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Abstract

Minimal codewords have applications in decoding linear codes and in cryptography. We
study the number of minimal codewords in binary linear codes that arise by appending a unit
matrix to the adjacency matrix of a graph.

1 Introduction

Given a linear code its minimal codewords are those whose supports, i.e., the set of nonzero coor-
dinates, do not properly contain the support of another nonzero codeword. They have applications
e.g. in secret sharing schemes [9, 13], two-party computation [10], and decoding algorithms [2, 12].
Complete decoding is an NP-hard problem [7], so that it is no surprise that determining the set of
minimal codewords is also a hard problem. Their number can grow exponentially in the dimension
or the length of the code. The cases where all codewords are minimal are called minimal codes
(or intersecting codes in the binary situation). They have e.g. applications in combinatorics [16].
Indeed, the set of minimal codewords is only known for a few classes of linear codes, including
q-ary Hamming codes, see e.g. [6, 1]. For Reed–Muller codes the problem is only partially solved,
see e.g. [8, 15] and the references cited therein.

Here we consider the concatenation of a unit matrix and the adjacency matrix of a graph as a
generator matrix of a linear code and study the sets of minimal codewords. For some graph classes
we can characterize the sets of minimal codewords and count them. We can fully solve the problem
for complete multipartite graphs, paths, and cycles. We also state some lower and upper bounds
for the number of minimal codewords in terms of graph parameters. For small numbers of vertices
we determine the maximum and minimum number of minimal codewords of connected graphs. It
turns out that the minimum number of minimal codewords is always attained by paths. In [3]
graphs where associated to linear codes via their cycle space and the corresponding sets of minimal
codewords are studied.

2 Preliminaries

An [n, k]q linear code C is a k-dimensional subspace of Fn
q . Given a vector x ∈ Fn

q , the support of
x is defined as supp(x) = {i : xi 6= 0, 1 ≤ i ≤ n}. A k×n matrix G whose rows form a basis for C
is called a generator matrix. If G = [Ik|A], where Ik is the k× k identity matrix, then it is said to
be systematic or in standard form. A nonzero codeword c ∈ C is minimal if there does not exist a
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nonzero codeword c′ such that supp(c′) ( supp(c). Otherwise (including the case c = 0), we call
the codeword c non-minimal. Note that a codeword and its nonzero scalar multiples have the same
support. We say that two codewords are equivalent if one is a scalar multiple of the other. We use
the notation M(C) for the number of non-equivalent minimal codewords of C. In the following we
will mainly consider binary codes. For some known properties of minimal codewords we refer the
interested reader e.g. to [6] and the references cited therein.

Given a graph G = (V,E) with vertex set V and edge set E, we denote by C(G) the binary linear
code that is generated by [I#V |A], where A is an adjacency matrix of G. As a shorthand we use
the notation M(G) for M(C(G)). Note that M(G) does not depend on the labeling of the vertices.
In the remaining part of the paper we will give brief definitions for most of the used notions from
graph theory. For standard definitions like e.g. a connected graph or its connectivity components
we refer the reader to some standard text book on graph theory like e.g. [17].

First we observe that we can restrict ourselves to the study of M(G) for connected graphs:

Lemma 2.1. Let G = (V,E) consist of r ≥ 1 connectivity components G1 = (V1, E1), Gr = (Vr, Er),
i.e., ·∪ri=1Vi = V and ·∪ri=1Ei = E. Then, M(G) =

∑r
i=1M(Gi).

Proof. The statement is obvious from the direct sum C(G) = ⊕r
i=1C(Gi).

Lemma 2.2. For every graph G = (V,E) we have M(G) ≥ #V .

Proof. If G = [I#V |A] is a generator matrix of C(G), then it is easy to check that the #V rows of
G give minimal codewords.

This trivial lower bound is attained with equality for graphs without edges, i.e., M((V, ∅)) = #V .
In order to obtain a more interesting problem, we define m(n) as the minimum of M(G), where G
is a connected graph with n vertices, i.e., we ask for the minimum number of minimal codewords
a graph with n vertices can give. Similarly, let M(n) denote the maximum of M(G), where G is a
graph, not necessarily connected, with n vertices.

