
Dynamic Task Sharing for
Flexible Human-Robot Teaming
under Partial Workspace Observability

Flexible Mensch-Roboter-Zusammenarbeit durch dynamische
Aufgabenteilung unter partieller Arbeitsraumbeobachtbarkeit

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von
Dominik Riedelbauch

aus Marktredwitz

1. Gutachter: Prof. Dr. Dominik Henrich
2. Gutachter: Prof. Dr.-Ing. Kirsten Tracht
3. Gutachter: Prof. Dr.-Ing. Bernd Kuhlenkötter

Tag der Einreichung: 12. Juni 2020
Tag des Kolloquiums: 27. Oktober 2020

Danke!
Die Arbeit an einer Dissertation ist nach meiner Erfahrung der letzten viereinhalb Jahre
ein meist spannendes und lehrreiches, teils aber auch frustrierendes Unterfangen, für das
man bisweilen ein nicht unerhebliches Maß an Hilfe braucht. Ich möchte deshalb an dieser
Stelle all denjenigen von ganzem Herzen danken, deren Unterstützung zum erfolgreichen
Abschluss meiner Promotion beigetragen hat. Allen voran ist dies mein Doktorvater
Prof. Dr. Dominik Henrich, der mir die Promotion an seinem Lehrstuhl ermöglicht
und dieses Projekt seit unserer ersten Idee in meinem späten Masterstudium mit seinem
Rat und seiner Erfahrung begleitet hat. Weiterhin danke ich allen meinen Kollegen
am Lehrstuhl: Für organisatorische und technische Unterstützung, für aufschlussreichen
fachlichen Diskurs, für angenehme Kaffeepausen mit un-fachlichem Diskurs und für das
Korrekturlesen, als es mit dieser Arbeit zu Ende ging. Besonderer Dank gebührt auch
„meinen Studenten“, die als HiWis und mit ihren Projekt- und Abschlussarbeiten zur
Umsetzung vieler meiner Ideen beigetragen haben. Überaus dankbar bin ich meiner
Familie für den Rückhalt in allen Lebenslagen – besonders möchte ich abschließend
meinen Eltern danken, die mir durch ihre bedingungslose Unterstützung einen Lebensweg
ermöglicht haben, der mich erfüllt.

Abstract

The widespread availability of lightweight robots that may safely be operated without
physical barriers to separate man and machine has paved the way to robot use in small-
and medium-sized enterprises (SMEs). Given these technical foundations, the goal of
advancing robots from tools to human-like teammates is a research topic that lately gains
considerable attention. This thesis contributes a novel approach that particularly fosters
flexible use, cost efficiency and operability by the existing workforce in line with the
major requirements of partial automation in SMEs: End-users without expert knowledge
on robotics are enabled to share procedural task knowledge with a robot teammate by
adapting paradigms from the field of skill-based task level programming. During joint
execution of previously modelled tasks, the robot is considered an equal partner of human
workers – human as well as robot team members are likewise granted the authority to
make dynamic, just-in-time decisions regarding the distribution of work repeatedly. This
requires a high level of robot capabilities and autonomy, but therefore also allows for
flexible transitions between human-robot coexistence, decoupled co-working in coopera-
tion and close interaction in collaboration. To this end, operations from the task model
are classified into categories according to their individual interaction needs and agent
capabilities. An exchangeable state machine for each of these interaction categories en-
codes the necessary course of actions for the robot when encountering respective process
steps. State machine states render the system capable of (i) understanding task progress
by observing operation pre- and postconditions, (ii) executing sub-tasks itself based on
a robot skill framework, (iii) delegating operations to human partners or (iv) communi-
cating to establish mutual commitment before engaging into collaboration. Decisions in
favour of an operation to go about next by following transitions in the matching state
machine are made in consideration of partial workspace observability, i.e. incomplete
knowledge about the state of parts and task progress: The system gets along with a
lean, low-cost sensor setup only consisting of a robot-mounted eye-in-hand camera and
a laser range finder to track human motion. The resulting data is fused into a human-
aware world model by means of a measure for trust in stored objects. This world model
enables the system to share the workspace with humans efficiently. Experiments with a
simulation system that emulates dynamic human behaviour when co-working on a set of
benchmark tasks show that the approach can generally speed up task execution despite
these limitations in sensor use. Furthermore, preliminary human subject studies with
a laboratory prototype implementation suggest that the system is promising regarding
intuitive operability by non-expert users. To summon up, this thesis contributes the
technical foundations, proves the feasibility of and motivates further investigations on
dynamic, flexible teaming under partial workspace observability.

Zusammenfassung

Leichtbauroboter, die für den sicheren Betrieb ohne Schutzzauneinrichtungen ausgelegt
sind, sind ein zentraler Wegbereiter für den Zugang kleiner und mittlerer Unternehmen
(KMU) zu Robotikanwendungen. Auf dieser technischen Grundlage rückt die Frage nach
der Aufgabenverteilung zwischen Menschen und Robotern in den Fokus der Forschung,
sodass sie möglichst wie ein menschliches Team effektiv zusammenarbeiten können. In
dieser Arbeit wird dazu ein neuer Ansatz beschrieben, der auf Flexibilität, Kosteneffizi-
enz und Bedienbarkeit durch Endanwender abzielt und sich damit an den besonderen
Anforderungen von KMU orientiert: Domänenexperten ohne besondere Robotikkenntnis-
se werden dazu befähigt, prozedurales Aufgabenwissen mit Roboter-Kollegen zu teilen.
Dazu wird ein Verfahren vorgeschlagen, das Konzepte zur graphischen Programmie-
rung mit Roboterfähigkeiten auf die Mensch-Roboter-Zusammenarbeit überträgt. Bei
der gemeinsamen Bearbeitung einer derart spezifizierten Aufgabe werden Mensch und
Roboter als Partner auf Augenhöhe betrachtet – sie entscheiden sich wiederholt für
Teilaufgaben und verteilen so die Arbeit in einem dynamischen Prozess. Dies erfordert
einerseits einen hohen Grad an Roboterautonomie, ermöglicht dafür aber andererseits
dynamische Übergänge zwischen Mensch-Roboter-Koexistenz, weitegehend unabhängi-
gem parallelem Arbeiten in Kooperation und eng synchronisierter Kollaboration: Dazu
werden alle Operationen einer Aufgabe abhängig von der erforderlichen Interaktion und
den Fähigkeiten der Teammitglieder in unterschiedliche Kategorien eingeordnet. Jeder
Kategorie ist ein Zustandsautomat zugeordnet, der durch seine Transitionen die not-
wendigen Schritte zur koordinierten Bearbeitung entsprechender Operationen für den
Roboter kodiert. Einzelne Zustände der Automaten ermöglichen es dem System dabei
unter anderem den Aufgabenfortschritt durch die Beobachtung von Vor- und Nachbedin-
gungen zu verfolgen, Operationen selbst auszuführen oder an einen Partner zu delegieren
und mit dem Menschen zu kommunizieren, um mit der Ausführung einer nur gemeinsam
möglichen kollaborativen Operation zu beginnen. Hinsichtlich der Entscheidungsfindung
für die Auswahl einer zu bearbeitenden Operation ist das vorgeschlagene System so
ausgelegt, dass dies auch unter partieller Beobachtbarkeit von Weltzustand und Aufga-
benfortschritt möglich ist. So kommt der Ansatz mit einem reduzierten, kostengünstigen
Satz an Sensoren aus: Die Sensordaten einer am Roboter befestigten Kamera und ei-
nes LIDAR-Sensors zur Verfolgung menschlicher Bewegungen im Arbeitsraum werden in
einemWeltmodell fusioniert. Basierend auf einer heuristischen Schätzung der Wahrschein-
lichkeit für menschliche Einflussnahme stellt dieses Weltmodell eine Metrik dafür bereit,
wie verlässlich Daten zu länger nicht beobachteten Objekten noch sind. Das System kann
somit bevorzugt Operationen auswählen, die wahrscheinlich noch verfügbare Objekte
manipulieren, und so den Arbeitsraum effizient mit seinen Partnern teilen. Experimente
mit einem Simulationssystem zur Emulation dynamischer menschlicher Entscheidungen
mit verschiedenen Präferenzen zeigen für einen Satz von Benchmark-Aufgaben, dass die
flexible Zusammenarbeit trotz eingeschränkter Sensorik die Bearbeitung der Aufgaben
grundsätzlich beschleunigen kann. Ergebnisse einer Nutzerevaluation mit einer proto-
typischen Implementierung deuten weiterhin darauf hin, dass das System als Ganzes
für Endanwender bedienbar ist. Diese Dissertation beantwortet somit die Fragestellung,
inwieweit flexible Zusammenarbeit unter partieller Beobachtbarkeit des Arbeitsraums
technisch machbar und für die Teilautomatisierung nutzbringend sein kann.

Contents

1. Introduction 1
1.1. Background, Motivation and Goals . 1
1.2. Terms and Delimitations . 6
1.3. Problem Analysis and Research Questions 10
1.4. Overview . 13

2. State of the Art 15
2.1. Task Modelling . 15
2.2. Decision-Making for Task Allocation . 20
2.3. Coordination Mechanisms . 23
2.4. Conclusions . 26

3. Task Modelling for Human-Robot Teams 29
3.1. Skills for Human-Robot Teams . 31

3.1.1. Domain Definition . 32
3.1.2. Skill Graph Structure . 35
3.1.3. Benchmark Domain . 38

3.2. Shared Task Model Generation . 43
3.2.1. Graphical Modelling of Precedence Graphs 43
3.2.2. Annotation with Operation Pre- and Postconditions 46

3.3. Task Execution Principle . 47
3.4. Conclusions . 48

4. Human-Aware World Modelling for Task Allocation 51
4.1. World Model Definition and Maintenance 52
4.2. World Model Ageing . 56

4.2.1. Human Workspace Model . 57
4.2.2. Interaction Indicators . 58
4.2.3. Trustworthiness of Data . 61

4.3. Metrics for Task Allocation . 63
4.4. Conclusions . 64

v

Contents

5. Coordination of Flexible Human-Robot Teams 67
5.1. Team Mental Model . 68

5.1.1. Agent Capability Model . 70
5.1.2. Interaction Categories . 72
5.1.3. Flexible Communication Patterns 74
5.1.4. Preemptive State Machines . 77

5.2. System Architecture . 80
5.3. Dynamic Task Sharing . 82

5.3.1. Decision-Making Strategies . 83
5.3.2. Task Advancement . 85
5.3.3. Knowledge Update . 86

5.4. Conclusions . 89

6. Evaluation 93
6.1. Subjective Evaluation . 94

6.1.1. Hardware Prototype . 94
6.1.2. Results . 97

6.2. Objective Evaluation . 99
6.2.1. Benchmark Tasks . 99
6.2.2. Simulation System . 101
6.2.3. Parametrisation . 102
6.2.4. Evaluation Metrics and Reference Data 103
6.2.5. Results . 105

6.3. Conclusions . 112

7. Conclusions 115
7.1. Summary and Discussion . 115
7.2. Future Work . 119

A. Complementary Evaluation Data and Parametrisation Details 123

List of Tables 127

List of Figures 129

Bibliography 131

vi

CHAPTER 1
Introduction

1.1. Background, Motivation and Goals . 1
1.2. Terms and Delimitations . 6
1.3. Problem Analysis and Research Questions 10
1.4. Overview . 13

Within the last years, robots have started to evolve from potentially dangerous,
inflexible automation tools towards teammates in manual production processes.

Lightweight robots are broadly available. They enable coexistence with humans in a
shared workspace – fences as used in traditional automation are no longer necessary
to ensure worker safety. Such robots are the enablers of automation in small and
medium sized enterprises (SMEs) and workshops when combined with novel approaches
to intuitive end-user robot programming. There is, however, still a lack of cognitive robot
capabilities to make use of the positive effects of symbiotic, human-like teaming beyond
mere coexistence in these production environments. Against this background, this thesis
addresses human-robot teaming with a focus on flexibility as motivated in Section 1.1.
This form of teaming is put into the overall context of human-robot interaction in
Section 1.2. An in-depth problem analysis in Section 1.3 leads to the research questions
that this work seeks to investigate.

1.1. Background, Motivation and Goals
The field of industrial robotics is currently undergoing an evolution. Robots were tra-
ditionally highly specialized tools for fully automated mass production. They were
programmed statically for long-term use in a single, fixed task. Fences guaranteed the
safety of workers on the shop floor by introducing a strict separation between man and
machine. This inflexible mode of use has prevented SMEs from broadly utilising robots
so far – high acquisition costs, space requirements caused by safety fences and frequent
expenses for expertise in robot programming have hampered automation of small batch
production [93, 99]. Regarding these issues, the introduction and broad availability of

1

Chapter 1. Introduction

Figure 1.1.: Lightweight robots like e.g.
the Franka Emika Panda (left) or the
KUKA LWR 4+ (right) arms are compact
manipulators designed for use in cage-free
applications.

lightweight robots can be seen as a turning point. Meanwhile, lightweight robots as
shown in Figure 1.1 are available from all major robot manufacturers (see e.g. [124]
for a detailed listing). They are characterised by their compact design and reasonable
pricing on the one hand [13]. On the other hand, lightweight robots are often equipped
with built-in safety technologies [115]. Different approaches to measure external forces
and torques, tactile sensor systems to detect contact, and insights from the field of soft
robotics can prevent or at least bound the impact of collisions with workers. These
mechanisms are the key to fence-less coexistence of humans and robots in manufacturing:
Partly automated applications can be designed in line with the relevant safety standards
EN ISO 10218-1/2 [34, 35] and ISO/TS 15066 [56] when safe robots are integrated with
equally safe actuators (e.g. grippers as developed in the SCHUNK Co-act technology pro-
gram1) and non-hazardous workpieces. The resulting hybrid workplace needs to undergo
a risk assessment procedure to prove compliance with the maximum acceptable contact
situations, forces and pressures defined in ISO/TS 15066 [124]. Even direct physical
interaction with robots can then be certified in line with European regulations and laws
on safety and health at work.
Programming is the activity that takes up most of the time in industrial human-

robot interaction scenarios [124]. It has been identified as one of the main barriers to
automation in SMEs [99, 93]. Alongside with the reduced capital cost and enhanced
flexibility offered by fence-less lightweight robots, automation in SMEs is thus supported
by research on intuitive end-user programming techniques. Especially Programming
by Demonstration and Task-Level Programming with skills have gained considerable
attention in this field [117]. Both paradigms are often combined with graphical user
interfaces (e.g. [117, 96, 102]). Such interfaces are meanwhile also commercially available
and open robot programming to shop floor workers, e.g. through Franka Emika’s Desk
interface for their Panda arm2 or Intera Studio3 offered for Sawyer by Rethink Robotics.
In summary, suitable hardware, software and legal frameworks are available to use

robots in manufacturing of frequently changing products with an increasing range of
variants. Recent data indicates that many SMEs have already started to implement
these technologies or are planning to do so within the next few years [63]. However,
robots are currently mostly used as tools that merely coexist with humans rather than
taking the role of a co-worker [13]. Most concrete applications do thus not make use of

1https://schunk.com/de_en/co-act/ (date accessed: 2020-05-25)
2https://www.franka.de/capability (date accessed: 2020-05-25)
3https://www.rethinkrobotics.com/intera (date accessed: 2020-05-25)

2

https://schunk.com/de_en/co-act/
https://www.franka.de/capability
https://www.rethinkrobotics.com/intera

1.1. Background, Motivation and Goals

the positive effects of true teamwork that are emphasized by an ever-increasing number
of publications on human-robot cooperation and collaboration [2]: Humans and robots
have different capabilities. Manipulators excel in strength, endurance and precision, but
they are currently rather inefficient when it comes to dexterous manipulation [115]. This
weakness can be compensated for by humans who moreover possess the cognitive skills and
intuition to adapt quickly even in unexpected situations. These individual capabilities
need to be combined in a synergistic way to create symbiotic assembly systems of the
future [37]. Sharing a task can obviously raise productivity when team members work
in parallel. In addition to reduced makespans, the introduction of human-robot teams
can improve working conditions. Physical stress can systematically be shifted from shop
floor workers to machines by considering ergonomics in the design of hybrid assembly
systems [97]. All in all, worker support and enhanced productivity through human-robot
teams in SMEs may be the answer to the reduced workforce and ageing population
induced by future demographic changes [8, 115]. Against this background, this thesis is
directed towards advancing lightweight robots from tools to human-like team members
by adopting the aforementioned developments that brought them to SMEs. Therefore,
the design of the proposed human-robot teaming framework is guided by the following
two main goals:

G1 Maximize Flexibility: The system must support fast and flexible integration of
new tasks by accepting shared task models as an input. Humans and robots must
be seen as peers that share work dynamically during the on-line execution phase.

G2 Minimize System Costs: The overall costs for acquiring the system and operating
it should be kept low by relying on a lean hardware setup within a software toolchain
that the existing workforce can handle.

A system will not be suitable for production of small lot sizes and ever-changing
products without flexibility regarding new tasks (G1). Observations from human teaming
have shown that a shared mental model, i.e. a similar understanding of the task among
team members, is needed for effective teamwork [82, 74]. Human mental models allow
to describe and predict the behaviour of systems [59] and are rather complex. Mathieu
et al. have identified task models and team models as the two main content domains of
mental model information [82]: The task mental model mainly describes resources and
procedural knowledge on a task. Demanding a shared task (mental) model that all team
members know and understand as a system input is thus not only a matter of flexibility
but also ensures the common ground that humans and robots need to function as a team.
By contrast, the team mental model covers one’s understanding of teammates’ roles,

skills, preferences, communication channels and interaction patterns etc. For a robot
system, this part of the mental model strongly relates to how the system implements
planning of actions and communication. This dissertation seeks to realise a robot team-
mate with a team mental model that supports the following mode of teaming: We
know from experience that human teams can act in a highly dynamic and flexible way.
In particular, effective teams often make the decisions to distribute work on the fly
rather than strictly following a pre-planned, fixed schedule [112]. According to Tracht

3

Chapter 1. Introduction

Figure 1.2.: This thesis targets a human-robot teaming framework that enables efficient, de-
coupled parallel working (e.g. cooperative palletizing, left), that can enter close interaction for
collaborative action when needed (e.g. assembly steps requiring a helping hand, centre) and that
allows human agents to handle more urgent tasks temporarily (e.g. a delivery of goods, right).

et al., enabling humans to influence the working process can impact worker satisfaction
positively [122]. Excluding humans from the decision making process can even result
in decreased human situational awareness [40] – despite all built-in safety measures of
lightweight robots, critical situations may still require quick operation of the emergency
stopping mechanisms demanded by ISO/TS 15066 [56]. Shared authority can hence also
contribute to safety by keeping workers alert at any time. Furthermore, recent results
from the field of social robotics confirm that humans prefer proactive robots to passive
assistance systems that strictly follow human decisions and commands [9]. In conclusion,
humans and robots should be equally responsible for initiating and carrying out parts
of the task. Both should equally possess decision making authority on their own rather
than strictly depending on their partner. Ideally, workers will then make decisions con-
tributing to capability-based division of work after gathering experience with the system.
Besides these general findings, mimicking human teams with a flat structure instead
of a hierarchical organization has beneficial practical implications on the flexibility of
human-robot teaming: Working in a decoupled, parallel way (Figure 1.2, left) as far
as possible does not only result in reduced makespans and enhanced productivity – it
also lets shop floor workers a choice: They can intentionally leave obnoxious, repetitive
sub-tasks to the robot and may even temporarily walk away from the workbench while
the robot keeps working. Workers can this way handle interruptions and re-engage in the
task later, e.g. when replenishing resources or receiving a delivery of goods (Figure 1.2,
right). Nevertheless, the team must be able to engage into closer, potentially physical
interaction when needed. Complex actions as e.g. two-handed manipulation requiring
an additional helping hand (Figure 1.2, centre) that neither teammate alone is capable
of are otherwise intractable.

The demand for maximum flexibility is intertwined with the system costs. On the one
hand, the cost factor and a lack of expertise are major concerns regarding the introduction
of robots in SMEs [99, 63]. On the other hand, robot teammates need an extensive set of
capabilities [72], especially when they are intended to work with humans dynamically by

4

1.1. Background, Motivation and Goals

making decisions in ever-changing environments. These capabilities of cognitive robots
come along with a need for additional hardware, e.g. for perception and communication.
The second goal seeks to address these issues by firstly demanding a lean hardware
setup. This can be achieved by reducing the number of used sensors to a minimum (e.g.
one camera mounted near the robot hand to partially observe the workspace) and by
reusing hardware that is either way available in SmartFactory environments (e.g. workers’
smartphones). However, G2 does not only relate to hardware investment costs – it also
aims to reduce the need for external expertise and additional personnel expenditure.
SMEs typically employ domain experts that are skilled craftsmen and product engineers
[99]. That is why they do not necessarily have expertise in robotics. Another key
motivation of this dissertation is to enable these domain experts to operate the full
system. This means that they must not only be able to coordinate work with their
teammate during production intuitively – procedural know-how must furthermore be
preserved by fostering knowledge transfer towards the robot with regard to task mental
models. This can be achieved by applying insights from prior art on intuitive robot
programming to flexible human-robot teaming. Moreover, the existing workforce could
ideally install the system, put it into operation and carry out maintenance tasks (e.g.
(re-)calibration of sensors after moving the robot on the shop floor).

Against the background of the aforementioned goals G1 and G2, the central working
hypothesis of this dissertation can therefore be formulated as follows:

Flexible human-robot teaming by dynamic task sharing can be beneficial for
production processes, even if a hardware setup with only a few sensors is used.
Users without expert knowledge in robotics can operate the system and can intu-
itively share their procedural know-how before working with a robot teammate.

The need for investigating this hypothesis is substantiated by a short review of related
work: Approaches to human-robot teaming with applications to manufacturing mostly
focus schedules for an ideal, capability-based distribution of work (e.g. [86, 78, 84, 58, 16]).
By searching for optimality e.g. regarding ergonomic aspects, these methods lead to
schedules that are fixed and do not enable flexibility by dynamic just-in-time decisions.
More dynamic modes of task sharing have been considered in literature yet (e.g. [60,
30, 103, 44, 89, 112]), but they predominantly require precise knowledge of the task
progress at any point in time – this sort of full observability can only be achieved by
monitoring human actions or the state of the workspace with extensive sensor setups.
Recent approaches to graphical robot programming rely on skill frameworks to support
end-user programming in industrial settings, but they result in commands for the robot
only and so they are not suitable to generate shared task models for multiple agents (e.g.
[117, 4]). Thus, there is a gap in knowledge regarding dynamic task sharing with limited
sensor use in combination with task models that are based on the established task-level
programming paradigm for manufacturing scenarios. This thesis seeks to contribute to
prior knowledge by investigating the prospects and limitations of flexible teaming in line
with these considerations. To this end, a novel approach to dynamic task sharing is
evaluated with a particular focus on the impact of partial workspace observability.

5

Chapter 1. Introduction

1.2. Terms and Delimitations
Section 1.1 has motivated a flexible form of teaming that targets cost-efficient hybrid
assembly stations where humans and robots interact dynamically to achieve a shared
goal. Since human-robot interaction is a rather wide field of research [41] it is necessary
to classify flexible teaming carefully and delimit the approach to problems that are not
addressed by this thesis. To this end, the following terms and definitions are crucial:

Task In the context of this work, humans and robots pursue the shared goal of completing
a shared task together. A task describes a complex process, as e.g. assembling a
product from several parts or packaging different goods onto a pallet.

Operation Tasks are composed of several operations. An operation is a self-contained
unit that realises a part of the task, e.g. by mating one part with an assembly.

Task Allocation The process of selecting a subset of agents (human, robot or both) for
execution of some operation is called task allocation.

The term dynamic task allocation will be used for just-in-time decisions that an agent
makes to choose his or her next operation from a given task model.
A classification of the approach using the established taxonomy of Yanco and Drury

[127] is listed in Table 1.1. The task type and robot morphology are prescribed by the
target domain of manufacturing with lightweight robots in SMEs. The task criticality is
medium: Success of the shared task is not entirely irrelevant, as failures in production
cause costs and lower productivity. However, teaming in manufacturing is not as critical
as e.g. success in search and rescue scenarios, in which failure may affect the life of
humans [127]. One robot will interact with possibly several shop floor workers as peers.
A high robot autonomy level is the key enabler of peer-to-peer interaction [41]. The

taxonomy of Yanco and Drury specifies autonomy to be ‘the percentage of time that
the robot is carrying out its task on its own’ without human intervention in the control
process [127]. This measure depends on agent capabilities and the concrete task if this
definition is directly applied to our case: If some task contains a sufficient amount of
operations that the robot is capable of, then 100% of autonomy within the time needed
for task completion is possible. By contrast, a task that predominantly involves dexterous
assembly steps (Figure 1.2, centre) results in low autonomy. A general statement about
the degree of autonomy regarding this definition is thus infeasible. A more differentiated
classification may be taken by additionally considering autonomy sub-categories for
planning, sensing and acting [11]. As described above, the autonomy level for acting in
the sense of performing operations within a task scales depending on the relation between
capabilities and operations – it may vary for different task structures (different shades of
grey in Table 1.1). The same is true for sensing: Some task may e.g. involve operations
to shelve objects out of the reach of a manipulator. Then, the stationary robot is not
capable of verifying the completion of a fraction of the operations without help. The
idea of tasks that require a combination of complementary agent capabilities is reflected
by equally granting human agents a limited degree of sensing and acting autonomy,

6

1.2. Terms and Delimitations

Table 1.1.: Classification of the inter-
action targeted by this work regarding
relevant categories of the taxonomy by
Yanco and Drury [127] with additional
autonomy sub-categories according to
Beer et al. [11]

Category Value

Task Type manufacturing
Robot Morphology functional
Task Criticality medium
Human-Robot Ratio several humans, one robot
Interaction Roles teammates
Autonomy Plan

Sense
Act
0% 100%

e.g. due to limited physical strength or workspace areas that only the robot can access.
However, human domain experts are usually aware of these circumstances at any time
due to their experience and cognitive skills. This work targets a robot teammate that is
similarly capable of understanding the situation and reacting by planning autonomously
during 100 % of the task execution time. These reasoning capabilities help to bridge the
gap between individual agent skills by bidirectional communication, e.g. by asking for
information or by requesting help in performing operations. Bearing in mind the idea of
dynamic task allocation, this work strives for an approach to teamwork-centred autonomy
that ‘adopts the stance that the process of understanding (...) and task execution are
necessarily incremental, subject to negotiation, and forever tentative’ [20].

The original taxonomy of Yanco and Drury contains further categories regarding phys-
ical proximity and sharing of time and space [127]. These categories are not contained in
Table 1.1 due to the fact that they are covered by the terms ‘coexistence’, ‘cooperation’
and ‘collaboration’. These terms are frequently used in recent publications [2] and com-
monly applied in the field of industrial co-working [13, 12]. Using them for classification
is certainly more suitable in the context of this work. Unfortunately, the meaning of
coexistence, cooperation and collaboration is not defined consistently in literature [1].
The teaming scenarios targeted in this thesis are best matched by definitions inspired
by those of Aaltonen et al. [1], Bender et al. [13] and Behrens et al. [12]. All terms are
based on the assumption that human and robot at least share a part of their workspace:

Human-Robot Coexistence: Human and robot coexist when they share parts of their
workspace without fences, but do not work on the same task.

Human-Robot Cooperation: Human and robot cooperate when they work on the same
task by carrying out different operations involving different objects simultaneously.

Human-Robot Collaboration: Human and robot collaborate when they work on the
same operation contained in the same task simultaneously. Physical contact, pos-
sibly transmitted via an object to be handled jointly, is allowed and intended.

The meaning of these definitions is visualized by Figure 1.3. One can see that each of
the teaming modes covers one of the motivational examples shown in Figure 1.2. We can

7

Chapter 1. Introduction

Figure 1.3.: When humans and robots coexist (left), they work on different tasks that are
represented by different objects (orange/green). Cooperation means that agents work on separate
parts contributing to the same task in parallel (centre). The term collaboration additionally
involves temporal synchronization and physical interaction within an operation (right).

assume that coexistence mainly refers to the ability of humans to switch to another task
as stationary manipulators are bound to their limited workspace. The robot is intended
to still stay productive by proceeding with the shared task even if its partner has left.
The notion of flexible teaming can then be defined more formally as follows:

Flexible Teaming A flexible team works on one or more tasks without relying on a fixed,
precomputed schedule and can hence dynamically switch between cooperation,
collaboration and coexistence at any time (Figure 1.4, left).

Task allocation decisions of humans and robots are not sufficient for meaningful team-
ing. Coordination, defined as ‘the act of managing interdependencies between activities
performed to achieve a goal’ [79], is additionally required to react to the actions of one’s
peers – this means in particular that dynamic task allocation must reflect task progress
in terms of operations completed by teammates and leads to the notion of task sharing:

Dynamic Task Sharing The term dynamic task sharing is defined to denote a process
of coordinated human and robot dynamic task allocation decisions.

Coming from the three teaming modes and potential transitions among them, coordina-
tion can be regarded on different levels of granularity (Figure 1.4, right): Collaboration
needs the most fine-grained coordination. To this end, the operation level covers the
tightly coupled interaction needed for assembly steps that involve more than one agent
synchronously. While this thesis incorporates basic means of operation-level coordina-
tion, this level can generally be seen as the interface to numerous approaches to physical
human-robot interaction (pHRI) and shared control, e.g. for collaborative lifting or other
manipulations with physical contact [105]. The team must furthermore coordinate on
the task level during cooperation. Task level coordination encapsulates task allocation,
i.e. agents share responsibility for parts of a complex task on this level. In contrast to the
operation level, team members can act rather independently and are not strictly tied to
each other – their actions are only constrained by a loose temporal coupling originating
from potential task-related constraints on the ordering of operations and availability of
resources. Coexistence does not need any task-related coordination, as agents work on
differing tasks in this mode. However, the transition between coexistence, cooperation
and collaboration demands for additional coordination on the teaming mode level. Let

8

1.2. Terms and Delimitations

Figure 1.4.: Flexible teams can switch between coexistence, cooperation and collaboration
dynamically (left) by coordinating actions on different levels of granularity (right).

the robot e.g. decide to carry out an operation that is only feasible in collaboration,
while the human partner is absent from the workbench. Then, the communication to ask
the human to return and support the operation falls within the scope of teaming level
coordination. The earlier mentioned autonomy in robot planning must reflect all levels
of coordination for flexible teaming.

We know that solving the problem of autonomous reasoning and planning in general is
still one of the greatest challenges in robotics [128]. The scope of this thesis is delimited by
the following assumptions: A shared goal is encoded by a symbolic task model describing
the task and all resources needed to complete it. This model is shared between humans
and the robot, i.e. it is fully known to all agents. The problem of recognizing objects
in sensor data, especially in images, is well studied (cf. e.g. [77, 129]). Relying on this
body of work, it can furthermore be assumed that a robot is able to recognize the state
of any resources (e.g. the type and location of objects) as soon as they occur in the data
produced by any sensor of the system. Focussing on limited sensor setups, the notion of
partial workspace observability can be clarified against this background:

Partial Workspace Observability Perception under partial workspace observability means
that only a fraction of all objects in the workspace can be observed by the robot
at a given point in time.

Consequently, planning and reasoning in the context of this work means generating
actions to perceive a subset of the objects in the workspace or to contribute to task
progress correctly. We furthermore assume cooperative workers who are skilled within
the domain and who will always perform correct actions according to the task model
without causing errors in the production process.

All in all, the research directions and targeted areas of contribution can be summa-
rised as follows: We have seen so far that task allocation and coordination are central
prerequisites for flexible human-robot teaming on the one hand. On the other hand,
cost-efficient end-user programming and system operation are key enablers of robotics
in SMEs. The principal focus of this work lies on a formal framework that integrates
prior findings on user-friendly modelling with dynamic allocation and coordination of

9

Chapter 1. Introduction

tasks – we will therefore encounter these central terms again when considering related
work in depth in Chapter 2. The scope of this thesis is bounded by conceptual interfaces
to integrate existing approaches to explicit human-robot communication and physical in-
teraction into the task allocation and coordination process. The issue of safe coexistence
is extensively covered by a vast body of literature (cf. for example the surveys of Lasota
et al. [69] and Halme et al. [43]). Intrinsic worker safety (e.g. through force and power
limiting according to ISO/TS 15066 [56]) is thus assumed as given and not addressed
explicitly. Aside from task-related communication, social aspects of human-robot inter-
action (e.g. expressing emotions, maintaining relationships or exhibiting a distinctive
character [38]) are out of scope with regard to the target industrial application. Making
individual decisions on task allocation and coordinating them within a team means con-
sidering one’s partners’ intentions and plans implicitly. The survey of Bauer et al. [10]
lists numerous channels that can convey intention – from these channels, only explicit
communication and observation of object usage are used by the proposed task sharing
approach. Especially methods for explicit recognition of gestures or actions by tracking
of human motions are not used due to the focus on partial workspace observability.

1.3. Problem Analysis and Research Questions
Coming from the high-level goals set in Section 1.1, we can now look at the technical
aspects of flexible teaming within the scope delimited by Section 1.2. These are directly
interrelated with the research questions that this thesis tries to answer. The first question
addresses the issue of establishing a task-related shared mental model. Domain experts
already possess the process knowledge on tasks to be partly automated. The problem can
thus be reduced to transferring task models from human to robot agents. A suitable task
model must therefore meet several requirements: It needs to be legible and comprehen-
sible for humans so that end-users can manage task modelling. But the model must still
encode sufficient information for the robot to perceive and understand task progress. It
must additionally contain information on whether operations may be executed in parallel
for task sharing in the cooperation mode. Graphical robot programming environments
have recently been in the focus of research and commercial applications – it is therefore
reasonable to explore if the advantages of this paradigm can be transferred to flexible
teaming. To summon up, these requirements lead to the following first research question:

Q1 To what extent can end-users without knowledge on robotics use a graphical interface
to create task models that can be shared with robots for flexible teaming?

Given the shared task model, the second research question targets the issue of dynamic
task allocation. Goal G2 in mind, this should be achieved with as few as possible
inexpensive sensors to reduce acquisition costs, expenditures for installation and efforts
for calibration. The system will therefore mainly rely on an eye-in-hand RGB-D camera
system that is mounted near the robot tool centre point. Installing a single robot-mounted
camera is far less invasive compared to a complex multi-camera system that can oversee
the whole workspace. Suitable cameras with a compact form factor are available at low

10

1.3. Problem Analysis and Research Questions

cost (e.g. Intel’s Real Sense D435 depth camera4). Aside from the cost factor, using a
robot-mounted camera system has an application-specific motivation: Lightweight robots
only provide a limited payload. Target application scenarios for human-robot teaming
thus incorporate manipulation of parts that are relatively small compared to the agents
moving within the workspace. As a result, a high level of occlusion may be expected
when using cameras in fixed positions. This issue can be avoided by enabling the robot
to move the camera and inspect parts actively when needed (Figure 1.5). However, these
benefits of partial workspace observation raise another challenge: Humans may arbitrarily
change the state of objects that are currently not in sight of the camera – the knowledge
that the robot has previously gathered can thereby be invalidated, causing it to make
decisions based on outdated information. In consequence, the robot may e.g. decide to
handle an operation that has already been done by a human worker in the meantime,
resulting in inefficient robot behaviour or even erroneous task execution. Providing the
robot with knowledge on human habits, e.g. by demonstrating the workers’ preferred
ways to execute the task, would certainly support decision-making. It is on the other
hand time-consuming and costly due to down-times in the training phase. This thesis
therefore aims to contribute to prior knowledge by answering the following question:

Q2 How far can a robot system make meaningful dynamic task allocation decisions
under partial workspace observability without extensive prior training?

In the attempt to explore the boundaries of dynamic task allocation under partial
workspace observability, the sensor set used in this work is complemented by a low-cost
2D LIDAR range sensor (e.g. Slamtec’s RPLIDAR A25). Such sensors can only provide
tracking information about the 2D position of humans in the working area when mounted
below the workbench on the one hand. On the other hand, data from a single LIDAR
sensor can cover the whole operational space of the team – this would otherwise e.g.
require several, labour-intensively calibrated cameras. The resulting overall system setup
is depicted in Figure 1.5. This setup enables investigating the effects of gradually adding
knowledge about human motion to the system. Still, it is a reasonable trade-off that
avoids turning to full observability as e.g. enabled by camera-based full human body pose
tracking or even more expensive and intrusive marker-based hardware setups [107, 76]
that are not in line with the goal of a lean hardware setup.
Even when provided with additional, but still partial information on human motion

in the workspace, imperfect decisions may still occur. The system must then potentially
cope with failed operations, e.g. by retrying them later or by asking the human partner to
clarify the situation. Communication is furthermore necessary to implement the different
levels of coordination introduced in Section 1.2. Otherwise, the robot e.g. will not be
able to call its partner for help with a collaborative operation that it cannot handle alone.
However, the partner will not necessarily immediately react to a request in a flexible
setup – a team mental model (Section 1.1) is thus needed as a protocol for the course of
action in such situations. With this model, the robot system can decide after each task

4https://www.intelrealsense.com/depth-camera-d435/ (date accessed: 2020-05-26)
5https://www.slamtec.com/en/Lidar/A2 (date accessed: 2020-05-26)

11

https://www.intelrealsense.com/depth-camera-d435/
https://www.slamtec.com/en/Lidar/A2

Chapter 1. Introduction

LIDAR Sensor

Eye-In-Hand
Camera

Figure 1.5.: The limited hardware setup consists
of an eye-in-hand camera mounted near the robot
tool centre point and a LIDAR range scanner be-
low the workbench. Active inspection of parts
(green) avoids occlusions as emerging from cam-
eras in fixed positions (red).

allocation decision whether to (re-)try an operation, if communication is necessary or how
to handle a lack of response etc. The demand for flexible teaming comes with a need for
a communication channel that is equally flexible. In particular, the team mental model
formulation for the robot must realise a mode of communication that is non-blocking
and stoppable to the greatest possible extent. Only then will the system stay capable
of acting in situations when the human is occupied otherwise and does not answer to
requests – blocking communication would here prevent the system from handling other
operations in the meantime. The following research question reflects these requirements:

Q3 How can dynamic task allocation be combined with flexible communication and a
team mental model to integrate coexistence, cooperation and collaboration?

Although verbal and gesture-based human-robot communication are well studied [83],
short messages via handheld devices are more suitable for a prototype implementation
of the proposed approach. Voice- and gesture-based systems are still seen sceptically by
industry professionals [63]. Moreover, speech recognition performance without intrusive
headsets depends strongly on noise, e.g. due to actuator motion [92]. By contrast, short
messages do not need any hardware aside from already omnipresent smartphones. They
moreover reach off-workplace partners that are out of earshot in the coexistence mode.

The above questions focus conceptual feasibility and limitations of dynamic task shar-
ing under partial workspace observability. A final question seeks to provide a more
general view on the prospects of flexible teaming with a limited sensor setup for manu-
facturing. Section 1.1 has introduced shop floor workers as the end-users of the proposed
system – these domain experts do not possess expert knowledge on robotics, but they
should still be enabled to operate the system without relying on external expertise. Even
if the system can be run cost-efficiently by the existing workforce, it must still provide a
benefit compared to fully manual work to render human-robot teaming reasonable:

Q4 To what extent is the proposed method beneficial for shared task execution? How
does the flexible approach compare to static methods for task sharing?

This question particularly targets the influence of decision-making under partial work-
space observability on teaming performance. An overview of the approach used to
investigate the above questions is given in the next Section 1.4.

12

1.4. Overview

1.4. Overview
The parts of this thesis still to come are structured as follows: Chapter 2 reviews related
work to build upon. This chapter also clarifies the gap in knowledge more precisely. An
end-user task modelling concept is introduced in Chapter 3. Starting from a task-level
robot skill framework, complex tasks are composed using a graphical programming tool.
Each task is represented by an assembly precedence graph. Operations are annotated
with automatically generated pre- and postconditions for perception of task progress.

A human-aware world model is the second key component of the proposed human-
robot teaming method (Chapter 4). This world model stores symbolic data about parts
in the workspace. It is continuously updated from partial views of the workspace as
provided by the eye-in-hand camera system. Partial observability is handled by a trust
measure to judge reliability of stored objects over time. This measure is incrementally
calculated based on heuristics for the likelihood of parts being manipulated by humans.

Chapter 5 brings things together by describing the human-robot interaction algorithms.
The human-aware world model provides guidance for the robot to choose an operation
from the task model: Dynamic task allocation decisions are taken in favour of operations
that are likely to succeed due to high trust measures of involved parts. Each operation
is assigned to a component team mental model in consideration of agent capabilities.
These component mental models encode workflows that are necessary to coordinate
respective actions. For instance, an operation that the robot cannot perform requires
communicating this fact to its partner and monitoring postconditions afterwards. By
contrast, operations that both agents are capable of may be carried out after validating
preconditions, collaborative operations should only be issued after establishing mutual
commitment to engage into close interaction etc. Mental models are therefore formulated
as state machines that combine abstract robot activities for (i) active inspection of parts
with the camera, (ii) execution of an operation from the task model, and (iii) explicit
communication with the human. After choosing an operation to work on, necessary
activities towards completing this operation are issued by following transitions in the
corresponding mental model state machine.
Two sorts of experiments support the evaluation of this approach (Chapter 6): A

hardware prototype for pick-and-place tasks and basic assembly steps is used to test the
system with human subjects. This enables investigating user experience with different
stages of a software toolchain for flexible teaming. By contrast, a simulation system
allows for an in-depth analysis of teaming performance for different tasks and system
parameter sets based on partly randomised simulation of human participation. Finally,
Chapter 7 summarises the approach, discusses the evaluation results and points out
future research directions.

