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Abstract

Minimal codewords have applications in decoding linear codes and in cryptography. We
study the maximum number of minimal codewords in binary linear codes of a given length and
dimension. Improved lower and upper bounds on the maximum number are presented. We
determine the exact values for the case of linear codes of dimension k and length k + 2 and for
small values of the length and dimension. We also give a formula for the number of minimal
codewords of linear codes of dimension k and length k + 3.

1 Introduction

The minimal codewords of a linear code are those whose supports, i.e., the set of nonzero coor-
dinates, do not properly contain the supports of other nonzero codewords. They are equivalent
to circuits in matroids and cycles in graphs. In coding theory, minimal codewords were first used
in decoding algorithms [1, 2, 7, 15]. They have also found applications in cryptography: in secret
sharing schemes [19] and in secure two-party computation [9].

The set of minimal codewords is only known for a few classes of codes (see [1, 6, 7, 8, 11, 12, 18, 20,
21, 22]) and, in general, it is a very hard problem to determine this set. In this work, we consider
the following question: what is the maximum number of minimal codewords of linear codes of a
given length and dimension? This problem is already studied in the case of cycles in graphs [14]. In
the matroid setting, the maximum number of circuits was first addressed in [13]. The study of the
maximum and minimum number of minimal codewords of linear codes was initiated in [3, 4, 5, 10].

The results in this paper are described as follows. We determine the maximum number of minimal
codewords for binary linear codes of dimension k and length k + 2. We also give a formula for the
number of minimal codewords for the case of dimension k and length k+3. A general construction
of linear codes with a relatively large number of minimal codewords is also presented. This gives
a lower bound that is asymptotically close to the matroid upper bound. An upper bound that
is better than the matroid upper bound is also derived. The key idea is to use the systematic
generator matrix for a linear code and analyze the properties of the subsets of rows that produce
minimal codewords. We also compute the exact values of the for maximum number of minimal
codewords small values of length and dimension (completing the table in [4]).

2 Preliminaries

Let q be a power of a prime p and Fq be the finite field of order q. An [n, k]q linear code C is a
k-dimensional subspace of Fnq . Given a vector x ∈ Fnq , the support of x is defined as supp(x) =

1



{i : xi 6= 0, 1 ≤ i ≤ n}. A k × n matrix G whose rows form a basis for C is called a generator
matrix. If G = [Ik|A], where Ik is the k × k identity matrix, then we say that G is systematic or
in standard form.

A nonzero codeword c ∈ C is minimal if there does not exist a nonzero codeword c′ such that
supp(c′) ⊂6= supp(c). Otherwise (including the case c = 0), we call the codeword c non-minimal.
General properties of minimal codewords can be found in [7]. Note that a codeword and its
nonzero scalar multiples have the same support. We say that two codewords are equivalent if one
is a scalar multiple of the other. We use the notation M(C) for the number of non-equivalent
minimal codewords of C. Let Mq(n, k) be the maximum of M(C) for all [n, k]q codes C. Since C
has qk − 1 nonzero codewords, we have

Mq(n, k) ≤ qk − 1

q − 1
.

Bounds for Mq(n, k) and some exact values can be found in [2, 4, 7, 5, 10, 13]. In the setting of
matroids, it was shown in [13], that

Mq(n, k) ≤
(

n

k − 1

)
. (1)

This is bound is also called the matroid upper bound. Alternative proofs were given in [5]. In-
equality (1) is satisfied with equality for MDS codes. Another upper bound was derived by Agrell
in [2] for binary codes with high rate: for k−1

n > 1
2 , we have

M2(n, k) ≤ 2k

4n

(
k − 1

n
− 1

2

) .
Based on random coding, the lower bound

Mq(n, k) ≥
n−k+1∑
j=0

(
n

j

)
(q − 1)j

qn−k

j−2∏
i=0

[
1− q−(n−k−i)

]
was given in [7].

It is clear that we have Mq(n, 1) = 1 and Mq(k, k) = k for all k ≥ 1. In [4], it was shown that

M2(k + 1, k) =
(
k+1

2

)
for k ≥ 2. For small values of k and n, the authors in [4] presented some

exact values and bounds on M2(n, k). In addition, exact values for the case of cycle codes were
obtained.