More generally, let Mq(n, k) be the maximum and mq(n, k) the minimum of M(C) for all [n, k]q
codes C. Bounds and some exact values on Mq(n, k) and mq(n, k) can be found in [2, 4, 5, 6, 11].
Obviously, we have

m2(2n, n) ≤ m(n) ≤M(n) ≤M2(2n, n).

Let C be a linear [k + t, k]2 code with systematic generator matrix G. By gi we denote the ith
row of G, where 1 ≤ i ≤ k. For each subset S ⊆ {1, . . . , k} let cS denote the sum of the rows of
G with indices in S, i.e., cS =

∑
i∈S g

i ∈ C. For each codeword c ∈ C let cS ∈ Fk
2 denote the

systematic part of c, i.e., the restriction of c to the first k coordinates c1, . . . , ck. Similarly, for
each codeword c ∈ C let cI ∈ Ft

2 denote the information bits, i.e., the restriction of c to the last t
coordinates ck+1, . . . , ck+t. Next, we study some properties of minimal codewords in general binary
linear codes.

Lemma 2.3. Let ∅ 6= S ⊆ {1, . . . , k}. If there exists a subset ∅ 6= T ( S with cTI = 0, then cS is
non-minimal.

Proof. Since supp
(
c
S\T
I

)
= supp

(
cSI
)

and supp
(
c
S\T
S

)
( supp

(
cSS
)
, we have supp

(
cS\T

)
( supp

(
cS
)
.
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Lemma 2.4. Let ∅ 6= S ⊆ {1, . . . , k}. The codeword cS is non-minimal iff there exists a subset
∅ 6= T ( S with supp(cTI ) ⊆ supp(cSI ).

Proof. Since S 6= ∅ we have cS 6= 0. Thus, if cS is non-minimal, there exists a subset ∅ 6= T ( S
with supp(cT ) ( supp(cS), so that supp(cTI ) ⊆ supp(cSI ). For the other direction let ∅ 6= T ( S
with supp(cTI ) ⊆ supp(cSI ). If supp(cTI ) 6= supp(cSI ), then supp(cTI ) ( supp(cS) implies supp(cT ) (
supp(cSI ) so that cS is non-minimal by definition. If supp(cTI ) = supp(cSI ), then c

S\T
I = 0 and we

can apply Lemma 2.3.

Corollary 2.5. Let cS be a minimal codeword. Then, we have 1 ≤ #S ≤ t + 1. Moreover, if
#S = t+ 1, then cSI = 0.

Proof. The largest cardinality of a set of linearly independent vectors in Ft
2 is t. Thus, if #S ≥ t+1,

then there exists a subset T ⊆ S with cTI = 0 and #T ≤ t + 1. We finally apply Lemma 2.3 to
conclude #S ≤ t+ 1.

Lemma 2.6. Let ∅ 6= S ⊆ {1, . . . , k} be a subset such that cSI = 0. Then, cS is minimal iff cTI 6= 0
for all ∅ 6= T ( S.

Proof. Since S 6= ∅ we have cS 6= 0. If cS is non-minimal, then there exists a subset ∅ 6= T ( S
with supp(cT ) ( supp(cS). Since cSI = 0 this implies cTI = 0. For the other direction we apply
Lemma 2.3.

We have already observed that cS is minimal for all subsets S ⊆ {1, . . . , n} of cardinality 1. In a
code C(G) obtained from a graph G also the case of cardinality #S = 2 can be characterized easily:

Lemma 2.7. Let G = (V,E) be a graph and C = C(G) be its associated code. For S = {v1, v2}
the codeword cS is minimal iff v1 and v2 have a common neighbor v3 (where we assume that the
vertices v1, v2, and v3 are pairwise different).

Proof. If v1 and v2 do not have common neighbors, then supp
(
c{v1}

)
( cS , so that cS is non-

minimal. If v1 and v2 have a common neighbor v3 then cSI has a one at position v3 while c{v1} and
c{v2} have a one at position v3, so that cS is minimal.

