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Abstract: Multiresponsive polymers that can respond to

several external stimuli are promising materials for a mani-
fold of applications. Herein, a facile method for the syn-

thesis of triple-responsive (pH, temperature, CO2)
poly(N,N-diethylaminoethyl methacrylamide) by a post-

polymerization amidation of poly(methyl methacrylate)

(PMMA) is presented. Combined with trivalent counterions
([Fe(CN)6]3@) both an upper and lower critical solution
temperature (UCST/LCST)-type phase behavior can be re-
alized at pH 8 and 9. PMMA and PMMA-based block co-

polymers are readily accessible by living anionic and con-
trolled radical polymerization techniques, which opens

access to various responsive polymer architectures based
on the developed functionalization method. This method
can also be applied on melt-processed bulk PMMA sam-

ples to introduce functional, responsive moieties at the
PMMA surface.

Stimuli-responsive or “smart” polymers, which can change their

physicochemical properties (e.g. , solubility) upon applying an
external stimulus (pH, temperature, light, magnetic fields, CO2,

etc.), are highly attractive and intensively studied materials due
to the wide range of applications, such as responsive micelles

and micro/nano-gels for biomedical applications, switchable
membranes and coatings, smart actuators, or CO2 sensing.[1–3]

The most prominent examples of multi-responsive polymers

are based on methacrylate or acrylamide-type monomers with
pendant N,N-dialkylamino groups (alkyl = methyl, ethyl, iso-

propyl; Scheme 1), which are commonly prepared by con-

trolled radical polymerization techniques.[2–9] In contrast, there
are considerably less reports on living anionic polymerization,

for example, of N,N-dimethylaminoethyl methacrylate
(DMAEMA),[10] despite the fact that anionic polymerization is
still the best suited method to prepare well-defined, complex
block copolymer architectures of high molecular weight on a

large scale.[11] Especially, when soft blocks based on polydienes
(polybutadiene, polyisoprene) are required to allow a dynamic
rearrangement of micellar nanostructures or a later fixation of
the structures by cross-linking, anionic polymerization is the
method of choice. However, the high requirements on mono-

mer purity for anionic polymerization makes the purification of
polar, high boiling monomers, such as DMAEMA, complex and

time consuming. To overcome these limitations, we made use
of an efficient post-polymerization modification to convert
poly(methyl methacrylate) (PMMA), which is easily accessible

by living anionic, as well as controlled radical polymerization
techniques, into a triple-responsive polymer, being responsive

to pH, temperature and CO2. This was realized by amidation of
PMMA with different preactivated N,N-dialkylethylenediamines
to give the corresponding poly(N,N-dialkylaminoethyl meth-

acrylamide)s (alkyl = methyl, ethyl, iso-propyl ; PDxAEMAm),
which were studied with respect to their responsive solution

behavior. This concept was also applied for the surface func-
tionalization of a bulk PMMA sample.

The amidation of PMMA with N,N-dialkylethylenediamines
was conducted according to our previously published method

Scheme 1. Comparison of the chemical structure of known triple-responsive
(pH, T, CO2) polymers with poly(N,N-dialkylaminoethyl methacrylamide)s in-
vestigated in this study.
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for the post-polymerization functionalization of polystyrene-
block-polyethylene-block-poly(methyl methacrylate) triblock

terpolymers (Figure 1 A; details on used materials and synthesis
protocols are given in the Supporting Information).[12] Due to

the prior activation of the amines with n-butyllithium, quanti-
tative functionalization can be reached in less than one hour,

irrespective of the steric demand of the used amine (Figures
S1, S2, and Table S1 in the Supporting Information), as was

verified by 1H NMR and FTIR studies. In addition, there are no
signs of a broadening of the molecular weight distribution by
size-exclusion chromatography (Figure S3), showing that ami-

dation proceeds without significant side-reactions. A quantita-
tive conversion of the methyl ester groups of PMMA is indis-
pensable to avoid hydrolysis to methacrylic acid at elevated
temperatures and high pH values, which will cause a signifi-

cant shift of the cloud point to higher temperatures with
time.[8] This is manifested by the disappearance of the lower

critical solution temperature (LCST)-type phase behavior of an
intentionally prepared poly(methyl methacrylate-co-N,N-dieth-
ylaminoethyl methacrylamide) copolymer (P(MMA31-co-DEAE-

MAm179), subscripts correspond to the degree of polymeri-
zation) already after nine consecutive heating/cooling cycles in

pH 10 buffer solution (Figure S4 in the Supporting Informa-
tion).

