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Abstract
The Del Pezzo surface Y of degree 5 is the blow up of the plane in 4 general points, 
embedded in ℙ5 by the system of cubics passing through these points. It is the simplest 
example of the Buchsbaum–Eisenbud theorem on arithmetically-Gorenstein subvarieties of 
codimension 3 being Pfaffian. Its automorphism group is the symmetric group �

5
 . We give 

canonical explicit �
5
-invariant Pfaffian equations through a 6 × 6 antisymmetric matrix. We 

give concrete geometric descriptions of the irreducible representations of �
5
 . Finally, we 

give �
5
-invariant equations for the embedding of Y inside (ℙ1)5 , and show that they have 

the same Hilbert resolution as for the Del Pezzo of degree 4.

Keywords Del Pezzo surfaces · Pfaffian equations · Icosahedral symmetry · 
Representations of the symmetric group in 5 letters
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1 Introduction

Del Pezzo [12] (see also [9], page 313) showed that the smooth nondegenerate surfaces Y2
n
 

of degree n in ℙn , except for the anticanonical embedding of ℙ1 × ℙ
1
→ ℙ

8 , are obtained 
as the blow-up of the projective plane in (9 − n) points of which no three are collinear, no 
six lie on a conic (here n = 3, 4, 5, 6, 7, 8, 9 ). After his classification these surfaces bear his 
name.

Del Pezzo surfaces are projectively unique as soon as n ≥ 5 , and we are interested (see 
[3], and the related papers [2] and [1]), about their defining equations, here particularly in 
the case n = 5.
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It is well known, at least since the work of Buchsbaum and Eisenbud [5] (see also [4]), 
that all surfaces Y in ℙ5 which are arithmetically Cohen-Macaulay and subcanonical (i.e., 
the canonical sheaf �Y ≅ OY (r) for some integer r) are defined by the m-Pfaffians of an 
antisymmetric (2m + 1) × (2m + 1)-matrix A = −tA of homogeneous forms (more pre-
cisely, the Pfaffians generate the ideal of polynomials vanishing on Y). The simplest nonde-
generate case is the case m = 2 of a generic 5 × 5 antisymmetric matrix A of linear forms: 
here r = −1 and we get the Del Pezzo surface Y2

5
 of degree 5 as Pfafffian locus of A, hence 

defined by the 5 quadratic equations which are the five 4 × 4-Pfaffians of A.
It suffices to choose a generic matrix, but an explicit matrix is better, as was for instance 

done in [13]. At any rate we are in this way far away from a normal form for the equations 
of Y2

5
 , which might be desirable for many purposes. What do we mean by a normal form? 

To explain this, recall that Y2
5
 is indeed isomorphic to the moduli space of ordered quin-

tuples of points in ℙ1 , and this isomorphism follows after showing that its group of auto-
morphisms is �5 ( Y2

5
 is indeed in bijection with the set of projective equivalence classes 

of quintuples where no point of ℙ1 occurs with multiplicity ≥ 3 ). Hence, we would like to 
have equations where this symmetry shows up, and which are ‘invariant’ for the symmetry 
group.

This requirement can be precisely specified as follows: we have the anticanonical 
(6-dimensional) vector space V ∶= H0(�−1

Y
) = H0(Y ,OY (−KY )) and the 5-dimensional 

vector space W of quadratic forms vanishing on Y ( W ⊂ Sym 2(V) ). Both vector spaces are 
representations of the symmetric group �5 and the 5 × 5 antisymmetric matrix A of linear 
forms is seen, by the Buchsbaum-Eisenbud theory, to be an invariant tensor

It was known through character theory (see [10] with corrections done in [11], see [6, 7]) 
that this invariant tensor is unique up to constants.

The main result of the present paper is to explicitly and canonically determine it. Now, 
it looks like there is no unique such representation of the tensor A, because in the end we 
have still to choose a basis for both vector spaces V and W. However, if we take the natural 
irreducible 4-dimensional representation U4 of �5 , this is given by the invariant subspace 
x1 + x2 +⋯ + x5 = 0 in the 5-dimensional vector space U′

5
 with coordinates (x1,… , x5) 

which are naturally permuted by �5 . So, there is a natural permutation representation U′
5
 

yielding a natural basis for U′
5
⊃ U4.

In our case, we first show that there is a natural basis sij ( 1 ≤ i ≠ j ≤ 3 ) of V, showing 
that V is the regular representation of �3 tensored with the sign character, and then we 
show that the space W is a 5-dimensional invariant subspace in a natural 6-dimensional 
subspace W ′ of Sym 2(V) , related to a natural permutation representation of �5

1, and with 
basis Qij again related to the regular representation of �3 (the space W is then generated by 
the differences between two such quadratic forms Qij).

This leads to a normal form: we produce in Theorem  4.3 (which we reproduce here 
immediately below) in an elegant numerical way an explicit antisymmetric 6 × 6 matrix A′ 
with entries in V (i.e., with entries linear forms) whose 15 4 × 4-Pfaffians are exactly twice 
the differences between the quadratic forms Qij.

A ∈ ((Λ2W)⊗ V)�5 .

1 if � is the sign character, indeed W ′ ⊗ 𝜖 is the permutation representation corresponding to double combi-
natorial pentagons (the cosets in �5∕Aff (1,ℤ∕5)).
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Theorem 1.1 Let Y be the del Pezzo surface of degree 5, embedded anticanonically in ℙ5 . 
Then the ideal of Y is generated by the 4 × 4 - Pfaffians of the �5 - equivariant anti-sym-
metric 6 × 6-matrix A� =

The action of the symmetric group �5 on the entries of the matrix is given by the action 
on the vector space V, with basis sij , i ≠ j, 1 ≤ i, j ≤ 3 , which is described in the proof of 
Theorem 2.6, tensored with the sign character � (we shall denote V � ∶= V ⊗ 𝜖 and observe 
here that V, V ′ are isomorphic �5 representations). The action on the matrix is determined 
by the action of �5 on W ′ ⊗W ′ , in turn determined by the action of �5 on the vector 
space W ′ with basis the quadrics Qij , i ≠ j, 1 ≤ i, j ≤ 3 . The latter action (which is explicitly 
described in Remark 3.8) is a consequence of the former, since Qij = sij�ij , where the �ij ’s 
are defined in Sect. 2 and are as follows: �ij = �(sik − ski − sjk).

In practice, the action of two generators of �5 is explicitly given as follows.
The transposition � ∶= (1, 2) acts as

• sij ↦ s�(i)�(j);
• Qij ↦ −Q�(i)�(j).

The cycle � ∶= (1, 2, 3, 4, 5) acts as

and

Our main theorem is also interesting because, even if we work sometimes using character 
theory and over a field of characteristic 0, in the end we produce equations which define 
the Del Pezzo surface of degree 5 over any field of characteristic different from 2 (in this 
case symmetric and antisymmetric tensors coincide, and the situation should be treated 
separately).