A path between two vertices u and v is a sequence of distinct vertices [v0, . . . , vl], such that v0 = u,
vl = v, and {vi, vi+1} is an edge for all 0 ≤ i < l. Such a path is called a shortest path if l is minimal.
We also call l the length of the path. In a connected graph the length of the shortest path between
two vertices gives a metric, i.e., the distance between two vertices is the length of a shortest path
connecting them. The diameter of a connected graph is the maximum distance between pairs of
vertices. Graphs of diameter 1 are called complete graphs and we will determine the corresponding
number M(G) of minimal codewords in Proposition 3.1. For graphs with diameter 2 we have:

Corollary 2.8. For a graph G = (V,E) with diameter 2 we have M(G) ≥
(

#V +1
2

)
−#E.

Proof. For each subset S ⊆ V of cardinality 1 the codeword cS is minimal, which gives #V minimal
codewords. Now consider the

(
#V

2

)
subset S = {u, v} of cardinality 2. If {u, v} is not an edge in

G, then u and v are at distance 2 in G. In other words, u and v have a common neighbor, so that
we can apply Lemma 2.7 to deduce the minimality of cS . Since #V +

(
#V

2

)
=
(

#V +1
2

)
, we obtain

the stated lower bound.
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3 The value of M(G) for some graph classes

Given the number n of vertices, we will always set V = {1, . . . , n} in this subsection. By Kn we
denote the complete graph on n vertices, i.e., V = {1, . . . , n} and E = {{i, j} : 1 ≤ i < j ≤ n}.
Obviously, we have M(K1) = 1 and M(K2) = 2.

Proposition 3.1. For each integer n ≥ 3 we have

M(Kn) = 2n−1 +

(
n

2

)
.

Proof. For some subset ∅ 6= S ⊆ {1, . . . , n} we can easily describe cSI . If #S ≡ 0 (mod 2), then
cSI equals 1 at position v iff v ∈ S and 0 otherwise. In the other case, #S ≡ 1 (mod 2), we have
that cSI equals 1 at position v iff v 6∈ S and 0 otherwise. So, if the cardinality of S is even and at
least four, then we can choose at subset T ( S of cardinality T with supp(CT

I ) ( supp(cSi ), i.e.,
the codeword cS is non-minimal. If #S = 2, then we can apply n ≥ 3 and Lemma 2.7 to deduce
that cS is minimal. This gives

(
n
2

)
cases of minimal codewords.

If #S = 1, then cS is minimal, which amounts to n =
(
n
1

)
cases. Now let #S be odd and at least

3. We have cSI = 0 iff S = {1, . . . , n}. The only proper subset T with cTI = 0 is T = ∅. Now let
∅ 6= T ( S. If #T ≡ 1 (mod 2), then supp

(
cTI
)
6⊆ supp(cSI ), since T\S 6= ∅. If #T ≡ 0 (mod 2),

then supp
(
cTI
)
6⊆ supp(cSI ), since T 6= ∅. Thus, cS is minimal and there are

∑
1≤i≤n : i odd

(
n
i

)
cases

in total.

Thus, we have M(Kn) =
(
n
2

)
+
∑

1≤i≤n : i odd

(
n
i

)
, which can be simplified further. Since

∑n
i=0

(
n
i

)
=

2n and
∑n

i=0(−1)i
(
n
i

)
= 0 the sum of odd binomial coefficients

∑
1≤i≤n : i odd

(
n
i

)
equals 2n−1, so

that we obtain the proposed formula.

For two positive integers we denote by Ka,b the complete bipartite graph with vertex classes of size
a and b, respectively, i.e., for A = {1, . . . , a} and B = {a + 1, . . . , a + b} we define the graph via
V = A ∪B and E = {{α, β} : α ∈ A, β ∈ B}.

Proposition 3.2. For positive integers a, b we have

M(Ka,b) = a+ b+

(
a

2

)
+

(
b

2

)
.

Proof. For some subsets A′ ⊆ {1, . . . , a} and B′ ⊆ {a+ 1, . . . , a+ b} with S := A′ ∪B′ 6= ∅ we can
easily describe cSI . The value of cSI at a position α ∈ A equals #B′ rem 2, i.e., the remainder of
#B′ divided by 2. Similarly, the value of cSI at a position β ∈ B equals #A′ rem 2.

Every non-zero codeword can be written as cS for some subset ∅ 6= S ⊆ {1, . . . , a + b}. We
decompose S = A′ ∪B′, where A′ ⊆ A and B′ ⊆ B. If #S ≥ 3 and #A′ ≥ 2, then let Ã ⊆ A′ with

#Ã = #A′ − 2. With this, we have supp
(
cÃ∪B

′
I

)
⊆ supp(cSI ), i.e., cS is not a minimal codeword.

