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Zusammenfassung

Zur Gruppe der nicht-photosynthetischen (chlorophylllosen) Pflanzen zählen etwa 4100
Arten, die direkt auf autotrophen Pflanzen parasitieren und mehr als 400 Arten, die
organische Nährstoffe von Wurzelpilzen beziehen und daher als mykoheterotroph
bezeichnet werden. Etwa ein Viertel aller mykoheterotrophen Arten gehört zur Familie
der Orchidaceen. Alle Orchideen sind während ihrer juvenilen, unterirdischen Phase
mykoheterotroph; die meisten Arten entwickeln im adulten Stadium jedoch grüne
Blätter. Eine ähnliche Situation ist im Tribus Pyroleae (Ericaceae) anzutreffen. Pyroleen
sind zumeist photosynthetisch aktive Arten, die, ebenso wie Orchideen, winzige Samen
ohne Endosperm produzieren und daher in ihrer frühen Entwicklungsphase auf
Nährstoffzufuhr von Pilzpartnern angewiesen sind. Analysen der natürlichen
Isotopensignatur einiger grüner und somit scheinbar autotropher Orchideen und
Pyroleen zeigten kürzlich, dass diese Pflanzen, zusätzlich zum Kohlenstoffgewinn
durch Photosynthese und zur Stickstoffassimilation, organische Kohlenstoff- und
Stickstoffverbindungen von Wurzelpilzen beziehen. Pflanzen, die diese Mischform der
Ernährung aufweisen, werden als partiell mykoheterotroph bezeichnet.

Die komplexe und faszinierende Ökologie partiell und vollständig
mykoheterotropher Pflanzen zu verstehen, ist die Grundlage, um diese zumeist
gefährdeten Arten und ihre Habitate erfolgreich schützen zu können. Analysen der
natürlichen Isotopenhäufigkeit und die genetische Identifikation von Mykorrhiza-Pilzen
sind moderne Techniken, die ohne experimentelle Störung Einblick in pflanzliche
Ernährungsweisen unter natürlichen Bedingungen geben können. Basierend auf diesen
Methoden, sowie auf der Bestimmung von Chlorophyll-Gehalten, der Messung von
Lichtverfügbarkeit und einem in situ 13C-Markierungs-Experiment, liefert die
vorliegende Arbeit neue, fundamentale Kenntnisse über die Nährstoffaufnahme
zahlreicher Orchideen und Ericaceen.
Im ersten Kapitel wird ein verbesserter methodischer Ansatz präsentiert, der Meta-
Analysen und eine genauere quantitative Abschätzung der Nährstoffgewinne vom Pilz
bei partiell mykoheterotrophen Pflanzen ermöglicht. Unter Anwendung dieser neuen
Methode wurde die umstrittene oder zumeist noch völlig unbekannte Ernährungsweise
zahlreicher Pflanzenarten untersucht. So konnte unter anderem gezeigt werden, dass
innerhalb der Tribus Pyroleae auch eine vollständig mykoheterotrophe Art (Pyrola
aphylla) vorkommt und dass die auf Ektomykorrhiza-Pilze spezialisierte Orchidee
Corallorhiza trifida (von der man glaubte, sie sei vollständig vom Pilzpartner abhängig)
zur Photosynthese befähigt ist.
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Anhand des großen Datensatzes zu Isotopensignaturen und Mykorrhiza-Partnern vieler
Orchideen-Arten konnte die Existenz einer bezüglich ihrer Ernährung neuen Gruppe
von Orchideen aufgezeigt werden. Daraus lässt sich folgern, dass terrestrische Vertreter
der Orchidaceen mindestens vier verschiedene Ernährungsformen aufweisen können:
(1) Autotrophie - bei grünen Orchideen, die zumeist mit Rhizoctonias vergesellschaftet
sind und deren Kohlenstoff-Isotopensignatur sich nicht von derer benachbarter
autotropher Pflanzen unterscheidet; (2) partielle Mykoheterotrophie - bei grünen
Orchideen, die mit Ektomykorrhiza-Pilzen assoziieren und deren Kohlenstoff-
Isotopensignatur zwischen der von autotrophen und vollständig mykoheterotrophen
Begleitpflanzen liegt; (3) vollständige Mykoheterotrophie - bei nicht-
photosynthetischen Orchideen, die auf Ektomykorrhiza- oder saprotrophe Pilze
spezialisiert sind und im 13C ähnlich stark wie ihre Pilzpartner angereichert sind; sowie
(4) eine zusätzliche Ernährungsform grüner Orchideen, die vorwiegend mit Pilzen der
Gattungen Ceratobasidium und Tulasnella vergesellschaftet sind und eine relative 13C-
Abreicherung im Vergleich zu autotrophen Begleitpflanzen aufweisen. Eine derartige
Abreicherung könnte aus einem Pflanze-zu-Pilz-Nettofluss von an 13C angereicherten
Kohlenstoffverbindungen resultieren.

Untersuchungen der Ernährungsweise von Orchideen des Mediterranraumes und
der Makaronesischen Inseln lassen vermuten, dass das Vorhandensein geeigneter
Ektomykorrhiza-Pilze eine Voraussetzung für das Vorkommen partiell und vollständig
mykoheterotropher Pflanzenarten ist. Zudem wurde festgestellt, dass Orchideen, die
einen großen Anteil ihrer Nährstoffe vom Pilz beziehen, bestimmten taxonomischen
Gruppen angehören und an licht-limitierte Waldstandorte gebunden sind. Im Gegensatz
dazu scheinen Netto-Kohlenstoff-Flüsse von der Orchidee zum Pilz an offene, licht-
gesättigte Standorte gekoppelt zu sein. In einer Studie an grünen Cephalanthera-Arten
temperater Wälder wurde der Effekt des Mikroklimas auf den Grad der
Mykoheterotrophie genauer untersucht. Dabei konnte gezeigt werden, dass bessere
Lichtverfügbarkeit die Orchideen sukzessive in Richtung Autotrophie treibt. Partielle
Mykoheterotrophie ist folglich keine statische Ernährungsform, sondern ein erstaunlich
flexibler Mechanismus, der eine optimal balancierte Nutzung der natürlichen
Kohlenstoff-Ressourcen ermöglicht.

Obwohl viele Fragen innerhalb dieses noch jungen und breiten wissenschaftlichen
Feldes unbeantwortet bleiben, tragen die Untersuchungen dieser Arbeit erheblich zum
Verständnis der mykoheterotrophen Ernährungsweise bei. Die dargestellten Ergebnisse
ermöglichen Folgerungen auf die Habitatansprüche mykoheterotropher Pflanzen und
liefern somit neue Aspekte für den Artenschutz.
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Summary

The group of nonphotosynthetic (chlorophyll-lacking) plants consists of about 4.100

species that directly parasitize on autotrophic plants and more than 400 so-called myco-

heterotrophic species that rely upon organic nutrient supplies from associated fungi.

Comprising almost a quarter of all known myco-heterotrophic species, the Orchidaceae

are the most successful family among myco-heterotrophic plants. All orchids are myco-

heterotrophic during their juvenile belowground phases but most species develop green

leaves as adults. A similar situation occurs in the tribe Pyroleae (Ericaceae), consisting

of mostly photosynthetic species that, as like as orchids, produce ‘dust seeds’ without

endosperm and thus rely upon fungal support during early development. The use of

stable isotope natural abundance analyses recently revealed that some adult green and

hence putatively autotrophic Orchidaceae and Pyroleae gain organic carbon and

nitrogen from their fungal partners in addition to the carbon obtained through

photosynthesis and the mineral nitrogen assimilated from the soil. Plants exhibiting this

mixed nutritional mode have been referred to as being partially myco-heterotrophic.

Understanding the complex and fascinating ecology of partially and fully myco-

heterotrophic plants is the basis for successful conservation to protect these mostly

endangered species and to maintain their unique habitats. Analyses of stable isotope

natural abundances and molecular identification of mycorrhizal fungi are modern

techniques that can give insight into the plants’ nutritional modes under natural

conditions without experimental disturbance. Based on these two methods, additional

analyses of chlorophyll contents, light climate measurements and an in situ 13C labeling

experiment, this thesis provides some new fundamental knowledge on the intriguing

way of nutrient acquisition exhibited by several Orchidaceae and Ericaceae.

A methodological approach that allows meta-analyses and improves the

quantitative estimate of nutrient gains by partially myco-heterotrophic plants is

presented in the first chapter. Using this enhanced method, the hitherto disputed or in

most cases completely unknown nutritional status of a range of species was analyzed. It

is evidenced that the ericaceous tribe Pyroleae comprises a fully myco-heterotrophic

species (Pyrola aphylla) and stated that the leafless, ectomycorrhizal specialist orchid

Corallorhiza trifida (hitherto considered as completely relying upon mycorrhizal fungi)

is capable to photosynthesize.

Based on the broad dataset on isotope signatures and mycorrhizal associates of

numerous orchid species, the existence of a nutritionally new group of orchids could be
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proved, concluding that at least four nutritional modes can be found among terrestrial

members of the Orchidaceae: autotrophy, where green orchids have carbon isotope

signatures indistinguishable from those of surrounding autotrophs and mainly associate

with Rhizoctonia species; partial myco-heterotrophy, where green orchids have carbon

isotope signatures intermediate between those of autotrophs and myco-heterotrophs and

associate with ectomycorrhizal fungi; full myco-heterotrophy, where orchids have lost

the ability to photosynthesize, are specialized on either ectomycorrhizal or saprotrophic

fungi and are enriched in 13C similar to their host fungi; and an additional strategy found

in green orchids which mainly associate with ceratobasidioid and tulasnelloid fungi and

are depleted in 13C compared to surrounding autotrophs - possibly due to a net plant-to-

fungus transfer of 13C enriched carbon compounds.

Studies on nutritional modes of orchids from Macaronesia and the Mediterranean

region suggested that the availability of suited ectomycorrhizal fungi constrains the

occurrence of partially and fully myco-heterotrophic species. Furthermore, we found a

general pattern showing that high degrees of myco-heterotrophy in orchids are related to

certain taxonomic groups and to the light-limited understory of forest sites while net

plant-to-fungus carbon fluxes seem to be coupled to open light-saturated habitats. In a

subsequent study on green Cephalanthera spp. from temperate forests, the effect of the

prevalent micro-scale light climate on the degree of myco-heterotrophy was investigated

more explicitly. It could be demonstrated that higher irradiances successively drive the

orchids towards full autotrophy and that partial myco-heterotrophy thus is not a static

nutritional mode but a surprisingly flexible mechanism allowing a well balanced

utilization of carbon resources available in nature.

Although many questions in this broad and novel scientific field remain to be

answered, results of this thesis substantially contribute to our knowledge on myco-

heterotrophy and the mechanisms behind. The presented findings allow drawing

conclusions on habitat requirements and raise new aspects for species conservation.
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Introduction

Plants that lack chlorophyll
The  green  color  is  a  defining  feature  of  the  plant  kingdom  and  plants  are  mostly

assumed as autotrophic organisms whose entire resources, i.e., sunlight, water, CO2 and

mineral  ions,  are  acquired  from  the  abiotic  environment.  However,  about  1  %  of  the

angiosperms (estimated 4.500 species) lack chlorophyll and thus are non-photosynthetic

(Leake, 1994; Nickrent & Musselman, 2004). Most of them directly invade other plants

to acquire nutrients via haustoria, i.e., modified roots that form a morphological and

physiological link between the parasitizing plant and its host (Kuijt, 1969). Parasitic

species occur in ca. 270 genera of higher plants and cover many life forms including

annual and perennial herbs, vines, shrubs and trees (Press et al., 2005). According to the

site  of  attachment  to  the  host  they  can  be  distinguished  between  stem  parasites  (e.g.,

some mistletoes, and Cuscutaceae) and root parasites (e.g., Orobanchaceae). Parasitic

plants may also be classified as obligate holoparasites that lack chlorophyll and must

rely totally on supply from the host xylem (and phloem), and hemiparasites that contain

chlorophyll when mature and mainly obtain water with its dissolved nutrients from the

host xylem – the latter also including some facultative parasitic species (Nickrent &

Musselman, 2004).

Although it probably is the best-known form, direct parasitism is not the only way

to nutritionally exploit autotrophic plants. More than 400 species of vascular plants in

87 genera are achlorophyllous and heterotrophic, but not directly parasitic on autotrophs

(Leake, 1994). Members of that group have historically been called ‘saprophytes’ which

is misleading since it implies that the plants obtain their nutrients directly from dead

organic matter. More properly, these plants have been called ‘cheaters’ or ‘epiparasites’

(Björkman, 1960; Bidartondo et al., 2003) because they indirectly obtain photosynthetic

products from neighbouring autotrophic plants via a mycorrhizal network (with the

exception of one known species that directly parasitizes saprotrophic fungi (Ogura-

Tsujita et al.,  2009)).  In  the  following,  I  will  refer  to  these  plants  as  ‘myco-

heterotrophic’, a term that was introduced by Leake (1994) and highlights the fact that

such plants rely on organic nutrients from associated fungi.

Mycorrhiza and myco-heterotrophy
More than 80 % of land-plant families are estimated to be mycorrhizal (Trappe, 1987;

Wang & Qiu, 2006). Both major types of mycorrhiza - arbuscular mycorrhiza and
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ectomycorrhiza - have been invaded by myco-heterotrophic plants. Arbuscular

mycorrhizas are the most common mycorrhizal type and characteristically found in

species-rich ecosystems (e.g., in the tropics). They are formed between

Glomeromycetes and plants of all phyla (Bryophyta, Pteridophyta, all groups of

Gymnospermae and the majority of families in the Angiospermae). Arbuscular

mycorrhizas are morphologically variable but characterized by fungal structures

between and within the cells of the plant root cortex and an extraradical mycelium in the

soil (Smith & Read, 2008). Ectomycorrhizas are the dominant nutrient-gathering organs

in most temperate and boreal forest ecosystems (Read, 1991) formed by Basidiomycetes

and  some  ascomycetous  fungi  that  associate  with  woody  perennials.  The  typical

structural components are a sheath or mantle of fungal tissue which encloses the root, a

labyrinthine inward growth of hyphae between the epidermal and cortical cells called

the Hartig net, and an external mycelium which forms essential connections both with

the soil and with the sporocarps of fungi forming the ectomycorrhizas (Smith & Read,

2008).