The synthesized poly(N,N-dimethylaminoethyl methacryl-

amide) (PDMAEMAm210) is neither responsive to pH nor to tem-
perature, as was confirmed by turbidity measurements at vary-

ing pH (Figure S5 A in the Supporting Information). In contrast,
poly(N,N-diethylaminoethyl methacrylamide) (PDEAEMAm210,

Figure 1 B) and poly(N,N-di-iso-propylaminoethyl methacryl-
amide) (PDiPAEMAm210, Figure S5 B) exhibit a LCST-type phase

behavior at pH 8. However, only PDEAEMAm210 shows a
narrow hysteresis (DTCP&3 K), whereas for PDiPAEMAm210 the

phase transitions upon heating and cooling are comparably
broad with a large hysteresis (DTCP&24 K). The cloud point

(TCP) of PDEAEMAm210 changes only marginally after nine con-
secutive heating/cooling cycles in pH 9 buffer solution (1st

cycle: TCP = 53 8C, 9th cycle: TCP = 52 8C, Figure 1 B), revealing
the excellent hydrolytic stability of PDEAEMAm210. There is a
concentration dependence of the cloud point, which leads to

a pronounced shift of TCP by approximately 20 8C to lower
values with increasing concentration (c = 0.05–2 g L@1, Fig-
ure S5 C in the Supporting Information). This is expected, be-
cause one moves along the binodal, which has a minimum in

the LCST.
Figure 1 C reveals an influence of the molecular weight on

the cloud point, because the TCP of PDEAEMAm1030 is about

5 8C lower compared to that of PDEAEMAm210. This indicates
that PDEAEMAm acts as an LCST polymer of class I, that is, the

cloud point decreases with increasing molecular weight.[13]

Turbidity measurements were conducted in buffer solutions

of different pH (Figure 2 A and Table S2 in the Supporting In-
formation) to further study the potential multiresponsivity of

PDEAEMAm. PDEAEMAm is soluble over the entire tempera-

ture range for pH,7, whereas for 8<pH<10, the cloud pointFigure 1. A) Reaction scheme for the amidation of PMMA with N,N-dialkyl-
ethylenediamines. B) Temperature-dependent transmittance of PDEAE-
MAm210 (Mn = 3.9 V 104 g mol@1, 1st cycle: red, 9th cycle: black) and C) com-
parison with PDEAEMAm1030 (Mn = 1.9 V 105 g mol@1, red trace) in pH 9 buffer.
Heating traces are depicted as solid and cooling traces as dashed lines, re-
spectively (c = 1 g L@1).

Figure 2. A) Temperature-dependent transmittance of PDEAEMAm210 in
buffer solutions of different pH (c = 1 g L@1, pH 7 black, pH 8 red, pH 9 blue
and pH 10 green). B) Change in transmittance of PDEAEMAm210 in pH 10
buffer at 55 8C (c = 1 g L@1) upon bubbling CO2, N2 or Ar through a cuvette.
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shifts from TCP = 72 8C at pH 8 to TCP = 37 8C at pH 10. This
matches well with the measured pKa value of 7.1 (Figure S6 in

the Supporting Information), that is, an LCST-type phase be-
havior is only observed for pH values at which less than 50 %

of the pendant tertiary amino groups are protonated. This is
consistent with studies on the chemically similar poly(N,N-di-

ethylaminoethyl methacrylate).[4, 9] The pH dependence of the
cloud point can be harnessed for a reversible, CO2-induced
phase transition (Figure 2 B). Bubbling CO2 through a turbid so-

lution of PDEAEMAm210 in pH 10 buffer at 55 8C, that is, above
the TCP of 37 8C at pH 10, results in a complete dissolution of
the polymer. This is caused by a decrease in solution pH by
the dissolved CO2 (chemical equilibrium with carbonic acid)

and consequently by the protonation of the pendant diethyl-
amino groups as was proven by 1H NMR analysis (Figure S7 in

the Supporting Information). Subsequent bubbling of nitrogen

or argon to remove the dissolved CO2 gave again a turbid so-
lution. This process can be repeated several times, proving the

reversibility of the CO2-induced solubility switching.
In comparison to the respective methacrylate-based

poly(N,N-dialkylaminoethyl methacrylate)s, the replacement of
the ester linkage by an amide linkage in poly(N,N-dialkylami-

noethyl methacrylamide)s leads to an increase in polarity and,

thus, to an increased solubility. This is manifested by the fact
that poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA)

shows a pH-dependent LCST-type phase behavior for pH+
7,[4, 8] whereas PDMAEMAm is completely soluble irrespective of

temperature and pH (Figure S5 A; Tables S2 and S3 in the Sup-
porting Information). A similar behavior is found for the diethyl

derivatives. PDEAEMA shows an LCST-type phase behavior at

pH 6–7 and is hardly soluble for pH+8.[9] In contrast, PDEAE-
MAm exhibits a temperature-dependent solubility for pH+8.