13

CHAPTER 2
State of the Art

2.1. Task Modelling . 15
2.2. Decision-Making for Task Allocation . 20
2.3. Coordination Mechanisms . 23
2.4. Conclusions . 26

Sharing a task model, being able to make decisions on task allocation, and coordinating
these decisions with one’s peers are crucial for flexible teaming (Chapter 1). Therefore,

this chapter reviews related work on human-robot task sharing from each of these three
perspectives: Section 2.1 gives an overview of task models that are used in the context
of human-robot teaming. The problem of making decisions on allocating parts of a task
to either human or robot is considered in Section 2.2. Existing technical approaches to
team coordination are outlined in Section 2.3. Section 2.4 summarises the lessons learned
and clarifies the gap in knowledge that this thesis seeks to address.

2.1. Task Modelling
Shared task models are an integral part of human-robot interaction approaches that
aim to achieve a common goal as a team. Hence, related work is categorized regarding
usage of such models as an input hereinafter. Properties of individual task model
types are summarised in Table 2.1. The properties taken into account result from the
requirements for applicability to graphical end-user programming and flexible teaming
as identified in Section 1.3. In consequence, only task models with an explicit structure
that can be visualized graphically are regarded here – this excludes works from the below
considerations in which the task is defined implicitly by specifying the goal state as a
CAD product model [14, 84, 61], as an abstract goal [111, 33, 85], or by predicate target
values [24, 48] for symbolic planning. Besides explicit encoding of parallel task execution,
complexity is rated on a scale from ‘low’ to ‘very high’. Models of low complexity express
exactly one possible way to perform a task. By contrast, medium complexity refers to
representations that can capture more than one possibility. If a model covers knowledge

15

Chapter 2. State of the Art

a)

b)

c) d)

Figure 2.1.: Operation sequences (a), schedules (b), precedence graphs (c) and hierarchical
decompositions (e.g. AND/OR Trees) (d) are common input task models to human-robot teaming
approaches in literature.

beyond the task structure in terms of operations and constraints on their ordering (e.g.
expert information on the duration of operations or on robot perception capabilities),
then complexity is rated high. Task models that are based on additional information
that is particularly complicated to obtain (e.g. probability distributions on the outcomes
of actions) are classified as very highly complex. The last column of Table 2.1 indicates,
if and how user-friendly modelling is addressed in respective publications.
Operation Sequences are a basic form of task modelling. Against the background

of robot use in industrial settings, the definition of operation sequences is chosen in line
with the notion of assembly sequences: Following Homem de Mello and Sanderson [54],
a totally ordered set τ1, τ2, ..., τi, ..., τN (N ∈ N) of assembly operations τi is called an
assembly sequence if and only if τN results in the final product, and if each τi uses
only single parts or sub-assemblies resulting from τk with k < i (Figure 2.1a). While
the term ‘assembly operation’ is mainly used for physical mating of parts, the more
general definition as a self-contained part of some task (Section 1.2) is meant hereinafter.
Operation sequences provide only a low level of information content. They are therefore
easily comprehensible and legible for humans. In the context of human-robot teaming,
approaches to learn sequences from observation of humans haven been proposed [67, 64].
Kimura et al. have shown, how robots can issue supportive actions while humans process
a sequential task [64]. In the framework proposed by Lallée et al., a robot may take
the role of either of two agents that were involved in the demonstration [67]. In general,
one operation sequence does not encode parallelism. However, parallel execution can
emerge when individual operation sequences for both human and robot are combined
with operation start and end times to form a schedule (Figure 2.1b). Schedules are
not directly used as an input task model in literature – they are thus not contained in
Table 2.1. Still, the notion of schedules is important as they are a common output of task
allocation methods starting from one of the more complex task models presented below.
In contrast to operation sequences, Precedence Relations are a fundamental as-

sembly representation that directly encodes parallelism [91]. This model specifies tasks
as a set T = {τ1, τ2, ..., τ∣T ∣} of ∣T ∣ operations, and a partial order ≺T on the elements

16

2.1. Task Modelling

of T . A precedence relation τi ≺T τj (τi, τj ∈ T, i ≠ j) means that operation τi must
be completed before τj , e.g. due to geometrical constraints when mating parts. Prece-
dence relations can be visualized as Precedence Graphs (Figure 2.1c) according to
the following definition of Niu et al.:

"A precedence graph is a directed graph, whose nodes represent the assembly
operations on parts and whose arrows represent the precedence relations
between operations." [91]

E.g., τ4 may only be executed after finishing τ2 and τ3 in Figure 2.1c. Precedence graphs
combine many feasible operation sequences into one single representation. The informa-
tion content is therefore higher compared to a single sequence. This is accompanied by
reduced legibility due to increased complexity. Given a precedence graph, an optimal
assembly sequence regarding certain operational criteria (e.g. minimum cycle time) is
determined by assembly sequencing [57]. Related optimisation and scheduling approaches
have been extended to create schedules that take human and robot individual capabilities
into account [86, 78, 90, 97, 16]. These works do not explicitly address modelling of input
precedence relations [86, 78, 90, 16] or require expertise in standardized hierarchical task
analysis [97]. There are, however, methods to generate precedence relations automatically
from high-level product information (e.g. [91]) which can replace modelling by end-users.
Recent work done by Mateus et al. includes this feature [81] but relies on decisions of
expert workplace designers in subsequent steps of the planning process.
Temporal Constraint Networks are similar to precedence graphs as they also

impose ordering constraints onto a set of operations. Their information content is rated
higher because operations τi are furthermore characterised by their start and end points
in time tstart,i and tend,i. Let X denominate the set composed of all these points in time.
Then, temporal constraints axy and bxy on the duration of operations or the overall
task are formulated by demanding that x − y ∈ [axy, bxy], x, y ∈ X [112]. Solving the
temporal constraint problem defined by such networks means searching a value for each
point in time, so that all constraints are satisfied. The Chaski framework of Shah et al.
applies this model to human-robot teaming by considering individual bounds on operation
durations for each agent in a team [112]. The scheduler of Wilcox et al. considers human
preferences regarding the workflow as an additional model component [40, 126]. Levine
and Williams have proposed a similar approach that integrates alternatives and choices
into a single task model [73]. Specifying temporal constraints and preferences requires
expert knowledge, e.g. on human worktime analysis and robot motion duration – this
hinders user-friendly modelling, which is not regarded in respective publications.

Another frequently used modelling approach is Hierarchical Task Decomposition.
Consider the example marked blue in Figure 2.1d: A sealed bottle with a bar code label
can be assembled by mating the labelled bottle with a lid, if the bar code has been affixed
in advance. The blue edges form a Hierarchical Task Network, where assemblies or
tasks (blocks) are split up recursively until parts or basic actions are reached (circles).
An extension towards formal operators to enforce sequential execution and to express
parallelism has been used for task sharing by Roncone et al. [103]. These models can be

17

Chapter 2. State of the Art

Pa
ral
lel
ism

Co
mp
lex
ity

Us
er-
fri
en
dly

Mo
de
llin
g

Operation Sequence 7 low LfD [67][64]
Precedence Relations 3 medium (7) [81][86][78][90][97][16]
Temporal Constraint Networks 3 high 7 [73][40][126][112]

Hierarchical Decompositions 3 medium
LfD [103]
(7) [30][58][47][39]

Finite State Machines 7 high
LfD [44]
(7) [60]

Probabilistic Models 7 very high
(LfD) [27][65][88][89]
7 [9][114][23][71]

Petri Nets 3 high (7) [25]

Table 2.1.: Properties of task models used for human-robot teaming (7 = aspect not considered,
(7) = aspect partly considered, 3 = aspect considered, LfD = Learning from Demonstration)

learned from demonstrations [49]. AND/OR Trees are a common model with similar
expressiveness from the assembly planning domain [53]. A hyperarc combines two sub-
assemblies or parts (AND). Each node that is not a leaf of the tree may have several
outgoing hyperarcs – for planning task execution, exactly one outgoing arc must be chosen
in each node while descending into the tree from its root (OR). AND/OR Trees are the
basis of several human-robot teaming methods [30, 58, 47, 39]. These approaches do
not consider how end-users can supply the system with new task descriptions. However,
AND/OR Trees can be generated automatically similar to precedence graphs, e.g. using
the ‘assembly by disassembly’-paradigm [118].

Hamabe et al. have shown, how Finite State Machines for human-robot task sharing
can be learned from human demonstrations [44]. States can encode the static status
of the assembly as well as dynamic human motions in their modelling scheme. State
transitions are triggered based on perception results and cause robot actions as an output.
This complex representation can cover different ways to accomplish a task. Like a set of
feasible operation sequences, it does not express explicitly to what extent operations may
be executed in parallel. The state machine for collaborative screw assembly used by Jülg
et al. [60] combines robot perception and action similarly. In contrast to the approach of
Hamabe et al., states do not describe detailed events related to the state of workpieces.
They encode more general actions or sub-programs as e.g. checking the human pose,
selecting a screw to approach, executing the trajectory to this screw or fastening it.
The approach relies on trajectories that are taught by hand-guiding the robot, but a
user-friendly way to model such rather specific state machines is not addressed.

18

2.1. Task Modelling

Several Probabilistic Models are based on the basic structure of state machines
but extend them towards handling uncertainty. Uncertainty can e.g. emerge from noisy
sensor data or incomplete knowledge on human intentions. Lenz et al. have shown how
composite Hidden Markov Models (HMMs) can be used to analyse human progress
within a workflow as a basis for planning of supportive robot actions [71]. To this end,
HMMs for several basic actions are trained with corresponding hand motion sequences
and arranged to form a complex task manually. Dynamic Bayesian Networks (DBNs)
are a generalisation of HMMs. In the work of Baraglia et al. [9], a two time-slices DBN
encodes task knowledge in the probability of taking an action in a certain state and
in the distribution over the next state given an initial state and action. The issue
of supporting the user in specifying these probabilities is not addressed here. Other
approaches rely on variants of Markov Decision Processes (MDPs) for robot action
selection [27, 65, 114, 88, 23, 89]. A MDP is generally defined by a tuple {S,A,T,R}.
In the aforementioned publications, task progress in terms of the physical world state
s ∈ S is a fully observable variable. The robot is capable of a finite set of actions A.
Ways to achieve a task are encoded in the reward function R ∶ S ×A → R by assigning
high rewards to the feasible or particularly favourable actions in each state. Given the
current state s and a robot decision on its next action a, the next state s′ depends
on what the human does while the robot performs a – this variance in human actions
is captured by the state transition function T , which gives a probability distribution
over s′ for each combination of s and a. Worker preferences can be taken into account
by formulating human goals and strategies as an additional, unobservable variable in
mixed-observability MDPs [88] or partial-observability MDPs (POMDPs) [23]. Similarly,
an estimate on human trust in success of certain robot operations can be integrated [27].
Their stochastic nature makes MDPs highly complex and creating appropriate models
for practical applications manually can be challenging and tedious [132, 88]. Koppula et
al. have proposed a learning approach for MDPs based on object affordances [65]. The
methods of Nikolaidis et al. [88, 89] and Chen et al. [27] support learning for parts of
the model, e.g. by adjusting rewards and transition probabilities to match the habits of
individual workers using cross training [89] or detecting their strategies in observations of
human co-working [88]. The remaining approaches rely on manual specification [114, 23].
Similar to state machines, the above task models describe processes in a sequential
manner and do thus not encode parallelism explicitly.
Casalino et al. have defined basic Time Petri Nets, e.g. for human actions, robot

actions, collaborative actions or part transports by mobile robots [25]. Aside from
resource allocation, these component Petri Nets model the act of waiting for a partner
explicitly, resulting in a high overall task model complexity. The components can be
assembled into more complex co-working processes using sequential, parallel or alternative
connections. Pictograms for each of the component Petri Nets target user-friendly
modelling in theory, but Casalino et al. do not focus on this aspect explicitly.

The aforementioned approach of Casalino et al. relies on manually specified, complex
component Petri Nets that the robot system needs for decision-making [25]. Once these
components are defined, task modelling is performed by composing processes of several

19

Chapter 2. State of the Art

actions using a simplified descriptive formalism – a larger Petri Net for the overall task is
then deduced by mapping from pictograms to the component Petri Nets they represent.
Similar Hybrid Task Models with an automated mapping between some high-level,
human-legible task representation and a robot-specific model have also been proposed
by other authors. Hawkins et al. have shown how to transform an input AND/OR Tree
into a Bayes Net to track human actions within a task with variants [47]. Similarly, the
approach of Roncone et al. embeds the root nodes of a hierarchical task network into
partially observable MDPs to negotiate role assignment [103].

2.2. Decision-Making for Task Allocation

With the task model given, the second important pillar of dynamic task sharing is a
strategy that enables meaningful robot decisions on task allocation. Several criteria to
base decision-making algorithms on have been proposed. This section identifies main
categories among these approaches and classifies related publications accordingly. The
classification result is summarised by Table 2.2. In this table, works are moreover
divided into approaches to static and dynamic task allocation. Here, static means that
the ordering of actions and their assignment to agents are completely determined in
advance of task execution. By contrast, dynamic task allocation supports repeated,
situational decisions during execution as motivated in Chapter 1. The scope is limited to
publications that consider human and robot as peers with equal importance to the task.
Semi-dynamic methods allowing agents to make decisions only within a fixed role are
therefore not taken into account – approaches of this category limit either human [61]
or robot [48, 71, 47] to the subordinate assistant role of handing parts at the right time.
A large group of publications puts emphasis on technical aspects of the process or

robot system. In this category, several methods rely on the use of capability indicators
for task allocation decisions. Capability indicators rate to what extent some operation
τ is suitable for execution by either human or robot. To this end, calculation of such
indicators typically condenses resource suitability according to several criteria into a
real-valued score cH(τ) for a human and cR(τ) for the robot – then, the higher of both
scores indicates that τ should be assigned to the corresponding agent. An early concept
of Beumelburg [16] defines a comprehensive criteria catalogue and indicator computation
procedure for cooperative assembly planning which later works build upon [18, 100, 109].
Respective criteria may e.g. cover properties of objects involved in operations: Parts that
are heavy or easy to grasp suit the strengths of robots, whereas compliant, sensitive or
fragile objects require human dexterity. Concrete indicator values emerge from a manual
expert rating process during which a characteristic (e.g. ‘low’, ‘medium’ or ‘high’) with
an associated real valued indicator per agent is chosen for each pair of a category and
operation [16]. By contrast, indicators can also be determined automatically, e.g. by
matching the part weight and dimensions against the maximum possible payload and
gripper opening of the agent in question [78, 81]. Aside from these technical aspects,
risks for human health, especially regarding ergonomic strain, are another major factor.
This aspect can be quantified by applying the Strain Index (SI) [97] or Rapid Entire

20

2.2. Decision-Making for Task Allocation

static dynamic

Technical focus – e.g. makespans, ergonomics, properties of parts and hardware

Capability indicators [86][78][81][18][75][84][24]
[8][97][100][58][109][26][16] [90]

Workspace observation — [60][30][9][44]
TCN scheduling — [73][112]

Social/Cognitive focus – e.g. preferences, habits, trust, knowledge, communication
TCN scheduling [40] [126]

MDP policy-following — [27][103][88][89]
[23][65][114]

Symbolic planning [85][33] [111]

Table 2.2.: Different decision-making strategies for static/dynamic task allocation in literature

Body Assessment (REBA) [78, 24] techniques to human motions that constitute an
operation. With the final assembly sequence given, rules based on capability indicators
can be used for task allocation [78, 100]. In the case of more complex task models
(e.g. the precedence graph or AND/OR Tree of a production process), a schedule that
maximizes the use of individual capabilities while minimizing e.g. cycle times or energy
consumption can be calculated by multi-objective optimisation. Solving the optimisation
problem may require estimates for the duration of operations when carried out by either
agent – estimates for robots can be obtained from simulations, whereas motion time
systems as Methods Time Measurement (MTM) provide standard times for workers to
complete some action [75, 8, 109]. The final schedule can then be computed using variants
of tree search algorithms [24, 58], genetic algorithms [86, 8, 26, 16] or mixed-integer linear
programming [97]. Optimisation approaches may even include planning of the spatial
cell layout in addition to task allocation [84]. All the aforementioned planning methods
perform static task allocation – however, a dynamic mode of task sharing can be achieved
by solving the optimisation problem repeatedly depending on recent events [90].
Workspace observation, i.e. monitoring of events, parts and humans, is the foun-

dation of decision-making for a second class of approaches with a technical focus. The
state machines of Hamabe et al. output the next robot operation when transitioning
into the next state [44]. Transitions depend on recent observations of human actions or
the workpiece state. The robot is thus able to take part in the task dynamically within
the bounds of possible assembly sequences that were demonstrated during a learning
phase. Darvish et al. have shown how to ground skill input parameters by simulating
operation outcomes depending on the current situation in the workspace [30]. Then,
operations can be parametrized and allocated online to the agent yielding minimum
execution times. Given consecutive observations of parts in the workspace, Baraglia et
al. calculate a so-called object detection likelihood [9]. This measure judges the stability

21

Chapter 2. State of the Art

of object recognition results – it increases as long as some object is sensed and decreases
during time steps when it cannot be recognized. The approach seeks to assign parts a low
likelihood when interaction of humans with objects renders perception noisy. The robot
can then choose the operation that will most likely succeed from the set of all feasible
operations according to high detection likelihood values. Jülg et al. have proposed a
different way to reduce interference of human and robot actions [60]: In their work,
trajectory execution is aborted, when online collision checks based on RGB-D camera
images predict a collision with the human. The robot can then switch to an operation
with a trajectory that is collision-free according to the current workspace situation.
Temporal constraints that need to be satisfied during task execution are another

decision criterion for task allocation. Such constraints can be specified as a part of TCNs
(Section 2.1). They may e.g. limit the amount of time that the overall task execution
should take while also bounding the duration of individual operations. Approaches that
aim to dispatch variations of TCNs by satisfying all constraints typically make decisions
based on a special encoding of the problem [112]: The input TCN is compiled into a
representation that aggregates all feasible schedules for all task allocation possibilities
offline. This encoding can then be used for situational online decisions that take the
consequences on overall task feasibility into account [73, 126, 112]. These approaches are
thus explicitly tailored to enable dynamic, on-the-fly decisions through TCN scheduling.
Preserving consistency with temporal constraints implies reflecting other team mem-

bers’ decisions implicitly. Some TCN-based approaches furthermore incorporate explicit
agent preferences [40, 126]. This brings us to the next major category of publications
that put emphasis on social and cognitive aspects. Aside from the TCN scheduling
approaches with preferences that follow an optimal schedule calculated offline [40] or
anticipate workers’ habits dynamically by re-scheduling [126], following MDP policies
is a widely accepted technique. This method is, of course, strongly intertwined with
using MDPs for task modelling. In general, the robot system can derive a policy π that
assigns an action to every possible world state for a given MDP. Policies are designed to
output optimal actions in each situation covered by the state set S in a way that max-
imises the sum of future expected rewards [89]. This fast lookup renders policy following
suitable for dynamic task allocation. Depending on the concrete formulation of the MDP,
particularly in terms of the reward function R, different social and cognitive aspects can
be covered (cf. also Section 2.1). For instance, rewards or hidden state variables can be
defined to reflect human preferences and strategies [88, 23, 89]. Similarly, the method of
Koppula et al. adjusts the robot policy depending on whether humans prefer sticking to
their past habits or adapt to prior robot actions [65]. Other authors have shown how to
integrate task execution with transparent, socially acceptable communication [103, 114].
The system of Chen et al. [27] is furthermore able to build trust by favouring actions
that the human partner believes the robot will be capable of.

The final class of approaches with a focus on aspects of human cognition uses symbolic
planning to allocate the operations of a task to a human or robot. These approaches
trace back to the Hierarchical Agent-Based Task Planner (HATP) [32, 3], a HTN planner
with special features for human-robot interaction (e.g. support of social rules throughout

22

2.3. Coordination Mechanisms

the planning process [68]). A recent method based on the HATP considers human prior
task knowledge in the planning process but negotiates the whole plan statically before the
execution process [85]. Although the system of Devin and Alami [33] is able to supply a
human partner with information online depending on an estimate of human situational
knowledge (e.g. after a period of absence), this method still relies mainly on plans that are
completely communicated beforehand. Sebastiani et al. have later shown, how multiple
HATP-generated, socially acceptable plans can be merged into a conditional Petri Net
Plan that enables dynamic negotiation of task allocation decisions [111].

2.3. Coordination Mechanisms

The last perspective that we will take on related publications surveys the coordination
mechanisms they employ. The scope is limited to approaches that support dynamic
task allocation according to Table 2.2. Against the background of cost-efficient SME
applications, the extent of sensory input is a key factor. Partial observability of the
physical world state induced by a limited sensor set is thus especially relevant (Section 1.3).
Therefore, the following analysis does not consider methods in-depth that presume full
world state observability as a strict formal requirement. This applies particularly to
systems with MDPs as the underlying model [65, 114, 89]. Similarly, the partial- and
mixed-observability MDPs of Chen et al. [27] and Nikolaidis et al. [88] enable reasoning
on the unobservable human mental state, but still demand full world state observability
explicitly. We will see hereinafter that concrete coordination mechanisms greatly influence
the feasibility of transitions between different modes of flexible teams (cf. Section 1.2).
Table 2.3 compiles information on the implementation of coexistence, cooperation and
collaboration in addition to support of partial observability in the remaining works
to the best of the author’s knowledge. Besides the below in-detail explanations, the
classification is based on following criteria: A system enables cooperation, if and only if
human and robot can work in parallel. A workflow during which agents take turns by
handling operations one after another (also referred to as sequential cooperation [12]), is
classified as partially considering the cooperation mode. Collaboration is assumed fully
supported if the system can coordinate task models that include joint operations for
several agents automatically. If different roles within a collaborative sub-task need to be
modelled explicitly as on operation each, collaboration is only partly addressed.

A first class of approaches is characterized by explicit negotiation of upcoming task
allocation decisions. The conditional plans of Sebastiani et al. [111] support cooperation,
i.e. parallel execution of actions by human and robot, based on the underlying symbolic
planner [3]. Collaboration in terms of joint actions of several agents is not considered.
Explicit negotiation introduces a tight robot-to-human dependency – this hampers pro-
ductive coexistences as the robot system loses its capability of acting as soon as the
human leaves and stops answering to requests. Although further sensory input is not
regarded explicitly, the approach can generally reduce the amount of sensing to a limited
number of conditions at crucial decision points in the plan. Partial observability is thus
theoretically manageable to some extent. Similarly, the approach of Roncone et al. [103]

23

Chapter 2. State of the Art

C
oe
xi
st
en

ce

C
oo

pe
ra
tio

n

C
ol
la
bo

ra
tio

n

Pa
rt
ia
l

O
bs
er
va
bi
lit
y

Baraglia et al. [9] #

Darvish et al. [30] # G# #

Gopalan et al. [23] # G# # G#

Hamabe et al. [44] # G# #

Jülg et al. [60] # #

Levine et al. [73] G# G# #

Nikolakis et al. [90] G# #

Roncone et al. [103] G# G# #

Sebastiani et al. [111] # # G#

Shah et al. [112] G# G# #

Wilcox et al. [126] G# G# #

Table 2.3.: Properties of dy-
namic task allocation approaches
regarding modes of flexible team-
ing and handling of partial ob-
servability (# = not considered,
G# = partly considered, = con-
sidered)

manages coordination solely through mutual communication, i.e. partial observability of
the world state is not made a subject of discussion. The method is based on asking the
human to commit to operations via ‘yes’/‘no’-questions that can be answered verbally or
using a graphical user interface. In case of human commitment, the robot will eventually
ask to confirm completion of the operation. Coexistence is assumed feasible as missing
answers are explicitly mentioned to be considered in the planning process. However,
human and robot cannot work in parallel as the POMDP planner results in sequential,
turn-taking alike execution of operations by either human or robot. Collaboration is
partly feasible but needs to be modelled explicitly as distinguished operations for both
agents in the task model.
Variants of turn-taking or sequential cooperation in the wider sense have also

been realised by other authors without explicit negotiation. All the following approaches
match the above definition for partial consideration of the cooperation mode as taking
turns merely enables sequential work rather than parallel execution. Gopalan et al. [23]
rely on strictly alternating turns of human and robot, resulting in structured sequences
of actions and observations for planning with POMDPs. A robot action must be followed
by an observation produced by the human. The robot system can then select its next step
based on the underlying optimal policy. Such workflows can neither enable coexistence,
nor collaboration. Partial observability is considered partly with regard to the human
mental state and object properties that are generally unobservable with robot sensors –
however, these aspects do not cover effects induced by moveable eye-in-hand cameras,
where objects are (un-)observable depending on the current sensor pose in the workspace.
Darvish et al. [30] focus on more flexible workflows with a less rigid structure. The
proposed architecture informs humans about optimal task allocation using a display. Re-
planning is triggered by observations of world state changes and human actions indicating

24

2.3. Coordination Mechanisms

a deviation from the optimal plan. Robot planning supports collaborative actions but
does not consider situations in which the human is unavailable. Coexistence is thus
not supported, and cooperation is limited by the fact that the robot stops as soon as a
human action is sensed. Similarly, the schedules executed by the system of Nikolakis et
al. [90] do not incorporate parallel execution of operations. Their approach does however
support coexistence by integrating agent availability into the task allocation process, and
by considering unavailability of resources as an additional reason for rescheduling. While
perception and communication are considered black boxes in the framework of Nikolakis
et al. [90], the method of Darvish et al. [30] relies on rich sensor data for world state and
action monitoring without addressing the issue of partial observability. This also holds
for the system of Hamabe et al. [44], where events observed with several RGB-D cameras
trigger robot actions that mainly focus worker support in collaborative operations.

Mutual information, e.g. in terms of robots sharing their ideas for optimal task alloca-
tion [90, 30] or humans confirming successful execution of operations [103], are central
elements in most of the aforementioned approaches. The following group of methods
puts even stronger emphasis on fine-grained, explicit information about the start or
end of an agent’s operations: Agents make decisions freely and inform their partners
reliably, thus stating commitment to operations rather than negotiating or taking turns.
To this end, software buttons [103] or text-based messages [40] via graphical user inter-
faces, hardware buttons [60] and verbal communication [112] have been used to provide
robot systems with complete knowledge on humans’ choices and task advancement. The
approach of Jülg et al. [60] fully enables coexistence and cooperation based on human
confirmation of completed operations. It does, however, not provide means for meaning-
ful, time-efficient collaborative operations. By contrast, TCN-based scheduling methods
as e.g. that of Shah et al. [112] can reduce agent idle times and thus enable execution
of collaborative acts when explicitly specified in the task model (e.g. object handovers
without either agent having to wait unnecessarily). Respective planners require precise
information about human commitment and timing by design. They do therefore not
consider partial observability. Based on the information about human commitment,
TCN-based schedulers can handle coexistence partly – yet the loss of time induced by ab-
sent agents may render solving the underlying constraint satisfaction problem infeasible
within the prescribed maximum completion time.

Commitment to execute an operation can certainly not only be established by com-
municating explicitly, but also by monitoring one’s partner’s actions. This mode of
implicit information is used by the temporal plan dispatchers of Wilcox et al. [126]
and Levine et al. [73] which realise workflows similar to the method of Shah et al. [112].
The shortcoming of these TCN-based approaches with regard to coexistence has been
addressed in the context of Levine’s method [73] by negotiating a relaxation of temporal
constraints with the human, when necessary [62]. Still, full coexistence stays infeasible –
the issue of robot actions during a phase in which the human does not react to negotiation
attempts is not discussed. Compared to strongly structured workflows that are shaped by
mandatory negotiation, turn-taking or frequent explicit information, implicit information
gathering is a less constraining, yet powerful mechanism. Deduction of task progress from

25

Chapter 2. State of the Art

observation of the world state or human actions is thus a unifying component across most
task sharing approaches: E.g., negotiation based on symbolic planning still needs stable
means to detect operation effects and turn-taking similarly requires a way to observe
when turns end. Robust perception is even more relevant to MDP-based methods that
formally rely on full observability [65, 114, 89]. Obtaining such information therefore
usually involves comprehensive sensor systems in recent prototype implementations, e.g.
several calibrated RGB-D cameras [60, 44], wearable smart devices [30] or specialized
motion tracking systems [88] for detecting human actions. In this respect, the prototype
of Baraglia et al. [9] differs significantly. It supports a proactive mode in which the robot
handles operations autonomously as soon as they become feasible. This autonomy yields
full support of coexistence and cooperation but does not enable collaboration on joint
actions. Feasibility is here tied to the stability of perception results for parts related to
the operation (cf. Section 2.2). If objects are not visible (e.g. due to occlusions caused
by human motion in the workspace), corresponding operations will not be considered for
execution temporarily until stable rediscovery. Addressing the issue of parts getting out
of sight and reappearing in the robot world model later matches the situation of moving
eye-in-hand cameras with a limited field of view. Partial observability in the sense of the
definition in Section 1.2 is hence manageable with this approach.

2.4. Conclusions

The key insights gained from related work can be summarised as follows: Several task
models have been used in the context of human-robot task sharing (Section 2.1). They
mainly differ in their complexity. Task representations with low to medium complexity
as e.g. operation sequences, precedence graphs or hierarchical task decompositions are
hypothesized to be sufficiently comprehensible for investigating end-user modelling. They
are moreover strongly related to the target industrial applications as their origins lie in
the assembly planning domain [54]. In this class, precedence graphs stand out as the
most frequently used model that furthermore encodes parallelism explicitly. A drawback
of these representations is that they merely encode task structure, i.e. they can be seen as
a task mental model only. This limitation in expressiveness is overcome by more complex
representations: Finite State Machines can e.g. encode preferred workflows learned from
observation [44]. Variants of probabilistic Markov Decision Processes have been shown
to even enable reasoning on the human mental state – this way, teamwork mental models
in terms of human preferences [88], communication [114] or trust in the robot [27] are
interwoven with a description of the task structure. However, these powerful models can
hardly be created manually [132, 88], thus rendering them impractical with regard to
the goal of graphical programming by domain experts. Few approaches use hybrid task
models to strike a balance between comprehensibility and expressiveness [25, 103]. These
works involve two modelling layers, where the task mental model can be dealt with by
end-users, whereas creating team mental models is left to expert designers.

Given a task model, task allocation decisions can be made in different ways (Section 2.2).
Two main categories can be distinguished (Table 2.2): A first group of approaches focusses

26

2.4. Conclusions

technical aspects to create efficient processes with optimised makespans by maximizing
the use of agents’ individual capabilities. By contrast, adaption to human cognitive
processes, e.g. in terms of habits, trust or knowledge, is the main goal of the second
category. Technical aspects are predominantly encoded by capability indicators. These
numerical indicators quantify suitability of humans and robots for operations. They
cover e.g. human motion ergonomics [78, 97], feasibility for robots with respect to their
limited dexterous skills [16] or execution time for one or the other agents [30]. Similar
to this thesis, these metrics often target the needs of partial automation in SMEs.
Several methods based on capability indicators rely on comprehensible task models
(e.g. [78, 97, 16]). But these approaches mostly foster static offline task allocation, as
optimisation can be time-consuming and hence infeasible for dynamic decisions (cf. the
planning times for realistic use cases reported by Pearce et al. [97]). By contrast, dynamic
approaches with a technical focus are rather based on more complex models as state
machines [60, 44] or formulations of temporal constraint satisfaction problems [73, 112].
Similarly, dynamic approaches in the second category are dominated by complex MDPs.
As creation of MDPs often involves learning from human demonstrations, this decision-
making strategy is hardly feasibly without time-consuming training procedures.
Depending on the coordination mechanism (Section 2.3), workflows emerging from

recent dynamic task sharing approaches are mainly characterized by bidirectional negoti-
ation [111, 103], turn-taking [23, 44], explicit [60, 112] or implicit [73, 126] unidirectional
information about agents’ progress. Implicit information in terms of action and work-
space observation can also serve as a coordination mechanism [9]. Of course, robust and
reliable perception plays a vital role for most systems, particularly for those formally
relying on full world state observability [65, 114, 89]. Recent prototypes are therefore
mainly based on extensive sensor systems incorporating multiple cameras [60, 44], smart
wearable devices [30] or even complex motion tracking systems [88]. If considered at all,
strategies to manage partial observability are usually directed towards reasoning about
the unobservable human mental state rather than partial workspace observability. An
analysis of workflows and coordination mechanisms used with dynamic task allocation
schemes shows that each approach has at least one of the following properties (Table 2.3):
(i) Tight coupling, e.g. through mandatory negotiation or temporal constraints, limits
practicability of coexistence, (ii) cooperation happens in a sequential, turn-taking like
manner without making use of parallel execution (iii) or coordination of collaborative
steps is not considered, unless represented as distinct, complementary operations in the
task model – however, this means increased modelling efforts, as splitting operations into
parts manageable by either partner requires expert knowledge on robot capabilities.

Based on these lessons learned, a need for research regarding the application-oriented
goals outlined in Chapter 1 can further be substantiated from the scientific point of view:
To the best of the author’s knowledge, there is no approach to dynamic human-robot
task sharing in literature that enables fully flexible teaming. Dynamic task allocation
has mostly been achieved by relying on complex, hardly human-legible task models and
on full world state observability as achieved with extensive sensor systems. There is
thus a gap in knowledge about application-oriented flexible teaming systems that enable

27

Chapter 2. State of the Art

graphical programming while also being robust to a limited amount of sensory input. All
in all, this thesis seeks to contribute to prior knowledge by describing a human-robot
teaming framework (i) that realises the full spectrum of flexible teaming across the
modes of coexistence, cooperation and collaboration, (ii) that is based on a sufficiently
comprehensible task model for graphical programming while still enabling dynamic task
allocation (iii) and that can handle partial observability of the world state to reduce the
amount of required sensors.

28

CHAPTER 3
Task Modelling for Human-Robot Teams

3.1. Skills for Human-Robot Teams . 31
3.1.1. Domain Definition . 32
3.1.2. Skill Graph Structure . 35
3.1.3. Benchmark Domain . 38

3.2. Shared Task Model Generation . 43
3.2.1. Graphical Modelling of Precedence Graphs 43
3.2.2. Annotation with Operation Pre- and Postconditions 46

3.3. Task Execution Principle . 47
3.4. Conclusions . 48

The following chapter addresses the issue of establishing a shared task mental model
among human and robot. Task mental models encode procedural knowledge on a

task [82], and they are a prerequisite for efficient teamwork [74]. Precedence graphs are
a suitable task representation for evaluating flexible teaming as they encode parallelism
and can be claimed sufficiently comprehensible for end-user modelling (Section 2.4).
They will therefore be used as an approximation of task mental models from here on.
Having the goals and research questions of Chapter 1 in mind, the approach described
hereinafter takes inspiration from literature on graphical, task-level robot programming
in general, and on architectures for robust and reusable robot skills in particular.

Hiding low-level complexities of robot programming by introducing levels of abstraction
is a common way to reduce the expertise required to instruct robot systems [117, 98, 4,
120]. This idea is reflected by the three-layered structure of the proposed task modelling
framework (Figure 3.1). The user is supplied with a set of symbolic skills on the highest
level of abstraction (Section 3.1). Skills represent complex operations that form a union
within the application domain from the human point of view, as e.g. picking and placing
an object, mating two parts or applying a tool to some workpiece. They accept mostly
object-related parameters that humans with knowledge on the domain can specify, e.g.
the affected parts or a part goal position within a parts bin. After parametrisation, skills
are ordered to form a precedence graph that describes a task using a graphical user

29

Chapter 3. Task Modelling for Human-Robot Teams

Figure 3.1.: The proposed task modelling framework is three-layered: Level 1 enables process-
oriented graphical end-user modelling of precedence graphs using abstract skills. On Level 2, the
domain-dependent skills are defined as graphs of basic actions as specified by a system integrator.
The gap to robot execution of skills is bridged by robotics experts on Level 3 where hardware
implementations for symbolic basic actions are provided.

interface (Section 3.2). It is important to notice that modelling on Level 1 is intended
to provide a purely process-oriented view onto tasks. There are no assumptions on
the feasibility of parametrised skills for either agent, as this would e.g. require expert
knowledge on the robot operating range as defined by kinematic properties.
On the second level of abstraction, individual skills are defined as graphs of so-called

basic actions. Skill graphs must have a specific structure that is tailored to suit the needs
of human-robot coordination later on. In particular, skills must be robust to execution
failure as far as possible and report their outcomes to the planning component reliably.
Moreover, the set of basic actions should support communication as well as control of
actuators and sensors – therefore, specification of basic actions and modelling of skills for
a domain is supported by a system integrator who is familiar with these requirements. On
the lowest Level 3, hardware-independent basic actions are mapped to concrete hardware
commands by a skill execution engine. To this end, an implementation for each basic
action is provided by a robotics expert for the target hardware setup. Skill graphs thus
bridge the gap between an abstract, high-level process description and robot control –
they model the role of a robot within a potentially collaborative operation.
The above considerations put emphasis on hardware independence, convenient exten-

sion of the skill set, and on end-user modelling of tasks – these are beneficial properties
from the point of view of a human operator who needs to share knowledge with the
system. By contrast, there are different demands regarding a task model when taking the
perspective of robot system design. The precedence graph of symbolic skills is especially
not sufficient for a robot to observe task progress. Preconditions and postconditions are
commonly used in symbolic planning as well as skill frameworks (e.g. [98, 120]) to render
the prerequisites and effects of skills observable – the proposed skill formalism adopts
this strategy by supporting automatic generation of conditions per skill (Section 3.2.2).

30

3.1. Skills for Human-Robot Teams

Similar layered skill frameworks (e.g. [98, 5, 120]) as well as graphical tools for industrial
task-level programming (e.g. [117, 96]) have recently been proposed. The below approach
differs from prior art by (i) considering complex tasks encoded by precedence graphs
rather than operation sequences on the highest level of abstraction (ii) and by focussing on
process descriptions rather than expecting the user to model task control flow including
robot perception manually. Recent works on dynamic teaming take a similar view on
task definition, but do not consider the benefits of graphical programming and structured
transitions from skills to commands for different hardware platforms (cf. Section 2.1).
Against this background, the core goal of this chapter is to provide a formal framework
that is particularly tailored to suit the needs of human-robot teaming. Skills can be
composed of reusable, hardware-independent actions. New skills designed in line with
this structure will integrate instantaneously with a widely generic graphical programming
tool – as soon as they are added, required parameters can be queried from users via
auto-generated forms. A mechanism for automated prediction of skill outcomes enables
visualization of skill effects as well as integration with the coordination algorithm for
human-robot teaming (Chapter 5) by means of pre- and postconditions. Section 3.1.3
shows, how this structure can be applied to a concrete domain for benchmarking human-
robot shared tasks. Features and limitations are finally discussed in Section 3.4.

3.1. Skills for Human-Robot Teams
The framework described hereinafter takes inspiration from the graph-based skill defini-
tion of Andersen et al. [5]. Their work has introduced a formalism to represent skills as
hierarchical graphs of symbolic basic actions. Graph edges establish a control and data
flow throughout the skill – starting from user-specified input parameters, a generic skill
execution engine can then follow the control flow and map the encountered basic actions
to their implementations for concrete hardware setups. Building upon this formalism,
the list of skill graph nodes will be denoted by

sB = (bs,1, bs,2, ..., bs,∣sB∣
) (3.1)

in the following. Each graph node instantiates one out of a finite set of parametric basic
action templates. These templates model small, non-interruptible process steps within
the application domain (Section 3.1.1). While partly cutting down on the generality
supported by the skills of Andersen et al. [5], their formalisation is extended towards a
specially shaped control flow sflow and data flow sdata in Section 3.1.2 (Figure 3.2). The
resulting graph structure renders skills particularly suitable for human-robot teaming and
graphical task modelling: In the ideal case, execution follows a path of successful basic
actions. It is guaranteed by definition of the framework that input objects can reliably
be transformed into their expected state after successful execution of a basic action.
Based on this prediction, postconditions can automatically be constructed from input
parameters by concatenating successive basic action effects along this path. Compared to
manual definition of conditions on the skill level rather than for basic actions (e.g. [98]),
this shifts effort to the expert level of basic action implementation, but therefore opens

31

Chapter 3. Task Modelling for Human-Robot Teams

Figure 3.2.: Skills for teaming
are specified as graphs of basic
actions with a special structure:
Control flow along the success-
ful execution path (green) enables
prediction of pre- and postcondi-
tions. Error handling (red) either
leads to an Abort after reverse
execution, or ultimately indicates
failure by terminating in the Er-
ror state.

skill modelling to persons with less detailed knowledge. If execution of a basic action fails,
skills branch out into error handling procedures. Following the argumentation of Laursen
et al. [70], two major situations are distinguished: For cases in which intermittent changes
are reversible, skills contain a sequence of actions to undo prior steps. Having restored the
state before execution, the Abort final state leaves a superordinate coordination layer
the decision to retry or re-plan. If reverse execution fails or is generally infeasible (e.g.
after erroneously breaking or bending a part out of shape), the Error state indicates
severe failure. This may e.g. result in a request for human help.