If #S ≥ 3 and #A′ ≤ 1, then #B′ ≥ 2 and we can choose B̃ ⊆ B′ with #B̃ = #B′ − 2. Since

supp
(
cA

′∪B̃
I

)
⊆ supp(cSI ) we again conclude that cS is not a minimal codeword. If #S = 1, then cS

is a minimal codeword. If #S = 2, then we can apply Lemma 2.7 and conclude that cS is minimal
iff either S ⊆ A or S ⊆ B.

Note that K2 = K1,1.
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Corollary 3.3. For the star graph K1,n−1 we have M(K1,n−1) = n+
(
n−1

2

)
= n2−n+2

2 for all n ≥ 2.

Next we want to consider graph arising if we join the centers of two stars by an edge:

Proposition 3.4. Let G be a graph with two vertices u and v that are joined by an edge. The
other a + b vertices, where a, b ≥ 1, are vertices of degree 1, where a of them have u as their
unique neighbor and the other b of them have v as their unique neighbor. With this, we have
M(G) = 2 + a+ b+

(
a+1

2

)
+
(
b+1

2

)
.

Proof. By n = 2 + a + b we denote the number of vertices of the graph and by C the code C(G)
associated to G. For each subset S ⊆ {1, . . . , n} of cardinality 1 the codeword cS is minimal. For
subsets S of cardinality 2 we apply Lemma 2.7. Counting the number of pairs of vertices with a
common neighbor gives

(
a+1

2

)
+
(
b+1

2

)
choices. It remains to show that cS is non-minimal if #S ≥ 3.

First we note cTI = cSI if S arises from T by adding two of the a neighbors of u of degree 1. So, cS

is non-minimal in that case. By symmetry, the same is true for the b neighbors of v of degree 1.
So, let x be an arbitrary neighbor of u of degree 1 and y be an arbitrary neighbor of v of degree
1. It suffices to consider S ⊆ {x, u, v, y}. In the following table we consider all choices for S and
abbreviate cSI by just four binary entries. The second and third entry correspond to vertex u and
vertex v, respectively. The first entry corresponds to vertex x or any other neighbor of u of degree
1, noting that those entries are all equal. Similarly, the fourth entry corresponds to vertex y or
any other neighbor of v of degree 1.

S cSI S cSI
{u} (1, 0, 1, 0) {v} (0, 1, 0, 1)
{x} (0, 1, 0, 0) {y} (0, 0, 1, 0)

{u, v} (1, 1, 1, 1) {x, y} (0, 1, 1, 0)
{x, u} (1, 1, 1, 0) {v, y} (0, 1, 1, 1)
{x, v} (0, 0, 0, 1) {u, y} (1, 0, 0, 0)

{x, u, v} (1, 0, 1, 1) {u, v, y} (1, 1, 0, 1)
{x, u, y} (1, 1, 0, 0) {x, v, y} (0, 0, 1, 1)

{x, u, v, y} (1, 0, 0, 1)

The proof is finished by the easy but a bit tedious task to check that for all S ⊆ {x, u, v, y}
with #S ≥ 3 there exists a subset ∅ 6= T ( S with supp

(
cTI
)
⊆ supp

(
cSI
)
, so that we can apply

Lemma 2.4 to conclude that cS is non-minimal.

For an integer r ≥ 1 and positive integers a1, . . . , ar we denote by Ka1,...,ar the complete multipartite
graph, i.e., the vertex set of the n =

∑r
i=1 ai vertices is partitioned into r classes such that two

vertices are connected by an edge iff the come from different classes.

