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Abstract

This thesis presents a numerical study of a property of three dimensional magnetohy-

drodynamic (3D-MHD) turbulence, namely, inverse cascade (spectral transport from

small scales to large scales) of magnetic helicity. Magnetic helicity is de�ned as the

volume integral of the dot product of the magnetic �eld and the magnetic vector po-

tential. It characterizes the linkage and twists of the magnetic �eld lines. The inverse

cascade is believed to be one of the causes of large-scale magnetic structure formation

in the universe.

This numerical studies is aimed at understanding how the inverse cascade of mag-

netic helicity e�ects other quantities of the turbulent �ow. Two setups, namely, forced

turbulence and decaying turbulence are studied. In the forced case, the numerical

simulation setup consists of an initial energy distribution and a forcing localized in

the small scales. The decaying setup consists of an initial energy distribution in the

intermediate scales, which is allowed to decay naturally. The analysis of the results

shows that several quantities in the turbulent �ow, show self-similar behavior in their

spectra, giving rise to power laws, which were hitherto unknown. Some of the quanti-

ties which are known to show power law behaviors exhibit di�erent values to the power

law exponents. These power law behaviors are analyzed together with the dimensional

analysis of the eddy damped quasi normal Markovian (EDQNM) approximation equa-

tions, to attain a new relation which explains the evolution of large-scale magnetic

structures in both the turbulent setups. The results are substantiated by the analysis

of structure functions, probability density functions and correlation functions. Visual-

ization of real space structures is also carried out. A mechanism to achieve large-scale

magnetic structures from random small-scale magnetic �uctuations involving both the

forced and decaying turbulences, is suggested.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Untersuchung des Ein�usses der inversen Kaskade der

magnetischen Helizität auf Gröÿen der dreidimensionalen magnetohydrodynamischen

Turbulenz. Die Untersuchungen stützen sich auf die Ergebnisse direkter numerischer

Simulationen mit Au�ösungen von bis zu 10243 Gitterpunkten. Ein bereits bestehen-

der 3D-MHD Pseudospektralcode wird hierfür um die Möglichkeit eines kleinskaligen

Turbulenzantriebs erweitert.

Zwei Fälle (bzw. Anordnungen) sind zu unterscheiden. Im ersten Fall basiert getriebene

Turbulenz auf Anfangsbedingungen mit einer Konzentration der Energieverteilung und

des Antriebs bei hohen Wellenzahlen (k > 100). Diese Bedingungen werden mit die-

ser Arbeit erstmals betrachtet. Vorausgegangene Untersuchungen waren sowohl durch

kleinere Au�ösungen als auch durch Lokalisierung des Antriebs und der Energievertei-

lungen bei moderaten Wellenzahlen (k ≤ 30) beschränkt. Dieser erste Fall dient auch

der Überprüfung des k−2 Potenzgesetzes der inversen Kaskade der magnetischen Heli-

zität in dreidimensionaler MHD-Turbulenz, welches in numerischen Simulationen der

EDQNM-Näherungen beobachtet wird.

Der zweite Fall beschäftigt sich mit der inversen Kaskade der magnetischen Heliziät in

zerfallender Turbulenz. Hierbei werden die Anfangsbedingungen so gewählt, dass die

Energieverteilung ein Maximum bei moderaten Wellenzahlen (k = 70) besitzt. In al-

len numerischen Simulationen wird zusätzlich Hyperviskosität verwendet. Dadurch soll

gewährleistet werden, dass die Skalen des Inertialgebiets und des Dissipationsgebiets

möglichst weit voneinander getrennt werden. Der numerische Kni� der Hyperviskosität

bringt allerdings Nachteile mit sich. Zum einen zeigen die Energiespektren ein ausge-

prägtes Flaschenhals-Phänomen (�bottle-neck�-E�ekt), zum anderen macht es die Ver-

wendung der Hyperviskosität unmöglich, dem System eine eindeutige Reynoldszahl,

zuzuordnen.

Anhand der numerischen Ergebnisse wird der Ein�uss der inversen Kaskade der ma-

gnetischen Helizität auf die spektralen Eigenschaften einiger Gröÿen der MHD Turbu-
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lenz berichtet. Durch den Antrieb bei relativen hohen Wellenzahlen bilden sich zwei

getrennte Bereiche mit ungefährem Skalierungsverhalten aus (Ein Skalierungsbereich

wird dann zu einem Inertialgebiet, wenn entsprechende Gröÿe einen konstanten Fluss

aufweist). Ein Skalierungsbereich zeigt sich bei kleinen Wellenzahlen (zwischen 7 und

40). Im Fall zerfallender Turbulenz tritt ein Inertialgebiet bei kleinen Wellenzahlen

auf. Das Inertialgebiet bei kleinen Wellenzahlen zeigt in beiden Fällen das bekann-

te k−5/3 Potenzgesetz des Energiespektrums. Im Falle getriebener Turbulenz wird das

Spektrum bei hohen Wellenzahlen vom Flaschenhalsphänomen überlagert. Über den

gesamten Wellenzahlenbereich ist die magnetische Energie gröÿer als die entsprechen-

de kinetische Energie. Die beobachteten Potenzgesetze der Helizität stimmen nicht mit

den Vorhersagen durch die EDQNM Simulationen überein. Die magnetische Helizität

weist stattdessen mehrere neue Intertialgebiets-Potenzgesetze auf. Auch einige andere

Gröÿen zeigen bisher nicht beobachtete Skalierungsgesetze im Inertialgebiet niedriger

Wellenzahlen in beiden Fälle. Hierbei ist zu erwähnen, dass nicht alle Gröÿen, die

ein Potenzgesetz aufzeigen, auch ideale Invariante der 3D-MHD Tubulenz sind. Das

Potenzgesetz-Verhalten von vier der Gröÿen wird zusammen mit der Dimensionsana-

lyse der EDQNM-Gleichungen untersucht. Dies führt zu einen neuen Zusammenhang

zwischen den vier Gröÿen. Dies betri�t die magnetische Helizität (HM
k ), die magnit-

sche Energie (EM
k ), die kinetische Helizität (HV

k ) und die kinetische Energie (EV
k ). Der

sich ergebende Zusammenhang lautet: E M
k ∼ k2 H M

k EV
k

H V
k

. Dieser Zusammenhang zeigt

sich in allen Intertialgebieten der beiden Fälle. Die Relation impliziert, dass es über

den gesamten spektralen Berich zu nichtlinearen Modeninteraktionen zwischen dem

Geschwindikeitsfeld (v) und dem Magnetfeld (b) kommt, welche sich für die inverse

Kaskade der magnetischen Helizität verantwortlich zeigen, und hierdurch den Anstieg

der magnetischen Energie bewirken. Der bereits bekannte Zusammenhang zwischen

der Gesamtenergie und der Residualenergie ist in beiden Inertialgebieten und in bei-

den Fälle ebenfalls bestätigt. Die beobachteten Skalierungsgesetze der anderen Gröÿen

entsprechen keiner Vorhersage aus Dimensionsanalyse oder Phänomenologie. Diese Po-

tenzgesetze können wahrscheinlich nur im Rahemen einer neuen mathematischen Be-

schreibung verstanden werden.

Als nächstes wird der Ein�uss der inversen Kaskade der magentischen Helizität auf

die räumlichen Strukturen des Magnetfelds untersucht. Zunächst kann gezeigt wer-

den, dass ein Antrieb bei hohen Wellenzahlen die Ausbildung von groÿskaligen räumli-

chen Strukturen nicht unterstützt. Es wird im Gegenteil beobachtet, dass eben dieser

Antrieb bei hohen Wellenzahlen die sich bildenden groÿskaligen Strukturen zerstört.
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Im Ortsraum werden die groÿskaligen Strukturen von den kleinskaligen Strukturen

überlagert. Daher wird ein Tiefpass�lter mit Abschneidewellenzahl k = 70 verwendet,

um die kleinskaligen Strukturen auszublenden. Zur Analyse der groÿskaligen Struktu-

ren werden zunächst die Strukturfunktionen herangezogen. Des weiteren wird hierzu

die erweiterte Selbstähnlichkeit (extended self similarity, ESS) und das Log-Poisson-

Intermittenzmodell der Skalierungsexponenten der Strukturfunktionskurven genutzt.

Durch die Analyse der Strukturfunktionen und die Modellierung der Intermittenz der

ge�lterten Ausgabe des getriebenen Falls wird hervorgehoben, dass die sich bildenden

magnetischen Strukturen nicht ein- oder zweidimensional, sondern fraktaler Dimensi-

on sind. Wendet man diese Analyse auf den zerfallenden Fall an, so zeigen sich hier

zweidimensionale Strukturen. Da eines der Hauptaugenmerke dieser Arbeit die Bil-

dung groÿskaliger Strukturen ist, wird hierfür ein neues Vorgehen gewählt. Der Antrieb

wird hierin zu drei unterschiedlichen Zeitpunkten ausgesetzt und der damit eintreten-

de Zerfall der Turbulenz beobachtet. Die Strukturen treten so deutlicher hervor. Die

Wahrscheinlichkeitsdichtefunktionen (PDFs) und Strukturfunktionen wurden auch in

dieser Anordnung ausgewertet. Diese weisen auf den intermitttenten Charakter des

Magnetfelds und des Geschwindigkeitsfelds hin. Die Form der Exponenten der Struk-

turfunktionskurven und der Wahrscheinlichkeitsdichtefunktionen weist darauf hin, dass

im getriebenen Fall nichtzusammenhängende Substrukturen das System dominieren. Im

zerfallenden Fall dominieren hingegen die zusammenhängenden Strukturen. In dieser

speziellen Anordung kann demnach die Entwicklung von dominanten Substrukturen zu

zusammenhängenden Strukturen untersucht werden. In allen drei Fällen bzw. Anord-

nungen zeigen sich zunehmende Korrelationslängen für viele der beobachteten Gröÿen.

Dies ist ein Hinweis auf die Ausbildung groÿskaliger Strukturen im Verlauf der Simu-

lationen.

Die Strukturen im Ortsraum werden mit Softwarepaketen wie AMIRA und Visit visua-

lisiert. Diese Visualisierungen belegen und bekräftigen die Resultate aus der Analyse

der Strukturfunktionen. Im angetriebenden Fall sind die Flächen gleicher Magnetfeld-

stärke weder ein- noch zweidimensional. Der Charakter der fraktalen Dimension, wel-

cher sich bereits in der Analyse der Strukturfunktionen zeigt, kann hiermit bestätigt

werden. Es zeigt sich zudem eine groÿe Anzahl von Magnetfeldkonzentrationen ohne

de�nierter Ausbildung von Struktur. Dies weist auf die Auswirkungen des Antriebs bei

hohen Wellenzahlen hin. Im Fall der zerfallenden Turbulenz bilden sich mit der Zeit

groÿskalige Strukturen des Magnetfelds aus. Während die Turbulenz zerfällt nimmt

die Intensität dieser Strukturen ab und die Ausdehnung der Strukturen nimmt zu.
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Bei Aussetzung des Antriebs hängt die Ausdehnung und Entwicklung der Magnetfeld-

strukturen vom gewählten Zeitpunkt der Abschaltung des Antriebs ab. Da in dieser

Anordung drei verschiedene Zeitpunkte für das Abschalten untersucht wurden, zeigen

sich einmal groÿskalige Strukturen (bei Ausschalten des Antriebs zu einem späten Zeit-

punkt), einmal mittelgroÿe (bei Abschalten des Antriebs zu einem mittleren Zeitpunkt)

und einmal kleinskalige Strukturen des Magnetfelds (bei Abschalten des Antriebs nach

kurzer Zeit). Gemeinsam ist den drei Fällen der Anordnung mit der Aussetzung des

Antriebs und dem zerfallenden Fall die Anwesenheit von Regionen magnetischer Re-

konnektion. Die Anzahl dieser Rekonnektionsgebiete ist dann hoch, wenn viele kleine

magnetische Strukturen vorliegen. Deutlich weniger Rekonnektionsgebiete zeigen sich

hingegen bei groÿen und wenigen magnetischen Strukturen.

Zusammenfassend kann der Ein�uss der inversen Kaskade der magnetischen Helizi-

tät wie folgt beurteilt werden: Es zeigen sich Potenzgesetze bei einigen Observablen

der MHD Turbulenz, insbesondere auch bei Gröÿen, die keine Invarianten der MHD

Turbulenz sind. Eine neue Relation, welche sich auf die EDQNM-Theorie stützt, lie-

fert eine Erklärung für das Zusammenspiel maÿgeblicher Gröÿen bei der Ausbildung

groÿskaliger Magnetfeldstrukturen. Des weiteren zeigt sich, dass der Antrieb bei hohen

Wellenzahlen die groÿskaligen Magnetfeldstrukturen zertört. Der Zerfall der Turbulenz

und die magnetische Rekonnektion sind wichtige Ein�ussfaktoren auf die Ausbildung

von Magnetfeldstrukturen.
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Introduction

Turbulence is a constantly encountered natural phenomenon. Fluids, when set into

intense motion tend to develop turbulence. The turbulent structures formed in the

�ow are called eddies. These eddies span length scales of kilometers down to a few

centimeters as in oceanic and atmospheric turbulences. Electrically conducting �uids

in addition to the turbulent motions are associated with magnetic �eld �uctuations.

Turbulence in conducting �uids is not normally felt in day-to-day life. Reversed-�eld

pinch fusion experiments and dynamo experiments using liquid metals are some of the

places where this speci�c type of turbulence is seen in laboratories. In common life,

the chance of encountering this turbulence is almost zero. But plasma i.e. ionized

gas, the most natural electrically conducting �uid, contributing to almost 99% of the

visible material in the universe, shows this type of turbulent motions. Hence turbulent

motions seen in Sun or stars, interstellar media (ISM), planetary cores and the inter-

galactic medium (IGM) are some of the examples where turbulence is seen in plasma.

Here, the size of turbulent structures at the higher end span many light years as in

ISM or IGM, while on the lower end they might be of kilometer size or even less, as in

sub-structure of the plasma in stars or cores of planets.

The physical properties of plasma are studied from various aspects. In principle two

approaches stand out, the particle approach and the �uid approach. In the former, the

plasma is treated as the collection of individual particles and statistical methods are

applied to understand the behavior of the systems. In the �uid approach, the plasma

is studied using single �uid or multi �uid approximations. In the context of this work,

single �uid approximation is used for simplicity.

The branch of �uid dynamics which deals with electrically conducting �uids is called

magnetohydrodynamics (MHD). The equation set for studying MHD principally con-

sists of three equations. The �rst equation looks similar to hydro-dynamical Navier-

Stokes equation, with an additional term specifying the interactions of velocity �eld

and the associated magnetic �eld. Second is the induction equation which signi�es that
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the magnetic �eld lines are anchored to the plasma. Finally there is the solenoidality

condition for the magnetic �eld. This equation set is called MHD equations and they

have to be simultaneously solved to get an understanding of MHD �ows. The equation

set is nonlinear and in general can not be solved analytically. It is characterized by

two non-dimensional parameters, the magnetic and kinetic Reynolds numbers. The

value of the Reynolds numbers gives an idea of the type of �ow. There exists a critical

Reynolds number beyond which the �ow is termed as turbulent. Reynolds numbers

also determine the smallest possible scales in the �ow. The larger the value of Reynolds

number, the greater is the range of scales in the �ow. Turbulence is characterized by

a broad range of spatial scales, extending down to very small eddies, if the Reynolds

number is large [1]. The Reynolds numbers associated with astrophysical system are of

the order of 1012 to 1020. In the laboratory experiments the Reynolds numbers achieved

are of the order of 106 [2].

Their exist some phenomenological models to Navier-Stokes and MHD equations, which

enable in enhancing the understanding of turbulent �ows. These models assume di�er-

ent mechanisms through which the structures in the �elds act and build-up or destroy

turbulence. The Kolmogorov phenomenology (K41) is based on interaction of eddies

of several sizes. Under the in�uence of some energy input, the larger sized eddies break

into smaller and smaller sized ones and ultimately dissipate completely. In this setup

their exists a range of spatial scales, where the system exhibits self-similar behavior

and is independent of either the energy input or the dissipation. This particular range

over which such a behavior is seen is called `inertial range'. Here the energy spectrum

of the �ow shows a power law behavior of k−5/3 . This phenomenology is valid for the

hydrodynamic case. For the magnetohydrodynamic case, two other phenomenologies,

namely, Iroshnikov-Kraichnan (IK) and Goldreich-Sridhar (GS) are prominent. In IK

phenomenology, the main interaction mechanism is through Alfvén waves propagating

along the magnetic �eld. Here a power law behavior of k−3/2 is predicted for the total

energy. However this does not account for the anisotropic nature of the MHD �ows due

to the presence of mean magnetic �elds. The Goldreich-Sridhar phenomenology takes

into account this anisotropy and through a principle called `critical balance', predicts

two power laws one for the turbulent �uctuations traveling parallel to magnetic �eld

and other for the ones moving perpendicular to it. Some new modi�cations have been

put-in, in recent times to re�ne IK and GS phenomenologies.

There are several methods of solving the MHD equations approximately. The eddy

damped quasi normal Markovian (EDQNM) approximation, large eddy simulations
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and direct numerical simulations (DNS) are some of the methods. The aim of these

methods is to get a solution which closely resembles the systems in nature. How-

ever, the Reynolds numbers mentioned above are not achievable numerically, with the

current best computing facilities. Nevertheless with the available supercomputing fa-

cilities, Reynolds number of the order of 103 in MHD turbulence and ∼ 104 in case

of hydrodynamic turbulence, have been regularly attained. The results from these

methods, although, far from what is seen in nature, in terms of Reynolds numbers, do

give insights into the physical aspects of the turbulent �ows. Of these methods, DNS

su�ers from the least amount of errors as they do not use any approximations to the

equations, but solve them as they are, using some simple physical assumptions. The

methods mentioned here are also used to verify the power law behaviors predicted by

the di�erent phenomenologies.

Magnetic helicity, which represents the linkage and twist of �eld lines in the turbulent

�ows, was �rst reported by K.Mo�att in 1969 [3]. It is de�ned as the volume integral

of the dot product of the magnetic �eld and its vector potential, for the volume under

consideration. It was also realized that in an ideal three dimensional �ow (i.e. �ow

with no dissipative e�ects), this quantity is an invariant. This invariance property is

useful in plasma fusion research, speci�cally in the reversed �eld pinch (RFP) devices.

In RFP devices, it has been shown that because of the invariance property of magnetic

helicity, the magnetic �eld changes its topology and relaxes into a characteristic state.

These relaxation phenomena are a fundamental process determining both the forma-

tion and sustainment of the so called RFP magnetic distribution as well as plasma

particle and energy con�nement [4].

Pouquet et al. in 1975 [5], showed that magnetic helicity exhibits an inverse cas-

cade (spectral transfer from small scales to large scales) in 3D-MHD turbulence, sim-

ilar to the kinetic energy inverse cascade predicted by Kraichnan in 1967 [6] for 2D-

hydrodynamic turbulence. A year later, through the numerical simulations of EDQNM

equations of forced 3D-MHD turbulence, for the �rst time the inverse cascade was

clearly shown in the spectra of magnetic helicity [7]. A mechanism for this inverse cas-

cade; di�erent from the kinetic energy inverse cascade mechanism in 2D-hydrodynamic

turbulence; was also suggested. It was also shown that the spectrum has an inertial

range, which shows a power law behavior of k−2 . It was reported that this inverse

cascade of magnetic helicity results in large-scale magnetic structure formation [7].

Several low to moderate resolution direct numerical simulations have been performed

to verify the inverse cascade. But in all the previous DNS trials, the initial scales were
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not su�ciently small and the forcing scale was also in small to moderate wavenumber

region (k=3 to 30) [8, 9, 10, 11]. Hence the number of Fourier modes through which

the inverse cascade was progressing were only a few. Apart from the forced 3D-MHD

turbulence, there are reports on numerical studies of decaying 3D-MHD turbulence (i.e.

turbulence without any forcing) [12, 13, 14], but in these works the inverse cascade of

magnetic helicity was not studied.

In order to see a spectral transfer from extremely small scales in the forced turbu-

lence and to verify or con�rm the k−2 spectral law for magnetic helicity in that case

and to study the inverse cascade of magnetic helicity in decaying turbulence, this the-

sis work was initiated. Also the problem of large-scale magnetic structure formation,

which was paid less attention to in previous works, is taken up here. To understand

the in�uence of the inverse cascade of magnetic helicity on various other quantities of

turbulent �ow and to �nd out mechanism(s) for large-scale magnetic structure forma-

tion(s), form the main motivations of this work. For this purpose high resolution DNS

of 3D-MHD equations, for both forced and decaying turbulence cases, are performed

using a pseudo-spectral MHD code and the results are discussed.

For this, the work is divided into �ve chapters. In the �rst chapter, the basic equa-

tions and properties of MHD turbulence are described. Important assumptions needed

for the simpli�cation of the equations are mentioned. The mathematical background

of some of the important properties of magnetic helicity like invariance and inverse

cascade is established. In the second chapter, the numerical setup which includes the

exact process of generating the initial conditions and the forcing mechanism is de-

scribed. Hyperviscosity is also introduced into the simulation setup. The two cases

that will be studied i.e. decaying turbulence and forced turbulence are explained.

In the third chapter phenomenologies explaining the spectral and spatial properties

for hydrodynamical turbulence and 3D-MHD turbulence, are summarized. As already

mentioned, these phenomenological concepts explain the properties of turbulence with

the help of some simple power laws. These power laws play an important role in un-

derstanding the properties of 3D-MHD turbulence. Also included in this chapter is a

brief introduction and discussion of EDQNM concepts. These phenomenologies and

EDQNM form the theoretical basis for the results obtained in the next two chapters.

The spectral properties of 3D-MHD turbulence under the in�uence of the inverse cas-

cade of magnetic helicity, are studied in the fourth chapter. The �fth chapter, reports

the spatial properties of 3D-MHD turbulence under the same in�uence. From the re-

sults of these two chapters, a plausible explanation for large-scale structure formation
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in some celestial bodies like planets and ISM is given. In the end a summary of the

work, which includes suggestions for further studies is provided.
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Chapter 1

3D-MHD Turbulence and Magnetic

Helicity

In this chapter �rst the basic concepts of turbulence and magnetohydrodynamic (MHD)

turbulence and their salient properties and features are introduced. Next the concept of

magnetic helicity is de�ned and its important properties: invariance in ideal 3D-MHD,

inverse cascade and their importance in nature, are discussed.

1.1 Turbulence and MHD
Turbulence is a phenomenon seen in nature and is generally associated with �uids.

It can be described as a disorderly state of a physical system both in space and time. A

�ow is said to be turbulent if it is able to mix transported quantities much more rapidly

than if only molecular di�usion processes were involved. More formally, following

Lesieur [15], a �ow is turbulent if:

• it is unpredictable in the sense that a small uncertainty as to its knowledge at a

given initial time, will amplify, so as to render impossible a precise deterministic

prediction of its evolution i.e. highly nonlinear in time,

• it satis�es the increased mixing property and

• it involves a wide range of spatial scales i.e. nonlinear in space.

Turbulent �ows may possess di�erent dynamics depending on their spatial dimension-

ality and may exhibit well-organized structures or otherwise [15]. Atmospheric or ocean

currents, planetary cores, magnetospheres of planets, interiors of stars, interplanetary

media, interstellar media and galaxies are some of the systems where turbulence is seen
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over large-scale ranges [15, 1]. Turbulent �ows also arise in aeronautics, hydraulics, nu-

clear and chemical engineering; in this context they are much smaller in scale relative to

the settings mentioned earlier. Turbulence is often studied in physical systems mainly

to understand its appearance so that an attempt is made to avoid it, where its emer-

gence causes unwanted phenomenon and some times even destruction. But there are

many technical applications, where its mixing properties are desirable [15].

Turbulence is extensively studied in plasma(s): a macroscopically electrically neutral

substance containing many interacting free electrons and ions which exhibit collective

behavior due to long range Coulomb forces. Plasmas are abundant in extraterrestrial

world with close to 99% of the visible matter believed to be in this state. Plasma prop-

erties can be accurately described by particle distribution functions in phase space.

The spatial and temporal evolution of these distribution functions are governed by the

Boltzmann-Maxwell equations, which are partial di�ertial equations in 7-dimensional

space [16]. This set of complicated equations are di�cult to solve, although they de-

scribe the microscopic and macroscopic properties of the plasma very well. In many

cases, the interest lies in understanding the macroscopic quantities like density, tem-

perature and pressure to name a few, and their time and space evolutions [16]. A

simpler approach can be taken that can give almost the same amount of information

on macroscopic properties. In this simple approach these macroscopic quantities are

obtained as moments of distribution functions. It is simpler to investigate their evolu-

tion than that of the full distribution function, owing to the number of dimensions that

are to be dealt with. The macroscopic moments are quantities that have been studied

in �uid and gas dynamics, and fall into the realm of �uid theory [16]. Thus plasma is

studied as a �uid. Since material in the plasma is electrically conducting, it exhibits

electromagnetic properties too. Thus, turbulence in plasma is more complicated than

in normal �uids as both electromagnetic and �uid dynamic in�uences on its evolution

have to be understood simultaneously. Magnetohydrodynamics (MHD) is one of the

important tools used for the studies of plasma turbulence and thus the name MHD

turbulence. It is believed that the large-scale magnetic structures and magnetic �elds

associated with celestial bodies can often be understood as a consequence of MHD tur-

bulence and its properties. The primary interest of this study is to understand some

of the important properties of MHD turbulence. In the following part of the section,

the equations used in studying these properties are introduced.
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1.1.1 MHD Equations

Plasma, as already stated, is matter in an ionized state, thus contains both pos-

itively and negatively charged ions typically kept apart by the high average energies

they possess. But the size of the dynamical regions and associated time scales of in-

terest for studying turbulence are huge in comparison to the e�ective mean free paths

and frequencies associated with these plasma particles. For example, the convective

motions in the solar convection zone have length scales of 103 to 107 m, whereas the

Debye length of solar plasma is only 10−4m. The time scales for the convective motions

are of the order of 102 to 103 s, while the gyro motion time scale in solar plasma is of

the order of 10−10 s [17]. For simplicity, plasma is assumed to be consisting of singly

charged ions and electrons only. Further, since the turbulent motions occur on larger

time scales when compared to the short collisional time scales among these species,

the ions and electrons can be assumed to be strongly coupled, forming one single elec-

trically conducting �uid (see [17, 18] and the references there of). MHD turbulence

comprises of dynamics of many interacting degrees of freedom and thus, this relatively

simple single �uid description of MHD would form a good starting point. Additional

properties like gravity, radiation, rotation, convection etc. are neglected in this work

as the emphasis is on understanding an inherent property of the MHD turbulence:

magnetic helicity (introduced in the next section). For additional simplicity the mass

density ρ of the plasma or magneto�uid is assumed to be a constant, (ρ = ρ0 = 1) in

time and spatially uniform. Note that as ρ is set to unity, it will not be mentioned

further in the equations below. Relativistic e�ects are neglected and �uid velocities are

assumed to be signi�cantly smaller than the magnetosonic speeds in the plasma (see

[18]). The �ow is thus incompressible [19]. With this condition the continuity equation

dρ

dt
+ ρ∇ · v = 0 (1.1)

imposes a solenoidality constraint on the velocity �eld v, ∇ · v = 0 . With these as-

sumptions in place and using the conservation laws of momentum and electrical charge

in combination with Maxwell's equations, the MHD equations can be derived and are

stated below in Gaussian units (see [1, 16]).

∇ · v = 0 (1.2)
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∂tv + (v · ∇)v = −∇p − 1

4π
b× (∇× b) + µ∆v (1.3)

∇ · b = 0 (1.4)

∂tb = ∇× (v × b) + η∆b (1.5)

Here b is the magnetic �eld, p is the thermodynamic pressure, µ is the kinematic

viscosity and η is the magnetic di�usivity of the �uid. The pressure p is not an

independent variable as incompressibility condition holds in the system [20, 17]. It is

calculated through the divergence of the equation (1.3):

∆p = ∇ · [−(v · ∇)v +
1

4π
b× (∇× b)]. (1.6)

Here it is advantageous to work with non-dimensional form of the above set of equa-

tions. So a series of mathematical operations are performed to make them non-

dimensional.

The mean magnetic �eld is assumed to be zero [20, 17]. The pressure term is elimi-

nated altogether, from the equations by writing the equation (1.3) in terms of vorticity

i.e. ω = ∇ × v. The quantities are written in non-dimensional form, in terms of the

characteristic length scale L0 and velocity V0 of the con�guration under consideration

as:

r′ ≡ r

L0

, v′ ≡ v

V0

, t ′ ≡ V0

L0

t , b′ ≡ b√
4πV0

and p ′ ≡ p

V 2
0

. (1.7)

With these two operations the set of equations (1.2)- (1.5) now becomes:

∂tω −∇× (v × ω + SB j× b) = Re−1 ∆ω (1.8)

∂tb = ∇× (v × b) + Rm−1 ∆b (1.9)

ω = ∇× v (1.10)

j = ∇× b (1.11)

∇ · v = ∇ · b = 0 . (1.12)



1.1 Turbulence and MHD 5

Note that the quantities are now written without their respective primes (i.e. v′ as

v and so on ) and this notation is continued for the rest of the work. The above

set contains three dimensionless parameters SB, Re and Rm which characterize the

system. SB is de�ned as SB =
V 2

A

V 2
0
where VA is characteristic Alfvén velocity (the

phase velocity of Alfvén wave, given by b√
4πV0

[1, 18]). This parameter determines

the relative dynamical importance of velocity compared to magnetic �eld and is set to

unity for the rest of the work. This means the magnetic �eld is measured in units of

the characteristic Alfvén velocity. Re and Rm are related to the dissipation coe�cients

µ and η through the characteristic length L0 and velocity V0 as

Re =
L0 V0

µ
= µ̂−1 ,Rm =

L0 V0

η
= η̂−1 (1.13)

and are called kinetic Reynolds number and magnetic Reynolds number respectively.

These Reynolds numbers are rough estimates of the strength of the nonlinearities com-

pared to the dissipative terms (described next) in the equations (1.8) and (1.9). With

the above set of operations, the �nal form of the non-dimensional MHD equations look

as (1.14 - 1.16), which will be used in the rest of the work.

∂tω = ∇× (v × ω − b× j) + µ̂∆ω (1.14)

∂tb = ∇× (v × b) + η̂∆b (1.15)

∇ · v = ∇ · b = 0 (1.16)

µ̂ and η̂ are now the dimensionless dissipation coe�cients.

An equivalent formulation of the equations is also possible by introducing Elsässer

�elds z± = v ± b as:

∂tz
± = −z∓ · ∇z± −∇(p +

b2

2
) +

Re−1 + Rm−1

2
∆z± +

Re−1 − Rm−1

2
∆z∓ (1.17)

∇ · z± = 0 (1.18)

From the de�nition of turbulence, it is clear that it is highly nonlinear, hence like

many nonlinear processes, is di�cult to understand, characterize or predict. There are

a number of ways in which a nonlinear process could be understood; within the bounds

of error. Numerical modeling, stochastic analysis, stability analysis are some of the

methods that have been useful in improving the understanding of turbulent �ows. As



6 3D-MHD Turbulence and Magnetic Helicity

seen from the set of equations (1.14 to 1.16), this notion of nonlinearity is justi�ed

for MHD turbulence too. Although stochastic and other approximation methods exist

(see [21, 22]), in the context of this study the concentration is mainly on 3D- direct

numerical simulations (DNS) and modeling of the turbulent �ow.

