + c^{1,i}$ to conclude that $C' = R_{l+1}^a$.

Lemma 3.4. Let C be a binary, non-trivial, indecomposable 2^1 -divisible linear code that is spanned by codewords of weight 2. Then, $C \simeq R_l^0$ for some integer $l \ge 1$.

PROOF. We will prove by induction on the dimension k of C. The induction start k=1 is obvious. For the induction step let C' be an indecomposable subcode of C with dimension k-1, see Lemma 2.1. From the induction hypothesis we conclude $C' \simeq R_{k-1}^0$, so that Lemma 3.3 gives $C \simeq R_k^0$.

Note that $S_0^1 \simeq R_1^0$, $S_1^0 \simeq R_2^0$, and $A_1^0 \simeq R_3^0$.

Lemma 3.5. Let C be a binary, non-trivial, indecomposable Δ -divisible linear code that is spanned by codewords of weight Δ , where $\Delta=2^a$ and $a\in\mathbb{N}_{>0}$. Let c' be a further codeword with weight Δ and $\emptyset \neq \operatorname{supp}(c') \cap \operatorname{supp}(C) \neq \operatorname{supp}(C)$ such that $C' := \langle C, c' \rangle$ is Δ -divisible.

4

- (1) If $C \simeq S_a^0$ then $C' \simeq A_a^0$. (2) If $C \simeq S_{a-1}^1$ then $C' \simeq S_a^0$ or $C' \simeq A_{a-1}^1$. (3) If $a \ge 1$ and $C \simeq A_a^0$ then a = 1 and $C' = R_4^0$. (4) If $a \ge 2$ and $C \simeq A_{a-1}^1$ then a = 2 and $C' \simeq R_4^1$. (5) If $a \ge 3$ and $C \simeq A_{a-2}^2$ then a = 3 and $C' \simeq R_4^2$.

PROOF. We note that $1 \le n(C') - n(C) \le \Delta - 1$. Since $n(C) \le 2\Delta$ in all cases the non-zero weights in C' are either Δ or 2Δ .