3.1.1. Domain Definition
An application domain for human-robot teams is mainly characterized by the objects to
be manipulated and by the basic process steps that may occur. It is therefore reasonable
to start skill definition with a formal specification of these two components:
Objects are described by a set of aspects A = {a1, a2, ..., a∣A∣}. Each aspect covers

an object property that is relevant to the domain (e.g. the type, weight or position
of a part in the workspace). Aspects can take values from their associated aspect
domains Di (i ∈ 1, ..., ∣A∣). The object position may e.g. be taken from Dpos = R3. Let
D̄ =D1×D2×...×D∣A∣ denote the cartesian product of all aspect domains. Then, an entity
of the physical world is fully specified by an object state e ∈ D̄ that consists of a value for
each aspect. For example, parts are defined by their position and type in some example
pick-and-place domain D̄pap = R3 × {bottle,lid,tray, ...}. We will see later-on that it
is often necessary to compare task object states. This is achieved by aspect comparators,
denoted by ≈Di for each i ∈ 1, ..., ∣A∣. Formally, ≈Di is a relation that encodes similarity
of values from Di. A criterion to determine whether d ≈Di d′ (d, d′ ∈Di) is assumed to
be provided by the robotics expert during the implementation of Level 3. For example,
one can say that x ≈Dpos y if and only if ∣∣x − y∣∣ < εpos for some application-dependent
precision εpos when comparing object positions x, y from Dpos = R3. Aspect comparators
can be assembled into an object state comparator ≈D̄ for elements of D̄, with

(d1, d2, ..., d∣A∣) ≈D̄ (d′1, d′2, ..., d′∣A∣
)⇔ ∀i ∈ {1, ..., ∣A∣} ∶ di ≈Di d′i. (3.2)

Basic Actions are symbolic denominators for building blocks of more complex skills.
In contrast to the common understanding of skill primitives as pieces of robot motion

32

3.1. Skills for Human-Robot Teams

according to a certain control strategy [80] (e.g. for establishing contact states [46]), basic
actions are here more generally defined as the smallest meaningful and non-interruptible
action units within the domain. They may e.g. realise the well-known approach, detach
and transfer motions for a pick-and-place domain. The notion of basic actions is however
not limited to primitive movements – a transfer action may e.g. encapsulate a motion
planner, and a grasp action implementation might rely on a grasp planner to find a
suitable pose for picking up an object. Depending on the concrete domain, a set of
building blocks may possibly also include more complex handling actions as fastening a
screw or mating of distinguished parts. Implementations of respective actions can then
e.g. serve as a transformation layer that bridges the gap between task-level parameters
and parametrisation of skill primitive networks [119] for force-based manipulation. To
comply with the special needs of our human-robot teaming scenario, the skill framework
used in this thesis distinguishes the following types of basic action semantics:

∎ Motor Actions Bmotor control actuators of any kind used by the hardware setup,
e.g. the robot arm and a gripper.

∎ Sensor Actions Bsense trigger sensors, in our case e.g. the eye-in-hand RGB-D
camera attached to the robot hand.

∎ Communication Actions Bcomm support explicit communication, e.g. waiting for
the confirmation that an action that is unobservable with the camera system has
been done by a human partner.

Any implementation of basic actions for a concrete hardware platform is assumed to
indicate either success or failure after being called by the skill execution engine.

The formal definition of skills as well as basic actions b ∈ B = Bmotor ∪Bsense ∪Bcomm

relies on parameters that are needed to control the behaviour of b, e.g. a concrete position
to approach or the goal robot pose of a transfer. A parameter p with

p = (pname, ptype) (3.3)

consists of a name pname and the type ptype. The name is a string used for identification
within sets and visualization during graphical task modelling. Possible types are taken
from a set PD of potential domains of parameter values. The set of object states D̄ is
a mandatory element of PD as parametrisation with objects is a key goal of task-level
programming. Continuing the pick-and-place example, parameter types may e.g. be
given by PDpap = {D̄,R3}. We can formulate parameters as (moved_object, D̄pap) or
(goal_position,R3) for basic actions of a transfer skill with this set.

Based on this concept of parameters, each basic action template b is given by a 3-tuple
of input parameters bin, output parameters bout and a prediction function bπ, i.e.

b = (bin, bout, bπ). (3.4)

Each skill graph node with index i ∈ {1,2, ..., ∣sB∣} (Equation 3.1) instantiates one of the
parametric basic action templates, i.e. bs,i = b ∈ B. In other words, templates are copied

33

Chapter 3. Task Modelling for Human-Robot Teams

into the node list, so that each bs,i has components bins,i, bouts,i and bπs,i as defined for basic
actions. We can now introduce values of parameters, which determine the individual
behaviour of each action template instance at execution time: For an instance bs,i, the
value of an input parameter p ∈ bins,i is denominated vins (i, p) ∈ ptype. In analogy, output
parameter values are labelled vouts (i, p) for p ∈ bouts,i . Thus, vins and vouts model a lookup
that maps each parameter of each skill graph node to its current value. Values can be
input by the user during task modelling. They may also emerge as a consequence of data
flow through actions of a skill at execution time in case of consecutive part manipulation
(cf. Section 3.1.2). Consistent data flow is supported by the prediction function bπ. This
function serves the purpose of forecasting an output parameter value for each input
object provided by some parameter p ∈ bin with ptype = D̄ after successful execution of an
instance of template b. From a pragmatic point of view, prediction functions can be seen
as yet another implementation of a symbolic action. This implementation does however
not control hardware, but rather simulates action execution. Let b̄in ⊆ bin denote the set
of all object-related input parameters of b, with

b̄in = {p ∈ bin ∣ ptype = D̄} = {p̄in1 , p̄in2 , ..., p̄in∣̄bin∣
} . (3.5)

The value of each element in b̄in must be mapped to an output parameter describing the
object state after execution. We therefore demand that bout have a subset b̄out ⊆ bout of
corresponding output parameters matching the object-related input, where

b̄out = {p̄out1 , p̄out2 , ..., p̄out
∣̄bin∣

} , p̄outj = p̄inj , j ∈ {1, ..., ∣̄bin∣}. (3.6)

With these sets defined, the prediction function bπ ∶ b̄in×D̄ → D̄ of each basic action needs
to be implemented to transform input objects into their state after execution. Then,
each action instance bs,i within a skill can fill output parameters with values describing
action effects on parts, with

vouts (i, p̄outj) = bπs,i (p̄inj , vins (i, p̄inj)) , p̄outj ∈ b̄outs,i , p̄
in
j ∈ b̄ins,i. (3.7)

The above constraints force each input object to be transformed and forwarded into the
basic action output. On that basis, a skill graph structure with a similar property can
be defined in the next section. This renders automated prediction of effects for arbitrary
skills composed of several basic actions feasible.
Two example basic actions for use with the parts domain D̄pap are visualized by

Figure 3.3. Their semantics may e.g. be defined as follows: The Pick action bPick with

bPick = ({(GraspedPart, D̄pap)} ,{(GraspedPart, D̄pap)} , πPick) (3.8)

is intended to pick up an object of a certain type. It therefore takes an object state as
input. Any implementation is assumed to calculate a suitable grasping pose based on
the object type and position. This pose is approached from a dedicated transfer level,
and the gripper is closed. If closing the gripper results in the calculated finger positions
grasping is assumed successful. A detach-motion is carried out. Otherwise, the part

34

3.1. Skills for Human-Robot Teams

Figure 3.3.: Example basic actions
Pick and Place (light grey) take
object states and target positions as
parameters (dark grey). Correspond-
ing input and output parameters are
linked by prediction functions (black
arrows).

provided at runtime did not match the type specified by the parameter – the gripper is
opened, and execution results in the failure state after detaching to the transfer level.
Place has two input parameters: The state of an object to be placed implies that some
part is already held in the gripper. In addition, the centre of gravity coordinates of this
object after placement are given by the goal position. The tuple for bPlace is

bPlace = ({(MovedPart, D̄pap), (GoalPosition,R3)} ,{(MovedPart, D̄pap)} , πPlace) .
(3.9)

Placing is achieved by a point-to-point motion from the current robot position. If the
target position is free, the part can be moved there. The gripper is then opened, and
the robot can move back to the transfer level. This procedure may fail when the target
position is already occupied by another object. In this case, the approach motion will
eventually be stopped, and execution failure is reported.
The prediction functions πPick and πPlace link input object-related parameters to

their state in the case of action success. After execution, Pick will provide an object
state describing the part with its position on the transfer level. When combining several
actions, this output state can e.g. be used as an input to the ‘Moved Part’-parameter
of Place. This action in turn calculates the object state after placing the part at the
specified target position. Details on the graph structure to link actions in terms of control
and data flow are given in the next section.

3.1.2. Skill Graph Structure
The general structure and semantics of skills has already been introduced by Figure 3.2.
Particularly, skill control flow is designed to start from a designated node and to exit
with one out of three states (Success, Abort, or un-handled Error). The following
control nodes are introduced to model graphs according to this structure:

∎ Start marks the entry point of a skill.

∎ Success represents the state that a skill enters upon successful execution.

∎ Skills terminate with Abort if an error handled by reverse execution occurred.

∎ If an error that cannot be handled by reverse execution is encountered skill execution
terminates in Error.

These nodes can be seen as basic action tuples with empty input and output parameter
sets, and thus without an effect bπ on the physical world. Extending Equation 3.1, each

35

Chapter 3. Task Modelling for Human-Robot Teams

skill s is then fully specified by a graph with control flow sflow, data flow sdata and a
node list sB with the following properties:

s = (sB, sflow, sdata)
sB = (bs,1, bs,2, ..., bs,∣sB∣

)
bs,1 = Start, bs,2 = Success, bs,3 = Abort, bs,4 = Error

(3.10)

The node list must at least contain the four unique control nodes. All other nodes
correspond to one of the available basic action templates, i.e. bs,5 ... bs,∣sB∣

∈ B. Any basic
action can of course be instantiated multiple times within a single skill.

Control flow is defined by a set of so-called flow connections. Each of these connections
ϕ ∈ sflow is itself a tuple

ϕ = (i, j, k),
i, j, k ∈ {1, ..., ∣sB∣}, i ≠ j ≠ k

(3.11)

consisting of three node indices i, j and k. A connection ϕ defines two outgoing, directed
edges starting in bs,i: If the basic action underlying bs,i is performed successfully during
execution, then the next action along the control flow is bs,j . Otherwise, the skill execution
engine will transition to bs,k as the next action. The successful execution path (Figure 3.2,
green) can then be constructed by tracing the edges indicating success. We will refer
to this path as sB

+
= (bs,1, ..., bs,m, ...bs,2). With Equation 3.10 sB

+
starts at bs,1 = Start

and ends in bs,2 = Success. The other success path nodes bs,m (m ∈ {5,6, ..., ∣sb∣}) are
sorted in the order of their occurrence along the path. Only graphs without cycles are
considered in this work to ensure that sB

+
is clearly defined for each possible skill – this

boundary condition must be taken into account when modelling a new skill.
In contrast to flow connections, a data connection δ ∈ sdata represents a single directed

edge that transforms an action output parameter into an input parameter of the action
at the other end. Each data connection δ is a tuple

δ = (i, j, δout, δin)
i, j ∈ {1, ..., ∣sB∣}, i ≠ j, δout ∈ bouts,i , δ

in ∈ bins,j
(3.12)

saying that the output parameter δout of action bs,i is connected to the input parameter
δin of action bs,j . When the control flow transitions from bs,i to bs,j , the value vouts (i, δout)
as produced by bs,i is thereby passed on to bs,j , i.e. vins (j, δin) = vouts (i, δout). This may
e.g. be used to fill parameters with data gathered by sensor actions on the one hand. The
mechanism is yet particularly important for propagating object-related input parameters
throughout the graph to determine the expected state of objects after consecutive manip-
ulations. Starting from the Start node, action effects can be calculated and forwarded
to the next action along sB

+
based on the prediction functions bπ. Object states reflecting

skill outcomes can then be collected from skill output parameters.
The skill output parameters sout as well as the input parameters sin that the user

needs to specify when parametrising a skill can be deduced automatically from the graph
structure: Each outgoing data connection says that information carried by the output

36

3.1. Skills for Human-Robot Teams

parameter will be processed further by some subsequent action. By implication, values
of parameters without an outgoing edge to another node along sB

+
are final – they must

belong to the output after successful skill execution. Collecting parameters with this
property from all actions along the successful execution path sB

+
thus leads to a set sout

of parameter instances (m,p) putting parameter p into the context of a graph node with
index m, i.e. the skill output is given by

∀bs,m ∈ sB
+
∀p ∈ bouts,m ∶ (m,p) ∈ sout⇔

(∄(i, j, δout, δin) ∈ sdata ∶ i =m ∧ δout = p ∧ bs,j ∈ sB+) . (3.13)
Here, only actions on the path of successful execution are considered. Any paths for
error handling are omitted by purpose as they are not informative about the intended
target state after applying a skill to certain parts.

By contrast, all graph nodes must be considered when deriving skill input parameters.
In analogy to sout, we can define sin to denominate all input parameters of all basic
actions with no entering data flow edge. Values for these parameters cannot emerge
from data flow – they must therefore be set by the user during skill parametrisation.
Only then is the skill fully parametrised and ready for execution. The set of parameter
instances to be provided by the user is thus implicitly given by

∀bs,n ∈ sB ∀p ∈ bins,n ∶ (n, p) ∈ sin⇔
(∄(i, j, δout, δin) ∈ sdata ∶ j = n ∧ δin = p) . (3.14)

Figure 3.4 shows an example of a simple skill graph matching the above formalism.
The skill uses the basic actions Pick and Place from Figure 3.3 and thereby realises
an object transfer. Parts are specified by their type and position in the example domain
D̄pap (cf. Section 3.1.1). The skill has nodes sB = (1,2,3,4,5,6,7) – for a more compact
representation, the full tuples specifying Pick and Place according to Equations 3.8
and 3.9 are here replaced with these identifiers as assigned in Figure 3.4. The nodes
sB
+
= (1,5,6,2) lie on the success path. When the Success node is entered, the part

has previously been grasped and relocated to the specified target position (Actions 5
and 6). The shown control flow furthermore handles the error case in which the goal
position is already blocked by some other part. In this case, the Place Action 7 tries
to return the object to its prior position as stored in the initial input state to Action 5.
It is important to notice that object states are seen as composite parameters in the skill
framework implementation. This way, aspects of parts can be addressed and passed on
individually by data connections. E.g., the position of the input object state serves as the
goal position of the error handling Place Action 7. Any parameter without an incoming
data edge is part of the skill input, i.e. sin = {(5,GraspedPart), (6,TargetPosition)}.
The MovedPart output parameter of Action 6 is identified by the pair (6,MovedPart).
This parameter instance matches the condition of Equation 3.13 as the outgoing data
connection δ = (6,7,MovedPart,MovedPart) leaves the successful execution path. The
instance is thus the sole output parameter so that sout = {(6,MovedPart)}. More complex
skills utilizing the full spectrum of motor, perception and communication actions are
introduced in the next section where a concrete domain is fully specified.

37

Chapter 3. Task Modelling for Human-Robot Teams

Figure 3.4.: An example skill graph uses Pick and Place motor actions (light grey) to realise a
simplified pick-and-place operation. Input parameters (In) specify the affected object and target
position. Data flow (solid edges) leads to an output parameter (out) containing the object state
after execution, if the control flow (dashed edges) follows the successful execution path (green
area and arrows). The error case where the target position is blocked is handled by reverse
execution (red area and arrows).

3.1.3. Benchmark Domain

The previous sections have introduced the concept of skill graphs along with rather
abstract, basic examples. Let us now look at a concrete domain in line with this formal
framework. This domain is designed for demonstrating and benchmarking the flexible
teaming approach proposed in this thesis. Therefore, two main criteria need to be met:
(i) The domain should cover skills that are typically used in industrial applications to the
greatest possible extent. (ii) Skills should enable composition of tasks that are scalable,
e.g. in their overall duration, the degree of close human-robot interaction etc. Aside from
these functional requirements, domain complexity is furthermore limited as follows: The
set of used parts prescribes the effort that must be put into object recognition, grasp
planning etc. These problems lie out of the scope of this thesis – therefore, only parts with
low geometric complexity and clear features for identification are used. Similarly, motions
happen on a transfer level as far as possible to avoid collisions with the environment
without explicit motion planning. These simplifications ease prototype implementation
but are not inherent limitations of the conceptual framework.
Objects: Figure 3.5 shows examples of the benchmark domain objects. A surface

model is assumed given for each object type. There are overall seven part types

T = {RedBlock, WhiteBlock, RedLatched,

WhiteLatched, YellowBase, Tool, Container}.
(3.15)

38

3.1. Skills for Human-Robot Teams

Figure 3.5.: The parts of the benchmark domain are clearly distinguished by their size and
predominant colour (left). The main focus lies on pick-and-place tasks, e.g. palletising of objects
into containers (middle). Parts with hooks and latches emulate basic assembly steps (right).

The rectangularly shaped blocks differ strongly in colour and dimensions. Red and white
blocks may be equipped with latches. These latches match hooks attached to the yellow
base parts, thus supporting basic workpiece mating steps. A smaller yellow block with a
stamp attached represents a tool for applying labels (e.g. adhesive barcode stickers) to
other parts. Containers define slots, i.e. numbered positions within the container. Each
slot is characterized by its relative position within the coordinate frame of the container
surface model. Instances of these part types are defined by their aspects ‘position’ and
‘type’, and by a boolean flag indicating whether they were marked with the tool – object
states are hence specified by an element of D̄bench = T ×R3 × {True,False}. All parts
are easy to acquire. This supports reproducible and comparable experiments.
Basic Actions: Picking, placing and holding parts are frequent robot actions in recent

human-robot collaborative studies with applications to assembly and manufacturing [130].
These actions therefore form the backbone of Bmotor in the benchmark domain. The
motor action template set is composed of

Bmotor = {Pick,Place,PlaceOnObject,PlaceInSlot,TransferOverSlot,
TransferOver,TransferOverObject,MoveOverObject,
HoldForAssembly,PlaceAssembly,Shake,ApplyTool}.

(3.16)

The input to each of these actions is summarised by Table 3.1. Parameter values are
taken from the domains PDbench = {D̄bench,R3,N+

0}. The semantics and definition of
Pick and Place have already been introduced by Figure 3.3 in Section 3.1.1. Additional
actions PlaceOnObject and PlaceInSlot behave similarly but accept different para-
meters. E.g., PlaceOnObject targets stacking of parts by taking two object states
as input. One of them describes the part to be moved actively and the other specifies
the bottom object in the stack yet to emerge. With PlaceInSlot, a part goal location
is determined by a target container and a number to identify a position in its slot grid.
These parameter variations model cases, where different calculations are needed to map
task-level parameters to concrete robot commands with similar overall effects. As a
result, basic action variants liberate the user e.g. from calculating the absolute goal

39

Chapter 3. Task Modelling for Human-Robot Teams

Basic Action Input Parameter (Type)
Pick Object to grasp (D̄bench)

Place Grasped object (D̄bench), target position (R3)
PlaceOnObject Grasped object (D̄bench), target object (D̄bench)

PlaceInSlot Grasped object (D̄bench), container (D̄bench), slot ID (N+0)
TransferOver Grasped object (D̄bench), target position (R3)

TransferOverObject Grasped object (D̄bench), target object (D̄bench)
TransferOverSlot Grasped object (D̄bench), container (D̄bench), slot ID (N+0)

MoveOverObject Target object (D̄bench)
HoldForAssembly Base part (D̄bench), component A (D̄bench), component B (D̄bench)

PlaceAssembly Base part (D̄bench), component A (D̄bench), component B (D̄bench)
Shake Grasped object (D̄bench), number of repetitions (N+0)

ApplyTool Grasped tool (D̄bench), part to apply a label to (D̄bench)

Table 3.1.: Input parameters of basic motor actions Bmotor in the benchmark domain

position of a part when placed in a certain container slot. They create the object-centric
interface for convenient, task-level skill parametrisation.

In addition to picking and placing, Bmotor offers robot motion on a predefined transfer
level. They enable collision-avoiding part transfers without dedicated motion planning.
The variants of Transfer have the same input as the Place variations. In analogy,
they place the robot hand with an object grasped above some given position, another
object or a container slot. MoveOverObject targets a transfer level motion over
a part like TransferOverObject, but without an object grasped. We will assume
position-controlled, non-compliant motions for now – the Transfer and Move actions
will thus always succeed, whereas placing may fail if the target location is blocked.

The remaining actions are more domain-specific. HoldForAssembly models the
robot role in the process where a yellow base part is mated with two latched components
A and B (Figure 3.5, right). This action brings along an additional PlaceAssembly
taking all assembled parts as input as the other Place actions can only process one
workpiece. The template Shake emulates part processing by applying a given number of
shaking motions to a grasped object to emulate e.g. mixing of fluids in a bottle. Similarly,
ApplyTool processes a part by applying the previously grasped tool.

The basic action set is completed by two sensor actions and a communication action:

Bsense = {CaptureImage,CheckLabel}
Bcomm = {QueryCompletion}

(3.17)

The robot-mounted camera is triggered with CaptureImage. The resulting image is
then provided as an action output parameter value. CheckLabel takes an object state
from D̄bench as input. This action centres the camera above the specified part to check
whether the tool has previously been applied. If the part does not have a label attached,
CheckLabel indicates successful execution. An implementation of QueryCompletion
is intended to open a communication channel and ask human partners whether they
completed their role within a collaborative skill. Communication is blocking and ends as

40

3.1. Skills for Human-Robot Teams

soon as an answer was provided. Execution of a QueryCompletion implementation is
successful if the communication partner confirms task completion positively.
Skills: With these basic action templates at hand, the skills listed in Table 3.2 can

be composed. The table summarises input parameters, effects and the sequence of basic
actions along the successful execution path for each skill. In analogy to the Place
and Transfer action template variations (Table 3.1), Pick&Place, Pick&PlaceOnTop
and the Pick&PlaceInContainer skill enable transferring parts with different task-level
input parameters. Pick-and-place skills are suited for scaling the overall number of parts
used in a task with several operations. In consequence, overall task duration and space
usage for storing parts in the workspace can be varied across a set of benchmark tasks.
ShakeAndTransfer reuses the structure of TransferToContainer but adds a Shake
action after grasping the part. Operations with different individual durations can be
introduced into a task with the number of shaking repetitions. Scalability regarding the
degree of direct interaction is integrated into the benchmark domain by the Assemble skill.
The graph defining this skill encodes the robot roll in the mating operation (Figure 3.5,
right). After grasping the base part (MoveOver and Pick), it is transferred to and
presented at a predefined location for assembly (HoldForAssembly). The subsequent
QueryCompletion action makes the robot wait for another agent to confirm latching
of the two other components. A weaker form of synchronization by sharing a tool can be
added using the ApplyLabel skill. It widely resembles picking and placing of parts: A
tool is first picked, moved over and pressed onto (ApplyTool) the part to mark. The
tool is then transferred over and finally placed at its initial pose.
Errors are handled similarly in all graphs of the above skills. There are two general

error cases for picking and placing: (i) A part could not be grasped at its expected
position, or (ii) placing failed as the goal position was blocked. No error handling is
needed in the first case. The world state has not yet been changed – skill execution can
thus transition into the Abort terminal node without further action after re-opening the
gripper. Reverse execution is only required in the latter case in which a part has already
been picked up and moved. In this case, the robot will try to return it to the initial
location. If this fails, the skill exits in the Error state. Otherwise the final state is
Abort. The ApplyLabel skill introduces another error case in addition to situations,
where the tool could not be grasped – an intrinsically robust realisation must furthermore
consider situations, where the robot would erroneously apply a duplicate marking to a
part that has the required barcode sticker already attached. To this end, ApplyLabel
will return the tool and exit with Abort if the CheckLabel action indicates failure.

The proposed human-robot teaming framework does not only rely on the skill frame-
work for task modelling and execution. Additional utility skills are also used by reasoning
components, e.g. to issue active perception. They are not available as a part of tasks
during graphical modelling. Approach&CaptureImage is an example for this sort of skills:
When supplied with an object to observe, this skill will place the eye-in-hand camera
above it. Then, the CaptureImage action triggers the camera to generate the requested
sensor data. Making all components control sensors and actuators via the skill execution
engine renders the overall system hardware-independent.

41

Chapter 3. Task Modelling for Human-Robot Teams

Pick&Place
Input: Object and target position
Effect: Transfers an object to the desired target position

Pick&PlaceOnTop
Input: Object and reference object
Effect: Transfers the object on top of the reference object

Pick&PlaceInContainer
Input: Object, container and slot identifier within the container
Effect: Transfers the object to a relative position within the container depending

on the slot identifier

PickShake&Place
Input: Object, container, slot identifier, shaking duration
Effect: Transfers the object to a relative position within the container depending

on the slot identifier after shaking it for the specified duration

Assemble
Input: Base part, component A, component B, target position
Effect: Latches components A and B to the base part before placing the assembly

at the target position

ApplyLabel
Input: Tool, part to label
Effect: Uses a tool to apply a label to the specified part

Approach&CaptureImage
Input: Part to capture
Effect: Moves the camera above the target object and captures an image

Table 3.2.: Skills of the benchmark domain for human-robot teams with their input, effects and
basic actions along the successful execution path (grey box sequences)

42

3.2. Shared Task Model Generation

3.2. Shared Task Model Generation

Skills provide a symbolic and parametric representation of process steps. The special
graph structure underlying these process step templates provides necessary input para-
meters to be specified. We will call the combination of a skill with values for each of its
input parameters an operation. For investigating flexible teaming in larger tasks, opera-
tions need to be combined into task models that all involved agents know. The proposed
concept for establishing such shared task mental models has two stages: (i) Procedural
knowledge on the task is first queried from the user with a graphical user interface
(Section 3.2.1). A functionally equivalent tool for the benchmark domain has been eval-
uated in the author’s prior work [133] – this section builds upon this work by rendering
the task editor more generic and domain-independent. In particular, the set of skills
offered to the user can conveniently be extended or changed using mechanisms of the
skill framework. (ii) The resulting precedence graph of operations is then automatically
annotated with operation pre- and postconditions. Conditions enrich the task model
with the information needed by robots to observe task progress (Section 3.2.2).

3.2.1. Graphical Modelling of Precedence Graphs

Tasks with parallelism are often represented by precedence graphs [54] in industrial
domains. Formally, this structure models tasks as partially ordered sets of operation
nodes. Let T denote the set of nodes, with

T = {τstart, τ1, ..., τN , τend} . (3.18)

Each of the N nodes τ1, ..., τN represents an operation, i.e. in our case a skill paired
with values for all necessary input parameters. We will use sτ when referring to the skill
that an operation τ ∈ {τ1, ..., τN} instantiates. Let furthermore ≺T denote a partial order
on T . This order says that τi must be done before τj , if and only if τi ≺T τj (i ≠ j). We
say that there is a precedence relation between τi and τj if there is no other operation τk
to be done chronologically ‘in between’ τi and τj (∄τk ∶ τi ≺T τk ≺T τj ∧ i ≠ k ≠ j ∧ i ≠ j).
A task is then visualized by a precedence graph as follows: A directed edge leaves τi
and enters τj provided there is a precedence relation between these nodes. To connect
the graph, each node without an incoming precedence edge is linked to the dedicated
start node τstart by an additional incoming edge. Accordingly, nodes without an outgoing
precedence relation are connected to the end node τend. Valid precedence graphs are
assumed to be connected and free of cycles. Furthermore, a path must exist from τstart
to each τk and from each τk to τend (k = 1 ... N). Creating a task model (T,≺T) can thus
be decomposed into two sub-problems to be solved by graphical programming: First,
skills need to be parametrised by specifying their input parameters. The same skill may,
of course, serve as a template for several operations with differing input – the task model
therefore holds operation input values vinτ (m,p) for each parameter instance (m,p) ∈ sinτ
of skill sτ (Equation 3.14) in the context of operation τ . The resulting operations can
then be linked with precedence relations to express the order of operations in the process.

43

Chapter 3. Task Modelling for Human-Robot Teams

Figure 3.6.: Workspace layouts are an optional input to
the task editor. They ease inputting part positions (dark
grey) and transferring the modelled workspace setup to the
physical world around the robot base position (light grey).

Graphical robot programming is a well-studied topic [104]. Creating precedence graphs
for flexible teams is however not robot programming in the strict sense – the model
is not limited to robot commands or actions, but rather covers all operations of a
process. These operations need not necessarily be feasible for the robot, i.e. the task
model may potentially cover commands to several agents. Still, robot programming
provides reasonable starting points for establishing shared task models. In particular,
this work transfers ideas from icon-based and CAD-based programming to human-robot
teaming. Icon-based approaches build flowchart-like representations of robot programs by
connecting function blocks, each represented by a pictogram [17]. Modelling precedence
graphs similarly requires a mode to connect operations, and skills are a direct source
for icons (Table 3.2). By contrast, recent CAD-based approaches enable task-level
programming by virtual manipulation of parts [66]. Due to the equally clear focus on parts
as input parameters to skills, this paradigm is suitable to support skill parametrisation
in a virtual representation of the workspace.
The task editor relies on three sources of input: (i) A set of skills, represented by ex-

tended markup language representations of their graph structure, is provided at program
start-up. (ii) The skill execution engine knows basic actions and especially implements
their prediction functions. The engine can thus simulate skill execution for a set of
input parameters, thus supporting visualization of effects in the editor. (iii) Optionally,
a workspace layout can be specified (Figure 3.6). Conceptually, these layouts define
small, arbitrarily shaped areas called slots in analogy to the containers of the benchmark
domain. Layouts are provided as vector graphics files. The editor can automatically ex-
tract the locations of all slots from these files. Offering slots to the user renders selection
of positions in the workspace more convenient. Furthermore, all slots are given in the
world coordinate frame of the robot, i.e. they are specified relatively to the robot base
segment. Affixing an identical, printed version of the layout in the physical workspace
enables straightforward transfer of physical parts to the positions as modelled in the
virtual environment (Section 6.1.1).

Based on these input components, the graphical user interface (GUI) unites icon-based
modelling with CAD-based elements for skill parametrisation as shown in Figure 3.7.
Available parts and skills are offered in drop-down menus. Instances of parts are created
by specifying their initial position in a dialogue window. A position can be chosen by
clicking a slot of the workspace layout instead of manually adjusting the part coordinates.
The editor will then calculate the part pose based on the slot position and part extents

44

3.2. Shared Task Model Generation

τstart

τend

τN

Figure 3.7.: The task editor combines CAD-based skill parametrisation via a virtual workspace
representation (right) with icon-based modelling of precedence graph structures (centre) and a
parts list (left). Parts and skills are instantiated via drop-down boxes (bottom) and represented
as icons or solid objects in the virtual world. When clicking an operation, its effects are visualized
by wireframes of the expected object states after skill execution.

extracted from the part surface model (Section 3.1.1). For better usability, slots are
highlighted green when hovering the mouse pointer over them. Any inserted parts appear
in a parts list and in the virtual workspace.
When instantiating a skill, the user is prompted with a window for parametrisation.

These windows are auto-generated: By construction of the skill graphs, parameters can
only be taken from the set of parameter domains PD. This set is finite and fixed for
a domain. We can thus assign a suitable GUI control type to each parameter type. A
parametrisation dialogue can then be assembled for an arbitrary skill s by adding match-
ing controls for each of the input parameter instances sin (Equation 3.14). Examples
from the benchmark domain are shown in Figure 3.8. The Pick&PlaceInContainer
skill requires the affected object, a container instance and the slot identifier within this
container as input. These parameters are queried by one tab-page each. Object state
parameters from the domain D̄bench are specified by selecting one of the objects in the
parts list, presented in a drop-down list. A similar list is filled with the available slot
identifiers of the selected container. The part goal position from R3 can be adjusted
with a slider control for each coordinate value. Skill parametrisation is also supported by
the virtual environment: In addition to a suitable GUI control element, each parameter
type is linked to a callback function. On clicking into the environment, the function
matching the parameter type associated to the active tab-page is triggered. Similar to the
parametrisation of parts, positions and object states can this way be selected by clicking

45

Chapter 3. Task Modelling for Human-Robot Teams

Figure 3.8.: Skill input
parameters are queried from
the user with different auto-
generated GUI elements linked
to individual parameter types.

slots or objects in the virtual workspace. The handler function then maps the selected
parts or locations to parameter values. Extending the editor towards new parameter
domains thus means specifying a GUI control covering this domain and implementing a
handler for manipulations in the virtual workspace.
Operations are represented by pictograms in the icon-based editor component (Fig-

ure 3.7, centre) after initial skill parametrisation. The parametrisation window can be
accessed for later adjustment of input values or for deleting an operation via these icons.
After inserting several operations, precedence relations can be established among them
and the dedicated circular icons of the start node τstart and the end node τend. This
is realised by mouse drag&drop motions, starting from some node and terminating at
the chronological successor of this node according to the intended task structure. Upon
clicking the icon associated with some operation τi it is highlighted with a green border.
The effects of τi and all necessary preceding operations τj with τj ≺T τi are displayed
as additional, wireframe-rendered objects in the virtual workspace. Parts representing
operation effects are in turn clickable and may serve as skill input parameters, e.g. when
specifying the reference object of a Pick&PlaceOnTop skill. Modelling consecutive part
manipulations is facilitated this way.

3.2.2. Annotation with Operation Pre- and Postconditions

Visualization of operation effects and automatic adaption of the task editor GUI to
arbitrary skills are enabled by the special skill graph structure outlined in Section 3.1.2.
The mechanisms supporting these features equally provide means to deduce operation
pre- and postconditions. These conditions allow robots to understand task progress.
Let Et ⊂ D̄ denote a set of objects that the robot system has previously sensed. This
world model encodes robot knowledge on parts in the workspace. An operation can
only be executed successfully if all required parts are available. The parts needed can
be deduced from skill input parameters: Let τ be an instance of skill sτ with input
parameter instances sinτ . Building upon Equation 3.14, the set s̄inτ ⊆ sinτ with

s̄inτ = {(m,p) ∈ sinτ ∣ ptype = D̄} (3.19)

46

3.3. Task Execution Principle

contains all input parameters referring to a part processed by τ . The user is prompted
to specify all values vinτ (m,p) ((m,p) ∈ sinτ) during task modelling to form an operation
that instantiates sτ . The gap between expected parts according to the task model and
physically available objects in the workspace can then be bridged by demanding

∀(m,p) ∈ s̄inτ ∶ (∃ep ∈ Et ∶ ep ≈D̄ vinτ (m,p)) (3.20)

before starting execution of an instance of sτ . The system can thus avoid skill execution
failure by checking preconditions according to Equation 3.20 against previously gathered
sensor data stored in Et. If this check fails, some other agent may have claimed the parts
to carry out the operation.
Progress achieved by other agents can be extracted from sensor data analogously.

The skill framework is designed to predict expected skill outcomes. As with the input
parameters, there is a subset s̄outτ ⊂ soutτ of object-related skill output parameters. In
analogy to vinτ , a lookup for skill output parameter values is denoted by voutτ (m,p) for
parameter instances (m,p) ∈ s̄outτ – the system calculates respective values by propagating
input parameters along the successful execution path and applying basic action prediction
functions repeatedly. An operation is assumed done if and only if the postconditions

∀(m,p) ∈ s̄outτ ∶ (∃ep ∈ Et ∶ ep ≈D̄ voutτ (m,p)) (3.21)

are true. Facts about satisfied postconditions are particularly important for maintaining
an estimate of task progress as introduced in the following section.

3.3. Task Execution Principle
A task model emerging from the procedure described in Section 3.2 provides sufficient
information for a robot to participate in the task. In teaming scenarios, participation
inevitably presupposes an understanding of task progress induced by one’s partners. To
this end, the robot system must maintain an estimate Pt of task progress at time t.
This estimate stores one out of the three states Inactive, Active and Done for each
operation τ of a task (T,≺T), i.e.

Pt ∶ T → {Inactive,Active,Done} . (3.22)

Initially, Pt is only Active for direct successors of the start node τstart in the precedence
graph of T . All other operations are tagged Inactive. The system will make repeated
observations of the workspace while task execution unfolds (Chapter 5). From the moment
the system detects that all postconditions of some operation τ ′ are satisfied in the world
model, Pt(τ ′) is Done. This holds, of course, also for situations where the robot itself
has carried out τ ′ successfully via the skill execution engine. Precedence graphs capture
earlier-later-relations among operations. This means that any preceding operation on
any path between τ ′ and τstart is a requirement for doing τ ′. We furthermore assume
cooperative workers who always follow the task model correctly (Section 1.2). Under
this assumption, all predecessors τ ′′ of τ ′, where τ ′′ ≺T τ ′, can also be marked Done

47

Chapter 3. Task Modelling for Human-Robot Teams

τ ′′1

τ ′′2

τ ′′3 τ ′′4

τ ′
τ ′′′1

τ ′′′2

Pt(τ) Pt+1(τ)

Figure 3.9.: The system maintains an estimate of task progress (left). After successful execution,
operations are flagged Done (green). Active operations (yellow) are up next. An operation
is Inactive, if there are predecessors that have not yet been Done. Fulfilled postconditions
indicate operation success. They trigger an update (right) of the initial estimate (left).

as soon as τ ′ is Done – these operations must also haven been completed. Figure 3.9
shows an example of this update step. The initial estimate is advanced by refreshing the
values of τ ′, τ ′′2 and τ ′′4 that are newly marked Done. By implication, a newly Done
operation means that the prerequisites of subsequent operations τ ′′′ may now be met. If
so, then these successor nodes may be marked Active. In the example of Figure 3.9,
this applies to τ ′′′1 – by contrast, τ ′′′2 has another direct predecessor in addition to τ ′.
This predecessor is not yet Done and prevents τ ′′′2 from being activated.

With the task progress estimate Pt, the basic task execution principle is as follows:
The system first needs to extract all operations that are Active at the moment. These
operations are candidates for execution provided that their sensory preconditions ac-
cording to Equation 3.20 are fulfilled. A task allocation decision to choose one of these
operations is made in the next step. Among other aspects, this decision needs to reflect
uncertainty of data in the world model (Chapter 4). The robot can finally take steps to
coordinate execution of the chosen operation with the human according to a teamwork
mental model (Chapter 5), e.g. by passing it to the skill execution engine, by actively
(re-)evaluating pre- or postconditions or by communicating missing information. Sensor
data acquired during this step results in changes to Pt. This process is repeated, until
all operations are Done.

3.4. Conclusions

Summary

Establishing a shared mental model about the task to complete is of central importance
for flexible human-robot teaming. This chapter has shown how prior art on task-level
robot instruction with skills and on graphical robot programming can be applied to
this problem. The end-user is supplied with a graphical user interface for instantiating
symbolic, parametric skills and grouping them into precedence graphs (Section 3.2.1).
The focus lies on object-related parameters that can be specified within a virtual repre-
sentation of the workspace. Skills are internally represented by graphs of reusable basic
actions (Section 3.1.1). This renders the top-level task model independent of specific
hardware as different components can be controlled by supplying a skill execution engine

48

3.4. Conclusions

with respective action implementations. Skill graphs are designed to possess a control
and data flow that ensures beneficial properties for graphical modelling as well as human-
robot coordination (Section 3.1.2). This special structure enables automatic adaption of
the task editor to new skills as well as deduction of operation pre- and postconditions
(Section 3.2.2). Skill execution moreover terminates in clearly defined success or error
states to facilitate integration with symbolic reasoning components. An example domain
definition in terms of parts, actions and skills demonstrates practical applicability of
the framework (Section 3.1.3). The domain targets scalable tasks for benchmarking
cooperative work. Although manipulating abstract parts, skills cover relevant variants of
pick-and-place operations, basic part processing steps, tool use and support in assembly
with direct human-robot collaboration and communication. They thus foster composition
of tasks where overall task duration, placement of parts in the workspace, duration of
individual operation and the degree of close interaction can be adjusted arbitrarily.

Discussion
The rather open definition of basic actions supports convenient task-level parametrisation.
It furthermore provides an interface to various algorithms for advanced robot capabilities.
For instance, grasp or motion planning can be used when implementing intelligent actions
with rich semantics. Compared to the traditional notion of action primitives with a direct
mapping to control strategies, this comes, however, at the cost of increased design and
implementation effort. In particular, the benchmark domain shows a fragmentation into
numerous actions with different task-level parameters even within this bounded use-case.