3 Relations between minimal codewords and the rows of a sys-
tematic generator matrix

Let C be a linear [k+ t, k]2, i.e. binary, code with systematic generator matrix G. By gi we denote
the ith row of G, where 1 ≤ i ≤ k. For each subset S ⊆ {1, . . . , k} let cS denote the sum of the
rows of G with indices in S, i.e., cS =

∑
i∈S g

i ∈ C. For each codeword c ∈ C let cS ∈ Fk2 denote
the systematic part of c, i.e., the restriction of c to the first k coordinates c1, . . . , ck. Similarly, for
each codeword c ∈ C let cI ∈ Ft2 denote the information bits, i.e., the restriction of c to the last t
coordinates ck+1, . . . , ck+t. Some of the subsequent observations can also be found in [18].

2



Lemma 3.1. Let ∅ 6= S ⊆ {1, . . . , k}. If there exists a subset ∅ 6= T ( S with cTI = 0, then cS is
non-minimal.

Proof. Since supp
(
c
S\T
I

)
= supp

(
cSI
)

and supp
(
c
S\T
S

)
( supp

(
cSS
)
, we have supp

(
cS\T

)
( supp

(
cS
)
.

Lemma 3.2. Let ∅ 6= S ⊆ {1, . . . , k}. The codeword cS is non-minimal iff there exists a subset
∅ 6= T ( S with supp(cTI ) ⊆ supp(cSI ).

Proof. Since S 6= ∅ we have cS 6= 0. Thus, if cS is non-minimal, there exists a subset ∅ 6= T ( S
with supp(cT ) ( supp(cS), so that supp(cTI ) ⊆ supp(cSI ). For the other direction let ∅ 6= T ( S
with supp(cTI ) ⊆ supp(cSI ). If supp(cTI ) 6= supp(cSI ), then supp(cTI ) ( supp(cS) implies supp(cT ) (
supp(cSI ) so that cS is non-minimal by definition. If supp(cTI ) = supp(cSI ), then c

S\T
I = 0 and we

can apply Lemma 3.1.

Corollary 3.3. Let cS be a minimal codeword. Then, we have 1 ≤ #S ≤ t + 1. Moreover, if
#S = t+ 1, then cSI = 0.

Proof. The largest cardinality of a set of linearly independent vectors in Ft2 is t. Thus, if #S ≥ t+1,
then there exists a subset T ⊆ S with cTI = 0 and #T ≤ t + 1. We finally apply Lemma 3.1 to
conclude #S ≤ t+ 1.

As a direct consequence we conclude

M2(k + t, k) ≤
t+1∑
i=1

(
k + t

i

)
,

which asymptotically tends to
(
k+t
t+1

)
for a fixed value of t (if k tends to infinity). In Proposition 4.3

we will present a strict improvement over the matroid upper bound
(
n
k−1

)
=
(
k+t
t+1

)
, see (1), provided

that k is large enough.

Lemma 3.4. Let ∅ 6= S ⊆ {1, . . . , k} be a subset such that cSI = 0. Then, cS is minimal iff cTI 6= 0
for all ∅ 6= T ( S.

Proof. Since S 6= ∅ we have cS 6= 0. If cS is non-minimal, then there exists a subset ∅ 6= T ( S
with supp(cT ) ( supp(cS). Since cSI = 0 this implies cTI = 0. For the other direction we apply
Lemma 3.1.

Lemma 3.5. Let G be a systematic generator matrix of an [k + t, k]2 code C and 1 ≤ i ≤ k be
an index with giI = 0. By G′ we denote the matrix that arises from G by removing the ith row gi

and by G′′ the matrix if we additionally remove the ith column. Let C ′ and C ′′ be the linear codes
generated by G′ and G′′, respectively. Then C ′ is [k+ t, k− 1]2 code, C ′′ a [k+ t− 1, k− 1]2 codes,
and we have M(C) = M(C ′) + 1 = M(C ′′) + 1.

Proof. The stated lengths and the dimensions of the codes C ′ and C ′′ directly follow from their
construction. Since removing a zero column in a generator matrix does not change the number of
minimal codewords, we have M(C ′) = M(C ′′), so that it remains to show M(C) = M(C ′)+1. The
codeword gi itself is minimal in C and not contained in C ′. For any subset {i} ( S ⊆ {1, . . . , k}
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the codeword cS is non-minimal due to Lemma 3.1 (choosing T = {i}). It remains to show that
for subsets ∅ 6= S ⊆ {1, . . . , k}\{i} the codeword cS ∈ C ′ ≤ C is minimal in C ′ iff it is minimal in
C. Since C ′ is a subcode of C we only need to consider the case where cS is non-minimal in C.
Then, there exists a subset ∅ 6= T ( S with supp(cT ) ( supp(cS). Since giI = 0 we can assume
i /∈ T , so that cT ∈ C ′ and cS is also non-minimal in C ′.