Proposition 3.5. For each complete multipartite graph G = Ka1,...,ar with r ≥ 3 we have

M(G) = n+

(
n

2

)
+

∑
U⊆{1,...,r} : #U≡1 (mod 2),#U≥3

∏
i∈U

ai,

where n =
∑r

i=1 ai.
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Proof. Let us denote the r vertex classes by A1, . . . , Ar. Given a non-empty subset S of the vertex
set, we set A′i = Ai ∩ S for all 1 ≤ i ≤ r. Let v ∈ Aj for some 1 ≤ j ≤ r. Then, the value of
cSI at position v is given by # (S\Aj) rem 2. If #S = 1, then cS is minimal. If #S = 2, then we
can use Lemma 2.7 to deduce that cS is minimal. If #S ≥ 3 and # (S ∩Aj) ≥ 2 for some index

1 ≤ j ≤ r, then we can choose a two-element subset U ⊆ S ∩ Aj and use c
S\U
I ⊆ cSI to conclude

that cS is non-minimal. It remains to consider the cases where #S ≥ 3 and # (S ∩Ai) ≤ 1 for
all 1 ≤ i ≤ r. Similar as in the proof of Proposition 3.1, we easily conclude that cS is minimal iff
#S ≡ 1 (mod 2).

We remark that Kn = K1,...,1, where the complete multipartite graph has exactly n vertex classes
with cardinality 1 each.

For each integer n ≥ 2 we denote by Pn the graph whose edges are given by E = {{i, i+ 1} : 1 ≤
i ≤ n− 1}. The graph Pn is also called a path of order n.

Proposition 3.6. For each integer n ≥ 1 we have

M(Pn) =

⌊
(n+ 1)2

4

⌋
=

⌊
n+ 1

2

⌋
·
⌈
n+ 1

2

⌉
.

Proof. Each non-zero codeword of C(Pn) is given as cS for some subset ∅ 6= S ⊆ {1, . . . , n}. For
#S = 1 the codeword cS is minimal. Given S, a maximal distance-2 chain U is a subset of S of the
form U = {a, a+2, . . . , b−2, b}, where a ≡ b (mod 2) and a−2, b+2 /∈ S. If U = {a, a+2, . . . , b−
2, b} 6= ∅ is a (maximal) distance-2 chain, then supp(cUI ) = {n+ a− 1, n+ b+ 1} ∩ {n+ 1, . . . , 2n}.
We have supp(cUI ) = ∅ iff a = 1 and b = n. For a suitable integer r ≥ 1 let U1, . . . , Ur be the
unique decomposition of S into maximal distance-2 chains. We directly conclude that the supports
of cUi and cUj are disjoint for all 1 ≤ i < j ≤ r. Thus, cS cannot be minimal if r ≥ 2 since
supp

(
cUi
)
⊆ supp

(
cS
)

and supp
(
cUi
)
6= ∅ for 1 ≤ i ≤ r. Now suppose that S itself is a maximal

distance-2 chain, i.e., there exist integers a and b with S = {a, a + 2, . . . , b − 2, b}. Each proper
subset ∅ 6= T ( S has a decomposition into r ≥ 2 maximal distance-2 chains U1, . . . , Ur. Note

that # supp
(
cUi
I

)
≥ 1 for all 1 ≤ i ≤ r. So, if supp(cTI ) ⊆ supp(cSI ), then we have r = 2,

supp(cTI ) = supp(cSI ) = {a − 1, b + 1}, and {1, n} ⊆ U1 ∪ U2. From the formula for supp(cUi
I )

we conclude T = U1 ∪ U2 = {1, 3, . . . , a − 2, b + 2, b + 4, . . . , n} 6⊆ S – contradiction. Thus, cS is
minimal.

Counting the maximal distance-2 chains gives

M(Pn) = # {(a, b) : 1 ≤ a ≤ b ≤ n, a ≡ b (mod 2)}

=

n∑
i=1

⌈
n+ 1− i

2

⌉
=

⌊
(n+ 1)2

4

⌋
=

⌊
n+ 1

2

⌋
·
⌈
n+ 1

2

⌉
.

Note that the formula for M(Pn) is also valid for the case P2 = K2 = K1,1.

For each integer n ≥ 3 we denote by Cn the graph whose edges are given by E =
{
{i, i+ 1} : 1 ≤

i ≤ n − 1
}
∪
{
{1, n}

}
. The graph Cn is also called a cycle of order n. With τ : Z → {1, . . . , n}

being the unique mapping with τ(z) ≡ z (mod n) for all z ∈ Z, we can also write the edge set of
Cn as

{
{τ(i), τ(i + 1)} : 1 ≤ i ≤ n

}
. The proof of Proposition 3.6 can be adjusted slightly to

determine M(Cn).
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Proposition 3.7. For each integer n ≥ 3 we have

M(Cn) =

{
n2−2n+4

2 : n ≡ 0 (mod 2),
n2 − n+ 2 : otherwise.