We believe that our approach is also interesting from another point of view (as already 
announced in [6, 7]): the symmetries of Y2

5
 bear some similarity to those of the icosahe-

dron, as it is well known ([10, 8]), and the irreducible representations of �5 can be explic-
itly described via the geometry of Y2

5
 . For instance, the representations V, W are irreducible, 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 s21 + s23− s12 + s31− −s13 − s21 s13 + s32 s21 + s32−

−s31 − s32 −s32 − s21 −s12 − s23
−s21 − s23+ 0 s12 + s23 s31 + s23− s13 + s21 −s12 − s31
+s31 + s32 −s13 − s32 −s23 − s31
−s12 − s31+ −s12 − s23 0 s12 + s13 s12 − s21 s23 + s31
s32 + s21 −s32 − s31 s31 − s13
s13 + s21 −s31 − s23 −s12 − s13+ 0 −s21 − s32 s23 + s12

s13 + s32 s32 + s31 −s13 − s32
−s13 − s32 −s13 − s21 −s12 + s21 s21 + s32 0 s12 + s13

s23 + s31 −s31 + s13 −s21 − s23
−s21 − s32 s12 + s31 −s23 − s31 −s23 − s12 −s12 − s13 0

s12 + s23 s13 + s23 s21 + s23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s12 ↦ s31, s13 ↦ �12 = s13 − s31 − s23, s21 ↦ s21,

s23 ↦ −�13 = s12 − s21 − s32, s31 ↦ −�32 = s13 − s31 + s21, s32 ↦ −�23 = s12 − s21 + s31,

Q12 ↦ Q31, Q13 ↦ Q12, Q21 ↦ Q21,

Q23 ↦ Q13, Q31 ↦ Q32, Q32 ↦ Q23.
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and together with the natural representation U4 described above, they and their tensor prod-
uct with the sign representation � yield all irreducible representations of �5 (V is the only 
one such that V ≅ V ⊗ 𝜖).

We also give explicit descriptions of the irreducible representations of �5 via the geom-
etry of Y2

5
 . While it is easy to describe U4 and W ⊗ 𝜖 through natural permutation repre-

sentations on �5∕�4 , respectively on �5∕Aff (1,ℤ∕5) , we give another realization of the 
anticanonical vector space V,

through an explicit permutation representation of dimension 24, the one on the set of ori-
ented combinatorial pentagons (the cosets in �5∕(ℤ∕5) ). This is interesting, because we 
have then a bijection between the set of the 12 (unoriented, nondegenerate) combinatorial 
pentagons and the set of the 12 geometric nondegenerate pentagons contained in Y, and 
formed with quintuples out of the 10 lines contained in Y (these geometric pentagons are 
hyperplane sections of Y).

Finally, in a previous paper [3] we have written explicit equations of Del Pezzo surfaces 
in products (ℙ1)h , and here, for the Del Pezzo of degree 5, we give in Theorem 5.3 �5

-invariant equations inside (ℙ1)5.
An interesting phenomenon is that the minimal (multigraded) Hilbert resolution for this 

embedding of the Del Pezzo of degree 5 is exactly the same as for the natural embedding 
in (ℙ1)5 of the Del Pezzo surfaces of degree 4, so that we have an example of a reducible 
Hilbert scheme.

2  Symmetries and the anticanonical system of the Del Pezzo surface 
of Degree 5

We recall some notation introduced in [7], as well as some intermediate results established 
there.

The Del Pezzo surface Y ∶= Y2
5
 of degree 5 is the blow-up of the plane ℙ2 in the 4 points 

p1,… , p4 of a projective basis, that is, we choose

Observe that pi corresponds to a vector ei , for i = 1, 2, 3, 4 , where e1, e2, e3 is a basis of 
a vector space U′ , and e1 + e2 + e3 + e4 = 0 . In other words, ℙ2 = ℙ(U�) , where U′ is the 
natural irreducible representation of �4.

As already mentioned in the introduction, the Del Pezzo surface Y is indeed the moduli 
space of ordered quintuples of points in ℙ1 , and its automorphism group is isomorphic to 
�5.

The obvious action of the symmetric group �4 permuting the 4 points extends in fact to 
an action of the symmetric group �5.

This can be seen as follows. The six lines in the plane joining pairs pi, pj can be labelled 
as Li,j , with i, j ∈ {1, 2, 3, 4}, i ≠ j.

Denote by Ei,5 the exceptional curve lying over the point pi , and denote, 
for i ≠ j ∈ {1, 2, 3, 4} , by Eh,k = Ek,h the strict transform in Y of the line Li,j , if 
{1, 2, 3, 4} = {i, j, h, k} . For each choice of 3 of the four points, {1, 2, 3, 4} ⧵ {h} , consider 
the standard Cremona transformation �h based on these three points. To it we associate the 

V = H0(�−1

Y2
5

) = H0(OY2
5
(−KY2

5
)) = H0(OY2

5
(1)),

p1 = (1 ∶ 0 ∶ 0), p2 = (0 ∶ 1 ∶ 0), p3 = (0 ∶ 0 ∶ 1), p4 = (1 ∶ 1 ∶ 1) = (−1 ∶ −1 ∶ −1).
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transposition (h, 5) ∈ �5 , and the upshot is that �h transforms the 10 (−1) curves Ei,j via the 
action of (h, 5) on pairs of elements in {1, 2, 3, 4, 5}.

There are five geometric objects permuted by �5 : namely, 5 fibrations �i ∶ Y → ℙ
1 , 

induced, for 1 ≤ i ≤ 4 , by the projection with centre pi , and, for i = 5 , by the pencil of con-
ics through the 4 points. Each fibration is a conic bundle, with exactly three singular fibres, 
corresponding to the possible partitions of type (2, 2) of the set {1, 2, 3, 4, 5} ⧵ {i}.

The intersection pattern of the curves Ei,j , which generate the Picard group of Y is dic-
tated by the simple rule (recall that E2

i,j
= −1, ∀i ≠ j)

In this picture the three singular fibres of �1 are

The relations among the Ei,j ’s in the Picard group come from the linear equivalences 
E3,4 + E2,5 ≡ E2,4 + E3,5 ≡ E2,3 + E4,5 and their �5-orbits.

An important observation is that Y contains exactly ten lines (i.e., ten irreducible curves 
E with E2 = EKY = −1 ), namely the lines Ei,j.

Their intersection pattern is described by the Petersen graph, whose vertices correspond 
to the curves Ei,j , and whose edges correspond to intersection points (cf. Fig. 1).

Remark 2.1 (1) The action of Aut (Y) ≅ �5 can be described as the action on ℙ2 by the fol-
lowing (birational) transformations:

• the above vectorial action of �4 on U′ (by which �4 ≤ �5 acts on ℙ2 permuting 
p1, p2, p3, p4 ), i.e., in coordinates,

• for � ∈ �3

 and for � = (3, 4) : 

Ei,j ⋅ Eh,k = 1 ⇔ {i, j} ∩ {h, k} = �, Ei,j ⋅ Eh,k = 0 ⇔ {i, j} ∩ {h, k} ≠ �, {i, j}.

E3,4 + E2,5, E2,4 + E3,5, E2,3 + E4,5.

�(x1 ∶ x2 ∶ x3) = (x�(1) ∶ x�(2) ∶ x�(3)),

Fig. 1  The Petersen graph (the 
quotient of the dodecahedron via 
the antipodal map), which is the 
dual graph to the incidence cor-
respondence of the lines on the 
quintic Del Pezzo surface
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• the transposition (4, 5) is the standard Cremona transformation 

(2) The equation of the six lines of the complete quadrangle in ℙ2 (the lines Li,j joining pi 
and pj)

yields an eigenvector for the sign representation � ∶ �5 → {±1}.
In fact, the proper transform of div (Σ) is the sum of the 10 lines Ei,j contained in Y, and 

it is a divisor in | − 2KY | invariant for any automorphism. Since there is a natural action 
of �5 on OY (KY ) , we get a natural action of �5 on H0(Y ,OY (−2KY )) hence the proper 
transform of the equation Σ is a section of H0(Y ,OY (−2KY )) which is an eigenvector for a 
character of �5 . There are only two characters, the sign and the trivial one: restricting to 
the subgroup �3 we see that it must be the sign.

We consider now the anticanonical vector space

We know that V is, via adjunction, naturally isomorphic to the vector space of cubics pass-
ing through the 4 points,

Since �5 acts linearly on V we want to determine this action and translate this action on V ′.
For this purpose we set, for 1 ≤ i ≠ j ≤ 3,

Proposition 2.2 {sij | 1 ≤ i ≠ j ≤ 3} ⊂ V � is a basis of V ′.