Numerical simulations of a turbulent �ow involves solving simultaneously the above set

(equations (1.14 to 1.16)) of nonlinear di�erential equations involving various quantities

that constitute the �ow. In 3D-MHD, the equations in their current form are termed as

resistive MHD equations and if the dissipation coe�cients are set to zero, they are called

ideal MHD equations. It is also important to note that in the Maxwell's equations the

displacement current is neglected. Thus the current density in the system is divergence-

free. It is the dominance of the nonlinear terms in these equations that actually leads

to the onset of turbulence in the �ows.

1.1.2 Signi�cance of the Terms of the Equations

The �rst equation (1.14) is the vorticity equation which also represents the balance

of momentum, in the system, in this vorticity formulation. In this equation the �rst

part of the �rst term on the r.h.s. determines the advection by the velocity �eld. The

second part of this term is the Lorentz force. This term signi�es the in�uence of mag-

netic �eld on the velocity dynamics. It is responsible for energy transfer from magnetic

�eld to velocity �eld or vice versa resulting in driving or suppression of velocity �uc-

tuations [17].

The equation (1.15) is the induction equation. The �rst term on the r.h.s. is the term

that signi�es the nonlinear interaction between velocity and the magnetic �eld, which

in�uences the evolution of the magnetic �eld �uctuations. It is a counterpart to the

Lorentz force term of the equation (1.15). This term not only exchanges the energy

between both the �elds but also redistributes this energy over di�erent spatial scales

of the magnetic �eld [17].

The non-dimensional dissipation coe�cients µ̂ and η̂ are related to the Reynolds num-

bers by the equation (1.13). In the case of the kinetic Reynolds number Re, a critical

Reynolds number Re > Recrit is necessary to generate turbulence. This is because its

inverse, the normalized kinematic viscosity, has a damping e�ect on turbulent �uc-

tuations. The critical kinetic Reynolds number depends on the geometry of the �ow

and typically Recrit∼102 [1]. In the hydrodynamic case, it determines the transition to

turbulence at low Re and properties of the turbulence itself at high Re. In addition to

this parameter there is the magnetic Reynolds number Rm. Very low Rm implies the
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domination of the magnetic dissipation whereas very high Rm means that the magnetic

�ux through a surface moving with the �uid remains almost constant i.e. the `frozen-in'

property [1]. Reynolds numbers determine the ratio of large and dissipation scales in

a �ow and thereby their separation (for discussion on various scales in turbulence see

chapter 3). Turbulent �ows are characterized by large Reynolds numbers. Typically,

the Reynolds numbers range from 106 for laboratory plasmas to 1012−20 or more in

the case of astrophysical systems [17]. These large Reynolds number regimes are not

achievable in direct numerical simulations with the current computational capabilities.

Nevertheless the computations that are being performed are believed to give a reliable

impression of the inherent properties of these systems to a large extent. Another pa-

rameter, namely, the magnetic Prandtl number is introduced which is the ratio of the

two Reynolds numbers. Here it is de�ned as:

Prm =
Rm

Re
. (1.19)

This parameter measures the relative importance of viscous and Ohmic dissipation.

The typical values range from as low as 10−10 to 10−5 in the exteriors of certain celes-

tial bodies and their interiors respectively, to as high as 102 for fusion plasma and 1014

for interstellar medium [17]. However in this work the magnetic Prandtl number is

always set to unity to achieve a formally symmetric con�guration with regard to v and

b [18]. Which means only the case where both the kinetic and magnetic di�usivities

are equal is considered.

The terms in the equation (1.16) signify the fact that both the velocity and magnetic

�elds are solenoidal. In addition the ∇ · b = 0 condition ensures that there are no

magnetic monopoles.

The equations (1.17) and (1.8) contain Elsässer �elds, which are more fundamental

quantities than v and b in incompressible MHD as these equations are symmetric in

nature [20, 1]. Ideal invariants (see next section) and some properties like residual

energy can also be expressed in terms of these �elds (e.g. see [1]). Also as seen in

equation (1.17), there is no self coupling in the nonlinear term but a cross coupling of

z+ and z− [1]. This forms the basis of the Alfvén e�ect, which describes a fundamental

nonlinear interaction process (see section 3.2.2. of chapter 3 for details). They assume

more signi�cance in the phenomenological models of the MHD, which will be described

in the chapter 3.
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1.1.3 Ideal Invariants

In any system characterized by a nonlinear set of equations like MHD, it is di�cult

to characterize the system fully. But it has been identi�ed that there exist three

important quadratic invariants [20] in the ideal 3D-MHD case, which give a fair idea

of the large-scale dynamics of the system. These ideal invariants are 1)total energy,

2)cross helicity and 3)magnetic helicity.

1) Total energy: It is the sum of the kinetic energy and the magnetic energy of the

system and is given by:

E =
1

2

∫
V

dV (v2 + b2 ). (1.20)

2) Cross helicity: The dot product of the velocity �eld and magnetic �eld is called cross

helicity and is given by:

HC =
1

2

∫
V

dV v · b. (1.21)

2) Magnetic helicity: The volume integral of the dot product of the magnetic vector

potential and the magnetic �eld is called magnetic helicity and is given by:

HM =
1

2

∫
V

dV A · b. (1.22)

Here A is the magnetic vector potential which is related to the magnetic �eld by

b = ∇×A and V is the volume of the system under consideration.

The invariance property means Ė = ḢC = ˙HM = 0 in the ideal MHD case (η̂=µ̂=0),

where the dot represents the time derivative. In the resistive MHD case, these deriva-

tives are given as

Ė = −DE = −
∫

V

dV (µ̂ω2 + η̂j 2 ) (1.23)

ḢC = −DHC

= −(µ̂+ η̂)

∫
V

dV j · ω (1.24)

˙HM = −DHM

= −2 η̂

∫
V

dV j · b (1.25)

The derivation of these dissipation relations in equations (1.23 - 1.25) is given in [1].

It is to be noted that invariance of magnetic helicity necessarily depends on the bound-

ary conditions of the system (see section 1.2.1). Total energy of the system and its

dissipative relation give an idea of the nature of the scales involved in the �ow. Cross

helicity is an indication of the degree of alignment between the velocity and magnetic
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�elds. Magnetic helicity is a measure of linkage and twist in the magnetic �eld. This

is the primary physical quantity of this studies because it shows a particular feature

called the `inverse cascade' (to be discussed in detail in section 1.2) in turbulent �ows.

Other Quantities of Interest

There are few more important quantities of interest which need to be studied when

looking at 3D-MHD turbulent system. They are kinetic helicity, residual energy and

residual helicity. Kinetic helicity represents the twist of vortex lines and is the volume

integral of the dot product of vorticity and velocity �elds:

HV =
1

2

∫
V

dV v · ω. (1.26)

Residual energy is the di�erence of magnetic energy and kinetic energy whereas residual

helicity is the di�erence of magnetic and kinetic helicities.

Kinetic helicity is an ideal invariant in 3D-hydrodynamics (HD). According to the

Kelvin-Helmholtz theorem (which shows the invariance of kinetic helicity in ideal 3D-

HD), for a perfect �uid (either barotropic or of uniform density), vortex surfaces,

�laments and tubes are material and move with the �uid particles they contain [15].

From the 3D-DNS results of isotropic turbulence in hydrodynamic case, it has been

established that the turbulent structures are in fact thin tubes of high vorticity due

to vortex stretching1 (see [15] and references there of). In 2D-HD turbulence, vortex

stretching is not present but since vorticity is conserved2 it leads to inverse cascade of

kinetic energy [1]. In MHD turbulence, however, this phenomenon of vortex stretching

is inhibited, because of the presence of the magnetic �eld. It is to be noted that in

3D-MHD turbulence, magnetic helicity is an ideal invariant and is responsible for the

inverse cascade of magnetic helicity (which represents the twists in the magnetic �eld).

Kinetic helicity is important in the interiors of many celestial objects like stars, planet

cores and is believed to be responsible for the generation of their magnetic �elds through

dynamo action i.e. the self-sustained generation of magnetic �elds by the motion of

the conducting �uid [23].

The value of residual energy determines which energy component is dominant in the

system. Three possibilities exist here: a) kinetic energy is greater than magnetic energy:

1The term ω.∇v derived from the �rst term of r.h.s. of equation (1.14) with no magnetic �eld,
indicates to the fact that if a thin vortex tube is embedded in turbulent �ow, it is both stretched by
turbulence as well as di�used by molecular viscosity. This is the phenomenon of vortex stretching.

2since only di�usive decay is present and no source term to give the vortex stretching e�ect.
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this is the case in the initial stage of turbulent dynamo con�gurations mentioned earlier,

b) kinetic energy and magnetic energy are equal or almost equal and c) kinetic energy

is smaller than the magnetic energy. The last two cases are of interest in this work

and often it is seen that the dominant component of the energy budget comes from the

magnetic energy.

Residual helicity determines which of the two �elds is responsible for the structure

formation in the �ow and is the true motor of the turbulent �uctuations in the system

[7]. The quantities mentioned above are not studied normally in real space but in

spectral space. The importance of these quantities is described in more depth, when

discussing the MHD turbulence properties in spectral space, in chapters 3 and 4. Before

proceeding any further, magnetic helicity in real space and its importance is discussed

more elaborately.

1.2 Magnetic Helicity
As de�ned by the equation (1.22) the magnetic helicity in a given volume, is the

volume integral of the dot product of magnetic vector potential (A) and the magnetic

�eld. As the curl of a vector measures its rotation around a point, this relation gives

how much A rotates around itself times its own modulus i.e. like a helix. The name

helicity is thus appropriate as it gauges the relative curling or braiding of the lines of

A and b (i.e. to what degree they resemble helixes). This could be termed as the

curliness of the �eld [24]. Several types of magnetic �elds including twisted, kinked,

knotted or linked magnetic �ux tubes, sheared layers of magnetic �ux and force-free

�elds, all possess magnetic helicity. As magnetic helicity quanti�es various aspects of

the magnetic �eld structure, it allows the comparison of models of �elds in di�erent

geometries, avoiding the use of parameters speci�c to the model [25].

Thus it is a topological property of the magnetic �eld and can be measured as follows:

consider three �ux tubes T1, T2 and T3 with �uxes φ1,φ2 and φ3 respectively, interlinked

as shown in the �gure 1.1. Here �ux φ of a magnetic �eld b is de�ned as the surface

integral
∫

S
b.dS across a surface S (t) bounded by a closed curve l(t), which is moving

with the plasma. Sweeping the boundary curve l along the �eld de�nes a �ux tube

[1]. From this con�guration, magnetic helicity is determined using the Gauss linking

number L(Ti ,Tj ) or simply Lij
3 [25] between any two �ux tubes Ti and Tj, of any N

3Gauss linking number determines the twist between two �ux tubes. and in equation (1.27) the
term 2Lijφiφj determines the mutual helicity between the two �ux tubes. When i = j, the term
determines the self helicity with Lii representing an average twist Ti within a �ux tube.



1.2 Magnetic Helicity 11

Figure 1.1: Schematic of linking of the �ux tubes. Shown are three �ux tubes T1, T2 and T3 interlinked
together, with their respective �uxes φi, i=1-3. Adapted from [3].

�ux tubes, from [3] as

HM = 2
N∑

i=1

N∑
j=1

Lijφiφj (1.27)

If now N →∞ with φi → 0 then equation (1.22) is got back with the following math-

ematical operations shown below for two �ux tubes, as in [25, 3]. Let σ parameterize

the curve 1 and τ parameterize the curve 2, with points x(σ) and y(τ) on the each of

the curves respectively. Let r = y − x. From the de�nition of Gauss linking number:

L12 = − 1

4π

∮
1

∮
2

dx

dσ
.

r

r3
× dy

dτ
dτdσ

Combining this equation and equation (1.27),

HM = − 1

4π

∫ ∫
b(x).

r

r3
b(y)d3 xd3 y .

Simplifying the calculations using Coulomb gauge for the vector potential (∇ ·A=0 ):

A(x) = − 1

4π

∫
r

r3
b(y)d3 y ,

HM reduces to

HM =

∫
A.bd3 x ,

which is same as equation (1.22).
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1.2.1 Ideal Invariance of Magnetic Helicity

From the de�nitions in equations (1.22) and (1.26), which have similar type of

terms, for helicities, it might be tempting to declare magnetic helicity as an ideal

invariant in 3D-MHD, like kinetic helicity in 3D-HD. The vector potential, is a gauge

dependent quantity, therefore the magnetic helicity is also gauge dependent. In order

that magnetic helicity be an ideal invariant, it needs to be gauge invariant.

In order to prove the gauge invariance of magnetic helicity, the notation used so far is

slightly modi�ed as follows, closely in the lines of [24]. Let a divergence-free magnetic

�eld B(r) be given in a region D, which may be either bounded or not. Its magnetic

helicity when B=∇×A, is de�ned as

h(B,D) =

∫
D

A ·Bd3 r (1.28)

Here A is the magnetic vector potential. It is necessary to assign boundary conditions

to B. It will be assumed that the magnetic �eld B is parallel to the surface ∂D that

bounds D. If now n is a unit vector normal to ∂D, then it is seen that B · n = 0 in

∂D. As the con�guration consists of only �nite energy �elds, B = 0 in any part of

∂D→∞. For the same reason a gauge transformation is considered as follows:

A′ = A +∇f . (1.29)

With the boundary conditions stated above and ∇ ·B = 0 , it is found that

h ′ − h =

∫
D

B · ∇fd3 r =

∮
S

f B · ndS = 0 . (1.30)

It is necessary that f be single valued in D for the above relation to be true. Hence

magnetic helicity is a property of the transverse or solenoidal part of A. It does not

depend on the longitudinal part of the magnetic vector potential (A||) ( as A is ex-

pressed as the gradient of a potential which is single valued in D). If it were not so,

then Gauss theorem could not be applied to
∫
D
∇f .bd3 r , the change in helicity under

gauge transformation for equation (1.29) [24].

For gauge invariance the normal component of B i.e. Bn must vanish at the boundary

surface since function f is arbitrary. Only in special cases, for example if periodic

boundary conditions are used, then a �nite Bn is possible. Many magnetic con�gura-

tions of interest in astrophysics are either open with �eld lines extending upto in�nity
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or bounded by surfaces crossed by �eld lines. In such cases magnetic helicity is no

longer gauge invariant. In order to overcome this situation an alternative formulation

is needed [1]. Hence following [1] let

halt =

∫
V

dV (A + A0 ) · (B−B0 ) where B0 = ∇×A0 is a reference �eld.

(1.31)

The reference �eld is chosen suitably. In an open system this reference �eld may be

a static �eld with the same asymptotic properties as B. In a bounded system the

normal components of both the �elds should be equal. To show that halt is indeed

gauge invariant even under separate gauge transformations of A and A0 , consider the

conservation law for the magnetic helicity. The gauge is chosen such that the scalar

potential vanishes, E = −∂tA/c, where c is the velocity of light. Applying Faraday's

law

∂tB = −c∇× E (1.32)

to get∫
∂t(A ·B)dV =

∫
(B · ∂tA + A · ∂tB)dV = −2c

∫
E ·BdV + c

∮
(A× E) · dS

(1.33)

When Ohm's law

E +
1

c
v ×B =

1

σ
j, (1.34)

is inserted into equation (1.33), and the boundary condition Bn=0 is applied, then the

second term in the equation (1.33) becomes:

−
∮

(A ·B)v · dS . (1.35)

Here σ is the electrical conductivity of the medium, and it is related to the dimension

less magnetic di�usivity η̂ (= Rm−1 ) through η=c2/4πσ which is η/L0 V0 (see equation

(1.13)). From the above equations the time variation of h is obtained as in equation

(1.36) by using the equation (1.37) which represents the change in h due to change in

dV of the volume.

dh

dt
=

∫
∂t(A ·B)dV +

∮
(A ·B)v · dS = −2c

σ

∫
dV j ·B as (1.36)
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∮
(A ·B)v · dSdt =

∫
dV

A ·BdV (1.37)

Hence the helicity is conserved in the ideal limit σ →∞ or η̂ → 0 . In a similar manner

it can be shown that halt is also conserved.

First term on the r.h.s. of equation (1.33) and the r.h.s. of equation (1.36) are the

two terms that depict the variation of helicity, with respect to time. These two terms

represent the nonlinear helicity transmission and dissipation respectively, constituting

the helicity �ux and hence will be used in chapter 4 in their Fourier transformed forms.

Importance of the Invariance Property

From the above discussion, it can be inferred that the magnetic helicity is con-

served in ideal MHD and is approximately conserved during magnetic reconnection (A

process in which there is a change of magnetic connectivity of plasma elements due to

the presence of a localized di�usion region where ideal MHD breaks down. [26]). In a

con�ned volume, widespread reconnection may reduce the magnetic energy of a �eld

while approximately conserving its magnetic helicity [4]. As a result, the �eld relaxes

to a minimum energy state, often called the Taylor state, where the current is parallel

to the force free �eld [4]. Such relaxation processes are important to both fusion (es-

pecially in reversed �eld pinch devices) and astrophysical plasmas [25]. The derivative

of magnetic helicity obtained in the equation (1.33) has two terms, a dissipative and

a transport term. The dissipative term represents the e�ect of twisting motions on

the boundary while the second transport term represents the bulk transport of helical

�eld across the boundary. From these two terms some astronomical observations e.g.

hemispheric speci�c sign of helicity4, production of solar coronal mass ejections5; could

be interpreted [27, 28]. The constraint of magnetic helicity preservation implies that a

dynamo (the mechanism whereby electric currents within an celestial body generate a

magnetic �eld) is more easily produced if the electric potential varies in the surface of

the dynamo [29, 30].

The invariance constraint also infers that with external forcing or with any kind of

agitations to the system, only scale changes could be achieved in the system but the

magnetic helicity cannot be destroyed. Thus in order that this constraint be ful�lled,

the magnetic �eld topology in a system must change signi�cantly, while the total mag-

netic helicity of the system remains invariant or approximately invariant. This feature

4In the Sun, observations of magnetic helicity indicate that it has a positive sign in the southern
hemisphere and a negative sign in the northern hemisphere

5Huge violent ejections of plasma coming out of the Sun's outer surface i.e. corona.
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paves wave to large-scale magnetic structure formation through a process called `in-

verse cascade' (see [30, 11, 31]). In the next section this property is discussed.

1.3 Inverse Cascade of Magnetic Helicity

Transformation of Flow Equations into Spectral Domain

Inverse cascade of magnetic helicity is best explained in the spectral domain. Hence

the �ow equations (1.14 - 1.16) are Fourier transformed. For example a quantity like

vorticity ω is transformed into the spectral domain as:

ω(r, t) =

∫
d3 kω̃(k, t)e−ik·r (1.38)

here, the l.h.s. is the real space quantity and on the r.h.s. ω̃(k, t) is its Fourier space

counterpart, e−ik·r is the basis function for the Fourier space and k is the spectral

wave vector, with r and k being the Fourier transform pair r = 2π/k. For simplicity

of notation, the quantities will be generally referred without their respective variables

as: ω(r, t) and ω̃(k, t) as ω and ω̃ respectively. With this formulation the set of the

equations (1.14 - 1.16) will now read as:

∂tω̃ = ik× [ṽ × ω − ˜b× (∇× b)]− µ̂k2 ω̃ (1.39)

∂tb̃ = ik× ṽ × b− η̂k2 b̃ (1.40)

k · ṽ = k · b̃ = 0 (1.41)

Here the symbol (̃...) means the convolution integral Viz .

˜(v × ω(k)) =

∫
d3 k ′ṽ(k′)× ω̃(k− k′) . (1.42)

In this formulation the three ideal invariants stated in equations (1.20 - 1.22) read:

Ek =
1

2

∫
d3 k(|ṽ|2 + |b̃|2 ) (1.43)

HC
k =

1

2

∫
d3 k ṽ∗ · b̃ (1.44)
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HM
k =

1

2

∫
d3 kÃ · b̃∗. (1.45)

Here ∗ is the usual complex conjugate notation. In the relations (1.43) and (1.44)

the symmetry property of the Fourier transforms for the real-valued functions e.g.

f (−k) = f ∗(k) has been used. Using these �ow equations in the Fourier space, the

process of `inverse cascade' is described below.

1.3.1 Realizability Condition and Inverse Cascade

In this work the 3D-MHD turbulence is described by statistical averages of phys-

ical quantities. Fully periodic boundary conditions ensure that the viscous boundary

layers are not present in the system, so approximate statistical homogeneity of the

turbulent system is preserved [17]. Isotropy of the system is also assumed. Next the

three quantities of equations (1.20 - 1.22) are represented in their statistically averaged

forms. With the above assumptions in place and without assuming invariance under

planar re�exions, following the arguments given in [5] for a non-helical turbulence,the

realizability condition for magnetic helicity is obtained, which is reproduced here:

|HM(k)| ≤ E M (k)/k ≤ E (k)/k . (1.46)

Here EM and E are magnetic and total energies respectively. Suppose that an initial

state of maximal helicity is con�ned to two wavenumbers p and q with (p < q) and let

this excitation be entirely transferred to the wave number k. From the conservation of

total energy and magnetic helicity it is seen that

E(k) = E (p) + E (q) (1.47)

HM(k) = H M (p) + H M (q) = E (p)/p + E (q)/q . (1.48)

Using the realizability condition, and performing few simple manipulations, the above

equations are written as

k ≤ p|H M (p)|+ q |H M (q)|
|H M (p)|+ |H M (q)|

. (1.49)

The expression on the r.h.s. of the above equation is a weighted mean of p and q and

thus

min(p, q) ≤ p|H M (p)|+ q |H M (q)|
|H M (p)|+ |H M (q)|

≤ max (p, q) (1.50)
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Therefore k ≤ max (p, q). Thus simultaneous up-transfer of total energy and magnetic

helicity is not possible. Also the invariance of magnetic helicity holds only under the

assumption that b(r, t) vanishes at in�nity, in the statistically homogeneous case or

that the mean magnetic �eld vanishes. Hence the transfer of magnetic helicity takes

place from large wavenumbers to small wavenumbers and this is known as `inverse

cascade'. A more detailed version of this process and the physics involved will be

discussed in chapter 3.

Importance of Inverse Cascade of Magnetic Helicity

Inverse cascade of magnetic helicity in 3D-MHD turbulence, is believed to be one

of the processes responsible for the formation of large-scale magnetic structures in the

universe, as the movement of this quantity is towards smaller wavenumbers or large

scales. In the celestial bodies with rotation, it is believed that the di�erence of kinetic

helicity (twists in the velocity �eld) and magnetic helicity (twists in the magnetic �eld)

results in the so called α-dynamo, where kinetic helicity injection results in enhance-

ment of the magnetic �eld [1], but not necessarily lead to stable large-scale magnetic

structure formation. The relation deduced from equation (1.48) i.e. equation (1.50),

suggests that the magnetic helicity always moves to large scales. Thus in all probability,

`inverse cascade' of magnetic helicity might be an important process for the formation

of the stable large-scale magnetic structures seen in the celestial atmospheres and their

vicinities. Currently no clear evidence of magnetic helicity transfer from comparatively

very small scales to very large scales, has been put forward. In this work an attempt

to gather such an evidence is being made using DNS. Two cases: forced turbulence

and decaying turbulence are reported. In the following chapters the numerical method

is described �rst and then data analysis of the simulations is presented followed by a

discussion on the �ndings from this work.
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Chapter 2

Direct Numerical Simulations of

3D-MHD Turbulence

In this chapter the numerical methods employed for the simulation of 3D-MHD turbu-

lence are described. First the spectral scheme used for this purpose is discussed along

with the aliasing error problem and its solution. Next the integration scheme followed

by initial conditions is discussed. The forcing mechanism used for the simulations is ex-

plained next. The concept of hyperviscosity is mentioned along with a short discussion

on Reynolds number. Finally the software and hardware that make these simulations

work are mentioned, as well as the diagnostics from these simulations.

2.1 Motivation for Direct Numerical Simulations (DNS)

and Equation Set
The inverse cascade of magnetic helicity is best understood in the spectral do-

main. It is noteworthy that not only this property but many other properties of MHD

turbulence demonstrate interesting characteristics in the spectral domain. Of these

characteristics, the most important one is the so called `inertial range' of wavenumbers

(discussed in detail in chapter 3) exhibited by the spectra of certain quantities of MHD

turbulence like total energy. In the inertial range the spectra show self-similar power

law behavior, which is a predictable property of a randomly �uctuating system. The

investigation of inertial ranges and the universality of the power laws forms one of

the important aspects of turbulence studies. Numerical simulations of turbulence in

the spectral domain are performed using several methods like large eddy simulations

(LES), shell models or direct numerical simulations (DNS) [15]. LES methods and
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shell models approximate the nonlinear terms of equations (1.39 - 1.41) in one or other

form (see for e.g. [32, 22]), whereas DNS methods do not use any such approxima-

tions and deal with the equations in their true form. Thus methods other than DNS

usually involve additional assumptions. If the equation set is studied without any ad-

ditional physical approximations, a better understanding of the turbulent �ows could

be obtained. The DNS methods stay closest to the underlying di�erential equations

describing the turbulent systems although they are computationally expensive. With

appropriate choice of numerical methods however the computational overhead can be

reduced.

In studying the equation set (1.39 - 1.41) in the Fourier domain, the spatial deriva-

tives are transformed into simple multiplications with wave vectors. Here the time

evolution of the equations directly yields the spectra of the physical quantities. Al-

though the Fourier methods have several advantages, they also have a major drawback,

namely, the Gibbs phenomenon. The Gibbs phenomenon manifests itself as character-

istic oscillations of Fourier series near steep gradients. By assuming incompressibility,

such discontinuities of physical quantities are excluded [17]. For incompressible �ows,

spectral methods are more accurate than �nite di�erence schemes as they require less

discretization points for achieving the same accuracy (see [33] for a detailed description

of di�erent numerical schemes).

This study aims at a better understanding of nonlinear inertial range dynamics of two

types of MHD turbulent �ows: forced MHD turbulence and decaying MHD turbulence

in three dimensions. For this purpose the set of equations (1.39 - 1.41) is actually

written in the following manner:

∂tω̃ = ik× [ṽ × ω − ˜b× (∇× b)]− µ̂k2 ω̃ + Fv (2.1)

∂tb̃ = ik× ṽ × b− η̂k2 b̃ + Fb (2.2)

ik · ṽ = ik · b̃ = 0 (2.3)

where Fv and Fb are the forcing terms for the velocity and magnetic �elds respectively.

Thus, if Fv and Fb are set to zero, the equation set represents a decaying turbulence

case and if they are non-zero, it is a forced turbulent system. In this set of equations,

the nature of forcing very much in�uences how the turbulent �ow and its characteris-

tics evolve. In the forced system studied here a random forcing is employed, which is

discussed in the section 2.4.2.
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Fully periodic boundary conditions are chosen so that in�uence of the boundary on

the system remains minimum. This also ensures that the turbulence remains approx-

imately statistically homogeneous. Therefore inherent properties of MHD turbulence

in the system can be studied, with considerable detachment from the in�uence of the

boundary.

2.2 Pseudospectral Scheme

The equation set (2.1 - 2.3) is solved in the Fourier space in a regular cubic box

of linear size 2π, discretized with N points in each direction. This corresponds to

the Fourier wavenumber range −N
2

+ 1 ≤ k ≤ N
2
− 1 . All physical quantities are

approximated by truncated Fourier series, e.g. for the Fourier counterpart of the real

quantity ω(xj , t), ω̂k(t) as

ω̂k(t) =
1

N 3

∑
j

ω(xj , t)e−ik·xj where xj =
2πj

N
j = 0 , ....,N − 1 for each direction.

(2.4)

The mode k = (0 , 0 , 0 ) of all physical quantities, i.e. their spatial average, is set to zero.

As already mentioned in section 1.3, the physical quantities are real valued and satisfy

symmetry (ω̂−k(t) = ω̂∗k(t)) in Fourier space, hence it is enough to only store one half

of Fourier modes. This symmetry property helps in reducing the memory requirement

and also speeds up the calculations. The convolution terms in the equations (2.1) and

(2.2) may in general be represented as

[̃a b]k =
∑

k=p+q

ãp b̃q where |k|, |p|, |q| ≤ N

2
− 1 . (2.5)

A simple calculation shows that numerically evaluating such an expression in three

dimensions requires O(N 6 ) operations. This fact limits the application of spectral

methods to small Fourier data sets [34]. In order to overcome this limitation, the vari-

ables in the relation are �rst transformed into real space. A multiplication is performed

here and the value retransformed into the Fourier space. This mathematical operation

is facilitated by the fact that a convolution in Fourier domain is a multiplication in real

space. The method explained here is the `pseudospectral scheme' [34]. This method

reduces the complexity of the order of operations performed to O(N 3 log2 N ), which

is only possible with FFT (Fast Fourier Transform). But this method su�ers from

`aliasing error' caused by the �nite discretization, shown in equation (2.4).
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2.2.1 Treatment of Aliasing Errors

The aliasing error of the pseudospectral scheme is removed by a truncation tech-

nique known as dealiasing. This technique utilizes the calculation of extended Fourier

�elds of size M ≥ 3N
2

instead of the original size of N . For this, equation (2.5) is

written considering only a one-dimensional convolution as:

[̃a b]k =
∑
k=p+q

ãp b̃q +
∑

k±N=p+q

ãp b̃q. (2.6)

Now if original Fourier variables are padded with zeros in the extra wavenumber range
M
2
− 1 ≥ |p|, |q| ≥ N

2
− 1, the second term in the equation (2.6) vanishes and the

exact result of the convolution is obtained. This is the 3/2 dealiasing rule. However,

the number of operations performed here is higher than the normal pseudospectral

calculation. In one dimension the truncation technique requires ∼ 50% more numerical

operations. The computational e�ort increases with number of dimensions as many

�nally discarded modes that do not carry any physical information have to be included

and evaluated (see [17] and reference thereof).

The dealiasing step performance can be improved by reducing the number of extra

modes by the introduction of spherical truncation of the Fourier variables in three

dimensions. In this dealiasing method, a sphere of physical Fourier modes is assumed

that are padded to a cubic shape. The aliasing error due to the modes in this sphere

was empirically found to be of the order of discretization error, and is neglected. In

this way the number of additional calculations are reduced by a factor of more than 2
3

compared to the full 3
2
dealiasing [20, 17].

2.3 Leapfrog Integration

The equation set (2.1 - 2.3) is evolved in time using a leapfrog scheme. The leapfrog

scheme is a fast explicit two-step algorithm that uses a constant time step. The scheme

is implemented as second order accurate, and is suitable for non-dissipative problems.

However, the algorithm is unstable in the presence of di�usion terms. An additional

modi�cation in the form of an integrating factor, is therefore required to avoid this

property. This method treats the linear di�usion term exactly (see [20, 17, 35]). In

this method equations (2.1) and (2.2) with the forcing terms set to zero appear as:

∂t(ω̃ke µ̂k2 t) = e µ̂k2 t ik× [ṽ × ω − b̃× (∇× b)] (2.7)
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∂t(b̃ke η̂k2 t) = e η̂k2 t ik× ṽ × b (2.8)

Here the dissipation term is included implicitly and stability and accuracy properties

do not depend anymore on the dissipation term, but only on the non-linear term. With

this modi�cation the leapfrog scheme for the equations is:

ω̃n+1 = ω̃n−1 e−µ̂k2 ∆t + 2∆te−µ̂k2 ∆t [ṽ × ω − ˜b× (∇× b)]n (2.9)

b̃n+1 = b̃n−1 e−η̂k2 ∆t + 2∆te−η̂k2 ∆t [ṽ × b]n (2.10)

where n is a time step index and ∆t denotes the time interval of one time step. The

solution obtained with this scheme is often modi�ed by temporal oscillations with

the period 2∆t . These oscillations arise due to the inaccurate approximation of time

derivatives. They can be avoided by temporal averaging of the obtained solution over

every two subsequent time steps (see [20, 17, 35]). For nonlinear partial di�erential

equations like the ones under consideration there are no clear rules to guarantee the

numerical stability of a simulation, and therefore no recipes to indicate how small ∆t

ought to be. The Courant-Friedrichs-Lewy (CFL) condition, an estimate originally

developed for advection, provides the upper bound as:

∆t ≤ ∆x

vmax

∼ π

kmax vmax

(2.11)

where vmax is the maximal speed of propagation in the system. As incompressibility

was assumed magneto-acoustic waves are excluded. A good estimate for the maximum

speed of propagation is vmax =
√

E tot . Although equation (2.11), forms a good estimate

for stability, the time step additionally can be adjusted in particular simulations for

maximum stability [20, 17, 35, 36].