The mechanism to provide pre- and postconditions guarantees prediction of expected
effects on any input objects – in combination with using a camera as the only sensor to
detect task progress, this limits the types of skills that can be modelled to operations
with visually observable outcomes. E.g., visual inspection will not necessarily result in a
change of part states. Such process steps may only occur in junction with an observable
change within the same skill (cf. the PickShake&Place skill of the benchmark domain in
which the unobservable process step of shaking is follow by a part transfer). Only then
can postconditions serve their purpose of rendering task progress observable (Section 3.3).

When humans and robots equally possess the authority to choose operations from the
task model, they may try to do the same operation simultaneously – this can generally
result in competition for resource allocation. Moreover, grasping a part means claiming
exclusive access to a resource. From the point of view of computer science, a potential
for deadlocks is thus raised by the possibility of mutual waiting for part availability. Yet,
skill graph semantics implies immediate abortion and reverse execution if resources are
unavailable. Preemption is thus enforced by the skill execution engine in such situations
to avoid ‘hold and wait’-situations. The fact that only one part is claimed by the executing
agent per skill in the benchmark domain furthermore prevents circular waiting. The
deadlock conditions according to Coffman [28] can thus never be satisfied. In summary,
resource allocation during skill execution can therefore generally be assumed free of
deadlocks – this is an important property for the design of coordination algorithms that
are intended to keep the system capable of reasoning and acting anytime (Chapter 5).

49

Chapter 3. Task Modelling for Human-Robot Teams

With regard to collaborative operations, where agents have individual roles in close
synchronous interaction, the framework currently limits skill description to one fixed role
of the robot (e.g. ‘holding’, while a human agent is assumed to perform the dexterous
assembly step). Depending on their capabilities, roles within an operation might however
also be filled by two robots in the team during absence of humans – the idea of skills
with roles in which a skill may contain several graphs for individual roles sets a possible
direction for future work on even more flexible task load sharing (Section 7.2).

50

CHAPTER 4
Human-Aware World Modelling for Task Allocation

4.1. World Model Definition and Maintenance 52
4.2. World Model Ageing . 56

4.2.1. Human Workspace Model . 57
4.2.2. Interaction Indicators . 58
4.2.3. Trustworthiness of Data . 61

4.3. Metrics for Task Allocation . 63
4.4. Conclusions . 64

World models are an essential component of cognitive robot systems, as they supply
machines with an understanding of their surroundings. In principle, two classes of

world modelling can be distinguished: Sub-symbolic world models applied in robotics
often hold geometric data, e.g. point clouds, triangulated surfaces or occupied voxels
representing the union of all objects within the workspace. In contrast, symbolic world
models feature a higher level of abstraction. To this end, geometric representations are
split up into the physical entities they contain. These entities are then represented by
their state in terms of mostly human readable properties, e.g. the type, colour or location
of some object. We have already seen that symbolic descriptions of objects have an
important function in task-level skill parametrisation (Section 3.1.1). In this work, the
world model is mainly used for tracking progress and making decisions regarding tasks
composed of these skills. It is thus reasonable to adopt the symbolic paradigm – this
way the pre- and postconditions defined for skills establish a direct link between task
modelling and perception results stored in the world model. A concrete conception and
incremental update procedure for integrating incomplete information from eye-in-hand
cameras into a symbolic world model is outlined in Section 4.1. As the robot moves,
parts will eventually get out of sight. Being the major basis of decision-making, the
world model must therefore reflect potential human interaction with parts under this
sort of partial observability. Inspired by the process of human forgetting, a data ageing
procedure is applied to stored objects that are not sensed at some given point in time
(Section 4.2): Based on a human model, this procedure assigns a certainty indicator as

51

Chapter 4. Human-Aware World Modelling for Task Allocation

Figure 4.1.: The human-aware world model assigns
a certainty value to objects that are currently out
of view for the robot. Data on objects with high
certainty (green) is likely still valid. By contrast, low
certainty (red) indicates likely human manipulation
of parts since their last observation.

visualised in Figure 4.1 to each object to render the world model human-aware. The
indicator is based on the accessibility of parts for humans, and on their current relevance
to the task. Certainty can be used to define metrics to support task allocation decisions
(Section 4.3) – equipped with these metrics, the robot can avoid attempts to manipulate
parts that may likely have been modified by humans since their last observation. The
system can instead prefer working with objects that are not conveniently reachable for the
human during the online coordination process (Chapter 5). The below content extends
the author’s prior work on human-aware world models [136] and their application to
human-robot teaming [134].

4.1. World Model Definition and Maintenance

Robot knowledge about the physical world at time t is encoded by a set of object instances
(so called entities) Et = {e1, e2, ..., e∣Et∣}. Each entity is described by an object state e ∈ D̄
according to Section 3.1.1. This world model is used to store perception results that the
robot system has acquired about the physical world on the one hand. On the other hand,
it also encodes the goal state of the task. To this end, Et is divided into two distinct
subsets: The existing entities (e-entities) Ee

t have previously been observed with the
camera system – they can be used to verify operation preconditions and decide whether
all needed resources are available for execution. By contrast, wanted entities (w-entities)
Ew
t describe object states that will emerge in the course of task execution after success

of some operation. The set Ew
t can be seen as a structured free space representation in

which individual instances correspond to operation postconditions. They can thus be
used to guide perception towards detecting objects that indicate task progress.
Given a task model (T,≺T), the world model is initialized at time t = 0 as follows:

Under the assumption that all necessary parts are generally available when initiating
a task, Ee

0 should contain each object in its initial state before being processed by any
operation. Thus, an entity eτ matching a precondition of operation τ ∈ T is inserted into
Ee

0, if and only if there is no τ ′ preceding τ with a postcondition matched by eτ . In other
words, only object states that do not result from executing any operation are inserted. In
contrast to this, w-entities are not only added for the final task goal state, but also for any
observable intermediate step. However, object states that match a postcondition as well

52

4.1. World Model Definition and Maintenance

Figure 4.2.: The world model is initialised with the initial state of all parts (right, solid objects)
and the goal state emerging from executing a shared task (right, wireframe objects). This
representation is incrementally updated with symbolic information extracted from RGB-D point
clouds that show a part of the workspace (left).

as a precondition of the same operation are excluded – such pairs of identical conditions
indicate parts that cannot provide evidence for task progress. This situation occurs
e.g. for the containers that are never moved in our example domain, or more generally
for any tool that is returned to its initial position after usage during an operation. A
possible result of the initialization procedure is shown to the right of Figure 4.2. In this
Section, the focus lies on perception and thus in particular on consecutive changes to
this initial model caused by availability of new sensor data. A need for modifications can
also emerge from communication and reasoning during the coordination process. These
effects are elaborated in Chapter 5 – the interface provided by the world model to other
system components is briefly outlined at the end of this section.
Updates with perceptual data: Advancement from Et to Et+1 is triggered whenever

new sensor data is available. This means that a new point cloud showing a part of the
scene is provided by the RGB-D eye-in-hand camera (Figure 4.2, left). An object
recognition procedure is applied to this point cloud based on information on the object
types that may occur in the domain (cf. Section 3.1.1). This procedure extracts the
state of all visible objects at time t. The problem of recognising objects in point clouds
has extensively been studied in literature (cf. the survey of Guo et al. [129]). It is thus
assumed that any part that is sufficiently represented by points in the most recent point
cloud is recognized robustly – errors during this procedure are not considered. The
approach described hereinafter does, however, account for errors with the measurement
of object poses in a world coordinate frame. This is particularly relevant in our case of
a moving, low-budget eye-in-hand sensor system. Acquisition of the point cloud and the
robot pose are here not synchronised in time precisely, as e.g. when using a hardware
triggering mechanism – this impairs the inevitable pose estimation error from sensory
noise by adding a component depending on robot movement speed.
Sensed objects always lie within the viewing frustum of the camera at time t. Let

respective object states be represented by the set Evis
t of currently sensed entities. Further-

more, let the predicate inFrustum(e) be True if the geometry of the object represented

53

Chapter 4. Human-Aware World Modelling for Task Allocation

by e lies in the frustum. With isOccluded(e) returning True if visibility of e is blocked
by another part or limited by the camera sensing principle, Et+1 is constructed from Et
and Evis

t based on the following interim steps: Newly detected objects Enew
t with

Enew
t = {e ∈ Evis

t ∣ ∄e′ ∈ Ee
t ∶ e ≈D̄ e′} (4.1)

do not have a correspondence in Ee
t with respect to the precision encoded by the object

state comparator ≈D̄ (Equation 3.2). They have not been sensed so far (e.g. parts at their
goal positions after operations executed by humans) and must be added to the world
model. By contrast, we refer to re-detected objects that are present in recent sensor data
as well as in Ee

t as a set denominated the confirmed objects Econf
t with

Econf
t = {e ∈ Ee

t ∣ ∃e′ ∈ Evis
t ∶ e ≈D̄ e′} (4.2)

Any object in Ee
t that lies within the current viewing frustum should be confirmed

according to Equation 4.2 unless it is covered by another object or has been moved in the
meantime. Thus, missing objects Emiss

t stored in Ee
t that should be visible, but which

are no longer observed in the physical world, are given by

Emiss
t = {e ∈ Ee

t / Econf
t ∣inFrustum(e) ∧ ¬isOccluded(e)} . (4.3)

Missing objects represent data that has become invalid due to interaction of some other
agent. They may thus be removed when transitioning to Et+1. Confirmed data must be
retained in the world model. However, re-detection of parts can be used to reduce object
recognition measurement errors. To this end, a filter function takes as an input two
similar object states (e ≈D̄ e′). It returns a new, filtered state e′′ = filter(e, e′), e.g. by
averaging the locations of e and e′. Then, updated objects Eupdate

t can be calculated by
applying the filter to confirmed entities, i.e.

Eupdate
t = {filter(e, e′) ∣ e ∈ Econf

t ∧ e′ ∈ Evis
t ∧ e ≈D̄ e′} . (4.4)

Putting things together, the new set of existing entities Ee
t+1 is composed as follows:

Ee
t+1 = (Ee

t / (Emiss
t ∪Econf

t)) ∪Eupdate
t ∪Enew

t (4.5)

Missing entities as well as confirmed ones are removed. The latter are replaced by
updated, filtered object states. Finally, newly detected parts are added. Sensor data
cannot provide information about objects out of the viewing frustum – they are thus
transferred into Ee

t+1 unalteredly.
One step of this maintenance procedure is shown in Figure 4.3. Compared to the

initial world model Ee
t (left), the physical world was changed by moving the part labelled

seven onto the stack to the left. The new location of this entity cannot be observed from
the current camera pose. This change is therefore not reflected by Ee

t+1. By contrast, it
can be observed that a part matching state seven is missing. As there is no other object
recognition result occluding this entity, it should be visible. It is thus moved into Emiss

t

and deleted from the world model during the update step. The newly added part nine

54

4.1. World Model Definition and Maintenance

Ee
t Ee

t+1

1
2
3 4 5

6 7 8
1
2
3

7

4 5
6 8

9

Physical world
state at time t+1

Figure 4.3.: During one step of world model maintenance the set of known objects (left, dark
grey) is updated based on objects detected in the physical world (centre, red) and the location
of parts with respect to the camera viewing frustum (centre, dashed lines).

is among the remaining entities within the viewing frustum at time t + 1. There is no
correspondence for respective object state in Ee

t – a new entity is thus added to Eet+1.
The remaining entries four and five of the recognition results set Evis

t confirm previously
known pieces of information. They are inserted into Eet+1 after applying the filtering
mechanism. Although theoretically hit by rays from the camera, entities six and eight are
not included in Evis

t . Due to the obtuse angle of rays against part side faces, these faces
are commonly undersampled and insufficient for classification. It is important to notice
that the isOccluded predicate is designed to model any kind of restriction in perceiving
parts. This includes occlusion by physical objects as well as already mentioned limitations
caused by the camera sensing principle. Objects six and eight are thus occluded by those
denominated five and nine. They belong to neither of the categories defined by Equations
4.1 through 4.3 and are thus transferred into Ee

t+1, together with any object states outside
the viewing frustum. Naturally, maintenance of e-entities in the world model depends
on the ability to recognize parts, determine occlusions and check the location of objects
with respect to the viewing frustum. Details on a concrete realization are given in the
context of experimental evaluation (Section 6.1.1).
The update procedure for w-entities on incoming object recognition results is less

complex: A w-entity ew makes free space reserved for a part that emerges during task
execution explicit. Thus, it is eventually replaced by an identical e-entity. As soon as
this e-entity is observed, ew is no longer needed and can thus be deleted. More formally,
this update step is defined as

Ew
t+1 = Ew

t / {e ∈ Ew
t ∣ ∃e′ ∈ Evis

t ∶ e ≈D̄ e′} . (4.6)

Updates issued by other system components: Reasoning components can gen-
erally report any e- or w-entity to the world model. These entities will be inserted
unless an equivalent object state according to the comparator ≈D̄ is already stored in
Et. Such manipulations are usually necessary, when the reasoning component has de-
duced completion of certain operations without having observed satisfied postconditions
explicitly or when the system itself has changed object states by executing an operation.
In particular, success or failure of some operation τ ∈ T can directly be reported to the
world model. For operations carried out successfully, the world model will first delete all
w-entities matching the preconditions. Then, object states satisfying the postconditions

55

Chapter 4. Human-Aware World Modelling for Task Allocation

are inserted into Ee
t to reproduce operation effects in the world model. Thereby any

overlapping w-entities are discarded in an analogous way to the policy during the update
with perceptual data described above. In case of failed operations, entities are removed
based on the skill type and error that was reported by the skill execution engine. E.g., if
grasping a part failed, this object must have been moved by another agent since the last
observation. Any object state representing that part is thus wrong and can be deleted.

4.2. World Model Ageing

We have seen so far, how object recognition results from images showing only a part of
the workspace can incrementally be integrated into an overall, symbolic world model.
But humans may change the environment in areas that are currently out of sight for
the robot camera. The system must be aware of these potential changes – otherwise
decision-making might frequently result in executing operations that fail, as some other
agent has claimed necessary resources in the meantime. This issue of partial observability
can be addressed by rendering the world model human-aware, i.e. by making it reflect
potential human influences on parts. The approach taken in this thesis has initially
been inspired by models of human memory, particularly by the early decay theory of
Brown [22] that tries to explain forgetting over the short-term. The main hypothesis of
Brown’s work is that perceiving something leaves a neurochemical trace in one’s brain.
This memory trace disintegrates gradually, which leads to forgetting unless knowledge is
rehearsed. Although recently discussed controversially in the field of cognitive psychology
[101], this theory provides a pragmatic approach for the use case of human-aware world
modelling: Applying a similar decay to out-of-sight data can be used to deduce a measure
of uncertainty about prior perception results – we will refer to this process as world model
ageing or data ageing. When parts get back into sight, their trace (in our case given as
object states) is refreshed, and the decay procedure is restarted.
The object detection likelihood used by Baraglia et al. [9], implemented by a counter

variable per object (cf. Section 2.1), can be seen as a realization in line with this idea.
However, here the decay is applied to all known entities alike. This does not account for
scenarios in which parts of the workspace are currently not reachable for humans due
to ergonomic constraints. No change can happen in these areas unless caused by the
system itself. Discarding objects would thus be an avoidable loss of data – unnecessary
actions to later-on explore this area again would follow. This limitation can be overcome
by adding a model to estimate the human handling area. Such human models have
so far been used for incorporating ergonomic considerations into task allocation (e.g.
[78, 97]). Similarly, the Mightability Maps of Pandey et al. [95] provide a compact
encoding of reachable regions for robots as well as humans in different postures for use
in action planning. Still, even when excluding certain entities from ageing based on a
human model, applying a uniform decay to the remaining pieces of information does not
cover important aspects of temporal dynamics: An object that is quickly bypassed by
some agent is e.g. less likely to be modified than parts in a region in which a human
has been staying for a longer period of time. Moreover, the relevance of parts for the

56

4.2. World Model Ageing

Figure 4.4.: The human workspace model en-
codes the assumption that human motion hap-
pens on a roadmap on the shop floor ground
plane (black), close to a set of workbenches
(brown) defined in 2D via their top-view dimen-
sions. Workers are assumed to move on paths
along the edges (red) between arbitrary points
on the roadmap.

1m

p′ p′′

task may change over time, thus making their manipulation more or less likely. Based
on these considerations, interaction indicators to quantify the likelihood of parts being
modified by humans are introduced in Section 4.2.2. Calculation of these indicators is
based on a human workspace model (Section 4.2.1), on sensor data on human presence
and on observed prior human participation in the task. Finally, an extensible formal
framework to integrate several indicators into one certainty value of world model entries
is introduced in Section 4.2.3.

4.2.1. Human Workspace Model

The workspace model needs to reflect the idea of spatial flexibility which enables workers
to change over into the coexistence mode. To account for this, the model covers a larger
shop floor area rather than only the direct, close environment of the hybrid workstation.
Human motion on the shop floor is therefore modelled as follows: A set of points
Rp = {p1, ..., p∣Rp∣} ⊂ R2 and the symmetric adjacency matrix Re = rij ∈ {0,1}∣Rp

∣×∣Rp
∣

define a roadmap (Rp,Re). Two points pi and pj are connected by a bidirectional edge
if and only if the matrix entry rij is 1. Workers can move linearly along these edges to
follow paths between any two points p′, p′′ on the roadmap. Most edges run parallel
to the boundaries of workbenches on the shop floor – these edges cover positions which
task work is carried out from. The remaining points define off-workbench locations.
Respective sites target situations that make a worker leave the shop floor. Figure 4.4
shows a shop floor plan example – a suitable roadmap that matches the setting of a
concrete application is assumed to be provided by system integrators together with the
domain definition of parts and basic actions (Section 3.1.1).

Objects within a limited range on the workbenches can be reached from each position
on the roadmap. This handling area is primarily determined by human body measures,
particularly by the distance of the hip from the ground hleg, the torso length htorso, and
the distance between shoulder and grip axis larm. These values can either be obtained
from standards (e.g. ISO/TR 7250-2 [55]) or by measuring individual workers’ proportions.
From an ergonomic point of view, a strongly forward inclined posture of the upper body

57

Chapter 4. Human-Aware World Modelling for Task Allocation

is stressful and should thus be avoided at standing workplaces [31]. Therefore, the model
takes an angle βmax of maximum forward inclination into account. Then, the handling
area can be approximated based on the limiting cases shown in Figure 4.5. Parts within
arm reach are closer to the body axis between hip point H and shoulder point S1 than
the maximum grasp point G1. Objects in this range can be grasped conveniently while
standing upright (left). When increasing forward inclination of the back, the shoulder
point shifts until reaching S2 at the maximum angle βmax (right). The ultimate grasp
point that can just be reached from an ergonomically safe posture is denominated G2.
With the aforementioned body measures, S1 and S2 are given as

S1 = (0
hleg + htorso

) S2 = (sinβmax ⋅ htorso
cosβmax ⋅ htorso + hleg

) . (4.7)

Both grasp points G1 and G2 can then be calculated by intersecting circles of radius
larm around the shoulder point locations S ∈ {S1, S2} with a line x⃗ that describes the
workbench surface. With given workbench height htable, the parametrised line x⃗ and
these shoulder point circles c are defined by

x⃗ = (0
htable

) + λ(1
0) c ∶ ∣∣x − S∣∣2 = l2arm. (4.8)

Workbenches are assumed to have a reasonable height according to the recommendations
of Daub et al. [31]. For htable ≥ hleg, substituting x⃗ into c and solving for λ leads to
the line parameters of two intersection points in both situations of Figure 4.5. In our
geometric situation G1 and G2 are each characterised by the positive of these solutions
λS . This solution is

λS = sx +
√
s2
x − (∣∆⃗∣2 − l2arm), (4.9)

with the x-component sx of S ∈ {S1, S2} and ∆⃗ =H − S [108, p. 248]. The above calcu-
lations result in two measures that are particularly important for rating the likelihood
of parts being modified (Section 4.2.2): Parts within a range of rarm = λS1 from the
body axis are highly accessible. By contrast, any object with a distance greater than
rmax = λS2 should not be handled by workers at all.

4.2.2. Interaction Indicators
So called interaction indicators quantify aspects that influence the likelihood of human
interaction with certain parts in the workspace. Modification of an entry e ∈ Et should
e.g. be rated highly probable, if this object is relevant to the next step within the task,
and if some human is already in grasping range. We can here identify two aspects
that take influence based on different information: Relevance can be deduced from an
estimate of task progress and accessibility requires knowledge on the position of humans
in the workspace. By separating these influences into individual indicators, an extensible
framework can be built that rates overall trustworthiness by considering only those
aspects that can be served by the available sensing and reasoning capabilities. To this

58

4.2. World Model Ageing

Figure 4.5.: The handling area
is defined by two grasp points
(G1, G2) in an upright posture
(left) and when leaning forward
with an incline of βmax (right).
Given the shoulder points S1
and S2, grasp points are given as
the intersection of circles around
shoulder points (red) with the
line x⃗ along the workbench sur-
face (yellow). x

y htable

S1 larm
S2

x⃗

G1 G2

βmax

hleg

htorso
H

rarm rmax

c c

end, each interaction indicator is generally described by a function fHI ∶ Et × ...→ [0,1].
These functions must at least take an entity from the current world model Et, i.e. the state
of an object, as an input. They may optionally rely on additional data as e.g. the roadmap,
results of human tracking etc. An output value fHI(e, ...) = 1 means that interaction with
an object is very likely regarding this indicator. Analogously, fHI(e, ...) = 0 indicates
low likelihood. We will further dwell on the examples of accessibility and relevance.
Possibilities to capture these aspects numerically are shown hereinafter.
The notion of accessibility is mainly based on the 2D shop floor plan and the human

handling area as defined in Section 4.2.1. By construction of the human model, points
within a range of rarm can easily be accessed from an ergonomically comfortable, up-right
posture (Figure 4.5). These points are assigned the maximum indicator value. Distances
in the interval [rarm, rmax] require an increasing inclination of the upper body. This leads
to rising ergonomic strain (cf. e.g., respective ratings of trunk movement in the REBA
procedure [50]). Assuming proper instruction of workers to avoid work-related health
issues, the likelihood of parts being accessed thus decreases with growing distance. Any
point farther away than rmax results in critical strain – therefore parts in this area are
unlikely to be accessed at all, and thus rated with 0. For a point pe ∈ R2 demarcating
the projection of the location of some entity e onto the shop floor ground plane, and for
some location pw ∈ R2 on the roadmap (Figure 4.4), accessibility A ∶ R2 ×R2 → [0,1] is
approximated heuristically as

A(pe, pw) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if d(pe, pw) ≤ rarm,
1 − 1

rmax−rarm
⋅ (d(pe, pw) − rarm) if rarm < d(pe, pw) ≤ rmax

0 else
. (4.10)

Here, d(x, y) denotes the euclidean distance between points x and y. The decrease in
accessibility for distances between rarm and rmax is assumed to be linear. The function
profile is shown qualitatively in Figure 4.6. Of course, a more complex ergonomic model
could be taken as a basis, if found necessary.

With this point-based accessibility definition, the first interaction indicator fHI
A

can be
formulated. The world model provides information on the type and pose of each object

59

Chapter 4. Human-Aware World Modelling for Task Allocation

A(pe, pw)

d(pe, pw)

rarm rmax

Figure 4.6.: Point-based accessibility (blue) is
maximal within arm reach and decreases with
growing distance to the human body axis.

e ∈ Et in the world coordinate frame. Assuming that a geometric model for each part type
is given, the 2D coordinates of the part centroid centroid(e) in the workbench plane
can be calculated. This way, parts are reduced to a location that must be reached when
trying to manipulate them. The point preach on any of the roadmap edges that minimizes
d(preach,centroid(e)) is denoted reach_point(e). Then, the interaction indicator is
defined via point-based accessibility as

fHI
A

(e) = A(centroid(e),reach_point(e)). (4.11)

Figure 4.7 (left) illustrates the semantics of fHI
A

. Accessibility A(pe, pw) spreads a
scalar field across the shop floor, starting from the roadmap. Parts are less likely to be
manipulated with increasing distance, encoded by lower scalar field values.

The interaction indicator fHI
A

solely relies on the workspace model. This can be seen
as a worst-case approximation, as each part that can generally be reached from the
roadmap is assumed accessible. The approach clearly overestimates human presence,
but therefore goes without additional sensor data. A more precise accessibility indicator
can be calculated if the actual positions of workers on the shop floor are known. Let
Ht = {h1, h2, ..., h∣Ht∣} ⊂ R2 denote the human presence map at time t. Each entry h ∈Ht

marks the 2D position of a worker on the shop floor ground plane. A concrete method
to acquire Ht from LIDAR scans is outlined in Section 6.1.1. With this additional
knowledge the alternative accessibility indicator fHI

A′
is calculated according to

fHI
A′

(e,Ht) = 1 −
∣Ht∣

∏
i=1

(1 −A(centroid(e), hi)). (4.12)

This formula applies the rules for joint probabilities and complementary events from
probability theory – the expression thus models the probability that e will be accessed
by any human nearby under the simplifying assumption that individual workers act
independently. Similar to fHI

A
, fHI
A′

can be visualized as a scalar field as shown in
Figure 4.7 (right). The effect is limited to the area surrounding humans based on Ht.

The last interaction indicator addressed in this work tries to capture current relevance
of parts to the task. Relevance quantifies heuristically whether it makes sense to manipu-
late some entity from a cooperative worker’s point of view at the present time. With the
goal of advancing the task, parts needed for operations that are up next will more likely
be modified than those needed later-on in the task. Calculation of the relevance indicator
is therefore based on the task progress estimate Pt maintained by the robot as introduced
in Section 3.3. Furthermore, the definition needs a way to associate parts in the world

60

4.2. World Model Ageing

Figure 4.7.: Accessibility
defines a scalar field across
shop floor and workbenches
(brown). Areas with high
values (red) can be accessed
easily, whereas parts with low
values (green) are unlikely to
be manipulated. Depending
on the available sensor data,
the field spreads around the
roadmap (left) or around
actually measured human
positions (right).

1m

fHIA fHIA′

world coordinate
frame origin

model with operations they are needed for. This relationship is encoded by the function
modifies(τ, e) which inspects all basic actions that the skill behind τ ∈ T of some task
(T,≺T) consists of. If there is any action with an input parameter matching the object
state e, but with no identical output parameter, then modifies(τ, e) = True. Otherwise,
e is not manipulated in the course of executing τ , resulting in modifies(τ, e) = False.
A quantitative measure for relevance is then given as

fHIR (e,Pt) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if ∄τ ∈ T ∶ Pt(τ) ≠ Done ∧ modifies(τ, e),
1 if ∃τ ∈ T ∶ Pt(τ) = Active ∧ modifies(τ, e)

0.5 else
. (4.13)

If there is no more operation to do that requires a part represented by object state e,
then there is no need to assume interaction with e (fHIR (e,Pt) = 0). Those parts are
not processed further by future operations (e.g. objects at their target positions in pick-
and-place tasks). On the other hand, any part needed for operations that are Active is
assigned the maximum relevance score of 1 – respective objects are needed for the next
steps within the task. A medium value is assigned to all other objects in Et.

4.2.3. Trustworthiness of Data
The goal of human-aware world modelling is to provide robots with a measure for judging
trustworthiness of previously stored objects in the world model when they are out of sight.
With the interaction indicators at hand, we can now assemble this measure. Therefore,
a real-valued certainty indicator Ct ∶ e→ [0,1] is incrementally calculated for each entity
e ∈ Et at time t. Following the idea of memory decay, Ct(e) decreases monotonously
over time. Interaction indicators are designed to produce high values for data that may
soon become invalid. By contrast, low values mean that there is no indication for human
interaction and thus no need to forget information on respective parts. Consequently, the
fHI functions can be seen as the change rate or time derivative of Ct. Integrating them
over time leads to a human-aware world model with the following semantics: Information
carried by entities with high certainty is probably still valid and reusable. On the other

61

Chapter 4. Human-Aware World Modelling for Task Allocation

hand, entities with low Ct values indicate parts that may have been changed and need to
be newly observed. Certainty is reset to 1 if information is rehearsed, i.e. if e is confirmed
by the camera image at time t (e ∈ Econf

t). This procedure is applied to all stored objects
in Et alike. The set Econf

t does, however, not cover w-entities, as they represent the
intended goal state and cannot be sensed directly. Some ew ∈ Ew

t is therefore defined to
be confirmed if ew lies in the viewing frustum (inFrustum(e)) and if it is not replaced
or occluded by any element of Evis

t . These parts are confirmed to be still missing from
their target positions. Hence we can define Efree

t as

Efree
t = {e ∈ Ew

t ∣ inFrustum(e) ∧ ¬isOccluded(e) ∧ ∄e′ ∈ Evis
t ∶ e′ ≈D̄ e} (4.14)

in analogy to Equation 4.3. Based on these preliminary considerations, the calculation
rule for Ct can now be fully specified:
Let FHI = {fHI1 , fHI2 , ..., fHIN } denote the set of N interaction indicators to be taken

into account. Then, the following expression enables entity ageing in a modular way with
different interaction indicator combinations, depending on the available sensor data:

Ct+1(e) = { 1 if e ∈ Econf
t ∨ e ∈ Efree,

max (0, Ct(e) − λ ⋅HI (e,FHI)) else (4.15)

HI is a reduce operation that merges several interaction indicators for e into one human
influence term. To this end, fHI1 , fHI2 , ..., fHIN are first individually applied to e. The
resulting component indicators are then accumulated by multiplying them, leading to
HI (e,FHI) ∈ [0,1]. The influence term scales a constant decrement λ called the trust
factor. For λ = 0 the world model corresponds to a robot memory that never loses trust
in data once gathered. Another limit case emerges for large values of λ – the larger λ,
the smaller the threshold value HI∗ = 1

λ of HI(e,FHI) that causes stored object to be
discarded within one ageing step. This means in practice that the robot will forget any
perception results when detecting even the slightest potential for human interaction.
Hereinafter, FHI1 = {fHI

A
, fHIR } and FHI2 = {fHI

A′
, fHIR } will be used to investigate

the influence of human positional data on the coordination process. Both combinations
have in common that HI(e,FHI) = 1 causes Ct to drop by the maximum decrement
for relevant, easy to reach objects. Ageing is deferred for entities that are currently
either not relevant to the task or for those that can only be reached under increased
ergonomic strain. The value of fHI

A
(e) only depends on the distance of e to the roadmap.

It is thus constant over time. Scaling this value with the constants that fHIR produces
leads to graphs of Ct(e) that are piecewise linear when applying FHI1 – the gradient
changes whenever the relevance of e rises or falls. Certainty calculated based on FHI2
exhibits more complex temporal dynamics, as fHI

A′
reflects human motion on the shop

floor. Qualitative graphs for different scenarios of human motion are shown in Figure 4.8
for a constant value of fHIR . In Scenario 1, a worker quickly bypasses an object e1 on
the workbench, stays out of reach for some time and then returns on the same path.
Certainty of e1 drops during the way forth and back. While the human is out of grasping
range, fHI

A′
(e,Ht) = 0 leads to an overall human influence term of 0. Certainty hence

stays constant during this time span. Scenarios 2 and 3 assume identical motion towards

62

4.3. Metrics for Task Allocation

0
0.2
0.4
0.6
0.8

1
t1 t2

C
t
(e

)

Time t

Scenario 1
Scenario 2

Scenario 3
Scenario 4

1 2

3 4

e1 e2

e3
e4

Figure 4.8.: Certainty Ct(e) is a monotonously falling function. High values mean high trust-
worthiness of data regarding parts (e1 - e4) and low values mean low trustworthiness. The change
rate of Ct depends on the likelihood of human interaction with parts. Different scenarios 1 - 4 of
human presence (right) lead to characteristic, qualitative robot memory decay graphs (left).

the workbench but consider parts e2 and e3 in different positions. In this setup, e3 is
harder to reach than e2 – thus, e2 remains within the human handling area for longer
than e3. As a result, certainty of e2 starts dropping earlier and reaches a lower absolute
value (Scenario 2) when compared to Ct(e3) (Scenario 3). The distance between objects
and the worker falls below rarm in Scenarios 1 to 3. This manifests in certainty reaching
a constant, identical gradient as soon as fHIA′ (e,Ht) = 1. Scenario 4 illustrates a different
situation: Two workers arrive at the workbench and stay for a while before starting their
way back. The part represented by e4 does not lie within a distance below rarm for either
of them – therefore the maximum certainty change rate is never reached. One worker
arrives late at time t1 and leaves early at t2. The certainty falloff during these points in
time is stronger compared to the presence of only one person (cf. Equation 4.12).

4.3. Metrics for Task Allocation

The human-aware world model as defined in the preceding sections serves as a basis
for task allocation decisions. Parts with low certainty scores might have been manipu-
lated since their last observation. The robot should thus check their actual availability
before trying to manipulate them itself to avoid skill execution failures. By contrast,
manipulation of parts with high certainty will likely succeed. Recall that preconditions
of operations are logics formulas demanding existence of object states in the world model
matching skill input parameters (Section 3.2.2). Let Ee

τ ⊆ Ee
t denote the set of current

e-entities matching the preconditions of some operation τ . The parts represented by Ee
τ

are required to carry out τ – this operation is thus a promising candidate for successful
robot execution if the entities e ∈ Ee

τ possess high certainty values. The notion of read-
iness R ∶ T → [0,1] condenses certainty of several parts into one rating for operations.
By calculating readiness as

R(τ) = ∏
e∈Ee

τ

Ct(e), (4.16)

63

Chapter 4. Human-Aware World Modelling for Task Allocation

values of R can be used as decision metrics in the task allocation process: High values
of R(τ) confirm readiness of τ for execution. Low values, by contrast, are indicators to
guide perception towards the corresponding workspace areas.
Aside from achieving progress by successful skill execution, it is also important for

the robot to observe task advancement caused by other agents. To this end, perception
operations are issued to move the camera around and check operation postconditions
actively. Excessive camera motion without information gain reduces system productivity.
As with skills from the task model, it is thus desirable to render perception operations
successful. Task progress not yet achieved is encoded in the w-entities Ew

t . Analogous
to Ee

τ , let Ew
τ ⊆ Ew

t denote a set of w-entities matching the postconditions of τ . Both
types of entities are aged alike – an element of Ew

τ with high certainty therefore indicates
that respective object is probably still not present. As w-entities are generated from
postconditions, this also means that progress on the corresponding operation is not to
be expected. Similar to readiness, the success measure S ∶ T → [0,1] compresses several
w-entities related to some operation τ ∈ T into one score for τ . Success S is given as

S(τ) = 1 − ∏
e∈Ew

τ

Ct(e). (4.17)

With this expression, an operation scores a high success rating if prior interaction near
the free space representation of the goal state is likely. It is thus beneficial to monitor
postconditions of operations with high S values when trying to unveil task progress.

4.4. Conclusions

Summary

Relying on a robot eye-in-hand camera raises a major challenge, as previously sensed
and stored objects in a world model may be modified by humans while out of sight.
Hence, Chapter 4 has introduced the notion of human-aware world modelling. A human-
aware world model provides support in handling this kind of partial observability by
(i) integrating object recognition results from partial views of the workspace into a unified,
symbolic world representation (ii) and by applying an ageing strategy to stored objects,
which results in a measure to judge trustworthiness of world model content.

The world model covers sensed, existing parts as well as a representation of objects
yet to emerge in the course of task execution. Data ageing is applied to all these entities
alike by attaching a real-valued certainty measure to each entry. Starting from a high
value in the moment of sensing a part, certainty decreases over time in proportion to
the likelihood of human interaction. This likelihood is captured by an extensible set of
interaction indicators, e.g. human accessibility of parts under ergonomic constraints or
current relevance of objects to the task. Each indicator handles parts of the available
sensory information. As this thesis seeks to evaluate human-robot teaming with limited
sensor data, only knowledge on human positions in the workspace and a task progress
estimate maintained by the robot are used. Yet, the calculation rule reducing several

64

4.4. Conclusions

indicators to one certainty value is modular and not limited to these examples – the
approach can conveniently be extended to scenarios with more sensory input.
With this world model at hand, robot decisions are supported in several ways: Cer-

tainty of sensed objects helps to judge whether some operation has good prospects of
success or whether failure due to missing parts is likely. Due to the consideration of
ergonomic aspects during data ageing, this also points the robot towards operations
that should be avoided by humans to reduce health issues. Similarly, planning of active
perception for progress monitoring can be based on certainty: If entities that represent
an operation goal state have low certainty, this indicates potential interaction in the
respective workspace area – it may thus be beneficial to observe this area when trying
to detect task advancement caused by other agents.

Discussion
Although exposing important features for robot reasoning, the human-aware world model
as outlined above has certain limitations: (i) The system relies on robust object recog-
nition that detects each object correctly as soon as it occurs on the camera image.
Handling of uncertain recognition results may be realised by inserting several hypotheses
with initially decreased certainty values but is currently not considered. (ii) The human
handling area model as used in the accessibility indicator targets grasping parts on a
workbench as a major focus of this work lies on pick-and-place operations – ergonomic
considerations are therefore limited to avoiding strong forward inclination of the upper
body. This is sufficient to define human reach but may be extended towards a more
complex human kinematics model and full posture assessment, e.g. using the REBA
procedure [50]. (iii) Certainty is merely a heuristic measure of likelihood that cannot
fully model human decision processes. Contrary to our assumptions, some agent may e.g.
prefer to perform certain operations, even if they are ergonomically more stressful than
other options. Thus, even information carried by entities with high certainty may be
faulty. Accepting possibly wrong world model content is, however, a trade-off introduced
by the idea of limited sensor use – more information, or even full workspace observability
in the extreme case, results in a world model with less errors, but inevitably comes along
with a more costly sensor setup.

65

CHAPTER 5
Coordination of Flexible Human-Robot Teams

5.1. Team Mental Model . 68
5.1.1. Agent Capability Model . 70
5.1.2. Interaction Categories . 72
5.1.3. Flexible Communication Patterns 74
5.1.4. Preemptive State Machines . 77

5.2. System Architecture . 80
5.3. Dynamic Task Sharing . 82

5.3.1. Decision-Making Strategies . 83
5.3.2. Task Advancement . 85
5.3.3. Knowledge Update . 86

5.4. Conclusions . 89

Coordinated action is essential for productive teaming. Particularly dynamic co-
working without a fixed, optimized schedule can only enhance productivity, if partners

act complementarily rather than obstructing each other. The previous chapters have
introduced concepts for knowledge representations that support robot participation in
this process. Graphical modelling of precedence graphs (Chapter 3) leads to a shared task
mental model including pre- and postconditions for each operation. Skills underlying
each operation enable robot action, and conditions establish a link to perception-based
decisions via a human-aware world model (Chapter 4): Validating the state of conditions
by checking existence of parts in the world model provides the robot with an estimate of
task progress on the one hand. On the other hand, explicit human-awareness provides
metrics for dealing with partial observability, and for guiding robots towards operations
that are ergonomically unfavourable for humans at the same time. This chapter puts
things together by describing how the proposed system uses these components to engage
into coordinated teaming. An overview of the process is shown in (Figure 5.1). After a
task allocation decision to choose an operation, the robot needs to issue actions suitable
for advancing this operation towards completion. Depending on individual agent capa-
bilities, task advancement may e.g. emerge from activities like executing the operation,

67

Chapter 5. Coordination of Flexible Human-Robot Teams

Figure 5.1.: Robot participation in coordinated teaming is achieved by repeating three steps:
(i) A task allocation decision based on knowledge of the world state and estimated task progress
results in the operation which is handled next. (ii) The team mental model influences the decision
and defines a suitable strategy to advance the chosen operation towards completion. (iii) Action
leads to new information to update knowledge before the next task allocation decision.

unveiling progress achieved by other agents using active perception or asking a partner
to handle operations exceeding one’s own abilities. An extensible and exchangeable
team mental model (Section 5.1) defines when to initiate which activity (skill execution,
perception or communication) to advance some operation. Activities are therefore realised
by different architectural components (Section 5.2). Execution of any activity will result
in new information, either gained by perception while moving the robot hand or emerging
from some other communication channel – these pieces of information are used to update
the task progress estimate and world model before re-iterating the cycle. Details on
the functioning of these three steps are provided in Section 5.3. The resulting system
behaviour is finally discussed in Section 5.4.

5.1. Team Mental Model
Team mental models are used for explaining a human’s understanding of interaction
within a team. According to Mathieu et al. [82], they cover typical interaction patterns,
teammates’ capabilities and preferences, information flow through different communic-
ation channels etc. Reproducing all of the underlying human cognitive processes is
challenging – several of the priorly used task models therefore try to account for these
aspects at least partially, e.g. by explicitly focussing on preferences [40, 88] or com-
munication [103, 114] (cf. Section 2.1). Most models show a tight coupling between
the task and team mental model components (e.g. [60, 44, 88]). Creating task models
may then e.g. also demand time-consuming training [44, 88] or even manual modelling
[60] of interaction patterns, or explicit specification of agent capabilities [112] based
on expert knowledge. This is not in line with the proposed task modelling approach
(Chapter 3). Other dynamic teaming approaches solely rely on task progress monitoring
and do not make human-robot communication a subject of discussion (e.g. [30, 73, 90]).
Communication is, however, required to realise all levels of coordination (Section 1.2).