Proof. Each non-zero codeword of C(Cn) is given as cS for some subset ∅ 6= S ⊆ {1, . . . , n}. For
#S = 1 the codeword cS is minimal. Given S, a distance-2 chain U is a subset of S of the form
U = {τ(a), τ(a + 2), . . . , τ(b − 2), τ(b)}, where a ≡ b (mod 2) and 1 ≤ a ≤ b ≤ 2n. We call U
maximal (in S) if either τ(a − 2), τ(b + 2) /∈ S or τ(a − 2) = τ(b). The meaning is that neither
{τ(a), τ(a + 2), . . . , τ(b), τ(b + 2)} nor {τ(a − 2), τ(a), . . . , τ(b − 2), τ(b)} is a proper superset of
U that is a subset of S, i.e., we cannot enlarge U to a strictly larger distance-2 chain. Given a
distance-2 chain U = {τ(a), τ(a+ 2), . . . , τ(b− 2), τ(b)} we have supp(cUI ) = ∅ if τ(a− 2) = b and
supp(cUI ) = {n+ τ(a−1), n+ τ(b+1)} otherwise. For a suitable integer r ≥ 1 let U1, . . . , Ur be the
unique decomposition of S into maximal distance-2 chains. We directly conclude that the supports
of cUi and cUj are disjoint for all 1 ≤ i < j ≤ r. Thus, cS cannot be minimal if r ≥ 2. Next we
show that cS is minimal iff S is a (maximal) distance-2 chain itself. Each subset ∅ 6= T ( S has
a decomposition into r ≥ 2 maximal distance-2 chains U1, . . . , Ur, where # supp(cUi

I ) = 2 for all

1 ≤ i ≤ r, which contradicts ∪ri=1 supp(cUi
I ) ⊆ supp(cSI ). Thus, it remains to count the number of

different maximal distance-2 chains U = {τ(a), τ(a+ 2), . . . , τ(b− 2), τ(b)}.
If n is even, then the case τ(a−2) = τ(b) can occur exactly two times, i.e., for the cases {1, 3, . . . , n−
1} and {2, 4, . . . , n}. Otherwise, we can start at any vertex 1 ≤ a ≤ n and choose b = a + 2j,
where 0 ≤ j ≤ (n − 4)/2 since j = (n − 2)/2 would yield τ(a − 2) = τ(b). Thus, if n is even, we

have M(Cn) = 2 + n · n−2
2 + 2 = n2−2n+4

2 . If n is odd, then the case τ(a − 2) = τ(b) occurs iff
U = {1, . . . , n}. Otherwise, we can start at any vertex 1 ≤ a ≤ n and choose b = a + 2j, where
0 ≤ j ≤ n− 2. Thus, if n is odd, we have M(Cn) = 1 + n · (n− 1) = n2 − n+ 2

Note that the formula for M(Cn) is also valid for the case C3 = K3.

In a bipartite graph G we may generalizes the idea of a distance-2 chain as follows. We can build
up a new graph G′ with the same vertex set as G. Two vertices in G′ are connected by an edge,
by definition, if they are at distance exactly 2 in G. Similar as in the proof of Proposition 3.6
one can show that for each minimal codeword cS the set S induces a connected subgraph in G′.
However, cS can be non-minimal for the vertex set S of a connected subgraph of G′, i.e., we may
only conclude an upper bound on M(G). This e.g. happens in Ka,b provided that a and b are large
enough.

Another variant of a distance-2 chain can lead to lower bounds.

Definition 3.1. In a graph G an even path between two vertices u and v is a sequence of distinct
vertices [v0, . . . , vl] such that v0 = u, vl = v, l is an even positive integer, and {vi, vi+1} is an edge
for all 0 ≤ i ≤ l − 1. We call [v0, . . . , vl] a shortest even path between u and b if l is minimal.

Note that even in a connected graph there does not need to exist a shortest even path for two given
vertices. Moreover, in the case of existence it does not need to be unique.