2.4 Initial Conditions and Forcing

2.4.1 Initial Conditions

The simulation is initiated by providing de�nite amounts of kinetic and magnetic

energies, following [20, 13].

Step1 : The initial velocity and magnetic �elds are symmetrical Gaussian �uctuations

centered around a particular wave number km with a functional form ae
−(k−km )2

(2k2
0 ) , with

a being the amplitude, k0 as its width and k the wavenumber.
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Step2 : An orthonormal basis of the form
{

em := km

|km | , e1 , e2

}
is generated with

em⊥km and e2 := em × e1 , where e1 and e2 are random vectors that are orthogonal

to k and are normalized. This orthonormal basis is generated to preserve solenoidality

of the initial magnetic and velocity �elds.

Step3 : A random vector potential is now generated using the functions from step-1

and step-2 for a grid point m whose j th component is de�ned as:

Âmj
= ae

−(k−km )2

(2k2
0 )

q+(φ) (e1 + ie2 )j︸ ︷︷ ︸
=:γ+

e i2παm + q−(φ) (e1 − ie2 )j︸ ︷︷ ︸
=:γ−

e i2πβm

 (2.12)

here αm and βm are random numbers in the range [0, 1]. γ± are the eigenvectors of the

rotational operators. Local magnetic helicity is then generated with the help of these

eigenvectors, using the relation Hm = 1
2
A∗m · (ikm ×Am) = ke

− k2
m

k2
0 [q2

+(φ)− q2
−(φ)].

Note that the parameter q±(φ) sets the amount of magnetic helicity (H M ) introduced

into the initial condition, and can vary between ±H M
max while H M

max
∼= E M/k0 , E M

being the magnetic energy. Here φ ∈ [−1, 1] and q±(φ) is de�ned by:

q± := cos(
π

4
φ)± sin(

π

4
φ) =

√
2sin(

π

4
(1± φ)). (2.13)

In the helicity expression above the relation ikm ×Am is the magnetic �eld bm , gen-

erated from the already obtained magnetic vector potential. The factor φ determines

the amount of magnetic helicity in the system; φ = 0 is the state with no magnetic

helicity and φ = ±1 the state of maximum helicity.

For generating the initial velocity �eld, the magnetic �eld is rotated using a set of

transformation matrices in the e1 , e2 - plane:

vm = D−1
km

DϕDkmbm . (2.14)

This also sets the cross helicity H C of the initial state. The transformation matrices

are de�ned using the orthonormal vectors em , e1 , e2 as:

Dkm :=


eT

m

eT
1

eT
2

 (2.15)
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Dϕ :=



1 0 0

0 cos(ϕ) sin(ϕ)

0 −sin(ϕ) cos(ϕ)


(2.16)

here ϕ ∈ [0, π]. Note that ϕ ∈ {π/2, 3π/2} actually correspond to a case where local

cross helicity is zero and the case ϕ ∈ {0, π} correspond to the case of maximum cross

helicity. The magnetic �eld and velocity �eld are normalized in such a way that the

magnitudes of initial kinetic and magnetic energies E V ,E M , can be set to any required

value by appropriate normalization factors. This procedure also ensures that the initial

magnetic and velocity �elds are divergence free.

An initial condition generated at a low resolution can be used for performing high

resolution simulations with the help of some simple numerical operations. In this

strategy, the initial setup is padded with the necessary number of additional zeros at

time t = 0 , without disturbing the initial energy budget. This procedure allows the

switch from any lower resolution to any wanted higher resolution, without e�ecting the

initial values of the physical quantities.

The table containing the exact initial conditions, is shown in chapter 4, table 4.1. The

initial kinetic and magnetic energies for the forced turbulence case are chosen to be

small in magnitude, while for decaying case they are chosen to be high. In the forced

case, the forcing term contributes to the energy budget and hence to avoid unwanted

increases in energies which could violate the CFL criterion or would evolve the system

relatively slowly while satisfying the CFL; the initial energies are deliberately kept low.

In the decaying case, no such external energy contribution is present, but the initial

energy is decreasing with time. Hence, to study the system for a considerable time, in

this decaying phase, the initial energy is kept high. The position of the initial velocity

and magnetic �elds are in the high k to intermediate k regions, to facilitate the study

of inverse cascade. In the system, initial cross helicity is zero, while the fraction of

magnetic helicity present is set to 0.5.

2.4.2 Forcing

In the forced case i.e. when ((Fv and Fb)6= 0) they are generated in a manner

very similar to the way the initial conditions were obtained. First as in step-2 above
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two orthonormal basis sets
{

ek1 := k1

|k1 | , e11/21 , e12/22

}
are generated. Using these unit

vectors the forcing terms are obtained as in equations (2.17 - 2.24). The parameters

φ1 and φ2 essentially determine the amount of magnetic helicity and kinetic helicity

generated by these forcing terms. ψ1 and ψ2 are the amplitudes of these forcing terms

respectively. It is important to note that the terms Fv and Fb are only limited to

a certain wave number region, i.e. the forcing is limited to a band of wave numbers

[kst ,kend ]. The random numbers α1/2 and β1/2 are as above in the range [0,1] and are

generated every time step. The threshold values ψ1 and ψ2 have been decided in such

a way that CFL is not violated, after some trial and error.

Fb =

ψ1
bk1

|bk1 |
if kst ≤ k1 ≤ kend ,

0, otherwise
(2.17)

where

bk1 =
(ik1 ×A1 )

|k1 |
while (2.18)

A1j =
{

q+(φ1 )(e11 + ie12 )j e
i2πα1 + q−(φ1 )(e11 − ie12 )j e

i2πβ1
}

(2.19)

and

HM
1 =

1

2
A∗1 · (ik1 ×A1 ) the generated magnetic helicity (2.20)

Fv =

ψ2
vk1

|vk1 |
if kst ≤ k1 ≤ kend ,

0, otherwise
(2.21)

where

vk1 =
(ik1 ×A2 )

|k1 |
while (2.22)

A2j =
{

q+(φ2 )(e21 + ie22 )j e
i2πα2 + q−(φ2 )(e21 − ie22 )j e

i2πβ2
}

(2.23)

and

HV
1 =

1

2
A∗2 · (ik1 ×A2 ) the generated kinetic helicity. (2.24)

It is possible, in principal, with this forcing setup, to have varying levels of magnetic

and kinetic helicities generated and added to the system, over a small band of wavenum-

bers. But, here the studies concentrates on two cases: 1) maximum amount of magnetic
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helicity being added with the kinetic helicity generated by Fv set to zero and 2) both

of them added at their maximum values. These cases were chosen because primary

focus of the studies is to understand how would the system respond to the injection

of magnetic helicity alone, (inverse cascade and other parameters), at its maximum

value. The secondary focus is to know whether and how this response changes with

the injection of both the helicities at their maximum values. The description on the

forcing terms is also seen in the table 4.1 of chapter 4. The maximum magnetic helicity

that can possibly be added is a factor of unity and this is true for kinetic helicity too.

The forcing terms are added in the equations (2.9) and (2.10) on the r.h.s. to the

second term in each equation, within the square brackets. They are generated and

added on the �y at every integration step, keeping up the random nature of the forcing

at every point of time.

Currently existing simulations on the forced MHD turbulence have forcing mechanisms

at small to intermediate wavenumbers k ≤ 3 to 30. The resolutions of these simulations

range from moderate (5123) to small (643) values and the forcing mechanisms used are

also di�erent from those discussed above [8, 11, 9]. Hence, in this studies, the forcing

is concentrated at large wavenumbers (see table 4.1), with an initial condition in the

same region [the explanation on small, intermediate and large wavenumbers can been

seen in chapter 3] and the simulations are carried out at what can be termed as high

resolution i.e. 10243. This is the �rst such attempt in the MHD case to investigate

inverse cascade process from extremely small scales to large scales, although many at-

tempts exist on the inverse cascade of kinetic energy in 2D-hydrodynamic turbulence

(see e.g. [37, 38]).

For generating the initial conditions, a simple random number generator with moderate

repetivity is su�cient. But for generating the forcing, a random number generator with

very long repetivity is needed as at every time step, large number of random modes in

the range kst ≤ k1 ≤ kend , are required by the simulation. Thus two di�erent random

number generators are used for these two purposes. For the initial condition, the ran-

dom number generator available with the Fortran compiler is used. For the forcing, a

special random number generator developed by Nishimura and Matsumoto [39] is used.

2.5 Hyperviscosity and Reynolds Number
It has been observed that by using the equations (1.14) and (1.15) in their original

form in direct numerical simulations, the needed scale separation in the spectra is not
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achieved even at high resolutions. The scale separation (various scales and their de�-

nitions to be described in chapter 3) is necessary to study the so called inertial range,

without any dissipative pollution. Usage of large Reynolds numbers in the simulations

proves to be computationally expensive as linear resolution N and Reynolds number

are related by N 3 ∝ Re9/4 [40]. So the choice is either to limit the simulations to

low Reynolds numbers or wait for even more powerful computers. There are several

ways out of this problem. One of them is to use hyperviscosity. In this, the Lapla-

cian operator in the equations is replaced by higher order operators, simultaneously

the dissipation coe�cients are replaced with the so called `hyperviscous dissipation

coe�cients'. With these two replacements the equations (1.14) and (1.15) now look as:

∂tω = ∇× (v × ω − b× j) + (−1 )n−1 µ̂n∇2nω (2.25)

∂tb = ∇× (v × b) + (−1 )n−1 η̂n∇2nb, (2.26)

where n is the level of hyperviscosity. This is the �nal form of the forced equations

which are transformed into the spectral domain, and are used for the simulations. The

level of hyperviscosity has been chosen to be 8 for both the decaying and forcing 3D-

MHD turbulence simulations. This choice was driven by two reasons: 1) to compare

and extend the results from already existing work on decaying 3D-MHD turbulence

[13, 14], and 2) to achieve necessary scale separation (which was best seen at n = 8 ).

The parameter values used in the simulations can be seen in table 4.1, chapter 4.

The hyperviscosity approach limits the dissipation of the system to a small band of

wavenumbers in the large k region, thus allowing more degrees of freedom to participate

in the nonlinear dynamics of the system [41]. This approach comes with a disadvantage

that the spectra show a feature called `bottle neck' which will be discussed in chapter

4.

Another problem that exists with this approach is the de�nition of Reynolds number.

Although there are some de�nitions of Reynolds numbers which include the e�ect

of hyperviscosity [20, 42, 40], there is no unique satisfactory de�nition for Reynolds

numbers in a hyperviscous setup (see chapters 3 and 4).

2.6 Simulation Program and Diagnostics
A highly parallelized FORTRAN 90 simulation code consisting of initial conditions,

integration and some diagnostics for the simulation of decaying 3D-MHD turbulence,

formed the starting point of this work, which is described in [20, 13]. The parallelization
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uses the message passing interface (MPI) library [43]. In this code, the initial condition

is modi�ed so that it is situated in the large wavenumber region (see table 4.1 chapter

4). A subroutine representing the forcing mechanism described in the section 2.4.2

is included into the program. It is observed that in the forced case, the system feels

the e�ects of the boundary at small wavenumbers, when the physical quantities like

magnetic helicity inverse cascade. In order to avoid this unwarranted e�ect, an energy

sink of the form α4−2 multiplied with ω and b individually, is added appropriately

to the vorticity and induction equations. Here α is a free parameter, set to 0.5 in

all the forced 3D-MHD turbulence simulations. This sink works e�ectively for small

wavenumbers and is relatively ine�ective for larger wavenumbers, thus the boundary

e�ects on the physical quantities are minimized.

All the simulations were run at Rechenzentrum Garching (RZG), in the Max-Planck

Institute for Plasma Physics (IPP), Garching, on IBM pSeries super computers. Ini-

tially Power4 and Power5 series computers were used to run the programs. The given

FORTRAN-90 code was already optimized for these computers. With the advent of the

new Power6 series computers, the earlier optimizations to the code were not su�cient.

Thus, the code was again optimized to utilize the hardware capabilities of these new

machines, to the maximum possible extent. Without compromising on the precision

and accuracy of the results, the code was adapted to the new machine and �nal pro-

duction runs were run on this machine. There were no signi�cant scaling issues for the

code and it worked e�ciently on Power4, Power5 and Power6 architectures, without

any notable changes.

The output from the main integration program is the vorticity and magnetic �elds,

written in unformatted double precision mode, in spectral space, at speci�ed intervals

of time. Using these two �elds, several diagnostics are also evaluated simultaneously.

The diagnostics implemented in real space include integrated kinetic energy, magnetic

energy, magnetic helicity, cross helicity among various other quantities (see chapter 4

for complete details). These are written out at every time step along with the time

value in formatted single precision form. In the spectral space, several quantities are

evaluated, kinetic energy, magnetic energy, cross helicity, magnetic helicity and kinetic

helicity being some of them. These quantities are written in unformatted single preci-

sion form, along with the wavenumber, at each instance of time.

Using the spectral space data, some real space diagnostics like structure functions,

PDFs, kurtosis and correlations are calculated by transforming the magnetic �eld and

velocity �eld into real space and performing the necessary mathematical operations on
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them. This part of the diagnostics is generally done as a post processing step and not as

a part of the regular simulation. The spectral data and some real space quantities are

plotted using `IDL' and the structures are visualized using either AMIRA (a commer-

cial visualization software) or Visit (an open source visualization software by Lawrence

Livermore National Laboratory, USA). In 4th and 5th chapters these diagnostics are

reported and interpreted.



Chapter 3

Phenomenologies of Turbulence,

EDQNM and Intermittency Models

In this chapter three important phenomenologies existing currently, for the understand-

ing of hydrodynamic and MHD turbulences: Kolmogorov(K41), Iroshnikov-Kraichnan(IK)

and Goldreich-Sridhar(GS), are discussed �rst. The eddy damped quasi normal Marko-

vian (EDQNM) approximation, a statistical closure theory, which uses a phenomenolog-

ical eddy-damping rate, obtained from the IK phenomenology, as a crucial parameter,

is explained next and �nally intermittency models which are used in the course of this

work are explained.

3.1 Phenomenologies

There are several approaches explaining the way turbulent structures form, nonlin-

early interact and dissipate. Each such approach gives rise to a di�erent phenomeno-

logical description of turbulent �ows. In the context of this work, three phenomenolo-

gies are discussed (see next section): Kolmogorov, Iroshnikov-Kraichnan (IK) and

Goldreich-Sridhar (GS) phenomenologies. Kolomogorov phenomenology has eddy in-

teractions as the basic idea, where as IK phenomenology has Alfvén wave interactions

as the central idea, as is the case with GS. Before these phenomenological ideas are

explained, important terms which appear in them are discussed �rst. While doing so,

some of the aspects of these phenomenologies are borrowed beforehand. The concen-

tration of this section is only on de�ning scales, ranges, interactions and interaction

time scales, which will later be used for a smooth description of the phenomenologies.
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3.1.1 Terms useful in Understanding the Phenomenologies

Scales and Ranges

From the description of turbulence mentioned in the introduction and from its for-

mal de�nition in section 1.1, it can be inferred that structures in turbulence i.e. eddies

have wide range of sizes. To understand the physical processes in these eddies it is bet-

ter to �rst classify them and then understand the interactions among various classes.

Since size is a striking feature of these eddies over which they could be classi�ed, they

are in fact classi�ed using this factor into large, intermediate and small-scale eddies.

Here the word `scales' approximately represents the wavelength considered in these

structures (in turbulence studies the inverse of the wavelength i.e. wave number k is

generally used). More formally it could be said that turbulent �uctuations are classi-

�ed according to their spatial scales. It is to be noted that this classi�cation is highly

subjective to the system under consideration. That is for atmospheric turbulence, the

large eddies might be of few tens or hundred of kilometers in size and the small-scale

eddies may be of few meters, while for a industrial mixing process involving turbu-

lence, the large-scale eddies could be only of few tens of centimeters and small scales

restricted to few millimeters [15, 44]. Intermediate eddies would have sizes in between

the largest and the smallest scaled eddies. It is the interaction between the eddies of

various sizes, spanning over several orders of magnitude (in size), that makes study of

turbulences interesting.

In general, energy is injected into the system typically by some large-scale gradient.

In the numerical simulations of driven (forced) turbulence, conventionally the driving

mechanisms are placed in these scales. Hence the range associated with these scales is

termed as the `drive range'. The large structures break into smaller and smaller struc-

tures due to the shear stresses. In this process the structures of intermediate scales are

created which in turn under the shear stresses create the small scales, through several

steps. Thus in an established turbulent �ow, structures of all scales could be observed.

In the small scales, dissipative processes like heat generation, radiation are dominant,

which dissipate the energy of the structures. So this range is called the `dissipation

range'. During the transition from large scales to small scales and eventual dissipation,

the structures exhibit self-similar behavior in some physical quantities, unin�uenced

by either energy injection or dissipation. This range over which the self-similar behav-

ior is present in the �ow, is called the `inertial range' where large-scale driving and

small-scale dissipation are negligible. This range gets its name from the hydrodynamic
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turbulence studies where in this range, the dynamics is supposed to be determined by

the (nonlinear) inertia terms of the Navier-Stokes equation [15].

The above discussion can be summed up in the plot of energy spectrum of �g 3.1.

Marked on this plot are the three ranges discussed above. Also shown are the scales

involved. Additionally the plot has two terms `direct cascade' with a arrow pointed

towards the right and `inverse cascade' with arrow pointed towards left. Cascade liter-

ally means `�ow' and going by it, `direct cascade' would mean `direct �ow' and `inverse

cascade' an `inverse �ow'. But here in the context of this discussion, it would mean

nonlinear `spectral transport'. In the inertial range, it was observed that certain phys-

ical quantities transport down smoothly from large scales to small scales, without the

in�uence of either of these two scales. Such quantities are said to have shown a di-

rect cascade (for example: enstrophy: the surface integral of square of vorticity, in

2D-hydrodynamic turbulence [45, 46]). There exist some other quantities which spec-

trally transport in the reverse direction i.e. from small scales to large scales once again

unin�uenced by either of the scales, in the inertial range. Such quantities are said to

show an `inverse cascade' behavior (for example kinetic energy in 2D-hydrodynamic

turbulence). It is to be noted that the cascade is said to have taken place in either

direction only if the �ux of the quantity remained constant over the range of transport

(i.e. the inertial range). This would also mean the ideal invariants discussed in section

1.1.3, would show a cascade by virtue of their invariance (i.e. they possess constant

dissipation rates ∼ transfer rate), which results in constant �ux. From the plot of �g

3.1 it can be seen that the energy in the turbulent structures can span many orders of

magnitude between the small and the large scales (here it is close to 12 orders). In the

inertial range because of the self-similar behavior of the physical quantity, the observed

curve is a straight line with a speci�c slope in a double logarithmic representation. This

constitutes a power law behavior for the cascading quantity (here total energy).

As mentioned above, conventionally the driving range is always present in the large-

scale regions, but in this work the driving is placed in small-scale regions to understand

the spatial and spectral in�uences of inverse cascade of magnetic helicity on other quan-

tities of turbulent �ow. In chapter 4 it will be shown that certain other quantities which

do not show a cascade, also show power law behavior, under the in�uence of quantities

that are cascading.

Often cascade processes are local (explained next) and for any wavenumber k , the

range of interaction is within a range [k/2 , 2k ] [47]. There are works which also state

that properties like the magnetic helicity interact both locally and nonlocally as well
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[10]. The meaning of local and nonlocal interactions is explained next.

Figure 3.1: Spectrum of wavenumber Vs energy, taken from 10243 decaying turbulence simulations.

The �gure shows all the turbulent scales and ranges. Also shown are the directions of direct and inverse

cascades, although the latter occurs only in the turbulent energy of 2D-hydrodynamic turbulence.

Local and Nonlocal Interactions

In section 2.2.1, a method to discretize the MHD equations, in the Fourier domain

was shown. This discretization not only is useful in solving the equations numerically

but also helps in applying the formalism of equilibrium statistical mechanics to con-

tinuum �uid turbulence [1]. In this process, ideal invariants are not strictly conserved.

However, quadratic invariants are robust and rugged enough to survive this trunca-

tion. This property is based on validity of detailed conservation relation [1]. Before

this property can be understood, an important property of the Fourier transform need

to be mentioned. For any nonlinear term, e.g. a product of two functions f (x )g(x ) in

con�guration space, there corresponds a convolution integral in the Fourier space

f̃ ∗ g̃ =

∫
f̃ (p)g̃(k− p)d3 p =

∫ ∫
f̃ (p)g̃(q)δ(k− p− q)d3 pd3 q

where
∫
δ(k)dk=1, for the Dirac delta function δ(k). Here k, p, q are any three wave

vectors. In the case of the discrete Fourier transform the convolution integral becomes

a convolution sum. Thus nonlinear terms of the MHD equations of section 2.1, make

three wavenumbers (i.e. three scales) appear in the Fourier space, de�ning a triad. By

the detailed conservation relation it is meant that for elementary interaction between

any triad of wave numbers k, p, q forming a triangle i.e. k + p + q=0, a quadratic
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invariant e.g. energy (Ek) satis�es

Ėk + Ėp + Ėq = T (k,p,q) + T (p,q,k) + T (q,k,p) = 0 ,

where the dotted quantity represents the di�erentiation with respect to time and T

represents the nonlinear transfer function. These interactions are called triadic

interactions and can be inferred from the nonlinear terms of the MHD equations.

These interactions are intrinsically related to the mathematical nature of the MHD

equations. They are classi�ed on the basis of the topology of the triangle formed from

the three wave vectors, into local and nonlocal types [47](see �g 3.2).

Local interactions are the ones occurring between the wave numbers of almost the

same size i.e. 1/a ≤ max {p/k , q/k} ≤ a, where a = O(1 ). The nonlocal interactions

are the ones which involve wave vectors of di�erent sizes (in general one short wave

vector and two long wave vectors), i.e. k � p ∼ q or k ∼ p � q . The nonlocal

interactions thus normally involve both the large and small scales.

Figure 3.2: Local and Nonlocal triadic interactions adapted from [47].

Fluctuations and Interaction Time

As a result of the discussion on turbulent structures, it was established that the

turbulent structures could be of various sizes and that they interact either locally or

nonlocally. An attempt is being made to quantify these interactions. For this purpose,

various properties of turbulent �ow are statistically measured and the interaction time

scales quanti�ed based on these measurements. Here the example of velocity �eld v is

used to illustrate this approach.

The turbulent velocity �eld is viewed as a superposition of eddies, characterized by a



36 Phenomenologies of Turbulence, EDQNM and Intermittency Models

spatial scale, `. The associated velocity �uctuation is given by

δv` ' [v(r + `)− v(r)] · `/` (3.1)

On small scales statistical isotropy of the �eld is often assumed. This assumption is

valid because of the random mixing, the �uid forgets the anisotropic way the turbulence

is generated [1]. So, the �uctuation in amplitude only depends on `, thus allowing the

characteristic eddy velocity to be de�ned as :

v` ∼
〈
δv`

2
〉1/2

. (3.2)

In the inertial range, the statistical moments of the two-point probability distribution

of the turbulent �eld, namely, structure function of order p, is de�ned based on the

velocity �uctuations as:

Sv
p (`) ∼ 〈δv`〉p ∼ `ζp , (3.3)

where ζp is a constant, p-dependent scaling exponent. This family of constants charac-

terize the intermittency of �ow structures, by establishing a connection between inertial

range and dissipative range physics (see [1] and section 3.3.2).

With the help of the spatial scale and the characteristic eddy velocity, the eddy turnover

time τ` is now de�ned as:

τ` ∼
`

v`
, (3.4)

here τ` is the typical time for a structure of size ∼ ` to undergo a signi�cant distortion

due to shear stresses. As incompressibility has been assumed, it is also the time for

the transfer of an excitation at one scale to other (i.e. cascade). It is achieved by

the changes in the shapes of the structures, in order to preserve incompressibility.

Typically in the case of a direct cascade (i.e. physical quantity getting transferred to

smaller scales) e.g. for energy, the �ux can be de�ned as:

Π
′

` ∼
v2
`

t`
∼ v3

`

`
∼ ε. (3.5)

Here ε is equivalent to the equation (1.23), the energy dissipation rate. Dimensional

considerations were used in deriving the equation (3.5), in Kolmogorov phenomenology

(for further details see [48]).

In the MHD case, the energy transfer is driven by shear Alfvén waves (central idea of
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IK phenomenology) (see section 3.1.3 for an overview). If b0 is a magnetic guide �eld,

which is either generated by the large energy-containing eddies or imposed externally,

interacting with the eddies of size `, then

τA ∼ `/b0 , (3.6)

is the duration of collision of the counter-propagating shear-Alfvén wave packets. Note

that since the magnetic �eld is measured in Alfvén speed units, |b0 | = b0 is the Alfvén

speed as explained in section 1.1.1 τA is typically much shorter than τ` such that the

change in amplitude during one scattering event is small and many such events are

needed in order to produce a relative change of order unity [1].

In cases where a mean magnetic �eld is applied, the turbulent system is no longer

isotropic, leading to anisotropic MHD turbulence (explained by GS phenomenology).

In this case, the excitations are not uniformly transferred, but have a preferred di-

rection. Typically if the wave vector k is resolved into its parallel and perpendicular

components, k|| and k⊥ respectively, small-scale modes are primarily excited perpen-

dicular to the magnetic �eld [1]. In this set up the time scales corresponding to the

two components of k are di�erent and are de�ned by

τA ∼ `||/vA (3.7)

τ`⊥ ∼ `⊥/z`⊥ , (3.8)

with `|| and `⊥ being the length scale ` resolved in parallel and perpendicular direc-

tions, vA the Alfvén velocity and z`⊥ the Elsässer �eld in the perpendicular direction.

τA is called Alfvén time and τ`⊥ the eddy turnover time of the system.

3.1.2 Kolmogorov-Richardson Phenomenology

This model which is abbreviated as K41, is mainly useful in explaining phenomena

in hydrodynamic turbulence. Some of the important predictions of this phenomenology

appear to be true even for the MHD case, though the interaction mechanisms leading

to such results are completely di�erent from the hydrodynamic case and are not well

understood. The important aspects of this theory in the hydrodynamic case are de-

scribed below, following the explanation given in [48].

The turbulent eddies form a spatial hierarchy and the kinetic energy is transferred
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to small scales by the unstable eddies which break into smaller �uctuations. Under

the assumption of quasi-stationarity condition, the spectral energy �ux, in the inertial

range is scale-independent and is equal to the rate of energy dissipation as in (3.5).

With the help of this relation, the velocity scaling and the 4/5-law [48] (one of the very

few exact results in turbulence theory) can now be a determined as

v` ∼ (ε`)1/3 (3.9)

Sv
3 (`) = −4

5
ε`. (3.10)

Using (3.10), a relation v3
` ∼ ` is obtained and also the generalized version of (3.10)

can now be written as:

Sv
p (`) ∼ (ε`)p/3. (3.11)

In the spectral space, where k ∼ `−1, for the hydrodynamic case, the angle-integrated

energy spectrum Ek is given by

Ek =
1

2

∫
d3 k ′δ(|k′| − k)|vk′ |2 , (3.12)

with vk′ being the Fourier counter part of the velocity v.

With the relation v2
` ' kEk , the scaling exponent of Sv

2 (`), ζ2 and the inertial range

scaling of Ek ∼ k−α can be linked to get a relation between the two exponents as

α = −(1 + ζ2). This particular relation yields the most important K41-spectrum in

incompressible hydrodynamic turbulence

E (k) ∼ CK ε
2/3 k−5/3 , (3.13)

with CK ≈ 1 .6 being Kolmogorov constant. It is to be noted that this power law

could also be arrived at, using only the dimensional analysis of the relation Ek ∼ εαkβ,

where α and β are the constants to be determined. This spectral relation has been

veri�ed experimentally and also seen in several natural phenomena like atmospheric

turbulences and ocean wave turbulences [48].

As seen in �gure 3.1, the inertial range is limited to a certain band of wavenumbers. As

intermediate range eddies hierarchically break into smaller and smaller eddies, a stage is

reached when the self-similar behavior of the system starts to fail and energy dissipation

is no longer negligible. A steep gradient of energy dissipation rate is seen in high k
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region, marking the beginning of dissipation range. In this range dissipative processes

(e.g. heat radiation etc.) slowly take over and dominate the system. The scale at

which the dissipation (∼ v2
` µ̂/`

2 ) starts to dominate over nonlinear transfer(v2
` /τNL),

marks the beginning of dissipation range and is called Kolmogorov dissipation scale

`D. The kinetic Reynolds number is associated with kinematic viscosity, a parameter

characterizing the dissipative e�ect in a �ow. Thus the dissipation scale estimate could

be used to de�ne the Reynolds number in a turbulent system following the below set

of arguments:
µ̂

`2
∼ τ−1

NL = v`/` ∼ (ε`)1/3/` yielding (3.14)

`D =

(
µ̂3

ε

)1/4

(3.15)

as µ̂ = Re−1 . In the case where hyperviscosity is used, the equation (3.14) is modi�ed

as:

`D =

(
µ̂3
n

ε

)1/(6n−2 )

, (3.16)

where n is the level of hyperviscosity and µ̂n the hyperviscous di�usion coe�cient.

The Kolmogorov predictions are restricted to hydrodynamic turbulence, but in many

numerical simulations of magnetohydrodynamic turbulence, the energy spectra show a -

5/3 power law behavior (see [13, 49, 8, 36]). But the interaction mechanism that allowed

the �ow to reach this state, where this power law could be seen, is not well understood

even after several attempts (see the discussion in Goldreich-Sridhar phenomeonology

below).

3.1.3 Iroshnikov-Kraichnan Phenomenology

Magnetohydrodynamic turbulence, apart from the velocity �eld has additionally

a magnetic �eld too. The �ows associated with MHD could not be satisfactorily ex-

plained by the K41. Iroshnikov and Kraichnan independently developed a phenomenol-

ogy, which is called IK phenomenology, which takes into account both the �elds, while

trying to understand the turbulent �ows. The important features of this theory are

explained brie�y here following [1, 20]. The fundamental fact on which this theory

is based is only oppositely directed Alfvén waves interact in incompressible MHD. The

other important assumptions in this theory are: 1) turbulence is statistically isotropic

and 2) the dominant interactions are those which couple three waves, implicitly (triadic

interactions).
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In this model the energy transfer is driven by Alfvén waves. The energy is redistributed

between di�erent length scales by nonlinear scattering of colliding Alfvén-wave packets,

along a magnetic �eld line, traveling in opposite directions. Here the Elsässer quantity

z` is used in de�ning the major relations. Elsässer variables have a special property

that z± = 0 are exact nonlinear solutions of the ideal incompressible MHD equations,

representing Alfvén wave pulses on a mean magnetic �eld. There is no distinction

made between z− and z+, 1 as the mean alignment between the magnetic and velocity

�elds is restricted to small values. The Alfvén e�ect (generation and attenuation of

Alfvén waves through coupling of magnetic and velocity �elds), leads to approximate

equipartition of magnetic and kinetic energies at small scales. If a magnetic guide �eld

b0 is present in the system, and if the perturbations δv and δB are small compared

to b0 then it is seen that δv ' ±δB . The interaction time is given by (3.6). The

nonmagnetic eddy-distortion time τ` ∼ `/δz` is much longer than the interaction time

τA.