68

5.1. Team Mental Model

Figure 5.2.: The team mental
model assigns a state machine to
each operation of a task. Indi-
vidual state machines prescribe
the necessary course of action, per-
ception and communication when
working on respective operations
depending on individual agent ca-
pabilities (Types 0 - 3). The cur-
rent state (red dots) prescribes the
next action needed to advance the
completion of operations.

Drawing inspiration from the works of Roncone et al. [103] and Hawkins et al. [47],
the concept proposed in this work relies on a hybrid task model. Each operation of a
precedence graph is automatically embedded into a suitable team mental model. Task
modelling is decoupled from specifying robot interaction behaviour this way. Component
task models are formulated as deterministic state machines. In contrast to probabilistic
models [103, 88, 114], this model can be modified conveniently and independently from
concrete tasks to adjust robot behaviour without training.

To this end, operations are first grouped into interaction categories depending on agent
capabilities. Interaction categories have previously been introduced in the author’s prior
work [135]. They are designed to cover operations that can be handled by single agents
as well as such requiring an increasing level of coordination: e.g., an operation that is
fully feasible for the robot can be handled by issuing a call to the Skill Execution Engine,
and by triggering perception of pre- or postconditions in case of failure. By contrast,
process steps with close, operation-level coordination (e.g. the Assemble skill introduced
in Section 3.1.3) may require communication of mutual commitment with some partner
before invoking the underlying skill. Otherwise, productivity might decrease due to
agent idle times. Recall the fact that the task mental model according to Section 3.2 is
purely process-oriented and thus defined independently of agent capabilities – the first
component of our team mental model is therefore a method to determine feasibility of
operations for individual agents (Section 5.1.1). The semantics and formalism behind
interaction categories is introduced in Section 5.1.2. A deterministic state machine is
defined for each interaction category (Section 5.1.4) as a component mental model. These
state machines encode the protocol for interleaving action, perception and communication
when trying to complete operations of some category. They add an additional layer to
the hierarchy of actions, skills and precedence graphs (Figure 5.2): The current state
within the state machine matching the assigned interaction category is stored for each
operation. Having taken a task allocation decision in favour of some operation, the
next action towards completing it is prescribed by this state. Actions yield observations,
which in turn advance state machines into a subsequent state. For the sake of flexibility,
component mental models are preemptive. The system can stop working on an operation

69

Chapter 5. Coordination of Flexible Human-Robot Teams

after defined state transitions. This way, the robot stays capable of acting by entering
the next coordination loop iteration (Figure 5.1). This is important in situations where
e.g. parts are missing for successful skill execution, or where human partners do not react
to communication requests. In such situations, the system is designed to turn towards
other operations, and re-address the process step in question later on. In particular,
this also involves flexible communication patterns that avoid blocking dialogue and allow
the system to recover, if the recipient of messages does not respond within a reasonable
timespan (Section 5.1.3).

5.1.1. Agent Capability Model

For a given task (T,≺T), feasibility of operations τ ∈ T for different agents is encoded
by a capability model. We will use a binary model Ca that determines whether some
operation τ is feasible for agent a, or not, i.e.

Ca ∶ T → {True,False} , a ∈ {H,R} . (5.1)

This model consists of only two functions CH for humans and CR for a robot. Yet, it
covers the act of teaming up one robot with an arbitrary number of humans: The sensor
data encoding human presence is restricted to the position of humans near the workspace
only (Section 4.2.2) – there is especially no mechanism to distinguish between different
workers. We can hence assume that workers with domain knowledge are similarly skilled
based on the cooperative worker assumption (Section 1.2). Then, a single function CH
applies to any involved human.
A concrete capability model depends on the domain on the one hand, as some skills

may by definition be infeasible for one single agent. This applies e.g. to the Assemble
skill in our benchmark domain, and more generally to differences between human and
robot abilities with respect to dexterous manipulation. On the other hand, feasibility can
be influenced by the concrete hardware setup underlying the skill framework as well as by
aspects of human physiology – a part that cannot be reached by a small manipulator may
well be within the range of action for humans or a larger robot, a pick-and-place skill may
be feasible for a human depending on part weight etc. Prior works on capability-based task
allocation rely on agent models capturing these aspects (cf. Section 2.2). For instance,
Makrini et al. [78] consider information on the maximum payload, range of actions or
gripping force of agents and match them against the position, weight and dimensions of
parts. Equation 5.1 provides the interface to integrate any similar considerations into
the classification process that defines interaction categories later-on. This work, however,
seeks to investigate teaming among equal peers, and the example domain comprises only
lightweight, easy to manipulate parts. Participation in all skills presented in Table 3.2
is therefore assumed generally feasible for any agent when combined with any object
type. The collaborative Assemble skill is infeasible for single agents by construction. For
operations of this type or any similar skills, CH(τ) = CR(τ) = False holds independently
of the concrete parametrisation – we assume that skills with this property are tagged
accordingly during skill definition. Further considerations on feasibility are then not

70

5.1. Team Mental Model

needed for respective operations. For simplicity of notation, this distinction is omitted in
the following formulas. They only apply to the remaining pick-and-place variants, where
operation feasibility depends on input parameters and desired effects. This leaves us with
the question of whether part locations in the workspace can be reached by individual
agents when trying to determine operation feasibility.

With the object-centric skill definition of Section 3.1, these locations are given by skill
input and output parameters. Let operation τ be an instance of skill sτ . In analogy
to the definition of pre- and postconditions, τ has object-related input parameters s̄inτ
and output parameters s̄outτ . The values of these parameters are object states taken
from D̄. They describe the objects needed to carry out the operation and the expected
state of objects after successful execution. An agent must thus be capable of reaching
the location of these parts in their initial (input) state as well as to reach their desired
(output) position to be capable of the overall pick-and-place operation. Let Eτ ⊂ D̄
denote a set that gathers all aforementioned input and output object states related to
τ . Reachability of parts in the workspace has already been discussed in Section 4.2.1
from the human point of view. Following this model, ergonomic considerations limit the
handling area: Possible worker positions are limited to a roadmap around workbenches
on the shop floor. From each position, the farthest reachable point has a distance of rmax
from the human body axis. As defined in Section 4.2.2, reach_point(e) denotes the point
on the roadmap with the least distance to part e. To this end, the centroid function
maps parts to the 2D position of their centroid on the workbench surface (Figure 5.3,
grey). With the euclidean distance d(⋅, ⋅), the human capability model is then given as

CH(τ) =
⎧⎪⎪⎨⎪⎪⎩

True if ∀e ∈ Eτ ∶ d (centroid(e),reach_point(e)) ≤ rmax

False otherwise
. (5.2)

This model says that an operation is feasible for any involved human if and only if all
input parts and goal states lie within the previously defined human handling area.

The robot capability model is motivated similarly. Here, the ‘handling area’ is restricted
by the kinematic parameters of the robot system. We will denote by ik_tractable(e)
a function that returns True if and only if an inverse kinematics solution to approach e
exists. This information is produced by the Skill Execution Engine that has the necessary
information on the kinematic structure including the robot end effector. Analogous to
Equation 5.2, the robot capability model for pick-and-place operations is given as

CR(τ) =
⎧⎪⎪⎨⎪⎪⎩

True if ∀e ∈ Eτ ∶ ik_tractable(e)
False otherwise

. (5.3)

Equations 5.2 and 5.3 model the range of actions for individual agents. The workspace
is thus decomposed into regions that are either exclusively accessible to humans or the
robot, or that are shared among agents. An example of the resulting workspace areas
is depicted in Figure 5.3. Here, the robot is capable of accessing parts in a circular
region around its base position. A fraction of this region, the shared workspace, is
also accessible to humans. Locations that are too distant from the roadmap as well

71

Chapter 5. Coordination of Flexible Human-Robot Teams

centroid(e) reach_point(e)

Figure 5.3.: The capability model is
defined by the range of action of individual
agents. Some regions WH are exclusively ac-
cessible for humans (green). If points are
too distant from the road map, only the ro-
bot system (×) may be capable of reaching
objects in respective regions WR (red). Hu-
mans and robots share a part of the work-
space Wshared that both can reach (blue).
The remaining workbench surface areas are
assumed inaccessible.

as those only accessible by human mobility are called exclusive workspaces of humans
and the robot. We will refer to the shared workspace as Wshared. Respectively, the
human-exclusive and robot-exclusive areas are denoted by WH and WR. These notions
are crucial for the following introduction of interaction categories.

5.1.2. Interaction Categories
Interaction categories group operations into abstract classes. They represent differ-
ent needs for interacting and communicating, depending on the ability of agents to
handle operations. With this classification scheme at hand, each operation of a task can
automatically be linked to a suitable protocol for interleaving perception, action, and
communication. End-users can thus concentrate on pure process modelling, while suit-
able robot strategies for each interaction category are designed by experts (Section 5.1.4).
Formally, one out of four interaction types is assigned to an operation τ ∈ T of some task
model (T,≺T), i.e.

Ia ∶ T → {Type 0,Type 1,Type 2,Type 3} (a ∈ {H,R}). (5.4)

The classification function Ia relies on the capability model to link operations to interac-
tion types. Consequently, Ia is agent-dependent (a ∈ {H,R}) and defines the following
semantics of interaction categories for humans (H) as well as the robot (R):

Type 0: An operation is classified as Type 0 for agent a (Ia(τ) = Type 0) if and only
if the agent can carry out τ atomically. Skill execution happens without interruption or
help from other agents. The timeline in Figure 5.4 visualizes the chronological semantics
of Type 0 from the robot point of view: Only the robot acts, while the other agent is
not involved. In our benchmark domain, Type 0 is assigned to any operation that does
only involve parts at locations within the reach of the agent in question, i.e. within the
shared and robot-exclusive areas when considering IR.

Type 1: In the contrary case of Type 1 operations, agent a can not execute an
operation τ all by his or her own – there is, however, another agent a′ who can do so by

72

5.1. Team Mental Model

IR(τ) = Type 0 IR(τ) = Type 1 IR(τ) = Type 2 IR(τ) = Type 3

τ
τ ′

τ ′′

xτ

yτ

zτ

Figure 5.4.: Operations with different interaction categories require different temporal involve-
ment of humans (shaded time blocks) or the robot (solid time blocks). From the robot point of
view, only robot action (Type 0), only human action (Type 1), sequential cooperation (Type 2)
or synchronous collaboration (Type 3) are needed (top). Semantically, the categories correspond
to part manipulations in different workspace areas according to the capability model (bottom).

definition of Type 1, i.e. Ia′(τ) must be Type 0, if Ia(τ) = Type 1 in our two-agent
case. One of the agents is not involved in such operations. Continuing the example, Type
1 applies to situations, where (i) parts are moved within the human-exclusive workspace
(ii) or where objects are moved between the human-exclusive and shared regions.

Type 2: An operation τ is assigned Type 2, if and only if it is neither Type 0,
nor Type 1 from the point of view of agent a, but if it can be achieved in sequential
cooperation. We define an operation to be feasible in sequential cooperation if it can be
decomposed into a sequence of Type 0 and Type 1 operations. This way, operations
that cannot be handled by one agent are broken down into pieces that integrate with
decoupled, parallel working: The operation is automatically split and replaced by the
resulting parts in the precedence graph. Then, the newly added operations can be handled
according to their precedence relations. As shown in Figure 5.4, this leads to a sequence
of human and robot operations that result in the original goal condition of τ . For the
purpose of this decomposition, we introduce the decomposition function decompose(τ)
as an interface to a symbolic planner, with output according to Equation 5.5.

decompose(τ) =
⎧⎪⎪⎨⎪⎪⎩

∅ if decomposition is infeasible
(τ ′, τ ′′, ..., τ (n)) otherwise

(5.5)

Any underlying planner implementation is intended to split τ into a sequence of n new
operations (τ ′, τ ′′, ..., τ (n)). In this sequence, τ (j) precedes τ (j+1) (τ (j) ≺T τ (j+1)). The
interaction categories Ia(τ (j)) of all components are either Type 0 or Type 1. In
addition, the preconditions of τ ′, and the postconditions of τ (n) must be identical to
those of τ . If planning a decomposition with these properties is infeasible, decompose(τ)
returns the empty set ∅. Type 2 occurs in the benchmark domain, whenever parts
are moved from robot-exclusive to human-exclusive workspace areas or vice versa. For

73

Chapter 5. Coordination of Flexible Human-Robot Teams

this special case, the limitation in individual agent capabilities can be resolved by a
planner implementation that generates object hand-overs: Let the triple (oτ , xτ , yτ)
characterize the operation τ that moves an object oτ from position xτ ∈ R3 to yτ ∈ R3.
This characterisation applies to all Pick&Place variants in Table 3.2. The decomposition
function can then be defined to split Type 2 operations according to

(oτ , xτ , yτ)↦ ((oτ , xτ , zτ) , (oτ , zτ , yτ)) (5.6)

by planning a hand-over part position zτ in the shared workspace Wshared. As indicated
in Figure 5.4, a human agent can then e.g. transfer the part from xτ into the shared work-
space (τ ′). Then, the robot can eventually carry out the final transfer to yτ (τ ′′). More
complex planners underlying the decompose interface may be used for other domains
based on the basic action inputs and prediction functions within the skill framework.

Type 3: The final interaction category covers operations that cannot be classified as
Type 0, Type 1 or Type 2. Such operations are not feasible for any single agent, and
they cannot be performed in sequential cooperation. Consequently, Type 3 requires
tightly coupled co-working. Respective operations can only be executed, when agents
work together simultaneously – this interaction category thus applies to all operations
involving collaboration according to the definition in Section 1.2. Within the benchmark
domain, this is the case for instances of the Assemble skill. It is important to notice that
Type 2 decompositions do not introduce strict synchronisation like Type 3: Component
operations must be carried out in consideration of their precedence relations. Agents,
however, do not need to carry out all operations of a decomposition in a coherent row,
but may use their decision authority to fit them suitably into their workflow.
With the above semantics, a general classification scheme for interaction categories

per agent directly follows from the capability model:

Ia(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Type 0 if Ca(τ)
Type 1 if ¬Ca(τ) ∧Cb(τ)
Type 2 if ¬Ca(τ) ∧ ¬Cb(τ) ∧ decompose(τ) ≠ ∅
Type 3 else

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

with a, b ∈ {H,R}
a ≠ b

(5.7)
Specifying the capability model and implementing a planner to decompose operations
adapts this classification process to concrete domains. Communication patterns (Sec-
tion 5.1.3) and component team mental models (Section 5.1.4) can then be defined based
on the abstract notion of interaction categories. This way modelling robot participation
in terms of communication, perception, and action is decoupled from individual use-cases.

5.1.3. Flexible Communication Patterns
Aside from skill execution and visual perception, communication is a crucial capability
to enable all levels of coordination for flexible human-robot teaming (Figure 1.3). Robot
companions in flexible scenarios may e.g. need to call absent human partners for help with
collaborative operations in the course of teaming-level coordination, if no other feasible

74

5.1. Team Mental Model

Figure 5.5.: Relevant communication patterns involve robot-to-human and human-to-robot
information flow (dashed arrows). Disabling (grey arrows) or activating (black arrows) and
sending requests in terms of questions (?) and notifications (!) leads to coordination without
explicit communication (a), with one-directional (b) or bidirectional interaction (c).

subtasks are left to take over. When talking about explicit communication, we will
rely on the following nomenclature and delimitations: Agents can issue communication
requests to enter interaction with peers. Generally, a request combines an arbitrarily
shaped message with a possibly empty set of conceivable answers. In our benchmark
domain, recipients can either accept or decline a request, as far as providing an answer is
required at all. The backward communication channel is thus limited to clear ‘yes’/‘no’-
answers. This is sufficient to negotiate mutual commitment or agree on a handover
position. It furthermore avoids complex dialogue management, which exceeds the limits
of this endeavour. Different communication channel implementations have extensively
been studied in prior literature (cf. e.g. [42, 83]), and an asynchronous, smartphone-based
messaging app is explained in Section 6.1.1. By contrast, the focus of this section lies on
identifying abstract communication patterns that can inspire formulation of suitable team
mental models for the robot system. In line with the problem analysis in Section 1.3,
such patterns must especially avoid blocking communication to the greatest possible
extent – this way, the system is kept capable of acting, even if the recipient of messages
is occupied otherwise and does not respond currently. Looking at related literature, we
can identify three general communication patterns (Figure 5.5):
No explicit communication channels: Approaches without explicit communica-

tion solely rely on sensor data to track task progress and trigger robot action [30, 9, 44].
Information is exchanged implicitly via changes of the world state, or by observation of
human actions – yet there is neither a robot-to-human nor a human-to-robot information
channel to exchange messages explicitly (Figure 5.5a).
Unidirectional Information: The second communication pattern involves unidirec-

tional information flow issued by one agent. E.g., the robot system may communicate
pieces of information to a human partner (Figure 5.5b) without expecting an answer.
This pattern is used, e.g. to confirm progress explicitly after finishing operations [60, 112],
to inform human partners about the progress they missed during a phase of absence
[33], or in the context of more complex schemes for robot feedback [114]. Technically,
information through unidirectional notifications can be used by robots in flexible teams
at any time, as recipient reactions are not required. Thus, the system cannot be hindered
from working, as there is no need for awaiting an answer.

75

Chapter 5. Coordination of Flexible Human-Robot Teams

Bidirectional Communication: Figure 5.5c visualizes the final pattern, where
communication is bidirectional. One agent requests information by asking a question
and expecting the recipient to provide an answer eventually. Bidirectional processes are
often used to establish a shared understanding of task allocation, e.g. by incrementally
negotiating individual steps [111, 103] or the whole plan [85]. Within this class, three
variants can be distinguished: Blocking communication means that the requesting agent
will stop acting and wait until the required answer has arrived. This busy waiting for
answers keeps a robot from being productive in situations where partners do not respond.
Blocking communication is thus particularly critical for robot participation in flexible
teaming. In the other extreme case of non-blocking communication, a message is sent to
the recipient, but arriving answers are not necessarily processed immediately. Responses
are rather deposited in an inbox that the robot system will check as soon as possible,
e.g. after finishing an operation. This procedure avoids blocking but may be undesirable
in teaming scenarios: Imagine a situation, where the robot asks its partner to help with
a collaborative Assemble action. The human team member utters commitment to join
in shortly after, but the robot has initiated a different, time-consuming operation in the
meantime – this may be unintuitive for humans, as the system has requested help, but
is itself not ready to collaborate.

The spectrum is therefore complemented by introducing a pattern called semi-blocking
communication to be used in such situations [135]. This pattern incorporates blocking
communication but aborts the busy waiting loop after a reasonable timespan. Termina-
tion of this procedure is guaranteed by attaching a timer value Tt ∶ r ↦ [0,1] to each
communication request r at time t. Starting from 1 in the moment of issuing the request,
this timer value is decremented according to

Tt+∆t(r) = Tt(r) − cP ⋅
1

1 + ∣Ht∣
, (5.8)

with some small time step duration ∆t. A request is assumed declined or timed out as
soon as Tt(r) reaches 0 – waiting for responses can then be stopped. The calculation of Tt
depends on two magnitudes: (i) The current number of entries ∣Ht∣ in the human presence
map captures whether workers are currently at the workbench (Section 4.2.2). Assuming
that workers are cooperative, a reaction to the request r is likely as long as ∣Ht∣ is large.
On the contrary, it is reasonable to discard a request faster, if no worker is available.
Similar to the idea behind world model ageing, the request timer value thus decays
depending on ∣Ht∣. (ii) A request patience constant cp ∈]0; 1[scales this decay process.
For cp → 0, Tt(r) will hardly decrease, and discarding requests when Tt reaches 0 thus
resembles blocking communication. In the other extreme case (cp → 1), communication
is aborted immediately in situations where ∣Ht∣ = 0 similar to non-blocking requests. The
patience constant must be chosen to give humans an appropriate amount of time to
finish their current action and react to the request. It is important to notice that request
timers are not exclusively used with semi-blocking, but with robot-issued requests of
any type of unidirectional or bidirectional communication. We will see in the following
section how a recurring ‘reminder functionality’ in order to stay in touch with workers
can be integrated into team mental models this way.

76

5.1. Team Mental Model

5.1.4. Preemptive State Machines

Individual communication patterns can now be used as templates to design a component
team mental model for each interaction category. These models are defined by preemptive
state machines and can be understood as the life cycle that operations need to undergo
during cooperative execution. A preemptive state machine is a hierarchically structured,
finite state machine in the sense of Harel’s state charts [45]. The state hierarchy is
specifically composed of three state-levels (Figure 5.6): The top level is called the task
progress level. It holds states matching those of the task progress estimate (Equation 3.22),
i.e. Inactive, Active and Done. The Active state contains the two sub-states
Execute and Monitor of the activity mode level. Semantically, the Monitor state
represents the assumption that another agent than the robot is currently occupied with
the associated operation. Monitor sub-states on the lowest activity level, where each
state is linked to an actual robot activity, are therefore dedicated to monitoring task
progress (e.g. by actively validating conditions). By contrast, child states of Execute are
intended to promote execution of the operation, e.g. by executing skills, or by initiating
communication. Robot activities are realised by different architectural components of
the overall system (e.g. by the Skill Execution Engine) – they furthermore yield events
such as ‘Skill execution failed’, ‘Preconditions satisfied’ etc. These events trigger state
transitions, thus advancing operations within their life cycles.

The team mental model state machines are generally assumed preemptive, i.e. there is
no assumption on the number of state transitions and activities to be done before turning
to another operation. Still, state machine semantics is complemented with non-preemtive
activity blocks that have to be carried out consecutively without interruption. Similar to
the motivation of semi-blocking communication, the robot should e.g. reliably fulfil its
role in a collaborative operation directly after a partner has agreed to join in. To ensure
such sequences, states of the activity mode level can explicitly be marked non-preemptive.
Taking these considerations and the communication patterns of Section 5.1.3 in mind,
we can now look at concrete state machines used in this work (Figure 5.6). Bearing
in mind the major project goals of flexibility and dynamic decision making, they are
designed to reduce close interaction and foster decoupled, parallel co-working. Explicit
communication is therefore only used where strictly necessary, and blocking requests are
avoided in particular.

Type 0: Operations of this type can be carried out by the robot. Availability of
resources and postconditions can also be checked by moving the camera and detecting
parts, as all relevant locations must lie in robot range (Equation 5.3) – Type 0 can thus
be handled by robots without explicit communication, and coordination is achieved by
world state observation only. The state machine thus produces the following behaviour:
Preconditions are checked first. If all resources are available, the system can try execution
of the underlying skill. These two steps form a non-preemptive block, as checking
preconditions, but turning to another operation directly afterwards would be inefficient.
Aborted skill execution as well as missing parts during the precondition check indicate
that some other agent seems to have interacted with necessary resources. In this case, the
operation enters the monitoring phase to check whether the operation has already been

77

Chapter 5. Coordination of Flexible Human-Robot Teams

Figure 5.6.: The preemptive team mental model state machines are composed of the task
progress level (light grey), the activity mode level (dark grey) and the activity level (white).
Activities in non-preemptive states () must be carried out consecutively, until an event (∎)
triggers a transition (→) into another state of the activity mode level.

78

5.1. Team Mental Model

handled. If the system cannot observe progress, the state changes back to Execute,
thus scheduling the operation for a retry. The state machine enters Done independently
from the previous state as soon as the system perceives that postconditions are satisfied.

Type 1: The robot cannot handle operations of Type 1. But we cannot assume
that workers know about this fact – this would require profound worker knowledge
on kinematic properties and robot capabilities. The system relies on the pattern of
unidirectional information to resolve this issue. As soon as Type 1 operations are
Active, the first robot activity sends an explicit notification to the human. This
notification transports the information about lacking robot capabilities and clarifies that
respective operation falls in the worker’s scope of responsibility. The robot then needs to
check postconditions and will eventually detect that the operation is Done. Although
unidirectional information does not require an answer, the state machine covers the case
of a declined request. This is because the concept of request timers is also used with
unidirectional messages – this way, the request will time out after some time, which
triggers a ‘Request declined’-event. The system can now repeatedly remind workers of
their responsibilities in the task.

Type 2: The state machine for this interaction category has a structure similar to
that for Type 1 operations. Human and robot co-work based on the shared task mental
model, and common ground on the task is a crucial feature of teaming [52]. A Type
2 decomposition does, however, mean a violation of this shared understanding, as an
operation is replaced by a sequence of new process steps – peers must thus mutually
accept the implications of splitting the operation on the task model. This can only be
achieved by using the bidirectional communication pattern. The robot will therefore
send a bidirectional, non-blocking request. In the case of the benchmark domain, the
aim of this request is agreeing on a hand-over position proposed by the robot. The
operation can be preempted after sending the message and the system may proceed with
other parts of the task while waiting for consent. If the request is accepted, the proposed
changes can be applied to the task model. The Type 2 operation is then no longer
existent in the model and can thus be promoted into the Done state. A declined request,
emerging either from explicit utterance of rejection or from a request timer timeout,
causes the robot to initiate a new round of negotiation.

Type 3: Collaborative operations involving more than one agent are handled based
on the semi-blocking communication pattern. The state machine structure and workflow
is similar to that for Type 0, but incorporates additional communication to request
help. As with Type 0, the robot must first confirm availability of relevant resources by
checking operation preconditions. A semi-blocking, bidirectional request is issued next.
The message sent will prompt peers to join the robot. If any present worker accepts the
request, the robot can issue skill execution and fill in its role within the collaborative
act. We do here not consider cases where skill execution is aborted – human and robot
have agreed on collaborating beforehand, and thus there is no need for assuming failure
presuming skilled, cooperative workers. As discussed in Section 3.1, skill graphs may
themselves incorporate communication actions. Respective interaction may even follow
the strictly blocking communication pattern, e.g. when waiting for the confirmation

79

Chapter 5. Coordination of Flexible Human-Robot Teams

Figure 5.7.: Architecture of the sys-
tem: The individual components imple-
ment activities that are marked corres-
pondingly in Figure 5.6 (skill execution ,
perception and communication).

of successful assembly during the Assemble skill. The Type 3 protocol makes sure
that such inevitably blocking interaction is always preceded by a non-blocking attempt
to establish mutual commitment. Message recipients in this process may decline the
request or miss answering before request timeout. The system will then try to unveil by
evaluating postconditions whether two humans have joined and handled the operation.
After a negative condition check, the protocol is re-iterated.

5.2. System Architecture

The team mental models use activities that belong to either of the three categories skill
execution, perception or communication. In consequence, the overall system architecture
(Figure 5.7) incorporates one component each to implement the activities of respective
groups. The interplay of these assistive components is managed by the Coordinator,
where robot participation in dynamic task sharing is ultimately achieved by reasoning
and knowledge update steps (Section 5.3). In this section, we will look at the assistive
components. They have the following functionality and interdependencies:
Skill Execution Engine: The Skill Execution Engine takes operations of Type 0

or Type 3 as an input, as the robot can participate in execution of such operations
during the TryExecution activity. The engine therefore implements all basic actions
for a specific hardware platform. It can thus execute a parametrised skill by repeatedly
calling action implementations and branching to the next action based on previous
action outcomes (Section 3.1). Implementations of communication actions (Section 3.1.1)
construct abstract requests that define the message and communication pattern to be used.
Requests are then passed to the Communicator component which maintains a concrete
communication channel for transmission. After skill graph traversal, the operation result
(success, abortion after reverse execution, or failure) is reported to the commanding
component as a state machine event. Operations can emerge from the task model,
meaning that execution is directly commanded by the Coordinator. In addition, the
Sensor Data Processor may issue perception operations (cf. the Approach&CaptureImage
skill in Table 3.2) to validate conditions. The system can be adapted to different hardware
by changing the implementation of the execution engine.
Sensor Data Processor: The Sensor Data Processor provides two modes of percep-

tion. (i) Any motion caused by the Skill Execution Engine moves the eye-in-hand robot
camera system through the workspace. In the course of passive perception, the stream of

80

5.2. System Architecture

images captured during motion is processed. Each image undergoes an object recognition
procedure and the results are integrated consistently into the human-aware world model
following the procedure defined in Section 4.1. The passive component also implements
world model ageing. If required by the chosen ageing strategy, this incorporates cyclic
extraction of human positions from LIDAR data. (ii) The Sensor Data Processor is
furthermore a service that provides active perception to answer queries concerning the
state of operation conditions in CheckPreconditions and CheckPostconditions
activities. To this end, perception operations are planned to approach and monitor relev-
ant points of interest using the Approach&CaptureImage skill of the benchmark domain.
Active perception is, however, only triggered if the world model does not already confirm
all parts in question with a certainty score of 1. Moreover, not all pre- or postconditions
must necessarily be perceived. The requested set of conditions is therefore first filtered to
reduce the number of perception operations: During a CheckPreconditions activity,
only conditions regarding parts that are actively modified by the operation are evaluated.
If there is no basic action within the operation where the prediction function changes
the part state, the part will be passive during this operation. Existence of passive parts
(e.g. the container during Pick&PlaceInContainer operations) is generally ensured by
precedence relations and prior task progress. These parts need not be checked separately,
as the system will not try to manipulate them. By contrast, perception is planned for
each processed resource or tool precondition. Similarly, the CheckPostconditions
activity perceives only conditions where part output states differ from corresponding
input states. Any other objects (e.g. tools that are returned to their initial mounting
position) are not informative regarding achieved task progress.
Just as operations within the task model, planned perception operations may be

infeasible for the robot. This case occurs particularly for conditions of Type 1 operations,
where part locations out of robot reach are involved. Corresponding perception operations
are then also classified as Type 1. The Sensor Data Processor is connected to the
Communicator for handling these situations in which the robot system itself cannot
observe the parts in question. This way, human partners can be asked to confirm or deny
existence of the object states. Respective object states are then inserted into the world
model as soon as existence is confirmed.
Communicator: The Communicator realises a concrete communication channel (e.g.

the smartphone messaging app outlined in Section 6.1.1) to transmit requests and re-
ceive answers. Similar to the Skill Execution Engine, different channels (e.g. for verbal or
gesture-based interaction) may be integrated into the system by implementing a Commu-
nicator to control suitable hardware components in future experiments. For the domain
and team mental models used in this work, any Communicator implementation needs
to support the conceptual requests listed in Table 5.1. The component team mental
models according to Figure 5.6 involve communication activities for operations of Type
1, Type 2 and Type 3. Team mental models are integrated into the Coordinator, and
this component thus contributes three request types according to the communication
activity semantics in respective state machines. Communication requests are furthermore
necessary if the Sensor Data Processor cannot observe some condition itself, and during

81

Chapter 5. Coordination of Flexible Human-Robot Teams

Message Answers Pattern

Coordinator

¬ Type 1 operations Hint to guide peers towards carrying out
respective operations ∅ #→

 Type 2 operations Robot-planned suggestion for a
decomposition/hand-over position {yes,no} #↔

® Type 3 operations Invitation to join in with a collaborative
operation {yes,no} G#↔

Sensor Data Processor

¯ Type 1 operations Question to confirm part existence when
perception operations would be Type 1 {yes,no} #↔

Skill Execution Engine
QueryCompletion
basic actions

Prompt to confirm successful completion
of assembly {yes} ↔

Table 5.1.: Conceptually necessary communication requests defined by message, set of con-
ceivable answers, and communication pattern (→ = unidirectional, ↔ = bidirectional, #= non-
blocking, G#= semi-blocking, = blocking) to be issued by the architectural components when
encountering the listed situations

execution of skills with communication actions. For (semi-)blocking communication,
function calls to the Communicator are synchronous and will only return after an answer
or request timeout. Components issuing non-blocking requests receive so-called handles
in turn. These handles identify requests and enable querying answers when needed while
the Communicator processes the request asynchronously.

5.3. Dynamic Task Sharing

The robot system participates in dynamic task sharing by iterating the conceptual
coordination and reasoning loop shown in Figure 5.1. Based on the team mental models
and architectural components, this loop is specified more precisely by Algorithm 1: The
initialization phase prepares the world model and task model for execution. First, all
parts and their goal states are inserted into the world model (Line 1) according to
Section 4.1. In addition, interaction categories are assigned to the operations of the task
model (Line 2). The system can then track the current state of each operation τ in the
corresponding team mental model (Figure 5.2): We will refer to the current, most deeply
nested state of τ as state_of(τ). Recall that states in our preemptive state machines
are grouped hierarchically – an operation with state_of(τ) = TryExecution is thus
also in the parent states Execute and Active of TryExecution (Figure 5.6). The
state hierarchy is then accessed by a lookup function is_in_state(τ, σ). This function
returns True, if and only if the queried state σ is a parent state of state_of(τ).
After initialization, the algorithm proceeds with loop iterations, until the system has

recognised that all operations are Done (Line 13). In each of these working phases,

82

5.3. Dynamic Task Sharing

the procedure favours operations in the Execute state (Line 4). In line with the state
semantics in Section 5.1.4, respective sub-tasks promise robot action that contributes to
task progress. If no matching operations are left, the current loop iteration is dedicated
to perception of progress achieved by other agents (Line 7). In both cases a subset
T ′ ⊆ T of operations for either execution or monitoring can be extracted. The subset in
question is then passed to the advance_task(⋅) function. Section 5.3.2 describes how
this function selects an operation from T ′ and issues activities according to the team
mental model. The task allocation decision is based on different strategies WExecute
and WMonitor – these strategies are encoded in different functions to calculate weights
for each operation, thus introducing priorities according to their likeliness of success
(Section 5.3.1). Communication is not considered as a dedicated phase in the algorithm,
as related activities are embedded into the Execute as well as Monitor states.

Algorithm 1 Reasoning and Coordination Loop
1: initialize_world_model() ▷ Initialization
2: determine_interaction_categories()

3: repeat

4: if ∃τ ∈ T ∶ is_in_state(τ, Execute) then ▷ Working
5: T ′ ← {τ ∈ T ∣ is_in_state(τ, Execute)}
6: advance_task(WExecute, T ′)
7: else
8: T ′ ← {τ ∈ T ∣ is_in_state(τ, Monitor)}
9: advance_task(WMonitor, T ′)

10: end if

11: update_progress() ▷ Knowledge Update
12: update_communication()

13: until ∀τ ∈ T ∶ is_in_state(τ, Done)

Each loop iteration ends with a knowledge update phase (Line 11). This phase advances
operation states based on perception results gathered during motion in the preceding
working phase. Furthermore, messages that have meanwhile arrived are processed. De-
tails on this process are given in Section 5.3.3.

5.3.1. Decision-Making Strategies

The system makes task allocation decisions based on decision-making strategies. Gen-
erally, a decision-making strategy is defined as a weighting function W ∶ T → R+

0 on the
set of operations T . Decision-making strategies are intended to produce high function
values for operations that the robot should engage in and low values for those that

83

Chapter 5. Coordination of Flexible Human-Robot Teams

are not promising at the moment. This prioritisation process makes the overall system
configurable: Decisions mean choosing the operation with the highest numerical priority
value. Concrete criteria underlying realisations of W can then be adapted arbitrarily to
consider aspects as outlined in Section 2.2. Algorithm 1 uses two strategiesWExecute and
WMonitor – this is because decisions for active participation may require different criteria
(e.g. preferences or trust) than those for monitoring (e.g. the information gain). This
work seeks to enable parallel working under partial workspace observability. Strategy
definitions therefore strongly incorporate the notions of readiness R(τ) and success S(τ)
of an operation τ as introduced in Section 4.3. These metrics produce likelihood values in
the interval [0,1] to judge whether an operation is likely to succeed (R) or has probably
already been done (S), considering possibly outdated information from the world model.
Adding to the authors prior work [134] on action selection, examples of strategies based
on these metrics are defined as follows:

We know the current number of humans ∣Ht∣ near the workbench for a decision at time
t. This number is assumed a constant per decision. With ∣Ht∣ given, we can introduce a
necessity function ν ∶ T → {0,1}, with

ν(τ) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∣Ht∣ > 0 ∧ IH(τ) = Type 1
0 otherwise

. (5.9)

This function enables judging whether handling τ is of particular importance for a
parallelised human-robot workflow. It results in a value of 1, if τ can only be performed
by the robot, i.e. if IH(τ) = Type 1 from the human point of view. Preferring operations
like these is however only necessary if workers are present at the moment (∣Ht∣ > 0). Based
on ν, we can construct a decision strategy WExecute that seeks to minimize erroneous
robot operation attempts while trying to complement human skills proactively. The
weighting function is given by

WExecute(τ) =
⎧⎪⎪⎨⎪⎪⎩

R(τ) + ν(τ) if IR(τ) ∈ {Type 0, Type 3}
∞ otherwise

. (5.10)

This definition distinguishes between operations in which robots can take an active role
in part manipulation (Type 0 and Type 3), and those merely involving communication
activities (Type 1 and Type 2). For the latter group,WExecute assigns an infinite weight.
Notifications about Type 1 operations and negotiations of Type 2 decompositions are
inevitable. They can thus be handled with maximum priority. Other operations are
rated depending on the likelihood R of part availability. This particularly integrates the
ergonomic considerations behind the definition of interaction indicators into the decision
process (Section 4.2.2). The necessity function value for τ amplifies the resulting weight
for operations that only the robot can do, i.e. where IH(τ) = Type 1 ∧ IR(τ) = Type 0
holds. This applies particularly to part transfers from shared to robot-exclusive workspace
areas in pick-and-place scenarios: Relevant parts are here initially located in shared areas
within human reach. This will likely result in low readiness scores R(τ) when workers
are present. Without the amplification by ν(τ) respective operations would thus receive

84

5.3. Dynamic Task Sharing

an overall low weightWExecute(τ), although they must be done by the robot in any case.
Adding the necessity function value thus biases decisions towards preferring operations
that peers are incapable of.

The strategyWMonitor distinguishes between Type 2 operations and those of any other
interaction category. Negotiating a decomposition removes any Type 2 operation from
the task model – thus there is no need to monitor progress at all, i.e. these operations can
be assigned the lowest possible weight of 0. For all other operations high success values
S(τ) indicate likely manipulations in spatial areas around their goal states – issuing
perception towards these locations is thus promising to uncover progress achieved by
one’s peers. Therefore, it is reasonable to calculate weights for monitoring according to

WMonitor(τ) =
⎧⎪⎪⎨⎪⎪⎩

0 if IR(τ) = Type 2
S(τ) else

. (5.11)

5.3.2. Task Advancement

Given a decision strategyW and a set of candidate operations T ′, Algorithm 2 issues the
necessary robot activities to advance one of these operations in line with the matching
state machine. First, the operation τopt ∈ T ′ with maximum weight is selected (Line 3).

Algorithm 2 Task Advancement Procedure
1: procedure advance_task(W, T ′ ⊆ T)
2: x← False ▷ Stopping condition
3: τopt ← arg max

τ∈T ′
W(τ) ▷ Task Allocation Decision

4: while ¬x ∧ ¬is_in_state(τopt, Done) do

5: σ ← state_of(τopt) ▷ Task Advancement
6: ε← delegate_activity(σ)
7: advance_state(τopt, ε)
8: σ′ ← state_of(τopt)

9: if is_preemptive(σ) then ▷ Evaluate stop criteria
10: x← True
11: else if activity_mode_changed(σ,σ′) then
12: x← True
13: end if

14: end while
15: end procedure

If several operations with identical, maximum weight exist, the decision among them is
taken randomly. Having finished this task allocation decision, steps according to the

85

Chapter 5. Coordination of Flexible Human-Robot Teams

mental model state machine matching IR(τ) can be taken. Flexible teaming requires a
responsive mode of robot decision making: It is thus not always desirable to work on
an operation consecutively until the Done state is reached. Consider e.g. a situation
where a worker leaves the workbench and takes a tool with him accidentally. The system
might then make an unfavourable task allocation decision for an operation involving
this tool. For a Type 0 operation, this would e.g. result in repeated search for the tool
(CheckPreconditions) and checking for task progress (CheckPostconditions). The
system would spin between two states in a livelock-alike manner [6], until the tool is
eventually returned to the workbench. The task advancement procedure avoids such
situations by triggering as few activities as possible. Control is then frequently passed
back to the main coordination loop (Algorithm 1), resulting in a new task allocation
decision based on recent knowledge updates.

The loop body to follow transitions in mental model state machines (Line 5) issues at
least one activity. To this end, the activity matching the current activity level state σ of
the chosen operation τopt is first delegated to the corresponding architectural component.
This component processes the request and returns an event ε depending on activity
outcomes. With this event, the next state σ′ of τopt can be determined and stored by
advance_state(τopt, ε). The advance_state function furthermore adjusts the world
model in line with the event via the interface for reasoning components (Section 4.1,
page 55). The world model can then reliably reproduce evident changes without further
perception by consistently adding or deleting parts. In particular, parts that must have
gone missing may be deleted after an ‘Execution Abort’ event. Successful skill execution
raises the ‘Postconditions satisfied’ event. For this case object states matching the
postconditions are inserted, and those matching preconditions can be removed. This also
leads to the removal of w-entities indicating the desired goal state of τopt.