Proof All 6 cubic forms vanish on p1,… , p4.
s12, s21 are the only ones not divisible by x3 , and they are independent modulo (x3) , since 

their divisors on the line x3 = 0 are, respectively 2p1 + p2 , p1 + 2p2.
It suffices to show that the other 4 are independent after division by x3 . Now, s23

x3
,
s32

x3
 

yield x2x3 , respectively x2
2
 modulo (x1) , hence it suffices to show that s13

x3x1
,

s31

x3x1
 are independ-

ent: but these are respectively (x3 − x2), (x1 − x2) .   ◻

We set

where � ∶= �(

(
1 2 3

i j k

)
 ) is the sign of the permutation.

�(x1 ∶ x2 ∶ x3) = (x1 − x3 ∶ x2 − x3 ∶ −x3),

(x1 ∶ x2 ∶ x3) ↦

(
1

x1
∶

1

x2
∶

1

x3

)
= (x2x3 ∶ x1x3 ∶ x1x2).

Σ ∶= x1x2x3(x1 − x2)(x2 − x3)(x3 − x1)

V ∶= H0(Y ,OY (−KY )).

V � ∶= {F ∈ ℂ[x1, x2, x3]3 | F(p1) = F(p2) = F(p3) = F(p4) = 0} ≅ ℂ
6.

sij ∶= xixj(xj − xk), {1, 2, 3} = {i, j, k}.

�ij ∶=
Σ

sij
=

Σ

xixj(xj − xk)
= �xk(xi − xj)(xk − xi),
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Then we have:

Remark 2.3 (1) We observe as a parenthetical remark that the �ij ’s span a 4-dimensional 
sub vector space of V. In fact,

for all �, �, � ∈ ℂ such that � + � + � = 0.
(2) Observe that for �3 ≤ �5 , �3 acts on homogeneous polynomials by permuting 

x1, x2, x3 , and that V ′ is the regular representation of �3.

Consider now the Euler sequence on ℙ2 ∶= ℙ(U�) , U� ≅ ℂ
3:

From this follows

Therefore the isomorphism ℂ[x1, x2, x3]3 ≅ H0(ℙ2,O
ℙ2 (−Kℙ2 )) is given by the map:

Hence we identify V ′ with V via the map: V �
→ V , sij ↦ sij(dx1 ∧ dx2 ∧ dx3)

−1 . In this way 
we can read out on V ′ the given action of �5 on V. We obtain immediately:

Lemma 2.4 �3 ≤ �5 acts on V by

Hence the representation V restricted to �3 ≤ �5 is the regular representation tensored 
by the sign character � , while V restricted to �4 ≤ �5 is isomorphic to the subspace of 
S3((U�)∨)⊗ 𝜖 corresponding to the polynomials vanishing in p1,… , p4.

Proof Direct computation for �3 , for �4 observe that the tranposition (3, 4) acts sending

  ◻

Remark 2.5 Since sij�ij = Σ and Σ is an eigenvector for the sign representation, the previous 
lemma implies immediately that for � ∈ �3 ≤ �5 we have:

We prove the following

Theorem 2.6 (1) The character vector �V of the �5-representation V = H0(Y ,OY (−KY )) is 
equal to (6, 0,−2, 0, 0, 1, 0) . Therefore H0(Y ,OY (−KY )) is the unique six dimensional irre-
ducible representation of �5.

�ij = �(sik − ski − sjk).

�(�12 + �13) + �(�21 + �23) + �(�31 + �32) = 0,

0 → O
ℙ2 → U� ⊗O

ℙ2 (1) → Θ
ℙ2 → 0.

O
ℙ2 (−Kℙ2 ) ≅ ∧3U� ⊗O

ℙ2 (3).

P ↦ P(dx1 ∧ dx2 ∧ dx3)
−1.

�(sij) = �(�)s�(i)�(j).

(2.1)dx1 ∧ dx2 ∧ dx3 ↦ d(x1 − x3) ∧ d(x2 − x3) ∧ d(−x3) = −dx1 ∧ dx2 ∧ dx3.

�(�ij) = ��(i)�(j).
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(2) The character of 
⋀6

V  is the sign character � = �2.

For the convenience of the reader and for the purpose of fixing the notation we recall 
in Table 1 the character table of �5 . Here, cf. [14], pages 199–202, the natural permuta-
tion representation on ℤ∕5 yields �1 + �4 , while Λ2(�4) = �7 , and S2(�4) = �1 + �4 + �5 . 
Finally, 𝜒3 = 𝜒4 ⊗ 𝜒2 , 𝜒6 = 𝜒5 ⊗ 𝜒2 , and obviously 𝜒7 = 𝜒7 ⊗ 𝜒2.

Remark 2.7 Indeed, as we shall also see later, V = W7 , W = W5 and U4 = W4.

Proof (1) We have already observed that for � ∈ �3 we have �(sij) = �(�)s�(i)�(j).
Recall that the transposition � ∶= (3, 4) acts as

We use formula 2.1, obtaining that (3, 4) acts by:

• s12 = x1x2(x2 − x3) ↦ −(x1 − x3)(x2 − x3)x2 = �31;
• s13 = x1x3(x3 − x2) ↦ −(x1 − x3)(−x3)(−x2) = s23;
• s21 = x2x1(x1 − x3) ↦ −(x2 − x3)(x1 − x3)x1 = −�32;
• s23 ↦ s13;
• s31 = x1x3(x1 − x2) ↦ −(x1 − x3)(−x3)(x1 − x2) = −�12;
• s32 = x2x3(x2 − x1) ↦ −(x2 − x3)(−x3)(x2 − x1) = �21.

Next we consider the action of � = (4, 5) . This time we do not have an action on the 
space of polynomials, hence we work on the affine chart {x3 = 1}.

Then: �
(
x1
x2

)
=

(
1

x1
1

x2

)
 and we have that (4, 5) acts by:

Therefore (again here {i, j, k} = {1, 2, 3})

�

⎛⎜⎜⎝

x1
x2
x3

⎞⎟⎟⎠
=

⎛⎜⎜⎝

x1 − x3
x2 − x3
−x3

⎞⎟⎟⎠
.

�((dx1 ∧ dx2)
−1) =

(
d
1

x1
∧ d

1

x2

)−1

=

(
1

x2
1

dx1 ∧
1

x2
2

dx2

)−1

= x2
1
x2
2
(dx1 ∧ dx2)

−1.

Table 1  Character table of �
5

Conj. Class 1 (1, 2) (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4) (1, 2, 3, 4, 5) (1, 2, 3)(4, 5)

�
1
= �W1

1 1 1 1 1 1 1
�
2
= �W2

=∶ � 1 −1 1 1 −1 1 −1
�
3
= �W3

4 −2 0 1 0 −1 1
�
4
= �W

4
4 2 0 1 0 −1 −1

�
5
= �W5

5 1 1 −1 −1 0 1
�
6
= �W6

5 −1 1 −1 1 0 −1
�
7
= �W7

6 0 −2 0 0 1 0
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Now we are ready to calculate the trace of � for

� = (1, 2) ∶

hence �V (�) = trace (�) = 0.
� = (1, 2)(3, 4) ∶

hence �V (�) = trace (�) = −2.
If we use the character table of �5 we can now immediately conclude, since V has 

dimension 6 and the trace of (1, 2)(3, 4) is nonnegative for all other representations, except 
that �7((1, 2)(3, 4)) = −2.

For completeness we calculate explicitly the action of the other representatives of all the 
conjugacy classes (thereby giving a selfcontained proof that V is irreducible).