So, in the following we may assume cSI 6= 0 whenever needed and we mention the implication
M2(k, k) = k for all k ≥ 1.

Definition 3.1. Let C and especially t be given. By T we denote the set of the 2t elements of Ft2.
For each τ ∈ T we set aτ = #

{
1 ≤ i ≤ k : riI = τ

}
. The counting vector of all aτ is denoted by

a. More precisely, we write aτ (C) and a(C) whenever the code C is not clear from the context.

Since column and row permutations of a generator matrix do not change the number of minimal
codewords, we have:

Lemma 3.6. Let C and C ′ be two [k + t, k]2 codes. If a(C) = a(C ′), then M(C) = M(C ′).

For the case t = 1 we can easily determine M(C) given the vector a(C) = (a0, a1).

Lemma 3.7. Let C be a [k + 1, k]2 code. Then, M(C) = k +
(
a1
2

)
.

Proof. For all subsets S ⊆ {1, . . . , k} of cardinality 1, the codeword cS is minimal, which give
k minimal codewords. Due to Corollary 3.3 is suffices to consider codewords of the form cS

with ∅ ⊆ S ⊆ {1, . . . , k} and #S ≤ 2, so that it remains to consider the cases with #S = 2.
Due to Lemma 3.1, Corollary 3.3, and Lemma 3.4 the codeword c{i,j} is minimal iff i 6= j and
giI = gjI = 1.

Corollary 3.8. M2(k + 1, k) =
(
k+1

2

)
= (k + 1)k/2.

The same result was also obtained in [4]. Not that the matroid upper bound M2(n, k) ≤
(
n
k−1

)
=(

k+t
k−1

)
=
(
k+t
t+1

)
, see (1), is matched with equality. We remark that the unique code attaining this

upper bound is the so-called projective base (of Fk2) given by a generator matrix consisting of the
k unit vectors and the all-1-vector as columns.

In Lemma 3.4 we have characterized whether cS is minimal for the special case when cSI = 0 using
the information bits of gi, where i ∈ S, only. This can be generalized and formalized as follows.

Definition 3.2. Let C be a [k + t, k]2 code and ∅ 6= S ⊆ {1, . . . , k} a subset. With this, we set

CS :=
〈{
giI : i ∈ S

}〉
.

We call CS the reduced code of C with respect to S.

Lemma 3.9. Let C be a [k + t, k]2 code and ∅ 6= S ⊆ {1, . . . , k} a subset. The codeword cS is
minimal in C iff cSI is either minimal in CS or cSI = 0 and cTI 6= 0 for all ∅ 6= T ( S.

Proof. Assume that cS is non-minimal. Since S 6= ∅ we have cS 6= 0, so that there exists a subset
∅ 6= T ( S with supp

(
cT
)
( supp

(
cS
)
. Thus, we have supp

(
cTI
)
⊆ supp

(
cSI
)
. If supp

(
cTI
)
6=

supp
(
cSI
)
, then supp

(
cTI
)
( supp

(
cSI
)

and cSI is non-minimal in CS . If supp
(
cTI
)

= supp
(
cSI
)
, then

c
S\T
I = 0. So, either cSI 6= 0 and 0 = c

S\T
I ( cSI or cSI = 0 and c

S\T
I = 0, where ∅ 6= S\T ( S.
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For the other direction we first assume that cSI is non-minimal in CS and cSI 6= 0. Here, there
exists a subset ∅ 6= T ( S with supp

(
cTI
)
( supp

(
cSI
)
, which implies supp

(
cT
)
( supp

(
cS
)
, i.e., cS

is non-minimal in C. In the other case we assume cSI = 0 and the existence of a subset ∅ 6= T ( S
with cTI = 0. Here we have supp

(
cT
)
( supp

(
cS
)
, i.e., cS is non-minimal.

Definition 3.3. We call a subset Ŝ ⊆ Ft2 minimal generating if
∑

x∈Ŝ x is minimal in 〈Ŝ〉 or∑
x∈Ŝ x = 0 and

∑
x∈T̂ x 6= 0 for all ∅ 6= T̂ ( Ŝ.