This is in line with the lower pKa value observed for PDEAEMA
(pKa = 6.6)[9] with respect to that of PDEAEMAm (pKa = 7.1, Fig-

ure S6 in the Supporting Information). In analogy to poly(N,N-
diethylaminoethyl acrylamide) (PDEAEAm) the synthesized
PDEAEMAm also shows a triple-responsive behavior, being re-

sponsive to pH, temperature and CO2.[5, 7] However, introducing
a methyl group in a-position leads to a slightly increased hy-
drophobicity and a resulting shift of the critical pH, at which
an LCST-type phase behavior was observed, from pH 8.5 for

PDEAEAm to pH 8 for PDEAEMAm, respectively (Table S2 in
the Supporting Information).

In addition to the pH-dependent LCST-type phase behavior
an upper critical solution temperature (UCST)-type phase be-
havior can be induced by the addition of small quantities of a

trivalent counterion. This is realized by the addition of
K3[Fe(CN)6] to the respective solutions of PDEAEMAm1030 (c =

1 g L@1) in buffers of pH 6–10 (Figure 3 A and Figure S8 in the
Supporting Information). For pH 8 and 9, both an UCST- and

LCST-type phase behavior was observed, whereas for pH<8

and pH>9, only an UCST or LCST behavior can be detected,
respectively. This can be explained by the lack of protonated

(charged) repeating units for pH>9, as electrostatic interac-
tions between the positively charged polymer and the trivalent

[Fe(CN)6]3@ counterions are responsible for the UCST-type
phase behavior.[14] Consequently, at pH<8 the polymer chain

is highly charged (pKa = 7.1), which leads to a vanishing of the
LCST. In analogy to studies on linear and star-shaped PDMAE-

MA, the UCST-type cloud point increases with the [Fe(CN)6]3@

concentration, whereas the LCST-type cloud point is not affect-

ed (Figure 3 B). However, the UCST-type phase transitions for
PDEAEMAm1030 are more sensitive to the [Fe(CN)6]3@ concentra-
tion and the UCST coincides with the LCST-type cloud point al-

ready at c([Fe(CN)6]3@) = 1.25 mm.
The post-polymerization amidation of PMMA can even be

conducted in bulk, allowing the direct heterogeneous amida-
tion of melt-processed PMMA parts. The successful amidation

of the surface of a PMMA disc with N,N-diethylethylenediamine

was proven by FTIR spectroscopy, revealing the presence of
the characteristic amide band at &1650 cm@1 (Figure S9 in the

Supporting Information). Due to the increase in polarity the
contact angle to water at 25 8C decreases from (93:2)8 to

(49:5)8 after amidation (Table S4 in the Supporting Informa-
tion). The responsivity of the amidated PMMA surface can be

Figure 3. Tailoring the thermo-responsive solution behavior of PDEAE-
MAm1030 (c = 1 g L@1) in the presence of trivalent [Fe(CN)6]3@ counterions. A)
UCST- and LCST-type phase transitions in dependence of pH for two differ-
ent K3[Fe(CN)6] concentrations (c = 0.5 mm (squares), c = 0.75 mm (circles))
and B) in dependence of K3[Fe(CN)6] concentration in pH 8 buffer solutions.
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used for a temperature-induced switching of the contact
angle. Employing a pH 10 buffer solution a shift of the contact

angle from (48:6)8 to (77:1)8 can be induced by a tempera-
ture increase to 55 8C, because under these conditions, the

PDEAEMAm units become insoluble (TCP = 37 8C at pH 10).
Moreover, the diethylamino anchor groups at the PMMA sur-

face can be utilized to bind preformed, citrate-stabilized gold
nanoparticles (Au NPs, D = 9.5:2.4 nm). After functionalization
and loading with Au NPs the decoration of the PMMA surface

with Au NPs is clearly visible in the digital photograph, as well
as the scanning electron microscopy (SEM) image acquired

with a back-scattered electron (BSE) detector (Figure 4).

In conclusion, we have shown that PMMA can be converted
to a triple-responsive (pH, temperature, CO2) polymer by a fast

and quantitative post-polymerization amidation with N,N-di-
ethylethylenediamine. This opens access to a variety of respon-

sive polymer architectures, such as defined (multi)block copoly-
mers,[12] because PMMA is easily accessible by controlled radi-

cal, as well as living anionic polymerization. The excellent effi-

ciency of this functionalization reaction also allows a direct
heterogeneous amidation of the surface of melt-processed
PMMA parts, which can be harnessed for a temperature-in-
duced switching of the surface hydrophilicity or the binding of

metal nanoparticles, for example, for catalytic purposes. Hence,
we believe that the herein established method will find broad

application in the synthesis of responsive and/or functional
materials that might find application in responsive gels, actua-
tors, or catalysis.
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Figure 4. Digital photographs of the surface of the PMMA disc employed for
heterogeneous amidation (A) and of the surface of the PMMA disc after ami-
dation and successive loading with Au NPs (B). The inset shows the corre-
sponding SEM image acquired with a BSE detector (Au NP rich regions
appear bright, scale bar inset = 100 mm).
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