� = (1, 2, 3) ∶

hence �V (�) = trace (�) = 0.
� = (1, 2, 3, 4) ∶

hence �V (�) = trace (�) = 0.
� = (1, 2, 3, 4, 5) ∶

hence �V (�) = trace (�) = 1.
� = (1, 2, 3)(4, 5) ∶

hence �V (�) = trace (�) = 0.
The above explicit calculations show that the character vector for the representation V is

(2.2)

sij(dx1 ∧ dx2)
−1 =xixj(xj − xk)(dx1 ∧ dx2)

−1
↦

1

xi

1

xj

xk − xj

xjxk
x2
1
x2
2
(dx1 ∧ dx2)

−1

=
x2
1
x2
2
x2
3

xix
2
j
xk

(xk − xj)(dx1 ∧ dx2)
−1 = xixk(xk − xj)(dx1 ∧ dx2)

−1

=sik(dx1 ∧ dx2)
−1.

� ∈ {(1, 2), (1, 2)(3, 4), (1, 2, 3), (1, 2, 3, 4), (1, 2, 3, 4, 5), (1, 2, 3)(4, 5)}.

s12 ↔ −s21, s13 ↔ −s23, s31 ↔ −s32,

s12 ↦ �32 = s21 + s13 − s31, s13 ↦ −s13, s21 ↦ −�31 = s12 + s23 − s32,

s23 ↦ −s23, s31 ↦ −�21 = s23 − s13 − s32, s32 ↦ �12 = s13 − s31 − s23,

s12 ↦ s23, s13 ↦ s21, s21 ↦ s32,

s23 ↦ s31, s31 ↦ s12, s32 ↦ s13,

s12 ↦ �12 = s13 − s31 − s23, s13 ↦ s31, s21 ↦ −�13 = s12 − s21 − s32,

s23 ↦ s21, s31 ↦ −�23 = s12 − s21 + s31, s32 ↦ �32 = s13 − s31 + s21,

s12 ↦ s31, s13 ↦ �12 = s13 − s31 − s23, s21 ↦ s21,

s23 ↦ −�13 = s12 − s21 − s32, s31 ↦ −�32 = s13 − s31 + s21, s32 ↦ −�23 = s12 − s21 + s31,

s12 ↦ s21, s13 ↦ s23, s21 ↦ s31,

s23 ↦ s32, s31 ↦ s13, s32 ↦ s12,
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hence ⟨�V ,�V⟩ = 1 and V is an irreducible representation.
(2) A basis of 

⋀6
V  consists of the element � ∶= s12 ∧ s13 ∧ s21 ∧ s23 ∧ s31 ∧ s32 . Then 

� = (1, 2) maps � to

whence the claim follows.   ◻

3  Quadratic equations for the Del Pezzo surface of degree 5 
and geometrical descriptions of �

5
‑representations

We observe that by Riemann-Roch and Kodaira vanishing we have:

The above formula can also be checked by direct calculation of the space of homogeneous 
polynomials F(x1, x2, x3) of degree 6 vanishing of multiplicity 2 at the points p1,… , p4 . 
This direct calculation also shows that the natural morphism of �5-representations:

is surjective.
We set W ∶= ker(Φ)(≅ ℂ

5) = H0(Y , IY (2)).
Observe that, setting Qij ∶= sij�ij , 1 ≤ i ≠ j ≤ 3 , we have that Φ(Qij) = Σ ∈ H0(Y ,OY (2)) . 

It is easy to verify that the set {Qij | 1 ≤ i ≠ j ≤ 3} is ℂ-linearly independent and therefore

are linearly independent elements of W, hence form a basis.
If we denote by W ′ the vector subspace of Sym 2(V) spanned by the Qij, 1 ≤ i ≠ j ≤ 3 , 

then we have the following inclusions, where I  is the sheaf of ideals of the functions van-
ishing on Y:

3.1  Geometrical and combinatorial pentagons

We want to give now some geometrical background to the choice of the sections sij, �ij , and 
the quadratic forms Qij , which makes our calculations less mysterious.

Definition 3.1 Let S be a set. Then 

(1) an ordered combinatorial  n-gon on S is a map p ∶ ℤ∕n → S;
(2) the i-th side Li is the restriction of p to {i, i + 1};

�V = (6, 0,−2, 0, 0, 1, 0).

s21 ∧ s23 ∧ s12 ∧ s13 ∧ s32 ∧ s31 = −�,

h0(OY (−2KY )) = �(OY (−2KY )) =
1

2
(−2KY )(−3KY ) + 1 = 16.

Φ ∶ Sym 2(V) ≅ ℂ
21

→ H0(Y ,OY (2))(= H0(Y ,OY (−2KY ))) ≅ ℂ
16.

q12 ∶= Q12 − Q32, q13 ∶= Q13 − Q32, q21 ∶= Q21 − Q32,

q23 ∶= Q23 − Q32, q31 ∶= Q31 − Q32

H0(Y , IY (2)) = W ⊂ W � = ⟨Qij � 1 ≤ i ≠ j ≤ 3⟩ ⊂ Sym 2(V).
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(3) an ordered combinatorial n-gon on S is said to be nondegenerate if p is injective;
(4) an oriented combinatorial n-gon on S is an equivalence class of ordered combinatorial 

n-gons on S for the action of ℤ∕n given by composition on the source p(i) ∼ p(i + a);
(5) a(n unoriented) combinatorial n-gon on S is an equivalence class of oriented combina-

torial n-gons on S , where p(i) ∼ p(−i) (that is, an equivalence class of ordered n-gons 
for the action of the dihedral group Dn , p(i) ∼ p(±i + a));

(6) the neighbouring n-gon of p(i) is the unoriented n-gon p(2i); it is nondegenerate, for n 
odd, iff p is nondegenerate, moreover in this case it has no sides in common with the 
n-gon p(i) once n ≥ 5;

(7) a double combinatorial pentagon ( n = 5 ) is the (unordered) pair of two neighbouring 
nondegenerate (unoriented) combinatorial pentagons.

(8) If S is a linear space, then a geometrical n-gon is the union of n distinct lines Li associ-
ated to a combinatorial pentagon p(i) in such a way that Li is the line joining p(i) with 
p(i + 1).

Remark 3.2 If the set S has n elements, and we consider only nondegenerate n-gons, 
then the objects in item (1) are the elements of the set �n , those in item (4) are the cosets 
�n∕(ℤ∕n) , for item (5) we get the cosets �n∕Dn , and finally for item (7) we have the cosets 
�5∕Aff (1,ℤ∕5).

Proposition 3.3 Let Y be a Del Pezzo surface of degree 5.

(a) The geometrical pentagons contained in Y are exactly 12. They are given by the divisors 
of zeros of the 12 sections sij, �ij.

(b) There is a bijection between the set of such geometrical pentagons and the set of com-
binatorial nondegenerate pentagons on {1, 2, 3, 4, 5} . This bijection associates to the 
combinatorial pentagon [i ↦ p(i)] the geometrical pentagon

(c) There is a bijection between the set of the 6 quadrics {Qij} and the set of double com-
binatorial pentagons on {1, 2, 3, 4, 5}.

(d) Moreover, the subset of V

is an orbit for the action of �5 on V, and the stabilizer of s21 is the cyclic subgroup 
generated by (1, 2, 3, 4, 5). In particular �4 acts simply transitively on M.

Figures 2 and 3 illustrate items (6), (7), (b) and (c) above.

Proof We know that the only lines contained in Y are the 10 lines Eij , and it is straightfor-
ward to verify that their union is the divisor div (Σ).

Let L1 + L2⋯ + L5 be a geometrical pentagon; then Li intersects Li+1 , hence we get 5 
distinct pairs Ai of elements in {1, 2, 3, 4, 5} such that Ai and Ai+1 are disjoint, ∀i ∈ ℤ∕5.

Ep(1)p(2) + Ep(2)p(3) + Ep(3)p(4) + Ep(4)p(5) + Ep(5)p(1).