Note that no minimal generating set of cardinality at least two can contain the zero vector.

Theorem 3.10. Let C be a linear [k + t, k]2 code and a its corresponding vector counting the
multiplicities of the occurring information vectors. With this, we have

M(C) = k +
∑

τ∈Ft2\{0}

(
aτ
2

)
+

∑
Ŝ⊆Ft2 : Ŝ is minimal generating and 2≤#Ŝ≤t+1

∏
τ∈Ŝ

aτ .

Proof. Let cS be a minimal codeword in C for a subset S ⊆ {1, . . . , k}. Since cS 6= 0 we have
S 6= ∅. If #S = 1, then cS is minimal in all cases, which gives k possibilities. If S contains two
different elements i and j with giI = gjI , then we deduce #S = 2 from Lemma 3.1 and Lemma 3.4.

Since i 6= j the codeword c{i,j} is indeed minimal, iff giI = gjI 6= 0, which yields
∑

τ∈Ft2\{0}
(
aτ
2

)
further possibilities. In the remaining cases we have 2 ≤ #S ≤ t+1, see Corollary 3.3 for the upper
bound, and giI 6= gjI for all different i, j ∈ S. In other words Ŝ :=

{
giI : i ∈ S

}
has cardinality

#S. Due to Lemma 3.9 and Definition 3.3 cS is minimal iff Ŝ is minimal generating. Given Ŝ, the
number of choices for S are

∏
τ∈Ŝ aτ .

In some cases it is possible to concretely describe the minimal generating sets in the formula of
Theorem 3.10:

Proposition 3.11. Let C be a linear [k + t, k]2 code and a its corresponding vector counting the
multiplicities of the occurring information vectors. If aτ > 0 implies τ ∈ T := {e1, . . . , et,1},
where 1 = e1 + · · ·+ et, then we have

M(C) = k +
∑
τ∈T

(
aτ
2

)
+

∑
1(Ŝ⊆T

∏
τ∈Ŝ

aτ .

Proof. Due to Theorem 3.10 it suffices to check which subsets of T are minimal generating. If
1 /∈ Ŝ, then

∑
x∈Ŝ x is clearly not minimal within Ŝ. In all other cases Ŝ is minimal generating,

which easily follows from Lemma 3.9.

As an example let k ≥ 2t be integers and A be the k× t matrix whose rows consist of 2 copies each
of the unit vectors e1, . . . , et and k− 2t copies of the zero vector. Consider the [k+ t, k] linear code
C with generator matrix G = [Ik |A]. Note that C is projective and

M(C) = k +
∑

τ∈{e1,...,et}

(
aτ
2

)
= k + t.

In [16, Lemma 5.1] it is shown that each projective [k + t, k]2 code C satisfies M(C) ≥ k + t.
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4 Bounds for the maximum number of minimal codewords

A projective base can also be used to construct linear [k+t, k]2 codes with a relatively large number
of minimal codewords. To this end, let ei denote the ith unit vector and 1 denote the all-1-vector
(in Ft2).

Proposition 4.1.

M2(k + t, k) ≥
⌊

k

t+ 1

⌋t+1

Proof. W.l.o.g. we assume k ≥ t+ 1. Let C be a linear [k + t, k]2 code with systematic generator

matrix G such that aτ (C) = 0 if τ /∈ {e1, . . . , et,1} and aτ ≥
⌊

k
t+1

⌋
if τ ∈ {e1, . . . , et,1} for

all τ ∈ Ft2. Since (t + 1) ·
⌊

k
t+1

⌋
≤ k, the construction is possible. Now we consider all subsets

S ⊆ {1, . . . , k} with cardinality #S = t + 1 such that #
{
ciI : i ∈ S

}
= t + 1, i.e., each possible

vector of information bits occurs exactly once. Note that there are

ae1 · . . . aet · a1 ≥
⌊

k

t+ 1

⌋t+1

choices. Since
∑t

i=1 ei = 1 and no proper subset of {e1, . . . , et,1} sums to zero we can apply
Lemma 3.4 to deduce that those cS are minimal codewords.