- (1) From equations (1)-(2) we compute $A_{2\Delta}=2n(C')-4\Delta+1$, i.e., $A_{2\Delta}\geq 1$. Let D be the residual code of a codeword of weight 2Δ in $C'(C'\setminus C)$. By construction D is $\frac{\Delta}{2}$ -divisible, projective, and has an effective length of at most $\Delta - 2 < 2 \cdot \frac{\Delta}{2} - 1$. Thus, Lemma 2.3 implies that D is a trivial code, i.e., n(D) = 0 and $n(C') = 2\Delta$. With this we have $A_{2\Delta} = 1$ and $C' \simeq A_a^0$.
- (2) From equations (1)-(2) we compute $A_{\Delta} = 4\Delta 2 n(C')$ and $A_{2\Delta} = n(C') 2\Delta + 1$, i.e., $n(C') \ge 2\Delta - 1$. If $n(C') = 2\Delta - 1$ then $A_{2\Delta} = 0$ and Lemma 2.3 gives $C' \simeq S_a^0$. If $n(C') = 2\Delta$ then $A_{2\Delta}=1$ and adding the all-one word to C gives $C'\simeq A_{a-1}^1$. In the remaining cases we have $n(C') > 2\Delta$ and $A_{2\Delta} \geq 1$. Let D be the residual code of a codeword of weight 2Δ in C' ($C' \setminus C$). By construction D is $\frac{\Delta}{2}$ -divisible, has column multiplicity at most 2, and has an effective length of at most $\Delta-3<2\cdot\frac{\Delta}{2}-2$. Thus, Lemma 2.3 implies that D is a trivial code – contradiction. (The two possibilities with column multiplicity 1 or 2 would have an effective length of $\Delta - 1$ or $\Delta - 2$, respectively.)
- (3) From equations (1)-(2) we compute $A_{\Delta} = 16\Delta 2 4n(C')$ and $A_{2\Delta} = 4n(C') 8\Delta + 1$. Let D be the residual code of a codeword of weight 2Δ in $C'\setminus C$. By construction D is $\frac{\Delta}{2}$ -divisible, projective, contains the all-1 codeword, and has an effective length of at most $\Delta - 1$. Thus, Lemma 2.3 implies that $D \simeq S_0^{a-1}$, where a = 1. So, $C = R_3^0$ and Lemma 3.3 yields $C' = R_4^0$.
- (4) From equations (1)-(2) we compute $A_{\Delta}=8\Delta-2-2n(C')$ and $A_{2\Delta}=2n(C')-4\Delta+1$. Let D be the residual code of a codeword of weight 2Δ in $C'\setminus C$. By construction D is $\frac{\Delta}{2}$ -divisible, has maximum column multiplicity at most 2, contains the all-1 codeword, and has an effective length of at most $\Delta-1$. Thus, Lemma 2.3 implies that either $D\simeq S_0^0$ or $D\simeq S_0^1$. In the first case we have $\Delta = 2$ and a = 1, which is not possible. In the second case we have $\Delta = 4$, a = 2, and $C \simeq A_1^1 \simeq R_3^1$, so that Lemma 3.3 implies $C' \simeq R_4^1$.
- (5) From equations (1)-(2) we compute $A_{\Delta} = 4\Delta 2 n(C')$ and $A_{2\Delta} = n(C') 2\Delta + 1$. Let Dbe the residual code of a codeword of weight 2Δ in $C'\setminus C$. By construction D is $\frac{\Delta}{2}$ -divisible, has maximum column multiplicity at most 4, contains the all-1 codeword, and has an effective length of at most $\Delta - 1$. Thus, Lemma 2.3 implies that either $D \simeq S_0^0$, $D \simeq S_0^1$, or $D \simeq S_0^2$. Since we assume $a \ge 3$, only a = 3 and $\Delta = 8$ is possible, where $C \simeq R_3^2$, so that Lemma 3.3 implies $C' \simeq R_4^2$.

Note that if we drop the condition $\operatorname{supp}(C') \neq \operatorname{supp}(C)$, then A_{a-1}^1 can be extended to A_a^0 and A_{a-2}^2 can be extended to A_{a-1}^1 .

Lemma 3.6. Let C be a binary, non-trivial, indecomposable 2^2 -divisible linear code that is spanned by codewords of weight 4. Then, $C \simeq R_l^1$ for some integer $l \ge 1$ or either $C \simeq S_{2-l}^l$ or $C \simeq A_{2-l}^l$ for some $l \in \{0,1\}$.

PROOF. First note that the mentioned families of codes satisfy all assumptions. If $\dim(C) \leq 2$ then Lemma 3.1 implies that there is some code C' with $C = C'^1$, i.e., we can apply Lemma 3.4. If $\dim(C) \geq 3$ we apply Corollary 2.2 and consider the corresponding chain $C_0 \subsetneq C_1 \subsetneq \cdots \subsetneq C_k = C$, where $k = \dim(C)$. Lemma 3.1 gives the existence of a binary, non-trivial, indecomposable 2^1 -divisible linear code C' with $C_2 = C'^2$ that is spanned by codewords of weight 2. Thus, Lemma 3.4 gives $C' \simeq R_2^0$ and $C_2 \simeq R_2^1$. Lemma 3.3 then gives $C_3 \simeq R_3^1$ or $C_3 \simeq S_2^0$. If $C_3 \simeq R_3^1$ then recursively applying Lemma 3.3 yields $C_l \simeq D_l^1$ for all $1 \leq l \leq k$. If $1 \leq l \leq k$ and $1 \leq$

Note that $S_1^1 \simeq R_2^1$ and $A_1^1 \simeq R_3^1$.

Theorem 3.7. For a positive integer a let C be a binary, non-trivial, indecomposable 2^a -divisible linear code that is spanned by codewords of weight 2^a . Then, $C \simeq R_l^{a-1}$ for some integer $l \geq 1$ or either $C \simeq S_{a-l}^l$ or $C \simeq A_{a-l}^l$ for some $l \in \{0,1,\ldots,a-1\}$.