Responsiveness is achieved by issuing only one single activity whenever possible. Con-
sequently, loop execution is aborted immediately after one step, if the initial state σ
of τopt on the activity mode level is preemptive. If, by contrast, σ is explicitly marked
non-preemptive, another loop iteration follows. Task advancement is then continued
until a transition into another activity model level state is encountered. The helper func-
tion activity_mode_changed(σ,σ′) provides this information by checking particularly
whether a crossover from is_in_state(τopt,Execute) to is_in_state(τopt,Monitor)
or vice versa has happened after changing the state of τopt from σ to σ′.

5.3.3. Knowledge Update
A knowledge update step follows any call to advance_task in Algorithm 1. This step
synchronises task progress estimates with world model data and information from commu-
nication: Any activities involving robot motion may result in changes to the world model,
particularly those triggering active validation of operation conditions. Furthermore, an-
swers to prior, non-blocking requests can arrive during subsequent task advancement
steps – these changes in knowledge must be brought in line before making any further
decisions. An example is shown in Figure 5.8. Since the last update step, the human
partner has acknowledged an asynchronous decomposition request for a Type 2 opera-

86

5.3. Dynamic Task Sharing

Figure 5.8.: The knowledge update step processes incoming communication and world model
changes that occurred during the preceding working phase (⇢). Answers to Type 2 decomposition
requests change the task model structure (a). Newly detected parts (F) result in an updated
task progress estimate (b) with green = Done, yellow = Active and red = Inactive.

tion (a). The robot can thus adjust its internal task model structure by applying the
decomposition. Furthermore, passive perception during motion in the preceding working
phase has revealed two parts in the container (b). This leads to an updated task progress
estimate, whenever newly detected parts satisfy postconditions of operations. Respec-
tive operations can then be considered Done, which activates subsequent operations.
Based on these considerations, we distinguish between two knowledge update phases in
Algorithm 1, Lines 11 - 12:

Task Progress Update

The task progress update phase ensures correct task execution according to the principles
outlined in Section 3.3. Particularly, the robot system may only consider an operation
Done if the existing entity set Ee

t of the world model as defined in Section 4.1 contains
object states confirming the postconditions at update time t. Furthermore, operations
can only be Done if all preceding operations have also been completed. Progress
on all predecessors may, however, not have been perceived as a consequence of partial
observability yet – success may even be unobservable due to occlusions (e.g. after stacking
several parts). Nevertheless, their completion can be assumed under the cooperative
worker assumption as soon as subsequent progress is confirmed by the world model.
Moreover, any newly Done operation may enable execution of successor graph nodes.
This requires triggering ‘Activate’ state machine events. Algorithm 3 keeps task and
world model knowledge consistent under these boundary conditions.

The algorithm iterates all operations that have not been done yet. An update is
necessary if postconditions are satisfied. To this end, the postcond_satisfied(⋅, ⋅)
function matches object-related parameters of the underlying skill of τ ∈ T¬Done against
known object states in Ee

t . The function returns True if and only if the conditions

87

Chapter 5. Coordination of Flexible Human-Robot Teams

specified by Equation 3.21 are True, i.e. if the operation goal state was observed. Any
operation τ depends on the completion of all predecessors. By implication, assigning the
Done state to τ also gives information on those preceding operations. Therefore, τ and
its predecessors are merged into one set T ′. The set elements are brought into a valid
execution order in Line 6. A valid execution order (τ ′1, ..., τk, ..., τ ′∣T ′∣) is an operation
sequence that respects all precedence relations, i.e. if τ ′i ≺T τ ′j , then i < j must hold
for all indices i, j ∈ {1, ..., ∣T ′∣}. This ordering is established by the helper function
execution_order(⋅). Calling advance_state for the elements of T ′ in the resulting
order emulates execution of all operations including τ . The ‘Postconditions satisfied’
event transfers the operations in question into the Done state (Figure 5.6). Changes to
the world model issued by advance_state(⋅) moreover lead to a simulation of incremental
part modifications in line with the task model (Section 5.3.2). This adds the partial goal
state that must be present after doing τ and its predecessors to the world model.

Algorithm 3 Task Progress Update Procedure
1: procedure update_progress()
2: T¬Done ← {τ ∈ T ∣ ¬is_in_state(τ,Done)}

3: for all τ ∈ T¬Done do

4: if postcond_satisfied(τ, Ee
t) then

5: T ′ ← {τ ′ ∈ T¬Done ∣ τ ′ ≺T τ} ∪ {τ} ▷ Extract predecessors

6: (τ ′1, τ ′2, ..., τ ′∣T ′∣)← execution_order(T ′) ▷ Emulate predecessors for
world model maintenance

7: for i = 1, ..., ∣T ′∣ do
8: advance_state(τ ′i , ‘Postcond. satisfied’)
9: end for

10: for all τ ′′ ∈ direct_successors_of(τ) do ▷ Activate successors
11: if ∄τ ′′′ ≺T τ ′′ ∶ ¬is_in_state(τ ′′′,Done) then
12: advance_state(τ ′′, ‘Activate’)
13: end if
14: end for

15: end if

16: end for
17: end procedure

After this step, we can look at the successor nodes that represent operations following
directly upon τ in the precedence graph. Any subsequent operation τ ′′ becomes Active,
if it does not possess any predecessor aside from τ that is not yet Done. If this require-

88

5.4. Conclusions

ment is met, we can call advance_state(τ ′′, ‘Activate’) to activate the operation. This
procedure is repeated for all elements of T¬Done to construct a task progress estimate
reflecting all information provided by recent world model content. Vice-versa the world
model is complemented with information that follow from the progress update by im-
plication. We have previously used the task progress function Pt for world model ageing
in Section 4.2.2. Due to the dualism of possible Pt function values (Equation 3.22) and
activity mode level states, Pt(τ) at time t is directly given by the current activity mode
state, i.e. after an update at time t, Pt(τ) = Done, if is_in_state(τ, Done) etc.

Communication Update

The communication update phase keeps track of non-blocking communication requests
issued for Type 1 and Type 2 operations. In both cases peers are left some time to react,
while the robot system may handle other operations. By contrast, Type 3 communication
does not need to be considered here – respective requests are semi-blocking and must be
answered directly within the communication activity. Control is thus not passed back to
the coordination loop before the interaction has ended. If Type 1 or Type 2 requests
have been issued, the update_communication() function checks all request inboxes for
answers in each coordination loop cycle. Answers are treated as follows: (i) Type 1
requests are notifications that cannot be answered explicitly. However, they are declined
automatically by the Communicator component as soon as the corresponding request
timer runs out. If a declined Type 1 request occurs for some operation τType 1, a ‘Request
declined’ event is raised, i.e. advance_state(τType 1, ‘Request declined’) is triggered by
the update function. (ii) Type 2 negotiation requests can be accepted or declined by the
recipient, or eventually result in a timeout. Analogous to Type 1, a matching event is
raised for the operation in question. In the case of acceptance, the update procedure
additionally adjusts the task model (Figure 5.8). After that, an ‘Activate’ event is raised
for the first element of the decomposed sequence.

5.4. Conclusions

Summary

This chapter has shown how a robot system can participate in co-working of flexible teams.
The approach relies on the precedence graph task model (Chapter 3) for task progress
tracking and perception planning and on the human-aware world model (Chapter 4) for
task allocation decisions. The system generally distinguishes between operations accord-
ing to their interaction needs: An operation may be fully feasible for the robot and thus
require no explicit communication with peers. But it may also be infeasible for the robot,
require sequential or even synchronous collaboration – in these situations the system may
need to access a communication channel. Individual cases are distinguished automatic-
ally by assigning one out of four interaction categories (Section 5.1.2) to each operation.
This classification pattern relies on agent capability models for humans and robots (Sec-
tion 5.1.1). A preemptive state machine per interaction category approximates the robot

89

Chapter 5. Coordination of Flexible Human-Robot Teams

team mental model. These state machines specify the necessary course of actions for
operations in different categories from the robot point of view (Section 5.1.4). To this
end, they logically group action, perception and communication activities to execute
skills, perceive the state of conditions or communicate with peers. E.g., preconditions
must be checked before triggering skill execution, failed skill execution indicates resource
allocation by other agents and leads to progress monitoring etc. Where needed, state ma-
chines involve particularly flexible communication patterns to avoid blocking interaction,
which might otherwise lead the system into an unproductive idle situation while awaiting
answers (Section 5.1.3). Task progress is tracked by storing the current state within the
corresponding state machine for each operation in the task model. Robot participation
is then achieved by repeatedly selecting a promising operation (Section 5.3.1), issuing
activities to advance this operation according to the state machine interaction pattern
(Section 5.3.2) and reasoning on newly gathered knowledge (Section 5.3.3). All in all, the
approach features robot capabilities to (i) participate actively in the task by skill execu-
tion and monitoring of task progress, (ii) make peers without expert knowledge aware
of sub-tasks that exceed robot capabilities, (iii) negotiate task model changes whenever
an operation that no peer is fully capable of can be achieved in sequential cooperation,
(iv) establish mutual commitment to initiate synchronous collaboration when needed.

Discussion
The system capabilities for action, perception and communication are each realised by
one architectural component (Section 5.2). These components offer implementations
for abstractly formulated activities that can be triggered by a central planning and
reasoning module. Component implementations are thus decoupled from reasoning
algorithms – supplying the system with different implementations enables adaption and
extension towards different domains, sensors, actuators or communication channels. The
planning module is also modularly designed: It is based on exchangeable task allocation
metrics and state machines for team mental modelling. In contrast to learning-based
approaches, these state machines are deterministic and explainable. They can be adjusted
to change system behaviour by rearranging or adding activities. With regard to the
motivation of this work, their current design favours decoupled, parallel working with
little communication for enhanced efficiency. Modified task allocation schemes and team
mental models open possibilities for future comparative studies on different teaming
modes and hybrid team efficiency.

From an algorithmic point of view, the planning layer is highly responsive (Algorithm 1).
It keeps the robot capable of acting by frequent task allocation decisions, even if human
peers leave the workbench or do not react to communication requests. This is achieved
by frequent preemption when performing activities to advance different operations (Al-
gorithm 2). Communication is generally non-blocking or guaranteed to terminate after a
predefined, finite amount of time (Section 5.1.3). Blocking communication can only occur
as a part of collaborative skills when issuing a TryExecution activity – execution of
such skills is however always preceded by lock-free communication of mutual commitment.
Under the cooperative worker assumption, we can further assume that a supportive peer

90

5.4. Conclusions

will stick to this commitment. We have furthermore seen in Section 3.4 that skills do not
involve any deadlock-prone waiting for resources. As with all other activities, TryExe-
cution can thus be assumed to terminate within a reasonable, bounded amount of time.
In conclusion, the system is capable of re-planning and acting at any time independent
of human presence, as long as one of the remaining, not yet finished operations are feas-
ible for the robot. Temporary livelock-alike situations may occur under certain, seldom
circumstances: Consider e.g. a situation where all feasible operations that are currently
Active require a tool that has accidentally been removed from the workbench. The
system will then alternate between searching for this tool and trying to detect progress
on respective operations – there is currently no designated mechanism to recognize and
handle this situation, e.g. by asking to return the tool. Productive work cannot be
resumed until further operations are activated or the tool can be accessed.

Currently, communication is exclusively started on robot initiative. The team mental
models treat human peers as mostly passive responders and providers of information
that the system cannot gather itself with sensors. Contact is only established when
strictly necessary. This is motivated by non-expert users’ lack of knowledge on robot
kinematics and capabilities: Communication is more purposive and efficient, if e.g. the
system informs about infeasible operations and plans Type 2 decompositions that will
surely succeed. This way, time-consuming negotiation of potentially infeasible hand-over
positions made up by humans can be avoided. Despite these efficiency considerations for
flexible teams, this design also leads to limitations. In particular, collaborative operations
can only be initiated on robot request – human peers cannot decide to handle them at will.
Truly equal partnership might benefit from fully bidirectional communication initiative.
Enhanced possibilities that enable humans to realise their plans, e.g. by deciding to treat
collaborative sub-tasks before leaving the workbench, are left for future work. Closely
related to this is the issue of cognitive workload. Operations that require communication
are favoured during task allocation, as communication is necessary and inevitable. This
can lead to situations in which users are confronted with a larger number of requests at
a time. Compared to this solely technically motivated strategy, adjusted task allocation
metrics or enhanced Communicator implementations can be used to implement more
natural communication behaviours in the future. This topic, however, is beyond the
scope of this thesis.

91

CHAPTER 6
Evaluation

6.1. Subjective Evaluation . 94
6.1.1. Hardware Prototype . 94
6.1.2. Results . 97

6.2. Objective Evaluation . 99
6.2.1. Benchmark Tasks . 99
6.2.2. Simulation System . 101
6.2.3. Parametrisation . 102
6.2.4. Evaluation Metrics and Reference Data 103
6.2.5. Results . 105

6.3. Conclusions . 112

The central hypothesis of this work is that end-users without extensive expert know-
ledge can operate a system that leads to beneficial, dynamic human-robot teaming,

even with limited sensor use. Chapters 3, 4 and 5 have introduced a technical concept
for robot participation in this kind of teaming. In this chapter, different aspects of the
technical concept are evaluated to investigate the validity of the working hypothesis (Sec-
tion 1.1, page 5). Hoffmann distinguishes between subjective and objective metrics for
evaluating human-robot shared activities [51]. Subjective metrics try to capture human
perception of the quality of interaction with the robot. They are typically gathered with
questionnaires in human subject studies. In extension to this notion, Section 6.1 out-
lines results on human experience with the overall system rather than only the teaming
phase. This includes the stages of calibration and task modelling to investigate overall
usability. By contrast, objective metrics as e.g. task duration, agent idle times etc. can
be measured directly and objectively. With this thesis having a clearly technical focus,
objective evaluation provides a major part of experimental results (Section 6.2). Perform-
ance according to such metrics depends on the robot system behaviour which is in turn
influenced by system parameters, by the concrete task and the human working strategy.
A comprehensive coverage of these aspects is feasible with a simulation approach that
can gather data for an arbitrary amount of benchmark tasks, system parameter sets and

93

Chapter 6. Evaluation

Figure 6.1.: The prototype
system setup uses a lightweight
robot, a three-finger gripper
and an RGB-D camera po-
sitioned near the robot tool
centre point. A LIDAR sensor
is mounted at knee height close
to the workbench. Workspace
layouts with shared (blue),
human-exclusive (green) and
robot-exclusive areas (orange),
and with dedicated handover
positions (red) structure the
environment around the world
frame (coloured axes) in line
with the task model editor.

resulting teaming workflows. This preparatory step of enabling technologies evaluation is
suitable for technical advancements prior to future detailed human subject studies [116] –
to this effect, lessons learned from the experimental results and future prospects are
finally discussed in Section 6.3.

6.1. Subjective Evaluation

Subjective evaluation metrics measure perceived human experience with a system. This
requires human subjects to work with a concrete system implementation. The software
toolchain and laboratory setup as used for this work is outlined in Section 6.1.1. Imple-
mentation details show in particular, how abstract interfaces used in the technical concept
can be realised practically. Based on this hybrid workplace realisation, Section 6.1.2
summarises the author’s prior results on end-user operation of the full system.

6.1.1. Hardware Prototype

The prototype setup is shown in Figure 6.1. The system is based on a KUKA LBR 4+
lightweight robot with seven degrees of freedom. A Robotiq 3-Finger Adaptive Gripper
in pinch mode enables grasping the small benchmark domain parts (Figure 3.5). Sensory
input is provided by a Intel Realsense D435 RGB-D camera. The camera is configured to
output structured point clouds with a resolution of 620×350 pixels. Furthermore, human
presence data is gathered with a Slamtec RPLIDAR A2 laser range finder. Both sensors
are consumer products that can be acquired with a low budget. A workspace layout
aligned with the robot base segment (Section 3.2.1) bridges the gap to task modelling
in the graphical editor. Humans are enabled to communicate with the system via an
Android smartphone application. This section provides implementation details for each
architectural component (Section 5.2) with regard to this concrete workplace setup.

94

6.1. Subjective Evaluation

Skill Execution Engine

The Skill Execution Engine implements all actions of the example domain (Section 3.1.3).
Robot motion is realised by position control on a fixed transfer level that is only left for
picking and placing. The tool centre point (TCP) is kept in a fixed orientation in parallel
to the workbench surface – camera images are hence taken from a top view with a ‘look-at’
direction perpendicular to the tabletop. The engine moreover implements the decompose
function to split operations for sequential cooperation during the interaction category
classification (Equation 5.5). To this end, the workspace layout provides designated
handover positions (Figure 6.1). On request, the Skill Execution Engine generates a
decomposition by randomly setting the handover location zτ for τ (Equation 5.6) to one
of these positions. This position is blocked for subsequent decomposition requests and
will be released when all operations of decompose(τ) are done.

Sensor Data Processor

Sensor Calibration: The system has two sensors that need calibration. Firstly, the
robot TCP pose K ∈ R4×4 is given by robot kinematics equations (Figure 6.2a). In order
to represent parts perceived by the eye-in-hand camera in the coordinate frame of the
robot world model, we additionally need to know the homogenous extrinsic calibration
matrix X ∈ R4×4 between TCP and camera frame. This problem of eye-in-hand camera
calibration is well-known [113] and commonly solved by observing a calibration pattern
from different camera poses. After calculating the pattern position in each of the resulting
calibration images, X can be determined by optimization, e.g. using the dual quaternion
approach of Daniilidis [29]. The prototype offers a one-click software solution for this
calibration step. Similar to workspace layouts, the user aligns a calibration pattern with
the robot base. The robot will then move the camera to predefined poses and capture
calibration images. Afterwards, the optimization starts and stores the extrinsic matrix.
We furthermore need to know about human positions in the world coordinate frame

for world model ageing. The coordinate transform Y ∈ R4×4 can be calculated by
applying the approach of Zhang and Pless [131] to calibrate the laser range finder with
respect to the world frame. This method requires placing a calibration plate at different
positions in view of the camera while also being sensed by the LIDAR sensor. This
leads to correspondence pairs of a line in LIDAR data and a plane spanned by the
pattern in camera images. These pairs can again be used to optimize the calibration
matrix. Figure 6.2b shows the tool that guides users to collect the necessary point-plane
correspondences. The interface enables repositioning of the robot so that camera and
LIDAR sensor can detect the pattern simultaneously. Correct pattern positioning in sight
of both sensors is indicated by a pattern coordinate frame (left) and a line fitted into
LIDAR data (right). While moving the pattern the application gathers correspondences,
solves for Y and projects LIDAR samples into the camera image (green samples). Users
may stop this process as soon as the re-projected samples are seen to cover their legs and
the calibration plate sufficiently precise. A more detailed explanation of this two-step
camera and LIDAR calibration procedure can be found in the author’s prior work [140].

95

Chapter 6. Evaluation

K

X

Y
world
frame

TCP
frame

camera
frame

LIDAR
frame

x

y

z

Figure 6.2.: System calibration requires estimating the extrinsic camera calibration matrix X
and the transformation Y between world and LIDAR coordinate frame based on the TCP pose
K (a). The calibration tool (b) displays the camera image (left) and current LIDAR data (right).
A coordinate frame (i) and a fitted line (ii) indicate correct placement of the calibration plate.

Object Recognition: The parts of the benchmarking domain can clearly be dis-
tinguished by their colour and dimensions (Figure 3.5). This enables fast and robust
object recognition. We know the transformation between robot tool centre point and
eye-in-hand camera coordinates from the calibration step. The tool centre point pose in
the world coordinate frame is furthermore given by the kinematic properties. The point
clouds provided by the camera system can thus be transformed into world coordinates.
Given that the world coordinate origin coincides with the mounting point of the robot
on the workbench, this point and the world frame x- and y-axis define the workbench
surface plane (Figure 6.1). Points representing this plane can then be cropped from
the point cloud in a first processing step. The remaining points are split into segments
in consideration of mutual spatial proximity and colour using DBSCAN clustering [36].
A bounding box, aligned with the world coordinate frame axes, is determined for each
segment. The Sensor Data Processor then removes the points of all object side faces –
only points of the top face with a z coordinate value close to the maximum bounding
box z coordinate remain in the segments. We can now determine the median colour and
extents in the x- and y-direction of the object top faces. These features are fed into a
decision tree, which outputs one of the object types T (Equation 3.15) per segment.
In addition to a robust object recognition procedure, world model updates are based

on estimates of part occlusion within the viewing frustum. The viewing frustum planes
are directly given by the camera origin in the world coordinate frame, and by technical
specifications regarding the opening angle. The inFrustum(e) function returns True
for some entity e of the world model, if and only if all vertices of the bounding box of e
lie within the pyramid spanned by the frustum planes. For world model entries within
the viewing frustum, the Sensor Data Processor implementation estimates occlusion of
parts on the current camera image as follows: In line with the above object recognition
implementation that classifies parts according to their top surface, a world model entity is
assumed occluded, if and only if its top face cannot be assumed part of the current point
cloud. To this end, the centroid p̄e of the entity bounding box top face is first determined.

96

6.1. Subjective Evaluation

If p̄e lies below the surface sampled by the current point cloud, isOccluded(e) must
return True. Exploiting the fact that the point clouds are structured images with a
pixel grid helps rendering this step computationally efficient. Using the camera extrinsic
and intrinsic calibration matrices, p̄e can be re-projected into the image. This results
in the pixel coordinates, where p̄e would be projected along the corresponding camera
eye ray if it was currently visible. We can then compare p̄e with the actually measured
point q in this pixel. Occlusion of e (isOccluded(e) = True) is assumed in two cases:
(i) The point cloud may not contain a valid measurement for the pixel in question. This
occurs regularly, when the eye ray from p̄e to the camera crosses a surface of the physical
world with a steep angle against the ray direction. With our block-like parts and the
camera top view, this happens whenever further parts are stacked upon e. The sensing
principle limits correct measurements in this case – however, we can still implicate that
sight of the top face of e is hindered by some part above. (ii) By contrast, a valid point
measurement q in the corresponding pixel confirms occlusion actively, if this point lies
closer to the camera origin than p̄e. If neither condition (i), nor condition (ii) applies,
the part e in question should be visible, and isOccluded(e) thus returns False.
Human Tracking: The prototype implementation uses background subtraction to

detect human legs in LIDAR scans. Human person hypotheses are formed by gathering
clusters according to the rules described by Topp and Christensen [121]. Legs may
temporarily be occluded, e.g. by one’s own other leg during motion or by static obstacles
in the workspace (e.g. table legs) – hypotheses are therefore fed into a multi-target tracker
based on the approach of Schulz et al. [110] to keep track of persons in such situations.

Communicator

The prototype Communicator implementation connects to an Android application run-
ning on workers’ smartphones. Inspired by traditional messengers, this application
presents a list of messages related to recent requests to the user (Figure 6.3). Blocking
requests are particularly highlighted to stress that the system urgently needs an answer
to continue working. The Communicator furthermore generates a clarifying visual cue
to accompany each message. Cues show parts involved in respective operations in the
context of workspace layouts. This provides worker support, e.g. for operations that the
robot is incapable of and helps communicating planned handover positions. If necessary
according to Table 5.1, requests are equipped with buttons to answer either ‘yes’ or ‘no’.

6.1.2. Results

The prototype system offers different software tools that guide users through all stages
of system operation. After hardware installation, a graphical user interface supports
sensor calibration. With this setup routine completed, tasks can be modelled using the
graphical editor described in Section 3.2. Finally, users communicate with the robot
system using the smartphone application. The following experiments from the author’s
prior work were directed towards validating the hypothesis that end-users can operate
this whole toolchain intuitively. Where applicable, the Questionnaire for the Subjective

97

Chapter 6. Evaluation

¹

¸

¶ ·

Figure 6.3.: The prototype Communicator implementation presents a list of request-related
messages to connected users. Blocking requests that might render the robot incapable of acting
if not answered are highlighted (red block). If necessary, two buttons with a red/green icon are
generated to answer ‘yes’ or ‘no’. Messages are accompanied by visual cues. The shown image
cues (¶-¹) are examples for correspondingly numbered request types in Table 5.1.

Consequences of Use (QUESI) [87] was used to quantify the notion of intuitiveness. This
section provides only an abbreviated summary of these user evaluation experiments as
the main focus of this thesis lies on an objective, quantitative evaluation of the proposed
approach. Detailed results can be found in respective publications.
Initial Setup Phase [140]: A small-scale user evaluation with four participants

was conducted to investigate, whether non-expert users can perform the system calibra-
tion step successfully within a reasonable amount of time. Against the background of
industrial applications in SMEs, students with a technical background were chosen as
participants. However, none of them indicated prior concrete experience with similar
calibration procedures. They were supplied with a one-sheet user manual describing the
calibration user interface (Figure 6.2b). After reading this manual, all subjects managed
to calibrate the system appropriately within less than 20 minutes.
Task Modelling Phase [133]: Precedence graphs are used as a task model in this

work. They provide the required expressiveness while still being claimed sufficiently
comprehensible for end-user programming (Section 2.4). The second user study tried
to validate the latter assumption. In a first condition, an overall number of 22 persons
participated in the experiment. Users were introduced to precedence graph modelling
with an introductory text and a screencast showing how to create a simple model. They
were then asked to reproduce the modelling steps shown in the screencast to get to
know the procedure and user interface. After that, subjects were instructed to create
precedence graphs for three goal states of increasing complexity. The study instructor
measured the required modelling times for each goal state and asked the participants
to rate intuitiveness with the QUESI questionnaire after completing all task models.
Results have shown that the variance of modelling times across participants decreases

98

6.2. Objective Evaluation

steadily for successive task models in the experiment. This can be taken as an indicator
for fast learning success. Intuitiveness was rated positively with an above average
mean QUESI score of 3.8 on a Likert scale from one to five. This score is similar to
those achieved by recent approaches to intuitive robot programming [102, 94]. The
second experimental condition involved modelling of graphs with an increasing number
of elements, i.e. of involved parts, operation nodes, and precedence relations. Three users
with prior experience in operating the editor finished task models with a maximum of
84 elements in less than 10 minutes.
Communication in the Online Teaming Phase [135]: The final component

tested with a user evaluation procedure was the smartphone application. To this end, a
human subject study was conducted among 18 participants. Each of them was instructed
to perform two tasks together with the robot system described in Section 6.1.1. The tasks
targeted evaluation of the prototype communication channel and thus involved mostly
Type 1, Type 2 and Type 3 operations from the robot point of view. Intuitiveness was
rated with a mean QUESI score of 4.1 across all subjects for both tasks. This indicates
general acceptance of the approach. However, not all participants were able to complete
the tasks successfully – the experiment unveiled clearness and timing of messages as
potential sources of issues, particularly in the context of Type 3 operations.

6.2. Objective Evaluation

The aim of objective evaluation in this thesis is to explore to what extent production
processes can generally profit from flexible human-robot teaming in perspective. To this
end, data about numerous teaming processes was gathered with a simulation system and
compared to metrics of the fully manual process and optimised human-robot schedules:
A set of benchmark tasks that lead to different teaming scenarios (e.g. close proximity
working versus independent working on sub-tasks) is introduced in Section 6.2.1. After
that, Section 6.2.2 describes the simulation framework that emulates dynamic worker
participation in these tasks by modelling partly randomized human decision strategies.
This simulation system is parametrised to reflect realistic human pace of work and the
discrepancy compared to safe robot operational speeds (Section 6.2.3). Evaluation metrics
and reference values to put simulation results into context are outlined in Section 6.2.4.
Finally, experimental results are summarised in Section 6.2.5.

6.2.1. Benchmark Tasks

Table 6.1 shows the benchmark tasks that were used in the experiments. Tasks A to D
are represented by similarly structured precedence graphs according to Figure 6.4a with
a total of 20 operations each. They require shaking, palletising and stacking parts and
differ in their initial distribution of objects within the workspace. The part distributions
provoke different co-working scenarios: The accumulation of part start and goal positions
in Task A forces peers to work in close proximity during the whole teaming process. By
contrast, Tasks B and C allow for separation when fetching (B) or delivering (C) resources.

99

Chapter 6. Evaluation

Initial state Goal state Reference data

Task A DH = 96.3 s

(∣T ∣ = 20) DR = 181.5 s

Σopt = 1.6

Task B DH = 118.0 s

(∣T ∣ = 20) DR = 208.7 s

Σopt = 1.6

Task C DH = 110.9 s

(∣T ∣ = 20) DR = 199.8 s

Σopt = 1.6

Task D DH = 88.3 s

(∣T ∣ = 20) DR = 190.3 s

Σopt = 1.5

Task E DH = 142.2 s

(∣T ∣ = 30) DR = 322.0 s

Σopt = n/a

Table 6.1.: Benchmark task initial and goal states with reference data for human-only (DH)
duration, robot-only duration (DR) and optimal speedup (Σopt) where available (cf. Appendix A)

Finally, Task D requires placing parts in two nearby containers. This can be interpreted
as two sub-tasks that can be worked off independently by one agent each. Task E adds
synchronisation by sharing a tool. Parts must be stacked and shelved in a container
similarly to the aforementioned tasks. The top object additionally needs to be marked
by applying the tool. Figure 6.4 shows two alternative graphs that identically lead to
the goal state of Task E: Applying the tool to the white parts can be done in parallel
to transferring the red ones to the container. The marked objects are stacked onto the
red workpieces afterwards (Figure 6.4b). We will refer to this task model as ‘Variant
1’ of Task E. Variant 2 yields less potential for parallel working, as the white parts are
marked after stacking them (Figure 6.4c).
The interaction induced by Type 2 and Type 3 operations depends strongly on

human-robot communication. This aspect is better covered by human subject studies
and has already been addressed by the results reported in Section 6.1.2. Furthermore,
Type 1 operations would bias overall task feasibility towards either agent and hence
complicate the calculation of comparable performance metrics that solely capture the
dynamics of task sharing with the system. This is why all operations of the benchmark
tasks are feasible for both human and robot, i.e. IH(τ) = IR(τ) = Type 0.

100

6.2. Objective Evaluation

a) b) c)

Figure 6.4.: The benchmarks Task A - D have identical precedence graph models that are
composed of PickShake&Place and Pick&PlaceOnTop skills according to Table 3.2 (a). They
differ in skill input parameters to achieve different spatial distributions of parts in the workspace.
Task E adds tool use with ApplyLabel skills. This task can be represented by two different
graphs which apply the label before (b) or after placing the white part (c).

6.2.2. Simulation System

The simulation system (Appendix A, Figure A.1) replicates the hardware setup shown
in Figure 6.1. A dedicated implementation of the Skill Execution Engine commands a
simulation robot controller to move and manipulate parts in the virtual environment.
Considering current joint positions of the simulated robot, synthetic point clouds for the
Sensor Data Processor are created by rendering the scene from the position where the
physical camera would be located.
Objective evaluation targets teaming performance metrics rather than ergonomic as-

pects. Hence, the simulation of human motion is reduced to movement at constant speed
vH on a roadmap in line with the human workspace model (Section 4.2.1). The current
position on the roadmap at time t corresponds to the human presence map Ht, thus
simulating human tracking information gathered with the LIDAR sensor in the hardware
setup. Against the background of equal partners teaming, it is assumed that humans can
transport one part at a time as the robot does. Human part transfers are simulated in
four steps: The virtual human is first moved to that point on the roadmap that is least
distant to the object in question. Waiting for a constant amount of time tpick/2 emulates
the duration of a reaching motion. Then, the part is relocated from the workbench to a
part allocation position. Motion of the part while retracting the hand is not simulated
explicitly but emulated by waiting for another tpick/2. Placing is achieved analogously
by moving to the roadmap point closest to the goal position and considering reaching
motions with an overall duration tplace.
In addition to interaction with parts, the simulation system needs to make human

task allocation decisions repeatedly. In contrast to the robot with its limited view, it
is assumed that a worker can fully observe a limited workspace area as shown in Fig-
ure 6.1 at any time – decisions are thus always based on full knowledge of operations
previously finished by the robot. In doing so, the simulation model accounts for beha-
viours with different task-related and spatial preferences. The task related preference
models, whether a human prefers completing subtasks, favours processing parts of a

101

Chapter 6. Evaluation

Human-Aware World Model
hleg = 83 cm htorso = 62 cm htable = 89 cm
larm = 71.5 cm βmax = 20○ λcrit = 33.27 ⋅ 10−4

Simulation System
tpick = 1.30 s tplace = 1.44 s tshake = 1.13 s
vH

= 1.6 m
s ωRmax = 1.0 rad

s ω̇R
max = 1.0 rad

s2

Table 6.2.: Relevant para-
meter values for experimental
evaluation

type before moving on to the next sort of objects or has no preference at all. For the
benchmark tasks, subtasks correspond to preferring depth-first graph paths. Parts of a
kind are worked off by exploring the task models breadth-first. We will thus refer to the
task-related preference manifestations as ‘depth-first’, ‘breadth-first’ and ‘none’. Several
active operations may match the task related preference: E.g., a new sub-task must be
chosen after finishing a depth-first path, the ‘breadth-first’ strategy involves choosing
among possibly several available parts of a type, and the ‘none’ preference allows for all
operations that are Active at a given point in time. The spatial preference resolves this
ambiguity by preferring the part closest to the human’s current position (‘nearest’) or
deciding randomly (‘random’). Random decisions draw an operation with a probability
proportional to the point-based part accessibility from the roadmap (Equation 4.11).
This way simulated human decisions will likely respect instructions regarding ergonomic
occupational safety but may also result in divergent behaviour with a certain probability.
Each pair of a task-related and a spatial preference manifestation corresponds to a

human teaming strategy. Strategies involving the ‘nearest’ preference cover deterministic
behaviour with workers actively trying to foster parallel working. In Task E for instance
‘depth-first’ combined with ‘nearest’ makes the human simulation issue coherent opera-
tions to fill one container before turning to the other one. When seeking to evaluate the
overall potential of the approach, considering human participation under these plausible,
yet strong assumptions is not sufficient on the one hand – on the other hand, modelling
more general human decision-making processes is hardly feasible. The spatial ‘random’
preference accounts for this conflict. By randomisation, we can generate multiple differ-
ent workflows for some task. This way, the robot coordination algorithms can be tested
with a multitude of different decisions that individuals might take so that we can draw
conclusions from a statistical evaluation.

6.2.3. Parametrisation

The parameters for simulating cooperative workflows are specified in Table 6.2. They
were chosen to represent a realistic shop floor situation – to this end, the body measures
for the human-aware world model (Section 4.2.1) were chosen to match the P50 values in
ISO/TR 7250-2 [55]. The maximum forward inclination βmax follows suggestions of Daub
et al. [31] and the workbench height htable was measured in the laboratory setup. These
values lead to the derived human reach parameters rarm = 44.5 cm and rmax = 87.7 cm for
calculating part accessibility (Figure 4.6). World model ageing furthermore relies on the
trust factor λ that encodes overall robot trust in stored data (Equation 4.15). Let D̄τ

R

102

6.2. Objective Evaluation

denote an estimate of the average timespan between two robot decisions in consecutive
working phases (Algorithm 1). Consider a decision at time t. It is a reasonable strategy
to make the system forget any part e until the next decision (Ct+D̄τR(e) = 0) if this part
was constantly assigned the worst-case human influence term value (HI = 1) during
this time period. The trust factor value λcrit in Table 6.2 reflects this strategy for the
benchmark tasks and can be used as a starting point to sample the range between instant
forgetting (λ =∞) and unlimited trust in data (λ = 0). Further details on the calculation
of λcrit are reported in Appendix A. Overall, five trust factor values λ1 to λ5 with λ1 =∞,
λ2 = 2 ⋅ λcrit, λ3 = λcrit, λ4 = 0.5 ⋅ λcrit and λ5 = 0 were set for the experiments.
The simulation system relies on parameters to shape the pace of human interaction

within the task. Realistic durations for picking (tpick) and placing (tplace) parts were
estimated by applying the standard motion time system MTM-1 for manual operations in
industrial settings [19] (cf. Appendix A for details). The speed of motion on the roadmap
of about 1.6 m/s is also derived from MTM-1. The duration tshake of one shaking
repetition in the PickPlace&Shake skills was set equal to the robot shaking duration.
During the simulation experiments the robot moved with a maximum angular velocity
ωRmax = 1.0 rad

s and acceleration ω̇R
max = 1.0 rad

s2 . These values were found acceptable from
a human point of view when interacting with the prototype hardware setup, i.e. they are
empirical values from laboratory work in the context of this thesis in the first instance.
They lie, however, also within the bounds of formal safety regulations as they lead to
a maximum cartesian robot TCP velocity of vRmax = 0.73m/s in the benchmark tasks
(Table A.1): Transient contact between the robot and human arms is assumed to be the
predominant safety issue when picking and placing parts in the given setup. For these
cases, the vRmax values comply with the speed limits derived in ISO/TS 15066 [56].

6.2.4. Evaluation Metrics and Reference Data

The simulation system collects several performance metrics to quantify the outcomes of
teaming processes. These metrics are based on measurements of the following raw data
for each run of a task with a certain human strategy and robot system parameter set:

∎ Number of successful robot operations Nsuccess: Each robot call to the Skill
Execution Engine that leads to successful execution of an operation from the task
model increases the number of successful robot operations by one.

∎ Number of operation attemptsNattempt: Each attempt to perform an operation
from the task model (no matter if successful or failed) is counted by Nattempt.

∎ Human idle time DH
idle: Idle time is increased whenever there are no operations

that the human peer can do, i.e. whenever there is no active operation that the
human is capable of and that has satisfied preconditions.

∎ Cooperative task duration Dcoop: The cooperative task duration is a measure
for the timespan between the moment when a human-robot team started task
execution and the point in time when all operation postconditions are satisfied.

103

Chapter 6. Evaluation

The points in time when human and robot become aware of the fact that all postconditions
are satisfied may differ: Under the assumption that workers can fully observe the whole
workspace, task execution is considered done by the human simulation immediately after
the last part has been placed. By contrast, the robot system with its limited view
may need additional time to conduct perception operations before the coordination loop
terminates. We will therefore distinguish between two task durations as perceived by the
human (DH

coop) and by the robot (DR
coop), where usually DH

coop < DR
coop holds. Human

idle time DH
idle is measured until both agents consider task execution completed.

A reference data set comprising the following quantities was gathered to put the
absolute raw metrics into context:

∎ Human-only and robot-only task duration DH and DR: The human-only or
robot-only duration is measured when either of both agents works, while the other
one does not participate in the task at all.

∎ Optimal speedup Σopt: Let Dopt denote the lower bound on task duration that
is achieved if both agents are optimally used to capacity. The maximum achievable
speedup compared to human-only task duration is given by Σopt = DH/Dopt and
expresses the cooperative potential of a task.

Human-only durations were gathered by measuring the timespan needed to finish each
task with each possible human strategy. Participation of the robot system was disabled
during these simulation runs. Robot-only durations were measured accordingly. For
randomized strategies, the mean duration of several runs was considered. An adapted
implementation of Beumelburg’s capability-based static task allocation approach [16]
has provided optimised schedules to determine Dopt values that are comparable to DH
durations from the simulation system within the limits of measuring accuracy. Reference
values for each task are listed in Table 6.1. Refer to Appendix A for more detailed
information on reference data acquisition.

The below derived metrics can be determined based on reference values and raw data:

∎ Robot participation rate ΠR: For a task model (T,≺T) with ∣T ∣ operations, the
participation rate is defined by ΠR = Nsuccess/∣T ∣. This score captures the fraction
of the task that the robot has handled.

∎ Robot error rate ER: The error rate is given by ER = 1 −Nsuccess/Nattempt. It is
a measure for robot decision quality and in turn for interference between human
and robot decisions.

∎ Cooperative speedup Σcoop: The cooperative speedup relates cooperative task
duration Dcoop to the time a task would take a human agent alone. It is calculated
according to Σcoop = DH/Dcoop and expresses the acceleration that is reached by
the investigated flexible teaming method compared to fully manual work.

In analogy to cooperative task duration, we will consider two versions ΣH
coop and ΣR

coop
of speedup that are calculated by using either DH

coop or DR
coop.

104

6.2. Objective Evaluation

Figure 6.5.: The relation of optimal speedup (Σopt) and mean speedup values achieved with the
proposed system (ΣH

coop and ΣR
coop) suggest an overall potential to accelerate tasks (left). System

performance in terms of the robot participation rate (ΠR) varies slightly with robot trust in data
which is encoded by the trust factor value λ (error bars indicate standard deviations).

6.2.5. Results

The evaluation results presented hereinafter were gathered with the following procedure:
The robot system was tested with each human strategy supported by the simulation
system for each of the tasks in Figure 6.4, i.e. the approach was tested with each human
preference pair in {‘depth-first’, ‘breadth-first’, ‘none’} × {‘nearest’, ‘random’}. This
procedure was repeated twice for most task models: At first, the robot system worked
without knowledge about human positions in the workspace by activating the set of
interaction indicators FHI1 for world model ageing (cf. Section 4.2.3). Additional sensor
data from LIDAR scans were used in a second experiment with FHI2 . Each interaction
indicator set was moreover paired with each of the trust factor values λ1 to λ5 as derived
in Section 6.2.3. An additional test set where the robot system made completely random
decisions rather than relying on the human-aware world model in Algorithm 2, Line 3
was considered to verify the overall usefulness of the data ageing heuristics. Appendix A
presents a detailed listing of the experiment protocol - the evaluation data set is based
on a total of 3240 simulated teaming workflows, each reflecting different decisions of both
human and robot.