Lemma 3.8. Let G be a graph and C be the associated binary linear code. For each shortest even
path [v0, . . . , vl] the codeword cS, where S = {0 ≤ i ≤ l : i ≡ 0 (mod 2)}, is minimal.
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Proof. As an abbreviation we set E = {0 ≤ i ≤ l : i ≡ 0 (mod 2)} and O = {0 ≤ i ≤ l : i ≡ 1
(mod 2)}. Let o ∈ O and e ∈ E such that {vo, ve} is an edge in G. Since l is minimal by assumption
we have e ∈ {o− 1, o+ 1}. Thus, for each o ∈ O the vertex vo has exactly two neighbors ve where
e ∈ E. So, in cSI the entries at the positions vo for o ∈ O are equal to zero. Now let ∅ 6= T ( S = E
be an arbitrary subset, tmin be the minimal element in T , and tmax be the maximal element in T .
If tmin > 0, then the entry at position vtmin−1 in cTI is equal to one so that cT 6⊆ cS . Similarly,
if tmax < l, then the entry at position vtmax+1 in cTI is equal to one so that again cT 6⊆ cS . Since
tmin = 0 and tmax = l imply T = S the codeword cS is indeed minimal.

Note that Lemma 2.7 says that for a two element subset S ⊆ {1, . . . , n} the codeword cS is exactly
minimal if there exists a (shortest) even path of length 2 between the elements of S.

Lemma 3.9. Let [v0, . . . , vl] and
[
v′0, . . . , v

′
l′
]

be two shortest even paths. If

{vi : 0 ≤ i ≤ l, i ≡ 0 (mod 2)} =
{
v′i : 0 ≤ i ≤ l′, i ≡ 0 (mod 2)

}
,

then {v0, vl} =
{
v′0, v

′
l′
}

.

Proof. First we note that l = l′. Now choose indices 0 ≤ i, j ≤ l such that v′0 = vi and v′l = vj with
i ≡ j ≡ 0 (mod 2). Depending on whether i < j or i > j, either [vi, vi+1, . . . , vj ] or [vi, vi−1, . . . , vj ]
is an even path from v′0 to v′l. Since we assume that l is the shortest possible length of such a path,
we have {i, j} = {0, l}, i.e., {v0, vl} =

{
v′0, v

′
l′
}

.

We remark that in an odd cycle, i.e., Cn where n is odd, the shortest even path between any two
neighbored vertices uses all n vertices.

Lemma 3.10. Let G be a connected graph and T be a spanning tree of G. Considering T as a
bipartite graph, we denote the number of vertices in the two color classes by a and b. With this,
we have M(G) ≥ a+ b+

(
a
2

)
+
(
b
2

)
.

Proof. Let C be the code C(G) induced by the graph G. For each of the n subsets S ⊆ {1, . . . , n}
of cardinality 1 the codeword cS is minimal. These are a + b minimal codewords. Now consider
two vertices u and v of the same color class in T . Due to the construction of the coloring, there
exists an even path between u and v in T , which is also an even path between u and v in G. If
the path is not already a shortest even path, then pick one. So, for every two vertices u and b
of the same color class (in T ) there exists a shortest even path [v0, . . . , vl] between u and v in G,
so that Lemma 3.8 implies that cS is minimal, where S = {vi : 0 ≤ i ≤ l, i ≡ 0 (mod 2)}. There
are

(
a
2

)
+
(
b
2

)
choices and by Lemma 3.9 all of them lead to different minimal codewords cS , where

#S ≥ 2.

We remark that the lower bound of Lemma 3.10 is attained with equality in Proposition 3.2, i.e.,
for complete bipartite graphs, and in Proposition 3.4. In Theorem 4.1 we will use Lemma 3.10 to
determine a formula for the minimum number m(n) of minimal codewords of a connected graph
with n vertices.

An induced subgraph of a graph G = (V,E) is a graph whose vertex set is a subset S ⊆ V and
whose edges are given by the elements of E where both vertices are contained in S. If G′ = (V ′, E′)
is an induced subgraph of G = (V,E) and cS a minimal codeword in G′, where S ⊆ V ′, then cS

is also a minimal codeword in G. An odd cycle is an induced subgraph that is isomorphic to Cl,
where l is odd.
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Proposition 3.11. Let G = (V,E) be a connected graph. If S ⊆ V induces an odd cycle in C, then
cS is a minimal codeword in C(G).