With the above inputs, the IK phenomenology follows the same pattern as K41 phe-

nomenology, but with a small di�erence. The di�erence is that it distinguishes two

dynamic time scales, the Alfvén time and the time for distortion of a wave packet by

a counter propagating eddy, both assumed to have same scale `. In general τA �τ`.
Since the interaction time of two oppositely propagating wave packets is τA, the change

of amplitude 4δz` during a single collision of two wave packets is small and is given by

4δz`
δz`

∼ τA
τ`
� 1.

Because of the random nature of the process, the number of elementary interactions

needed to produce a relative change in amplitude of order unity is N ∼ ( δz`

4δz`
)2 [1].

Hence the energy transfer time is de�ned by τin ∼ τ 2
` /τA and if τ` → τin then, the

dissipation rate here is de�ned by

ε ∼ δz 4
` τA/`

2 . (3.17)

This leads to the non-intermittent inertial range scaling

Sz
p(`) ∼ (εb0 `)

p/4 , (3.18)

1This is possible by restricting to consider MHD turbulence with a small v-b alignment, σ= HC

EKEM

where H C is the cross helicity, EM is the magnetic energy and EK is the kinetic energy.
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which in turn leads to the spectral relation for total energy

E (k) ∼ CIK (b0 ε
1/2 )k−3/2 , (3.19)

with a dissipation length

`IK =

(
b0 η̂

2

ε

)1/3

, (3.20)

here η̂=Rm−1 . For hyperviscous case putting b0∼ vA the dissipation length is given

by

`IK =

(
η̂2
nvA

ε

)1/(4n−1 )

.

The dissipation rate ε can also be obtained in an other way through decorrelation time

τk using dimensional analysis [1] as

ε ∼ τkE 2
k k4 , (3.21)

where the decorrelation time occurs on the Alfvén time scale τk ∼ τA ∼ (kvA)−1 , in the

MHD case.

The IK phenomenology relies on the isotropic nature of the turbulent �elds. But the

magnetic �eld does not satisfy Galilean invariance and hence this assumption is not

valid. Although IK phenomenology appears to explain many aspects of the MHD

turbulence, the anisotropy that sets in because of the mean magnetic �eld remains a

major challenge. However, the triad interaction assumption, which is fundamental to

this phenomenology forms the basis for a stochastic description of 3D-MHD through

eddy damped quasi normal Markovian (EDQNM) approximation [7] (to be discussed

in the next section).

The IK phenomenology is valid in 2D-MHD turbulence as several numerical simulations

con�rmed the scaling law for the energy and the dimensions of the level surfaces of

current are consistent with equation (3.18) (see section 8.2.3 of [1] for more details).

3.1.4 Goldreich-Sridhar Phenomenology

Goldreich and Sridhar take into account the anisotropic nature of the magnetic �eld,

while formulating the phenomenology for MHD turbulence. Their phenomenology is

explained brie�y here following [50, 51, 20, 1]. In this phenomenology, turbulence is

treated in two variants, namely, strong MHD turbulence and intermediate (weak) MHD

turbulence. The wave vector k is split into its parallel and perpendicular components
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with respect to the magnetic �eld. The fundamental assumption in this phenomenol-

ogy is that there exists a critical balance between τA and τ` de�ned as above in IK

phenomenology, i.e. τA ∼ τ`. Which means that the magnetic �eld deformations as-

sociated with the �eld-perpendicular turnover time τ`, propagate with Alfvén speed

b0 , over a parallel distance λ = b0 τA, in the same time. Also it was deduced that the

nonlinear energy �ux is much weaker along the direction of the magnetic �eld.

Thus from the strong and intermediate MHD turbulence arguments, power law be-

havior similar to the K41 spectra in the perpendicular direction and a new power law

behavior in the parallel direction, respectively, were predicted. The derived power law

behaviors are stated below

E (k⊥) ∼ ε2/3 k
−5/3
⊥ and E (k||) ∼ k−2

|| (3.22)

However it was seen from the numerical simulations of strong MHD turbulence that,

this 5/3 law is not observed and instead a 3/2 behavior is seen [52]. This prompted

Boldyrev [53] to suggest that an increasingly parallel polarization of Alfvénic �uctua-

tions results in weakening of nonlinear turbulent interaction and this results in the 3/2

power law of the perpendicular spectrum.

Recently, Gogoberidze [54] had modi�ed the IK model for anisotropic incompressible

MHD which yields a 3/2 spectrum in the perpendicular direction for the energy spec-

trum. In the context of this work, neither IK or GS phenomenologies are directly

relevant, but due to their importance for MHD turbulence, they have been brie�y in-

troduced here. They are also not capable of explaining all the features observed in

numerical simulations and observations inspite of the recent modi�cations, mentioned

above. In fact, no unique phenomenological model exists for this purpose. Explaining

all the features of 3D-MHD turbulence, using an unique phenomenological model is

currently an important area of research.

3.2 EDQNM

Eddy damped quasi normal Markovian approximation (EDQNM) is a quantita-

tive statistical theory on MHD turbulence, described in detail in the seminal work of

Pouquet et al..(see [7]). Here a brief overview of this theory, its advantages and disad-

vantages, using the same notations and symbols as in [7],[15]and [31], are presented in

this section.
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3.2.1 Assumptions and Equations

General Framework

EDQNM is a stochastic model with two-point closure, since it deals with correlations

in two di�erent (points of the space) wave numbers (k , k ′) in Fourier space, that satisfy

k + k ′=0 [15]. In the process of adapting EDQNM to MHD, the following assumptions

are made: a) magnetic and velocity �elds are homogeneous and isotropic (but helical)

random �elds, b) initial magnetic �eld is statistical invariant under sign reversals (i.e.

b= -b), so that cross helicity (< v ·b >) is always zero as the MHD equations preserve

this invariance.

Let a MHD equation be written symbolically as

du/dt = uu

where u stands for unknown functions (v or b) and uu stands for all nonlinear terms.

Assuming the �rst moment < u > to be zero and dropping dissipation and forcing on

the ground that they do not pose any speci�c closure problems, second and third order

moments for nonlinear terms can be written as:

d < uu >

dt
=< uuu >

d < uuu >

dt
=< uuuu > . (3.23)

The idea of the quasi-normal approximation is to simply assume that fourth and other

higher even order cumulants are zero, without any assumption on the third order

moments. This allows to close the problem at fourth order moments, which can now

be replaced with corresponding Gaussian values. This results in splitting the fourth

order moments into three terms involving second order moments as < u1 u2 >< u3 u4 >

in a cyclic manner, which can be simply represented by
∑

< uu >< uu >. It was

realized that this approximation leads to appearance of negative energy spectra in the

energy-containing eddies range, which is an unacceptable fact, from the physics point

of view. This behavior was attributed to a build-up of too high third order moments

on the l.h.s. of equation (3.23) above.

To overcome this problem, on the l.h.s. of equation (3.23) a damping term proportional
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to µkpq 2, which has dimension of the inverse of time and is a characteristic eddy-damping

rate of the third order moments associated to the triad (k,p,q), is introduced as:

µkpq
d < uuu >

dt
=
∑

< uu >< uu > .

For isotropic turbulence, this parameter is given by µkpq = µk + µp + µq to give quan-

titative predictions, where each of the sub-constituents have a speci�c meaning (see

next subsection for the speci�c description of the terms).

Even at this stage the positiveness for energy spectrum of the energy spectrum is not

guaranteed in all situations, which has come to be known as `realizability' criterion.

Thus to achieve this, further modi�cations to equation (3.23) are made by introducing

Markovianization. For Markovianization it is assumed that the third moment responds

to the instantaneous product of the second moments [31] as opposed to higher order

moments. The resultant third moment is substituted back in r.h.s. of equation (3.23)

to obtain
d 〈u(t)u(t)〉

dt
= θ(t) 〈u(t)u(t)〉 〈u(t)u(t)〉 , (3.24)

where the triad-relaxation time θ(t)is de�ned by

θ(t) =

∫ t

0

dτ exp

{
−
∫ t

τ

µkpq(s)ds

}
. (3.25)

τ in the above equation represents a time in the past, indicating memory property of

the Markovianization. But for short times θ(t) = t + O(t2 ) and for stationary case,

θ = µ−1
kpq (θ is also represented as θkpq). The eddy damping operator µkpq may be

obtained either from a phenomenological study or from the analysis of an auxiliary

problem. It is very important to �nd the appropriate µkpq for MHD turbulence. The

realizability (the positivity of energy spectra) is ensured in this approach.

The general form of EDQNM equations with forcing term F (a prescribed forcing

tensor), is now written as:

d 〈u ⊗ u〉 /dt = 4θ {L(u, u)(u, u) + L(L(u, u), u)⊗ u + u ⊗ L(u,L(u, u))}

+ 〈L0u ⊗ u〉+ 〈u ⊗ L0 u〉+ F,
(3.26)

2Please do not confuse this term with kinematic viscosity, which has the same basic symbol µ.
Note that it never appears in this whole work with any of the subscripts k , p, q . Any other symbol
could have been chosen, but since uniformly throughout all the literature, for eddy-damping rate this
is the symbol. Hence here too, the same convention is followed.
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where L(., .) collects all the quadratic terms, L0 represents the linear dissipative terms.

The operator ⊗ represents the dyadic or outer product of two vectors. Here on the

r.h.s., in the �rst three terms, the inner most two u ′s have the same moments as does the

outer most two u ′s , independently, and hence are linked in pairs. The MHD turbulence

is assumed to be homogeneous, isotropic and helical. The cross helicity is assumed to be

zero and magnetic Prandtl number is set to unity. With these assumptions in place, the

four EDQNM integro-di�erential equations are for kinetic energy E V
k , magnetic energy

E M
k , kinetic helicity H V

k and magnetic helicity H M
k , and relate these four quantities to

several other quantities involved in the turbulent dynamics. A representative of these

is given below in some detail.

EDQNM Equation for Magnetic Helicity

The equation for magnetic helicity in the EDQNM frame work is shown below:(
∂

∂t
+ 2ηk2

)
H M

k = F̃ M
k +

∫
4k

dpdqθkpq

(
T M̃

V M̃
+ T M̃

Ṽ M
+ T M̃

M M̃

)
. (3.27)

In this equation, on the l.h.s. the �rst term represents the time evolution of the quantity

and the second term represents the dissipation e�ects on the quantity, with η being the

`magnetic di�usivity'. On the r.h.s., the term F̃ M
k represents the prescribed injection

spectra of magnetic helicity or simply the forcing. It is an element of the set of four

forcing terms which satisfy realizability conditions, with their respective counterparts.

k,p and q are the three wave vectors which form a triangle, with 4k being a subset

of the p − q plane i.e. (k = p + q). The time θkpq is characteristic of the relaxation of

the nonlinear energy �ux involving the modes k , p and q and can be approximated as

θkpq =
t

1 + µkpq

, (3.28)

where µkpq is a phenomenological expression for the damping rate of the �ux by higher

order moments,with µkpq = µk +µp +µq, ensuring energy conservation. A straight for-

ward choice for damping rates ensuring the conservation of all the quadratic invariants,

is µkpq = τ−1
NL + τ−1

A + τ−1
D , which combines all the three processes that are present in

the turbulent dynamics. τ−1
NL represents the time scale for deformation of �eld lines by

turbulent motions and is given by τ−1
NL ∼ `/

√
v2
` + b2

` ∼ (k3 Ek)−1/2 . τA represents the

interaction time scales of colliding shear Alfvén waves given by (3.6) and �nally τ−1
D rep-

resent the viscous and joule dissipation time scales, thus τD ∼ (µ+η)−1k−2 . Under the
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realistic conditions, di�usion is associated with the longest time scales of the turbulent

system. Thus when t � τD , the estimated value for θkpq is θkpq ' µ−1
kpq ' min(τNL, τA).

The interaction terms on the r.h.s. of equation (3.27) are given by:

T M̃
V M̃

= kp−1 q−1 hkpq(k2 H M
p E V

q − p2 E V
q H M

k ) (3.29)

T M̃
Ṽ M

= kp−1 q−1 hkpq(k2 p−2 H V
p E M

q − p2 k−2 H V
q E M

k ) (3.30)

T M̃
M M̃

= p2 k−1 ekpqH M
q E M

k − kpq−1 jkpqE M
q H M

k (3.31)

In the above set, terms jkpq ,hkpq ,ekpq are the geometric coe�cients and are de�ned as:

jkpq = pk−1 z (1 − x 2 ) (3.32)

hkpq = (p/k)(z + xy) = (1 − y2 ) (3.33)

ekpq = x (1 − z 2 ). (3.34)

These geometric coe�cients are the directional cosines of the triangle formed by the

wave vectors k,p,q and these coe�cients also ensure solenoidality of the turbulent

�elds [18]. In other three EDQNM equations, several such geometric coe�cients exist,

which are also de�ned in a similar manner as shown in equations (3.32 - 3.34). The

terms like E M
q , H V

p etc.. represent the physical quantity at a particular wavenumber,

i.e. H V
p is the kinetic helicity at the wavenumber p. The product terms of these

quantities represent the non-linear interactions among them due the assumed triadic

interactions of the turbulent �elds. The terms on the r.h.s. represent the nonlinear

�ux density contributions.

The above description was limited to one EDQNM equation, in its totality, for more

description and details see [7]. The complexity involved in these equations, prevents

easy theoretical investigation, but numerical simulations of these equations can be seen

in [7]. The equations's structure allows them to be splitted in such a manner that local

and nonlocal e�ects could be individually studied. This is one of the major advantages

of EDQNM method.

3.2.2 Summary of Important Results of 3D-MHD Turbulence

Obtained from EDQNM

The unique way in which the MHD equations have been approximated in EDQNM,

in terms of physical quantities that are not explicitly seen at �rst glance from the
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original equations, help in the understanding of some important physical phenomenon

like the Alfvén e�ect and inverse cascade of magnetic helicity, to name a few. Some of

them are brie�y explained here.

Alfvén E�ect

Kraichnan [55] noticed that in the presence of large-scale magnetic energy, Alfvén

waves can bring small-scale velocity and magnetic energies to equipartition and relax

triple correlations (due to triadic interactions) in a time which may be shorter than

the local eddy turnover time [7]. This can be illustrated using the EDQNM equations.

For this, EDQNM equations are expanded to represent local and nonlocal e�ects and

all the nonlocal e�ects are ignored. In the next step, only terms that represent large-

scale interactions are retained. With these two operations, the e�ect of random Alfvén

waves on the kinetic and magnetic energy spectra can be analyzed. When the Alfvén

contribution to the eddy-damping rate dominates the self-distortion and dissipation

terms, it will essentially represent the r.m.s. magnetic �eld (b0 ), which is also the

typical group velocity of the Alfvén waves. Under the action of random Alfvén waves,

it is observed that magnetic and kinetic energy spectra relax to equipartition, in a

time of order of (kb0 )−1 , as predicted by Kraichnan [55]. Also it was observed that the

helicity spectra relax to equipartition given by the relation

H V
k = k2 H M

k . (3.35)

When the energy spectra and helicity spectra deviate from equipartition, the dif-

ference between them gives rise to residual energy and residual helicity, given by

E R
k = E V

k − E M
k and H R

k = H V
k − k2 H M

k respectively. When these two di�erences

relax to zero, the e�ect is called `Alfvén' e�ect.

Helicity or α E�ect

The above discussion was centered around the large-scale e�ects alone. Since

EDQNM equations allow the study of e�ects at various scales separately, now only

the small-scale e�ects are considered.

The same treatment of expanding the equations in terms of local and nonlocal e�ects,

retaining only the local terms and �nally ignoring the large-scale e�ects results in a
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small-scale phenomenon known as the `torsality' αR
k , which is given by:

αR
k = −4

3

∫ ∞
k/a

dqθkpqH R
q . (3.36)

Thus when αR
k is known, it is easy to integrate the equations representing the small

scale e�ects (see equations 3.16 and 17 of [7]). This results in the exponential growth

(decay) of magnetic energy and magnetic helicity, at a rate given by k |αR
k |. The im-

portant conclusion from this study is that the small-scale residual helicity destabilizes

the large-scale magnetic energy and magnetic helicity. This is similar to the `helicity

or α e�ect'. Both the kinetic and magnetic helicities produce a destabilizing e�ect

and it is the di�erence, as measured by the residual helicity, that acts as a true driver

of instability in the �ow. This instability is responsible for the `inverse cascade', of

magnetic helicity and eventually the large-scale magnetic structure. The helicity e�ect

could also give a rate of growth of mean magnetic �eld, when such a �eld is present.

Such an e�ect is very important for the production of a α dynamo [7].

Inverse Cascade of Magnetic Helicity and Inertial Range

The physics of inverse cascade of magnetic helicity can be explained from the above

discussed two e�ects, in a MHD turbulent system forced at small-scale. It is explained

in steps below:

• 1) The helicity injection at a wavenumber say k ∼ kE , produces a growth of

both magnetic energy and magnetic helicity in a small wavenumber k∼ (1/2)kE ,

through the `helicity e�ect'.

• 2) The growing magnetic energy at this wavenumber, reduces the residual helicity

near kE by the Alfvén e�ect, while the growing magnetic helicity at (1/2)kE ,

destabilizes the small wavenumbers.

• 3) It is easily noticeable, that the steps 1 and 2 could go on and on to drive the

magnetic helicity spectra into ever smaller wave numbers, resulting in what is

called the `inverse cascade of magnetic helicity'.

From the numerical simulations of EDQNM equations for forced 3D-MHD turbu-

lence, it was observed that the magnetic helicity shows a k−2 power law behavior

in its spectra while magnetic energy showed a k−1 power law behavior. The ver-

i�cation or conformation of these power law behaviors, in high resolution DNS is



3.2 EDQNM 49

one of the key motivations to perform this study.

Other aspects

Importance of EDQNM

The EDQNM equations are a �exible set having equations and parameters that

allow the study of interactions on local and nonlocal scales separately, without

disturbing each other. This property also indicates the robustness of the equation

set. A dimensional study of these equations together with the results from the

direct numerical simulations, can be used to gain further insights into the prop-

erties of MHD turbulence. For this purpose stationarity is assumed. Further the

analysis is restricted to inertial range thus eliminating the in�uence of the driving

or dissipation scales. Finally a dynamical equilibrium between the local and non-

local e�ects (discussed above), which tends to result in an energy equipartition

between the velocity and magnetic �elds, is also assumed [18]. In [14] using such

assumptions, phenomenological description of residual energy has been obtained.

Further, numerical simulations of the EDQNM equations could be conducted.

In these simulations, very high values for Reynolds numbers could be achieved,

larger than what are possible in direct numerical simulations [31]. Using the

EDQNM equations, systems like nonlinear turbulent dynamo have been studied

[7]. The correlations between velocity and magnetic �elds have also been studied

using a modi�ed set of EDQNM equations [56, 57]. The set of equations have

been used to verify, prove or disprove several aspects of 3D-MHD turbulence for

example: a) veri�cation of power law behavior for total energy spectra in 3D-

MHD turbulence (through the numerical simulations of EDQNM), b) existence

of a power law behavior for quantities like the magnetic helicity and magnetic

energy (through numerical simulations and phenomenological arguments) and c)

a comment on the scales of the magnetic structures (based on pure theoretical

arguments backed by numerical simulations). With all these positives, there do

exist few negative aspects for the EDQNM equations.

Shortcomings of EDQNM

The major shortcoming of EDQNM is that the eddy-damping parameter, so cru-

cial to the equations is set from outside the system. As it is also a closure theory

it su�ers from general weaknesses of closure theories and also su�ers from their

constraints. Some of these are a) the value of the Kolmogorov constant is not
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been determined using this model. b) real space structures and intermittency as-

pects of the turbulent �ow are not explained because of the Gaussian assumption

of the �elds's fourth and higher order moments. c) Overemphasis is given to the

strength of nonlinear interactions, ignoring the fact that the local rearrangements

of the �elds, often give rise to a depletion of nonlinearity. d) The random charac-

ter of the turbulence is over emphasized in closure theories. Anisotropic nature

of the MHD turbulence is hard to be explained using closure theories, though not

impossible [1]. Mean square of the random variable can have a negative value,

violating the realizability.

Despite these short comings, the already mentioned �exibility and robustness

o�ered by the EDQNM equations is what is most attractive to work with. The

focus of this work will be on applying dimensional analysis to EDQNM equa-

tions together with some of the results from DNS studies of MHD equations (see

section 4.5) to gain further insights into the properties of MHD turbulence.

3.3 Intermittency Modeling

3.3.1 Structure Functions

The phenomenological models discussed in the section 3.1 explain the spectral

properties of the turbulent �ows assuming the spatial structures to be self-similar.

This assumption implies that the spatial distribution of turbulent structures is

space-�lling and statistically uniform. It also means that the energy dissipation

is homogeneously distributed in space. Observational data of turbulent solar

wind, atmospheric turbulence and experiments do not comply with this assump-

tion. The DNS data in hydrodynamic as well as MHD turbulence including the

compressible and incompressible cases in the latter, also do not agree with this

assumption. Kolmogorov's re�ned similarity hypothesis tries to explain this de-

viation from self-similarity by the spatial distribution of dissipative turbulent

structures [48]. In this hypothesis the equation (3.11) is written in terms of the

local energy dissipation ε` which is assumed to scale self-similarly, in a sphere of

radius ` and reads as:

Sv
p (`) ∼< ε

p/3
` > `p/3 . (3.37)

The equation (3.37), which is a modi�ed form of the equation (3.11), expresses

the fact that in a turbulent �ow small regions of intense dissipative structures are
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embedded into a weakly dissipative environment making the associated spatial

distribution intermittent [58]. Hence this modi�ed equation complies with the

observations to a large extent. The K41 and IK models predict the isotropic

structure function exponents as ζK41
p = p/3 and ζIKp = p/4 respectively, without

taking intermittency into consideration. The actual behavior of these exponents

is only understood by examining various orders of structure functions. Thus

in a plot of order p Vs ζp it is observed that the structure function exponents

deviate from linearity (a behavior expected from the isotropy assumption of the

structure function exponents), as the order of structure function increases. It

has also been noticed that the statistical convergence of associated averages,

necessary for calculating the structure functions, deviate pronouncedly for higher

order structure functions. This is because their reaction to extreme �uctuations is

more stronger. Thus the associated statistical noise is so high that it becomes very

di�cult to ascertain an exponent value to these higher order structure functions.

To overcome this, a low order structure function, whose exponent value is known

to a greater degree of certainty is used as the base. All other structure functions

are now referred to this new base. This process is called `extended self similarity'

approach or ESS (see [1] and references thereof). This approach stems from

the idea that structure functions of di�erent order, deviate, qualitatively in the

same way from their ideal shape. Hence if Sr is the base or reference structure

function with a known scaling exponent ζr, then the scaling exponent of any

other structure function Sp , can be determined using the following relation:

Sp(Sr(`)) ∼ (`ζr )ζp ∼ `ξp,r , (3.38)

which yields the absolute scaling exponent as

ζp = ξp,r/ζr. (3.39)

3.3.2 Intermittency Modeling

Physical conclusions can be drawn from the scaling exponents obtained from ESS

approach, only if they are compared with phenomenological models and are found

to be in good agreement with those model values (see e.g. [1, 14, 18]). A plot

of these scaling exponent values with their respective order is drawn. This curve

is compared with the model curves of intermittency. Such a comparison helps in
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understanding the dimensionality and nature of the structures in the turbulent

�ow.

Although many intermittency models exist in the hydrodynamic case [48], as of

now only one of them, the She - Lévêque (or the Log-Poisson) model, has been

successfully adapted to MHD turbulence. In its most general form the equation

of this model is given by the equation (3.40).

ζp = (1− x)p/g + C0 (1 − (1 − x/C0 )p/g) (3.40)

It has three parameters x ,g and C0 which are determined on physical grounds.

The non-intermittent scaling, < v` >∼ `1/g , is used to determine g (for K41 it is

3 and for IK it is 4). The parameter C0 can be thought of as co-dimension (see

footnote of section 5.3 for an explanation on co-dimension) of a set of singularities

of strength `τ∞ which is equivalent to the most singular dissipative structures.

The parameter x is related to the dissipation rate in these structures t∞` ∼ `x and

is normally given in terms of g as x = 2/g (see e.g.[1, 14, 18] for more detailed

discussion).

Equation (3.40) o�ers to explore and �nd the closest model possibly matching

the simulation data, thus making it possible to model the intermittent nature of

the system. The possibilities that exist are K41 (i.e.g = 3 , x = 2/3 ) and IK (i.e.

g = 4 , x = 1/2 ) with parameter C0 taking three possible values, in each case.

The value of C0 determines the dimensions of the modeled structures . C0=1,

is indicative of two dimensional structures, C0=2, is indicative of a �lamentary

uni-dimensional structures and C0=1.5 (see foot note of section 5.3) is indicative

of fractal dimensional structures. The exponents from the simulation are plotted

along with all the possible model plots and it is then determined, to which model

the data is closely related to. The results can then be matched with the real space

structures, for conformation. In general intermittency analysis o�ers insight into

two aspects of the structures one being the dimensionality of the structures and

the second being the mechanism responsible for the formation of these structures

(phenomenological model matching with the scaling exponent curve automati-

cally points at the processes involved in formation of those structures. The value

of C0 used determines the dimensionality). Intermittency modeling has been

successfully applied in the 2D-hydrodynamic, 3D-HD and 3D-MHD turbulence

cases to understand and model the inherent structures [1]. For example: the
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velocity �eld structures in the 3D-HD case are �lament like and in 3D-MHD they

are sheet like [15, 1]. These features can be con�rmed from the intermittency

modeling using the log-Poisson model, by choosing the correct set of parameters

C0 and x in each case. In 2D-HD turbulent convection the nature of the temper-

ature �uctuations and structures in the velocity �eld have been determined using

intermittency modeling [1]. Here too the log-Poisson model plays an important

part. In the MHD case, the analysis has been carried out for decaying turbulence

case [14, 18] for the quantity z+, to understand the nature of structures formed

due to the non-linear interaction of both the magnetic and velocity �elds. In

chapter 5 of this work, the analysis is further extended to magnetic �eld alone

and further a similar analysis is carried out for forced turbulence case as well (see

section 5.3).
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Chapter 4

In�uence of Inverse Cascade of

Magnetic Helicity on Spectral

Properties of 3D-MHD Turbulence

In this chapter, spectral properties of 3D-MHD turbulence in both forced and

decaying cases are studied. The equations used and the initial conditions are

discussed �rst and then time variation of some of the important quantities in the

system are discussed. Di�culties in de�ning the Reynolds numbers due to the

use of hyperviscosity are also mentioned. This DNS study con�rms some known

spectral properties of 3D-MHD turbulence and also several new properties are

reported. These spectral properties are combined with dimensional analysis of

EDQNM equations to obtain a new relation, which shows how some of the spec-

tral properties are inter-related. The physics of this new relation is also explained.

4.1 Equations and Initial Conditions

From the discussion on the phenomenologies and the power laws obtained from

them, an impression that these power laws re�ect basic principles of physics, can

be had. Hence these power laws must be valid if only the Reynolds number is

su�ciently high [1]. The Kolmogorov spectrum for total energy is observed in

diverse conditions, both in experiments and numerical simulations. Signi�cant

deviations from this law seem to occur only if special processes dominate the
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turbulent dynamics in the inertial range, such as buoyancy forces in thermal

convection, which can lead to a steeper energy spectrum [1]. These deviations

may or may not dominate the inertial range dynamics, the answer to which can

only be obtained from either experiments or numerical simulations. Here DNS

is employed with high resolutions. This ensures a clear inertial range power law

allowing the associated scaling exponent to be determined reliably. The equations

used for DNS have already been discussed in chapter 2. They are recalled once

again here, in a form useful for the discussion as shown below

∂tω = ∇× (v × ω − b× j) + µ̂n(−1 )n−1∇nω + Fv +α4−2ω (4.1)

∂tb = ∇× (v × b) + η̂n(−1 )n−1∇nb + Fb +α4−2 b (4.2)

∇ · v = ∇ · b = 0 . (4.3)

Here v is the velocity, ω is the vorticity, b is the magnetic �eld and j is the current

of the system under consideration. µ̂n and η̂n are the hyperviscous dimensionless

dissipation coe�cients, of order n. α4−2 represents an energy sink used to over-

come the boundary e�ects in the small wave number region, for both the �elds,

with α being a free parameter (set to 0.5 here). The forcing terms Fv and Fb are

random in nature, delta correlated in time, and act over a band of wave numbers

in the small-scale region, adding a fraction of magnetic helicity and or kinetic

helicity to this band. The functional form of these equations has been discussed

in section 2.4.2. The initial velocity and magnetic �elds are smooth with random

phases and �uctuations, having a Gaussian energy distribution, peaked in high

to intermediate wavenumbers, in the forced and decaying cases respectively. The

two �elds have equal initial energies, in both the cases. The initial setup in both

the cases is at 5123 resolution, which is padded with zeros at t ∼ 0 (as mentioned

in section 2.4.1) to get the initial setup for the resolution at 10243 mesh points.

The amplitudes for both the forcing terms are also the same. Hyperviscosity of

level n = 8 is used. The actual values used in the simulations are summarized in

the table 4.1 below. Few 5123 simulation results are also presented in the forced

turbulence case. In these, the forcing is for the wavenumbers k=103 - 109, with

initial condition peaked at k=106 and dissipation coe�cients having a value of

2×10−35 each. In the decaying case, the forcing and the sink terms do not exist.

Decaying turbulence is studied to understand the system, free of the uncontrolled

e�ects arising from the choice of the forcing. But in the forced case, the forcing
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Parameters Forced turbulence Decaying turbulence

µ̂n = η̂n 9e-41 3e-41

n 8 8

Initial |EM
k | ∼ |EV

k | 0.05 1.

|Fv| ∼ |Fb| 0.5 �

Forcing wave numbers 203 - 209 �

Initial amplitudes peaked at wave number 206 70

Resolution N 1024 1024

Table 4.1: Initial conditions and characteristic parameters of the simulations. α4−2 is a sink present
in forced turbulence with α=0.5.

terms maintain the turbulence at a steady average level. In the decaying case, the

spectra are not stationary, such that direct time averaging is not possible. Instead

self similarity of the spectrum (normalization described below) is used to elimi-

nate the variation of the integral quantities. For an appropriate normalization,

the energy spectra do not vary with time apart from the statistical �uctuations

[1]. The same procedure is followed even for forced case quasi-stationary spectra,

for consistency and reliability.

Motivation

From the above numerical setup it can be inferred that the aim of the simulations

is to try and achieve an inverse cascade from very high k to low k regions. Earlier

works on inverse cascade of magnetic helicity mainly had the forcing in low k

region (see [8, 59, 10, 11]). Thus the transfer of helicity was limited to only few

wavenumbers except in the case of experiment 6 of [8], where, the forcing was at

k =30, in a resolution domain of 1283. In all these previous cases the resolution

was also limited and hence, only a glimpse of an inverse cascade was seen but

never a full �edged inverse cascade which spans at least a decade or more in the

spectral space. The power laws obtained from these simulations thus need to

be veri�ed. Although the numerical simulations of EDQNM appear to show a

considerable inverse cascade [7], since this approach is only an approximation to

the original set of equations, the results have to be con�rmed using DNS. The

above mentioned two factors mainly led to take up this work. Here the resolution

can be considered as high and the parameters are carefully chosen so that their
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is su�cient scale separations between inertial and dissipative ranges.