Overall System Performance

Figure 6.5 (left) compares the maximum achievable, optimal speedup Σopt to the speedup
values that result from flexible teaming. World model data ageing with knowledge about
human presence was enabled for this experiment (interaction indicator set FHI2). The
values reported for ΣH

coop and ΣR
coop are mean values with their standard deviations

across all simulation runs with different human strategies and trust factors per task, i.e.
each value summarises 300 different workflows (cf. Appendix A). The proposed system

105

Chapter 6. Evaluation

makes heuristic and therefore possibly erroneous decisions as a consequence of partial
workspace observability. Aborted skill execution attempts can be time-consuming and
lower the attainable speedup as well as motion for condition evaluation that does not
lead to confirmed part availability and, subsequently, successful operations. Still, we can
observe that task duration is significantly shortened by about 30% when looking at the
speedup ΣH

coop. This value is plausible when taking the difference in human and robot
pace of work into consideration – even load of both agents cannot be expected under the
given parametrisation (Section 6.2.3). Findings regarding the speedup are furthermore
in line with measurements of the robot participation rate ΠR. This rate also amounts
to around 30% depending on the concrete task and trust factor value (Figure 6.5, right).
The relation between optimal speedup Σopt and actual speedup ΣH

coop is consistent across
all tasks – about 90% of the optimum are achieved.
The ΣH

coop values are based on the DH
coop metric which stops counting task duration

in the moment when all postconditions are satisfied. The robot system is, however,
only done with a task and ready for the next job after the duration DR

coop. Technically
speaking, the speedup ΣR

coop would therefore be the decisive metric. According to this
metric teamwork leads to an approximate acceleration of 23% for Tasks A to C and of 10%
in Task D. This substantial decrease compared to ΣH

coop identifies the final phase of task
execution as a weakness of the current system realisation: The difference DR

coop −DH
coop

in durations from the human versus the robot point of view emerges from the additional
time that the robot needs to observe that all operations have been finished. This step
can, however, be eliminated e.g. by implementing a simple system feature that allows
humans to stop the robot – ΣH

coop is therefore considered the better suited metric to
judge the overall potential and future prospects of the flexible teaming concept.

Influence of Robot Trust in World Model Data

Robot trust in world model data is controlled by the trust factor value λ that is used
for world model ageing. The mean robot participation rate ΠR in each task is broken
down by λ in Figure 6.5 (right). The absolute difference between the individual modes
of forgetting instantly (λ0), incrementally lowering the pace of forgetting (λ1 to λ4) and
never losing trust in parts once they were sensed (λ5) is low – hence, the data set cannot
suggest a unified value of λ that is optimal across all tasks. Yet there is a trend towards
modes where certainty decreases gradually over time: Participation rates achieved with
λ2, λ3 and λ4 consistently lie above those for λ0 and λ5 in all tasks. Ageing with at least
one of these λ values provides an advantage of about 2% for each task when compared
to instant forgetting and unlimited trust. This indicates that taking the human-aware
world model as a foundation for task allocation is conducive to teaming efficiency.

Table 6.3 lists mean robot error rates ER and human idle timesDH
idle with their standard

deviations for different ageing strategies. Skill execution attempts are always preceded
by an evaluation of preconditions if relevant parts are only slightly aged (cf. Figure 5.6
and Section 5.2). This means that the error rates for λ1, λ2, λ3 and λ4 express direct
interference among agents in situations when the human picks a part that the robot has

106

6.2. Objective Evaluation

λ1 =∞ λ2 = 2 ⋅ λcrit λ3 = λcrit λ4 = 0.5 ⋅ λcrit λ5 = 0
Task A ER [%] 6.38 ± 9.76 8.81 ± 11.24 6.64 ± 9.26 7.75 ± 10.08 42.12 ± 11.52

DH
idle [s] 6.62 ± 3.69 7.52 ± 4.4 8.09 ± 3.13 8.13 ± 3.98 11.76 ± 6.12

Task B ER [%] 4.30 ± 7.81 6.41 ± 9.29 7.45 ± 8.87 6.59 ± 8.93 37.24 ± 11.33
DH

idle [s] 6.28 ± 4.07 5.66 ± 3.89 7.67 ± 4.94 7.04 ± 4.66 10.69 ± 5.65

Task C ER [%] 8.00 ± 10.54 8.01 ± 8.8 6.93 ± 8.45 6.19 ± 9.48 37.29 ± 11.7
DH

idle [s] 14.47 ± 7.25 13.43 ± 6.9 12.70 ± 6.77 13.75 ± 7.13 17.39 ± 6.55

Task D ER [%] 6.14 ± 9.56 7.25 ± 9.72 6.71 ± 9.21 6.47 ± 8.30 50.52 ± 8.25
DH

idle [s] 15.50 ± 8.23 15.78 ± 8.05 15.26 ± 8.9 14.72 ± 7.26 25.78 ± 9.15

Table 6.3.: Mean robot error rates ER and human idle times DH
idle with their standard deviations

across human strategies for different tasks depending on the patience constant λ

just started to approach. The mean values are overall low but scatter strongly. This
suggests a dependency of system interplay with different human strategies and individual
decisions. The error rate for unlimited trust (λ5) is significantly higher. Since this
world model ageing mode keeps all parts at a certainty value of 1 the current system
implementation will never check preconditions actively – robot operations are thus often
triggered haphazardly for λ = 0. This does not show up as an overly strong decrease in
robot participation rates in Figure 6.5 (right) due to the rather low duration of a failed
pick action – it should still be avoided by preferring λ > 0 as frequent interference might
impact user experience negatively.
Each task shows a level of human idle time that is similar across the preferred trust

factor values λ1 to λ4. The tasks considered in this experiment do not involve tool
sharing – idle times can thus only emerge in two cases at the end of task execution:
(i) The human agent may need to wait for the robot to place the last red part to put
the white one onto it. (ii) Waiting for the robot to detect that all operations are done
may be necessary. Observations of simulation processes identify the latter situation to
be the primary impact factor on idle time. We can thus say that DH

idle ≈ DR
coop −DH

coop
for the considered pick-and-place Tasks A - D. This waiting time can easily be avoided
as discussed in the context of overall system performance. Human idle times are thus
overall low and can be reduced further to the amount of few seconds.

Influence of Sensor Data

A major goal of this work is to reduce the number of sensors used by the system to
attain a lean and achievable robot system. The next experiment investigates whether
the additional LIDAR sensor contributes to teaming performance positively. To this end,
Figure 6.6 compares average speedup values (left) and robot participation rates (right)
for simulation runs with the interaction indicator sets FHI1 (without LIDAR data) and
FHI2 (with LIDAR data). The results are based on world model ageing with λ = λcrit.
Values are furthermore compared to data that results when the robot makes random
decisions rather than referring to the world model with its heuristic certainty values.

The participation rate indicates a positive influence of world model ageing with LIDAR

107

Chapter 6. Evaluation

Figure 6.6.: Simulations with λ = λcrit show that mean participation rates (ΠR, with error bars
indicating standard deviations) increase when comparing decision making without world model
ageing (random), with world model ageing based on a human workspace model (without LIDAR
data) and ageing with precise LIDAR data on human presence (with LIDAR data). Differences
in speedup (ΣH

coop) are comparatively low due to the dominant human influence on task duration.

data. Results for ΠR in this mode lie above those attained with decisions based on the
interaction indicator set FHI1 across all tasks. Random decisions yield the lowest ΠR
values with a consistent difference of about 3% in comparison to the best achieved rates.
This substantiates the use of world model ageing for handling partial observability. The
equal levels of ΠR for FHI1 and FHI2 in Task D are plausible as this task allows for the
most spatial distancing of agents. This reduces the importance of spatially differentiated
data ageing in contrast to more narrow scenarios. Speedup values for Task A corroborate
this assumption – the maximum observed difference in speedup when comparing ageing
with and without LIDAR data was measured for this narrow workspace setup.

The absolute difference in speedup when varying sensory input for robot decision-
making is rather small. This is attributable to the realistically large difference in human
and robot pace of work as particularly expressed by the duration of tasks when performed
by either agent alone (cf. DH and DR in Table 6.1). This discrepancy renders human
decisions the dominant impact on teaming performance and reduces the effect of changes
to the system on measurements under the chosen parametrisation. One would still
expect speedup measurements that are similarly graduated as participation rates – this
cannot consistently be observed for the randomised robot decision strategy in Figure 6.6.
A possible reason is that human and robot may work against each other in certain
constellations of task models and human strategies: The robot can pick parts that the
human simulation has started to approach just as the human simulation can take an
object away during the robot approach motion. This may lead to human detours and
decreased productivity with the aforementioned strong impact on teaming performance.
In turn, lower participation rates due to random decisions might produce less interference
and ultimately better performance in such situations. The measured metrics were not
designed to capture these aspects – further experiments are needed to clarify this effect.

108

6.2. Objective Evaluation

Influence of Human Strategies and Task Model Structure

The strong scatter of mean robot error rates in Table 6.3 has already indicated a depen-
dency between system performance and individual human strategies of the simulation
system. Figure 6.7 breaks the results of Figure 6.6 (left) down into charts that further
clarify this influence for each task. Selecting operations with parts that are probably
available according to their certainty in the human-aware world model is intended to make
the robot avoid areas where its partner is currently working. The best speedup values
were measured for combinations of human strategies with the spatial ‘nearest’ preference
and decisions incorporating LIDAR data across all tasks. The ‘nearest’ preference makes
the human work locally and therefore complements the robot decision-making scheme
when using FHI2 . The data thus suggests that the intended spatial separation is generally
achieved. The advantage of decisions with the interaction indicator that uses LIDAR
data for world model ageing is, however, not given for all human strategies. Observations
of simulation runs show in particular that the system cannot adapt fast enough if the
human agent alternates between different far apart locations quickly. We can furthermore
observe by the example of Task C that random robot decisions may sometimes even
yield the best performance. Aside from the fact that these results are still subject to
statistical effects this points out that the heuristic robot strategy is based on limited
sensory input and can hence not adapt to human decisions in every case. This section is
intended to investigate the future prospects of flexible teaming in general by considering
a cross section of all feasible workflows to complete a task. Individual unfavourable cases
are an essential part of this cross section acquired by partial randomisation of decisions –
their in-depth analysis thus exceeds the scope of this generalised assessment.
Significant differences in performance occur when considering the two possible pre-

cedence graph structures for Task E (Figure 6.4). Figure 6.8 puts the speedup and
participation rates for λ = λcrit with either task model into relation. The shown charts
enable two major observations:

∎ Considering the mean achieved speedup across human simulation strategies shows
that Variant 1 of the task model leads to overall better results.

∎ For a given human strategy, the robot participation rate can drop when choosing
an unsuitable task model.

For instance, the system will co-work more productively with a human who follows
strategy E if Variant 1 is chosen. By contrast, Variant 2 is matched better by human
preferences according to strategy F. The choice of a concrete precedence graph model for
some task can thus have a considerable impact on teaming performance when working
with the proposed system.

This is also evident from human idle time measurements: Table 6.4 reports the percent-
age D̂H

idle of human idle time that is caused by delays in resource allocation as measured in
simulated workflows with λ = λcrit. This metric is calculated by subtracting the influence
of idle time ∣DR

coop −DH
coop∣ due to robot perception at the end of a task and relating the

109

Chapter 6. Evaluation

Figure 6.7.: Speedup mean values and standard deviations vary depending on the task model
and human strategy when changing the level of available sensor data for robot task allocation
decisions. The human strategy yielding the highest speedup value for each task is marked with *.

Figure 6.8.: Different precedence graph models for the same task start and goal state yield
varying teaming performance (mean speedup ΣH

coop and ΠR with standard deviations) depending
on the human working strategy.

110

6.2. Objective Evaluation

D̂H
idle [s]

without tool sharing with tool sharing

Task A Task B Task C Task D Task E Var. 1 Task E Var. 2

none, random 0.5 ± 1.3 1.9 ± 3.7 2.2 ± 3.7 2.1 ± 3.9 4.4 ± 6.5 8.1 ± 6.9
depth-first, random 3.6 ± 3.5 4.7 ± 5.6 4.2 ± 5.4 1.9 ± 3.8 5.7 ± 4.9 13.5 ± 5.5
breadth-first, random 0.9 ± 1.5 0.7 ± 1.6 1.3 ± 2.1 0.3 ± 1.0 6.7 ± 8.9 1.1 ± 1.8
none, nearest 1.0 ± 1.8 0.5 ± 1.0 1.8 ± 1.7 0.2 ± 0.6 3.6 ± 4.6 9.3 ± 6.5
depth-first, nearest 2.3 ± 3.2 6.0 ± 4.4 0.9 ± 1.8 2.4 ± 3.4 0.9 ± 2.7 15.3 ± 3.7
breadth-first, nearest 0.5 ± 1.6 1.7 ± 2.7 1.6 ± 2.3 0.0 ± 0.0 8.8 ± 5.4 2.9 ± 3.7

Table 6.4.: Human idle time percentage D̂H
idle (with standard deviation across simulation runs)

resulting from waiting for resource availability

ER [%]

λ1 =∞ λ2 = 2 ⋅ λcrit λ3 = λcrit λ4 = 0.5 ⋅ λcrit λ5 = 0
Task E Var. 1 17.00 ± 12.01 17.48 ± 12.23 18.29 ± 11.93 17.06 ± 10.37 43.62 ± 10.97
Task E Var. 2 14.92 ± 10.72 14.02 ± 10.11 13.91 ± 9.03 12.82 ± 8.76 42.64 ± 11.22

Table 6.5.: Mean robot error rates ER and their standard deviations across simulation runs of
Task E with shared access to a tool

remaining idle time to the duration DH
coop as perceived by the human, i.e.

D̂H
idle =

DH
idle − ∣DR

coop −DH
coop∣

DH
coop

. (6.1)

This fraction lies within a range of few percent points for Tasks A to D. As discussed
in the context of Table 6.3, D̂H

idle can here only result from seldom situations at the end
of task execution. In comparison, the values for both variants of Task E show a slight
increase of D̂H

idle that can be traced back to the fact that both agents share a single
tool for ApplyLabel operations. Respective values are mostly not remarkably higher
than those for the tasks without tool sharing. We can, however, observe again that each
human strategy matches better with either Variant 1 or 2 of Task E. Hence, idle times
differ strongly depending on the task model. The values for strategies involving the
‘depth-first’ preference stand out in particular. As also observed from the corresponding
participation rates (Figure 6.8), unfavourable design of the precedence graph may lead
to decreased performance – in the case of Task E, this can manifest in workers waiting
for the robot to release the tool for up to 15.3% of the overall task execution time.

Influence of Tool Sharing

Task E differs mainly from the other benchmark tasks due to the shared access of both
agents to a single tool. We have already seen from the data in Table 6.4 that this leads
to a moderately increased level of human idle times in most cases when compared to
Tasks A - D. The impact of shared resources on robot error rates is more significant.
Respective mean values in Table 6.5 show that ER takes more than double the value
reported for all other tasks (Table 6.3).

111

Chapter 6. Evaluation

6.3. Conclusions

Summary

This chapter has first described a laboratory prototype that implements the proposed
flexible teaming concept (Section 6.1.1). The prototype relies on few low-cost sensors. It
integrates with the task modelling approach by use of printed workspace layouts to partly
structure the workbench and thus simplify non-expert user studies. The system supports
picking and placing, basic part processing and assembly. Explicit communication is
achieved by a smartphone messaging app. The robot sends messages to workers via this
app. Humans can in turn accept or reject requests by tapping corresponding buttons.
The smartphone application is part of a software toolchain for end-user operation of
the overall system: In addition to the graphical task model editor (Section 3.2.1) the
toolchain also provides a user interface to support the calibration process needed for
the RGB-D camera and the LIDAR sensor used by the system. Subjective evaluation
results were gathered by conducting user studies with individual parts of the prototype
toolchain (Section 6.1.2). Results suggest that users can handle sensor calibration and
modelling of a complex precedence graph task model in about 30 min. Communication
with the smartphone app was also found intuitive by human subjects in the study.

The focus of this thesis lies on the technical aspects and potential of a concept for
flexible, dynamic teaming. Objective evaluation metrics to quantify system perfor-
mance were therefore gathered with a simulation system (Section 6.2.2). This system is
capable of emulating worker decisions with different plausible strategies and preferences
(e.g. working spatially local or preferring to complete sub-tasks). Individual strategies
incorporate a varying degree of randomization in human decisions to account for the fact
that human decision-making processes cannot fully be modelled. Hence, the simulation
system is suited to acquire statistical measures of teaming performance for differently
shaped tasks, with different robot world model ageing strategies etc. To this end, a set
of benchmark tasks was designed (Section 6.2.1). Respective tasks use different skills
and vary the spatial distribution of parts in the workspace to support different teaming
scenarios (e.g. close proximity working or independent sub-tasks that can be done in
spatial separation). More than 3000 teaming workflows were simulated – in doing so,
the simulation system was parametrised to reproduce a realistic discrepancy between
the human and robot working pace. The major finding of these investigations is that
the benchmark tasks could be accelerated by about 25 - 30% on average compared
to fully manual work. This means that competitive speedup values could be achieved
in comparison to static teaming with optimised schedules despite the heuristic robot
decision-making scheme. A comparison with purely random robot decisions has confirmed
that the proposed human-aware world model is beneficial for task allocation decisions
under partial observability. This comparison has moreover shown the necessity of precise
human positional data – world model ageing solely relying on a static human model
yielded less robot participation in tasks. All in all, flexibility and a lean hardware setup
in terms of minimised sensor use can thus be said to still offer the prospect of productive
partial automation within the boundary conditions of the conducted experiments.

112

6.3. Conclusions

Discussion

Experiments with the simulation system have unveiled that the robot can require a
notable amount of time to perceive that a task has been finished after the last part has
been placed. The full speedup as stated above can only be reached when this time span
is not considered as human idle time – respective values thus represent a theoretical
prospective measure for the overall potential of the approach. Using the system in its
current state can still reduce task durations by about 10 - 25% depending on the task
model while achieving overall low human idle times and robot error rates. The full
potential can be exploited after minor changes to the system implementation, e.g. by
adding a feature that enables users to signal task completion to the robot to shorten the
final perception phase. A more sophisticated perception planning method to enhance the
information gain during any robot motion may generally accelerate progress detection
in the course of task execution.
The actual performance for a given task has been observed to depend on the human

strategy. The robot system seeks to establish spatial separation from the current human
working area and cannot always follow a partner that alternates between different loca-
tions quickly – the capability of the system to adapt to different working styles is hence
bounded. This effect has particularly been observed for tasks that can be represented
by different precedence graphs: Significant human idle times caused by delayed access
to shared tools can arise and reduce system performance if an unfavourable task model
is chosen. This needs to be considered when creating precedence graphs. However,
compatibility of task models, human strategies and robot system behaviour is a complex
question that cannot be expected to be answered by end-users. The experiments thus
raise new requirements regarding the proposed task modelling approach: Users may
need additional guidance to create suitable graphs when working with the graphical task
model editor. This topic has not been taken into account so far. Furthermore, using a
tool that is shared by both agents leads to moderately increased human idle times, but
also to notable rates of aborted robot operation attempts. This can be traced back to
direct interference of agent actions when the human claims the tool while the robot has
also started to grasp it. Although not impacting robot participation rates too strongly
this is an undesirable effect with a potentially negative impact on user experience.
All aforementioned limitations can be attributed to the imperfectness of decision-

making under partial workspace observability. Limited knowledge about the world state
and a partner’s recent actions must, of course, complicate mutual adaption and therefore
impact teaming performance negatively – this has even lead to view constellations in
which purely random robot decisions have outperformed the proposed heuristic approach
in the experiments. Still, the results suggest that a cost-efficient setup with view sensors
can lead to reasonable gains in productivity by human-robot teaming on average. The
results must, however, be interpreted in consideration of the assumptions that were made
to simulate human participation: The partly randomized simulation does not necessarily
match plausible human motion and decisions in any case. It was moreover assumed that
workers transfer only one object at a time to create a basic level of equal partnership with
a single-arm manipulator. Future work should therefore seek to relax this assumption and

113

Chapter 6. Evaluation

address the question of scalability by pairing a more sophisticated two-handed human
model with a comparable dual-arm manipulator.
A need for further investigations arises also from the human subject studies: Issues

regarding clearness and timing of messages sent by the robot confirm the prior assumption
(Section 5.4) that further work with regard to the human cognitive workload is necessary.
Furthermore, individual toolchain components have so far only been evaluated in isolated
user studies – a comprehensive study, where particularly the teaming process is evaluated
with a stronger focus on the effects of flexibility when needing to leave the workbench
temporarily is a potential next topic that can be addressed based on the experiences
gathered with the simulation system.

114

CHAPTER 7
Conclusions

7.1. Summary and Discussion . 115
7.2. Future Work . 119

Within this final chapter, Section 7.1 reviews the proposed approach, the experimental
findings and contributions of this thesis. To conclude with, recommended directions

for future work are outlined in Section 7.2.

7.1. Summary and Discussion
The working hypothesis of this thesis was that flexible, dynamic task sharing under
partial workspace observability can enable beneficial human-robot teaming based on
shared task models created by domain experts. In particular, the key goal was to enable
a mode of co-working that supports a mixture of human-robot coexistence, cooperation
and close proximity collaboration. Against the background of applications in small
and medium-sized enterprises, this was to be achieved by a concept that supports the
existing workforce in operating the system by not relying on expert knowledge on robotics.
In addition, sensor use was bounded as far as possible to reduce the necessary initial
investment and costs for setting up the workplace. The following answers to the research
questions posed in Section 1.3 generally confirm the working hypothesis – yet they also
point out important limitations that suggest starting points for future investigations:

Q1 To what extent can end-users without knowledge on robotics use a graphical interface
to create task models that can be shared with robots for flexible teaming?

A review of task models used in related work has shown that precedence graphs are a
reasonable candidate for representing tasks to be shared by flexible teams (Section 2.4).
They are widely used, maintain maximal parallelism and can be claimed sufficiently
comprehensible for non-expert users. Chapter 3 has introduced a graphical task modelling
tool to validate the latter assumption by applying insights from prior art on intuitive CAD-
based and icon-based robot programming: A three-layered skill framework introduces

115

Chapter 7. Conclusions

levels of abstraction between hardware control commands and process steps on a human-
legible task level. Skills are internally defined by a graph structure that enables automatic
derivation of operation pre- and postconditions (Section 3.1). These conditions are
necessary for guiding robot perception of task progress. They are furthermore a basis
for visualizing parts and the effects of skills in a virtual representation of the shared
workspace. Concrete process steps are instantiated by choosing a skill as a template.
Input parameters are then specified by selecting parts and locations in the virtual
workspace. Fully parametrised skills are represented by an icon each – users are queried
to connect these icons with graph edges to specify the temporal dependencies of a
precedence graph structure (Section 3.2). A user evaluation of the task editor suggests
that non-experts can quickly learn to share procedural task knowledge with the robot
system (Section 6.1.2). The approach was overall found intuitive. Given a basic level of
experience with the editor, users were even able to construct task models with about 80
graph elements in less than ten minutes. In summary, these results indicate that ideas
from intuitive robot programming can well be adapted to enable users without robotics
expertise to set up complex task models for flexible teaming. However, a limitation
of this approach lies in the ambiguity of precedence graphs: A single graph does not
necessarily cover all possibilities to achieve a goal, i.e. there may be two or more different
task structures leading to the same goal state (Figure 6.4). Simulation experiments have
shown that an unfavourable choice among these task model options can impact teaming
performance negatively. Further investigations are thus required towards supporting
users in generating models that are advantageous with regard to their working habits.

Q2 How far can a robot system make meaningful dynamic task allocation decisions
under partial workspace observability without extensive prior training?

Robot task allocation decisions are the key to dynamic task sharing. Accepting partial
workspace observability in exchange for a convenient to set up, affordable hardware
configuration with view sensors renders these decisions challenging: Parts that the robot
has previously detected with a camera mounted near the robot hand can be modified while
they are out of the sensor field of view. Decisions are therefore made on possibly outdated
and hence partial knowledge of the world state and task progress. A human-aware world
model was introduced in Chapter 4 to enable judging the reliability of previously sensed
data. To this end, a certainty measure is calculated incrementally over time for each
stored part (Section 4.2). This measure decreases proportionally to a heuristic estimate of
the likelihood of parts being modified by human agents. The potential for workers taking
influence on parts is estimated in consideration of spatial part accessibility and relevance
to upcoming operations in the task (Section 4.2.2). This heuristic solely relies on a
human handling area model inspired by ergonomic considerations, the task model and a
task progress estimate deduced from observed parts matching operation postconditions.
Additional sensor data from a laser range finder was used to investigate the impact of
human positional data while only slightly complementing the set of required sensors. A
small-scale user evaluation suggests that necessary calibration routines for these sensors
can even be performed by non-experts within a reasonable timespan (Section 6.1.2).

116

7.1. Summary and Discussion

This supports the aim of system operation by the existing workforce in SMEs. Based
on the world model, just-in-time robot decisions can be made in favour of operations
that involve parts with high certainty values – these parts are likely still available at the
stored locations (Sections 4.3 and 5.3.1). This strategy was evaluated in combination with
different, partly randomized human working habits in a simulation system to investigate
performance in multiple workflows resulting from dynamic decisions (Section 6.2.5). A
low fraction of aborted skill execution attempts indicates little interference with human
decisions. However, access to a shared tool has been shown to increase human idle
times and robot error rates. The limitations of decisions under partial observability
are pointed out by few constellations of tasks and human strategies in which random
robot decisions yielded better performance measures than those emerging from the
heuristic task allocation scheme. By construction, the system prefers to work in areas
that are currently not occupied by humans to foster efficient parallel working. The
approach therefore works best with complementary human habits that lead to spatially
local working without interference – prior training or incremental learning of typical
human ways of working for individual tasks could therefore support increased robot
adaption. Still, performance measurements with the approach as is are overall promising:
The results show that the proposed method enables the robot to handle about 30%
of the operations within benchmark pick-and-place tasks on average. Taking typical
discrepancies between human and robot pace of work due to safety regulations into
account, this is a reasonable robot contribution to task completion.

Q3 How can dynamic task allocation be combined with flexible communication and a
team mental model to integrate coexistence, cooperation and collaboration?

Having taken a task allocation decision, the robot system needs a strategy to coordinate
this decision with its partners. For instance, an operation can be handled by checking
preconditions and issuing skill execution afterwards. Aborted skill execution indicates
that some other agent must have claimed necessary resources in the meantime. In this
situation, monitoring of the operation postconditions may unveil task progress achieved
by teammates. If progress cannot yet be confirmed this way, the required parts might
have been returned to their expected locations. It is then reasonable to retry the opera-
tion later by re-iterating the aforementioned steps. This strategy presumes that parts
can always be accessed by the robot – the task modelling approach does, however, not
constrain possible locations of parts in the workspace to areas that the robot can reach.
It rather considers the tabletops of all available workbenches on the shop floor. This
leads to regions that are exclusively accessible to either humans or the robot. Operations
that are feasible for both agents alike, for only one of them or even for neither of them in-
dividually in the case of collaborative process steps can thus well be part of a task model
(Section 5.1.1). This work has therefore proposed to formulate individual, exchangeable
strategies for different agent capability constellations: Operations are first grouped into
categories according to their feasibility for individual agents and the resulting need for
interaction (Section 5.1.2). A state machine is used to approximate a team mental model
for each of these interaction categories. These component mental models encode the

117

Chapter 7. Conclusions

robot system’s understanding of the necessary course of actions for handling operations
of respective categories (Section 5.1.4). To this end, states are designed to trigger skill
execution, active perception of operation conditions, or human-robot communication.
Following transitions in the state machine assigned to some operation thus produces an
expedient robot strategy towards advancing this operation. The proposed system can
hence particularly (i) try to execute operations as outlined above by itself if possible,
(ii) notify humans about operations that they must take care of (iii) and communicate
to establish mutual commitment before engaging into collaborative operations. The
state machines are preemptive in a way that control is passed back to the superordinate
dynamic task allocation procedure after as few state transitions as possible – this en-
sures reactivity to keep the system capable of acting rather than pursuing a previous,
potentially unfavourable decision at all costs (Section 5.3). Frequent re-planning is es-
pecially supported by a flexible mode of communication: Messages are predominantly
exchanged in an asynchronous fashion, thus preventing robot productivity to come to
a standstill if partners are currently otherwise occupied and therefore do not answer
requests (Section 5.1.3). The prototype system implements this mode of communication
by exchanging messages via a smartphone application (Section 6.1.1). All in all, main-
taining the capability of acting at all times leads to a level of robot decision authority
and system autonomy that enables independent parallel working in coexistence as well
as cooperation. Different strategies to process operations depending on agent capab-
ilities furthermore integrate communication that is particularly necessary for entering
collaboration – the technical foundations of flexible teaming under partial workspace
observability were thereby laid by an extensible framework. The interaction scheme was
generally rated positively in a preliminary evaluation procedure with human subjects
(Section 6.1.2). Yet, the amount and timing of messages as sent by the current imple-
mentation hampered intuitive use. In addition, the initiative to initiate communication is
currently biased towards the robot agent. Hence, adjusting the component team mental
models and improving the communication protocols to achieve more elaborate two-way
communication while putting emphasis on humans’ cognitive workload are necessary
next steps to advance the proposed approach. This work was moreover conducted based
on the assumption of skilled, cooperative workers who will not introduce faults into
the process – this shortcoming can be overcome by extending the system architecture
towards error handling as outlined in Section 7.2.

Q4 To what extent is the proposed method beneficial for shared task execution? How
does the flexible approach compare to static methods for task sharing?

Let us finally look at the overall future prospects of applying flexible human-robot
teaming based on dynamic task sharing with a limited sensor setup. A major finding of
the simulation experiments was that task execution could be accelerated, depending on
the concrete task structure and human strategy, by at least 10 - 25% with the current
system implementation. In perspective, execution times may even be reduced by a total
of 25 - 30% on average with only minor changes to the way how the end of a task is
detected (Section 6.2.5). Respective experiments were conducted with tasks taken from

118

7.2. Future Work

Figure 7.1.: Several proposed
directions of future work can be
associated with the architectural
components of the system.

a benchmark domain with actions that are also usually used in collaborative studies with
applications to assembly and manufacturing (Section 3.1.3). The proposed approach can
therefore be said to be beneficial in that it achieves a measurable gain in productivity
for synthetic tasks that relate to typical scenarios in SMEs. Comparing the results
to one of the typically used optimisation approaches for generating optimal schedules,
flexible teaming has been shown to achieve competitive speedups despite the limited use
of sensors. The data must, of course, be interpreted in consideration of the abstract use
case and the limitations of modelling human participation in the simulation experiments –
usefulness for concrete tasks must still be shown. Nevertheless, this thesis has contributed
the technical foundations, proven the feasibility and motivated further investigations on
dynamic, flexible teaming under partial workspace observability.

7.2. Future Work

To conclude with, Figure 7.1 summarises and adds to the suggested directions of future
work mentioned in Section 7.1. A major limitation of the approach is that human actions
that are not in line with the task model cause system failure – the system can neither
detect, nor recover from situations in which priorly achieved task progress was undone, in
which parts were placed at a wrong location etc. An initial step to relax this cooperative
worker assumption would be to allow the team mental model state machines to exit the
Done state if the system detects that operation postconditions are no longer satisfied.
Further error handling capabilities could be integrated by (i) adding an architectural
component to provide state machine activities for managing different error cases (ii) and
extending the coordination algorithm update procedure towards also reasoning about
errors rather than merely about task progress (Section 5.3.3). Furthermore, the algorithm
for task advancement (Section 5.3.2) could be revised to consider parameter grounding:
Currently, the approach assumes unambiguously and fully parametrised operations – in
particular, several parts of the same sort are implicitly identified by their precise initial
locations and goal positions during the task modelling step. Making task allocation
decisions by choosing a favourable combination of an operation and parts of the required
type would relax these requirements: A parameter grounding step to select a concrete

119

Chapter 7. Conclusions

part instance that an operation is applied to would render task modelling more flexible
by accepting approximate part source locations as e.g. on a conveyer belt or a parts bin.

Aside from these conceptual extensions, limitations pointed out by the experiments can
be addressed as follows: A pragmatic starting point for more comprehensive considera-
tions regarding human cognitive workload is to adjust the Communicator implementation
to constrain the number of messages that are presented to the worker at a time. Recent
studies on communication planning as e.g. conducted by Unhelkar et al. [123] may provide
further guidance towards balanced, two-way communication. An augmented reality (AR)
approach could moreover be used as an intuitive communication channel. AR can be
used to replace the visual cues of messages (Figure 6.3) by projecting the information
directly into workers’ fields of view on the one hand – on the other hand, projections
might also be used to relax the assumption of workers knowing the task model precisely
by investigating worker assistance with adaptive presentation of assembly instructions
[7]. The issue of human idle times due to prolonged robot perception at the end of a task
can be addressed by implementing means to extract more information from the given,
limited sensor data: To this end, it may be beneficial to leave the top view onto the
scene and enable enhanced active vision to increase the robot field of view. Furthermore,
the development of a novel motion planning approach with the aim of increasing the
information gain during each motion of skill execution is proposed – in this context,
object certainty values (Section 4.2.3) can directly be used as an optimisation criterion
to decide which parts to look at to maximally reduce uncertainty of the world model.

Especially the objective, quantitative assessment of the approach was based on notable
simplifying assumptions to render simulation of dynamic human behaviour tractable. The
human was particularly assumed to only use one hand to establish a baseline of equal
partnership with a single manipulator. Extending the system algorithms towards using
multiple robot arms is therefore an important direction of future investigations – showing
scalability of the approach when teaming up a multi-arm robot with more complex models
of dynamic human behaviour is a crucial next step to prepare studies that implement the
domains of concrete shop floor scenarios. Ultimately, applicability to applications outside
the laboratory does, of course, require a safety concept. Strictly speaking, each task
model represents an application that must be certified anew in line with the regulations
of ISO/TS 15066 [56]. First steps towards modifying applications within bounds that
do not entail the need for a re-certification haven been made by Brandstötter et al. [21].
Investigations on the integration of similar concepts with the task modelling approach
proposed in this thesis are a promising direction for future research. Furthermore,
methods for safe interaction with points of contact to the previously proposed AR worker
support system [125] as well as with LIDAR-based human tracking [106] as used in the
prototype offer promising ideas for safety in flexible human-robot teams.
In addition to the above concrete suggestions for enhancements of the approach, the

following more general future research directions are suggested: Currently, a skill accord-
ing to the framework in Section 3.1 can only encode a fixed robot role in collaborative
operations (e.g. holding a base part while a human partner assembles further components
to it) – it would be interesting to investigate a concept of skills with roles where the skill

120

7.2. Future Work

definition comprises all feasible roles. Role assignment to agents would then take place
at execution time as a part of coordination. The proposed concept allows for strongly
altering robot behaviour by modifying the task allocation metrics and exchanging the
mental model state machines. Several teaming modes as e.g. human commanding or
negotiation of task allocation for each operation can be realised this way. Therefore, this
work not only enables future user studies on flexible teaming, but also a comparative
evaluation of different teaming schemes. Finally, a general framework for simulating
realistic, dynamic decisions of humans in tasks could generally contribute to the future
development of dynamic teaming approaches. In this work, a set of human preferences
was defined based on plausibility considerations – these preferences and particularly the
likelihood of respective strategies to match real human workers’ habits should be further
substantiated. To this end, a set of human joint action observations in predefined bench-
mark tasks could be clustered into human strategies similar to the approach proposed
by Nikolaidis et al. [88]. A mapping to more general, abstract interaction patterns could
then provide a benchmark database of tasks with associated human strategies to be
pursued when simulating human-robot teaming.

121

APPENDIX A
Complementary Evaluation Data and Parametrisation Details

Simulation System

The simulation system (Figure A.1) establishes a digital twin of the hardware setup to
simulate dynamic human-robot teaming workflows. To this end, robot motion as well
as sensor data are simulated. Robot vision is particularly enabled by synthetic camera
images. Basic human motion in the workspace is emulated by animating movement of
a pillar on the roadmap specified with the domain definition (Section 4.2.1). Roadmap
edges are defined to run parallel to the boundaries of workbenches within a distance
of 20 cm. This abstract representation of workers realises simulated human decisions
generated according to Section 6.2.2 by implementing basic actions of a domain and
carrying out skills in analogy to a Skill Execution Engine implementation for the robot.

Figure A.1.: A digital
twin of the prototype
hardware setup enables
simulation of arbitrary dy-
namic human-robot team-
ing workflows. Aside from
human and robot motion,
the system generates syn-
thetic camera images (bot-
tom left).

123

Appendix A. Complementary Evaluation Data and Parametrisation Details

Critical trust factor λcrit
Let the incremental certainty calculation according to Equation 4.15 be issued in fixed
intervals of ∆t = 0.33 s. Furthermore, let D̄τ

R denote the average operation duration
across all operations within a task when carried out by the robot. We can then estimate
that approximately D̄τ

R seconds pass between two robot decisions. World model ageing
ensures a certainty value Ct+D̄τR(e) = 0 after a timespan D̄τ

R for some part e under constant
worst-case human influence likelihood (HI = 1) for

λcrit =
∆t
D̄τ

R
. (A.1)

Average operation durations D̄τ
R that were measured during five simulation runs per

task are reported in Table A.1. Strictly speaking, an individual λcrit value should be
calculated for each task. However, as all D̄τ

R values are similar and lie around 10 s, a
unified λcrit value for all tasks was obtained by averaging the values in Table A.1 and
substituting the result for D̄τ

R in Equation A.1.

Human picking and placing durations tpick and tplace
The durations for picking and placing parts in the human simulation were roughly
estimated using MTM-1 motion elements to approximate realistic human working pace.
The sequences used were

Rd∗B −G1A −Md∗B1.1

for picking and
Md∗B1.1 −P1SE −RL1 −Rd∗E

for placing parts with a mass below 1.1 kg. The reaching and moving distance d∗ was
not calculated precisely for each simulated operation but approximated by the mean
distance d∗ of part start and goal positions from the human roadmap. This simplification
is viable as we are interested in the overall teaming performance within tasks which is not
affected by precise pick/place durations differing by fractions of a second. To determine
d∗, the mean part distance d̄reachH per task was measured based on operation pre- and
postconditions for each task (Table A.1). Then, d∗ was set to the mean value of these
task-dependent values.

Task A Task B Task C Task D Task E Var. 1 Task E Var. 2

vR
max [

m
s] 0.62 0.70 0.73 0.73 0.68 0.69

D̄τR [s] 9.1 ± 1.5 10.4 ± 1.4 10.0 ± 1.4 9.5 ± 1.5 10.4 ± 1.9 10.7 ± 2.2
d̄reach

H [cm] 51.6 ± 5.7 47.1 ± 10.8 32.8 ± 7.6 32.8 ± 7.5 47.4 ± 9.4 43.2 ± 11.4

Table A.1.: Complementary Evaluation Data: Maximum robot TCP velocity vR
max, mean robot

operation duration D̄τ
R and mean human part reach distance d̄reach

H with standard deviation per
task

124

Reference data acquisition

Reference values for each task when executed solely by a human agent (DH) or by the
robot (DR) are summarised in Table A.2. A total of five simulation runs were carried
out for each task and human strategy that involves partly randomised decisions (spatial
strategy ‘random’). Respective reference values are therefore reported including their
standard deviations across these iterations. A single simulation run is sufficient for all
other strategies as they are deterministic.
World model ageing is not applied at all as long as there is no human presence in

the workspace (cf. Equation 4.15, where HI stays 0 in this case). This means that all
objects are kept in the world model with a constant certainty value of 1. This leads to an
equal weight of all operations when taking task allocation decisions in Algorithm 2. As
outlined on page 85, the algorithm then decides randomly – this results in randomized
robot action as long as there is no human present. Reference durations DR were therefore
also gathered by averaging across five simulation runs per task model.