While most mycorrhizal associations are typically generalistic, hitherto studies on

myco-heterotrophic plants have shown that they mainly associate with narrow clades of

fungi which are simultaneously connected with neighbouring photosynthetic plants,

e.g., mycorrhizal trees (Cullings et al., 1996; Taylor & Bruns, 1997, 1999; Kretzer et

al., 2000; Bidartondo & Bruns, 2001, 2002, 2005; Bidartondo et al., 2002, 2003;

Selosse et al., 2002; Taylor et al., 2002, 2003, 2004; Young et al., 2002; Yokoyama et

al., 2005; Franke et al., 2006; Yagame et al., 2008; Yamada et al., 2008; Merckx &

Bidartonodo, 2008). And quite recently, Ogura-Tsujita et al. (2009) demonstrated for

the first time that a myco-heterotrophic plant can also form specific mycorrhizas with

typically free-living, wood-rotting fungi and exploit these saprotrophs for organic

nutrients. The absence of strong mycorrhizal specificity has so far only been found in

three tropical species belonging to the Burmannicaeae, Triuridaceae (Franke et al.,

2006) and Orchidaceae (Dernaley & Le Brocque, 2006), respectively. To explain the

extreme fungal specificity seen in most myco-heterotrophs, two hypotheses have

advanced (Bruns et al., 2002): First, specialization might allow the plants to adapt to

particular fungi to enable the most effective capture of fungal carbon; and second, most

fungi may develop resistance to exploitation by myco-heterotrophic plants, forcing them

to specialize on fungi without this resistance.
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Full myco-heterotrophy has evolved independently multiple times, e.g., in the non-

vascular liverwort Cryptothallus mirabilis, in dicotyledons (Ericaceae, Gentianaceae,

Polygalaceae) and tens of times in monocotyledons (e.g., Orchidaceae, Burmanniaceae,

Corsiaceae) (Bidartondo, 2005). The wide occurrence of myco-heterotrophic plants

challenges the reductionist view that mycorrhizal function is limited to the enhancement

of capture of phosphorus, nitrogen or other mineral nutrients (Leake, 1994).

Full myco-heterotrophy in orchids
Besides a comprehensive methodological approach and a study on species of the

ericaceous tribe Pyroleae (henceforth referred to as pyroloids), this thesis focuses on

members of the world’s largest plant family, the Orchidaceae. The roughly 25.000

orchid species (Dressler, 2004) can be classified due to their growth habit as epiphytic,

lithophytic or terrestrial (Dearnaley, 2007). One of the most distinctive characteristics of

all orchid species is the production of minute seeds that contain only minimal reserves

of nutrients (Arditti & Ghani, 2000). Thus, very early colonization by an appropriate

fungus is a prerequisite for embryo development in these seeds, meaning that all orchids

are fully myco-heterotrophic during juvenile stages. Although the vast majority of

orchids develops leaves and is photosynthetic as adults, full myco-heterotrophy in the

adult phase may have evolved at least 20 times (Molvray et al., 2000). More than 100

terrestrial species, comprising almost a quarter of all known myco-heterotrophs turn the

Orchidaceae into the most successful family of myco-heterotrophic plants (Leake, 1994;

Taylor et al., 2002). With the exception of two genera (Galeola and Gastrodia) that

have been shown to associate with decomposers and soil saprophytes (Bidartondo,

2005; Ogura-Tsujita et al., 2009), the parasitized fungi are Basidiomycetes and

Ascomycetes of ectomycorrhizal habit that are associated with co-occurring trees or

shrubs.  In  association  with  orchid  roots,  these  fungi  do  not  form a  fungal  mantle  or  a

Hartig net but grow into the cortical root cells (Smith & Read, 2008; compare Figure 1

on page 11).

While much is known about the structure of orchid mycorrhizas, the mechanism(s)

by which nutrients are transferred from fungus to plant or plant to fungus are unclear.

The basic process of orchid mycorrhiza formation consists of fungal hyphae penetrating

orchid root cortical cell walls by localized hydrolysis, the formation of a fungal peloton

(mass of fungal hyphae) surrounded by plant plasma membrane and an interfacial

matrix of unknown origin (Beyrle et al., 1995). The fungal peloton is a temporary
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structure and eventually lysed allowing the formation of a new peloton in the same cell.

It is generally accepted that nutrient transfer (particularly carbohydrate) from fungus to

plant occurs after the peloton is lysed, but whether transfer occurs while the fungal

peloton is forming or prior to peloton lysis is unknown (Peterson & Masicotte, 2004;

Dearnaley, 2007). It is also unclear what the triggers for the lysis of fungal pelotons are,

although the involvement of orchid derived fungitoxic phytoalexins seems likely

(Beyrle et al., 1995).

Stable isotopes shed light on the nutrition of green species
In 2003, a breakthrough in the understanding of plant nutrition was achieved by

investigating the nitrogen (N) and carbon (C) stable isotope natural abundances of green

orchid species (Gebauer & Meyer, 2003). Most biologically important elements occur

as two or more stable isotopes, with one being far more abundant than the other(s).

Since fractionation against heavier isotopes is common in physical and metabolic

processes, stable isotopes allow tracking of nutrient sources and fluxes in ecosystems

(Dawson et al., 2002). An important advantage of measuring stable isotope natural

abundances is their ability to present a time-integrated picture of functional processes

that often are difficult to examine directly.

In the case of investigations on nutritional modes in orchids, the use of nutrient

sources over the whole lifespan of the plant can be interpreted without experimental

disturbance.  This  is  generally  owing  to  the  fact  that  fungal  tissues  are  enriched  in  the

heavy stable isotopes of nitrogen (15N) and carbon (13C) relative to co-occurring

autotrophic plants. Saprotrophic and ectomycorrhizal fungi living on decaying biomass

can utilize considerable amounts of the 15N enriched organic nitrogen fraction of the

humus which is not directly available to higher plants and it seems as if fungi prefer the

organic N for biomass production since it is energetically cheaper than inorganic N

compounds (Gebauer & Dietrich, 1993). The 13C enrichment in ectomycorrhizal fungi is

generally explained by their major C source which is thought to be current assimilates

supplied from the host (Högberg et al., 2001) that are enriched in 13C relative to the bulk

plant biomass (Gleixner et al., 1993; Bowling et al., 2008). The enrichment in 13C in

saprotrophic fungi is usually attributed to the utilization of organic C compounds and

the preferential use of 13C enriched carbohydrates (Boström et al., 2008).

Since fully myco-heterotrophic plants completely rely on fungi-derived nutrients,

they show isotope signatures similar to those of their fungal associates, fitting the food-
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chain model (Trudell et al., 2003). Thus, they are enriched in 15N and 13C compared to

accompanying autotrophic plants. The first investigation of stable isotope natural

abundances in terrestrial green orchids revealed that some of these putatively

autotrophic plants are as well enriched in 15N and 13C (Gebauer & Meyer, 2003). The

authors concluded that these plants’ tissues reflect the incorporation of fungi-derived

components and that they thus gain organic C and N from their fungal symbionts in

addition to the C obtained through photosynthesis and the mineral N assimilated from

the soil. This mixed mode of nutrition which involves the heterotrophic acquisition of C

and N via associated fungi as well as through autotrophic processes has been referred to

as partial myco-heterotrophy (Gebauer & Meyer, 2003) and invalidated the dogma in

plant sciences meaning that green plants (with the exception of some hemiparasites) are

autotrophic.

Available phylogenies show that partial myco-heterotrophy appeared first and

probably facilitated the emergence of myco-heterotrophy (Selosse & Roy, 2009).

Achlorophyllous forms of otherwise green species, the so-called albinos, e.g., in

Epipactis helleborine (Salmia, 1988; Delforge, 1998), E. microphylla (Selosse et al.,

2004), Cephalanthera damasonium (Julou et al., 2005) and C. longifolia (Abadie et al.,

2006) may also document the evolutionary transition from partially to fully myco-

heterotrophic nutrition (Selosse et al., 2006).

In addition to stable isotope natural abundance analyses, identification of

mycorrhizal fungi of partially myco-heterotrophic orchids plays an important role.

Mycologists have developed barcoding methods based on fungal ribosomal DNA, for

which reference sequences exist in public databases (Nilsson et al., 2008) and the

precise identification of the fungal partners is more than a purely descriptive task

because the putative ecology of these fungi provides clues on the ultimate C source that

is being exploited (Selosse & Roy, 2009). In this context, the study by Bidartondo et al.

(2004)  was  the  first  to  show  that  a  switch  of  mycorrhizal  associates  enables  partially

myco-heterotrophic orchids to loot organic nutrients. Green orchids typically associate

with Basidiomycetes of the polyphyletic form-group Rhizoctonia (Leake, 2004), which

encompasses  distantly  related  clades  of  fungi  that  are  generally  assumed  to  be

saprotrophs or plant parasites (Taylor et al., 2003; Pope & Carter, 2001). The

discovered switch of fungal partners towards ectomycorrhizal associates that are

simultaneously connected with trees allows indirect exploitation of C. Interestingly, not

only Basidiomycetes but also some ectomycorrhizal Ascomycota like Tuber and
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Wilcoxina have been found to associate with partially myco-heterotrophic orchids

(Bidartondo et al., 2004; Zimmer et al., 2007).

Mechanisms analogue to those seen in partially myco-heterotrophic orchids were

recently also found in green pyroloids (Ericaceae) (Tedersoo et al., 2007; Zimmer et al.,

2007). Similar to their fully myco-heterotrophic ericaceous sister tribes Monotropeae

and Pterosporeae (Kron et al., 2002) and to the Orchidaceae, pyroloids produce tiny

‘dust seeds’ that rely on fungal supplies for development. Adult plants form ectendo-

type mycorrhizas, referred to as arbutoid (Smith & Read, 2008) with asco- and

basidiomycetous fungi that, again, are ectomycorrhizal associates on surrounding trees

(Robertson & Robertson, 1985; Bidartondo, 2005; Tedersoo et al., 2007; Smith & Read,

2008). Although fungal hyphae also penetrate the epidermal root cells of pyroloids

(Figure 1), no lysis of fungi has been observed in these species (Tedersoo et al., 2007;

Vincenot et al., 2008).

It is mostly unknown how nutrients are transferred, but it is clear that carbohydrate

transfer does occur in both, orchid mycorrhiza as evidenced by 14C and 13C labeling of

fungi and tracing of its movement into orchid tissue (Smith, 1967; Cameron et al., 2006,

2008), and in pyroloids as suggested by Kunishi et al. (2004) and Hashimoto et al.

(2005) who observed C transfer from co-cultivated Larix kaempferi to Pyrola incarnata

via mycorrhizal fungi in 13C labeling pot experiments.

Figure 1. Light micrograph of roots of a partially myco-heterotrophic plant (Orthilia
secunda). a) mycorrhizal root lacking a fungal mantle; b) epidermal cells densely
packed with intracellular hyphal complexes. Photographs by K. Preiss; published in:
Mycorrhizal Symbiosis (Smith & Read, 2008).

b)a)

0.5 mm 1.0 mm
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Research on partial and full myco-heterotrophy is needed
Green pyroloids can be the dominant understorey plants in boreal forests covering large

surfaces by vegetative spread (Tedersoo et al., 2007) and thus may play major roles in

certain ecosystems. They are known to be particularly susceptible to disturbance from

logging or burning (Halpern & Spies, 1995; Haugset et al., 1996; Timoney et al., 1997;

Rees & Juday, 2002) and sensitive to anthropogenic nitrogen deposition (Allen et al.,

2007). Many orchid species across the planet are also in danger of extinction largely

because of human-induced habitat loss (Dearnaley, 2007).

Fungal specificity could be a major reason for the rarity and vulnerability of

orchids and pyroloids. A loss of fungal diversity associated with logging (Jones et al.,

2003) and N deposition (Wallenda & Kottke, 1998; Taylor et al., 2000) is well

documented. In Zimmer et al. (2007, not part of this thesis), we mentioned that

elimination of key fungal symbionts possibly contribute to the loss of myco-

heterotrophic plants at disturbed sites. Furthermore, we suggested that logging may

eliminate any competitive advantage that these species might possess from tolerance to

shade.

Understanding the intriguing ecology of partial and full myco-heterotrophs is the

basis for successful conservation and may help to maintain unique habitats, to protect

endangered species and even to preserve important resources like terrestrial orchids

harvested for medical purposes (Xu & Guo, 2000).
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Objectives of this thesis

The complex ecology of fully myco-heterotrophic plants and the recent discovery of

partial myco-heterotrophy raise many questions. Laboratory studies on this issue are

limited due to the complicated biological systems behind these fascinating nutritional

modes. Analyses of stable isotope abundances and molecular identification of

mycorrhizal fungi are modern techniques that can be applied to small samples collected

from the field and thus can give insight into the plants’ lifestyle under natural

conditions. Results of this thesis are mainly based on investigations using these two

methods. In addition, chlorophyll extractions, chlorophyll fluorescence measurements,

an in situ 13C labeling experiment as well as (time-integrated) micro-scale light climate

measurements were carried out. As presented in CHAPTER [1-6], the seven publications

contributing to this thesis aimed to specifically analyze plants whose nutritional status is

disputed [2,3]; to trace indications of a new nutritional mode [4]; and to investigate the

ecological constraints to partial and full myco-heterotrophy [5,6] using an enhanced

methodological approach [1].

In detail, studies were conducted to achieve the following objectives:

[ 1 ]  Designing a methodological approach that allows meta-analyses and improves the

quantitative estimate of nutrient gains by partially myco-heterotrophic plants

[ 2 ]  Testing whether the ericaceous tribe Pyroleae includes a fully myco-heterotrophic

species in addition to partially myco-heterotrophic members

[ 3 ] Investigating the hitherto controversially discussed nutritional mode of the orchid

Corallorhiza trifida using new analytical methods

[ 4 ]  Showing  that  several  green  orchid  species  exhibit  a  new  nutritional  mode  under

field conditions - confirming recent indications from a laboratory experiment

[ 5 ]  Assessing how ecological factors determine the occurrence of nutritional modes

found in orchids from the Mediterranean region and the islands of Macaronesia

[ 6 ]  Unraveling the major determinant for the degree of myco-heterotrophy in green

terrestrial forest orchids
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Synopsis

- CHAPTER 1 -

Improving estimates of nutrient gains by partial myco-heterotrophs
Since 2003, the stable isotopes of 15N and 13C have been used to investigate the

nutritional mode of partially myco-heterotrophic orchids and pyroloids (Gebauer &

Meyer). These plants that use the heterotrophic fungal nutrient source in addition to C

gained via photosynthesis and N gained through assimilation of soil borne nitrogen are

characterized by isotope signatures intermediate between autotrophic and fully myco-

heterotrophic plants. The application of stable isotope ratio mass spectrometry currently

is one of the most informative methods to assess the nutritional mode of adult partially

myco-heterotrophic plants and respective studies provided insight into the nature of 23

orchid species and 15 species belonging to the ericaceous subfamily Monotropoideae

(Gebauer & Meyer, 2003; Trudell et al., 2003; Bidartondo et al., 2004; Tedersoo et al.,

2007; Zimmer et al., 2007; Julou et al., 2005; Hashimoto et al., 2005; Abadie et al.,

2006; Cameron et al., 2006; Ogura-Tsujita et al., 2009); plus 29 further species (also

belonging to these taxa) that are presented in this thesis (CHAPTER 2-5).