The essential property of {e1, . . . , et,1} used in the above proof is that of a projective basis. The
explicit choice of vectors is called canonical basis in that context. We remark that it is also possible
to precisely determine M(C) if aτ (C) 6= 0 implies τ ∈ {e1, . . . , et,1} and those aτ are given, see
Proposition 3.11. The codes constructed in Proposition 4.1 show that the matroid upper bound
M2(n, k) ≤

(
n
k−1

)
=
(
k+t
t+1

)
is, up to a constant, asymptotically tight for every fixed value of t.

Our next aim is to conclude an upper bound for M2(k + t, k) from Theorem 3.10. To this end, we
will utilize an optimization problem1:

Lemma 4.2. Let s, r, and m be positive integers with s ≤ r and f : Rr≥0 → R≥0 a function defined
by

f(x1, . . . , xr) =
∑

S⊆{1,...,r} : #S=s

∏
i∈S

xi.

Then, the optimization problem max f(x1, . . . , xr) subject to the constraint
∑r

i=1 xi = m has the
unique optimal solution xi = m

r for all 1 ≤ i ≤ r with target value
(
r
s

)
·
(
m
r

)s
. If we additionally

require that the xi have to be integers, then an optimal solution is given by xi =
⌊
m+i−1

r

⌋
for

1 ≤ i ≤ r.

Proof. For r = 1 the statements are obvious, so that we assume r ≥ 2 in the following. Assume
that for a given optimal solution of the real-valued optimization problem stated above, there are
indices 1 ≤ i, j ≤ r with xi 6= xj . From the given vector x = (x1, . . . , xr) we construct a vector x̄

1We are pretty sure that this problem has been studied in the literature before. However, since we were not able
to find a reference, we give a self-contained proof here.
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by replacing the ith and the jth component of x both by
xi+xj

2 . Now we want to compare f(x)
and f(x̄). Clearly, we have ∑

S⊆{1,...,r}\{i,j} : #S=s

∏
h∈S

x̄h =
∑

S⊆{1,...,r}\{i,j} : #S=s

∏
h∈S

xh.

For the cases where the subset S intersects {i, j} in exactly one element we compute∑
S⊆{1,...,r} : #S=s,#S∩{i,j}=1

∏
h∈S

x̄h

=
∑

S̄⊆{1,...,r}\{i,j} : #S̄=s−1

(x̄i + x̄j) ·
∏
h∈S̄

x̄h

=
∑

S̄⊆{1,...,r}\{i,j} : #S̄=s−1

(xi + xj) ·
∏
h∈S̄

xh

=
∑

S⊆{1,...,r} : #S=s,#S∩{i,j}=1

∏
h∈S

xh,

i.e., again there is no difference. If S contains both i and j, then we can write S = S̄ ∪ {i, j} with
a subset S̄ ⊆ {1, . . . , r}\{i, j} and compute∑

S̄∈{1,...,r}\{i,j} : #S̄=s−2

x̄i · x̄j ·
∏
h∈S̄

x̄h

=
∑

S̄∈{1,...,r}\{i,j} : #S̄=s−2

(
xixj +

(
xi − xj

2

)2
)
·
∏
h∈S̄

xh

≥
∑

S̄∈{1,...,r}\{i,j} : #S̄=s−2

xi · xj ·
∏
h∈S̄

xh.

Thus, we have f(x̄) ≥ f(x). Next we remark that we have equality iff
∏
h∈S̄ xh = 0 for all subsets

S̄ ∈ {1, . . . , r}\{i, j} : #S̄ = s − 2, i.e., there are most s − 3 indices h ∈ {1, . . . , r}\{i, j} with
xh 6= 0, so that f(x) = 0, which clearly is not an optimal solution. Thus, in an optimal solution x
all entries have to be equal. Since

∑r
i=1 xi = m we obtain xi = m

r and the stated target value is a
direct conclusion.

For the case with integral variables we assume that x = (x1, . . . , xr) is an optimal solution such
that there exist indices 1 ≤ i, j ≤ r with xi − xj ≥ 2. Now let x̄ arose from x by increasing
xj and decreasing xi by one, respectively. Since x ∈ Nr and xi − xj ≥ 2, also x̄ ∈ Nr and∑r

h=1 x̄h =
∑r

h=1 xh = m. Next we will show f(x̄) ≥ f(x). To this end, we proceed as before and
distinguish the summands in

∑
S⊆{1,...,r} : #S=s

∏
i∈S xi and

∑
S⊆{1,...,r} : #S=s

∏
i∈S x̄i according

to the cardinality of S ∩ {i, j}. As before, for #S ∩ {i, j} ≤ 1 there is no difference if we compare
the sum over all respective subsets S. For the cases #S ∩ {i, j} = 2 we can utilize the inequality