PROOF. We prove by induction on a. Lemma 3.4 and Lemma 3.6 give the induction start, so that we can assume $a \geq 3$ in the following. First note that the mentioned families of codes satisfy all assumptions. If $\dim(C) \leq a$ then Lemma 3.1 implies that there is some code C' with $C = C'^1$, i.e., we can apply the induction hypothesis. If $\dim(C) \geq a+1$ we apply Corollary 2.2 and consider the corresponding chain $C_0 \subsetneq C_1 \subsetneq \cdots \subsetneq C_k = C$, where $k = \dim(C)$. Lemma 3.1 gives the existence of a binary, non-trivial, indecomposable 2^{a-1} -divisible linear code C' with $C_a = C'^2$ that is spanned by codewords of weight 2^{a-1} . Then the induction hypothesis gives that either $C_a \simeq R_a^{a-1}$, $C_a \simeq S_{a-1}^1$, or $C_a \simeq A_{a-2}^2$. In the first case recursively applying Lemma 3.3 yields $C_l \simeq R_l^{a-1}$ for all $a \leq l \leq k$. If either $C_a \simeq S_{a-1}^1$ or $C_a \simeq A_{a-2}^2$ we can apply Lemma 3.5 to conclude $C_{a+1} \simeq S_a^0$, $C_{a+1} \simeq A_{a-1}^1$, or a = 3 and $a \leq k \leq k$. In the latter case we have $C_l \simeq R_l^2$ for all $a \leq k \leq k$ due to Lemma 3.3. Otherwise either k = a + 1 or $k \leq k \leq k$ and $k \leq k \leq k$ due to Lemma 3.5.

4. An application to projective 3-weight codes

When deciding the question whether a code with certain parameters exist one often checks whether the MacWilliams identities admit a non-negative integer solution. If so, then sometimes more combinatorial are necessary. In the proof of e.g. [2, Lemma 24] the existence of an $[51, 9]_2$ code with weight enumerator $w(C) = 1 + 2x^8 + 406x^{24} + 103x^{32}$ had to be excluded in a subcase. Since the sum of two codewords of weight 8 would have a weight between 8 and 16 this is impossible. Using the classification result of Theorem 3.7 this can easily be generalized.

Proposition 4.1. Let C be a Δ -divisible $[\underline{n}, k]_2$ code, where $\Delta = 2^r$ for some positive integer r. If C does not contain a codeword of weight 2Δ , then $A_{\Delta} \in \{2^i - 1 : 0 \le i \le r + 1\}$.

PROOF. Let C' be the subcode of C spanned by the codewords of weight Δ and $C' = C_1 \oplus \cdots \oplus C_l$ the up to permutation unique decomposition into indecomposable codes. Since C' does not contain a codeword of weight 2Δ we have $l \leq 1$. For l = 0 we obviously have $A_{\Delta} = 0$. If l = 1, then Theorem 3.7 gives $C_1 \simeq S_i^{r-i}$, where $0 \leq i \leq r$, and $A_{\Delta} = 2^{i+1} - 1$.

In general, if we know that an $[n,k]_2$ code is $\Delta:=2^r$ -divisible and contains some codewords of weight Δ one can consider the decomposition $C'=C_1\oplus\cdots\oplus C_l$ of the subcode C' spanned by codewords of weight Δ . Obviously, we have

6 SASCHA KURZ

- (1) $w(C') = \prod_{i=1}^{l} w(C_i)$, i.e., especially $A_{\Delta}(C') = \sum_{i=1}^{l} A_{\Delta}(C_i)$;