To quantitatively assess the plants’ level of myco-heterotrophy, a linear two-

source mixing model based on  values of target and reference plants as introduced by

Gebauer & Meyer (2003) is generally applied. This method assumes a linear correlation

between nutrient gain from fungi and the enrichment in 15N and 13C. The endpoints of

this model are described by mean  values of autotrophic reference plants from a study

site (0 % organic nutrient gain from fungi) and the mean  values of co-occurring fully

myco-heterotrophic plants (100 % nutrient gain from fungi).

Calculations using this method may be biased by variation in irradiance and soil

nutrient availability of plots and sites from which material is collected since such

variations affect the plants’ isotope composition. Misleading results when pooling data

from different sites or different plots within an inhomogeneous study site are the

consequence. A further limitation of the conventional approach arises if fully myco-

heterotrophic species are missing at a study site, since these plants are also influenced

by environmental parameters and thus cannot serve as endpoint for calculations via the

mixing model for target plants from another site.

The approach presented in the first publication of this thesis improves the facility

of application and the significance of such model calculations by two ways: First, by

introducing normalized (i.e., site- and plot-independent) enrichment factors
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Sx = Sx - REFx with  S  as  a  single  value  of  a  sample  from  an  autotrophic,  partially

myco-heterotrophic or fully myco-heterotrophic plant, x as a specific sampling plot

within the entire study site and REF as the mean value of all autotrophic reference

plants; revealing three groups of normalized enrichment factors: R =  of  the

autotrophic reference plants (whereas the mean R of all reference plants from a site is

always 0 ‰), PMH =  of the partially myco-heterotrophic plants and MH =  of  the

fully myco-heterotrophic plants. The percentage nutrient gain from fungi (%xdf with x =

N or C) can then be calculated from the proportion between PMH and MH via the rule of

three, i.e., %xdf = ( PMH / MH) x 100. The second improvement offered in this study is

the presentation of a universal endpoint for the linear mixing model if fully myco-

heterotrophic species are missing at a study site. Means for MH
15N = 12.0 ± 1.7 ‰ and

MH
 13C = 7.2 ± 1.6 ‰ were obtained from 92 values available from the literature.

The normalized approach is advantageous compared to the former method since it

provides a possibility for more precisely calculation and statistical validation of the

percentage C and N gain of partially myco-heterotrophic plants - even without the

occurrence of neighboring fully myco-heterotrophic plants. It furthermore allows meta-

analyses between very diverse sites and representation of multiple datasets within one

graph. For example, in Figure 1 of CHAPTER 5, the application of the new approach was

required  to  merge  data  from  20  different  sites.  In  addition,  reactions  in  the  degree  of

myco-heterotrophy to environmental changes (as the effect described in CHAPTER 6) can

be assessed more exactly when considering influences of the microclimate on a fine

scale, i.e., when regarding normalized, plot-independent  values instead of mean

values from a site.

Based on data in Appendix A of the manuscript, the universal MH should always

be adjusted by new information that arises from subsequent studies. Since the

publication of this article, further studies including enrichment factors of myco-

heterotrophic plants came up (Monotropa uniflora in Ogura-Tsujita et al., 2009; Pyrola

aphylla, Corallorhiza maculata, Pterospora andromedea in  CHAPTER 2  of  this  thesis;

Neottia nidus-avis in CHAPTER 5 of this thesis) and slightly shifted the model endpoints

to values of 12.6 ± 2.5 ‰ for MH
15N and 7.2 ± 1.4 ‰ for MH

 13C (means obtained from

meanwhile 147 samples of nine species that completely rely on ectomycorrhizal fungi).

Since Ogura-Tsujita et al. (2009) have recently shown that the exploitation of

saprotrophic fungi by a fully myco-heterotrophic orchid leads to differently enriched

plant tissue, it has to be stated, that the universal endpoints presented here should only
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be used for calculations on partially myco-heterotrophic species that invade

ectomycorrhizas for nutrient acquisition. However, that is the case for all hitherto

known partially myco-heterotrophic plants.

- CHAPTER 2 -

Full myco-heterotrophy in the ericaceous tribe Pyroleae
This chapter of the thesis focuses on species of the Ericaceae that are of interest in terms

of partial and full myco-heterotrophy. As previously mentioned, pyroloids represent a

sister tribe of the two further tribes Pterosporeae and Monotropeae within the ericaceous

subfamily Monotropoideae (Kron et al., 2002). Members of the Pyroleae are all myco-

heterotrophic in their early stages of development (Leake, 1994) but contain many taxa

that develop green leaves and are (at least partially) autotrophic as adults (Tedersoo et

al., 2007; Zimmer et al., 2007). Whereas the Pterosporeae and Monotropeae exclusively

consist of fully myco-heterotrophic species, botanists and mycologists have long

debated the potential for full myco-heterotrophy within the Pyroleae, especially with

regard to the achlorophyllous Pyrola aphylla.  First  indications  for  its  myco-

heterotrophic status arose in our previous broad study on nutrient gains from fungi in

several pyroloids, monotropoids and orchids using stable isotope abundances (Zimmer

et al., 2007). However, that study included only few replicates for P. aphylla and the

relevance of the findings to the overall distribution of this species thus remained

unknown. The publication of CHAPTER 2 confirms previous findings by presenting the C

and N stable isotope signatures for three pyroloid species (P. aphylla, P. picta and

Chimaphila umbellata) from more intensively sampled populations and sampling over a

wider geographic region.

No C gain from fungi could be found for the green species P. picta and C.

umbellata, although they were highly enriched in 15N. We propose two potential

possibilities for this pattern. First, although all pyroloid seedlings are myco-

heterotrophic, once they develop leaves, they primarily gain C through photosynthesis,

but continue to gain N through an unknown uptake mechanism similar to myco-

heterotrophic plants. A second possibility is that C gains via a myco-heterotrophic

strategy are still present, but the analysis of plants’ bulk tissue isotope abundances is not

sensitive enough to detect these gains, which may only take place during certain

seasonal or plant developmental periods (Taylor et al., 2004).



ON THIS THESIS Synopsis 17

P. aphylla exhibited strong enrichments in 15N and 13C, evidencing its fully myco-

heterotrophic status. Haber (1978) assumed that P. aphylla was one of many

morphological forms of P. picta and connected by a rhizome to nearby leafy rosettes.

Because of significant differences in the isotope signatures of P. picta and P. aphylla

this study provides no substantiating evidence for rhizomatous connections between the

two.

The fact that P. aphylla is  a  nutritionally  distinct  species  is  of  even  greater

importance as this species has found to be a mycorrhizal generalist (Hynson & Bruns, in

prep). Hence, with exception of albino forms of three orchid species (Epipactis

microphylla, Selosse et al., 2004; Cephalanthera damasonium, Julou et al., 2005; C.

longifolia, Abadie et al., 2006), P. aphylla represents the first known non-tropic plant

species that is not specialized on a narrow clade of fungi. This important finding

indicates that the loss of photosynthesis in myco-heterotrophs outside the tropics is not

contingent upon fungal specialization (Hynson & Bruns, in prep).

Adding the information on isotope signatures of P. aphylla to the dataset  on the
15N and 13C enrichment of fully myco-heterotrophic plants presented in CHAPTER 1

broadens the significance of the universal model endpoints since they now comprise

members of a further plant tribe.

- CHAPTER 3 -

The nutritional mode of Corallorhiza trifida
While the 10 terrestrial species of the orchid genus Corallorhiza are in general known to

be fully myco-heterotrophic, C. trifida might be an exception. Although its

‘mycotrophic’ nature was already recognized in 1898 (Jennings & Hanna), many

questions concerning its nutritional mode have been raised by pigment analyses and

assimilation experiments (Montfort & Küsters, 1940) as well as by comparative studies

of the plastid DNA (Freudenstein & Doyle, 1994). However, despite contrary evidence,

C. trifida remained classified as a full myco-heterotroph. This chapter comprises two

publications (presented as CHAPTER 3.1 and 3.2) that include methods hitherto not

applied in this context, aiming to shed more light on the nutrient source(s) utilized by C.

trifida.

Molecular identification of the fungi associating with C. trifida individuals from

the investigated population thriving in a dense broadleaf forest dominated by Fagus

sylvatica showed mycorrhizal specificity towards ectomycorrhizal fungi of the
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basidiomycete genus Tomentella which is in accordance with previous findings (Zelmer

& Currah, 1995; Taylor, 1998; McKendrick et al., 2000). Analyses of the 15N and 13C

natural abundance in above-ground tissues of C. trifida revealed that autotrophic

processes significantly contribute to the nutrient acquisition in adult plants. Calculations

via the linear mixing-model suggest that this species may supply about half of its N

demands and approximately one fourth of its C demands through same processes as

autotrophic plants (CHAPTER 3.1). An in situ 13C pulse labeling experiment that was

conducted one year later on individuals of the same population indicated that

photosynthesis may play a considerably less important role than suggested on basis of

the mixing-model calculations (CHAPTER 3.2). However, chlorophyll fluorescence

measurements and chlorophyll extractions of both studies confirmed the presence of

active photosystem II reaction centers and a chlorophyll a:b ratio similar to that found in

other C3 plants.

A major limitation of calculating the proportion of fungi-derived C using the

mixing-model is that the contribution of fungal C to biomass (anabolism) but not to

catabolism is established via this method. Investigations on respiratory CO2 will thus be

necessary to build a global view of C metabolism in partially myco-heterotrophic

species (Selosse & Roy, 2009). The interpretation of data from isotope pulse labeling

experiments, however, is restricted as well since assimilation rate is only investigated

during a short time and a very small part of the plants’ life. Further physiological

analyses are required to ascertain whether species with low chlorophyll are quite

incapable of photosynthesis in all organs and seasons (Rasmussen & Rasmussen, 2009).

Despite differing evidence on the amount of C that is assimilated in adult C.

trifida,  studies  in  CHAPTER 3 come to the conclusion that this species is capable of

photosynthesis and represents a late stage in the evolutionary development towards

complete myco-heterotrophy. C. trifida therewith  is  one  of  the  rare  examples  of

photosynthetic orchids that display specificity towards mycorrhizal fungi. Two further

species that were found to exhibit a similar lifestyle in the Mediterranean region are

mentioned in CHAPTER 5.

- CHAPTER 4 -

Confirming a new nutritional mode in green orchids
The study of this chapter provides the counterpart to recent findings by Cameron et al.

(2006, 2008) who studied C fluxes between adult plants of the green orchid species



ON THIS THESIS Synopsis 19

Goodyera repens and its associated mycorrhizal fungus (Ceratobasidium cornigerum).

Using 14C-labeled carbon fed either to the mycelia of the orchids’ fungal symbiont or to

the plant as 14CO2, Cameron et al. (2008) were able to quantify C transport between the

orchid and fungus. They found that the net transfer of C from G. repens to C.

cornigerum was over five times greater than that of C transported from the fungus to the

plant. As mentioned in their recent article and the commentary by Johnson (2008), C

allocation  to  fungal  biomass  within  the  orchids’  root  cannot  be  separated  from that  to

the roots alone; nor can C respiration from the plant versus that from the fungus.

Furthermore, such labeling experiments give information of C flow within a system for

only a relatively short time period and since these measurements were carried out in the

laboratory, it is difficult to relate results to field settings.

Analyzing the 15N and 13C natural abundance of two Goodyera species collected

in  the  field  (G. repens and G. oblongifolia),  we  found  that  both  species  were

significantly enriched in 15N compared to surrounding autotrophic plants (indicating

gain of organic N from fungi) but at the same time depleted in 13C. The physiological

mechanism leading to this relative depletion is unknown but may be related to the

transfer of 13C enriched carbon compounds from these orchids do their associated fungi

(Gleixner et al., 1993; Bowling et al., 2008) which would fit well with Cameron et al.’s

(2006, 2008) findings of C transfer from orchid to fungus.

Since our results gained from stable isotope natural abundance analysis of field-

collected samples give an integrated view of C assimilation throughout the period

during which the tissue was synthesized, we can confirm that these two orchid species

exhibit a distinct nutritional strategy.

As can be seen in CHAPTER 5, studies from the Mediterranean region and

Macaronesia revealed further orchid species that are depleted in 13C compared to

autotrophic reference plants. While our findings in CHAPTER 4 represent the link

between laboratory investigations by Cameron et al. (2006, 2008) and the reaction of

Goodyera plants under natural conditions, this knowledge enables us to interpret results

of  CHAPTER 5 concluding that several orchid species exhibit a hitherto unknown

nutritional mode. Thus, at least four nutritional modes can be found among terrestrial

members of the Orchidaceae, i.e., autotrophy, where green orchids have C isotope

signatures indistinguishable from those of surrounding autotrophs and mainly associate

with Rhizoctonia species; partial myco-heterotrophy, where green orchids have C

isotope signatures intermediate between those of autotrophs and myco-heterotrophs and
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associate with ectomycorrhizal fungi; full myco-heterotrophy, where orchids have lost

the ability to photosynthesize, are specialized on either ectomycorrhizal or saprotrophic

fungi and are enriched in 13C similar to their host fungi; and an additional strategy found

in green orchids from the tribes Cranichideae and Orchideae which mainly associate

with ceratobasidioid and tulasnelloid fungi (CHAPTER 5) and are depleted in 13C

compared with surrounding autotrophs.

- CHAPTER 5 -

Constraints to nutritional modes in orchids
The Mediterranean region is a hotspot of orchid diversity, for example, there are 108

orchid species in Italy alone (Ministero dell’ Ambiente e della Tutela der Territorio,

2007). In striking contrast, the adjacent climatically similar Macaronesian region is poor

in  orchid  diversity  with  only  16  species,  including  not  more  than  eight  species  on  the

Canary Islands (Eriksson et al., 1979; Hohenester & Welß, 1993). Considering the fact

that orchids typically produce ‘dust seeds’ which are easily transported over large

distances by the wind, seed dispersal between the Mediterranean and Macaronesia is to

be expected, which raises the question for the factor(s) limiting orchid diversity in

Macaronesia.

It has never been investigated whether the occurrence of full and partial myco-

heterotrophy is coupled to specific types of habitats and how the diversity of

ectomycorrhizal plants and fungi constrain the distribution of these nutritional modes.

The study presented in this Chapter is the widest screening for myco-heterotrophy in

natural ecosystems carried out to date. We investigated the nutritional mode and fungal

associates of Mediterranean (continental Italy and Sardinia) and Macaronesian

(Tenerife) orchid species  growing in open habitats, shrubland, forest gaps and forests to

test whether the occurrence of full and partial myco-heterotrophy is restricted to habitats

distinguished by light regime and available fungi.