The forcing terms chosen in the case of forced MHD turbulence, inject, into a

�nite band of wavenumbers, a �nite amount of magnetic helicity and or kinetic

helicity, in the high k region. The resultant �uctuations, are expected to travel

towards low k because of magnetic helicity interactions both at local scales as

well as at nonlocal scales1 [10], and thus build up the necessary inverse cascade.

Since, the simulation domain here provides for considerable scale separation, the

power laws obtained here are less in�uenced by either the boundary e�ects or the

dissipative e�ects, as compared to other lower resolution simulations mentioned

earlier.

4.2 Time Evolution of the Systems

The main interest of this studies is to look at spectral properties of 3D-MHD

turbulence, under the in�uence of inverse cascade of magnetic helicity. However

it is interesting to also see how the quantities of interest evolve in time. Here

the time evolution of some of the important quantities is presented. All the plots

in this section are integrated values of the quantity under concern, over all the

wavenumbers at each time point (see table 4.2).

Helicities

The quantities �rst discussed are the helicities, both cross and magnetic helicity

(see �g. 4.1). It can been seen that the magnetic helicity is quasi-constant in the

decaying turbulence case whereas it is monotonically increasing with time in the

forced case (�g. 4.1 a and b top). The cross helicity is a positive quasi-constant

in the decaying case where as it oscillates around zero in the forced case (�g.

4.1 a and b bottom). The monotonic increase in the magnetic helicity value is

due to the amount of magnetic helicity that is being injected at each time step,

over a band of wavenumbers, in the forced case. The observation that both cross

helicity and magnetic helicity remain fairly constant over a long period of time,

once the turbulence develops by about t ' 0.5, clearly brings out the invariance

nature ( d
dt

= 0) of these two quantities in the decaying turbulence case. However

the invariance nature is not explicitly seen from the time plots, of the forced case.

In general, e�ects of dissipation are felt in high k regions. But since the magnetic

1Local and nonlocal interactions referred here are same as the triadic interactions explained in
chapter 3 section 3.1.1.
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helicity moves towards the low k regions, the dissipation e�ects are negligible

(also see �g. 4.7c), thus the time evolution of magnetic helicity shows either a

quasi-constant behavior (as in decaying case) or an monotonic increase (as in

forced case), almost independent of dissipation.

a) b)

Figure 4.1: Evolution of cross helicity H C and magnetic helicity H M in time for a) decaying turbu-
lence and b) forced turbulence.

Energies

The time evolution of total energy, kinetic energy and magnetic energy along

with their respective dissipations are discussed next. In the decaying turbulence

case, a log-log scale is chosen to represent the quantities, while in the forced

case the quantities are plotted on a linear scale. Figure 4.2a represents the total

energy and its dissipation. Also seen are the respective reference plots, which

help in determining the power law behavior of these quantities (see legend of the

�gure for more details) and also show the �ne deviations from that behavior.

From this plot it can be seen that total energy shows an asymptotic fall o� of

∼ t−0.5 as observed in [13]. In addition it is also observed that the dissipation

increases up to a maximum, until the turbulence is fully developed (t ∼ 0.5), and

then it also shows an asymptotic fall o� with a power law of ∼ t−1.5. When this

energy and dissipation are broken down into individual components i.e. kinetic
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(�g. 4.2b) and magnetic (�g. 4.2c) energies and their respective dissipations,

some more details emerge. Although the initial kinetic and magnetic energies

are equal (here of the order of unity), the kinetic energy shows a sharp fall o� of

∼ t−0.8 instead of the earlier observed t−1 power law behavior in [13]. Where as

in the case of magnetic energy, the fall o� is much more gradual and the nature

of this fall can be summed up with the functional form ∼ t−0.5. The dissipation

curves in both the cases follow the same trend as was observed for the total energy

dissipation curve and the power law behavior also does not di�er and remains at

∼ t−1.5 in both the cases. It can be seen from the �g. 4.2a, that the total energy

dissipation is several times more in its value up to t ∼ 5 than the total energy

and later it becomes smaller than the energy value. Hence for determining the

spectral properties, the time range beyond t ∼ 5 is used in the decaying case.

a) b)

c)

Figure 4.2: Energy and dissipation plots in decaying turbulence. a) total energy b)kinetic energy
and c) magnetic energy.
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In the case of forced turbulence, the total energy shows a sharp rise initially (up

to t ∼ 0.35), but once turbulence sets in, it falls (up to t ∼ 0.5) and remains

fairly constant throughout, indicating the attainment of a quasi-stationary state

(see �g. 4.3a). The same is true for the dissipation of total energy, which is

at least 5 times larger in value but has the same trend. But a look at the

individual energies shows that although the initial value of both the kinetic (�g.

4.3b) and magnetic (�g. 4.3c) energies are the same, the magnetic energy gains

at the expense of kinetic energy in the very initial stages and is far away from

equipartition. It reaches a stable state after a small fall o�. Here it is at least 3 -

3.5 times higher than the kinetic energy value. However it is interesting to note

the shape of the kinetic energy curve which shows a constant growth over the

period when turbulence is developing and once in the fully developed turbulent

phase, becomes a constant. The initial rise in both the energies and subsequent

sustainment of energies at these higher levels, is a result of the forcing. The

sustainment of the magnetic energy is attributed to the appearance of dynamo

action, which transfers energy to the magnetic �eld at the expense of the kinetic

energy. The dissipation curves here too show a similar trend as was seen in the

decaying case. It is not possible to �t a unique curve for all these quantities, like

in the decaying case, due to the inherent nature of the curves (i.e. sudden rise

and fall in a short span and later being fairly constant throughout).

Quantity evaluated

Energy: E = 1
2

∑
k (vk.v−k + bk.b−k)

Magnetic helicity: H M =
∑

k i(k× bk).b−k/k2

Cross helicity: H C =
∑

k vk.b−k

Dissipation: εv=µ(k2 )n . 1
k2 ω

2 , εb=η(k2 )n .b2

Table 4.2: Quantities evaluated for time evolution. Here
∑

k represents the discretization in con�g-

uration space achieved by applying a �nite grid or in Fourier space by limiting the number of modes

included to a band kmin ≤ k ≤ kmax . Note that ideal invariants of the continuum system are not

strictly conserved in the truncated system, however quadratic invariants are robust to survive this

truncation, owing to detailed conservation relation in triadic interactions (see section 5.2 of [1] for

more details).

4.3 Consequences of using Hyperviscosity

After the time evolution of some of the important quantities in the system is dis-

cussed, the next step should have been the discussion on the spectral properties
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a) b)

c)

Figure 4.3: Energy plots in forced turbulence a) total energy b) kinetic energy and c) magnetic
energy. Shown in each plot at the bottom are the energy dissipation rates.

of the system. But before the spectral properties are discussed, it is interesting

to know the di�culties in de�ning a unique Reynolds number in the hyperviscous

systems under consideration. Another important issue that needs to be under-

stood is the bottleneck e�ect seen in the spectra due to hyperviscosity.
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4.3.1 De�ning the Reynolds numbers

Reynolds numbers as already mentioned in chapter 1, inversely quantify the dis-

sipative nature of the �uid �ow. The simplest de�nition for the kinetic Reynolds

number is Re = 1/µ̂. µ̂ is the non-dimensional kinematic viscosity. The Reynolds

numbers in turbulent �ows are estimated using several di�erent de�nitions, which

yield several di�erent formulas. Four of these formulas, modi�ed for a hypervis-

cous turbulent �ow are shown in table 4.3. These di�erent formulas for Reynolds

numbers, will yield di�erent numbers, with di�erent meanings, for the same �ow.

In determining the Reynolds numbers, some of these formulas use some unphysi-

cal assumptions like 1) the dissipation length ld being assumed to be the same for

all levels of n and 2) the dissipative coe�cient being assumed to be the same for

all levels of n. These assumptions are unacceptable as the very purpose of using

hyperviscosity is to free the inertial range of dissipative pollution by shifting the

dissipation to high k range. These assumptions tend to ignore this important

fact. Although an estimate on the characteristic length scale l , can be obtained

from the quasi-stationary state energy value, it appears that, each of these for-

mulas have at least one parameter, which is totally determined by the afore

mentioned unphysical assumptions. The parameter ε in column 2, µ̂ in column

3 of the table serve as good examples for this argument. The fourth de�nition is

devoid of any parameters determined from the unphysical assumptions (both the

length scales could be directly determined from hyperviscous simulations without

any further reductions) and yields very small Reynolds numbers (27 and 140 in

the decaying turbulence case and 6 and 14 for forced turbulence case, when ld

from 1) and 2) of table 4.3, are used respectively in each case). These values,

however small, support the fact that hyperviscosity shifts the dissipation scales

into very high k region, which results in small values for Reynolds numbers. In

hydrodynamic turbulence, another method exists, in which Taylor micro scale

(λ =
√

5.vrms/ωrms) is used in determining a notional Reynolds number, where

vrms and ωrms are the r.m.s. values of velocity and vorticity respectively. The

actual value of the Reynolds number is then obtained by multiplying this no-

tional value with an external parameter, obtained from wind tunnel experiments

(see [60]). This approach is neither warranted nor is it possible to do some such

equivalent adjustment in the case of MHD turbulence.

The small values for Reynolds number obtained, however, do not give an ac-

tual impression of the resolution or the computing e�ort that has gone into this

work (as the Reynolds numbers obtained only correspond to the dissipative scales
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which any how are small due to hyperviscosity) (also see section 2.5). Hence in

their place, the hyperviscous di�usive terms are used asis , in this work. How-

ever from the experience of others like [37, 61], it can be safely assumed that

the Reynolds numbers in this work (if can be de�ned at small k) will be in the

range of 1000 (forced case) to around 4000 (decaying case). But since such a

de�nition currently is not available for the hyperviscous systems, no claim is

made on the exact value of Reynolds number, in both the cases. Also note

that except for second de�nition (magnetic Reynolds number), which is based

on the Iroshnikov- Kraichnan phenomenology, all other de�nitions use terms and

de�nitions from the Kolmogorov phenomenology. The dissipation lengths (ld)

obtained from both the phenomenological de�nitions result in values very close

to each other (∼ 2.5×10−3) in both forced and decaying cases. Thus this value

of (ld) will be used in the normalization of wavenumber k to obtain k (=ldk), the

normalized wavenumber. The eddy turnover time is not de�ned in the simula-

tions as td (∼ ld
vd
), where vd = 2

∫∞
ld
−1 E V

q dq , does not give acceptable values, due

to the presence of hyperviscosity.

De�nition of Reynolds number

1) Re=1/µ̂ where µ̂ obtained from ld=( µ̂
3
n
ε )

1
6n−2

2) Rm=( l
ld

)3/2 where l=E3/2

ε vA=
√
EM and ld=( η̂

2
nvA

ε )
1

4n−1

3) Re=VL/µ ∼ 1
µ̂ where V=

√
EV and L ∼ l

4) Re9/4=L0
ld

where L0 ∼ l and ld from [1) and 2)] above

Table 4.3: Various ways of determining Reynolds numbers. Here n=8, µ̂n, η̂n are the non-dimensional

hyperviscous di�usive terms used in the simulations, µ̂ is the non-dimensional di�usive term obtained

by taking the same ld and ε, from n=8 and then replacing n to unity.

4.3.2 Bottleneck E�ect

The �rst spectrum that is examined, when looking for spectral properties of tur-

bulence, is the energy spectrum. In MHD case it is the sum of the kinetic and

magnetic energies. Classically it is expected to show a Kolmogorov like behavior

(i.e. a -5/3rd power law) in the inertial range. But a small hump in the energy

spectrum is observed near the dissipative wavenumber region. This region is a

result of partial re�ection of the energy in front of the dissipation range. This

is called `bottle neck' e�ect. This e�ect is prominent in hyperviscous simulations

[41, 62, 63, 64, 65, 61], and is considered an `unwanted guest', one has to live
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with. A mathematical interpretation of this e�ect is related to a property of the

Fourier transformation: that a sharply bent structure function in con�guration

space corresponds to an overshoot in the Fourier spectrum (see [1] and references

thereof). Recent work [66], suggests that the advantage of widening the inertial

range may be o�set by artifacts at bottleneck scales. An incomplete thermaliza-

tion will bring the statistical properties of such scales closer to Gaussian, thereby

reducing the rather strong intermittency which would otherwise be expected [66],

and hence further studies is on, to overcome these bottlenecks in energy spectra

(see [67]).

In the context of this work, however, it is argued that although bottleneck is

present in the 3D-averaged energy spectrum (equation 1.43), a one dimensional

spectrum (1D) (Ek x =
∫

dkydkz Ek) is free from such an artifact, in line with [13].

This argument is supplemented by the plots in �g. 4.4 a and b. In �g. 4.4a,

the total energy spectrum(Ek=
∫∞

0
Ek dk) is normalized with a Kolmogorov spec-

tral relation (Ek=ε2/3k
−5/3

) and compensated by k5/3 . Here k is the normalized

a)

k

b)

k

Figure 4.4: Energy spectra in a 5123 forced simulation at t=9.59. a) 3D- spectra and b) 1D-spectra.
Simulation setup: the initial condition: random �uctuations in the shape of a Gaussian peaked at
k=6, forcing: to the band of wavenumbers k=3-9, µ̂n= η̂n =2e-35. |EM

k | ∼ |EV
k |=0.05, |Fv| ∼ |Fb|=

0.5, n=8.

wave number. This spectrum has a �at region (indicating good compensation)

over wave numbers k=10 to k=50. From there it starts showing a deviation, and

forms a hump in the high k region. This is the bottleneck. This e�ect results

from the Fourier transform of the correlation function and is more pronounced at
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higher levels of hyperviscosity [13]. Figure 4.4b, is the one dimensional spectrum

of energy (E (|kz |) =E (kz ) +E (−kz ) [13, 1]), normalized and compensated the

same way as was done for �g. 4.4a. This spectrum does not show the bottle-

neck behavior, due to the fact that here the transition to the dissipation region

is more gentle [13]. In both the spectra, the horizontal line represents the Kol-

mogorov scaling. From [65], the total energy and one-dimensional energy spectra

are related by E (k) =[5
3
− dlnE1D (k)

dlnk
]E1D(k). From this relation two things can

be inferred: 1) if there is a �nite interval where the Kolmogorov scaling holds

for the one-dimensional spectrum, then the same scaling will hold for the three-

dimensional spectrum and vice-versa. 2) If one-dimensional energy spectrum

shows a bottleneck e�ect, the three dimensional energy spectrum also shows a

bottleneck e�ect, but vice versa may not be true. Thus, the relation discussed,

supports the observations of �g. 4.4. Hence in the course of this work, the

spectral powers obtained for various parameters in the bottleneck region are also

presented and discussed (see next section). It is also shown that even with a bot-

tleneck present in the energy spectrum, the spectral powers of various quantities,

hold on to the same physical relation satis�ed in the proper inertial range region

(see section 4.5).

4.4 Spectral Properties

Here, the spectral properties of several quantities of interest are discussed in both

forced and decaying cases, starting with magnetic helicity. In the forced case, the

discussion is centered around only the injection of maximum magnetic helicity by

the forcing terms, with no injection of kinetic helicity, unless other wise stated.

When the spectra are compensated, two inertial ranges (one at high k and one

at low k) are observed in the forced case and one in the decaying case for some

quantities. Here it need to be emphasized that, although, there was a prediction

of possibility of two inertial ranges, in 3D-MHD turbulence [13], it was never

reported. In this respect, this work uniquely shows the two predicted inertial

ranges. However due to the limitations in the resolution, the high k inertial

range is very small and in order to resolve this inertial range clearly further

high resolution simulations are necessary. It also need to be noted that in 2D-

hydrodynamics, there are published reports of clearly resolved two inertial ranges

from very high resolution simulations (see e.g. [37, 68]). Another interesting fact
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that emerges from this studies is that several quantities in 3D-MHD turbulence,

show two approximate scaling ranges and power law behaviors, in the forced case

and a lone approximate scaling range with a power law behavior in the decaying

case. Although the power law values are determined for both the scaling ranges in

the forced case, importance is attached to the measurements in the low k inertial

range. The performed analysis on this low k scaling range is found to be valid

even for the high k scaling range for most of the quantities, although this range

is not very well resolved.

The data sets used for plotting the compensated spectra in all the spectra below,

are at t=6 for forced case and t=10 for the decaying case.

4.4.1 Spectral Behavior of Magnetic Helicity

As discussed in section 1.2, magnetic helicity is one of the important ideal invari-

ant of the system and hence its spectral behavior helps in gaining some insight

into the MHD turbulent �ow. Normalized magnetic helicity spectra for both the

decaying case and the forced case are shown below (�g. 4.5). Here it is observed

that the initial helicity present in high k region, moves to low k region, with the

progress of time It was realized in this work that the power law exponent does not

satisfy the k−2 power law for the inverse cascade of magnetic helicity but varies in

the two cases studied here signi�cantly (see next section and table 4.4). In view

of this, the prefactor εHd
also is dropped as the whole expression (see footnote

below) 2 goes together and cannot be separated out. Hence a normalization fac-

tor of kα is used, where α is the actual power law exponent obtained for each case

by trial and error (taking the value at which the spectra gets compensated the

best). The �gure below i.e. �g. 4.5 represents the set of such normalized curves

that depict the `inverse cascade of magnetic helicity', �rst seen in the numerical

simulations of EDQNM equations [7]. Although the same a�ect was observed in

several DNS methods [10, 8, 69, 9], never in any of these works a transfer from

such a high k to low k was reported. However in 2D-hydrodynamics, such trans-

fers over a vast region, are seen in the inverse cascade of energy e.g.[37]. The

compensated spectra show inertial ranges, the horizontal line here indicating the

2The normalization factor that should have been used here is ε
2/3
Hd

k
−2

, with εHd
the dissipation of

magnetic helicity. The suggested power law of k−2 is the one obtained from numerical simulations
of EDQNM equations [7] and the power law to εHd

is obtained from dimensional analysis [1]. This
dimensional analysis is reproduced in Appendix A for academic interest.
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compensated spectral power. In the forced case, the power law exponents are

-3.3 and -1.7 for low k (7 - 30) and high k (250 - 400) inertial ranges respectively

(see �g. 4.6 and table 4.4). The inertial range in the low k region, is close to

the Kolmogorov type scaling. While for decaying case the power law exponent

a)

k

b)

k

Figure 4.5: Normalized magnetic helicity spectra in a 10243 simulation. a) forced case and b) decay
case. Forced case t=0 to 6.9. Decay case t= 0.03 to 10. Inverse cascade is clearly seen in both the
cases. Note that in the decaying case, the initial condition shown here is at a time slightly away
from t=0 (i.e. at t=0.03), where already the initial spectrum (which was limited to a band of wave
numbers) is stretched over the entire spectral width available to the system. But the majority of the
energy is still contained in the initial band of wavenumbers which is making the initial state shown
here look like a spectrum from the forced case. Normalization of the type kα is used where α is the
power law exponent, in both the cases.

has a value of -3.6. It is interesting to note that exponents in any case do not

satisfy the prediction of EDQNM (power law exponent of -2)(see [7]). The dis-

sipation region lies beyond the second inertial range in the forced case and the

only inertial range in the case of decaying turbulence. The cascade regions seen

in the above �gures can be well understood by looking at the �ux of magnetic

helicity. To obtain the �ux of magnetic helicity, the �rst term on the r.h.s. of

the equation (1.33) and r.h.s. of the equation (1.36) are Fourier transformed

after accounting for the hyperviscosity, in their non-dimensional form, to obtain

ḢM(k) = 2Re

{
b̃∗.ṽ × b

}
︸ ︷︷ ︸

H M
Tr (k)=π

HM

− 2k6

Rm
b̃∗j̃︸ ︷︷ ︸

H M
Di (k)

. In this equation, the �rst term on the

r.h.s. is the nonlinear transfer term and second is the dissipation term of mag-

netic helicity. The plots below (�g. 4.7 a and b), show the transmission spectra
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a)

k

b)

k

c)

k

Figure 4.6: Compensated magnetic helicity spectra in a 10243 simulation. a) low k inertial range
for forced case b) high k inertial range for forced case and c) inertial range for decay case.

of magnetic helicity (ΠH M (k) =
∫ k

0
d3 k ′2Re[b̃∗.ṽ × b]), over all wavenumbers

for both the cases. This quantity represents the conservative �ux of magnetic

helicity as is seen in the �gures. These plots have two regions. A region of posi-

tive �ux and other a region of negative �ux. The negative �ux (absolute of the

negative �ux is plotted in `magenta') is the �ux moving in towards the smaller

wavenumber shells (inverse cascade), while the positive �ux (plotted in `blue') is

the �ux moving out towards the large wavenumber shells (normal direct cascade).

In the forced turbulence case, the �uxes are constant over a large wavenumber

region for both inverse and direct cascades. This constant �ux is a indicator of a
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sustained cascade process, maintained by the input of magnetic helicity through

the forcing of a band of wavenumbers at high k (k = 203 - 209). Here magnetic

helicity is moving towards the low k regions, while dissipation is concentrated in

the high k regions. Thus the magnetic helicity experiences very low dissipation

and is transmitted towards the low k regions. In the decaying case, though, there

is an established inverse transfer process, the �ux is not a constant as there is no

active injection of magnetic helicity. In the high k regions, the inverse cascade

is not present and here in general, the direct energy cascade process dominates,

thus only a direct downward cascade is seen, in both forced and decay cases. It

can be seen that the contribution to the �ux is mainly due to the transmission

term alone. This is because of the negligible values of the dissipation term, in

comparison to the transmission term. This fact is true for both the decaying and

forced cases and thus a spectrum representative of this fact is only shown (see

�g. 4.7c).

4.4.2 Magnetic Energy Spectrum

As the inverse cascade of magnetic helicity progresses, it may in�uence the spec-

tral properties of other quantities of interest. One such very important quantity

to look for is the magnetic energy spectrum as magnetic energy and magnetic

helicity are spectrally related (E M
k ∼ kH M

k ). It is indeed observed that as the

magnetic helicity inverse cascades, so does the magnetic energy, but with a less

steeper (approximate) power law [7]. Here, the same trend continues albeit the

di�erence in power laws is slightly di�erent from that of [7], in the forced case

and the deviation is much larger in the decaying case. Once again in the forced

case, there are two approximate scaling ranges, while in the decaying case there

is one approximate scaling range. This is depicted in the �g. 4.8 a,b and c below,

here too the horizontal line in the spectra is representative of the power laws. It

is seen that in the low k region (7 - 30) of the magnetic energy spectrum, the

power law exponent has a value of -2.1, while in the high k (250 - 400) region it

is -0.6. In the decaying case it is once again -2.1. The �ux of magnetic energy

Πjb+vb(k) =
∫ k

0
d3 k ′[(Re(ω̃∗.

i

k ′2
(k ′ × j̃× b)))︸ ︷︷ ︸
Tjb

+ (Re(b̃∗.i(k ′ × ṽ × b)))︸ ︷︷ ︸
Tvb

]
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Figure 4.7: Flux of magnetic helicity spectra and comparison of transmission and dissipation terms.
a) �ux in the forced case b) �ux in the decay case and c) comparison of transmission term to dissipation
term of magnetic helicity (see eq.(4.4)) (in �ux plots, magenta: inverse cascade, blue: direct cascade).

(see Appendix B for derivation) does not remain constant for both the forced and

decaying cases (see �g. 4.8 d and e). However, when maximum kinetic helicity is

also injected along with maximum magnetic helicity, then the �ux turns constant

(see �g. 4.8f). This might be because of the kinematic dynamo action coming

into play, when kinetic helicity is injected into the system. In this case, the

approximate scaling law can be regarded as representing an inertial range. Note

that the �ux plots have been normalized with energy dissipation rate.3

3Since for magnetic energy, the �ux contribution is from both the magnetic and velocity �elds, the
sum of kinetic and magnetic energy dissipation rates i.e. the total energy dissipation rate is used for
the normalization of the spectra.



72

In�uence of Inverse Cascade of Magnetic Helicity on Spectral Properties

of 3D-MHD Turbulence

a)

k

b)

k

c)

k

d)

(k
)

e)

(k
)

f)

(k
)

Figure 4.8: Magnetic energy and �ux. a) �rst approximate scaling range in the magnetic energy
spectrum in the forced case b) second approximate scaling range in the magnetic energy spectrum
in the forced case c) approximate scaling range in the magnetic energy spectrum, decaying case, d)
magnetic energy �ux in the forced case e) magnetic energy �ux in the decaying case and f) magnetic
energy �ux in the forced case when kinetic helicity is also injected. (in �ux plots, magenta: inverse
cascade, blue: direct cascade)
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4.4.3 Kinetic Energy Spectrum

The next spectrum that is being discussed is of kinetic energy. Here for the

�rst time an inverse spectral transport is reported for kinetic energy, in 3D-

MHD turbulence, although it is a common observation in 2D-hydrodynamics.

This might arise because of the inverse cascade of magnetic energy. Because

the cross helicity is very small, there can be interactions and exchanges between

velocity and magnetic �elds, through the Lorentz force terms present in both

velocity �eld and magnetic �eld equations. It was shown in time plots above,

that the magnetic energy starts dominating the system after a period of time.

This increase in magnetic energy might in�uence the way the velocity �eld acts.

It appears that the velocity �eld also has a spectral transfer towards small k ,

although not with an increase in overall kinetic energy. Thus the inverse spectral

transport behavior is seen in the kinetic energy spectrum but the spectral powers

are not high. For the forced case, the low k approximate scaling range shows a

-1.2 power law, while the high k region shows a -0.6 power law (�g. 4.9 a and b).

For the decaying case, the power law is -0.7 (�g. 4.9c). The horizontal lines in the

respective spectra represent the corresponding power laws. The �ux of kinetic

energy Πvω(k) is given by
∫ k

0
d3k ′ (Re(ω̃∗.

i

k ′2
(k ′ × ṽ × ω)))︸ ︷︷ ︸
Tvω

(see Appendix B)

and is plotted similarly for all the cases discussed for magnetic energy �ux. Here

too the �ux plots are normalized. The normalization factor here is kinetic energy

dissipation rate only. The most interesting fact in the �ux plots is the pure inverse

spectral transport nature of the kinetic energy �ux. This �ux stays constant over

a large range of wavenumbers, when kinetic helicity is also injected, in the forced

case (�g. 4.9 d and f). For the decay case, the �ux shows both the inverse and

direct spectral transports (�g. 4.9e).

4.4.4 Total Energy Spectrum

The total energy (sum of the kinetic energy and the magnetic energy) is an ideal

invariant in 3D-MHD turbulence. In decaying turbulence, it is known to show

a Kolmogorov type power law of -5/3 [13]. Here in this work, it is shown that

in the low k regions in the forced case, the same holds too, while in the high k

region, a bottleneck is observed (�g. 4.10 a,b and c). The horizontal lines in each

of these spectra represent the compensated power law.
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Figure 4.9: Kinetic energy and �ux. a) �rst approximate scaling range in the kinetic energy spectrum
in the forced case b) second approximate scaling range in the kinetic spectrum in the forced case c)
approximate scaling range in the kinetic energy spectrum, decaying case, d) kinetic energy �ux in the
forced case e) kinetic energy �ux in the decaying case and f) kinetic energy �ux in the forced case
when kinetic helicity is also injected. (in �ux plots, magenta: inverse cascade, blue: direct cascade)
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The normalization factor used was ε2/3. Here ε is the total energy dissipation.

The dissipative range in the case of forced case is in the very high k region (k ∼
400), similar to that for the decaying case. The �ux terms that are obtained in

the total energy case are the sums of the �uxes of kinetic energy and magnetic

energy, discussed above. The plots are compensated with total energy dissipation

rate. The total energy �ux is a constant over a band of wavenumbers only in the

case when both magnetic and kinetic helicities are injected (�g. 4.10f). Otherwise

when only magnetic helicity is injected or the system is purely decaying in nature,

this property is not present in the spectra (�g. 4.10 d and e). The turbulence

theories normally emphasize on equipartition of energies [7]. But it was observed

in both decaying and forced cases that the magnetic energy dominates the total

energy budget (�g. 4.11) (the same factor is observed in the time plots), though

the starting values for both kinetic and magnetic energies are the same. The

magnetic energy is growing at the expense of kinetic energy and this factor needs

to be looked at more closely. A possible explanation for the increase of magnetic

energy is o�ered in the next section.

4.4.5 Spectra of Kinetic Helicity and Other Quantities

Kinetic helicity spectra HV
k = 1

2

∫
dk3 ṽ · ω̃ also shows an approximate power law

behavior in both the forced and decaying cases (see Appendix C1 for plots). This

too is reported for the �rst time, for 3D-MHD turbulence. These inertial ranges

occur in the same wave number regions as the inertial range of magnetic helicity.

In the forced case the power law exponents are -0.4 and 0.3 for low k and high k

cases respectively. In the decaying case, the exponent is -0.2.

Residual helicity (H R
k = H V

k − k2 H M
k ), the quantity that is signi�cant in the

Alfvén e�ect (see section 3.2.2 and also [7]), also shows an approximate power

law behavior, in both the cases, in its spectra (see Appendix C3). Residual

energy, was shown to have a power law behavior of k−7/3 in decaying case and

this result is found to be true in this work also. It also does show two approximate

scaling ranges in the forced case (see Appendix C2), but in this case, the spectral

relation E R
k ∼ kE 2

k is not satis�ed exactly. In the low k range,the obtained power

law is away from the value predicted by the theoretical relation by ∼ -0.2 and in

the high k range it is away from the value by ∼ -0.5.
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Figure 4.10: Total energy and �ux. a) �rst approximate scaling range in the total energy spectrum
in the forced case b) second approximate scaling range in the total energy spectrum in the forced case
c) approximate scaling range in the total energy spectrum in the decaying case (note that this scaling
range is highly in�uenced by the bottleneck on the high k region and inverse transfer of the energy in
the low k region), d) total energy �ux in the forced case e) total energy �ux in the decaying case and
f) total energy �ux in the forced case when kinetic helicity is also injected. (in �ux plots, magenta:
inverse cascade, blue: direct cascade)
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k
k

k

Figure 4.11: Comparison of energies in the forced case. Shown are the normalized plots of total,
kinetic and magnetic energies.

Other parameters which show approximate scaling ranges and power law behav-

iors are the electric current density jk (more speci�cally j2
k ) (see Appendix C5)

and the magnetic vector potential (see Appendix C4).

The power law behaviors in current and vector potential are explained on the ba-

sis that they are directly related to the magnetic �eld, in their formulation. The

residual helicity, although is a di�erence of two quantities that show power law

behavior, is not expected to, or may not show any power law behavior. But it does

show power laws. The kinetic helicity, is an ideal invariant in 3D-hydrodynamic

turbulence, but not in MHD. Even then, it shows clear power law behaviors. It is

also important to note that, the power laws obtained for these quantities do not

exactly satisfy their respective mathematical relations (see [7]) and have signi�-

cant deviations. For example magnetic vector potential and magnetic helicity, by

virtue of the formula (H M = 0 .5
∫

V
A.bdV ), are related in the spectral space

as (H M
k ∼ k2 A2

k ), but the power laws obtained do not satisfy such a relation.

In order to understand these whole set of power laws, it is opined that a new

mathematical setup might be needed.