M ∶= {±sij,±�ij}
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Hence Ai+1 is disjoint from the union of Ai and Ai+2 , in particular Ai and Ai+2 have 
exactly one element in common.

We consider the2 5-gon Bi , where Bi ∶= A2i . We denote by

Hence Bi = {p(i), p(i + 1)} , and we get a nondegenerate combinatorial pentagon.
Observe that we can recover the Ai ’s from the Bj’s, simply letting Ai ∶= B2i.
By item (5) above the number of nondegenerate combinatorial pentagons on 

(1, 2, 3, 4, 5) is 120∕10 = 12.
Direct inspection shows then that

Similar formulae can be computed directly for div (sij) , we may however observe that 
{ div (sij)} is the �3-orbit of div (s12) , hence div (sij) is a geometric pentagon.

p(i + 1) ∶= Bi ∩ Bi+1 = A2i ∩ A2i+2.

div (s12) = E14 + E42 + E23 + E35 + E51.

Fig. 2  A double combinatorial 
pentagon

2

3

4

5 1

2

3

4

5 1

Fig. 3  The pair of disjoint geo-
metric pentagons in the Petersen 
graph associated to the above 
double combinatorial pentagon

34

12

45

23 15

25

35

13

14 24

2 it is the dually neighbouring pentagon, where the dual n-gon is associated to the sequence of sides 
L1,… ,Ln.
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Since div (Σ) is the union of the 10 lines of Y, follows that div (�ij) is associated to the 
neighbouring combinatorial pentagon of the one of div (sij).

Hence the quadrics Qij correspond bijectively to double pentagons (these are 6).
The calculations performed above in the proof of Theorem  2.6 show that if 

� ∶= (1, 2, 3)(4, 5) , then ⟨�⟩ permutes simply transitively the set {sij} , hence it sends the set 
{�ij} to the set {−�ij} . While �3 permutes the set M� ∶= {±sij} , hence also the set {±�ij} . 
Finally, (3, 4) permutes the set M . Since the above elements generate �5 , M is �5-invari-
ant. The orbit of s21 inside M′ for the subgroup generated by �3 and � ∶= (1, 2, 3)(4, 5) has 
at least 7 elements, hence it equals M′ . Since (3, 4) sends s21 to −�32 , follows that M is a 
single �5-orbit. Hence the stabilizer of s21 has cardinality 5: but we know that it contains 
(1, 2, 3, 4, 5).

Indeed,

  ◻

We can summarize part of our discussion in the following corollary.3

Corollary 3.4 There is a natural bijection between the set M and the set of oriented nonde-
generate combinatorial pentagons on {1, 2, 3, 4, 5} , in such a way that −m is the oppositely 
oriented pentagon of  m. M∕ ± 1 is then in bijection with the set  P of pentagons, where  
±�ij corresponds to the neighbouring pentagon of ±sij.

Defining

we get an order 4 transformation � on M,such that �2(m) = −m ∀m ∈ M , and inducing an 
involution on M∕ ± 1 , which exchanges ±sij with ±�ij , hence such that (M∕ ± 1)∕� is in 
bijection with the set  DP of double pentagons.

Proof The bijection follows immediately from the fact that we have two transitive actions, 
and the stabilizer of s21 is the cyclic subgroup generated by (1, 2, 3, 4, 5), which is also the 
stabilizer of the standard pentagon corresponding to the identity map.

We define then �(m) by the property that it associates to an oriented pentagon p(i) the 
neighbouring oriented pentagon p(2i); from this definition follows that �2(m) = −m . More-
over, since −m is the pentagon p(−i) , and p(2(−i)) = p(−(2i)) we obtain �(−m) = −�(m) . 
Hence �(m)m = �(−m)(−m) inside S2(V).4   ◻

Recall now that we have bijections:

div (s21) = E25 + E53 + E31 + E14 + E42 =

5∑
i=1

Ei,i+3.

�(p)(i) ∶= p(2i),

3 a referee suggested a lengthy alternative proof of this corollary using the isomorphism with the ring of 
invariants of five points on the line; here to an oriented pentagon corresponds a product of Plücker coordi-
nates of a 2 × 5 matrix, as done in the paper by Howard, Millson, Snowden, Vakil : ‘The ideal of relations 
for the ring of invariants of n points on the line’, JEMS 14 (2012), 1, 1–60.
4 Indeed �(sij) = �ij, �(�ij) = −sij . Observe moreover that, by what we observed in remark 1.3, � is not 
induced by a linear map of V!
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• M ≅ �5∕(ℤ∕5) = �5∕⟨(1, 2, 3, 4, 5)⟩ (oriented pentagons)
• P ≅ M∕ ± 1 ≅ �5∕D5 = �5∕⟨(1, 2, 3, 4, 5), (1, 4)(2, 3)⟩ (pentagons)
• DP ≅ (M∕ ± 1)∕� ≅ �5∕Aff (1,ℤ∕5) = �5∕⟨(1, 2, 3, 4, 5), (1, 2, 4, 3)⟩ (double penta-

gons)

Remark 3.5 Observe that � corresponds to multiplication on the right by (1, 2, 4, 3) on the 
cosets gH, where H is any of the above three subgroups.

Next we show that all irreducible representations of �5 of dimension different from 45 
are contained in the permutation representation associated to the set M , i.e., to the set of 
oriented pentagons.

Theorem 3.6 Let M be the permutation representation associated to M , D the permutation 
representation associated to DP , P the permutation representation associated to  P.

Then

• W � = W ⊕ 𝜖 = D⊗ 𝜖 , and
• M = V ⊕ (V ⊗ 𝜖)⊕ D⊕ (D⊗ 𝜖) = V ⊕ V ⊕ [(W ⊗ 𝜖)⊕ 𝜒1]⊕ [W ⊕ 𝜖].

Proof First of all, � induces an action of ℤ∕4 on M, hence M splits according to the 4 
eigenvalues ±

√
−1,±1.

The eigenspace for +1 is generated by the vectors (of M!)

hence it clearly corresponds to the representation D on the double pentagons.
The eigenspace D′ for −1 is generated by the vectors

and together with the previous yields as direct sum the +1-eigenspace for −1 = �2 , which is 
clearly P, the representation associated to the pentagons. Observe that D′ contains the sign 
representation �.

The eigenspace V ′ for 
√
−1 is generated by the vectors 

m −
√
−1(�(m)) − (−m) +

√
−1(−�(m)) . The Galois group of �2 = −1 (complex conjuga-

tion) yields an isomorphism of V ′ with the eigenspace V ′′ for −
√
−1.

Step 1 V � ≅ V .
This follows immediately from Schur’s Lemma: indeed M surjects onto V, hence V 

appears as a summand of M. But D and D′ are reducible, hence P maps trivially to V, and 
V ′ is isomorphic to V. Therefore we have

m + �(m) + (−m) + (−�(m)),

m − (�(m)) + (−m) − (−�(m)),

M = D⊕ D� ⊕ V⊕2,

5 These are easily gotten by the standard permutation representation on 5 elements!
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and we know that V ≅ V ⊗ 𝜖.
Step 2 We calculate the character of M.

In order to achieve this, we use the following obvious

Lemma 3.7 Consider a transitive permutation representation of a finite group G on G/H. 
Then its character �H is given by:

In the case of the oriented pentagons, H is spanned by (1, 2, 3, 4, 5) and �H(�) = 0 
unless � has order dividing 5, in which case �H(Id) = 24 , while �H((1, 2, 3, 4, 5)) = 4 , 
since the normalizer of H is the affine group Aff (1,ℤ∕5).