Based on their isotope signatures, three distinct categories of orchids were

obtained from a cluster analysis. One group consisted of orchids collected at forest sites.

These species were members of the tribe Neottieae, associated with ectomycorrhizal

fungi and turned out to be strongly or fully myco-heterotrophic. Another group included

orchids of open habitats and forest gaps belonging to the tribes Orchideae and

Cranichideae. In these species, root endophytes were frequently found while

associations with (potential) ectomycorrhizal fungi were quite rare. Isotope data of some
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Aceras, Orchis and Ophrys species (tribe Orchideae) within this group showed

significant depletion in 13C relative to their autotrophic references. As presented in

CHAPTER 4 of this thesis, 13C depletion might be a consequence of a specific net plant-

to-fungus C flux. An intermediate group obtained from the cluster analysis was

composed of orchids that showed weak C gains through myco-heterotrophy, occurring

in all four habitat types.

 While orchids from continental Italy and Sardinia cover all three clusters, the

group of forest orchids that are highly or fully dependent upon their mycorrhizal fungi

(Neottieae) is missing on Tenerife and even though forests are present on the

Macaronesian islands, there are no reports for any occurrence of neottioid orchids in the

Macaronesian region (Eriksson et al., 1979; Hohenester & Welß, 1993). Our results

from vegetation surveys and molecular identification of mycorrhizal fungi raise the

hypothesis that this pattern is caused by the reduced number of ectomycorrhizal plants

and/or suitable ectomycorrhizal fungi. Based on our wide spectrum of species and

habitats investigated, we conclude that a high degree of myco-heterotrophy in orchids is

related to certain taxonomic groups (i.e., Neottieae) and to the light-limited understorey

of forest sites while we suggest that a net plant-to-fungus C flux is coupled to open

light-saturated habitats.

Of particular interest with regard to CHAPTER 3 are the isotope signatures found

for Limodorum species of this study. These orchids are characterized by reduced leaves,

violet color of the stem, specific association with ectomycorrhizal fungi (Girlanda et al.,

2006) and have repeatedly been described as nonphotosynthetic or fully myco-

heterotrophic, respectively (Fitter et al., 1985; Flora Europaea, 2001; Gebauer & Meyer,

2003). Here we show that Limodorum abortivum and L. trabutianum are less enriched

in 13C than fully myco-heterotrophic plants and conclude that they exemplify a late

stage of partial myco-heterotrophy. They thus represent a Mediterranean parallel to the

temperate-boreal distributed Corallorhiza trifida examined in detail in CHAPTER 3.

- CHAPTER 6 -

The major determinant for the degree of myco-heterotrophy
Although it can be hypothesized that many more green plants than hitherto thought are

partially myco-heterotrophic, we know very little on the mechanisms behind this

ecologically relevant phenomenon. Previous studies indicate a large range in the

proportion of fungi-derived C between and within partially myco-heterotrophic species
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(Gebauer & Meyer, 2003; Bidartondo et al., 2004; Julou et al., 2005; Abadie et al.,

2006; Tedersoo et al., 2007; Zimmer et al., 2007; CHAPTER 2-5 of this thesis) but the

driving factors for this variation remained mostly unknown. In 2005, Gebauer suggested

for the first time that light availability may determine the degree of myco-heterotrophy

since the contribution from photosynthesis should be reduced at very dark sites.

Furthermore, we could see that Cephalanthera longifolia was less dependent upon

organic nutrient supply from mycorrhizal fungi when growing at a more exposed site in

continental Italy (23 % relative light availability) compared to individuals from a dense

Quercus ilex forest on Sardinia (2 % relative light availability) (CHAPTER 5).

To test whether the exploitation of mycorrhizal fungi is affected by the prevalent

light climate, we combined leaf stable isotope natural abundance analysis with time

integrated micro-scale light climate monitoring and investigated two partially myco-

heterotrophic orchid species (Cephalanthera damasonium and C. rubra)  together  with

12 fully autotrophic and one fully myco-heterotrophic reference species.
13C values in leaves of autotrophic non-orchids and of the fully autotrophic

orchid species Cypripedium calceolus showed a significant, positive correlation with

light availability which is based on the C isotope discrimination during C3

photosynthesis and on stomatal regulation affecting the intercellular partial pressure of

CO2 (Farquhar et al., 1989). Leaf isotope signatures of the achlorophyllous orchid

Neottia nidus-avis were not correlated with the micro-scale light climate since the C

demand of this species is completely covered through organic compounds supplied by

mycorrhizal fungi.

A quite interesting pattern was found for the two green Cephalanthera species.

Relating the isotope data to references of the respective plot, a true relation between

enrichment factor and micro-scale light availability becomes obvious. The darker a

habitat, the more fungi-derived C is incorporated by the orchids. Under low light

conditions, Cephalanthera individuals receive about half as much of fungi-derived C as

achlorophyllous plants while the proportion of heterotrophic nutrition decreases with

increasing irradiance. At sufficiently high irradiances, adult Cephalanthera plants

completely cover their C demands through assimilation of atmospheric CO2 as like as

fully autotrophic non-orchids and orchids.

This study demonstrates that partial myco-heterotrophy is not a static nutritional

mode but a surprisingly flexible mechanism allowing a well balanced utilization of

carbon resources available in nature. The fascinating finding that the degree of myco-
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heterotopy may successively change – driven by the prevalent micro-scale light climate

– further supports our results presented in CHAPTER 5  where  we  conclude  that  strong

and full myco-heterotrophy in orchids is related to light-limited forest understories

while net plant-to-fungus C flux is coupled to open light-saturated habitats. In general,

the response to relative light availability could explain several discrepancies between

previous studies that investigated the trophic status of numerous green Orchidaceae and

Ericaceae.
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Outlook

This thesis provides new insights into the intriguing way of nutrient acquisition

exhibited by several Orchidaceae and Ericaceae. The hitherto controversial or in most

cases completely unknown nutritional status of a range of species was analyzed,

revealing the existence of a nutritionally new group of orchids and responding to many

further questions on the epiparasitic lifestyle. It is suggested that the availability of

suited ectomycorrhizal fungi constrains the occurrence of partially and fully myco-

heterotrophic species and the finding that irradiance is the major determinant for the

degree of myco-heterotrophy in Cephalanthera spp.  may  represent  a  milestone  in  the

understanding of these species’ ecology. Results of this thesis thus allow drawing

conclusions on habitat requirements and raise new aspects for species conservation.

Although some fundamental issues are addressed in the studies presented inhere, a

large number of questions remain open. It is, for example, poorly studied whether

partial myco-heterotrophy occurs in further plant families. Thus, green plants that are

related to fully myco-heterotrophic species should be examined in this context (e.g.,

among the Burmanniaceae, Gentianaceae and Polygalaceae). The molecular

mechanisms behind nutrient transfers between fungi and myco-heterotrophic plants

remain to be detected as well. Ongoing studies using stable isotope natural abundance

analyses to investigate the plant-fungus exchange of further elements like sulfur,

hydrogen and oxygen may increase the understanding of the complex mechanisms and

ecological effects of myco-heterotrophy. At the moment, the costs for surrounding

autotrophic plants and fungi are unknown and in the case of partial myco-heterotrophs,

we even do not know whether we face a parasitism or a somehow balanced exchange.

As mentioned by Selosse & Roy (2009), organic nutrient gain could also be

‘compensated’ by providing vitamins or a shelter (physical or chemical protection) for

the fungus. Specific investigations are required to prove such assumptions. With regard

to fully myco-heterotrophic plants, it should also be stated that hitherto studies have

mainly focused on temperate and mediterranean regions although the majority of myco-

heterotrophs occur in the tropics where ectomycorrhizal fungi are less abundant. Isotope

signatures of myco-heterotrophic plants associating with arbuscular mycorrhizal fungi

are still unknown and the mycorrhizal features of tropical achlorophyllous plants are

poorly studied. Thus, mechanisms of nutrient acquisition in these plants could be more

diverse than it currently appears.
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Exciting times lie ahead for further exploring the molecular, physiological, ecological

and evolutionary processes in myco-heterotrophic plants and their mycorrhizal fungi.

Stable isotopes will continue to be an informative method to investigate relationships

between these plants and their mycobionts. The following table conclusively

summarizes the current knowledge on fungi, plants and plant isotope signatures that are

of importance in the broad scientific field dealing with full and partial myco-

heterotrophy.

Table 1. Overview  of  the  plant  families  comprising  fully  myco-heterotrophic  or
partially myco-heterotrophic species that are either mycorrhizal generalists or
specialized to certain ectomycorrhizal, saprotrophic or arbuscular mycorrhizal fungi;
including references for information on the plants’ carbon and nitrogen stable isotope
natural abundances.

FULLY MYCO-HETEROTROPHIC SPECIES
Mycorrhizal associates Plant family Natural isotope signatures

specific
ectomycorrhizal fungi

Orchidaceae, Ericaceae reviewed in CHAPTER 1;
Ogura-Tsujita et al. (2009)

specific
saprotrophic fungi

Orchidaceae Ogura-Tsujita et al. (2009)

specific arbuscular
mycorrhizal fungi

Burmanniaceae, Gentianaceae,
Polygalaceae, Aneuraceae, ...

unknown

no strong specificity Orchidaceae, Burmanniaceae,
Ericaceae, Triuridaceae

first data herein (CHAPTER 2) *

CHLOROPHYLL-CONTAINING SPECIES
Mycorrhizal associates Plant family Natural isotope signatures

specific
ectomycorrhizal fungi

Orchidaceae first data herein (CHAPTER 3, 5)

no strong specificity Orchidaceae, Ericaceae e.g., Bidartondo et al. (2004) ;
Zimmer et al. (2007);
first explanation for relative 13C
depletion herein (CHAPTER 4, 5)

* for data on achlorophyllous forms (albinos) of otherwise green species within the
Orchidaceae see Selosse et al., 2004; Julou et al., 2005 and Abadie et al., 2006
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Abstract
The stable isotopes 15N and 13C can be used to investigate the nutritional mode of

terrestrial orchids and pyroloids (Monotropoideae, Ericaceae). Some of these plants are

putatively autotrophic but meet their nitrogen and carbon demands by gaining organic

compounds (e.g., amino acids) from mycorrhizal fungi. This so called partially myco-

heterotrophic nutrition is reflected by their isotope signature. The application of a two-

source linear mixing model on  values of such plants allows calculating the percentage

of N and C derived from their associated mycorrhizal fungi. Here we present an

approach to improve estimates of the plants’ degree of myco-heterotrophy. Due to the

presented conversion of  values into enrichment factors ( ), results obtain a better

resolution and data from various studies become normalized which facilitates combined

representations and meta-analyses.

Introduction
Isotopes are known as excellent tracers for mixing processes and indicate which sources

dominate in the mixtures (Fry, 2006). Since 2003, the stable isotopes of nitrogen (15N)

and carbon (13C) have been used to investigate the nutritional mode of terrestrial orchids

(Gebauer & Meyer, 2003). It has been shown, that some green orchids are not

completely autotrophic, gaining C via photosynthesis and N via assimilation of soil

borne nitrogen, but cover significant proportions of their nutrient demands through

organic C and N compounds derived from mycorrhizal fungi. Since these fungi are

enriched in 15N (Gebauer & Dietrich, 1993) and 13C (Gleixner et al., 1993) compared to

accompanying autotrophic vegetation, these orchids’ nutritional mode is reflected in

their isotope signatures. In addition to the obligate autotrophic and the recently

described green orchids that are supplied by fungi, there are more than 100 non-

photosynthetic species within the Orchidaceae that entirely rely on heterotrophic

nutrient supplies from associated fungi (Leake, 1994). These chlorophyll-lacking plants

are referred to as myco-heterotrophic (Leake, 1994) and show 15N and 13C values

similar to those of their ectomycorrhizal fungal partners, fitting the food-chain model

(Trudell et al., 2003). The green orchids that may use both the fungal and the

autotrophic nutrient source accordingly, are characterized by an isotope signature

intermediate between autotrophic and myco-heterotrophic plants. These mixotrophic
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plants are more precisely referred to as partially myco-heterotrophic (Gebauer & Meyer,

2003).

Since partially myco-heterotrophic plants become more or less independent of

irradiance,  they  are  able  to  colonize  shaded  habitats  and  some of  them grow in  dense

forests under very dark conditions without any other understorey vegetation. Moreover,

these green orchids were found to switch their endomycorrhizal associates from the

typically associated free living saprotrophic fungi towards fungi that simultaneously

form ectomycorrhizas with trees (Bidartondo et al., 2004; Selosse et al., 2004). Since

such ectomycorrhizal fungi are the sole associates of fully myco-heterotrophic plants, it

was hypothesized that partially myco-heterotrophic plants provide a missing link in the

evolution of myco-heterotrophy (Bidartondo et al., 2004). Recently, partial myco-

heterotrophy was also described in members of the Ericaceae (Monotropoideae,

Pyroleae) (Tedersoo et al., 2007; Zimmer et al., 2007), raising the question whether

there are even more green plant taxa concealing this nutritional mode. The investigation

and understanding of the ecological attributes of such mixotrophic and commonly

endangered plants is important in terms of nature conservation. The application of stable

isotope  ratio  mass  spectrometry  currently  is  one  of  the  most  informative  methods  to

assess the nutritional mode of partially myco-heterotrophic plants and already provided

insight into the nature of 23 orchid species and 14 species belonging to the ericaceous

subfamily Monotropoideae (Gebauer & Meyer, 2003; Trudell et al., 2003; Bidartondo et

al., 2004; Tedersoo et al., 2007; Zimmer et al., 2007; Julou et al., 2005; Hashimoto et

al., 2005; Abadie et al., 2006; Cameron et al., 2006; Zimmer et al., 2008). To

quantitatively assess the plants’ level of myco-heterotrophy, a linear mixing model

based on  values  of  target  and  reference  plants  is  generally  applied  (see  Gebauer  &

Meyer, 2003). Although this method is well suited to interpret the information gained

from isotope abundance analyses of plant material from a specific site, the following

approach provides suggestions to further improve the facility of application and the

significance of such model calculations.