The power law behaviors are summarized below in two tables. This grouping is

deliberately done as the power laws in �rst table are used along with the EDQNM

equations, to understand the underlying physics. The second grouping is a report

on several other power laws, observed, but are not yet understood fully for their
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underlying physics. The power law values in both the tables also show the errors

associated in determining them. The way these errors have been determined is

explained next with an example of determining the error in the power law for

magnetic helicity in the decaying case.

4.4.6 Determining the Error in the Power Laws

The �rst source of error can be the parallax error in judging the scaling range as

it has to be determined with naked eye observations. Although �ux spectra give

an idea on this range (�ux is constant in inertial ranges) but not all spectra show

constant �ux. Even after time averaging several spectra, to get a more accurate

value, the parallax error persists. Only that the time averaging reduces this error.

To illustrate this point, magnetic helicity spectrum in the decaying case, which

is erroneously normalized with a power law of k−3 .5 instead of k−3 .6 (the value

reported in the table 4.4) after time averaging (the period used was t=8 to 10)

is shown in �g. 4.12a. The case taken for illustration is when the judgment

in determining the power law is the poorest. This power although appears to

compensate the spectrum, clearly is not the correct value (as the spectrum is

seen to be under compensated in the low k region and over compensated in the

high k region). Such parallax error judgments, though rare, have to be �gured

into the error estimates, as the ultimate judgment of the power law value is

subjective to human error.

The second source of error is the data spread in the scaling range. Ideally, in the

scaling range, after normalization and compensation, all the data values should

be the same and at each point should be equal to the reference line that is plotted

in the spectra (which has a constant value throughout). In order to show that

this is not true, the plot is deliberately thinned to the minimum possible thinness

permitted by the plotting program as shown in �g. 4.12b. The plot clearly shows

the wiggle or �uctuations in the data which are slightly above and below the

reference line. This wiggle makes the power law to be determined erroneously

with ∼ k0 .08 inaccuracy. This is clear from the spectrum which is compensated

with k−3 .65 , that seems to be equally a good compensation as k−3 .6 , as the small

�uctuations observed in the data of the spectrum allow for such �uctuations

around the correctly obtained power law value. The maximum value of such

�uctuations could be ∼ k0 .08 as already mentioned.

Thus for the magnetic helicity spectrum, in the decaying case, the maximum error
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in the determination of the power law value could be of the order of ∼ k±0 .2 ,

which is an addition of the two sources of errors, which serves as the worst case

scenario.

a)

k

b)
k

Figure 4.12: Error determination in the spectra. a) magnetic helicity scaling range determined
erroneously to a tune of k0 .1 and b) a close look at the wiggle in the data of magnetic helicity
spectrum.

Similarly errors were determined for all other quantities and have been tabulated

as seen in tables 4.4 and 4.5. It can been seen that these errors are already

very small in many cases and it can be expected that if much higher resolution

simulations, with even higher Reynolds numbers are performed then, these errors

might get further reduced.

4.5 EDQNM Analysis of the Power Laws

To understand the underlying physics of the power laws obtained in the above

section, from earlier experience [14], dimensional analysis of EDQNM equations

is applied together with a hypothesis of dynamical equilibrium (see discussion in

section 3.2.2.) to these power laws. Here, the EDQNM equation for magnetic

helicity, given by equation (3.27) is used, for the analysis of the power laws

obtained in table 4.4. This choice of equation is obvious, keeping in mind that

the focus of this studies is, on understanding the inverse cascade of magnetic

helicity and its in�uence on other quantities both spatially and spectrally. The
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equation is reproduced here.(
∂

∂t
+ 2ηk2

)
H M

k = F̃ M
k +

∫
4k

dpdqθkpq

(
T M̃

V M̃
+ T M̃

Ṽ M
+ T M̃

M M̃

)
. (4.4)

Power laws in 10243 simulations (kα)

Physical quantity Forced turbulence Decaying turbulence

low k (7− 30) high k (250− 400)

Total energy Ek -5/3±0.2 -0.7±0.3 (bottle neck) -5/3±0.2

Magnetic energy EM
k -2.1±0.3 -0.6±0.3 -2.1±0.2

Kinetic energy EV
k -1.2±0.2 -0.6±0.3 -0.7±0.2

Magnetic helicity H M
k -3.3±0.2 -1.7±0.3 -3.6±0.2

Kinetic helicity H V
k -0.4±0.2 0.3±0.2 -0.2±0.2

Table 4.4: Summary of some of the power laws in forced and decaying 3D-MHD turbulence. α

represents the power law exponent. Also shown are the errors in determining these power laws.

More power laws in 10243 simulations (kα)

Physical quantity Forced turbulence Decaying turbulence

low k (7− 30) high k (250− 400)

Residual energy ER
k -2.1±0.3 -0.4±0.4 -7/3±0.2

Residual helicity H R
k -1.4±0.3 1.1±0.4 -1.8±0.3

Magnetic vector potential Ak -3.8±0.3 -2.8±0.4 -3.9±0.3
Current j 2

k 0.1±0.2 1.4±0.3 0.1±0.2

Table 4.5: Some more power laws in forced and decaying 3D-MHD turbulence. α represents the
power law exponent. Also shown are the errors in determining these power laws.

This is the equation for the magnetic helicity spectrum in EDQNM and it has

three terms on the r.h.s.. For using this equation, stationarity is assumed elim-

inating the partial di�erential with respect to time on the l.h.s.. If the inertial

(scaling) range in the spectra is only considered, then dissipative e�ects from the

second term of the l.h.s. are negligible. The direct e�ect of the forcing is also

not present in this inertial range. Thus it can also be neglected. Hence now, the

terms left are the three terms on the r.h.s. The �rst term T M̃
V M̃

indicates the

interaction of magnetic helicity and kinetic energy terms. The second term T M̃
Ṽ M
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indicates the interaction of magnetic energy and kinetic helicity. Finally, the term

T M̃
M M̃

, represents the interaction of magnetic energy and magnetic helicity, as can

be seen from the equations (3.29 - 3.31). The 4 restricts the integration to wave

vectors k,p,q, which form a triangle in the p − q plane, de�ned by k = |p + q |.
The time θkpq is the characteristic of the eddy damping of the nonlinear energy

�ux involving the wavenumbers k , p and q [14, 7]. It is de�ned phenomenologi-

cally, but its particular form does not play a role in the following analysis [14].

From the spectral analysis it is seen that the nonlinear interactions between ve-

locity �eld and magnetic �eld are present in the system and that there is an

increase in magnetic energy at the cost of kinetic energy (both the time evolution

and spectral evolution support this fact). At the same time, it is also seen that

the magnetic helicity �ux supports an active inverse cascade (spectral transfer)

both in the forced and decaying cases. In particular it remains fairly constant

in the forced case. Similar things are happening for magnetic and kinetic ener-

gies, where spectral transport to low k regions, is seen. Hence to understand the

in�uence of the velocity �eld on the magnetic �eld, the terms of the equation

(4.4), that contain interaction quantities of both the �elds are preferred over the

terms containing quantities belonging to the same �eld. Thus the third term is

dropped from the analysis.

Now the two terms left are T M̃
V M̃

and T M̃
Ṽ M

. The triadic interactions of k , p and

q can be both local and nonlocal. Hence in principle, all possible triadic interac-

tions are considered. This is in tune with an argument that the nonlinear mode

interactions of v and b �uctuations on a small scale say k0
−1 , simultaneously

generate large-scale Fourier components on all scales [70]. Thus the inverse cas-

cade process may not be a step-by-step process, but may be a long-range spectral

process [70].

Hence writing the two terms in their dimensional form yields:

kp−1 q−1 hkpq(k2 H M
p E V

q − p2 E V
q H M

k )

∼ kk−1 k−1 k2 H M
k E V

k

∼ kH M
k E V

k ∼ T1 , (4.5)
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kp−1 q−1 hkpq(k2 p−2 H V
p E M

q − p2 k−2 H V
q E M

k )

∼ kk−1 k−1 k2 k−2 H V
k E M

k

∼ k−1 H V
k E M

k ∼ T2 . (4.6)

Here the wavenumbers p and q have been written in the dimensional form of

k . Looking at these terms, it can be said that, the �rst term (equation (4.5))

represents the e�ect of nonlinear magnetic �eld line deformations by the turbulent

�ow as the magnetic helicity tries to inverse cascade, while the second term

(equation (4.6)) represents the e�ect of the twisted velocity �eld �uctuations in

the turbulent �ow on the evolution of magnetic helicity, as the velocity of the

�ow tends to reduce in strength and in turn the strength of the magnetic �eld

tends to increase at its expense. These two processes might have their origins in

the Lorentz force terms in the vorticity and induction equations ( here equation

(4.1) and (4.2) also see section 1.1.2) which represent the nonlinear interactions

between the magnetic and velocity �elds and are also the terms through which

the energy transfers from one �eld to other can take place. Thus to attain some

clear picture on how these two processes are related to each other and show the

observed spectral and spatial behaviors (studied in next chapter), in the inertial

(scaling) ranges; it is supposed that there exists a dynamic equilibrium between

these two processes; allowing the two terms to be equated dimensionally, as:

T1 ∼ T2

kH M
k E V

k ∼ k−1 H V
k E M

k . (4.7)

This �nally yields:

E
M
k ∼ k 2 H M

k EV
k

H V
k

. (4.8)

The terms E V
k and H V

k are dimensionally related by a factor of k . That is E V
k /H V

k ∼
k−1 . In the forced case, when magnetic helicity is alone injected or in the case when

both kinetic and magnetic helicities are injected, the plot of H V
k /E V

k appear to satisfy
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this relation as seen in the (Appendix �g. C6 a,b and c). But the power laws of these

quantities in the table 4.4, for the forced case do not satisfy this relation and tend

to deviate as much as 10 and 20%; from dimensional argument; in high k and low k

regions respectively. In the decaying case, this discrepancy is seen both in the plot

as well as the power laws to as much as 50%. Dimensionally E M
k and H M

k are also

related by a factor of k by E M
k ∼ kH M

k . If the power laws from table 4.4 are plucked

in this dimensional equation, the relation once again shows a deviation of 10 and 20%

for the high k to low k regions of the forced case respectively. For the decaying case

the deviation is once again 50% (also see the Appendix �g. C7 a,b and c).

But the relation in equation (4.8), on the whole is satis�ed in all the three cases (two

forced case scaling ranges and one decaying case scaling range), when all the four power

laws in table 4.4 are plucked into it, at once without considering the errors. If the errors

are also accounted for, then the deviation from the relation could be between 10 and 30

% in the low k region of the forced case and the decaying case, and between 10 and 50%

in the bottleneck region (high k region) of the force case. This is an indication of the

nonlinear mode interactions between v and b, which are driving the inverse cascade,

while enhancing the magnetic energy at the cost of kinetic energy, thus supporting the

analysis.

4.5.1 Interpretation

Writing the equation (4.8), as

H V
k ∼

(
E V

k

E M
k

)
k2 H M

k .

(4.9)

or as

E M
k ∼

(
k2 H M

k

H V
k

)
E V

k .

(4.10)

gives more insights into the system in hand. The equation (4.9) reduces to a simple

dimensional relation between H V
k and H M

k if there is equipartition of energies (i.e. E M
k

' E V
k ). This implies residual helicity (H R

k = H V
k − k2 H M

k ) relaxes to zero, giving rise

to Alfvén e�ect (see section 3.2.2).
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If the equation (4.8) is now written as equation (4.10), it then states that if there

is Alfvén e�ect, present in the system i.e. H V
k ' k2 H M

k , then once again the r.h.s.

and l.h.s. become equal. This implies residual energy (E R
k = E V

k − E M
k ) relaxes to

zero, giving rise to equipartition of energies, at all scales, as seen in the numerical

simulations of the EDQNM equations [7] and the eddy damping rate θkpq is dominated

by the Alfvénic contribution τA the interaction time scales of colliding shear Alfvén

waves (see section 3.2.1 and [7]).

It is clear from the spectra and the power laws obtained for kinetic energy, magnetic

energy, magnetic helicity, kinetic helicity, residual helicity and residual energy, that

they do not confer to either the equipartition or give any hint on the Alfvén e�ect.

Hence the best form to write the equation, to truly represent the essence of the observed

behavior in the simulations is indeed equation (4.8). Further equations (4.9) and (4.10)

also tend to imply that the observed enhancement of magnetic energy, through the

inverse cascade of magnetic helicity is a direct consequence of the two drivers residual

helicity and residual energy, which are non-zero, here in these simulations.

Thus these simulations also strengthen the physical explanation given for the generation

of inverse cascade through a phenomenon called `helicity or α e�ect' (see pp.332 and

342 of [7] for a complete explanation). It speci�es that residual helicity is the true

motor of instabilities, which drive the magnetic energy and magnetic helicity towards

the larger scales. The local Alfvén e�ect (temporary equipartition at a given particular

scale), creates the imbalance in helicities, which further drives the magnetic helicity and

magnetic energy to larger and larger scales by the `helicity e�ect' from that particular

scale. This process thus mainly leads to a limited saturation of the spectra at a given

large-scale (or small wavenumber), but overall saturation of the spectra can never be

obtained, as there is no limit for the large scales that could be achieved, through this

process [7].

In the numerical simulations, inverse cascade drives the peak of the spectrum to smaller

k . But when this peak reaches close to the boundary (or may even hit it) the system has

no more scope to evolve and in such a scenario, saturation of the spectra is observed

(here it is only an numerical anomaly). It was reported in [30] that the transfer of

magnetic helicity to large scales, is initially quick for certain amount of time and

reaches a saturation (because of the saturation in magnetic energy). From then on this

movement to large scales proceeds in an extremely slow manner following a ≈ 1 − e
curve, where e is the exponential function. Thus there are no hard and fast rules on

when to stop the numerical simulations, as theoretically, the largest scales obtained
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could be in�nity. Normally simulations are stopped well before the boundary e�ects

start to dominate and contaminate the spectra with re�ections. This slow down of

inverse cascade process, after a brisk start, is also seen in this work. But it is not

possible to determine any speci�c time relation for this slow down as the equation

mentioned in [30] uses mean magnetic �eld con�guration, while here in this studies,

there is no mean magnetic �eld. It is also emphasized here that su�cient care was

taken in order that the spectra are free from boundary e�ects, by introducing a energy

sink at small k values (see section 2.6).

Discussion

Thus from equation (4.8) and the discussion that followed, it can be speculated

that, the increase in the magnetic energy might be due to an interaction between

the magnetic and kinetic helicities, via the residual helicity route. This interaction

might cause more knottedness in the plasma, creating large magnetic structures, whose

integrated energy (the quantity generally plotted in the spectrum) shows an increase.

Because of the same knottedness, velocity of the �ow might reduce and cause a decrease

in the kinetic energy (also observed in the spectra). In this process, kinetic energy is

transformed at low k into magnetic energy. Hence at low k it is at least an order smaller

in amplitude to magnetic energy, while at high k both the energies are almost equal

(see �g. 4.11). Since the �ow velocity is decreasing, the vorticity also shows the same

behavior, which in turn diminishes the value of kinetic helicity. This relation is also

supported through the visualization of the spatial structures and structure function

analysis, in the next chapter.

Although the tables 4.4 and 4.5, show power law behaviors in several quantities, only

four quantities have been found to show an internal relation ship among them selves

as seen from the equation (4.8) and the discussion that followed it. Earlier the power

law behavior of one of the quantities (i.e. residual energy) was explained in [14]. But

there are several other quantities (e.g. residual helicity, magnetic vector potential and

current) which have been reported to show power law behaviors for the �rst time in this

work. The underlying physics leading to the power law behaviors in these quantities is

not well understood and it also appears that the present models (including EDQNM)

are not capable of revealing this physics. It is quite probable that for understanding

these power law behaviors and the physics behind them, a new set of approximations

or even a new mathematical set up involving the MHD equations, might be necessary.

The above mentioned unresolved task, although very interesting, is beyond the scope
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of this work.



Chapter 5

In�uence of Inverse Cascade of

Magnetic Helicity on the Spatial

Structures of 3D-MHD Turbulence

Spatial structures are the other aspect of turbulence, studied after spectral properties,

to gain further insights into a turbulent �ow. Here, in this chapter, the spatial prop-

erties of 3D-MHD turbulence are discussed, under the in�uence of inverse cascade of

magnetic helicity. It has been found in this work that forcing at high k does not result

in large-scale magnetic structures, but only forms regions of concentrated magnetic

�eld which appear to have structures of fractal dimensions; as suggested by a model

curve of structure function exponents. To overcome this and form large magnetic struc-

tures, the forcing has to be withdrawn after a certain amount of time and this results

in the large-scale structure formation. This issue is discussed in detail, substantiating

the claims with structure function exponents. Correlation functions and PDFs are also

discussed.

5.1 Structures in Forced Turbulence
Although traditionally �rst the structure functions, intermittency and then struc-

tures are studied in that respective order; here in this work �rst the structures in the

forced turbulence are discussed. This is done because, it is seen that for the type of

high k forcing used, the structures formed are not actually the ones, expected but are

much di�erent. This di�erence makes for an interesting study, later in the discussion.

When the magnetic �eld structures in the forced turbulence case are looked at t = 6,
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they appear as shown in �g. 5.1 a,b,c and d.

a) b)

c) d)

Figure 5.1: Magnetic �eld structures and iso-surfaces in the forced case. a) cut across the plane of

un�ltered magnetic �eld structure b) iso-surfaces of un�ltered magnetic �eld c) cut across the plane

of cut-o� �ltered out put of magnetic �eld structures and d) iso-surfaces of the cut-o� �ltered out put

of magnetic �eld.

From the pictures in �g. 5.1 a and b, it is clear that the structures in the high k forced

turbulence are signi�cantly in�uenced by small-scale �uctuations. The iso-surfaces

seen are also an indication of the small-scale structure present there. But the spectra

indicate an increase in the magnetic energy and inverse cascade of magnetic helicity

suggests that the structures formed should be larger. To see these large structures
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more clearly, a high-k cuto� �lter is used. The �lter is characterized as follows:

f (k) =

f (k) if k≤ kcutoff ,

0, otherwise.
(5.1)

The �ltered output is shown in the picture of �g. 5.1c and iso-surfaces of the same

are seen in the picture of �g. 5.1d. The �lter cut-o� is placed at k ∼ 70. From

these two pictures it can be inferred that the magnetic �eld has several regions of high

concentration. But these regions are like clumps of several small scales and do not

show any de�nite expected large-scale structures. Modeling of the iso-surfaces points

to the fact that the inherent features in the �eld are fractal in nature, as a result of

high k random forcing used here (see section 5.3 for the modeling), i.e. the iso-surfaces

are neither one-dimensional nor two-dimensional structures but have a co-dimension

of 1.5 (see section 5.3). This �ltered system is what is studied in the forced case, for

understanding the structures, structure functions and other statistical properties of

the forced turbulent system. From here on the reference to forced case implies the

output obtained from the cut-o� �lter. Also all these features are studied for the

new strategy (termed here as special case) in which the forcing is stopped, allowing

decaying turbulence to take charge, to form the large-scale magnetic structures (the

idea explained in detail in section 5.5.3). Decaying case is also reported separately.

5.2 Structure Functions and ESS

The de�nition of a structure function has already been mentioned in section 3.3

(which was arrived at using equations (3.1) and (3.2)). This equation was written

there in terms of velocity. For many other quantities, a similar equation could be

written. Thus a general form of the equation is now reproduced here as:

δc` = [c(r + `)− c(r)] · `/` (5.2)

c` =
〈
δc`

2
〉1/2

. (5.3)

Sc
p(`) = 〈δc`p〉 ∼ `ζp , (5.4)

Here ζp is a constant, p-dependent scaling exponent and c is any quantity like velocity

or magnetic �eld or Elsässer variable. Note that the equation (5.4) is only valid in the

inertial (scaling) range(s) of the spectra.
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Here it is also to be noted that only velocity is Galilean invariant and is the primary

quantity that is plotted in the 2D-hydrodynamic case. The Elsässer variable z±, repre-

sents the total energy which is an ideal invariant in 3D-MHD (not Galilean invariant),

under the assumption of negligible cross helicity (i.e. when H C ∼ 0, then (z+)2 ∼
(z−)2 and E ∼ 1

4
(z+)2 ). Magnetic �eld is not an invariant of any form. However, since

total energy is dominated by magnetic energy and also since the interest is on under-

standing magnetic �eld structures; here structure functions for magnetic �eld and z+,

are plotted.

Structure Functions

In general, from the equation (5.1) several orders of structure functions can be plot-

ted. In this work the structure functions of order 1 to 8 are plotted. Convexity and

monotonicity constraints ([1]) are not applicable to odd order structure function scal-

ing exponents, so there is a chance that the odd order structure functions can become

negative (see [1]). Hence all the structure functions plotted here are calculated from

the absolute values of �eld increments, avoiding cancellation e�ects, in the averaging

process. Considering the fact that higher order structure functions su�er from severe

statistical convergence errors, in this work the order of structure functions plotted is

limited to eight orders, although it is possible to plot many higher order structure

functions. Using the extended self similarity approach (see below) these eight orders

of structure functions accurately and adequately represent the scaling behavior in the

structures. Figures 5.2a,b and 5.2c,d are the structure function plots of z+ and b re-

spectively. Figure 5.2a represents the structure functions at states closer to the initial

states of the systems (exact times mentioned in the caption of the �gure), for z+ in

all the three cases mentioned in section 5.1. Figure 5.2b is the �nal state of structure

functions of z+. Figures 5.2c and 5.2d are structure functions of b at the same instances

respectively. On all these graphs the x-axis is from 0 to 2π, the limits of the bounding

box. All the four �gures show two orders of structure functions S2 and S8. The forced

case is plotted in red, special case in green and decay case in blue from here-on in this

entire section.

In the initial state, the decaying turbulence structure function has the highest magni-

tude, the forced case comes second and the special case comes last, for both S2 and S8.

In the decaying case, this plot corresponds to the state of the system which for a short

period of time has a large amount of energy before the actual decay process starts (see



5.2 Structure Functions and ESS 91

�g. 4.2). For the forced case it is the state when turbulence has started (see �g. 4.3).

Since the special case has its origin in the forced case, the plot here also corresponds

to the case where turbulence has just kicked in. It is in fact at this point in time that

the forcing is withdrawn from the system. The shape of the plots show a region over

which all of them have a constant value. This trend changes in the �nal stages of the

simulation i.e. �g. 5.2b, where the magnitude of the forced case dominates while the

decaying case has the least magnitude of the three. These features in the forced case

are a result of sustained input of magnetic helicity through the driving, while for the

decaying case the energy is in dissipative phase, without any input. For the special

case, it is tending towards the decaying case. The same trend is observed for b in �g.

5.2 c and d.

An important property of structure functions is that they exhibit self-similar behavior,

in the inertial range as Sc
p(`) = ap l ζp . Thus the knowledge of ap and ζp character-

ize the statistical distribution of eddies in the inertial range [17, 20]. These scaling

exponents are expected to be clearly visible in the logarithmic derivate plots of the

structure functions as the derivatives asymptotically form a plateau at inertial-range

scales. These plateaux appear in front of a fall-o� of the curves at large scales. The log-

arithmic derivatives approach a constant value immediately in front of this transition

from inertial to large scales.

a)
Figure caption on page 93
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b)

c)
Figure caption on page 93
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d)

Figure 5.2: Structure Functions of S2 and S8 for z+ and b. a) initial states of all the three cases for
z+, b) �nal states of all the three cases for z+, c) initial states of all the three cases for b and d) �nal

states of all the three cases for b. The three cases: red: forced, green: special and blue: decaying.

The initial times are t=1.28, t=0.36 and t=0.18 for forced, special and decaying cases respectively.

The �nal times are t=6.66, t=5.89 and t=9.33 for forced, special and decaying cases respectively.

This value indicates the most probable scaling exponent of the structure functions at

inertial range scales.

Logarithmic Derivatives

The logarithmic derivative of the structure functions are given by dlnS c
p (`)/dln(l)

and as already mentioned they show a �atness in and around the inertial range. The

y-axis value at which this �atness occurs for the second order structure function, is

indicated by ζ2 and it is related to the spectral power of the energy spectrum by

α = 1 + ζ2 , where α is the magnitude of the power law [1]. Thus the y-axis component

for this logarithmic derivative plot of z+, at which �atness occurs, serves as one of the

con�rmation methods for the spectral power law of energy, in turbulent systems. This

plot becomes unstable as order increases because of the accumulation of statistical

noise at high orders. The next set of plots in �g. 5.3 a-d, show the corresponding

logarithmic derivatives of the structure function plots of �g. 5.2 a-d respectively. In

the plots of �g. 5.3 a and b, the logarithmic derivative for the structure functions of

�g. 5.2 a and b are shown.
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a)

b)
Figure caption on page 95
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c)

d)

Figure 5.3: Logarithmic derivatives of structure functions of S2 and S8 for z+ and b. a) initial states
of all the three cases for z+, b) �nal states of all the three cases for z+, c) initial states of all the three

cases for b and d) �nal states of all the three cases for b. The three cases: red: forced, green: special
and blue: decaying.

The initial plots (�g. 5.3a) do not yield the scaling function exponents as the turbulence

in all the three cases is not fully developed. From the �nal state the scaling exponents
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are estimated. For the decay and special cases, a constant value is observed in the

logarithmic derivative plot from 0.04 to 0.18 for S2, which corresponds to the inertial

range of k = 7 − 30 in the energy spectrum of the decay case (see �g. 4.10c). The

exponent value obtained is 0.8 with an error of ±0.05 in the initial part of the range

(at 0.04 of the x-axis) to as high as ±0.2 (at 0.2 of the x-axis) in the �nal part of

the range, as seen from the horizontal line shown in the top plot of �g. 5.3b. For the

forced case, the plateau region starts at 0.15 and extends up to 0.6, but this does not

correspond to any inertial range in the energy spectrum. The value of this plateau

region is 1. However the plot joins the decay and special case curves brie�y between

0.07 to 0.09, which is the closest it gets near the inertial range. The actual expected

exponent value is 0.66 but the associated �tting procedure cause measurement errors

(shown by the error bars in the plot) which are estimated by the vertical extension of

the plateaux. The usage of hyperviscosity in the simulations may also have an e�ect on

the structure formation process [66], probably a�ecting the determination of the value

of the exponent. The higher order plot (S8) generally shows more irregular behavior

owing to accumulation of statistical noise. Although the nature of the curve looks

similar for magnetic �eld, no such exponent estimates are made from its plots of �g.

5.3 c and d as it is not an ideal invariant. It has also been observed that logarithmic

derivative plots of lower order structure functions are more orderly than the higher

order ones. Thus it is di�cult to determine a structure function constant ζp , for higher

orders, as p becomes larger than 4 [17, 20]. The statistical noise levels are high for

the higher order structure functions and errors are also high in this method. Thus

an approach called extended self similarity (ESS) is used (see section 3.3.1), to get

better understanding of the structure function exponents, principally at higher orders.

In ESS, all other structure functions are drawn relative to a lower order structure

function, whose structure function exponent is unambiguously known, or known with

minimum error.

ESS

The basic idea and equation for ESS was explained in the section 3.3.1 through the

equations (3.39) and (3.40). They are reproduced here for further discussions.

Sp(Sr(`)) ∼ (`ζr)ζp ∼ `ξp,r , (5.5)

ζp = ξp,r/ζr. (5.6)
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Here ξp,r is the relative scaling exponent and equation (5.5) gives the prescription

to attain the absolute scaling exponent ζp, when any other structure function Sp , is

plotted relative to Sr . In this work, Sr is the second order structure function, as it has

a strong relation with the energy spectrum. Consistently, for magnetic �eld too the

second order structure function is used as the base.

a)

b)
Figure caption on page 98
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c)

d)

Figure 5.4: Extended self similarity plots for S1 and S8 with respect to S2 for z+ and b. a) initial
states of all the three cases for z+, b) �nal states of all the three cases for z+, c) initial states of all

the three cases for b and d) �nal states of all the three cases for b. The three cases: red: forced,

green: special and blue: decaying.

The advantages of this approach stem from the fact that structure functions of the

same �eld exhibit same kind of features in their shape. Thus when a structure function
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is plotted relative to a lower order structure function, the former gets compensated and

the noise levels are suppressed well, bringing out the inertial ranges of the structure

functions of higher orders more prominently.

For getting the higher order structure function exponent, the plot of any other structure

function Sp relative to Sr is plotted. This normally shows up as a straight line (in lower

order structure functions) to near straight line (in higher order structure functions). A

straight line is �tted through this curve and the slope and y-intercept are calculated.

The slope gives the structure function exponent. It is a practice that the same curve

is drawn at fairly large intervals of time, so that the structure function exponent is

determined to a better accuracy and error is also determined to a greater degree. Care

also is taken to choose these di�erent intervals belong to the state of the system where

the turbulence is fully developed and the spectra are showing a self-similar behavior.

It was found that the minimum error in most of the cases, in this work, was of the

order of ±0.0001 in the lower order exponents to a maximum of ±0.09. The ESS plots

of the z+ and magnetic �eld are shown in �g. 5.4 a and b and �g. 5.4 c and d for all

the three cases respectively. Here it is seen that at lower order i.e. S1 Vs S2, the curves

are almost straight lines but for higher order i.e. S8 Vs S2, a signi�cant deviation from

straight line is observed. All the other curves lie in between these two extreme cases. It

can also be seen that the decaying case and special case almost every time go together

while the values in the forced case span a large range. This is an indication of presence

of both small scales and large scales in the forced case at two extreme ends of these

curves (see red curves in the �g. 5.4 a,b,c and d). From these plots, it is seen that

indeed the ESS method suppresses the statistical noise and makes the determination

of the structure function exponents, a lot easier.

5.3 Intermittency and Modeling

Intermittency is one of the common features of real turbulent systems. Ideally, it is

assumed that the dissipative structures of same size are distributed self similarly in a

turbulent �ow, all over the space [1, 48]. Practical turbulent �ows, both in experiments

and numerical simulations, show a varied distribution of these dissipative structures.

This deviation accounts for the nonlinear behavior seen in the higher order structure

function plots. More theoretical back ground on this was discussed in chapter 3 under

section 3.3.2.

Following that discussion, and the general formula in equation (3.47), the structure
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function exponent is written as:

ζp = (1− x)p/g + C0 (1 − (1 − x/C0 )p/g). (5.7)

Here on the l.h.s. is a value that is determined from ESS. On the r.h.s. is the model,

whose parameters x ,g and C0 are determined on physical grounds, based on phe-

nomenological models. This equation is in general called the log-Poisson model. Based

on phenomenologies, the parameters on the r.h.s. are determined. The two possible

phenomenologies used are Kolmogorov and Iroshnikov-Kraichnan (see sections 3.1.2

and 3.1.3). In the �rst case, x = 2/g where g = 3 for isotropic MHD turbulence. p is

the order of the structure function under consideration and C0 is a co-dimension vari-

able that is set to three possible values i.e. 1,2 and 1.5. If C0 = 1 , then it represents

the two-dimensional structures (sheets), when it is 2, it represents one dimensional

structures (�laments) and when it is set to 1.5, it represents fractal dimensions.1 In

case of IK phenomenology, x = 2/g where g = 4 .

Structure function exponents for z+

order p ξp/ζ2 ξp/ζ2 ξp/ζ2

�ltered stopped forcing decay

t=3.09 t=6.66 t=3.05 t=5.78 t=6.00 t=9.33

1 0.52±1e-3 0.52±1e-3 0.54±1e-3 0.54±1e-3 0.55±1e-3 0.55±1e-3

2 1. 1. 1. 1. 1. 1.