Proof. Let G′ = (S,E′) be the subgraph induced by S and C = C(G′) the binary code associated
with G′. In C we have cSI = 0. We can easily check that cTI 6= 0 for all ∅ 6= T ( S, so that
Lemma 2.6 gives that cS is minimal in C. As noted above, cS is also minimal in C(G).

Another lower bound, using more common graph invariants, for M(G) is:

Lemma 3.12. Let G be a graph with n vertices, maximum degree ∆, and t triangles. Then, we
have M(G) ≥ n+

(
∆
2

)
+ t.

Proof. For each of the n subsets S ⊆ {1, . . . , n} of cardinality 1 the codeword cS is minimal. If
v is a vertex of degree ∆, then for any pair S of two neighbors of v we can apply Lemma 2.7 to
deduce that cS is minimal. Note that there are

(
∆
2

)
choices. If S consists of the three vertices of a

triangle, then cS is minimal, see Proposition 3.11.

Next we want to study the special situation where all non-zero codewords are minimal.

Proposition 3.13. If G is a graph with n ≥ 1 nodes and M(G) = 2n−1, then G = K1 or G = K3.

Proof. Due to [16, Theorem 2(iii)] an [N, k]2 code whose non-zero codewords are all minimal
satisfies N ≥ 3(k − 1). In our situation we have N = 2n and k = n, so that n ≤ 3. If G contains
an isolated vertex, then M(G) ≤ 1 + M(n − 1) ≤ 1 + 2n−1 − 1, which is strictly less than 2n − 1
for n ≥ 2. Thus, it suffices to consider the connected graphs with up to 3 vertices: M(P1) = 1,
M(P2) = 2, M(P3) = 4, and M(K3) = 7, see Proposition 3.6 and Proposition 3.1.

4 Exact values for small parameters

The aim of this subsection is to determine the exact value of M(n) and m(n) for 1 ≤ n ≤ 10. Given
Lemma 2.1 it suffices to consider connected graphs. We note that there are already 11 716 571 non-
isomorphic connected graphs, which we have enumerated using the software package geng [14]. For
each connected graph G we determine M(G) by exhaustive enumeration.

n 1 2 3 4 5 6 7 8 9 10

m(n) 1 2 4 6 9 12 16 20 25 30

M(n) 1 2 7 14 26 47 99 190 355 682

The maximum M(n) is attained for 3 ≤ n ≤ 6 by a complete graph Kn, while the cases n ∈
{7, 8, 9, 10} need other constructions. For n = 10 there are 22 isomorphism types of graphs that
attain the maximum of 682 minimal codewords. Those graphs are quite diverse, i.e., their number
of edges lies between 21 and 32, the minimum degree is either 4 or 5, and the maximum degree
ranges from 5 to 9. For 1 ≤ n ≤ 10, the minimum value m(n) is attained by a path Pn. This
observation is also true in general.

Theorem 4.1. For each integer n ≥ 1 we have

m(n) =

⌊
(n+ 1)2

4

⌋
=

⌊
n+ 1

2

⌋
·
⌈
n+ 1

2

⌉
.
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Proof. Due to Proposition 3.6 it remains to show the corresponding lower bound. To this end we
apply Lemma 3.10. Setting b = n−a we obtain the lower bound n+

(
a
2

)
+
(
n−a

2

)
= a2−na+ n(n+1)

2 ,
which is a quadratic polynomial in a. Over the real numbers the minimum is attained for a = n/2,

which gives m(n) ≥ n(n+2)
4 . If n is even this matches the statement. If n is odd we can upround

n(n+2)
4 to (n+1)2

4 since m(n) is an integer.

We remark that all connected graphs G with n vertices and M(G) = m(n) are bipartite, since
Proposition 3.11 would give an additional minimal codeword that is not counted in Lemma 3.10.
If T is a tree such that all vertices with degree strictly larger than 1 are contained on a path,
then it can be easily shown that the lower bound of Lemma 3.10 is attained with equality. If
the cardinalities of the two color classes of the bipartite tree T differ by at most 1, then we have
M(T ) = m(n), where T consists of n vertices. We remark that one can also construct connected
graphs G that contain 4-cycles and satisfy M(G) = m(n) for their number n of vertices. The
determination of M(n) and the description of an infinite family of graphs attaining M(G) = M(n)
is an interesting open problem.
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