Hitherto constraints of the linear two-source mixing model
In the case of partial and full myco-heterotrophy, isotope abundances are mainly

presented in the  notation, as: 15N or 13C = (Rsample/Rstandard-1) x 1000 [‰] where

Rsample and Rstandard are the ratios of heavy isotope to light isotope of the samples and the
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respective standard. To calculate the relative contribution of fungi-derived nutrients to

the plants total N and C gain, a linear two-source mixing model based on these  values

is applied. This method assumes a linear correlation between nutrient gain from fungi

and the enrichment in 15N and 13C, respectively. Thus, the endpoints of this model are

described by mean  values of autotrophic reference plants from a study site (0 %

nutrient  gain  from  fungi)  and  the  mean  values of co-occurring fully myco-

heterotrophic plants (100 % nutrient gain from fungi). The percentage N and C gain of

the individual target plants (%xdf with x =  N  or  C)  that  are  assumed  to  be  partially

myco-heterotrophic can be calculated according to the following equation (Gebauer &

Meyer, 2003):

%xdf = ( xPMH - xR) / MH x 100

with xPMH as the individual  value of a partial  myco-heterotrophic plant, xR  as the

mean  value of all autotrophic reference plants from the study site and MH as the mean

enrichment factor of fully myco-heterotrophic plants relative to obligate autotrophic

reference plants from the same site.

Figure 1. Mean (± 1 SD) values of 15N and 13C in leaves of two target plant species
(triangles), two fully myco-heterotrophic species (squares) and eight fully autotrophic
reference species (circles) collected at a beech forest in SE Germany (open symbols)
and at a mixed pine forest in S California (closed symbols). Data selected from Zimmer
et al. (2007). Arrows indicate shifts in 15N and 13C values of target plants, fully myco-
heterotrophic species and autotrophic references between the two study sites.
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Calculations using this equation may be biased by the heterogeneity of a study site, e.g.,

variation in irradiance and soil nutrient availability. These variations, accordingly, may

also affect the isotope composition of plant material collected from different plots

within such a site. As shown in Figure 1, this effect becomes even more obvious when

values  of  plant  material  from  diverse  sites,  that  are  located  at  different  continents  or

climatic regions, are compared. In this example, the Mediterranean climate of S

California leads to less negative 13C  values  of  plant  leaf  tissue  compared  to  leaf

material of plants sampled in a temperate forest in SE Germany. This shift occurs

irrespective of the nutritional mode of the respective plants (autotrophic references,

fully myco-heterotrophic species or partially myco-heterotrophic target plants).

Moreover,  as  a  result  of  different  soil  properties, 15N  values  of  plants  from  the  two

sites vary significantly as well.  These variations in  values also shift the endpoints of

the linear mixing models and it becomes obvious that pooling data from diverse sites to

calculate the percentage of fungi-derived C and N in a partial myco-heterotrophic plant

will produce misleading results. The same problem applies to an inhomogeneous study

site when replicates taken from different plots within that site are pooled.

Another limitation of the conventional approach arises if fully myco-heterotrophic

plants are missing at a study site, which frequently is the case. Since  values of fully

myco-heterotrophs are also influenced by environmental parameters, they cannot serve

as endpoint for calculations via the mixing model for target plants from a different site.

Thus, the conventional application of the linear two-source mixing model requires a

simultaneous occurrence of plants reflecting both end points of nutrition (i.e., fully

autotrophic references and fully myco-heterotrophs) in addition to the target species

(i.e., partially myco-heterotrophic plants).

In a recent study, Zimmer et al. (2007) showed that the 15N and 13C enrichment of

a broad spectrum of fully myco-heterotrophic plants from various sites, relative to their

accompanying autotrophic vegetation, is a fairly constant factor and this discovery

provides the opportunity to improve the hitherto applied model.

Improved application of the linear two-source mixing model

Conversion of  values into  values
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Based on common convention, the enrichment factor  describes the isotope enrichment

of a reaction product relative to that of the substrate, as:

 = (  - 1) x 1000

with  as the isotope fractionation (Högberg, 1997). Thus,  is  also expressed as units

per mil (‰) and may be positive or negative. Emmett et al. (1998) used  as the

difference between 15N abundance in soil and vegetation to allow for initial differences

on soil and plant  values due to previous land management and soil age. Gebauer &

Taylor (1999) calculated 15N enrichment factors for fungal fruit bodies in relation to

their  substrate  to  assess  if  the  isotope  composition  of  fungi  is  also  influenced  by  their

mycorrhizal or saprotrophic life form. In the present approach, we define the enrichment

factor  as the relative enrichment in heavy isotopes (15N and 13C)  compared  to

accompanying autotrophic vegetation. This expression of the isotope signature is

applied to fully and partially myco-heterotrophic plants and also to autotrophic

reference plants.

As already mentioned above and detailed in Gebauer & Meyer (2003), it is

important to maintain the spatial resolution of sampling plots as high as possible to

minimize impacts caused by variation of environmental parameters. For further

applications we therefore suggest the use of normalized enrichment factors based on

individual samples from a specific sampling plot as:

Sx = Sx - REFx

with S as a single value of a sample from an autotrophic, partially myco-heterotrophic

or fully myco-heterotrophic plant, x as a specific sampling plot within the entire study

site and REF as the mean value of all autotrophic reference plants. Hence, if fully myco-

heterotrophic plants are present at the study site, three groups of normalized enrichment

factors will result from the conversion: R =  of  the  autotrophic  reference  plants

(whereas the mean R of all reference plants from a site is always 0 ‰), PMH =  of the

partially myco-heterotrophic plants and MH =  of the fully myco-heterotrophic plants

(Figure 2). The percentage nutrient gain from fungi (%xdf with x = N or C) can then be

calculated from the proportion between PMH and MH via the rule of three, i.e.,

%xdf = ( PMH / MH) x 100.
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Significant differences from 0 % (no nutrient gain from fungi) and from 100 %

(nutrients exclusively derived from mycorrhizal fungi) are verified by statistical tests

between PMH and R or PMH and MH, respectively, since the enrichment factors already

reflect the nutritional mode and the percentage C and N gain is just a more convenient

form of data presentation. These site independent enrichment factors can remarkably

enhance the application of the linear two-source mixing model.

Figure 2. Mean (± 1 SD) enrichment factors ( ) of 15N and 13C in leaves of two target
plant species (triangles), two fully myco-heterotrophic species (squares) and eight fully
autotrophic reference species (circles) collected at a beech forest in SE Germany (open
symbols) and at a mixed pine forest in S California (closed symbols). Data selected and
converted from Zimmer et al. (2007).

The upper endpoint of the linear two-source mixing model

Based on data from previous studies (see Table 1), enrichment factors MH are available

for as much as 92 non-photosynthetic individuals from three monotropoid (Ericaceae)

and four orchid species. Although the enrichment factors of these single values are

normally distributed (Shapiro-Wilk test, P < 0.05; Figure 3a,b), there are significant

differences in the 15N and 13C enrichment between single species (One-way ANOVA, P

< 0.001). This effect is not based on systematic differences between species belonging
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to the Orchidaceae and Ericaceae (Student’s t-test, 15N: P = 0.991, 13C: P = 0.327),

but reflects a general variation between species. However, due to this species effect and

the unequal replications between the different species, an overall mean enrichment

factor of fully myco-heterotrophic plants should not be calculated as the mean of the 92

individual values but as mean of the species’ particular mean enrichment factors, as

shown in Table 1.  Although the arithmetic means of the species mean enrichment

factors ( MH
15N = 12.0 ± 1.7 ‰ and MH

 13C = 7.2 ± 1.6 ‰) do not account for variances

within species, they are close to the weighted means that place greater weight on those

values that have less variation ( MH
 15N = 11.9 ± 0.7 ‰ and MH

 13C = 6.9 ± 0.2 ‰), and

thus still represent a reliable endpoint for the linear mixing model. The advantage of

assessing a universal MH becomes apparent if fully myco-heterotrophic plants are

lacking at a study site or occur in insufficient frequency for statistical analyses.

Table 1. Relative enrichment in 15N and 13C ±  1  SD  [‰] in leaves of fully myco-
heterotrophic Ericaceae (E) and Orchidaceae (O) compared to accompanying
autotrophic plants ( MH). n = number of replicates. Data based on literature as indicated
by superscript numbers: 1Zimmer et al., 2007; 2Zimmer et al., 2008; 3Gebauer & Meyer,
2003; 4Bidartondo et al., 2004; 5Julou et al., 2005; 6Abadie et al., 2006. For enrichment
factors of all single individuals (n = 92) see Appendix A.

Species MH
15N ± 1 SD MH

13C ± 1 SD n

Monotropa hypopitys (E) 1, 2 12.1 ± 1.9 8.8 ± 0.9 9

Sarcodes sanguinea (E) 1 14.6 ± 1.9 5.4 ± 1.4 14

Pterospora andromedea (E) 1 9.4 ± 1.4 5.3 ± 1.3 9

Corallorhiza maculata (O) 1 12.8 ± 2.0 7.2 ± 0.7 10

Neottia nidus-avis (O) 1,2,3,4 10.5 ± 3.0 8.1 ± 0.7 31

Cephalanthera damasonium albino (O) 5 13.1 ± 1.5 9.2 ± 0.9 10

Cephalanthera longifolia albino (O) 6 11.8 ± 1.6 6.6 ± 0.2 9

Arithmetic mean 12.0 ± 1.7 7.2 ± 1.6
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Figure 3. Absolute frequency of 15N  (a)  and 13C  (b)  enrichment  factors  ( ) of seven
obligate myco-heterotrophic plant species or albino varieties, respectively, from two
plant families (total n = 92, see Appendix A). Ericaceae: M. hypopitys, Monotropa
hypopitys; S. sanguinea, Sarcodes sanguinea; P. andromedea, Pterospora andromedea.
Orchidaceae: C. maculata, Corallorhiza maculata; N. nidus-avis, Neottia nidus-avis; C.
damasonium, Cephalanthera damasonium; C. longifolia, Cephalanthera longifolia.
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Advantages of the normalization approach
The hitherto method implied the pooling of autotrophic reference plants from a study

site irrespective of their sampling plot within that site. Subsequently, individual values

of partially myco-heterotrophic plants from specific sampling plots were compared to

the pooled references, leading to a certain information loss due to lower resolution. The

approach presented here leads to more precise estimates of the plants’ percentage

nutrient gain from fungi since  values are calculated for each individual plant sample

relative to references from its respective sampling plot within the study site.

The use of site independent enrichment factors (mean R is always 0 ‰) instead of

 values also allows meta-analyses between very diverse sites and the representation of

multiple datasets within one graph. Furthermore, the standardized enrichment factors

provide the possibility for calculation and statistical validation of the percentage C and

N gain of partially myco-heterotrophic plants, even without occurrence of neighboring

fully myco-heterotrophic plants, by referring to MH available from the literature (Table

1, Figure 4).

Figure 4. Mean enrichment factors ( ) of 15N and 13C in leaves of two target plant
species (triangles) and eight fully autotrophic reference species (circles) collected at a
beech forest in SE Germany (open symbols) and at a mixed pine forest in S California
(closed symbols); data selected and converted from Zimmer et al. (2007). Grey squares
represent the mean enrichment factors of all obligate myco-heterotrophic plant species
of which data is available from literature (see Table 1, Appendix A). Error bars
correspond to 1 SD of the symbol value; boxes represent 1 SD of the mean value from a
group of symbols.
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Since it is shown that the enrichment in 15N and 13C of fully myco-heterotrophic plants

compared to autotrophic vegetation differs significantly between species, one could also

argue that the universal MH which refers to all hitherto published data is generally the

most unbiased and hence best suited upper endpoint for the linear mixing model.

However, based on the current data (Appendix A), the universal MH should always be

adjusted by further information that will arise in the future.
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Appendix

Appendix A. Relative enrichment in 15N and 13C [‰] in leaves of 92 fully myco-
heterotrophic individuals from the Ericaceae and Orchidaceae compared to
accompanying autotrophic plants ( MH). Data based on literature.

Species / (Family) MH
15N MH

13C Means published in Site

14.3 7.7
9.4 8.0
14.7 7.8
12.2 9.6
9.8 8.5

Zimmer et al.(2007) Pinus sylvestris/
Quercus robur
forest (SE Germany)

11.5 8.9
13.0 9.1
10.9 9.8

Monotropa hypopitys
(Ericaceae)

13.2 10.0

Zimmer et al.(2008) Fagus sylvatica
forest (SE Germany)

11.9 4.5
18.2 4.5
15.7 3.8
17.2 5.4
15.4 5.7
14.1 5.2
15.4 2.7
11.2 6.9
12.7 4.2
16.2 7.2
13.5 7.3
14.2 6.5
14.4 6.5

Sarcodes sanguinea
(Ericaceae)

14.1 5.1

Zimmer et al.(2007) Pinus ponderosa/
Quercus kelloggii
forest (S California)

8.3 4.5
10.5 5.0
9.9 5.1
10.1 3.1
10.6 4.5
9.6 5.9

Pinus ponderosa/
Quercus kelloggii
forest (S California)

8.6 6.1
10.6 6.3

Pterospora andromedea
(Ericaceae)

6.3 7.6

Zimmer et al.(2007)

Abies concolor/
Pseudotsuga menziesii
forest (N California)

11.9 6.3
15.3 7.1
9.0 7.3
12.6 6.7
10.7 6.1
14.8 7.7
13.8 7.3
11.9 7.9
14.5 7.8

Corallorhiza maculata
(Orchidaceae)

13.0 8.1

Zimmer et al.(2007) Pinus ponderosa/
Quercus kelloggii
forest (S California)

(Continued)
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Appendix A. Continued

Species / (Family) MH
15N MH

13C Means published in Site

10.6 8.3
8.4 7.7
6.2 7.3
5.7 8.7
7.1 7.5

Fagus sylvatica
forest (SE Germany)

9.2 7.8
10.4 7.1
10.7 9.1
11.3 7.9

Zimmer et al.(2007)

Fagus sylvatica
forest clearing
(SE Germany)

16.0 8.1
10.0 8.5
14.3 8.1
11.7 9.4
8.4 7.9

Gebauer & Meyer
(2003)

Fagus sylvatica
forest (SE Germany)

10.5 8.7
12.9 8.7
10.1 7.9
10.0 8.1

Bidartondo et al.
(2004)

open Pinus sylvestris
forest (SE Germany)

11.5 7.5
8.6 6.9
6.6 6.6
6.4 7.7
7.0 6.9
9.7 8.4
10.9 7.9
10.8 9.8
12.1 8.4
17.9 8.4
15.7 8.3
12.8 8.6

Neottia nidus-avis
(Orchidaceae)

12.7 8.6

Zimmer et al.(2008) Fagus sylvatica
forest (SE Germany)

13.0 9.5
13.6 8.7
10.6 8.3
13.9 9.9
11.3 8.9
13.6 8.4
14.8 10.0
14.9 11.0
13.6 8.5

albino
Cephalanthera damasonium
(Orchidaceae)

11.3 8.9

Julou et al.(2005) Quercus robur/
Corylus avellana
forest (N France)

8.4 6.3
13.4 6.8
13.8 6.8
12.0 6.5
12.1 6.6
12.0 6.4
10.2 6.6
12.0 6.3

albino
Cephalanthera longifolia
(Orchidaceae)

12.0 7.0

Abadie et al.(2006) Juniperus communis/
Pinus sylvestris
shrubland (Estonia)
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Abstract
Botanists and mycologists have long debated the potential for full myco-heterotrophy in

the achlorophyllous Pyrola aphylla (Ericaceae). Here we address the ecophysiology of

this putative myco-heterotroph and two other closely related green species in the tribe

Pyroleae (Pyrola picta, Chimaphila umbellata).