- (2) $\dim(C) \ge \dim(C') = \sum_{i=1}^{l} \dim(C_i);$ (3) $n(C) \ge n(C') = \sum_{i=1}^{l} n(C_i);$ (4) $\omega(C) \ge \omega(C') = \sum_{i=1}^{l} \omega(C_i),$ where $\omega(D)$ denotes the maximum weight of a codeword in D. With respect to Theorem 3.7 we remark
- (1) $A_{\Delta}(S_{r-l}^l) = 2^{r+1-l} 1$, $\dim(S_{r-l}^l) = r+1-l$, $n(S_{r-l}^l) = 2^{r+1} 2^l$, and $\omega(S_{r-l}^l) = \Delta$ for $0 \le l \le r$;
- $0 \le l \le r;$ (2) $A_{\Delta}(A_{r-l}^l) = 2^{r+2-l} 2$, $\dim(A_{r-l}^l) = r + 2 l$, $n(A_{r-l}^l) = 2\Delta = 2^{r+1}$, and $\omega(A_{r-l}^l) = 2\Delta$ for $0 \le l \le r - 1;$
- (3) $A_{\Delta}(R_l^{r-1}) = \binom{l+1}{2}$, $\dim(R_l^{r-1}) = l$, $n(R_l^{r-1}) = \frac{\Delta}{2} \cdot (l+1)$, and $\omega(R_l^{r-1}) = \lceil l/2 \rceil \cdot \Delta$ for $l \ge 1$. A more sophisticated example, compared to Proposition 4.1, occurs in the area of binary projective 3weight codes. Projective codes, i.e., those with $B_2 = 0$, having few weights have a lot of applications and have been studied widely in the literature. Here we consider $[n, k]_2$ codes with weights in $\{0, \Delta, 2\Delta, 3\Delta\}$ and length $n=4\Delta$, where $\Delta=2^r$ for some positive integer r.

Theorem 4.2. For an integer $r \geq 2$ let $\Delta = 2^r$ and C be a projective Δ -divisible $[\underline{4\Delta}, k]_2$ code with non-zero weights in $\{\Delta, 2\Delta, 3\Delta\}$. Then $k \leq 2r + 3$. If k = 2r + 3 and $r \geq 3$ then C is isomorphic to a code with generator matrix

$$\begin{pmatrix} A_{r-1}^0 & A_{r-1}^0 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & S_r^0 & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & 1 \end{pmatrix},$$

where $\bf 0$ and $\bf 1$ are matrices of approbriate sizes that entirely consist of 0's or 1's, respectively

PROOF. Using equations (1)-(3) and $B_2=0$ we compute $A_{\Delta}=2^{k-r-1}-3\geq 1$. Consider the decomposition $C' = C_1 \oplus \cdots \oplus C_l$ of the subcode C' spanned by codewords of weight Δ . Since $\omega(C)=3\Delta$, we have $1\leq l\leq 3$. If $\omega(C_i)=\Delta$ for all $1\leq i\leq l$, i.e., $C_i=S_{r-j_i}^{j_i}$ for some $0 \le j_i \le r - 1$, then $A_{\Delta}(C') = \sum_{i=1}^l A_{\Delta}(C_i) \le l \cdot (2\Delta - 1) \le 3 \cdot (2^{r+1} - 1)$, so that k < 2r + 4. If $\omega(C_1)=2\Delta$, then due to Theorem 3.7 we have either $C_1\simeq R_3^{r-1}$, $C_1\simeq R_4^{r-1}$, or $C_1\simeq A_{r-j}^j$ for some $0 \le j \le r-1$, so that $A_{\Delta}(C_1) \le 2^{r+2}-2$. Since then $l \le 2$, $\omega(C_2) \le \Delta$, and $A_{\Delta}(C_2) \le 2^{r+1}-1$, we have $A_{\Delta}(C')=\sum_{i=1}^l A_{\Delta}(C_i)\leq 3\cdot \left(2^{r+1}-1\right)$, so that k<2r+4. If $\omega(C_1)\geq 3\Delta$, then l=1 and $\omega(C_1)=3\Delta$, so that Theorem 3.7 gives $C_1\simeq R_5^{r-1}$ or $C_1\simeq R_6^{r-1}$, i.e., $A_{\Delta}(C')\leq 21\leq 3\cdot \left(2^{r+1}-1\right)$, so that k < 2r + 4. Thus, we have $k \le 2r + 3$ in all cases.