3 1.45±5e-2 1.44±5e-2 1.38±5e-2 1.37±5e-2 1.36±2e-2 1.35±2e-2

4 1.85±0.02 1.82±0.02 1.68±0.02 1.64±0.02 1.63±5e-2 1.59±5e-2

5 2.22±0.04 2.15±0.04 1.90±0.03 1.83±0.03 1.82±0.03 1.76±0.03

6 2.56±0.06 2.44±0.06 2.06±0.05 1.97±0.05 1.95±0.05 1.86±0.05

7 2.88±0.08 2.72±0.08 2.19±0.06 2.07±0.06 2.05±0.06 1.93±0.06

8 3.18±0.09 2.99±0.09 2.29±0.08 2.14±0.08 2.12±0.07 1.97±0.07

Table 5.1: Structure function exponents for z+. Errors in each case are also shown.

1From [1], the probability of �nding an object of linear size l and dimension d in a D dimensional
unit box is∼ lD−d . Also C0= D − d is the co-dimension of the dissipative eddies as< εnl >∼l−nx lD−d

for order of the exponent n�1, where ε is the dissipation in the structures and x the scaling exponent.
Here it is to be noted that the dissipative structures can have irregular but self-similar shapes, hard
to be de�ned by Eulerian geometry and hence are called fractal. They have dimensions which are not
integers but are fractions. In fact any fractional dimension could be used but C0 = 1.5 appears to
give the best model curve consistent with the scaling exponent curve.
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Structure function exponents for magnetic �eld

order p ξp/ζ2 ξp/ζ2 ξp/ζ2

�ltered stopped forcing decay

t=3.09 t=6.66 t=3.05 t=5.78 t=6.00 t=9.33

1 0.52±1e-3 0.52±1e-3 0.54±1e-3 0.54±1e-3 0.54±1e-3 0.54±1e-3

2 1. 1. 1. 1. 1. 1.

3 1.44±5e-2 1.42±5e-2 1.39±5e-2 1.37±5e-2 1.37±2e-2 1.36±2e-2

4 1.83±0.02 1.78±0.02 1.68±0.02 1.65±0.02 1.63±5e-2 1.60±5e-2

5 2.17±0.04 2.08±0.04 1.89±0.03 1.83±0.03 1.81±0.03 1.75±0.03

6 2.49±0.06 2.35±0.05 2.04±0.04 1.96±0.04 1.93±0.05 1.84±0.05

7 2.78±0.08 2.61±0.06 2.15±0.05 2.06±0.05 2.03±0.06 1.91±0.06

8 3.06±0.09 2.86±0.09 2.24±0.05 2.14±0.05 2.10±0.07 1.95±0.07

Table 5.2: Structure function exponents for magnetic �eld. Errors in each case are also shown.

Thus a total of 6 models graphs are possible for each set of structure function exponents,

on the l.h.s.. From the data plots and the overlapped model plots, a conclusion can

be arrived at, on the nature of the structures and phenomenology of the turbulence.

Hence �rst from the ESS analysis, structure function exponents for several orders at

di�erent time intervals, are determined. Here this is done for 3 cases a) forced case, b)

decaying case and c) special case (stopping the forcing at a certain point of time and

allowing system to decay).

a)
Figure caption on page 103
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b)

c)

d)
Figure caption on page 103
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e)

f)

Figure 5.5: Intermittency Modeling a) ζp Vs p for z+ for forced case, b) ζp Vs p for z+ for decaying

case, c) ζp Vs p for z+ for special case, d) ζp Vs p of b for forced case, e) ζp Vs p of b for decaying case

and f) ζp Vs p of b for special case. (Here K2: Kolomogorov curve with C0=1.5, K3: Kolomogorov

curve with C0=2, K1: Kolomogorov curve with C0=1 and IK: Iroshinikov-Kraichnan curve with

C0=1). dataset1 and dataset2 are the data from the table 5.1 and 5.2 dataset1: the �rst column of

each case and dataset2: second column of each case. Note that the estimated error when plotted is

within the plotted data symbol size.

The results from this studies are summarized in the table 5.1 and 5.2 for z+ and b

respectively. Plotting the values in the table, with relevant model plots of the possible

6 combinations of the equation (5.7), for each column, results in �gures 5.5 a-f. Fig-

ures 5.5 a,b and c represent the structure function exponent curves of z+ for the three

cases discussed here. Figure 5.5a represents the plot for forced case. Here at the �rst
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instance i.e. t=3.09 dataset1 coincides with IK curve completely (hence magenta curve

not seen) but as time progresses, the data aligns towards K2 the Kolmogorov type curve

with fractal dimension structures. The other two cases decay (�g. 5.5b) and special

cases (�g. 5.5c) are virtually indistinguishable at the times chosen here. Both align

towards the Kolomogorov type curve with two dimensional structures. Figures 5.5 d,e

and f represent the structure function exponent curves for magnetic �eld. Here in the

forced case both the datasets are visible. The dataset1 is in between K3 and K2 i.e.

it represents structures with either one dimension or fractal dimensions. The dataset2

moves towards K2 representing fractal dimensional structures. Once again the plots

of other two cases are indistinguishable and align towards K1 curve representing two

dimensional structures. If an earlier starting point was taken for the special case and

the �nal curve is kept as is then the e�ect of forcing and its removal on the structure

formation can be perceived, which will be explained in section 5.5.3. From the plots it

can be inferred that in the forced case, the structures lie between IK type curve with

two dimensional structures in the early part of the simulation. They get closer to K2

type curve with co-dimension equal to 1.5, with the progress of time, for total energy.

In the case of magnetic �eld, the data sets lie between K3 and K2 curves indicating 1

to 1.5 dimensional structures. For both the decay case and the special case, the curves

match closely with K1 in the lower orders and deviate at higher orders. Hence, in both

these cases, the structures formed are predominantly two-dimensional.

From these observations, it can be inferred that although there is an inverse cascade

of magnetic helicity, taking place from high k to low k , in the high k forced system,

the structures formed appear to be either locally anisotropic in nature or of fractal di-

mensions. In other words, the forced case does not show coherent large-scale structure

formation but only forms regions of �eld concentration. Sub-scale structures are also

produced. Which means the inverse cascade progresses and forms large-scale struc-

ture, but because of the forcing, these structures break down into fractal dimensioned

structures at small k . In the decaying case and the case when forcing is withdrawn

at a certain point of time, the structures formed are two dimensional, while here too

inverse cascade is active but without any forcing. This observation, is further substan-

tiated with structure studies. From the analysis of the data and its modeling using the

phenomenological model curves, an idea about the underlying phenomenology can be

obtained, which then would point out to the dynamical processes responsible for the

turbulent �ow. In this work, the proximity of the data curves to the Kolmogorov type

curves in all the three cases, suggest that probably in the MHD turbulent �ows studied
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here, the ideas from Kolmogorov's phenomenology on turbulence are more valid. This

view gains strength by observing the evolution of the magnetic �eld from very small

scales to large scales (see �g. 5.18) where the magnetic �eld structures grow in a similar

manner as the hirarchial eddies in an atmospheric turbulence (2D-hydrodynamic). It

is very important to note that in this work, such a behavior is limited to magnetic �eld

structures alone and no such tendency is observed in the velocity �eld. Thus it can

be suggested that the internal dynamics of the turbulent �ow which is responsible for

the inverse cascade of magnetic helicity (which in turn is responsible for the formation

of the large-scale magnetic structures) although, appears to be similar to the hirar-

chial eddy model of Kolmogorov phenomenology, rest of the quantities in the �ow do

not strengthen this opinion in totality. Iroshnikov-Kraichnan phenomenology is almost

ruled out in both the turbulent �ows (decaying and forced) studied here. Hence, the

results obtained from this work point to the fact, once again, that there is no proper

phenomenological or theoretical model, that can explain the MHD �ows entirely (see

also section 3.1.4).

5.4 Other Statistical Tools
In the studies of structure functions, only two quantities z+ and b were used. j

or current and magnetic helicity structures are also very interesting to study and may

also contribute to the understanding of inverse cascade processes. Also since it was

found that the trend of both z+ and b is almost the same, the quantity b will no longer

be studied while looking at the probability distribution functions (PDFs) and Kurtosis

plots.

5.4.1 PDFs

Intermittency is linked to the probability of occurrence of extreme events in the

�ow. One such measure of occurrence is the probability density function or PDF, of

the considered variable. The PDF of any quantity c is P(δc, l) ≡ P(δc). It depends

on two variables, increments in c i.e. δc and the length l . The distribution of any

uncorrelated random variable is a Gaussian, as stated by the central limit theorem. If

there is any correlation, then deviations from this behavior are observed [1, 71]. Here

�rst the sharpness and spread of the PDFs are discussed and then using Kurtosis plots,

their �atness is also considered.

In all the following PDF plots, several length separations (bins) are chosen for plotting

the spatial increment of any quantity (here three quantities: z+,H M and j 2 ) and the
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plots are normalized to unit variance for clarity. The plots obtained by dividing the

space into minimum number of bins (i.e. the ones which have largest spatial distance

between any two sampled points) are the ones with minimum spread (magenta colored

curves in each of these plots). As the number of bins increases, i.e. the distance

between any two sampled points reduces, the spread increases in the plots (in many of

the plots red curves represent this nature). The same trend is observed in the Navier-

Stokes turbulence for velocity increments as reported in [71]. Please note that the time

to which these PDFs correspond are the �nal states of the system considered in the

structure function analysis in each case (i.e. t=6.66 for forced case, t=5.78 for special

case and t=9.33 for the decay case). Also note that the x-axis which is a `normalized

increment' δc/σδl c where the term in the denominator points to the standard deviation

at the chosen bin length (obtained from the second order structure function as
√

S2 of

any quantity).

Figures 5.6 a,b and c show the PDFs of z+ for forced, special and decaying cases

respectively. Also shown are the reference Gaussian PDFs, with unit variance in each

case. From these plots and their reference plots, it is seen that these PDFs are very

close to the Gaussians but are not exactly Gaussians (also due to the overlap of several

curves all the curves are not clearly seen). The near Gaussian PDFs of the largest

length separation (i.e. the magenta colored curve) implies that extremely large scales

are uncorrelated with each other. The PDFs with wide tails, which signi�cantly deviate

from the Gaussian behavior (e.g. red curve) in their tails, indicate that as the binning

distance decreases, the correlations between the small-scale structures increase. The

probability value from largest length scale to the smallest length scale at any particular

chosen small increment varies over 3 to 5 orders, in each of the �gures 5.6 a-c. Which

means the probability of observing such an event reduces rapidly. The deviation of

the tails of the curves at small length increments (more number of bins) from the

Gaussian behavior can be interpreted as the presence of intermittency at small scales.

The behavior of these plots also supports the way inverse cascade of magnetic helicity

proceeds, and builds up magnetic energy at the cost of kinetic energy (equation 4.8).

In the quantity z+ (which is the proxy for total energy), the dominant contribution

is from magnetic energy. So, this quantity can be expected to follow the same trend

as that of magnetic �eld. Hence the observed PDFs of z+ could be interpreted based

on the nature of the structures in the magnetic �eld alone. The initial state of the

system consists of extremely small scales which interact with each other to evolve into

large scale structures. While doing so, the small scale structures can be expected to
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have strong correlations among themselves, which results in those tails, that deviate

from Gaussianity. As the number of large scale structures increases, the correlations

among themselves can also be expected to decrease and the PDFs capture this behavior

accurately.

In the forced case PDFs the central plot (magenta curve) is the closest curve to a

Gaussian indicating small amount of correlation among the large-scale structures, while

for the special case and the decay case, this curve is relatively broader, indicating some

amount of correlations and even intermittency among the large-scale structures in

these two cases. The observed trend in rest of the curves in all the cases is similar (i.e.

considerable deviations from Gaussianity).

PDFs for magnetic helicity (�g. 5.7 a,b and c) show completely di�erent trend. They

have a sharp central peak (which �ts well with a model Gaussian for decay and special

cases) and pronounced wings, more like a Mexican hat. This trend is same for forced

(with an exception that the model Gaussian does not �t the central peak), special and

decaying cases. The important di�erence is in the sharpness of central peak. It is

broader for the forced case. While the sharpness is much higher for the decaying or

special cases, with the special case showing the sharpest peak. From these PDFs it can

be inferred that there are only few types of distinct scales involved in the �ow. One

which are extremely large (responsible for sharp central PDFs) and other which are

extremely small responsible for the broad but almost uniform tails. A smooth transition

between the scales is absent. These features also point to a strong intermittency nature

in the small scales.

a)
Figure caption on page 108
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b)

c)

Figure 5.6: PDFs of z+ a) PDFs for forced case b) PDFs for special case and c) PDFs for decaying

case (color code: largest size of the sampling bin: magenta to smallest size of the sampling bin: red

and olive green curve : the reference Gaussian).

The nature of correlations among di�erent scales here is very distinct and probably

constant for several bin sizes i.e. even though the bin size varies, the nature of PDFs

for several length scales remains the same as seen from the over lap of several curves.

The PDFs of j 2 (�g. 5.8 a,b and c), show another di�erent trend. They have nar-

rower tops and very broad wings. Here it appears that there are no extremely large

scales in the decaying and special cases but in the forced case there appear to be few

(uncorrelated) large scale current structures.
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a)

b)

c)

Figure 5.7: PDFs of H M a) PDFs for forced case b) PDFs for special case and c) PDFs for decaying

case (color code: largest size of the sampling bin: magenta to smallest size of the sampling bin: red

and olive green curve: reference Gaussian). Here the overlap between the curves is very strong so all

the plotted curves are not clearly seen.
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a)

b)

c)

Figure 5.8: PDFs of j 2 a) PDFs for forced case b) PDFs for special case and c) PDFs for decaying

case (color code: largest size of the sampling bin: magenta to smallest size of the sampling bin: red

and olive green curve: the reference Gaussian).

In these PDFs the wings are extremely long and wide and for several binning sizes. This

fact points out to the nature of current structures (generally thin sheet like) which do
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not appear to change in length once they are formed and also are strongly intermittent

(as seen from the deviation in the tails from the reference Gaussian). From all these sets

of PDFs it can be inferred that though there is negligible cross helicity, the nonlinear

mode interactions on small scales between v and b are present in large numbers as

seen from the spread of the wings of the PDFs, which deviate from Gaussianity, and

have strong correlations among themselves. One more tool which can help in better

understanding of the structures is Kurtosis and it is discussed next.

5.4.2 Kurtosis

Kurtosis is a measure of `peakedness' and `�atness' of the PDFs. It is de�ned by:

F (l) =
S4 (l)

S 2
2 (l)

(5.8)

here S4 and S2 are the fourth order and second order moments respectively. The �atness

of the Gaussian PDFs is exactly F = 3. High values of F characterize PDFs with sharp

peaks and �at tails, where as low values identify PDFs with rounded peaks and broad

shoulders. Thus the �atness F is a useful measure of intermittent features. Two sets of

kurtosis curves are drawn for all the quantities. These two sets correspond to the initial

state and �nal states of the systems that are used in the structure function analysis

(see caption of �g. 5.2) above. From the analysis of the PDFs , some insight into the

intermittent behavior of the MHD �ows was obtained. Now from the Kurtosis plots

at both initial state and the �nal state of the system, the changes in the intermittent

behavior of several quantities in the �ow can also be understood, while supporting the

PDF analysis.

Figures 5.9 a and b represent the initial and �nal states of Kurtosis curves of z+ for

all the three cases. It is seen that the value of Kurtosis is very high for the forced case

in comparison with the other two cases, initially. The decaying case appears to show a

near Gaussian Kurtosis in the initial stages and in the �nal state it has two regions. A

region where the value of Kurtosis is at a peak and the curve showing a fall o� and a

region where it remains close to Gaussian. This is an manifestation of the same trend

that was seen in the PDFs: peak values close to the Gaussian curve and broader tails

deviating from the Gaussian. The same argument holds for special case too. For the

forced case their is an slight increase in Kurtosis, but it attains a plateau in the small l

region and closes towards the Gaussian in the high l regions. From the initial state plots

it can be inferred that the initial state of the decaying case is a Gaussian distribution
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(as described in the initial conditions in section 4.1). The chosen initial state for the

forced case has dominantly small scales which have strong correlations and hence are

highly intermittent (i.e. this is a transitionary state) and in the special case, where the

forcing was withdrawn after a certain amount of time, it appears that the correlations

among the small scales have just begun (since actual initial state of the forced case is

also a Gaussian from which this special case has evolved) as does intermittency in its

initial state. The �nal state plots in general, con�rm the PDF analysis where strong

intermittency in the small scales and very less or no intermittency in the large scales

(i.e. strong correlations in the small scales and little or few correlations at the large

scales) are observed.

a)

b)

Figure 5.9: Kurtosis curves in the a) near initial and b) �nal state of the systems for z+. red: forced

case, green: special case, blue: decaying case and black: reference line for Kurtosis of a Gaussian.

Figures 5.10 a and b represent the initial and �nal states of Kurtosis curves of H M for

all the three cases. All these three plots look alike. In the �nal state a �at region for

almost all of l followed by a small parabola like bend at large scales is seen. This is also

consistent with the PDFs seen above for magnetic helicity. They show very few types of

structures and the intermediate scales are absent. This transition between the scales is

not smooth but abrupt. Thus the two distinct features seen in the PDfs, the Mexican
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hat and an abrupt tail , are corroborated. Also true is the strong intermittency seen in

the PDFs as the values of the Kurtosis curves range from 200 in decaying case to about

20 in the forced case. Relatively small value of Kurtosis for the forced case may be

because of the relatively �atter peak which do not �t with the model Gaussian in the

PDFs. The initial state Kurtosis curves also look alike (like three parallel lines almost)

but they do represent the dual scale nature of the magnetic helicity structures (seen

in the PDFs) with values of the Kurtosis as high as 105 to as low as 3500. Since this

state is not yet completely turbulent, these values do not make any impact.

a)

b)

Figure 5.10: Kurtosis curves in the a) near initial and b) �nal state of the systems for H M . red: forced

case, green: special case, blue: decaying case and black: reference line for Kurtosis of a Gaussian.

Figures 5.11 a and b represent the initial and �nal states of Kurtosis curves of j 2 for all

the three cases. The forced case Kurtosis in the initial stage appears like an exponential

(only a shape comparison not a mathematical �t) but changes to a strange shape with

two regions where the value shoots suddenly from 8 to 10 and then falls smoothly, close

to 6. The special case starts at a value of about 5 but soon reaches to a constant value

4, which is spread over a large l . In the �nal state, it shows a signi�cant increase in

magnitude and a change in curve shape to an exponential like curve (here too only a

shape comparison not a mathematical �t). The decay case in the initial state appears
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to be close to a Gaussian all the while, but changes to an exponential like curve with

a large magnitude as in the special case, in the �nal state.

j 2 structures once formed do not change in length (hence no change in correlation

length) and almost remain the same. But they do show intermittent behavior as was

reported in the PDF studies. These two facts once again are reiterated by the Kurtosis

curves where the change in Kurtosis from initial state to �nal state is ∼ 3. The shapes

of these curves in the �nal states, do indicate that over the complete scale range, j 2

structures exhibit intermittency, which the PDFs could capture in totality. In the

initial state however, only the chosen initial state of the forced case exhibits signi�cant

intermittency and the other two cases are close to the Gaussian and hence little or no

intermittency.

a)

b)

Figure 5.11: Kurtosis curves in the a) near initial and b) �nal state of the systems for j 2 . red: forced
case, green: special case, blue: decaying case and black: reference line for Kurtosis of a Gaussian.

5.4.3 Correlation Functions

Correlation function in the context of this work is de�ned as:

ρ(r) =

∫ X

−X
cx (x )cx (x + r)dx∫ X

−X
cx

2 (x )dx
(5.9)
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where `X' is taken to be much greater than any characteristic length scale associated

with the �uctuations in cx . Here it represents the boundary of the simulation box.

The correlation length is de�ned in this context as the point where the function ρ(r)

falls to 1/e. More generally, the Fourier transform of the autocorrelation of some one-

dimensional function g(x ) is referred to as the one-dimensional energy spectrum of that

function [1].

The correlation length is also an indication of the length scales. Here the following

two plots in �g. 5.7 a and b represent the correlation functions of several quantities

of interest in a 3D-MHD turbulent system for forced and special cases respectively.

The decaying case correlation functions are exactly similar to that of the special case

counterparts and hence are not shown here. The correlation function was chosen to be

in the direction of x − z plane but the notation C (x ) will continue to be used for this

function. Here magnetic helicity falls from unity, crosses zero and goes into the negative

side. The fact that it never is zero indicates to the formation of large structures in

this quantity. It then starts rising and shows a trend close to periodic behavior. This

behavior could also be explained from the presence of only a few type of scales (as

was observed in the PDFs) in this quantity. Magnetic energy and total energy show

exactly the same trend, giving more support to the fact that in this system magnetic

energy is the dominant component of total energy. This function also appears to show

long term periodicity. The velocity correlation function shows an exponential fall o�.

The current correlation function shows a sharp initial fall and from there it oscillates

and shows the signs of dampening curve in the forced case, while it falls o� smoothly

without any oscillations in both special and decaying cases. This behavior of current

correlation function may be due to the fact that the current structures do not vary in

size once they are formed in the decaying case. In the forced cases however there can

be current structures of more than one size as seen from the PDFs but it appears that

the size of the structures in these di�erent scale ranges might di�er very little and this

probably is the reason for the small oscillation seen in its correlation function. For

all these correlation functions, a correlation length is estimated. For this purpose, the

correlation function for each of these quantities is assumed to follow an exponential

curve. In such a case, the correlation length is the value at which the curve falls by

∼ 1/e. So, for each of these plots, in both the cases, the point where the value of the

curve is ∼ 1/e of the initial peak value is identi�ed. This is the correlation length in

each of the quantities and it is here de�ned in the length units of the periodic box (also

see caption of �g. 5.12). The correlation lengths of several quantities are tabulated as
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shown in table 5.3.

a)

b)

Figure 5.12: Correlation functions. a) Correlation functions from the �ltered output for forced case

and b) correlation functions for the special case

Correlation lengths of some quantities

quantity �ltered stopped forcing

t=2.09 t=4.06 t=6.66 t=2.33 t=4.25 t=5.89

H M 0.5 0.7 0.84 0.18 0.28 0.31

b,z+ 0.32 0.43 0.5 0.01 0.15 0.17

v 0.18 0.21 0.22 0.035 0.04 0.05

j 0.04 0.04 0.04 0.02 0.02 0.02

Table 5.3: Correlation lengths of some quantities at three instances of time in the �ow. The units for

correlation length here are the same as units of length for the simulation box. Note that the length

was made non-dimensional using a characteristic length scale (see equation (1.7). Hence the values

obtained here are to be multiplied with characteristic length scale to get a quantitative value.

The correlation lengths are determined at three di�erent points in time to know how

this parameter changes in various quantities over time, in the simulations. From this
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table it is clear that the correlation lengths increase for many quantities (which is an

indication of increase in integral length scales), while correlation lengths for current

remained the same. The other major indication from the increase in correlation length

is that there is indeed an evolution from small scales to large scales (e.g. for magnetic

�eld) in the system. The constant value of current correlation length, indicates that

the current sheets are formed fairly early in time and remain more or less of the same

size. The changes in the correlation lengths for velocity �eld are smaller indicating

that probably the velocity �eld structures do not di�er greatly in size.

5.5 Spatial Structures
The spatial structure in this work is signi�cant in understanding the nature of the

turbulent �ow and the scales involved in the dynamics. The decaying case structures

presented here are at t=9.33. Forced case structures presented are at t=6.66. These

are the �nal states of the system in both the cases. For the special case, the times

are mentioned when they are presented in the following section. Also the quantities

presented below like magnetic �eld, velocity, current (j) and vorticity are actually the

moduli (absolute values) of their respective �elds. Hence from here on if the word

magnetic �eld or velocity is used in the context of the structures, it actually means

that the modulus of that particular �eld is being discussed. First the structures for

various quantities of interest are shown below for the decaying case.

5.5.1 Decaying Case

The structures of the decaying case discussed here are of a well developed turbulent

system, where the inverse cascade of magnetic helicity transported several quantities

from the initial small scales at k=70 to large scales at k∼3. This system is expected

to show large-scale structures. First the magnetic �eld structures are shown along

with the iso-surfaces of the same in pictures of �g. 5.13 a and g respectively. Figure

5.13a shows the cut across the plane of the magnetic �eld. This shows strong tangled

�eld structures and some magnetic reconnection regions in the �eld (explained later).

Several intermittent scales (scales over which the �eld strength shows abrupt changes)

are also seen. The iso-surfaces show two-dimensional structure. These are twisted �ux

tubes which are also the dissipative structures in the �eld.

Figures 5.13 b and c represent the magnetic helicity structures in three dimensions.

Magnetic helicity shows huge structures (magnitude of magnetic helicity is shown in

�g. 5.13b), like eyes in some places and column like structures all around. The iso-
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surfaces (�g. 5.13c) show possibly the largest structures of any �eld. These structures

are 3 dimensional and some of them extend over the entire box and can be compared

to kinetic helicity �ux surfaces seen in 3D-HD (see[72]). Figures 5.13 d and h represent

the current structures. The current structures by magnitude are very large but are

thinly spread over the entire plane. The iso-surfaces of current are thin sheet like.

Figures 5.13 e and i represent the velocity �eld structures. The velocity �eld is low

in magnitude and also thinly spread over the entire plane, but the structures show a

strong intermittency. Iso-surfaces show thin sheet like structures. Figures 5.13 f and j

represent the vorticity structures. The vorticity structures are also low in magnitude

and thinly spread like the current structures. These structures appear to be similar

to the ones seen in 2D-HD of [37]. The iso-surfaces show once again thin sheet like

structures.

The magnetic �eld structures seen here are a result of build up of magnetic energy

caused by the inverse cascade of magnetic helicity. Although the initial values for

kinetic energy and magnetic energy are the same, it is clearly seen that the magnetic

�eld structures are quiet stronger than their velocity �eld counterparts. Similar is the

case for magnetic helicity and vorticity (which is a good proxy for kinetic helicity).

Thus the spectral relation that was obtained in the previous chapter i.e. equation

(4.8), appears to be valid for the decaying case. The interpretation that the magnetic

energy is growing at the cost of kinetic energy is also substantiated. Several of the �elds

show strong intermittent behavior (e.g. velocity, current and vorticity) thus giving the

much needed support to both the structure function and PDF analyses.

5.5.2 Forced Case Structures

Magnetic �eld structures in the forced case were already discussed in section 5.1.

For completeness, shown here is the 3D-magnetic �eld in �g. 5.14a and iso-surface

of the same in �g. 5.14b. The magnetic �eld structure shows some regions of �eld

concentration and the iso-surfaces represent fractal structure as measured from struc-

ture function exponent curve (see previous section). All other �elds (not shown here)

also correspondingly behave the same way as their decaying counterpart quantities,

but form regions of concentrations in their respective structures. Also the structures

show a similar trend in their features, making it possible to believe that the relation

in equation (4.8) is valid here too. It was observed in [8] that when the forcing was in

low k region, large-scale structure was seen to appear. However in the context of this

work, the forcing is in high k region.
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a) b)

c) d)

e) f)
Figure caption on page 121
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g)

h)

i)
Figure caption on page 121
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j)

Figure 5.13: Real space structures and iso-surfaces for various quantities in the decaying case. a) cut

across the plane of magnetic �eld structure, b) 3D-view of magnetic helicity structures, c) iso-surfaces

of magnetic helicity, d) cut across the plane of current, e) cut across the plane of velocity �eld, f) cut

across the plane of vorticity, g) iso-surfaces of the magnetic �eld (zoomed by 1.4 times), h) iso-surfaces

of current (zoomed by 12 times), i) iso-surfaces of velocity (zoomed by 14.4 times) and j) iso-surfaces

of vorticity(zoomed by 12 times). Resolution in all these pictures is 10243.

Thus it can be concluded that the initial state of the system and its location has a

strong in�uence on the �nal structures formed. The forcing mechanism might also have

a strong in�uence on the structures of various other quantities. The aim of this forced

case is to see if this method results in large-scale structure formation. But since it only

results in regions of �eld concentration, a new variation is now adapted.

5.5.3 Stop the Forcing

After looking at the structures in the forced case and decaying case, a new strategy

is adapted in the forced case. In the evolution of magnetic helicity spectrum (�g. 4.5a),

forcing is stopped at a speci�c point in time and the system is allowed to decay from

then on.
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a)

b)

Figure 5.14: Magnetic �eld structures and iso-surfaces in the forced case. a) 3D-structures of cut-

o� �ltered out put of magnetic �eld structures and b) iso-surfaces of the cut-o� �ltered out put of

magnetic �eld .

It would mean that the initial energy is no more at equipartition, among kinetic and

magnetic energies, when the decay starts. Three such cases are reported to ascertain

the e�ect of stopping the forcing at various points in time and also to look at the

di�erence in structures formed in each case.

Case I

In this �rst case, the forcing was stopped at a very late stage when the peak of the

magnetic helicity spectra is close to the boundary at k=2. (�g. 5.15b). Here if the
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forcing is withdrawn and the system is allowed to decay, the spectra severely feel the

boundary e�ect. But the structures are the largest of the three cases (see other two

cases also) (see �g. 5.15 a and c). The iso-surfaces seen are twisted �ux ropes. The

magnetic �eld structures show some magnetic reconnection regions (see section 5.5.5)

either side of which, two oppositely rotating vortices are seen. These structures still

have dominant in�uence of the forcing (the bright regions in the �eld structure).

a) b)

c)
Figure 5.15: Case 1. a) cut across the plane of magnetic �eld structure b) magnetic helicity spectrum

at which the forcing was stopped (t=6.7) and c) iso-surfaces of the magnetic �eld in this case (zoomed

by 1.5 times).
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Case 2

In the second case the forcing is stopped at k = 70, and the decaying turbulence is

allowed to take over (�g. 5.16b). Here the magnetic �eld structures are much smaller

and a lot more magnetic reconnection regions are seen (�g. 5.16 a and c) (see section

5.5.5.). Also can be seen are several scales, in the structure. The iso-surfaces of the

magnetic �eld are twisted �ux tubes but very small in size and a lot more than what

were seen in the case1. This is the case with similar starting point as the decaying case

studied at the beginning of the section.

a) b)

c)

Figure 5.16: Case 2. a) cut across the plane of magnetic �eld structure b) magnetic helicity spectrum

at which the forcing was stopped (t=2) and c) iso-surfaces of the magnetic �eld in this case (zoomed

by 1.5 times)
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Case 3

In the third case the forcing is stopped at k = 40, and the decaying turbulence is

allowed to take over (�g. 5.17b). Here the magnetic �eld has medium sized structures,

with large number of magnetic reconnection regions (�g. 5.17 a and c) (see section

5.5.5). Also can be seen are several scales, in the structure. The iso-surfaces of the

magnetic �eld are twisted �ux tubes but very small in size and a lot more than what

were seen in the case 1 and considerably less than what are seen in the case 2.

a) b)

c)

Figure 5.17: Case 3. a) cut across the plane of magnetic �eld structure b) magnetic helicity spectrum

at which the forcing was stopped (t=3.5) and c) iso-surfaces of the magnetic �eld in this case (zoomed

by 1.7 times).

This intermediate case is studied more closely to understand the evolution of magnetic

�eld, because the structures have properties of both case 1 and case 2 which form the
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extremities.