Thus in this case the character vector equals

Step 3 �D = �6 + �1 , D� = D⊗ 𝜖.
Subtracting twice the character of V, we obtain �P = (12, 0, 4, 0, 0, 2, 0) . Alternatively, 

and also in order to calculate the character of D, we again apply the above lemma.
If we consider pentagons and double pentagons (i.e. H = D5 resp. H = Aff (1,ℤ∕5) ), 

observe that in both cases gHg−1 contains no elements of order 3 and in the case of 
pentagons no transpositions and no 4-cycles. Hence the character is zero, in the case of 
pentagons, unless we have 5-cycles, double transpositions, or the identity.

A 5-cycle fixes 2 pentagons, and exactly one double pentagon. A double transposi-
tion fixes 4 pentagons, and 2 double pentagons. A 4-cycle fixes 2 double pentagons: 
for instance, if i ↦ 2i fixes {(0, a1, a2, a3, a4), (0, a2, a4, a1, a3)} , then it must preserve the 
block decomposition {1, 2, 3, 4} = {a1, a4} ∪ {a2, a3} corresponding to the two sets of 
neighbours of 0; since it does not fix any pentagon, it must exchange these two sets, 
and then it must be either a2 = 2a1 or a3 = 2a1 . Up to choosing an appropriate repre-
sentative, we may assume a1 = 1 ; then it must be a4 = −1 , and the only two choices are 
a2 = 2 or a2 = −2.

We conclude from these calculations that

We recover in this way that

and moreover we obtain:

This implies that D� = D⊗ 𝜖.
Step 4 We shall show that D ≅ W � ⊗ 𝜖 and W � ≅ W ⊕ 𝜖.
In fact, W � = ⟨Qij⟩ surjects onto the one dimensional representation � corresponding 

to ℂΣ ⊂ H0(OY (2)) . In particular, W � = W ⊕ 𝜖.
Observe now that, for each � ∈ �3,

�H(�) = |{gH|�gH = gH}| = 1

|H| |{g|� ∈ gHg−1}|.

�M = (24, 0, 0, 0, 0, 4, 0).

�P =(12, 0, 4, 0, 0, 2, 0),

�D =(6, 0, 2, 0, 2, 1, 0) = �1 + �6

�M − �P = (12, 0,−4, 0, 0, 2, 0) = 2�V = 2�7.

𝜒P − 𝜒D = (6, 0, 2, 0,−2, 1, 0) = 𝜒D⊗𝜖 .
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while, defining

we have �(dij) = d�(i)�(j).
Hence W ′ and D⊗ 𝜖 have the same character on �3 . It follows that also W ′ is the direct 

sum of an irreducible five dimensional representation with a one dimensional one, and 
either W ≅ D or W ≅ D⊗ 𝜖 . The first possibility is excluded since W ′ contains � .   ◻

Remark 3.8 We have indeed precise formulae for the action on the space W ′.
By Lemma 2.4 and Remark 2.5 we know that for � ∈ �3 we have that 

�(Qij) = sgn (�)Q�(i)�(j).
In particular:
� = (1, 2) ∶

From the proof of Theorem 2.6 we see that other elements of �5 act as follows:
� = (3, 4) ∶

� = (4, 5) ∶

� = (1, 2)(3, 4) ∶

� = (1, 2, 3, 4) ∶

� = (1, 2, 3, 4, 5) ∶

� = (1, 2, 3)(4, 5) ∶

For future use we also show:

Lemma 3.9 The determinant of  W is the trivial representation, equivalently, 
⋀6

W � = �.

Proof Since W � ≅ W ⊕ 𝜖 , we have that 
⋀6

W � = � if and only if 
⋀5

W = �1.

�(Qij) = �(�)Q�(i)�(j),

dij ∶=
(
(sij) + (−sij) + (�ij) + (−�ij)

)
,

Q12 ↔ −Q21, Q13 ↔ −Q23, Q31 ↔ −Q32.

Q12 ↔ −Q31, Q13 ↔ −Q23, Q21 ↔ −Q32,

Q12 ↔ −Q13, Q21 ↔ −Q23, Q31 ↔ −Q32,

Q12 ↔ Q32, Q13 ↦ Q13, Q21 ↔ Q31, Q23 ↦ Q23.

Q12 ↦ −Q12, Q13 ↦ −Q31, Q21 ↦ −Q13,

Q23 ↦ −Q21, Q31 ↦ −Q23, Q32 ↦ −Q32.

Q12 ↦ Q31, Q13 ↦ Q12, Q21 ↦ Q21,

Q23 ↦ Q13, Q31 ↦ Q32, Q32 ↦ Q23.

Q12 ↦ −Q21, Q13 ↦ −Q23, Q21 ↦ −Q31,

Q23 ↦ −Q32, Q31 ↦ −Q13, Q32 ↦ −Q12.
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A basis of 
⋀6

W ′ consists of the element � ∶= Q12 ∧ Q13 ∧ Q21 ∧ Q23 ∧ Q31 ∧ Q32 . 
Then � = (1, 2) maps � to

whence the claim follows.   ◻

4  �
5
‑equivariant resolution of the sheaf of regular functions 

on the Del Pezzo surface Y ⊂ ℙ
5 of degree 5

By Theorem 2.6, 2) we know that �⋀6
V
= �2 = �.

Consider the Euler sequence on ℙ5 ∶= ℙ(V) , V = H0(Y ,OY (−KY )):

Then

and this implies that

where � is the sign representation.
We take a Hilbert resolution of OY ( P ∶= ℙ

5):

where W,W ′′,U are �5-representations (a posteriori they shall be irreducible of respective 
dimensions 5, 5, 1, at this stage we only know that dim(W) = 5).

Applying Hom(⋅,�P) to the above resolution, we obtain a resolution of

This equals

which after twisting by OP(1) becomes:

By the uniqueness of a minimal graded free resolution up to isomorphism, we get that (4.1) 
is isomorphic to (4.4), hence:

Q21 ∧ Q23 ∧ Q12 ∧ Q13 ∧ Q32 ∧ Q31 = −�,

0 → Ω1

ℙ5 → V ⊗O
ℙ5 (−1) → O

ℙ5 → 0.

6⋀
(V ⊗O

ℙ5 (−1)) ≅

5⋀
Ω1

ℙ5 ⊗O
ℙ5 ,

𝜔
ℙ5 ≅ (detV)⊗O

ℙ5 (−6) ≅ O
ℙ5 (−6)⊗ 𝜖,

(4.1)0 → U ⊗OP(−5) → W �� ⊗OP(−3) → W ⊗OP(−2) → OP → OY → 0,

(4.2)
Ext3(OY ,𝜔P) ≅ 𝜔Y ≅ OY (−1) ∶

0 → 𝜔P → W∨ ⊗𝜔P(2) → (W ��)∨ ⊗𝜔P(3) → U∨ ⊗𝜔P(5) → OY (−1) → 0.

(4.3)
0 → 𝜖 ⊗OP(−6) → 𝜖 ⊗W∨ ⊗OP(−4) → (W ��)∨ ⊗ 𝜖 ⊗OP(−3)

→ 𝜖 ⊗ U∨ ⊗OP(−1) → OY (−1) → 0,

(4.4)
0 → 𝜖 ⊗OP(−5) → 𝜖 ⊗W∨ ⊗OP(−3) → (W ��)∨ ⊗ 𝜖 ⊗OP(−2)

→ 𝜖 ⊗ U∨ ⊗OP → OY → 0.

U ≅ 𝜖, W �� ≅ W∨ ⊗ 𝜖.
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Therefore we have proven the following:

Proposition 4.1 The self dual Hilbert resolution of OY is given by:

where A ∈ W ⊗ (W ⊗ 𝜖)⊗ V  , B ∈ W∨ ⊗ S2(V) = Hom (W, S2(V)) , and A is anti 
symmetric.