(xi − 1) · (xj + 1) · z = xixjz + (xi − xj − 1) · z ≥ xixjz

for z ≥ 0 to conclude f(x̄) ≥ f(x). Thus, there exists an optimal solution x with |xi − xj | ≤ 1 for
all 1 ≤ i, j ≤ r. Due to symmetry we can assume x1 ≤ · · · ≤ xr w.l.o.g. Since

∑r
i=1 xi = m, we

obtain the stated formula xi =
⌊
m+i−1

r

⌋
for 1 ≤ i ≤ r.
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Proposition 4.3. Let C be a linear [k + t, k]2 code and a its corresponding vector counting the
multiplicities of the occurring information vectors. With this, we have

M(C) ≤ (k + 1)k

2
+

t+1∑
s=2

(
2t − 1

s

)
·
(

k

2t − 1

)s
.

Proof. We want to apply Theorem 3.10 and remark that we clearly have

k +
∑

τ∈Ft2\{0}

(
aτ
2

)
≤ (k + 1)k

2
.

Since no minimal generating set of cardinality at least two contains the zero vector and the aτ are
non-negative, we conclude ∑

Ŝ⊆Ft2 : Ŝ is minimal generating and 2≤#Ŝ≤t+1

∏
τ∈Ŝ

aτ ≤
∑

S⊆Ft2\{0} : 2≤#S≤t+1

∏
τ∈S

aτ . (2)

Since
∑

τ∈Ft2
aτ = k we can assume a0 = 0 when maximizing the right-hand side of Inequality (2).

Applying Lemma 4.2 onto the right-hand side of Inequality (2), with s = #S, r = 2t − 1, and
m = k, gives the stated upper bound for M(C).

We remark that Proposition 4.3 improves upon the matroid upper bound M2(k+ t, k) ≤
(
k+t
t+1

)
. As

an example we state that Proposition 4.3 yields

M2(k + 2, k) ≤ k3

27
+O

(
k2
)
,

M2(k + 3, k) ≤ 5k4

343
+O

(
k3
)
, and

M2(k + 4, k) ≤ 1001k5

253125
+O

(
k4
)
,

while
(
k+2
2+1

)
= k3

6 +O
(
k2
)
,
(
k+3
3+1

)
= k4

24 +O
(
k3
)
, and

(
k+4
4+1

)
= k5

120 +O
(
k4
)
. Note however that the

fraction between the coefficients of the leading terms tend to 1 as t tends to infinity. In order to
obtain tighter bounds we need to study the properties of minimal generating sets.

Lemma 4.4. For two different elements a, b ∈ Ft2\{0} the set {a, b} is minimal generating iff
supp(a) ∩ supp(b) 6= ∅.

Proof. Note that we have a + b 6= 0. Since b 6= 0 the statement follows from the equivalence
supp(a) ⊆ supp(a+ b) iff supp(a) ∩ supp(b) 6= ∅.

As an application of Theorem 3.10 we compute M(C) in dependence of a for t = 2.

Proposition 4.5. Let C be a linear [k + 2, k]2 code and a its corresponding vector counting the
multiplicities of the occurring information vectors. With this, we have

M(C) = k +
a10 · (a10 − 1)

2
+
a01 · (a01 − 1)

2
+
a11 · (a11 − 1)

2
+a10 · a11 + a01 · a11 + a10 · a01 · a11

= k +
(k − a00) · (k − a00 − 1)

2
− a10 · a01 + a10 · a01 · a11.

8



Proof. Due to Lemma 4.4 the set {10, 01} is the only subset of F2
2\{0} that has cardinality 2 and

is not minimal generating. The unique subset {01, 10, 11} of F2
2\{0} of cardinality 3 is indeed

minimal generating. For the second equation note that k = a00 + a01 + a10 + a11.

Maximizing the formula from Proposition 4.5 we obtain:

Proposition 4.6. We have

M2(k + 2, k) = k + k(k − 1)/2 + b(k − 1)/3c · bk/3c · b(k + 1)/3c

for all k ≥ 1.