The stable isotopes of carbon and nitrogen ( 13C and 15N) were analyzed from 10

populations of Pyroleae species in California and Oregon. For all populations isotope

signatures were tested for significant differences between P. aphylla, green pyroloids,

surrounding autotrophs and obligate myco-heterotrophs.

Throughout all populations P. aphylla was most similar to myco-heterotrophs that

associate with ectomycorrhizal fungi in its 13C signature (average enrichment 13C = 6.9

± 0.9 ‰) and even more enriched in 15N than many previously recorded myco-

heterotrophic species (average enrichment 15N = 18.0 ± 2.2 ‰). The two green

Pyroleae species were not enriched in 13C compared to the autotrophic understory (C.

umbellata average enrichment 13C = -0.5 ± 1.0 ‰ and P. picta average 13C = 0.3 ± 1.4

‰) and their 15N  signatures  were  similar  to  myco-heterotrophs  that  associate  with

ectomycorrhizal fungi (C. umbellata average enrichment 15N = 10.6 ± 1.6 ‰ and P.

picta average 15N = 10.6 ± 1.9 ‰).

This is the first study to analyze the isotope signatures of P. aphylla from a wide

geographic region and our results confirm the variable trophic strategies of adult plants

within the Pyroleae and the myco-heterotrophic status of P. aphylla.

Introduction
The  physiology  and  taxonomy  of  pyroloids  (species  within  the  tribe  Pyroleae,  family

Ericaceae) has confounded researchers for over 200 years (Jussieu, 1789; Holm, 1898;

Henderson, 1919; Camp, 1940; Haber, 1987). The debate over the taxonomy of

pyroloids has been partially fueled by the occurrence of leafless forms of plants within

the genus Pyrola that are potentially myco-heterotrophic. In particular the leafless form

of P. picta Sm. referred to here as P. aphylla Sm. (Figure 1) is thought by some

researchers to be an extreme morphological variant of P. picta that receives nutrition

through parasitizing its mycorrhizal associates (Camp, 1940). Conversely, Haber (1987)

considered P. aphylla flower  stalks  to  be  connected via a  rhizome to P. picta rosettes
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that  are  responsible  for  photosynthesis  for  the  entire  plant,  while  Smith  (1814)

considered them discrete individuals and therefore physiologically independent.

Figure 1. Photographs of Pyrola aphylla, its rare ‘leafy’ form, and P. picta.  From left
to right: flowering stalks of Pyrola aphylla (inset, close-up of flowers), P. aphylla with
small leaves (arrow) and a rosette of P. picta.

Smith’s (1814) determination of P. picta and P. aphylla as separate species is supported

by the existence of P. aphylla populations in the absence of P. picta plants (Haber,

1987; own pers. obs.). This observation also supports the potential for myco-

heterotrophy in P. aphylla. Obligate myco-heterotrophy entails a complete dependence

on organic nutrient gains via a symbiosis with a fungus (Leake, 1994). In many cases

these plants are actually ‘epiparasites’ that receive the majority of their carbon indirectly

from surrounding autotrophic plants through a shared mycorrhizal fungus (Taylor et al.,

2002), but even in these cases nitrogen is received directly from the fungus (Leake,

1994).

Recently, Freudenstein (1999) and Kron et al. (2002) used phylogenetic methods

to support the placement of pyroloids in their own tribe: the Pyroleae, which is one of

three tribes within the subfamily Monotropoideae. However, the evolutionary

relatedness of the tribes in Monotropoideae, and the phylogenetic delimitation of

species in the P. picta/P. aphylla complex has yet to be determined. Despite their

unresolved taxonomy pyroloids are also of particular interest to those who study the

ecology and evolution of myco-heterotrophy as the tribe contains closely related taxa
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that are all myco-heterotrophic in their early stages of development (Leake, 1994), but

upon reaching adulthood appear to occupy the full spectrum of trophic habits from

autotrophy to mixotrophy (Tedersoo et al., 2007; Zimmer et al., 2007) to potentially full

myco-heterotrophy in P. aphylla. From an evolutionary perspective the variety of

trophic abilities in the Pyroleae is intriguing as the tribes’ two closest relatives the

Monotropeae and the Pterosporeae contain only obligate myco-heterotrophic species

(Kron & Johnson, 1997; Freudenstein, 1999). The ecological factor(s) driving the

variability in photosynthetic abilities between closely related Pyroleae species remain

elusive, but it has been proposed that both limited light availability and the presence of

particular mycobionts may be responsible (Bidartondo et al., 2004; Julou et al., 2005).

In this study rather than using a phylogenetic approach to examine evolutionary

relationships between pyroloids (this has been done to some extent by Freudenstein,

1999) we chose to address the ecophysiology of these plants through the analysis of the

natural abundances of the stable isotopes of carbon (13C:12C) and nitrogen (15N:14N) of

pyroloids, surrounding autotrophs and obligate myco-heterotrophs. The analysis of the

natural abundance of stable isotopes in plants is a powerful tool to distinguish carbon

sources and metabolic pathways (Farquhar et al., 1989; Dawson et al., 2002). Previous

work has shown that obligate myco-heterotrophic plants that associate with

ectomycorrhizal fungi are significantly enriched in the heavy isotopes of C and N

compared to autotrophic understory plants, and have C and N isotope signatures similar

to ectomycorrhizal fungi, their sole carbon and nitrogen source (Gebauer & Meyer,

2003; Trudell et al., 2003; Bidartondo et al., 2004; Julou et al., 2005). It has also been

reported that some green orchids and pyroloids that associate with ectomycorrhizal

fungi have carbon isotope values that are intermediate between autotrophs and myco-

heterotrophs (Gebauer & Meyer, 2003; Tedersoo et al., 2007; Zimmer et  al., 2007).

This finding indicates that these green plants can utilize at least two different trophic

pathways and therefore tap into isotopically distinct C and N sources. One trophic

pathway available to these plants is C gain through ectomycorrhizal fungi and nitrogen

gain through a distinct (but undetermined) pathway compared to autotrophs, while the

other pathway available is similar to that of autotrophic mycorrhizal plants. Plants that

are capable of gaining nutrition through both of these complementary routes are referred

to as mixotrophs or partial myco-heterotrophs (Gebauer & Meyer, 2003; Bidartondo et

al., 2004; Julou et al., 2005; Abadie et al., 2006; Tedersoo et al., 2007; Zimmer et al.,

2007). The relative enrichment in 13C of mixotrophic orchids and pyroloids compared to
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neighboring autotrophic plants appears to be site specific and possibly influenced by

light availability (Bidartondo et al., 2004; McCormick et al., 2004; Julou et al., 2005;

Tedersoo et  al., 2007; Zimmer et al., 2007). Mixotrophic plants that associate with

ectomycorrhizal fungi are also enriched in 15N compared to surrounding autotrophic

plants (Gebauer & Meyer, 2003). The mixotrophic abilities of pyroloids have been at

the center of current debate because based on carbon stable isotope abundances the

same species from different geographic regions appear to have varying degrees of

mixotrophy (Tedersoo et al., 2007; Zimmer et al., 2007). The potential reasons for this

variability among green pyroloids are further addressed here.

The goal of this study was to determine the trophic strategies of the green pyroloid

P. picta and the achlorophyllous P. aphylla. In a previous study (Zimmer et al., 2007),

both P. aphylla and P. picta were analyzed for their stable isotope values of C and N

from a  single  site  in  northern  California.  The  results  of  this  work  found P. aphylla to

have isotope signatures for both elements that were similar to other ericaceous myco-

heterotrophs; while P. picta had a C isotope signature similar to surrounding autotrophs,

but was enriched in 15N similar to myco-heterotrophs that associate with

ectomycorrhizal fungi.  However,  this study was based on a small  sampling of the two

Pyrola species,  so  the  relevance  of  these  findings  to  the  overall  distribution  of  the

species is currently unknown. In the present study we sought to confirm these findings

by determining the stable isotope signatures of C and N for P. picta and P. aphylla from

more intensively sampled populations as well as sampling over a wider geographic

region, and including an additional green pyroloid species (Chimaphila umbellata)

whose isotope values have only been previously examined from a Bavarian forest. We

then compared the isotope signatures of P. aphylla, P. picta, and C. umbellata to each

other, and to autotrophic and obligate myco-heterotrophic plants to test for myco-

heterotrophy and mixotrophy in the Pyroleae.

Materials and Methods

Study sites
To examine the trophic strategies of pyroloids from a wide geographic area of their

natural ranges samples were collected from six National Forests in northern California

and southern Oregon including El Dorado, Tahoe, Plumas, Lassen, Shasta and

Willamette. The selection of sampling sites (P1-P10) was based on the presence of the

target Pyroleae species: Pyrola aphylla Sm.  and Pyrola picta Sm..  All  sites  are
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dominated by second-growth mixed conifer forest at elevations between 700 and 1400

m. Locations and species collected are summarized in Table 1.

Sampling scheme and species investigated
All samples were collected within an eight-day period from June 30 - July 7, 2006.

Collection of target species’ leaves or flower stalks, autotrophic reference plants’ leaves

and myco-heterotrophic plants’ flower stalks was limited to an area of 2 meters from a

target species individual and sampling of autotrophic references was done only from

understory saplings. This strategy was used to limit the variability of environmental

factors such as atmospheric CO2 concentrations and isotope signatures that could affect

plant carbon isotope values or soil type that could affect nitrogen isotope values

(Gebauer & Schulze, 1991). However, variation in the nitrogen isotope values of our

collected samples due to possible differences in rooting depths of the plants were not

accounted for (Robinson, 2001). Each collection site contained P. aphylla or P. picta, or

both, plus a minimum of five individuals of at least one species that could be used as

reference plants representing the autotrophic understory (Table 1). To test for

differences in the isotope values between plant organs, whenever possible flowering

stalks from P. picta were collected and analyzed separately from leaves (Table 1). Four

sites (P1, P2, P6 and P7) contained the obligate myco-heterotrophic species Pterospora

andromedea Nutt.  and Corallorhiza maculata Raf.  and  four  sites  (P1,  P5,  P6  and  P7)

contained the green pyroloid Chimaphila umbellata (L.) W. Bartram, (Table 1). A total

of 37 P. aphylla, 42 P. picta, 18 Chimaphila umbellata individuals along with 17

obligate myco-heterotrophic plants of two different species, and 65 autotrophic

reference plants of six species were collected.

Stable isotope analysis
Plant samples were oven-dried at 37ºC and ground to a fine powder. Dried and ground

samples were analyzed for nitrogen and carbon stable isotope abundances via elemental

analyzer/continuous flow isotope ratio mass spectrometry at either the BayCEER -

Laboratory of Isotope Biogeochemistry University of Bayreuth, Germany as described

by Bidartondo et al. (2004)  or  at  the  Center  for  Stable  Isotope  Biogeochemistry  at

University of California Berkeley. Both labs used a dual element analysis mode with a

continuous flow mass spectrometer coupled to an elemental analyzer (Berkeley: Europa

ANCA - SL elemental analyzer coupled to a PDZ Europa Scientific 20/20 Mass

Spectrometer, UK; BayCEER: Carlo Erba 1108, Milano, Italy coupled via a ConFlo III
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interface to a delta S, Finnigan MAT Bremen). Measured abundances are denoted as

values and are calculated according to the equation: 15N or 13C = (Rsample/Rstandard-1) x

1000 [‰], where Rsample and Rstandard are the ratios of heavy isotope to light isotope of

the samples and the respective standard. At the University of Bayreuth standard gases

were calibrated with respect to international standards by using the reference substances

N1 and N2 for the nitrogen isotopes and ANU sucrose and NBS 19 for the carbon

isotopes (standards from the International Atomic Agency, Vienna, Austria). At the

University of California Berkeley standards N2 and NIST 1577 bovine liver, or NIST

1547 peach leaf and corn flour, were used for nitrogen and carbon isotope calibrations,

respectively (standards from the National Institute of Standards and Technology,

Gaithersberg, MD, USA). In the Bayreuth laboratory reproducibility and accuracy of the

isotope abundance measurements were routinely controlled by measures of the test

substance acetanilide (Gebauer & Schulze, 1991). At least six test substances with

varying sample weight were routinely analyzed within each batch of 50 samples.

Maximum variation of 13C and 15N  within  as  well  as  between  batches  was  always

below 0.2 ‰. In the Berkeley laboratory the long-term precisions for 13C  and  15N

based on the laboratory’s working standards (NIST 1577 bovine liver and sucrose

solution) are: 0.1 ‰ for  13C and 0.2 ‰ for  15N.  Differences between the two

laboratories are not to be expected because both laboratories refer to internationally

accepted standards.

Table 1. Location, species, number of individuals (n),  plant  parts  collected  for  stable
isotope analysis at each sampling site (P1-P10), and mean 15N  [‰]  and  13C [‰]
values ±1 SD. a, pyroloid, b; myco-heterotroph; c, autotroph, NF, National Forest.