Observe that W ⊗ (W ⊗ 𝜖)⊗ V ≅ W ⊗W ⊗ V  as representations, since V ≅ V ⊗ 𝜖 . 
Therefore we look for A ∈ (∧2W ⊗ V)�5 , and we claim that A is uniquely determined up 
to scalars.

Lemma 4.2 The natural inclusion

induces an isomorphism

Proof Observe that ∧2W � ≅ ∧2(W ⊕W2) ≅ ∧2W ⊕ (W ⊗W2) ≅ ∧2W ⊕W6 , where 
W6 ≅ W ⊗ 𝜖 and ∧2W ≅ V ⊕W3 (as it is easily checked by the character formula

By Schur’s lemma it follows that

  ◻

We want to find the (up to a constant) unique �5-equivariant map A, such that if A 
corresponds to a tensor 𝛼 ∈ (

⋀2
W ⊗ V)�5 , then � ∧ � = B.

We have that 𝛼 ∧ 𝛼 ∈
⋀4

W ⊗ S2V  and, since 
⋀5

W ≅ ℂ is the trivial representation, 
hence the pairing

identifies 
⋀4

W with W∨ , therefore

Since we want to find the (up to a constant) unique element A ∈ (
⋀2

W � ⊗ V)�5 , we write 
for 1 ≤ i ≠ j ≤ 3 , 1 ≤ h ≠ k ≤ 3 , 1 ≤ m ≠ n ≤ 3,:

and use the lexicographical order for (ij), resp. (hk), resp (mn).

(4.5)0 → 𝜖 ⊗OP(−5)
B∨

−−→𝜖 ⊗W∨ ⊗OP(−3)
A
−→W ⊗OP(−2)

B
−→OP → OY → 0,

∧2W ⊗ V ⊂ ∧2W � ⊗ V

(∧2W ⊗ V)�5 ≅ (∧2W � ⊗ V)�5 ≅ ℂ.

�∧2W (g) =
1

2
(�W (g)

2 − �W (g
2)).)

(∧2W � ⊗ V)�5 ≅ ((∧2W ⊕W6)⊗ V)�5 ≅ (∧2W ⊗ V)�5 ≅

≅ ((V ⊕W3)⊗ V)�5 ≅ (V ⊗ V)�5 ≅ ℂ.

4⋀
W ×W →

5⋀
W ≅ ℂ

𝛼 ∧ 𝛼 = B ∈ W∨ ⊗ S2(V).

A ∶=
∑

ij,hk,mn

aij,hk,mn(Qij ∧ Qhk)⊗ smn, Aij,hk ∶=
∑
mn

aij,hk,mnsmn,
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Moreover, we use that Aij,hk is skew-symmetric, i.e. Aij,hk = −Ahk,ij.
We are going to prove the following:

Theorem 4.3 Let Y be the del Pezzo surface of degree 5, embedded anticanonically in ℙ5 . 
Then the ideal of Y is generated by the 4 × 4 - Pfaffians of the �5 - equivariant anti-sym-
metric 6 × 6-matrix A =

We first prove the following:

Proposition 4.4 For {i, j, k} = {1, 2, 3} we have:

(1) Aij,ik = sji + sjk − ski − skj;
(2) Aik,kj = −sij − ski;
(3) Aij,ki = sik + skj;
(4) Aik,ki = sik + sji − sjk − ski;
(5) Aij,kj = sji − sij + skj − sjk.

Proof Observe that � = (4, 5) sends Q12 ∧ Q13 to −Q12 ∧ Q13 . Therefore A12,13 = −�A12,13 , 
since A is �5 - invariant. Write

then we have

This implies

On the other hand, if we apply � = (2, 3) , we get:

hence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 s21 + s23 s12 + s31 −s13 − s21 s13 + s32 s21 + s32
−s31 − s32 −s32 − s21 −s12 − s23

−s21 − s23 0 s12 + s23 s31 + s23 s13 + s21 −s12 − s31
+s31 + s32 −s13 − s32 −s23 − s31
−s12 − s31 −s12 − s23 0 s12 + s13 s12 − s21+ s23 + s31
s32 + s21 −s32 − s31 s31 − s13
s13 + s21 −s31 − s23+ −s12 − s13 0 −s21 − s32 s23 + s12−

s13 + s32 s32 + s31 −s13 − s32
−s13 − s32 −s13 − s21 −s12 + s21 s21 + s32 0 s12 + s13−

s23 + s31 −s31 + s13 −s21 − s23
−s21 − s32 s12 + s31 −s23 − s31 −s23 − s12+ −s12 − s13 0

s12 + s23 s13 + s23 s21 + s23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A12,13 = �12s12 + �13s13 + �21s21 + �23s23 + �31s31 + �32s32,

(4.6)
A12,13 = �12s12 + �13s13 + �21s21 + �23s23 + �31s31 + �32s32

= − �A12,13 = �12s13 + �13s12 + �21s23 + �23s21 + �31s32 + �32s31.

�12 = �13, �21 = �23, �31 = �32.

(4.7)
A12,13 =�12s12 + �13s13 + �21s21 + �23s23 + �31s31 + �32s32

= − �A12,13 = −�12s13 − �13s12 − �21s31 − �23s32 − �31s21 − �32s23,
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W.l.o.g. we set �21 = 1 and we have

Assume that {i, j, k} = {1, 2, 3} and let � ∶=

(
1 2 3

i j k

)
 . Apply � to equation (4.8), then 

we see that

In particular we have: A21,23 = s12 + s13 − s31 − s32 . If we apply � = (3, 4) , we obtain:

Applying � we get:

For � = (4, 5) we have A12,31 = �A13,32 = s13 + s32 , and applying � we get:

We apply � = (3, 4) to the equation A12,23 = −s13 − s21 and obtain

The general equation (4) follows again applying � ∶=

(
1 2 3

i j k

)
.

Finally we apply � = (4, 5) : A12,32 = �A13,31 = s21 − s12 + s32 − s23 and applying 

� ∶=

(
1 2 3

i j k

)
 yields

  ◻

Proof of Theorem 4.3 The matrix follows immediately from Proposition 4.4. A straightfor-
ward calculation shows that the 15 (4 × 4) - Pfaffians of the matrix A are:

This proves the theorem.   ◻

�12 = �13 = 0, �21 = �23 = −�31 = −�32.

(4.8)A12,13 = s21 + s23 − s31 − s32.

Aij,ik = sji + sjk − ski − skj.

(4.9)
A13,32 = − �A21,23 = −�(s12 + s13 − s31 − s32) = �31 + s23 − �21 + �12

= s32 − s23 − s12 + s23 − s32 + s23 − s13 + s13 − s31 − s23 = −s12 − s31.

Aik,kj = −sij − ski.

Aij,ki = sik + skj.

A13,31 = −�A12,23 = �(s13 + s21) = −s23 + �32 = −s23 + s13 − s31 + s21.

Aij,kj = sji − sij + skj − sjk.

P1 =2Q12 − 2Q13, P2 = 2Q12 − 2Q32, P3 = 2Q21 − 2Q12, P4 = 2Q13 − 2Q21,

P5 =2Q23 − 2Q13, P6 = 2Q32 − 2Q23, P7 = 2Q21 − 2Q32, P8 = 2Q31 − 2Q32,

P9 =2Q31 − 2Q21, P10 = 2Q13 − 2Q31, P11 = 2Q31 − 2Q12, P12 = 2Q23 − 2Q12,

P13 =2Q21 − 2Q23, P14 = 2Q32 − 2Q13, P15 = 2Q12 − 2Q23.
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5  �
5
‑invariant equations of Y ⊂ (ℙ1)5

As already mentioned in the first section there are five geometric objects permuted by the 
automorphism group �5 of the del Pezzo surface Y of degree five: namely, 5 fibrations 
�i ∶ Y → ℙ

1 , induced, for 1 ≤ i ≤ 4 , by the projection with centre pi , and, for i = 5 , by the 
pencil of conics through the 4 points (viewing the Del Pezzo surface as the moduli space 
of five ordered points on the projective line, these fibrations are just the maps to the moduli 
space of four ordered points on the projective line obtained forgetting the j-th of the five 
points). Each fibration is a conic bundle, with exactly three singular fibres, correponding to 
the possible partitions of type (2, 2) of the set {1, 2, 3, 4, 5} ⧵ {i}.