For k=2r+3 we need a more detailed analysis of the possible decompositions $C'=C_1\oplus\cdots\oplus C_l$. First we note $\omega(C_i) \in \{\Delta, 2\Delta, 3\Delta\}$, $A_{\Delta} = 2^{r+2} - 3 \ge 1$, so that $C_i \not\simeq A_r^0$, and $1 \le l \le 3$. Let us start to consider the case $\omega(C_i) = \Delta$ for all i, i.e., $A_{\Delta} = 2^{r+1-j_i} - 1$ for some $0 \le j_i \le r$ ($C_i = S_{r-j_i}^{j_i}$ for some $0 \le j_i \le r$). If $j_i \ge 1$ for all i, then $A_{\Delta}(C') \le 3 \cdot (2^r - 1) < 2^{r+2} - 3$, so that we assume $j_1 = 0$. Since $2^{r+2} - 3 = 2^{r+1} - 1$ is equivalent to r = 0, we have $l \ge 2$. If l = 2 and $j_2 = 0$, then $A_{\Delta}(C') \geq 2^{r+2} - 2 > 2^{r+2} - 3$. If l=2 and $j_2 \leq 1$, then $A_{\Delta}(C') \leq 2^{r+1} - 1 + 2^r - 1 < 2^{r+2} - 3$ for $r \ge 1$. Thus, we have l = 3. If $j_2 = 0$ or $j_3 = 0$, then $A_{\Delta}(C') \ge 2 \cdot (2^{r+1} - 1) > 2^{r+2} - 3$. If $j_2 \ge 1$, $j_3 \ge 1$, and $j_2 + j_3 \ge 3$, then $A_{\Delta}(C') \le 2^{r+1} - 1 + 2^r - 1 + 2^{r-1} - 1 < 2^{r+2} - 3$. The only possibility with $A_{\Delta}(C') = 2^{r+2} - 3$ is $j_1 = 0$, $j_2 = j_3 = 1$. However, in this case we have $n(C') = (2^{r+1} - 1) + (2^{r+1} - 2) + (2^{r+1} - 2) = 2^{r+2} + (2^{r+1} - 5) > 2^{r+2} = n$ for $r \ge 2$.

If $\omega(C_i)=3$ for some i, then l=3 and Theorem 3.7 gives $C_1\simeq R_5^{r-1}$ or $C_1\simeq R_6^{r-1}$, so that $A_{\Delta}(C')=\binom{6}{2}=15$ or $A_{\Delta}(C')=\binom{7}{2}=21$. Since $2^{r+2}-3<15$ for $r\leq 2$ and $2^{r+2}-3>21$ for $r \leq 3$, this is not possible. Thus, there exists an index i with $\omega(C_i) = 2$. W.l.o.g. we assume $\omega(C_1) = 2$. From Theorem 3.7 we conclude $C_1 \simeq R_4^{r-1}$ or $C_1 \simeq A_{r-j}^j$ for some integer $0 \le j \le r-1$. If l=2, then $\omega(C_2) = \Delta$, so that in any case we have $A_{\Delta}(C') = A_{\Delta}(C_1) + 2^x - 1$ for some integer $0 \le x \le r + 1$. If $C_1 \simeq R_4^{r-1}$, then the equation $A_{\Delta}(C') = 2^{r+2} - 3 = 10 + 2^x - 1$ has the unique integer solution

r=2 and x=2, which corresponds to $C'\simeq R_4^1\oplus S_1^1\simeq R_4^1\oplus R_2^1$. (The equation is equivalent to $2^{r+2}=12+2^x$, so that $r\geq 2$. For $r\geq 2$ we have $x\geq 5$, so that the left hand side is divisible by 8 while the right hand side is not.) In the remaining cases we have $C_1\simeq A_{r-j}^j$, so that $A_\Delta(C_1)=2^{r+2-j}-2$. Thus, we have to consider the Diophantine equation $A_\Delta(C')=2^{r+2}-3=2^y-2+2^x-1$, where y=r+2-j. The only integral solution is y=x=r+1, i.e., j=1, $C_1\simeq A_{r-1}^1$, and $C_2=S_r^0$.