Site Location Species (n) Plant part 15N 13C

P1

P2

El Dorado NF, CA
38 54’01.70”N
120 34’26.77”W

El Dorado NF, CA
38 54’3.47”N
120 34’28.40”W

Abies concolorc (5)
Chimaphila umbellataa (4)
Corallorhiza maculatab (1)
Pterospora andromedeab (1)
Pyrola aphyllaa (6)
Pyrola aphylla (1)
Pyrola pictaa (1)

A. concolorc (5)
P. andromedeab (3)
P. aphyllaa (1)
P. pictaa (4)
Ribes roezliic (5)

Leaves
Leaves
Stalk/Flower
Stalk/Flower
Stalk/Flower
Leaves
Leaves

Leaves
Stalk/Flower
Stalk/Flower
Leaves
Leaves

-3.4±0.9
6.7±0.9
10.9
5.7
16.4±2.3
12.4
5.6

-4.0±0.7
4.8±1.1
17.9
4.9±1.2
-4.3±1.2

-31.0±0.3
-31.2±0.4
-20.7
-24.2
-24.0±0.5
-24.7
-31.9

-30.6±0.7
-24.9±0.6
-22.2
-31.9±0.5
-31.4±0.6

  (Continued)
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Table 1. Continued

Site Location Species (n) Plant Part 15N 13C

P3

P4

P5

P6

P7

P8

P9

P10

Tahoe NF, CA
39 31’2.84”N
120 59’26.46”W

Tahoe NF, CA
39 31’37.64”N
120 59’25.47”W

Plumas NF, CA
40 03’36.02”N
120 51’32.99”W

Plumas NF, CA
40 03’29.94”N
120 51’28.86”W

Plumas NF, CA
40 04’00.17”N
120 51’4.17”W

Lassen NF, CA
40 13’39.97”N
121 11’03.99”W

Shasta NF, CA
41º00’44.90”N
121º39’13.35”W

Willamette NF, OR
44º18’36.00”N
122º00’36.02”W

A. concolorc (5)
Lithocarpus densiflorac (5)
P. aphyllaa (3)

L. densiflorac (5)
P. aphyllaa (6)
P. aphylla (1)
P. pictaa (3)

A. concolorc (5)
C. umbellataa (4)
P. aphyllaa (3)

A. concolorc (5)
C. umbellataa (5)
P. andromedeab (3)
P. aphyllaa (2)

P. pictaa (12)
P. picta (2)

A. concolorc (5)
C. maculatab (4)
C. umbellataa (5)
P. andromedeab (5)
P. aphyllaa (2)

P. pictaa (6)
P. picta (1)

A. concolorc (5)
P. aphyllaa (5)
P. pictaa (10)

P. aphyllaa (5)
Pseudotsuga menziesiic (5)
Quercus kelloggiic (5)

P. aphyllaa (4)
P. pictaa (5)
Tsuga heterophyllac (5)

Leaves
Leaves
Stalk/Flower

Leaves
Stalk/Flower
Leaves
Leaves

Leaves
Leaves
Stalk/Flower

Leaves
Leaves
Stalk/Flower
Stalk/Flower
Stalk/Flower
Leaves
Stalk/Flower
Stalk/Flower

Leaves
Stalk/Flower
Leaves
Stalk/Flower
Stalk/Flower
Stalk/Flower
Leaves
Stalk/Flower

Leaves
Stalk/Flower
Leaves

Stalk/Flower
Leaves
Leaves

Stalk/Flower
Leaves
Leaves

-3.9±0.7
-4.1±1.5
13.8±0.2

-3.7±1.0
13.9±3.4
9.0
8.6±1.0

-3.8±1.1
6.2±1.9
13.7±1.5

-5.5±0.9
6.3±1.8
5.4±0.9
10.4
10.1
5.0±0.8
5.3
4.5

-3.7±1.0
11.9±1.1
6.5±1.5
5.5±1.0
15.0
14.1
8.2±1.4
7.6

-2.9±0.9
13.7±1.1
7.7±3.1

15.5±0.9
-5.3±0.8
-2.5±1.0

14.6±1.8
7.8±1.1
-2.2±0.8

-31.0±0.8
-30.1±0.9
-24.3±0.5

-30.9±0.4
-23.6±0.2
-27.1
-29.1±2.0

-30.4±1.0
-30.4±1.6
-23.0±0.4

-30.0±1.0
-30.5±0.9
-28.0±0.1
-24.7
-23.9
-30.3±0.9
-28.5
-30.6

-31.6±1.0
-25.8±0.3
-32.8±0.6
-26.6±0.4
-25.2
-25.7
-32.0±1.5
-31.7

-30.9±0.7
-23.9±0.7
-29.8±1.4

-24.3±1.5
-30.7±0.7
-30.8±0.3

-24.6±0.2
-31.2±1.0
-31.9±1.9

Statistics

Once  values were obtained for all samples (Table 1), for each collection site the 15N

and 13C values  of  all  reference  plants  were  tested  for  inter-site  variation  with  a  one-

way ANOVA and Tukey’s HSD. Due to significant differences at  0.05 among 15N

values of the reference plants between sites (P6-P8 P = 0.036, P6-P10 P = 0.002) the
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values  could  not  be  pooled  to  make  comparisons  across  sites.  In  order  to  make  these

comparisons  values  for  both  elements  and  all  samples  were  converted  into  site-

independent enrichment factors ( ). The calculation of enrichment factors is a useful

method that eliminates the majority of the influence of spatial variation on isotope

abundances and therefore allows for comparison among samples from different sites

(Emmett et al., 1998; Preiss & Gebauer, 2008) or substrates (Gebauer & Taylor, 1999).

First,  for  each  site  the 15N and 13C values of all species of reference plants were

averaged. Then, on a per site basis these averages were subtracted from all samples

(pyroloids, reference and myco-heterotrophic plants) to create site independent

enrichment factors (  = xS - xR)  for  each  sample,  where xS = 15N or 13C of

individual sample per site and xR= mean 15N or 13C of all reference plants per site.

Thus, the resulting means of both the 13C and 15N factors  of  the  reference  plants  is

equal to 0 ‰ and individual samples’  factors represent their difference from this

mean. To appropriately test for differences between trophic groups (pyroloids,

references, and myco-heterotrophic plants) the variance around the mean  values of the

autotrophic references used to calculate  for pyroloids and myco-heterotrophs must be

retained. This is done through calculating  not for only pyroloids and myco-

heterotrophs, but as mentioned above, for the reference samples as well. Where the

individual 15N and 13C factors of each autotrophic reference plant sampled represents

the variance of these samples’  values from the mean 15N or 13C of all references per

a site. Furthermore, both the intersite and intrasite standard deviation of the 15N and
13C factors  for  all  reference  species  is  small  (  1  ‰ for  both 15N and 13C, Table 1).

Statistical comparisons between all  factors per group (pyroloids, myco-heterotrophic

plants and autotrophic references) were made using non-parametric Kruskal-Wallis and

sequential Bonferroni-corrected Mann-Whitney U tests for post hoc comparisons. To

make more robust comparisons between pyroloids and obligate myco-heterotrophs in

additin to the two myco-heterotrophic species (P. andromedea and C. maculata)

collected at our sites we included the  factors of seven fully myco-heterotrophic

species C. maculata (n = 12), Sarcodes sanguinea Torr. (n = 14), P. andromedea (n =

13), Neottia nidus-avis (L.)  Rich.  (n = 31), Monotropa hypopitys L. (n = 9),

Cephalanthera damasonium L. albino (n = 10) and C. longifolia (L.) Fritsch albino (n =

9) from previously published data (Preiss & Gebauer, 2008). For clarity,  factors of all

species collected are reported in the results section and presented in Figure 2 as species

http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Louis_Claude_Richard
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means ± 1 SD. In addition,  factors of the flowering stalks of P. picta were compared

to those of their leaves and P. aphylla stalks from plots P6 and P7 using independent t-

tests.

Results

Comparison of isotope signatures between trophic groups

The  values  of  reference  plants  and  myco-heterotrophic  plants  collected  at  our  sites

were within the range of previous records from temperate forests (Trudell et al., 2003;

Zimmer et al., 2007; Table 1). The enrichment factors ( ) of individual reference plants

clustered around 0 ‰, reflecting the small inter- and intraspecific variations in their

isotope signatures that were not significantly different between sites, while enrichment

factors for the other groups (pyroloids and myco-heterotrophs) separated out into

distinct groups based on the difference of their  values from the mean of their

respective references (Figure 2). Across all sites the two green Pyroleae species were as

strongly enriched in 15N as the obligate myco-heterotrophs (C. umbellata average 15N

= 10.6 ± 1.6 ‰ and P. picta average 15N = 10.6 ± 1.9 ‰, Figure 2). However, these

two species were not enriched in 13C  compared  to  autotrophic  reference  plants  (C.

umbellata average 13C = -0.5 ± 1.0 ‰ and P. picta average 13C = 0.3 ± 1.4 ‰, Figure

2). In contrast, across all sites the achlorophyllous P. aphylla had a 13C signature typical

for myco-heterotrophic species associated with ectomycorrhizal fungi (average 13C =

6.9 ± 0.9 ‰, Figure 2, Appendix A) and was enriched in 15N (average 15N = 18.0 ± 2.2

‰ Figure 2, Appendix A) compared to other pyroloids and surrounding autotrophs,

similar to the findings of Zimmer et al. (2007).

Interestingly, we did find two P. aphylla plants in sites P1 and P4 that had very

small basal leaves (Figure 1). These leaves were analyzed separately for their isotope

abundances.  They were found to be similar to stalks of other P. aphylla collections for

nitrogen (P1 15N = 15.8 ‰, P4 15N = 12.8 ‰), and similar (P1 13C = 6.3 ‰) or less

enriched in 13C (P4 13C  =  3.8  ‰)  indicating  that  at  least  in  the  latter  individual

extremely low levels of photosynthesis may still be taking place, similar to the leafless

stems of Corallorhiza trifida (Zimmer et al., 2008).
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Figure 2.  Mean 13C and 15N enrichment factors ( ) of all species analyzed: autotrophic
reference plants (open triangles down, two species values overlap), Chimaphila
umbellata (gray circle), Pyrola picta (gray square), Pyrola aphylla (black square),
myco-heterotrophic plants (open triangles up) including Pterospora andromedea and
Corallorhiza maculata from this and previously published studies (Preiss & Gebauer,
2008) and five additional species (Sarcodes sanguinea, Neottia nidus-avis, Monotropa
hypopitys, Cephalanthera damasonium albino, and C. longifolia albino) from Preiss &
Gebauer (2008). Error bars represent 1 SD.

Independent t-tests revealed that comparisons of the enrichment factors of the flowering

stalks of P. picta (average 15N = 10.7 ± 0.6 ‰, 13C = 0.2 ± 1.1 ‰) and P. aphylla

(average 15N = 17.0 ± 1.5 ‰, 13C = 5.9 ± 0.5 ‰) at  0.05 were significantly different

from each other for both elements ( 13C: P < 0.001 and 15N: P = 0.008) and the isotope

signatures of the stalks from P. picta were not statistically different from the leaves

(average 15N = 11.1 ± 1.3 ‰, P = 0.639; 13C = -0.4 ± 1.2 ‰, P = 0.452). However,

these tests were done with very low sample sizes as flowering stalks of P. picta were

only collected from three plants in two sites (Table 1).

Discussion
Pyrola aphylla exhibited enrichment in 15N that exceeds that of associated

photosynthetic plants, other species in the Pyroleae, and even most other analyzed

myco-heterotrophs.  While  the  cause  for  this  enrichment  is  unclear,  it  follows  both  the
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pattern of 15N enrichment found in green mixotrophic Pyroleae species (Tedersoo et al.,

2007; Zimmer et al., 2007; data presented here) and all previously analyzed myco-

heterotrophic plants that associate with ectomycorrhizal fungi (Gebauer & Meyer, 2003;

Trudell et al., 2003; Bidartondo et al., 2004; Julou et al., 2005; Abadie et al., 2006;

Zimmer et  al., 2007). Possible mechanisms that could be driving the high 15N

enrichment found in myco-heterotrophs relative to autotrophs include a difference in the

physiological processing of nitrogen by mycorrhizal fungi when in association with

myco-heterotrophs and differences in N fractionation between fungal species (Gebauer

& Taylor, 1999; Taylor et al., 2003; Trudell et al., 2003; Taylor et al., 2004; Nygren et

al., 2007). Similar to other ericaceous myco-heterotrophs, the N enrichment seen in P.

aphylla is coupled with a less dramatic, though significant, enrichment in 13C.

Enrichment in 13C is a well established pattern in ectomycorrhizal myco-heterotrophs

where carbon is passed from autotrophs to ectomycorrhizal fungi and finally to the

myco-heterotroph (Gebauer & Meyer, 2003; Trudell et al., 2003; Leake, 2004).

It is interesting that even the green pyroloids from this study have a significant

enrichment in 15N compared to surrounding autotrophs as recently there has been debate

regarding the mixotrophic abilities of green Pyroleae species (Tedersoo et al., 2007;

Zimmer et al., 2007). Similar to the findings of Zimmer et al. (2007) this study found

no evidence for C gain via mixotrophic means in either P. picta or C. umbellata adult

plants. However, compared to C. umbellata individuals from Bavaria the samples from

the western U.S.A. were more enriched in 15N relative  to  autotrophic  reference  plants

and the 15N enrichment of both green pyroloid species from this study were most similar

to myco-heterotrophic taxa other than P. aphylla (Figure 2). We propose two potential

possibilities for this pattern. First, though all pyroloid seedlings are myco-heterotrophic,

once they develop leaves carbon gains are primarily through photosynthesis, but they

continue to gain nitrogen through an unknown uptake mechanism similar to myco-

heterotrophs. A second possibility is that carbon gains via a myco-heterotrophic strategy

are still present, but the analysis of plants’ bulk-tissue carbon isotope abundances is not

a sensitive enough method to detect these gains, which may only take place during

certain seasonal, or plant developmental periods (Taylor et al., 2004).

In previous studies a linear isotopic mixing model has been used to estimate

percent C and N gains via fungi in green pyroloids. This model is based on the

enrichment factors of pyroloids that are statistically distinct for either element from

those of surrounding autotrophs that are then compared to the relative C and N
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enrichment of obligate myco-heterotrophs (Gebauer & Meyer, 2003; Preiss & Gebauer,

2008). However, due to the variability in isotope signatures of obligate myco-

heterotrophs it is difficult to determine what species accurately represent the isotope

signatures of the C and N pools actually accessed by the plants, and the choice of myco-

heterotrophic end-members can affect the estimated levels of myco-heterotrophy in the

new species being investigated. In the case of P. aphylla, if the percent C and N gains

via fungi were calculated using the mixing model first described by Gebauer & Meyer

(2003), and a myco-heterotrophic end-member based on the mean relative enrichment

of seven fully myco-heterotrophic plants associated with ectomycorrhizal fungi (Preiss

& Gebauer, 2008) the estimated percent C derived from fungal material would be 96

12 %. This indicates that P. aphylla essentially gains all of its carbon from a source that

is similar to other fully myco-heterotrophic plants associated with ectomycorrhizal

fungi.  This  conclusion  fits  well  with  the  morphology  of P. aphylla which lacks

photosynthetic organs. In contrast, if the same mixing model is used to calculate percent

N gain via myco-heterotrophy, P. aphylla would gain over 100 % (149  18 %) of its

nitrogen from the source(s) utilized by the myco-heterotrophic end-members. Thus the

myco-heterotrophic species used as end-members in this scenario obviously do not fully

represent the extent of variability in 15N signatures of myco-heterotrophs. Until there is

more definitive information on what factors drive the isotopic variability of myco-

heterotrophs - especially in the case of 15N enrichment -  and the isotope signatures of

the nutrient pools accessed by myco-heterotrophs, calculations of percent C and N gains

via fungi in putative mixotrophs and myco-heterotrophs must be viewed as rough

estimates.

Final Remarks
The evidence for myco-heterotrophy in P. aphylla is now compelling. Our results based

on the isotope signatures of P. aphylla and P. picta support one of the hypotheses put

forth by Camp (1940) and others that P. aphylla does indeed behave as a parasite

‘deriving their food from the fungous [sic] mycelia associated with their roots’.