We have proven in [3] the following result

Theorem 5.1 Y embeds into  (ℙ1)4 via �1 ×⋯ × �4 and in  (ℙ1)5 via �1 ×⋯ × �5.

Moreover, we showed6

Theorem 5.2 Let  Σ ⊂ (ℙ1)4 =∶ Q , with coordinates

be the image of the Del Pezzo surface Y via �3 × �1 × �2 × �4 . Then the equations of Σ are 
given by the four 3 × 3-minors of the following Hilbert-Burch matrix:

In particular, we have a Hilbert-Burch resolution:

where  Hi is the pullback to  Q of a point in  ℙ1 under the i-th projection.

Observe first that each pencil �i ∶ Y → ℙ
1 can be rewritten as

where Λ1,Λ2,Λ3,Λ4,Λ5 are the lines in ℙ2 defined by equations which are consequences of 
the following equalities:

(v1 ∶ v2), (w1 ∶ w2), (z1 ∶ z2), (t
�

1
∶ t�

2
),

(5.1)A ∶=

⎛⎜⎜⎜⎝

t�
2

−t�
1

t�
1
+ t�

2

v1 v2 0

w2 0 w1

0 −z1 z2

⎞⎟⎟⎟⎠
.

(5.2)0 → (OQ(−

4∑
i=1

Hi))
⊕3

→

4⨁
j=1

(OQ(−

4∑
i=1

Hi + Hj)) → OQ → OΣ → 0,

𝜑i ∶ Y → Λi ⊂ ℙ
2,

6 In the previous paper the coordinates which are here denoted (t�
1
, t�
2
) were denoted (t1, t2) ; whereas here we 

reserve the notation (t1, t2) for (t�
1
,−t�

2
) in order to show the �5-symmetry,
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We set

and then the map

is expressed by:

The equation of the image of the Del Pezzo surface Y in (ℙ1)3 = Λ3 × Λ1 × Λ2 under the 
map map �3 × �1 × �2 is then

We give now the action of �5 on the pencils �i in order to determine the 10 ( �5-invariant) 
equations of the image of Y under the map �3 × �1 × �2 × �4 × �5 , which correspond to 
the 10 possible projections of (ℙ1)5 to (ℙ1)3.

In fact, �5 acts by permuting the indices of �i , but a permutation � ∈ �5 maps �i to 
��◦��(i) , where �� is a projectivity of ℙ1.

A straightforward computation (using the formulae for the action of �5 on ℙ2 by birational 
maps given in Sect. 2) gives the following table. 

� (1, 2) (2, 3) (3, 4) (4, 5)

�(v
1
∶ v

2
∶ v

3
) (v

2
∶ v

1
∶ −v

3
) (z

2
∶ z

1
∶ −z

3
) (t

2
∶ t

1
∶ −t

3
) (v

2
∶ v

1
∶ −v

3
)

�(w
1
∶ w

2
∶ w

3
) (z

2
∶ z

1
∶ −z

3
) (w

2
∶ w

1
∶ −w

3
) (w

3
∶ w

2
∶ w

1
) (w

2
∶ w

1
∶ −w

3
)

�(z
1
∶ z

2
∶ z

3
) (w

2
∶ w

1
∶ −w

3
) (v

2
∶ v

1
∶ −v

3
) (−z

1
∶ z

3
∶ z

2
) (z

2
∶ z

1
∶ −z

3
)

�(t
1
∶ t

2
∶ t

3
) (t

2
∶ t

1
∶ −t

3
) (−t

1
∶ t

3
∶ t

2
) (v

2
∶ v

1
∶ −v

3
) (s

1
∶ s

2
∶ s

3
)

�(s
1
∶ s

2
∶ s

3
) (s

2
∶ s

1
∶ −s

3
) (−s

1
∶ s

3
∶ s

2
) (s

2
∶ s

1
∶ −s

3
) (t

1
∶ t

2
∶ t

3
)

Theorem 5.3 Let Σ ⊂ (ℙ1)5 = Λ3 × Λ1 × Λ2 × Λ4 × Λ5 ⊂ (ℙ2)5 , with coordinates

y1 ∶= x3 − x2,

y2 ∶= x1 − x3,

y3 ∶= x2 − x1,

y1 + y2 + y3 = 0,

x1y1 + x2y2 + x3y3 = 0.

Λ1 ∶ = {w1 − w2 + w3 = 0},

Λ2 ∶ = {z1 − z2 + z3 = 0},

Λ3 ∶ = {v1 − v2 + v3 = 0},

Λ4 ∶ = {t1 − t2 + t3 = 0},

Λ5 ∶ = {s1 − s2 + s3 = 0},

�3 × �1 × �2 × �4 × �5 ∶ Y → Λ3 × Λ1 × Λ2 × Λ4 × Λ5

(v1, v2, v3) ∶ = (x1, x2, y3), (w1,w2,w3) ∶= (x2, x3, y1),

(z1, z2, z3) ∶ = (x3, x1, y2), (t1, t2, t3) ∶= (y1,−y2, y3),

(s1, s2, s3) ∶ = (x1y1 ∶ −x2y2 ∶ x3y3).

v1w1z1 − v2w2z2 = 0.

(v1 ∶ v2 ∶ v3), (w1 ∶ w2 ∶ w3), (z1 ∶ z2 ∶ z3), (t1 ∶ t2 ∶ t3), (s1 ∶ s2 ∶ s3)
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be the image of the Del Pezzo surface Y under the map �3 × �1 × �2 × �4 × �5 . Then the 
equations of  Σ are the following:

Proof The equations (2)–(10) are obtained from the first one using the above table 
described in the following diagram: 

  ◻

Remark 5.4 We have seen that the equations of

are the ten equations obtained by the ten coordinate projections P ∶= (ℙ1)5 → (ℙ1)3 and 
therefore we have an exact sequence

where the first syzygies are the pull-backs of the syzygies obtained for each projection 
(ℙ1)5 → (ℙ1)4.

Observe that the shape of this resolution is the same as the Eagon-Northcott complex 
for a Del Pezzo surface S4 of degree 4, cf [3].

But if this resolution were associated to a 5 × 3 matrix of the same type, then we would 
get a Del Pezzo surface of degree 4 and not of degree 5.

(1) v1w1z1 − v2w2z2 = 0,

(2) v3w1t1 − v2w3t3 = 0,

(3) v1z3t3 + v3z2t2 = 0,

(4)w3z1t2 + w2z3t1 = 0,

(5) t1v1s2 − t2v2s1 = 0,

(6) t1z2s3 − t3z1s1 = 0,

(7) t3w2s2 − t2w1s3 = 0,

(8) v3w2s1 − v1w3s3 = 0,

(9) v2z3s3 + v3z1s2 = 0,

(10)w3z2s2 + w1z3s1 = 0.

Y � ∶= (𝜑1 ×… × 𝜑5)(Y) ⊂ (ℙ1)5

(5.3)

0 → (OP(−

5∑
i=1

Hi))
⊕6

→ (

5⨁
j=1

OP(−

5∑
i=1

Hi + Hj))
⊕3

→

→

⨁
h<k

(OP(−

5∑
i=1

Hi + Hk + Hh)) → OP → OY � → 0,
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Hence (since K2 is invariant for smooth deformations) we have a Hilbert scheme which 
is reducible (since the open set corresponding to smooth surfaces is disconnected).
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