Proof. Let C be a [k + 2, k]2 code. From the latter expression for M(C) in Proposition 4.5 it is
obvious that a00 = 0 and a11 ≥ 1 in the maximum. Thus, it remains to maximize

f(a01, a10, a11) = a10 · a01 · a11 − a10 · a01 = a10 · a01 · (a11 − 1)

subject to a01 + a10 + a11 = k and a01, a10, a11 ∈ N. It is well known that f is maximized iff a01,
a10, and a11−1 are as equal as possible while satisfying a01 +a10 +(a11 − 1), c.f. Lemma 4.2. Thus,
an optimal solution is given by a01 =

⌊
k−1 + 2

3

⌋
, a10 =

⌊
k−1 + 1

3

⌋
, and a11 =

⌊
k−1

3

⌋
+ 1. Plugging

into the formula in Proposition 4.5 gives the stated result.

Proposition 4.7. Let C be a linear [k + 3, k]2 code and a its corresponding vector counting the
multiplicities of the occurring information vectors. With this, we have

M(C) = k +
∑

τ∈F3
2\{0}

aτ · (aτ − 1)

2
+ a110 · (a101 + a011 + a111) + a101 · (a011 + a111) + a011 · a111

+a100 · (a110 + a101 + a111) + a010 · (a110 + a011 + a111) + a001 · (a011 + a101 + a111)

+a100a010a110 + a100a001a101 + a010a001a011 + a100a010a111 + a100a001a111

+a010a001a111 + a100a110a011 + a100a011a101 + a010a110a101 + a010a101a011

+a001a110a101 + a001a110a011 + a100a011a111 + a010a101a111 + a001a110a111

+a110a101a011 + a110a101a111 + a110a011a111 + a011a101a111

+a100a010a001a111 + a100a011a110a001 + a100a101a011a010 + a100a101a110a111

+a010a110a101a001 + a010a110a011a111 + a001a011a101a111

Proof. We apply Theorem 3.10. From the
(

7
2

)
= 21 2-subsets of F3

2\{0} only the six subsets

{100, 010}, {100, 001}, {010, 001}, {100, 011}, {010, 101}, {001, 110}

violate the condition from Lemma 4.4. The 15 other combinations are listed in the first two rows
of the stated formula. It is a bit cumbersome to check by hand, but out of the

(
7
3

)
= 35 3-subsets

of F3
2\{0} just those 19 listed in the rows three to six of the stated formula satisfy the criterion of

Lemma 3.9. The sum over the 7 projective bases of F3
2 can be stated as∑

τ3∈F3
2\{0,τ1,τ2,τ1+τ2}

aτ1aτ2aτ3aτ1+τ2+τ3 ,

see the subsequent Proposition 4.9, and also be spelled out as done in the last two rows of the
formula in the statement of the proposition.
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The exact maximization of the formula of Proposition 4.7 might be a technical challenge, while it
is easy to come up with a conjecture for large enough values of k:

Conjecture 4.8. For k ≥ 4 the exact value of M2(k+3, k) is given by the formula of Proposition 4.7
with a = (a000, a100, a010, a001, a110, a101, a011, a111), where

a =



(l, l, l, l + 1, l + 1, l + 1, l + 1) : k = 4 + 7l,
(l, l, l, l + 1, l + 1, l + 1, l + 2) : k = 5 + 7l,
(l, l, l, l + 1, l + 1, l + 2, l + 2) : k = 6 + 7l,
(l, l, l, l + 1, l + 2, l + 2, l + 2) : k = 7 + 7l,

(l + 1, l, l, l + 2, l + 2, l + 1, l + 2) : k = 8 + 7l,
(l + 1, l, l, l + 2, l + 2, l + 2, l + 2) : k = 9 + 7l,

(l + 1, l + 1, l, l + 2, l + 2, l + 2, l + 2) : k = 10 + 7l

if k ≤ 26 or

a000 = a001 = a110 = a111 = 0, a100 =

⌊
k

4

⌋
, a010 =

⌊
k + 1

4

⌋
, a101 =

⌊
k + 2

4

⌋
, and a011 =

⌊
k + 3

4

⌋
if k 6≡ 0 (mod 4) and k ≥ 27 or

a000 = a001 = a110 = a111 = 0, a100 =
k

4
, a010 =

k

4
− 1, a101 =

k

4
+ 1, and a011 =

k

4

if k ≡ 0 (mod 4) and k ≥ 27.