DH [s]
DR [s] Dopt [s]‘none’

‘random’
‘depth’

‘random’
‘breadth’
‘random’

‘none’
‘nearest’

‘depth’
‘nearest’

‘breadth’
‘nearest’

Task A 96.6 ± 0.2 96.4 ± 0.1 96.8 ± 0.1 96.5 96.5 96.3 181.5 ± 0.5 60.1
Task B 118.9±0.2 118.8±0.2 118.7±0.2 118.0 118.6 118.2 208.7 ± 1.2 74.1
Task C 114.1±1.2 112.2±0.3 114.4±1.7 111.0 111.0 110.9 199.8 ± 0.6 70.2
Task D 98.7 ± 2.1 95.5 ± 3.2 102.1±4.4 87.8 87.9 88.3 190.3 ± 3.3 57.7
Task E Var. 1 160.8±2.6 174.8±0.1 157.9±0.1 164.8 174.5 157.9 311.2 ± 3.5 n/a
Task E Var. 2 148.2±2.6 144.4±1.2 148.8±1.8 142.3 142.2 142.2 322.0 ± 3.3 n/a

Table A.2.: Complementary Evaluation Data: Human-only task duration DH per simulation
strategy, robot only task duration DR and optimal task duration Dopt resulting from capability-
based optimisation

The optimal duration Dopt of each task when using both teammates to capacity
was determined by calculating optimal schedules. For this purpose, the approach to
capability-based human-robot task allocation by genetic optimisation as described by
Beumelburg [16] was adapted to match the boundary conditions of this work in a student
project [15]. In contrast to the original approach the modified implementation supports
human- and robot-exclusive workspaces, collaborative operations and Type 2 operation
decompositions for object handovers. Human and robot were assumed equally suited for
all types of operations. Yet, shared tool access as necessary for Tasks E Var. 1 and Var.
2 was not implemented, i.e. there are no reference values available for these tasks. The
optimisation tool implementation relies on the same human movement speed vH and
identical action durations tpick, tplace and tshake as used by the simulation system. These
values were used to determine human operation durations in line with the simulation by
calculating travelling distances on the roadmap, summing up durations for picking and
placing etc. These analytically determined durations do, however, not match those of
identical operations in the simulation precisely: Durations measured by the simulation
system include a minor overhead originating from imprecisions that are caused by the

125

Appendix A. Complementary Evaluation Data and Parametrisation Details

animation of human and robot motion. Compared to the optimisation tool, the simulation
system may thus slightly overestimate operation durations. In consequence, the maximum
possible speed up Σopt that compares human durations DH from simulation runs with
optimal durations Dopt from the optimisation tool may overestimate the cooperative
potential of tasks within the bounds of this measurement error.

Experimental Protocol

The evaluation results in Section 6.2.5 summarize data from the following experiments:

∎ Experiment 1: Tasks A - D were tested with each combination of the six human
strategies {‘depth-first’, ‘breadth-first’, ‘none’} × {‘nearest’, ‘random’} and the
trust factor values in {λ1, ..., λ5} for FHI2 (with LIDAR data). Task execution was
simulated ten times for each combination of task, human strategy and trust factor
value. This leads to a total of 4 ⋅ 6 ⋅ 5 ⋅ 10 = 1200 cooperative workflows (data
used for compiling Figure 6.5, Table 6.3, Figure 6.6 ‘with LIDAR’, Figure 6.7 ‘with
LIDAR’ and Table 6.4 ‘without tool sharing’).

∎ Experiment 2: The second set of simulation runs was identical to Experiment 1,
but used the interaction indicator set FHI1 (without LIDAR data) instead. This
adds data from another 1200 simulation runs to the experimental results (data
used for compiling Figure 6.6 ‘without LIDAR’ and Figure 6.7 ‘without LIDAR’).

∎ Experiment 3: Another experiment targeted Task E, Variants 1 and 2 that
involve sharing of a tool. This task was considered separately as reference data
on optimal schedules was not available (see above). Teamwork based on both task
models was simulated for all human strategies and trust factor values with FHI2
and ten iterations per combination, thus contributing 2 ⋅ 6 ⋅ 5 ⋅ 10 = 600 simulated
workflows (data used for compiling Figure 6.8, Table 6.4 ‘with tool sharing’ and
Table 6.5).

∎ Experiment 4: System performance with fully randomised robot decisions was
measured for Tasks A - D and all human simulation strategies. The trust factor
value was irrelevant for this experiment as certainty did not influence robot decisions
at all. Again, 10 iterations per task model and human strategy were executed. The
experiment thus resulted in 4 ⋅ 6 ⋅ 10 = 240 teaming processes (data used for
compiling Figure 6.6 and Figure 6.7 ‘random’).

126

List of Tables

1.1. Classification of the interaction targeted by this work 7

2.1. Properties of task models for human-robot teaming 18
2.2. Decision criteria for static/dynamic task allocation 21
2.3. Properties of dynamic task allocation approaches 24

3.1. Benchmark domain basic action input parameters 40
3.2. Benchmark domain skills . 42

5.1. Conceptually necessary communication requests 82

6.1. Benchmark tasks start and goal states with reference data 100
6.2. Relevant parameter values for experimental evaluation 102
6.3. Error rates and human idle times depending on the trust factor 107
6.4. Human idle times due to waiting for resource availability 111
6.5. Robot error rates in Task E with shared access to a tool 111

A.1. Maximum robot TCP velocity, mean robot operation duration and human
part reach distance per task . 124

A.2. Human-only task duration and optimal task duration 125

127

List of Figures

1.1. Lightweight robot examples . 2
1.2. Examples for modes of co-working in flexible teams 4
1.3. Human-robot coexistence, cooperation and collaboration 8
1.4. Flexible human-robot teaming . 9
1.5. Limited Hardware Setup . 12

2.1. Examples of task models . 16

3.1. Task modelling framework overview . 30
3.2. Skill graph structure . 32
3.3. Example basic actions . 35
3.4. Skill graph example . 38
3.5. Benchmark domain . 39
3.6. Workspace Layouts . 44
3.7. Graphical Editor for Task Modelling . 45
3.8. Skill parametrisation GUI elements . 46
3.9. Task progress estimate update . 48

4.1. Certainty for human-aware world modelling 52
4.2. World model initialization . 53
4.3. World model update example . 55
4.4. Human workspace roadmap . 57
4.5. Variables and definitions for defining the human handling area 59
4.6. Point-based accessibility . 60
4.7. Accessibility scalar fields . 61
4.8. Qualitative certainty function profiles . 63

5.1. Coordination process . 68
5.2. Team mental model concept . 69
5.3. Agent capability model based on human and robot range of action 72
5.4. Interaction category semantics . 73
5.5. Flexible communication patterns . 75

129

List of Figures

5.6. Preemptive team mental model state machines 78
5.7. System architecture . 80
5.8. Knowledge update step example . 87

6.1. Prototype system setup . 94
6.2. Calibration coordinate frames and tooling 96
6.3. Smartphone-based prototype communicator implementation 98
6.4. Benchmark task precedence graphs . 101
6.5. Relation of optimal and cooperative speedup, influence of ageing strategy 105
6.6. Influence of sensor data . 108
6.7. Speedup per task model and human strategy 110
6.8. Influence of task model structure on system performance 110

7.1. Proposed directions of future work . 119

A.1. Simulation system . 123

130

Bibliography

[1] Iina Aaltonen, Timo Salmi, and Ilari Marstio. Refining levels of collaboration to
support the design and evaluation of human-robot interaction in the manufacturing
industry. Procedia CIRP, 72:93–98, 2018.

[2] Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi, Alin Albu-Schäffer,
Kazuhiro Kosuge, and Oussama Khatib. Progress and prospects of the human–
robot collaboration. Autonomous Robots, 42(5):957–975, 2018.

[3] R. Alami, M. Warnier, J. Guitton, S. Lemaignan, and E. A. Sisbot. When the
robot considers the human... In Proceedings of the 15th International Symposium
on Robotics Research, 2011.

[4] Rasmus Hasle Andersen, Lars Dalgaard, Anders Billeso Beck, and John Hallam.
An architecture for efficient reuse in flexible production scenarios. In IEEE In-
ternational Conference on Automation Science and Engineering (CASE), pages
151–157, Gothenburg, 2015.

[5] Rasmus Hasle Andersen, Thomas Solund, and John Hallam. Definition and initial
case-based evaluation of hardware-independent robot skills for industrial robotic
co-workers. In International Symposium on Robotics (ISR), pages 1–7, Munich,
2014.

[6] E. A. Ashcroft. Proving assertions about parallel programs. Journal of Computer
and System Sciences, 10(1):110–135, 1975.

[7] A Bannat, Frank Wallhoff, G Rigoll, F Friesdorf, H Bubb, Sonja Stork, H Müller,
A Schubö, M Wiesbeck, and M Zäh. Towards Optimal Worker Assistance: A
Framework for Adaptive Selection and Presentation of Assembly Instructions. In
Proceedings of the 1st International Workshop on Cognition for Technical Systems
(Cotesys), 2008.

[8] Timo Bänziger, Andreas Kunz, and Konrad Wegener. Optimizing human-robot
task allocation using a simulation tool based on standardized work descriptions.
Journal of Intelligent Manufacturing, 2018.

131

Bibliography

[9] Jimmy Baraglia, Maya Cakmak, Yukie Nagai, Rajesh PN Rao, and Minoru Asada.
Efficient human-robot collaboration: When should a robot take initiative? The
International Journal of Robotics Research, 36(5-7):563–579, 2017.

[10] Andrea Bauer, Dirk Wollherr, and Martin Buss. Human-robot collaboration: a
survey. International Journal of Humanoid Robotics, 5(01):47–66, 2008.

[11] Jenay M. Beer, Arthur D. Fisk, and Wendy A. Rogers. Toward a Framework for
Levels of Robot Autonomy in Human-Robot Interaction. Journal of Human-Robot
Interaction, 3(2):74, 2014.

[12] Roland Behrens, José Saenz, Christian Vogel, and Norbert Elkmann. Upcoming
technologies and fundamentals for safeguarding all forms of human-robot collab-
oration. In 8th International Conference Safety of Industrial Automated Systems
(SIAS), pages 18–23, Königswinter, 2015.

[13] Manfred Bender, Martin Braun, Peter Rally, and Oliver Scholtz. Lightweight
robots in manual assembly – best to start simply! Technical report, Fraunhofer
Institute for Industrial Engineering IAO, Stuttgart, 2016.

[14] Julia Berg and Gunther Reinhart. An Integrated Planning and Programming
System for Human-Robot-Cooperation. Procedia CIRP, 63:95–100, 2017.

[15] Daniel Bergmann. Statische Aufgabenteilung für die Mensch-Roboter-Kooperation
(B.Sc. thesis). University of Bayreuth, 2019.

[16] Katharina Beumelburg. Fähigkeitsorientierte Montageablaufplanung in der direkten
Mensch-Roboter-Kooperation. PhD thesis, Universität Stuttgart, 2005.

[17] Rainer Bischoff, Arif Kazi, and Markus Seyfarth. The MORPHA style guide for
icon-based programming. In IEEE International Workshop on Robot and Human
Interactive Communication (RO-MAN), pages 482–487, Berlin, 2002.

[18] Sebastian Blankemeyer, Tobias Recker, Tobias Stuke, Jens Brokmann, Markus
Geese, Michael Reiniger, Dennis Pischke, Assem Oubari, and Annika Raatz. A
method to distinguish potential workplaces for human-robot collaboration. Procedia
CIRP, 76:171–176, 2018.

[19] R. Bokranz and K. Landau. Handbuch Industrial Engineering: Produktivitäts-
management mit MTM. Band 1: Konzept. Schäffer-Poeschel, Stuttgart, 2 edition,
2012.

[20] Jeffrey M. Bradshaw, Paul J. Feltovich, Matthew J. Johnson, Larry Bunch, Mag-
gie R. Breedy, Tom Eskridge, Hyuckchul Jung, James Lott, and Andrzej Uszok.
Coordination in Human-Agent-Robot Teamwork. In International Symposium on
Collaborative Technologies and Systems, pages 467–476, Irvine, 2008.

132

Bibliography

[21] Mathias Brandstötter, Titanilla Komenda, Fabian Ranz, Philipp Wedenig, Hubert
Gattringer, Lukas Kaiser, Guido Breitenhuber, Andreas Schlotzhauer, Andreas
Müller, and Michael Hofbaur. Versatile Collaborative Robot Applications Through
Safety-Rated Modification Limits. In International Conference on Robotics in
Alpe-Adria Danube Region (RAAD), pages 438–446, Kaiserslautern, 2019.

[22] John Brown. Some Tests of the Decay Theory of Immediate Memory. Quarterly
Journal of Experimental Psychology, 10(1):12–21, feb 1958.

[23] Nakul Gopalan Brown and Stefanie Tellex. Modeling and Solving Human-Robot
Collaborative Tasks Using POMDPs. In RSS Workshop on Model Learning for
Human-Robot Communication, 2015.

[24] Baptiste Busch, Marc Toussaint, and Manuel Lopes. Planning Ergonomic Sequences
of Actions in Human-Robot Interaction. In IEEE International Conference on
Robotics and Automation (ICRA), pages 1916–1923, Brisbane, 2018.

[25] Andrea Casalino, Andrea Maria Zanchettin, Luigi Piroddi, and Paolo Rocco. Op-
timal Scheduling of Human-Robot Collaborative Assembly Operations With Time
Petri Nets. IEEE Transactions on Automation Science and Engineering, pages
1–15, 2019.

[26] Fei Chen, Kosuke Sekiyama, Ferdinando Cannella, and Toshio Fukuda. Optimal
subtask allocation for human and robot collaboration within hybrid assembly
system. IEEE Transactions on Automation Science and Engineering, 11(4):1065–
1075, 2014.

[27] Min Chen, Stefanos Nikolaidis, Harold Soh, David Hsu, and Siddhartha Srinivasa.
Planning with Trust for Human-Robot Collaboration. In ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 307–315, New York, 2018.

[28] E. G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks. ACM Computing
Surveys (CSUR), 3(2):67–78, jun 1971.

[29] Konstantinos Daniilidis. Hand-Eye Calibration Using Dual Quaternions. Interna-
tional Journal of Robotics Research, 18(3):286–298, 1999.

[30] Kourosh Darvish, Barbara Bruno, Enrico Simetti, Fulvio Mastrogiovanni, and
Giuseppe Casalino. Interleaved Online Task Planning, Simulation, Task Allocation
and Motion Control for Flexible Human-Robot Cooperation. In IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), pages
58–65, Nanjing, 2018.

[31] Urban Daub, Sarah Gawlick, and Florian Blab. Ergonomic Workplace Design -
Muscoskeletal Relief Principles Deriving from the Exercise, Sports and Human
Factor Sciences. Technical report, Fraunhofer Institute for Manufacturing Engin-
eering and Automation (IPA), Stuttgart, 2018.

133

Bibliography

[32] Lavindra de Silva, Raphael Lallement, and Rachid Alami. The HATP hierarchical
planner: Formalisation and an initial study of its usability and practicality. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 6465–6472, Hamburg, sep 2015.

[33] Sandra Devin and Rachid Alami. An implemented theory of mind to improve
human-robot shared plans execution. In ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 319–326, Christchurch, 2016.

[34] EN ISO 10218-1:2011. Robots and robotic devices – Safety requirements for indus-
trial robots – Part 1: Robots, 2011.

[35] EN ISO 10218-2:2011. Robots and robotic devices – Safety requirements for indus-
trial robots – Part 2: Robot systems and integration, 2011.

[36] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In 2nd
International Conference on Knowledge Discovery and Data Mining (KDD-96),
pages 226–231, Portland, 1996.

[37] Pedro Ferreira, Stefanos Doltsinis, and Niels Lohse. Symbiotic Assembly Systems
– A New Paradigm. Procedia CIRP, 17:26–31, 2014.

[38] Terrence Fong, Illah Nourbakhsh, and Kerstin Dautenhahn. A survey of socially
interactive robots. Robotics and Autonomous Systems, 42(3-4):143–166, 2003.

[39] Mary Ellen Foster, Manuel Giuliani, Thomas Müller, Markus Rickert, Alois Knoll,
Wolfram Erlhagen, Estela Bicho, Nzoji Hipólito, and Luis Louro. Combining
Goal Inference and Natural-Language Dialogue for Human-Robot Joint Action. In
Proceedings of the International Workshop on Combinations of Intelligent Methods
and Applications, European Conference on Artificial Intelligence, Patras, 2008.

[40] Matthew Gombolay, Anna Bair, Cindy Huang, and Julie Shah. Computational
design of mixed-initiative human–robot teaming that considers human factors:
situational awareness, workload, and workflow preferences. The International
Journal of Robotics Research, 36(5-7):597–617, 2017.

[41] Michael A. Goodrich and Alan C. Schultz. Human-Robot Interaction: A Survey.
Foundations and Trends in Human-Computer Interaction, 1(3):203–275, 2007.

[42] Patrik Gustavsson, Magnus Holm, Anna Syberfeldt, and Lihui Wang. Human-robot
collaboration – towards new metrics for selection of communication technologies.
Procedia CIRP, 72:123–128, 2018.

[43] Roni-Jussi Halme, Minna Lanz, Joni Kämäräinen, Roel Pieters, Jyrki Latokartano,
and Antti Hietanen. Review of vision-based safety systems for human-robot col-
laboration. Procedia CIRP, 72:111–116, 2018.

134

Bibliography

[44] Takuma Hamabe, Hiraki Goto, and Jun Miura. A programming by demonstration
system for human-robot collaborative assembly tasks. In IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 1195–1201, Zhuhai, 2015.

[45] David Harel. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

[46] Tsutomu Hasegawa, Takashi Suehiro, and Kunikatsu Takase. A Model-Based
Manipulation System with Skill-Based Execution. IEEE Transactions on Robotics
and Automation, 8(5):535–544, 1992.

[47] Kelsey P. Hawkins, Shray Bansal, Nam N. Vo, and Aaron F. Bobick. Anticipating
human actions for collaboration in the presence of task and sensor uncertainty.
In IEEE International Conference on Robotics and Automation (ICRA), pages
2215–2222, Hong Kong, 2014.

[48] Bradley Hayes and Brian Scassellati. Effective robot teammate behaviors for
supporting sequential manipulation tasks. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 6374–6380, Hamburg, 2015.

[49] Bradley Hayes and Brian Scassellati. Autonomously constructing hierarchical task
networks for planning and human-robot collaboration. In IEEE International
Conference on Robotics and Automation (ICRA), pages 5469–5476, Stockholm,
2016.

[50] Sue Hignett and Lynn McAtamney. Rapid Entire Body Assessment (REBA).
Applied Ergonomics, 31(2):201–205, 2000.

[51] Guy Hoffman. Evaluating Fluency in Human–Robot Collaboration. IEEE Trans-
actions on Human-Machine Systems, 49(3):209–218, 2019.

[52] Guy Hoffman and Cynthia Breazeal. Collaboration in Human-Robot Teams. In
AIAA 1st Intelligent Systems Technical Conference, Reston, 2004.

[53] Luiz S. Homem de Mello and Arthur C. Sanderson. And/OR graph representation
of assembly plans. IEEE Transactions on Robotics and Automation, 6(2):188–199,
1990.

[54] Luiz S. Homem de Mello and Arthur C. Sanderson. Representations of mechanical
assembly sequences. IEEE Transactions on Robotics and Automation, 7(2):211–227,
1991.

[55] ISO/TR 7250-2:2010/AMD1:2013. Basic human body measurements for technolo-
gical design – Part 2: Statistical summaries of body measurements from national
populations, 2010.

[56] ISO/TS 15066:2016. Robots and robotic devices - Collaborative robots, 2016.

135

Bibliography

[57] P. Jiménez. Survey on assembly sequencing: a combinatorial and geometrical
perspective. Journal of Intelligent Manufacturing, 24(2):235–250, 2013.

[58] Lars Johannsmeier and Sami Haddadin. A Hierarchical Human-Robot Interaction-
Planning Framework for Task Allocation in Collaborative Industrial Assembly
Processes. IEEE Robotics and Automation Letters, 2(1):41–48, 2017.

[59] Catholijn M Jonker, M Birna van Riemsdijk, and Bas Vermeulen. Shared Mental
Models: A Conceptual Analysis. In Proceedings of the 6th International Workshop
on Coordination, Organizations, Institutions, and Norms in Agent Systems, pages
132–151, Lyon, 2010.

[60] Christian Juelg, Andreas Hermann, Arne Roennau, and Rüdiger Dillmann. Ef-
ficient, collaborative screw assembly in a shared workspace. In Advances in In-
telligent Systems and Computing, volume 867, pages 837–848. Springer Verlag,
2019.

[61] Krishnanand N. Kaipa, Carlos W. Morato, and Satyandra K. Gupta. Design of
Hybrid Cells to Facilitate Safe and Efficient Human–Robot Collaboration During
Assembly Operations. Journal of Computing and Information Science in Engin-
eering, 18(3):031004, jun 2018.

[62] Erez Karpas, Steven James Levine, Peng Yu, and Brian C Williams. Robust
Execution of Plans for Human-Robot Teams. In International Conference on
International Conference on Automated Planning and Scheduling (ICAPS), pages
342–346, Jerusalem, 2015.

[63] Johan Kildal, Alberto Tellaeche, Izaskun Fernández, and Iñaki Maurtua. Potential
users’ key concerns and expectations for the adoption of cobots. Procedia CIRP,
72:21–26, 2018.

[64] H. Kimura, T. Horiuchi, and K. Ikeuchi. Task-model based human robot cooper-
ation using vision. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 701–706, Kyongju, 1999.

[65] Hema S. Koppula, Ashesh Jain, and Ashutosh Saxena. Anticipatory planning
for human-robot teams. In International Symposium on Experimental Robotics
(ISER), pages 453–470. Springer, 2016.

[66] Martin Kraft and Markus Rickert. How to teach your robot in 5 minutes: Applying
UX paradigms to human-robot-interaction. In IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN), pages 942–949, Lisboa,
2017.

[67] S. Lallée, U. Pattacini, S. Lemaignan, A. Lenz, C. Melhuish, L. Natale, S. Skachek,
K. Hamann, J. Steinwender, E. A. Sisbot, G. Metta, J. Guitton, R. Alami,

136

Bibliography

M. Warnier, T. Pipe, F. Warneken, and P. F. Dominey. Towards a Platform-
Independent Cooperative Human Robot Interaction System: III An Architecture
for Learning and Executing Actions and Shared Plans. IEEE Transactions on
Autonomous Mental Development, 4(3):239–253, 2012.

[68] R. Lallement, L. de Silva, and R. Alami. HATP: An HTN Planner for Robotics.
In 2nd ICAPS Workshop on Planning and Robotics, Portsmouth, 2014.

[69] Przemyslaw A. Lasota, Terrence Fong, and Julie A. Shah. A Survey of Methods for
Safe Human-Robot Interaction. Foundations and Trends in Robotics, 5(3):261–349,
2017.

[70] Johan Sund Laursen, Ulrik Pagh Schultz, and Lars Peter Ellekilde. Automatic
error recovery in robot assembly operations using reverse execution. In IEEE
International Conference on Intelligent Robots and Systems (IROS), pages 1785–
1792, Hamburg, 2015.

[71] C. Lenz, A. Sotzek, T. Roder, H. Radrich, A. Knoll, M. Huber, and S. Glasauer.
Human workflow analysis using 3D occupancy grid hand tracking in a human-
robot collaboration scenario. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3375–3380, San Francisco, 2011.

[72] Claus Lenz and Alois Knoll. Mechanisms and capabilities for human robot col-
laboration. In IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pages 666–671, Edinburgh, 2014.

[73] Steven J. Levine and Brian C. Williams. Watching and Acting Together: Con-
current Plan Recognition and Adaptation for Human-Robot Teams. Journal of
Artificial Intelligence Research, 63:281–359, 2018.

[74] Beng-Chong Lim and Katherine J. Klein. Team mental models and team perform-
ance: a field study of the effects of team mental model similarity and accuracy.
Journal of Organizational Behavior, 27(4):403–418, 2006.

[75] Matthias Linsinger, Martin Sudhoff, Kai Lemmerz, Paul Glogowski, and Bernd
Kuhlenkötter. Task-based Potential Analysis for Human-Robot Collaboration
within Assembly Systems. In Tagungsband des 3. Kongresses Montage Handhabung
Industrieroboter, pages 1–12, Erlangen, 2018.

[76] Liliana Lo Presti and Marco La Cascia. 3D skeleton-based human action classific-
ation: A survey. Pattern Recognition, 53:130–147, 2016.

[77] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Inter-
national Journal of Computer Vision, 60:91–110, 2004.

[78] Ilias El Makrini, Kelly Merckaert, Joris De Winter, Dirk Lefeber, and Bram Vander-
borght. Task allocation for improved ergonomics in Human-Robot Collaborative
Assembly. Interaction Studies, 20(1):102–133, 2019.

137

Bibliography

[79] Thomas W. Malone and Kevin Crowston. What is coordination theory and how
can it help design cooperative work systems? In Proceedings of the 1990 ACM
conference on Computer-supported cooperative work - CSCW ’90, pages 357–370,
New York, 1990.

[80] Matthew T. Mason. Compliance and Force Control for Computer Controlled
Manipulators. IEEE Transactions on Systems, Man and Cybernetics, 11(6):418–
432, 1981.

[81] João Costa Mateus, Dieter Claeys, Veronique Limère, Johannes Cottyn, and El-
Houssaine Aghezzaf. A structured methodology for the design of a human-robot
collaborative assembly workplace. The International Journal of Advanced Manu-
facturing Technology, 102(5-8):2663–2681, jun 2019.

[82] John E. Mathieu, Tonia S. Heffner, Gerald F. Goodwin, Eduardo Salas, and
Janis A. Cannon-Bowers. The influence of shared mental models on team process
and performance. Journal of Applied Psychology, 85(2):273–283, 2000.

[83] Nikolaos Mavridis. A review of verbal and non-verbal human–robot interactive
communication. Robotics and Autonomous Systems, 63:22–35, 2015.

[84] George Michalos, Jason Spiliotopoulos, Sotiris Makris, and George Chryssolouris.
A method for planning human robot shared tasks. CIRP Journal of Manufacturing
Science and Technology, 22:76–90, aug 2018.

[85] Gregoire Milliez, Raphael Lallement, Michelangelo Fiore, and Rachid Alami. Using
human knowledge awareness to adapt collaborative plan generation, explanation
and monitoring. In ACM/IEEE International Conference on Human-Robot Inter-
action (HRI), pages 43–50, Christchurch, 2016.

[86] Michela Dalle Mura and Gino Dini. Designing assembly lines with humans and
collaborative robots: A genetic approach. CIRP Annals, 68(1):1–4, 2019.

[87] Anja Naumann and Jörn Hurtienne. Benchmarks for intuitive interaction with
mobile devices. In Proceedings of the 12th International Conference on Human
Computer Interaction with Mobile Devices and Services, pages 401–402, Lisboa,
2010.

[88] Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah. Efficient
Model Learning from Joint-Action Demonstrations for Human-Robot Collaborat-
ive Tasks. In ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pages 189–196, Portland, 2015.

[89] Stefanos Nikolaidis and Julie Shah. Human-robot cross-training: computational
formulation, modeling and evaluation of a human team training strategy. In
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages
33–40, Tokyo, 2013.

138

Bibliography

[90] Nikolaos Nikolakis, Konstatntinos Sipsas, Panagiota Tsarouchi, and Sotiris Makris.
On a shared human-robot task scheduling and online re-scheduling. Procedia CIRP,
78:237–242, 2018.

[91] Xinwen Niu, Han Ding, and Youlun Xiong. A hierarchical approach to generating
precedence graphs for assembly planning. International Journal of Machine Tools
and Manufacture, 43(14):1473–1486, 2003.

[92] José Novoa, Jorge Wuth, Juan Pablo Escudero, Josué Fredes, Rodrigo Mahu, and
Néstor Becerra Yoma. DNN-HMM based Automatic Speech Recognition for HRI
Scenarios. In ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pages 150–159, New York, 2018.

[93] International Federation of Robotics. Robots and the Workplace of the Future
(Positioning Paper), 2018.

[94] E. Orendt, M. Fichtner, and D. Henrich. Robot programming by non-experts: In-
tuitiveness and robustness of One-Shot robot programming. In IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), pages
192–199, New York, 2016.

[95] A. K. Pandey and R. Alami. Mightability maps: A perceptual level decisional
framework for co-operative and competitive human-robot interaction. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5842–
5848, Taipei, 2010.

[96] Chris Paxton, Andrew Hundt, Felix Jonathan, Kelleher Guerin, and Gregory D.
Hager. CoSTAR: Instructing collaborative robots with behavior trees and vision.
In IEEE International Conference on Robotics and Automation (ICRA), pages
564–571, Singapore, 2017.

[97] Margaret Pearce, Bilge Mutlu, Julie Shah, and Robert Radwin. Optimizing
Makespan and Ergonomics in Integrating Collaborative Robots Into Manufac-
turing Processes. IEEE Transactions on Automation Science and Engineering,
15(4):1772–1784, 2018.

[98] Mikkel Rath Pedersen, Lazaros Nalpantidis, Rasmus Skovgaard Andersen, Casper
Schou, Simon Bøgh, Volker Krüger, and Ole Madsen. Robot skills for manufac-
turing: From concept to industrial deployment. Robotics and Computer-Integrated
Manufacturing, 37:282–291, 2016.

[99] Alexander Perzylo, Markus Rickert, Bjoern Kahl, Nikhil Somani, Christian
Lehmann, Alexander Kuss, Stefan Profanter, Anders Billeso Beck, Mathias Haage,
Mikkel Rath Hansen, Malene Tofveson Nibe, Maximo A. Roa, Olof Sornmo, Sven
Gestegard Robertz, Ulrike Thomas, Germano Veiga, Elin Anna Topp, Ingmar
Kesslar, and Marinus Danzer. SMErobotics: Smart Robots for Flexible Manufac-
turing. IEEE Robotics & Automation Magazine, 26(1):78–90, mar 2019.

139

Bibliography

[100] Fabian Ranz, Vera Hummel, and Wilfried Sihn. Capability-based Task Allocation
in Human-robot Collaboration. Procedia Manufacturing, 9:182–189, 2017.

[101] Timothy J. Ricker, Evie Vergauwe, and Nelson Cowan. Decay theory of immediate
memory: From Brown (1958) to today (2014). Quarterly Journal of Experimental
Psychology, 69(10):1969–1995, oct 2016.

[102] Michael Riedel, Eric M. Orendt, and Dominik Henrich. Sensor-Based Loops and
Branches for Playback-Programmed Robot Systems. In International Conference
on Robotics in Alpe-Adria Danube Region (RAAD), pages 183–190, Torino, 2017.

[103] Alessandro Roncone, Olivier Mangin, and Brian Scassellati. Transparent role as-
signment and task allocation in human robot collaboration. In IEEE International
Conference on Robotics and Automation (ICRA), pages 1014–1021, Singapore,
2017.

[104] Gregory F. Rossano, Carlos Martinez, Mikael Hedelind, Steve Murphy, and
Thomas A. Fuhlbrigge. Easy robot programming concepts: An industrial perspect-
ive. In IEEE International Conference on Automation Science and Engineering
(CASE), pages 1119–1126, Madison, 2013.

[105] Leonel Rozo, Sylvain Calinon, Darwin G. Caldwell, Pablo Jimenez, and Carme
Torras. Learning Physical Collaborative Robot Behaviors From Human Demon-
strations. IEEE Transactions on Robotics, 32(3):513–527, jun 2016.

[106] Mohammad Safeea and Pedro Neto. Minimum distance calculation using laser
scanner and IMUs for safe human-robot interaction. Robotics and Computer-
Integrated Manufacturing, 58:33–42, aug 2019.

[107] Nikolaos Sarafianos, Bogdan Boteanu, Bogdan Ionescu, and Ioannis A. Kakadiaris.
3D Human pose estimation: A review of the literature and analysis of covariates.
Computer Vision and Image Understanding, 152:1–20, 2016.

[108] Philip J. Schneider and David H. Eberly. Geometric Tools for Computer Graphics.
Morgan Kaufmann, San Francisco, 2003.

[109] D. Schröter, P. Jaschewski, B. Kuhrke, and A. Verl. Methodology to Identify
Applications for Collaborative Robots in Powertrain Assembly. Procedia CIRP,
55:12–17, 2016.

[110] Dirk Schulz, Wolfram Burgard, Dieter Fox, and Armin B. Cremers. People Tracking
with Mobile Robots Using Sample-Based Joint Probabilistic Data Association
Filters. The International Journal of Robotics Research, 22(2):99–116, feb 2003.

[111] Eugenio Sebastiani, Raphaël Lallement, Rachid Alami, and Luca Iocchi. Dealing
with On-line Human-Robot Negotiations in Hierarchical Agent-Based Task Plan-
ner. In Proceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling (CAPS), pages 549–557, Pittsburgh, 2017.

140

Bibliography

[112] Julie Shah, James Wiken, Brian Williams, and Cynthia Breazeal. Improved human-
robot team performance using chaski, a human-inspired plan execution system. In
International Conference on Human-Robot Interaction (HRI), pages 29–36, New
York, 2011.

[113] Mili Shah, Roger D. Eastman, and Tsai Hong. An overview of robot-sensor calib-
ration methods for evaluation of perception systems. In Performance Metrics for
Intelligent Systems (PerMIS) Workshop, pages 15–20, New York, 2012.

[114] Aaron St. Clair and Maja Mataric. How Robot Verbal Feedback Can Improve
Team Performance in Human-Robot Task Collaborations. In Proceedings of the
Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pages 213–220, Portland, 2015.

[115] Jochen J. Steil and Günter W. Maier. Kollaborative Roboter: universale Werkzeuge
in der digitalisierten und vernetzten Arbeitswelt. In Günter W Maier, Gregor
Engels, and Eckhard Steffen, editors, Handbuch Gestaltung digitaler und vernetzter
Arbeitswelten, pages 1–24. Springer Berlin Heidelberg, 2018.

[116] Aaron Steinfeld, Odest Chadwicke Jenkins, and Brian Scassellati. The oz of wizard.
In ACM/IEEE International Conference on Human Robot Interaction (HRI), pages
101–108, La Jolla, USA, 2009.

[117] Franz Steinmetz, Annika Wollschlager, and Roman Weitschat. RAZER - A HRI
for Visual Task-Level Programming and Intuitive Skill Parameterization. IEEE
Robotics and Automation Letters, 3(3):1362–1369, 2018.

[118] U. Thomas, M. Barrenscheen, and F.M. Wahl. Efficient assembly sequence planning
using stereographical projections of C-space obstacles. In IEEE International
Symposium on Assembly and Task Planning, pages 96–102, Besancon, 2003.

[119] U. Thomas, B. Finkemeyer, T. Kroger, and F.M. Wahl. Error-tolerant execution of
complex robot tasks based on skill primitives. In IEEE International Conference
on Robotics and Automation (ICRA), volume 3, pages 3069–3075, Taipei, 2003.

[120] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas
Wortmann. A new skill based robot programming language using UML/P State-
charts. In IEEE International Conference on Robotics and Automation (ICRA),
pages 461–466, Karlsruhe, 2013.

[121] Elin A. Topp and Henrik I. Christensen. Tracking for following and passing persons.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 70–76, Edmonton, Canada, 2005.

[122] Kirsten Tracht, Lars Funke, and Michael Schottmayer. Online-control of assembly
processes in paced production lines. CIRP Annals, 64(1):395–398, 2015.

141

Bibliography

[123] Vaibhav V. Unhelkar, Shen Li, and Julie A. Shah. Decision-making for bidirectional
communication in sequential human-robot collaborative tasks. In ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 329–341, New
York, 2020.

[124] Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. Survey on hu-
man–robot collaboration in industrial settings: Safety, intuitive interfaces and
applications. Mechatronics, 55:248–266, 2018.

[125] Christian Vogel, Christoph Walter, and Norbert Elkmann. Safeguarding and Sup-
porting Future Human-robot Cooperative Manufacturing Processes by a Projection-
and Camera-based Technology. Procedia Manufacturing, 11:39–46, jan 2017.

[126] R. S. Wilcox, S. Nikolaidis, and J. A. Shah. Optimization of Temporal Dynamics
for Adaptive Human-Robot Interaction in Assembly Manufacturing. In Robotics:
Science and Systems, 2012.

[127] H.A. Yanco and J. Drury. Classifying human-robot interaction: an updated tax-
onomy. In IEEE International Conference on Systems, Man and Cybernetics, pages
2841–2846, The Hague, 2004.

[128] Guang-Zhong Yang, Jim Bellingham, Pierre E. Dupont, Peer Fischer, Luciano
Floridi, Robert Full, Neil Jacobstein, Vijay Kumar, Marcia McNutt, Robert Mer-
rifield, Bradley J. Nelson, Brian Scassellati, Mariarosaria Taddeo, Russell Taylor,
Manuela Veloso, Zhong Lin Wang, and Robert Wood. The grand challenges of
Science Robotics. Science Robotics, 3(14), jan 2018.

[129] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and Jianwei Wan.
3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2270–87,
nov 2014.

[130] Sofya Zeylikman, Sarah Widder, Alessandro Roncone, Olivier Mangin, and Brian
Scassellati. The HRC Model Set for Human-Robot Collaboration Research.
arXiv:1710.11211v2 [cs.RO], oct 2018.

[131] Q. Zhang and R. Pless. Extrinsic calibration of a camera and laser range finder (im-
proves camera calibration). In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2301–2306, Sendai, 2004.

[132] Wei Zheng, Bo Wu, and Hai Lin. POMDP Model Learning for Human Robot
Collaboration. arXiv:1803.11300v1 [cs.HC], 2018.

142

Prior publications of the author (peer-reviewed)

[133] Dominik Riedelbauch and Dominik Henrich. Fast Graphical Task Modelling for
Flexible Human-Robot Teaming. In 50th International Symposium on Robotics
(ISR), pages 420–425, Munich, 2018.

[134] Dominik Riedelbauch and Dominik Henrich. Exploiting a Human-Aware World
Model for Dynamic Task Allocation in Flexible Human-Robot Teams. In IEEE
International Conference on Robotics and Automation (ICRA), pages 6511–6517,
Montréal, 2019.

[135] Dominik Riedelbauch, Stephan Schweizer, and Dominik Henrich. Skill Interaction
Categories for Communication in Flexible Human-Robot Teams. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3810–
3816, Macau, 2019.

[136] Dominik Riedelbauch, Tobias Werner, and Dominik Henrich. Supporting a Human-
Aware World Model Through Sensor Fusion. In International Conference on Ro-
botics in Alpe-Adria-Danube Region (RAAD), pages 665–672, Torino, 2017.

Dominik Riedelbauch and Dominik Henrich. Coordinating Flexible Human-Robot
Teams by Local World State Observation. In IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), pages 1000–1005,
Lisbon, 2017.

Dominik Riedelbauch, Tobias Werner, and Dominik Henrich. Enabling Domain
Experts to Model and Execute Tasks in Flexible Human-Robot Teams. In Ta-
gungsband des 2. Kongresses Montage Handhabung Industrieroboter, pages 13–22,
Bremen, 2017.

Tobias Werner, Dominik Riedelbauch, and Dominik Henrich. Design and Evalu-
ation of a Multi-Agent Software Architecture for Risk-Minimized Path Planning in
Human-Robot Workcells. In Tagungsband des 2. Kongresses Montage Handhabung
Industrieroboter, pages 103–112, Bremen, 2017.

143

Prior publications of the author (other)

[140] Dominik Riedelbauch, Johannes Hartwig, and Dominik Henrich. Enabling End-
Users to Deploy Flexible Human-Robot Teams to Factories of the Future. In IROS
2019 Workshop "Factory of the Future", Macau, 2019.

Dominik Riedelbauch and Dominik Henrich. Eine Frage der Abstimmung. In
handling 7-8, pages 42–43. WEKA Business Medien, 2017.

Dominik Riedelbauch and Dominik Henrich. Koordinierung hybrider Mensch-
Roboter-Teams. In Rainer Müller, Jörg Franke, Dominik Henrich, Bernd Kuh-
lenkötter, Annika Raatz, and Alexander Verl, editors, Handbuch Mensch-Roboter-
Kollaboration, chapter 5.6, pages 260–269. Carl Hanser Verlag, 2019.

145

Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet
habe. Weiterhin erkläre ich, dass ich die Hilfe von gewerblichen Promotionsberatern bzw.
–vermittlern oder ähnlichen Dienstleistern weder bisher in Anspruch genommen habe,
noch künftig in Anspruch nehmen werde. Zusätzlich erkläre ich hiermit, dass ich keinerlei
frühere Promotionsversuche unternommen habe.

Bayreuth, den 12. November 2020

Dominik Riedelbauch

	Introduction
	Background, Motivation and Goals
	Terms and Delimitations
	Problem Analysis and Research Questions
	Overview

	State of the Art
	Task Modelling
	Decision-Making for Task Allocation
	Coordination Mechanisms
	Conclusions

	Task Modelling for Human-Robot Teams
	Skills for Human-Robot Teams
	Domain Definition
	Skill Graph Structure
	Benchmark Domain

	Shared Task Model Generation
	Graphical Modelling of Precedence Graphs
	Annotation with Operation Pre- and Postconditions

	Task Execution Principle
	Conclusions

	Human-Aware World Modelling for Task Allocation
	World Model Definition and Maintenance
	World Model Ageing
	Human Workspace Model
	Interaction Indicators
	Trustworthiness of Data

	Metrics for Task Allocation
	Conclusions

	Coordination of Flexible Human-Robot Teams
	Team Mental Model
	Agent Capability Model
	Interaction Categories
	Flexible Communication Patterns
	Preemptive State Machines

	System Architecture
	Dynamic Task Sharing
	Decision-Making Strategies
	Task Advancement
	Knowledge Update

	Conclusions

	Evaluation
	Subjective Evaluation
	Hardware Prototype
	Results

	Objective Evaluation
	Benchmark Tasks
	Simulation System
	Parametrisation
	Evaluation Metrics and Reference Data
	Results

	Conclusions

	Conclusions
	Summary and Discussion
	Future Work

	Complementary Evaluation Data and Parametrisation Details
	List of Tables
	List of Figures
	Bibliography