To sum up, for k=2r+3 and $r\geq 2$, up to permutations, the only possibility is l=2, $C_1\simeq A_{r-1}^1$, and $C_2=S_r^0$ with $\dim(C')=2r+2$ and $n(C')=2^{r+2}-1=4\Delta-1$. Having fixed k=2r+3 we can use equations (1)-(3) to compute $A_\Delta(C)=2^{r+2}-3$ and $A_{3\Delta}(C)=2^{r+2}-1$. Since $\dim(C)-\dim(C')=1$ and $A_{3\Delta}(C')=2^{r+1}-1<2^{r+2}-1$, we can assume that $C=\langle C',c'\rangle$ with $\operatorname{wt}(c')=3\Delta$. Since C is projective from the 2Δ coordinates of the $C_1\simeq A_{r-1}^1$ -part exactly the half have to be ones (and the other half have to be zeroes) in c'. Thus, c' has a one in each of the remaining 2Δ coordinates, so that C is isomorphic to a code with generator matrix

$$G = \begin{pmatrix} A_{r-1}^0 & A_{r-1}^0 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & S_r^0 & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & 1 \end{pmatrix},$$

We remark that for r=1 there exists a corresponding code of dimension 2r+4, i.e., there is a unique projective $[\underline{8}, 6]_2$ code with weight enumerator $1+13x^2+35^4+15x^6$. For r=2 there exist more than one isomorphism types of codes of dimension 2r+3, i.e., there exist exactly two isomorphism types of projective $[\underline{16}, 7]_2$ codes with weight enumerator $1+13x^4+99x^8+14x^{12}$. (For the additional code we have $C'=R_4^1\oplus R_2^1$, $\dim(C')=6$, and n(C')=16. Since n(C)=n(C'), $\dim(C)-\dim(C')=1$, and C is projective, we have $C=C'^2$.) For r=3 the non-existence of a projective $[\underline{32},10]_2$ code with weight enumerator $1+61x^8+899x^{16}+63x^{24}$ can not be concluded directly from the MacWilliam identities.

REFERENCES

- [1] A. Bonisoli, Every equidistant linear code is a sequence of dual hamming codes, Ars Combinatoria 18 (1983), 181-186.
- [2] T. Honold, M. Kiermaier, and S. Kurz, Partial spreads and vector space partitions, Network Coding and Subspace Designs, Springer, 2018, pp. 131–170.
- [3] D. Jungnickel and V.D. Tonchev, *The classification of antipodal two-weight linear codes*, Finite Fields and Their Applications **50** (2018), 372–381.
- [4] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, Elsevier, 1977.
- [5] V. Pless, Power moment identities on weight distributions in error correcting codes, Information and Control 6 (1963), no. 2, 147–152.
- [6] V. Pless and N.J.A. Sloane, On the classification and enumeration of self-dual codes, Journal of Combinatorial Theory, Series A 18 (1975), no. 3, 313–335.
- [7] D. Slepian, Some further theory of group codes, Bell System Technical Journal 39 (1960), no. 5, 1219–1252.
- [8] H. Ward, Divisible codes -a survey, Serdica Mathematical Journal 27 (2001), no. 4, 263–278.
- [9] H.N. Ward, Divisibility of codes meeting the Griesmer bound, Journal of Combinatorial Theory, Series A 83 (1998), no. 1, 79-93

SASCHA KURZ, UNIVERSITY OF BAYREUTH, 95440 BAYREUTH, GERMANY *Email address*: sascha.kurz@uni-bayreuth.de