We have computationally checked Conjecture 4.8 for all k ≤ 150. For the leading term of M2(k +
3, k), in terms of k, the situation is different to the one of Lemma 4.2, i.e., choosing a000 = 0 and

aτ = k
7 for τ ∈ F3

2\{0} just gives M2(k + 3, k) ≥ k4

343 +O
(
k3
)
, while a000 = a110 = a101 = a011 = 0

and a100 = a010 = a001 = a111 = k
4 gives M2(k + 3, k) ≥ k4

256 + O
(
k3
)

(ignoring the rounding to

integers, whose effect is in O
(
k3
)
). Conjecture 4.8 of course implies M2(k + 3, k) = k4

256 +O
(
k3
)
.

Next we focus on the leading term:

Proposition 4.9. Let C be a linear [k + t, k]2 code and a its corresponding vector counting the
multiplicities of the occurring information vectors. If t ≥ 2, then

M(C) = O
(
kt
)

+
1

(t+ 1)!
·
∑
τ1∈T1

∑
τ2∈T2

· · ·
∑
τt∈Tt

(
t∏
i=1

aτi

)
· a(

∑t
i=1 τi)

,

where Ti = Ft2\ 〈{τj : 1 ≤ j < i}〉 for 1 ≤ i ≤ t.

Proof. We apply Theorem 3.10. If t ≥ 2 then only the contributions of the minimal generating
sets Ŝ of cardinality exactly t + 1 are not covered by the O

(
kt
)

term. Due to Corollary 3.3 we
have

∑
x∈Ŝ x = 0 in those remaining cases. By Lemma 3.4 we have to guarantee that no proper

subset ∅ 6= T̂ ( Ŝ satisfies
∑

x∈T̂ x = 0. Since there are (t+1)! possible orders of the elements of Ŝ
we obtain the stated summation formula (which mimics the construction or counting of projective
bases of Ft2).

We remark that the minimal generating sets of Ft2 of the maximum cardinality t + 1 have a lot
of equivalent descriptions. As mentioned before, they correspond to the projective bases of Ft2.
Due to Corollary 3.3 and Lemma 3.4 they also correspond to minimal dual codewords (of the
t-dimensional simplex code).
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Conjecture 4.10. Let t ≥ 2 be an integer and P = {e1, . . . , et,1}. Then, the function

1

(t+ 1)!
·
∑
τ1∈T1

∑
τ2∈T2

· · ·
∑
τt∈Tt

(
t∏
i=1

aτi

)
· a(

∑t
i=1 τi)

,

where Ti = Ft2\ 〈{τj : 1 ≤ j < i}〉 for 1 ≤ i ≤ t, attains its maximum on R2t−1
≥0 subject to the

constraint
∑

τ∈Ft2\{0}
aτ = k at aτ = k

t+1 for all τ ∈ P and aτ = 0 otherwise. If additionally aτ ∈ N
is assumed, then the maximum is attained at the points where |aτ − aτ ′ | ≤ 1 for all τ, τ ′ ∈ P and
aτ = 0 otherwise.

A direct implication of this conjecture is M2(k + t, k) =
(

k
t+1

)t+1
+ O

(
kt
)
. For t = 2 or t = 3,

k ≤ 100 Conjecture 4.10 is indeed true.

5 Exact values for small parameters

The aim of this subsection is to determine the exact value of M2(n, k) for cases with 1 ≤ k ≤ n ≤ 15.
First note that if a linear code C contains a codeword of weight 1 then removing the corresponding
coordinate yields a code C ′ with n(C ′) = n(C) − 1 and M(C ′) = M(C) − 1. (In general we have
M(C) = M(C1) + M(C2) whenever C = C1 ⊕ C2, i.e., it is sufficient to consider indecomposable
codes.) Removing zero or duplicate columns from the generator matrix of a binary code (scalar
multiples for q > 2) does not change the number of minimal codewords of the corresponding codes.
Thus it is sufficient to consider all projective [n, k]2 codes with minimum distance at least 2. These
can be generated easily and for each code we can simply count the number of minimal codewords.
To this end we have applied the enumeration algorithm from [17], see Table 1 for the numerical
results. In most cases we have verified the lower bounds from [4] to be exact and only improved
the upper bounds. However, for n = 15 there are also some improvements for the lower bounds.
We remark that the rather complicated structure of the formula of M2(k + 3, k) for k ≤ 26 in
Conjecture 4.8 suggests that the exact determination of M2(k + t, k) might not admit an easy
explicit solution when k is small.
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