5.5.4 Evolution of the Magnetic Field

By looking at the three cases described above, the evolution of the magnetic �eld in

a case where forcing was stopped and decaying turbulence was allowed to takeover, can

be understood. Here it is seen that the initial state �g. 5.18a, is dominated by random

small-scale structures. As the decaying turbulence takes over, slowly structure appears

as seen through the pictures of �g. 5.18 b to e. In these pictures several magnetic

reconnection regions are seen which decrease in number as the structures become fewer

and larger. Thus, it appears like magnetic reconnection (see section 5.5.5) plays a

signi�cant role in structure formation. As decaying turbulence takes over, from the

randomness of the initial state, slowly, structure formation is seen, where in the initial,

point like, random magnetic �eld structures grow into small structures with some shape.

Here already several magnetic reconnection regions emerge. The process continues

further and the structures grow larger, while the magnetic reconnection regions become

less in number. As this is happening, through the decaying turbulence, the system is

also losing energy. Thus the magnitude of the structures goes on decreasing.

This is the special case that was being mentioned in the structure function analysis and

other sections of this chapter. This case closely complies with the decaying turbulence

case in its evolution.

Change in Dimensionality of the Structures

It was already mentioned in section 5.3 that in the special case the dimensions

will change from fractal dimensions to two dimensional structures as the forcing is

withdrawn. Here it is once again emphasized using two plots in �g. 5.19 a and b.

The �rst plot here shows the structure function scaling exponents curve for the forced

case. It also shows a model �t which is Kolomogorov type curve with a co-dimension

of 1.5 (shown in the legend as K2). The second plot shows the scaling exponents when

the forcing is withdrawn and decaying turbulence is allowed to dominate. The model

curve that matches with these exponents is Kolmogorov type curve with co-dimension

of 2 (shown as K1 in the legend). Also shown is the Kolmogorov type curve with

co-dimension 1.5 for reference.
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a) b)

c) d)

e)

Figure caption on page 128
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Figure 5.18: Evolution of the Magnetic Field. a) cut across the plane of un�ltered magnetic �eld

structure (at t = 3.5), b− e) cut across the plane of magnetic �eld structures (at t = 4.5, 5.5, 6.5 and

8).

From this plot it is can be understood that while in the forcing case the structures have

fractal dimensions, in the event of removing the force after some time, and allowing

decaying turbulence to take over, they evolve into two dimensional structures. Hence

from this discussion it can be inferred that when a high k forcing (of the type used

here) stirs small-scale random �uctuations for a particular amount of time, it forms

fractal dimensional structures. And as the e�ect of forcing is waning, the decaying

turbulence takes over and the magnetic structures that evolve will be two dimensional.

That is in the pictures of the �g. 5.18, from �g. 5.18 a to e, the evolution of magnetic

structures also coincides with the changing of their dimensions from fractal to de�nite

two dimensional ones.

Correlation Length Vs Energy Dissipation

Section 5.4.2 discusses the correlation functions and correlation lengths of several

quantities. Here if the correlation lengths of magnetic �eld structures are considered

in various stages of evolution and a plot is drawn with correlation length on x-axis and

magnetic energy dissipation on y-axis, then an inference on size of magnetic structure

that shows minimal dissipation, can be made. For this purpose, the correlation lengths

were calculated at three points in the evolution process of the magnetic �eld as de-

scribed in 5.4.2 and energy dissipation was obtained for these three points from the

simulation data. The data is as shown in the table 5.3.

Time Length Dissipation

t=2.33 0.01 0.0285

t=4.25 0.15 0.0155

t=5.89 0.17 0.0063

Table 5.4: Correlation lengths and energy dissipation values at di�erent times for magnetic �eld

structures
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a)

b)

Figure 5.19: Intermittency modeling for evolving magnetic structures. a) structure function expo-

nent curve for initial forced state and b) structure function exponent for �nally evolved state due to

decaying turbulence. Note that the estimated error when plotted is within the plotted data symbol

size.

This data is plotted as shown in �g. 5.20. The magenta colored graph is the data from

which it can be observed that as correlation length increases, dissipation decreases.

Now if this line in extrapolated to meet the x-axis i.e. to make dissipation tend to

zero, an estimate on the size of the structure that shows minimum dissipation can be

had. By �tting a line (olive green colored line in the �gure) using a linear curve �t,

such an estimate is made. It turns out that at a correlation length of 0.22, (that is

22 times the initial size of the structure) the dissipation may tend to zero, forming a

stable magnetic structure with minimal dissipation.
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Figure 5.20: Correlation length Vs Dissipation. Data is in magenta color, curve �t is in oliver color

and reference x-axis to represent y=0 is in black.

This estimate is valid for only one simulation here. But if this procedure is adapted for

several simulations, which use di�erent types of forcing mechanisms, a better statistical

estimate on the size of the magnetic structure that dissipates minimally can be achieved.

This knowledge may help in understanding stable magnetic structures seen in celestial

magnetospheres.

5.5.5 Magnetic Reconnection

Magnetic reconnection or simply reconnection can be de�ned as a topological re-

structuring of a magnetic �eld caused by a change in the connectivity of its �eld lines.

In a �ow when magnetic reconnection happens, the resultant �ow direction will be

perpendicular to the �eld lines that caused this magnetic reconnection and the current

is also perpendicular to the direction of the resultant �ow (if two �eld lines approached

oppositely in z-direction, then the resultant direction can be say x and the current will

then �ow in y-direction creating a current layer or sheet). There are several types of

magnetic reconnections. Collisional and collision-less being the two important among

them. Here in this work, the type of magnetic reconnection occurring is collisional. To

illustrate that magnetic reconnection indeed is present, and is signi�cant in the case

where forcing is stopped and decaying turbulence is allowed to dominate, a 5123 reso-

lution simulation is used. This simulation is almost similar to case 3, described above.

The cut across the plane for magnetic �eld and the magnetic �eld vectors at the same

instant are shown in 5.21 a and b. In �g. 5.21c, a superposition of the previous two

�gures is done. Some magnetic reconnection regions which are easily recognizable are

also pointed in this �gure. These reconnection regions are formed between two counter

rotating magnetic �eld structures and in the area between them, perpendicular to both,

a current sheet is formed. This is the collisional magnetic reconnection.
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To understand the �eld alignments, refer to �g. 5.21d. This �gure shows the iso-

surfaces of magnetic �eld, current and velocity �eld. From this �gure it is seen that

the iso-surfaces of magnetic �eld and current are perpendicular to each other, while

velocity �eld is randomly oriented without showing any speci�c alignment pattern.

Thus from the iso-surface plot of current and magnetic �elds, it can be inferred that

two counter clockwise moving eddies, which are in the process of large-scale structure

formation, move via the magnetic reconnection stage, while the current sheet is formed

in a plane perpendicular to these eddies, similar to that seen in [59]. A straight forward

classi�cation of the magnetic reconnection picture shown here is not available currently,

though it appears to be closer to the Sweet-Parker reconnection model (look in [1]).

5.6 Conclusions

From this studies of statistical and spatial properties of the magnetic �elds and

other quantities, in the two cases 1) with magnetic helicity injection and 2) natural

decay, the following conclusions can be drawn: 1) high k forcing does not allow large-

scale structure formation. 2) In the generation of large-scale magnetic �eld, decaying

turbulence plays a signi�cant role.

a) b)
Figure caption on page 133
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c)

d)
Figure caption on page 133
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Figure 5.21: Magnetic Reconnection a) cut across the plane of magnetic �eld b) vectors of the same

plane c) super imposition of �gures a and b, 4 magnetic reconnection regions are marked here, and

d) iso-surfaces of magnetic �eld (in gold color), current (in blue color) and velocity (in red color).

Resolution 5123, at t=4. µ̂n= η̂n =2e-35., forcing withdrawn at t ∼ 1.

3) The equation (4.8) has been well supported from the structures perspective as well

and 4) The size of the structures formed depends on the point of stoppage of the force.

Interpretation

1) It is believed that the dynamo action by turbulent �ows of conducting media

in the cores of planets or interiors of the stars is responsible for the generation of

their magnetic energy. The generated magnetic energy is generally limited to small

scales with large number of turbulent �uctuations. But all these celestial objects show

huge magnetospheres which have large-scale magnetic structures with very few turbu-

lent �uctuations. The origin of these large-scale structures is not well understood. A

plausible explanation is the inverse cascade of magnetic helicity which can transport

magnetic energy into large scales from extremely small scales, as seen in these simu-

lations and thus can result in the formation of large-scale structures with minimum

turbulent �uctuations and dissipation. (see section 5.5.4).

2) A prescription for large-scale structure formation from very small scales is proposed

using both the forced and decaying turbulences. This proposal is currently restricted

to the kind of random helical forcing used in this work only. The steps involved are

:�rst the forcing has to stir the random �uctuations for certain amount of time during

which several regions of magnetic �eld concentration are formed which have fractal

dimensional structures. At this stage the forcing is withdrawn allowing the decaying

turbulence to dominate the system for long period of time, which changes the di-

mensions of the structures from fractal to two dimensions, while large-scale magnetic

structures evolve from these regions of magnetic �eld concentration. It appears that

magnetic reconnection plays a signi�cant role in this process. This prescription is also

termed as special case in this work.

3) The three sub-cases discussed in the special case had three distinct starting points

which indicated the amount of time the system was forced. In these three sub-cases,

the resultant structures had di�erent sizes. When the forcing acted for long and the

decaying turbulence took over, the structures were the largest (see case 1 of section

5.5.3). When the forcing acted for less amount of time before the decaying turbulence

took over, the structures were comparatively small (see case 2 of section 5.5.3). When

the forcing acted for intermediate amount of time before decaying turbulence took over,
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the structures were of intermediate size (see case 3 of section 5.5.3). Thus from this

analysis, a speculation on the amount of time the forcing acted on a turbulent system

could be made, by analyzing the size of the magnetic structures present in it. If case

2 and decaying case are compared (since they have the same starting point k= 70),

the e�ect of starting with �elds of equal energy as in the decaying case and unequal

energies as in case 2 could be understood. It is seen from these two cases that when

there was initial equipartition of energies, the structures formed are larger than in the

case when there is asymmetrical distribution in initial energies. Also the number of

magnetic reconnection regions, whose number seems to have an inverse relation with

the size of magnetic structures, could also be a good indicator of the time over which

the forcing might have acted on a turbulent system.

4) The time estimate of the forcing mentioned above, can also lead to the source and its

physical features, which actually set the initial stirring of the plasma (an investigation

beyond the scope of this work). Caution here is that the forcing mechanism used in

this work is a very speci�c one with properties like delta correlation, forcing acting in

high k etc. Hence several other forcing mechanisms have to be tried to con�rm the

results obtained here, to make a good statistical model, which can predict the nature

and physics of the source by looking at the large-scale magnetic structures.

Discussion

From the interpretations of the conclusions of the statistical and spatial features, it

can be said that through this work, an alternate way of understanding the formation

of some of the observed large scale magnetic structures in the celestial bodies, is being

established, but with a strong limitation of a one o� forcing method. The proposed

prescription for large-scale magnetic structure formation has to be valid for several

forcing mechanisms (which need to be modi�ed to be used in high k region) before it

can be accepted as a general prescription. Hence it is proposed that several forcing

mechanisms available in the turbulence theory community ([8, 59, 10, 11]) be modi�ed,

for carrying out this veri�cation. If the results from such attempts also tally with the

results from this work, then the attempts at building a stochastic model to explain

large-scale magnetic structure formation become feasible. When such model studies

and observations are performed simultaneously and the results corroborated, it might

lead to several interesting conclusions on observed features like magnetic reconnection

and the large scale magnetic structures.

In 2D-hydrodynamic turbulence a successful attempt has been made to understand
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the energy and enstrophy cascades [45, 46], by �ltering the structures in a special

manner and using a mathematical approach called multi scale gradient method. In 3D-

MHD turbulence, currently such attempts have not been reported , probably because

the evolution of the structures have not been studied closely, as has been done in

this work. Hence now an attempt can be made at evolving equivalent procedures

and necessary mathematics, so as to understand the exact relation between large-scale

magnetic structure formation and inverse cascade of magnetic helicity in a quantitative

way. It might be possible that magnetic reconnection plays an important role in such

a formulation.
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Chapter 6

Summary and Conclusions

6.1 Summary
The main objective of this thesis is to understand the in�uence of the inverse cascade

of magnetic helicity on various quantities of 3D-MHD turbulence, using high resolution

direct numerical simulations (10243 mesh points). For this purpose, to an already ex-

isting 3D-MHD pseudo spectral code, a new forcing sub-routine is added. Two cases of

3D-MHD turbulence are studied. In the �rst case forced turbulence is studied with the

initial energy distribution and the forcing localized in the large k region (k >100). This

set up is unique in the sense that earlier direct numerical simulation setups of forced

MHD turbulence, were limited by their resolutions and had forcing terms and initial

conditions in the moderate to small wave numbers(k ≤30). This setup is also intended

to verify or con�rm the k−2 power law obtained for inverse cascade of magnetic he-

licity in the numerical simulations of EDQNM approximations of 3D-MHD equations

of forced turbulence. In the second case, pure decaying turbulence case is studied to

understand the in�uence of the inverse cascade of magnetic helicity on this system.

Here the initial energy distribution is peaked at a moderate wave number (k =70).

Hyperviscosity is used in the numerical simulations to have scale separation between

the inertial range and the dissipation range. This numerical approach used here comes

with few drawbacks. The energy spectra show bottle neck and it is not possible to

de�ne a de�nite Reynolds number in the hyperviscous simulations.

The studies on in�uence of the inverse cascade of magnetic helicity on the spectral

properties of several quantities of MHD turbulence is reported next. Two approximate

scaling ranges are seen for the �rst time in 3D-MHD turbulence, one in high k (250 -

400) and other in the low k (7 - 30) regions, for all the quantities, in the forced turbu-
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lent system. One approximate scaling range in the low k region is seen for the decaying

case. For some of the quantities this scaling range is also the inertial range (i.e. the

�ux of this quantity is constant in that range). For energy spectrum, already known

k−5/3 power law (K41) in the inertial range, is con�rmed, in the low k regions for both

the cases. In the high k region of the forced case, bottleneck is observed. In the spectra

it is observed that the magnetic energy is always larger than the corresponding kinetic

energy. Power laws obtained in the magnetic helicity spectra for both the decaying and

forced cases, do not at all comply with the EDQNM result. Instead a new set of power

laws are seen for the two scaling ranges of the forced case and the lone scaling range in

the decaying case of the magnetic helicity spectra. Along with magnetic helicity and

magnetic energy, several other quantities, some of which have never been known to

show any power law behavior, show one, in both the cases described. It is interesting

to note that many of these quantities are not ideal invariants in 3D-MHD. These power

law behaviors have been analyzed together with the dimensional analysis of EDQNM

equations, to obtain a new relation among four of the quantities showing power laws.

The new relation relates magnetic helicity (H M
k ) , magnetic energy (E M

k ), kinetic he-

licity (H V
k ) and kinetic energy (E V

k ), through their spectral powers as E M
k ∼ k2 H M

k EV
k

H V
k

.

This relation is true for both the scaling ranges of forced case and the single scaling

range of the decaying case. This relation implies that there are nonlinear mode inter-

actions between the velocity �eld (v) and magnetic �eld (b), over the entire spectral

range, that are responsible for the inverse cascade of magnetic helicity and hence the

increase in magnetic energy. Already known relation between the power laws of total

energy and residual energy is satis�ed exactly in the scaling range of decaying case and

with some errors in the forced case scaling ranges. The other power laws obtained in

this work currently do not satisfy any dimensional or phenomenological relations. To

understand them, probably a new mathematical framework is needed.

The in�uence of inverse cascade of magnetic helicity on spatial structures is studied

next. Here �rst it is shown that the high k forcing does not result in the formation of

large-scale structures as was the expectation. In fact, it is seen that formed large-scale

structures are being destroyed by this forcing. The structures obtained are signi�cantly

in�uenced by small scales which hide the large scales present in the system. Hence a

cut-o� �lter (placed at k =70) is used to overcome the in�uence of the small-scale

structures. Plotting of structure functions, extended self similarity (ESS) and inter-

mittency modeling of the structure function exponents curves, is the �rst analysis that

is performed to understand the nature of the spatial structures. Structure function
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analysis and intermittency modeling of cut-o� �ltered output of the forced case em-

phasize the fact that the magnetic structures formed are neither one-dimensional nor

two-dimensional but have fractal dimensions. A similar analysis of the decaying case

shows two-dimensional structures. As one of the objectives of this work was to look

for large-scale structure formation in the magnetic �eld, a new strategy is adapted. In

this new strategy, the forcing is withdrawn at three di�erent points in the evolution

of the magnetic helicity spectrum and decaying turbulence is allowed to take over (re-

ferred to as special case). In this setup from the initial fractal type structures, the

structures slowly evolved into two dimensional ones. PDFs and correlation functions

are also studied, which indicate the intermittent nature of the magnetic �eld and the

velocity �eld, in forced, decaying and the special case. The shapes of the structure

function exponent curves and the PDFs, suggest that there is dominant sub-structure

present in the forced case. In the decaying case, dominant coherent structure nature is

suggested, from the same analysis. In the special cases, from dominant sub structure

nature of the structures at the beginning of the simulations, the transformation of the

structures to dominant coherent structures at the end of the simulations, is portrayed

by this analysis. Correlation lengths in all the three cases increase for many quantities,

with time, indicating the formation of larger structures, with the progress of time.

Real space structures are visualized using tools like AMIRA (commercial software)

and Visit (free ware from LLNL,USA). The visualization of the structures con�rms

and supports the structure function analysis. In the forced case, the iso-surfaces of

the magnetic �eld are neither one dimensional nor fully two dimensional, con�rming

their fractal dimensional nature, as seen from the structure function analysis. There

are large number of regions of magnetic �eld concentrations without de�nite structure

formation, indicating the e�ect of the high k forcing of the type employed here on the

system. In the case of decaying turbulence, large-scale magnetic structures form and

evolve with the progress of time. As the system is decaying, the magnitude of these

structures decreases while their size is increasing. In the special case, the size of the

structures and their evolution depends on the point of stoppage of the force. Hence, in

the three sub-cases studied under this special case, very large magnetic �eld structures

(when the forcing was stopped very late in time i.e. t=9), medium size structures

(when the forcing was stopped at a moderate time i.e. t=3.3) and much smaller struc-

tures (forcing stopped very early in time i.e. 1.1), are reported. The common feature

of these three sub-cases and the decaying case is the presence of a number of magnetic

reconnection regions. The number of magnetic reconnection regions increases as the
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structures are many and smaller, and they are pronouncedly few if the structures are

few and very large.

6.2 Conclusions
Thus from the spectral and spatial analysis of the in�uence of inverse cascade of

magnetic helicity, on various quantities of 3D-MHD turbulence the following points

could be concluded:

• Power law behaviors in several quantities including many non- ideal invariant

quantities are observed

• New relation based on EDQNM with a possible explanation for large-scale mag-

netic structure formation in 3D-MHD turbulence is obtained

• High wave number forcing destroys magnetic structures

• Decaying turbulence is important for large-scale structure formation. Magnetic

reconnection plays a signi�cant role in this structure formation

Interpretation

These results could be interpreted in the astrophysical context as follows:

[1] Large−Scale Magnetic Structure of a Planet: It is believed that the dy-

namo action by turbulent �ows of conducting media in the cores of planets or

interiors of the stars is responsible for the generation of their magnetic energy.

The generated magnetic energy is generally limited to small scales with a large

number of turbulent �uctuations. But all these celestial objects show huge mag-

netospheres which have large-scale magnetic structures with very few turbulent

�uctuations. The origin of these large-scale structures is not well understood. A

plausible explanation is the inverse cascade of magnetic helicity which can trans-

port magnetic energy into large scales from extremely small scales, as seen in

these simulations and thus can result in the formation of large-scale structures

with minimum turbulent �uctuations.

[2] Formation of Large−Scale Magnetic Structures: The new spectral re-

lation obtained suggests that the nonlinear mode interactions between velocity

and magnetic �elds, cause a rise in the magnetic energy at the cost of kinetic en-

ergy. Thus the magnetic �eld structures should become large, as inverse cascade

of magnetic helicity is in action. The visualization of these structures suggests
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that high k forcing (of the type used here) of the turbulent �ow alone is not

su�cient for large-scale structure formation. It has also been seen that decaying

turbulence has an important role in the large-scale structure formation. Thus if

an initial plasma con�guration consisting of random magnetic �uctuations in the

small scales, is forced in those small scales and the system is let to evolve, it will

only form concentrated regions of magnetic �eld in the plasma. Large-scale mag-

netic structures will evolve from this con�guration only if the forcing is withdrawn

at a certain point of time, allowing the decaying turbulence to dominate. This

statement is currently speci�c only to the type of the forced system studied here.

Generalization would require further studies.

[3] Speculating the Source of Forcing: It was seen in the special case that

the size of structures formed depended on the point of stoppage of the force.

Thus if in any part of the universe, an isolated large-scale magnetic structure is

detected, then a plausible explanation could be given from the point mentioned

above, bearing in mind the limitation, that any such explanation is currently only

speci�c to the kind of forcing and decaying turbulent �ows discussed in this work.

It is also possible to speculate on the nature or source of the forcing, from the

size of the structures. It was seen that very large structures formed if the forcing

acted for longer time with few (but large) magnetic reconnection regions observed

in the structure. As the time of action of the force on the system became smaller

and smaller, the size of the structures also became smaller and smaller, with an

increase in the number of magnetic reconnection regions. This suggests that if

the in�uence of the forcing was there for a short time, the size of the structures

will be small and if its in�uence is longer, the observed structures are large. Thus

a kind of direct relation between the time of in�uence of the forcing and the size

of the structures is what these arguments point to. Also it is interesting to note

that these arguments point to an inverse relation between the time of in�uence of

forcing and the number of magnetic reconnection regions. Thus if these two facts

are stochastically modeled then the time of in�uence of forcing can be estimated

from the size of the observed structures or magnetic reconnection regions. From

this information the nature and physics of the source that caused this forcing on

the isolated plasma could also be predicted. But for building a stochastic model,

just one o� forcing methods is not su�cient (as was done here) and would need

several possible samples obtained from di�erent forcing methods. The work in
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this dissertation thus o�ers to be a good starting point for further such studies,

which might culminate in the envisaged stochastic model.



Appendix A

Normalization Factor for Magnetic

Helicity Spectra using Dimensional

Analysis

In the spectral domain, the magnetic helicity (H̃M) is given by the volume integral

of dot product of vector potential and magnetic �eld as:

H̃M(k) =

∫
Ã · b̃∗d3 k where Ã =

i

k2
k× b̃ (A.1)

Since the equations are all in Alf�ven wave units, the units of magnetic �eld are

that of velocity i.e. L/T where L is the length and T is the time.

In the inertial range magnetic helicity shows a power law, which means it is

proportional to some power of wavenumber kα, where α is the power law exponent.

The proportionality constant is the dissipation coe�cient raised to some power of

its own εβHd
, where β is its exponent.

To determine the value of these power law exponents, α and β, the following

equation is used:

H̃M(k) = εβHd
kα (A.2)

Dimensional analysis is now used to determine the values of the exponents .

Dimensions of magnetic helicity: L4 T−2

Dimensions of εHd
: L3 T−3 as εHd

= dHM

dt
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Normalization Factor for Magnetic Helicity Spectra using Dimensional

Analysis

Thus from the above equation:

L4 T−2 ∼ (L3 T−3 )βLα (A.3)

L4 T−2 ∼ L3βT−3βLα

L4 T−2 ∼ L3β+αT−3β

Now equating the powers of r.h.s. and l.h.s.:

3β + α = 4

3β = 2

Which means:

β = 2/3 β = (4 − α)/3 (A.4)

Thus the values of α and β are uniquely obtained from this dimensional analysis as

2 and 2/3 respectively. The numerical simulations of EDQNM equations studying

forced 3D-MHD turbulence also suggest a power law behavior or k−2 for the

inverse cascade of magnetic helicity. But it is seen in this work that this power law

may not be the same for various cases of turbulence like decaying and forced 3D-

MHD turbulences and shows a signi�cant deviation from the value obtained from

EDQNM equations. Hence the magnetic helicity spectra will not be normalized

with this normalization factor.
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Flux of Energy

Equations (1.39) and (1.40) represent the vorticity and induction equations in the

spectral space. The ideal invariant total energy is given by equation (1.43). The

�rst goal is to write this equation in terms of vorticity. For this velocity is written

in terms of vorticity, in the spectral space as shown below

ṽ =
i

k2
k× ω̃. (B.1)

from which:

|ṽ2| = 1

k2
|ω̃|2

Substituting this equation in equation (1.43), leads to:

E (k) =
1

2

(
1

k2
|ω̃|2 + |b̃|2

)
(B.2)

This equation is now modi�ed for the �ux as:(

Ė (k) = 1
2k2

(
˙̃ω
∗
.ω̃ + ω̃∗. ˙̃ω

)
+ 1

2

(
˙̃b∗.b̃ + b̃∗. ˙̃b

)
Substituting the equations (1.39) and (1.40) in the above (from here writing only

the r.h.s.):

= 1
2k2 (−iω̃.

{
k× [ṽ × ω − b̃× j]∗

}
− µ̂k2 |ω̃|2 + iω̃∗.

{
k× [ṽ × ω − b̃× j]

}
−

µ̂k2 |ω̃|2 ) + (−i b̃.

{
k× ṽ × b

}∗
− η̂k2 |b̃|2 + i b̃∗.

{
k× ṽ × b

}
− η̂k2 |b̃|2 )
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Rearranging the r.h.s.:

= 1
2

( i
k2 ω̃

∗.

{
k× [ṽ × ω − b̃× j]

}
+ i b̃∗.

{
k× ṽ × b

}
+C .C .)− µ̂|ω̃|2− η̂k2 |b̃|2 ,

where C .C . is the complex conjugate.

Hence at a particular mode k, the �ux terms would be the real part of the r.h.s.

above and is read as∫ k

0

d3 k ′Ė (k′) = Re

{
ω̃∗.

i

k2
(k× [ṽ × ω − b̃× j]) + b̃∗.i(k× ṽ × b)

}
−(µ̂|ω̃|2 + η̂k2 |b̃|2 ) (B.3)

Thus the equation representing the total �ux, is the integrated value of all terms

over the entire spectral volume, giving:

Ė (k) = T E
vw(k) + T E

jb (k) + T E
vb(k)− DE (k) (B.4)

Here

T E
vw(k) =

∫ k

0

d3 k ′(Re

{
ω̃∗.

i

k ′2
(k′ × [ṽ × ω])

}
) (B.5)

T E
jb (k) =

∫ k

0

d3 k ′(Re

{
ω̃∗.

i

k ′2
(k′ × [j̃× b])

}
) (B.6)

T E
vb(k) =

∫ k

0

d3 k ′(Re

{
b̃∗.i(k′ × [ṽ × b])

}
) (B.7)

DE (k) =

∫ k

0

d3 k ′(µ̂|ω̃|2 + η̂k ′2 |b̃|2 ) (B.8)

The terms T E
vw , T E

jb + T E
vb and DE represent the �ux of kinetic energy, magnetic

energy and the dissipation terms respectively, for the total turbulent energy E .

When hyperviscosity (here of the order 8) is also accounted for, the dissipation

term DE will have some product terms of k and will look as :

DE (k) =

∫ k

0

d3 k ′(µ̂k ′6 |ω̃|2 + η̂k ′8 |b̃|2 ),

with no changes in the transmission terms.
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Additional Plots for Chapter 4

In this Appendix, plots of other quantities that show approximate power law

behaviors in the simulations (which were only mentioned but not shown through

�gures in chapter 4) are presented. Also plotted are the quantities EV
k /H

V
k and

EM
k /HM

k which are important for the discussion of the new relation obtained in

the section 4.5. The data sets used for plotting these spectra are at t=6 for forced

case and t=10 for the decaying case.

C.1 Kinetic Helicity

The quantity plotted below is Kinetic helicity in both forced and decaying tur-

bulence cases. It is de�ned by the equation HV
k = 1

2

∫
dk3 ṽ · ω̃. The power law

obtained from these plots is used in the relation of equation (4.8) of chapter 4.
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a)

k

b)

k

c)

k

Figure C.1: Compensated kinetic helicity spectra in a 10243 simulation. a) low k approximate
scaling range for forced case b) high k approximate scaling range for forced case and c) approximate
scaling range for decay case.

C.2 Residual Energy

Residual energy is de�ned as: E R
k = |E M

k − E V
k |. It was shown in [14] that it

shows a power law relation with total energy as ER
k ∼ kE 2

k . (see tables 4.4 and

4.5 of chapter 4, for the exact power law values). Also see section 4.4.5 for a brief

description on the power laws shown by the residual energy spectra in both the

cases.
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a)

k

b)

k

c)

k

Figure C.2: Compensated residual energy spectra in a 10243 simulation. a) low k approximate

scaling range for forced case b) high k approximate scaling range for forced case and c) approximate

scaling range for decay case.

C.3 Residual Helicity

Residual helicity is the di�erence of kinetic and magnetic helicities related as

shown H R
k = H V

k − k2 H M
k . This quantity was not known to show a power law

behavior earlier. This is the �rst such reported instance. This quantity has

signi�cance in explaining the movement of inverse cascade to large scales (see

section 4.5.1).



150 Additional Plots for Chapter 4

a)

k

b)

k

c)

k

Figure C.3: Compensated residual helicity spectra in a 10243 simulation. a) low k approximate

scaling range for forced case b) high k approximate scaling range for forced case and c) approximate

scaling range for decay case.

C.4 Magnetic Vector Potential

Magnetic vector potential is de�ned as Ã = i
k2 k × b̃ in the Fourier space. This

quantity was never expected to show a power law behavior but shows one as is

seen from the �gures below.
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a)

k

b)

k

c)

k

Figure C.4: Compensated magnetic vector potential spectra in a 10243 simulation. a) low k ap-
proximate scaling range for forced case b) high k approximate scaling range for forced case and c)
approximate scaling range for decay case.

C.5 j2Spectra

Current de�ned by j = ∇× b, shows a power law spectrum, which is also for the

�rst time reported here. The signi�cance and physics of the power laws of current

and magnetic vector potential are currently not well understood.
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a)

k

b)

k

c)

k

Figure C.5: Compensated j 2 spectra in a 10243 simulation. a) low k approximate scaling range for
forced case b) high k approximate scaling range for forced case and c) approximate scaling range for
decay case.

C.6 EV
k /H

V
k

This quantity is plotted to check the validity or otherwise of the relation EV
k /H

V
k ∼

k . It is discussed in section 4.5.1. The quantity plotted here is HV
k /E

V
k which

should behave as ∼ k−1 .
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a)

k
k

b)

k
k

c)

k
k

(
)

Figure C.6: Compensated EVk /H
V
k spectra in a 10243 simulation. a) k−1 .0 power law valid in both

the approximate scaling ranges for magnetic helicity injection b) k−1 .0 power law valid in both the ap-
proximate scaling ranges for magnetic helicity and kinetic helicity injection and c) k−1 .0 approximate
scaling range for the decay case.

C.7 EM
k /H

M
k

This quantity is plotted for checking the validity of the relation EM
k = kH M

k . This

relation does not comply at all with the spectral relations as is observed from

�gures below and text in section 4.5.1.
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a)

k
k

(
)

b)

k
k

)
(

c)

k
k

)
(

Figure C.7: Compensated EMk /HM
k spectra in a 10243 simulation. a) k−1 .3 power law valid for the

�rst approximate scaling range in the magnetic helicity injection case b) k−0 .9 power law valid for the
second approximate scaling range in the magnetic helicity injection and c) k−2 .0 approximate scaling
range for the decay case. Note that the kinetic helicity injection case also follows the same plots as a
and b shown here. Hence they are not plotted separately.
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