Whereas, Haber (1987) assumed that P. aphylla was one of many morphological forms

of P. picta connected by a rhizome to near-by leafy rosettes. Confirming these

connections in the field between P. aphylla and surrounding P. picta plants is difficult

as individual rhizomes can stretch for many meters in the soil. However, because of

significant differences in the isotope signatures of P. picta and P. aphylla (Figure 2) this
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study provides no substantiating evidence for rhizomatous connections between the two.

Though there are reported differences among 13C values  of  plant  organs  (Willmer  &

Roksandic, 1980; Gebauer & Schulze, 1991; Badeck et al., 2005; Bowling et al., 2008)

these differences are small compared to those found here between the leaves of P. picta

and the flowering stalks of P. aphylla. Furthermore, when a small number of samples

from the same plant organ (flowering stalks) from both plants were analyzed for C and

N isotope abundances they were significantly different from each other for both

elements.

The confirmation that P. aphylla is a myco-heterotroph provides some insights

into the order of the evolutionary steps toward obligate myco-heterotrophy, especially

because its close relatives exhibit trends towards myco-heterotrophy. These trends

include pyroloids’ dependency in early stages of development on fungal nutrition

(Leake, 1994), an association with ectomycorrhizal fungi shared with overstory trees

that could allow for epiparasitism, an enrichment in 15N  similar  to  that  of  all

ectomycorrhizal myco-heterotrophs studied to date, and though not found in this study,

some green pyroloids have been found to be enriched in 13C compared to surrounding

autotrophs (Tedersoo et al., 2007; Zimmer et al., 2007). Similar approaches have been

used  to  examine  the  transition  to  myco-heterotrophy  in  the  orchids  where  the  loss  of

photosynthesis is often coupled with an increase in specificity toward particular lineages

of mycorrhizal fungi (Bidartondo et al., 2004). Although the identities of the fungi

associated with P. aphylla are yet to be determined, other closely related green

pyroloids, including P. picta, have been found to associate with a suite of ericoid,

endophytic and ectomycorrhizal fungi, the latter most likely providing the link between

these plants and surrounding autotrophs (Robertson & Robertson, 1985; Bidartondo et

al., 2004; Tedersoo et al., 2007; Zimmer et al., 2007; Massicotte et al., 2008; Vincenot

et al., 2008). The elucidation of the fungal associates of P. aphylla is  of great interest

for the study of myco-heterotrophy as it may provide further insight into the evolution

of these intriguing plants.
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Appendix (available online)

Appendix A. Results of sequential Bonferroni-corrected Mann-Whitney U-tests for
post hoc comparisons.  MHP = myco-heterotrophic plants; Auto = autotrophic
references; P. picta and C. umbellata = green pyroloids; P. aphylla = achlorophyllous
Pyrola.

15N 13CComparison
P P

C. umbellata / MHP
P. picta / MHP
C. umbellata / P. picta
C. umbellata / Auto
P. picta / Auto
P. aphylla / MHP
P. aphylla / Auto

0.025
0.017
0.05
0.01
0.006
0.007
0.008

0.053
0.038
0.933

< 0.001
< 0.001
< 0.001
< 0.001

0.008
0.006
0.017
0.013
0.05
0.025
0.007

< 0.001
< 0.001

0.085
0.041
0.873
0.523

< 0.001
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Abstract
The leafless, circumboreal orchid Corallorhiza trifida is  often  assumed  to  be  fully

myco-heterotrophic despite contrary evidence concerning its ability to photosynthesize.

Here we assess its level of myco-heterotrophy by analyzing the natural abundance of the

stable isotopes 15N and 13C.

The mycorrhizal associates and chlorophyll contents of C. trifida were

investigated and the C and N isotope signatures of nine C. trifida individuals from

Central Europe were compared to those of neighboring obligate autotrophic and myco-

heterotrophic reference plants.

The results show that C. trifida only gains 52 ± 5 % of its total nitrogen and 77 ±

10 % of the carbon derived from fungi even though it has been shown to specialize on

one specific complex of ectomycorrhizal fungi similar to fully myco-heterotrophic

orchids. Concurrently, compared to other Corallorhiza species, C. trifida contains  a

remarkable amount of chlorophyll.

Since C. trifida is able to supply significant proportions of its nitrogen and carbon

demands through the same processes as autotrophic plants, this species should be

referred to as partially myco-heterotrophic.

Introduction
Within the Orchidaceae, more than 100 species are non-photosynthetic and depend on C

and N supplies from associated fungi. The majority of these ‘myco-heterotrophic’

orchids  are  entirely  subterranean  for  most  of  their  life  cycle  and  their  organs  are  well

adapted to this habit in function and morphology (Leake, 1994). The orchid genus

Corallorhiza GAGNEBIN (Epidendroideae) comprises ten leafless species of temperate-

boreal terrestrial orchids. All of them are distributed in North and Central America, with

exception of the circumboreal pale coral root orchid Corallorhiza trifida (Freudenstein,

1992). Species of the genus Corallorhiza are  in  general  known  to  be  fully  myco-

heterotrophic. Again, C. trifida poses an exception. Although the ‘mycotrophic’ nature

of this species was already recognized in 1898 (Jennings & Hanna), many questions

concerning the nutritional mode of C. trifida have been raised, by pigment analyses and

assimilation experiments (Montfort & Küsters, 1940) and by comparative studies of the

plastid DNA (Freudenstein & Doyle, 1994). However, despite these contrary evidences
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C. trifida remains known as an obligate myco-heterotrophic plant (Downie et al., 1943;

Zelmer & Currah, 1995; McKendrick et al., 2000a,b).

Natural stable isotope abundances can be used to assess the nutritional mode of

orchid species (Gebauer & Meyer, 2003). This method is based on two findings that (a)

fungal tissues are enriched in the heavy stable isotopes of N (Gebauer & Dietrich, 1993)

and C (Gleixner et al., 1993) relative to accompanying autotrophic plants and (b)

obligate myco-heterotrophic plants show isotope signatures similar to those of their

fungal associates (Trudell et al., 2003). Furthermore, Gebauer & Meyer found that some

green and hence putatively autotrophic orchid species are enriched in 15N and 13C

compared to neighboring autotrophic plants but depleted in the heavy isotopes relative

to obligate myco-heterotrophic plants. They concluded that these species use a mixed

nutritional mode, where the acquisition of C and N through mycorrhizal fungi

subsidizes the nutrient supply through autotrophic processes and referred to these plants

as partially myco-heterotrophic.

Furthermore, there is evidence that the nutritional mode of orchid species is linked

to association with certain functional groups of fungi. Dearnaley (2007) recently

summarized the literature on orchid mycorrhiza. While roots of fully autotrophic

orchids are generally associated with diverse saprotrophic, rhizoctonia-forming

basidiomycete fungi (Bernard, 1909), several obligate myco-heterotrophic orchids are

known to be highly specialized on a phylogenetically narrow range of fungi that

simultaneously form ectomycorrhizas with roots of neighboring trees (Taylor & Bruns,

1997; Taylor et al., 2003; McKendrick et al., 2002; Selosse et al., 2002). In consistence

with intermediate isotope signatures of partially myco-heterotrophic orchids,

Bidartondo et al. (2004) could provide a “missing link in the evolution” and show that

these putatively green orchids are also connected to ectomycorrhizal fungi of a diverse

range and that some species may simultaneously associate with rhizoctonia-forming

fungi. The high specialization towards certain ectomycorrhizal fungi in species

belonging to the genus Corallorhiza (Zelmer & Currah, 1995; Taylor & Bruns, 1997;

Taylor & Bruns, 1999; McKendrick et al., 2000b) supports the assumption that C.

trifida is obligate myco-heterotrophic. However, if in fact, C. trifida is not fully myco-

heterotrophic, this would be an example of a partially myco-heterotrophic species

highly specialized on ectomycorrhizal fungi.

This study is the first to investigate the nutritional mode of the obviously greenish

C. trifida by using natural stable isotope abundance analysis. The application of a linear
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mixing model provides not only a qualitative conclusion but is also suited to

quantitatively  estimate  the  level  of  myco-heterotrophy  of  a  plant  (Gebauer  &  Meyer,

2003). Isotope signatures together with data of chlorophyll contents and molecular

identification of fungal associates will help to answer the question of whether C. trifida

is fully myco-heterotrophic.

Materials and Methods

Study site
Samples  were  collected  from a  forest  site  located  in  NE Bavaria,  Germany (49°40’  N

and 11°23’ E) at 522 m elevation with mean annual precipitation of 820 mm, mean

annual temperature of 8 °C (German weather service, www.dwd.de). The site is a dense

broadleaf forest dominated by Fagus sylvatica with a sparse and patchy cover of

understory vegetation (Cephalanthero-Fagion). Soil is lithic leptosol originating from

Jurassic dolomite with a shallow organic layer and a pH of 7.2 (0 – 5 cm) measured in

H2O.

Sampling scheme and investigated species
Sampling for isotope ratio analysis was performed in 2004 and 2005 (June). Scale-like

leaves and parts of the stem including flowers or seed capsules, respectively, were

collected of 17 obligate myco-heterotrophic plants (Leake, 1994; Bidartondo, 2005)

(Neottia nidus-avis, Monotropa hypopitys) and of 9 individuals of Corallorhiza trifida

(Figure 1). As reference, leaf material of three to four obligate autotrophic plant species

(n = 68) was taken in close spatial proximity (within 1 m2)  to  each  of  the Neottia,

Monotropa and Corallorhiza individuals, following the criteria described by Gebauer &

Meyer (2003). In total, 10 plant species (n = 94) were sampled, including Neottia nidus-

avis (L.)  RICH. (n(2004) =  4,  n(2005) =  9), Monotropa hypopitys L.  (n(2004) =  4),

Corallorhiza trifida CHÂTEL. (n(2004) =  4,  n(2005) = 5), Fagus sylvatica L. (n(2004) =  8,

n(2005) = 10), Convallaria majalis L.  (n(2004) = 8,  n(2005) = 10), Acer pseudoplatanus L.

(n(2004) = 8, n(2005) = 5), Fragaria vesca L. (n(2004) = 4), Sorbus aucuparia L. (n(2005) = 5),

Hieracium sylvaticum (L.) GRUFB. (n(2005) = 5) and Rubus saxatilis L. (n(2005) = 5). For

identification  of  mycorrhizal  fungi,  two root  samples  were  collected  from each  of  the

four C. trifida individuals in 2004. Furthermore, the whole aboveground biomass of 10

C. trifida individuals was taken for quantitative chlorophyll analysis (May 23, 2006).
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(a) (b)

Figure 1. Corallorhiza trifida growing in a dense Fagus sylvatica forest in eastern
Hesse, Germany. (a) several flowering individuals on May 5, 2005; (b) seed capsules on
May 27, 2005. Courtesy of Marco Klüber.

Stable isotope abundance analysis
Leaf and stem samples were oven-dried and ground to a fine powder. Relative N and C

isotope abundances were measured using a dual element analysis mode with an

elemental analyzer coupled to a continuous flow isotope ratio mass spectrometer as

described in Bidartondo et al. (2004). Measured abundances are denoted as  values,

which were calculated according to the following equation: 15N or 13C  =

(Rsample/Rstandard-1) x 1000 [‰], where Rsample and Rstandard are the ratios of heavy isotope

to light isotope of the samples and the respective standard. Standard gases were

calibrated with respect to international standards by using the reference substances N1

and N2 for nitrogen isotopes and ANU sucrose and NBS 19 for carbon isotopes,

provided by the International Atomic Energy Agency (Vienna, Austria).

Statistics

Variation in 15N and 13C between the two sampling years was assessed using

Student’s t-tests. Afterwards, pooled data were tested for differences in  values using

the Kruskal-Wallis non-parametric test and Bonferroni-corrected (Holm, 1979) Mann-

Whitney U-tests for post hoc comparisons.
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Calculation of C and N gains from fungi
As described by Gebauer & Meyer (2003), a linear two-source isotopic mixing model

was used to calculate the relative contribution of nitrogen or carbon derived from fungal

material to the N or C content of C. trifida (%xdf with x as nitrogen or carbon,

respectively). The model is based on individual  values of C. trifida ( xCT), mean

values of co-occurring autotrophic reference plants ( xREF) and on the mean enrichment

factor  of sampled fully myco-heterotrophic (MH) plants ( MH-REF = xMH - xREF): %xdf

= ( xCT - xREF) / MH-REF  100. Data are given as means ± 1 SD.

Molecular identification of mycorrhizal fungi
From each of the four C. trifida individuals (2004), two root sections colonized by fungi

were taken and placed in lysis buffer. Samples were frozen and thawed three times

before grinding the softened tissue with a micropestle. Genomic DNA was extracted

following methods described elsewhere (Gardes & Bruns, 1993) but using GeneClean

(Q-BioGene, Carlsbad, CA, USA) for DNA binding and purification. Using PCR

(polymerase chain reaction), the nuclear ribosomal internal transcribed spacer (ITS)

region was amplified with the fungal-specific primers ITS1F and ITS4 and PCR

conditions described in Gardes & Bruns (1993). Positive PCR products were purified

using QIAquick 96 kits (Qiagen, Valencia, CA, USA). DNA sequencing was performed

on an ABI3100 Genetic Analyzer using BigDye v.3.1 chemistry (Applied Biosystems,

Foster City, CA, USA) and absolute ethanol/EDTA precipitation. Electrophoretograms

were checked using Sequence Navigator v.1.0.1 (Applied Biosystems). All samples

with strong PCR amplification of single templates were blasted in GenBank to ascertain

taxonomic affinity. The GenBank accession number is EF471313.

Chlorophyll content
Before extraction of chlorophylls a and b (Chl a and b), stem height and mass of the ten

C. trifida individuals was determined. N,N’-dimethylformamide was added to the fresh,

ground material (whole aboveground biomass) and samples were kept in the dark at -23

°C for eight days. After centrifugation, absorbance of the supernatants was

spectrophotometrically measured at 646.8, 663.8 and 750 nm. Chlorophyll

concentrations (µg/ml) were calculated according to the following equations (Porra et

al., 1989): Chl a = 12.00 · (A663.8 - A750) – 3.11 · (A646.8 - A750); Chl b = 20.78 · (A646.8 -

A750) – 4.88 · (A663.8 - A750). Chl a+b content are given in µg/gfw (fw = fresh weight).
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Results and Discussion

Mycorrhizal association
Molecular identification of fungal partners revealed that all of the eight roots were

exclusively colonized by fungi belonging to the obligate ectomycorrhizal basidiomycete

genus Tomentella (Thelephoraceae). No other mycorrhizal associations were detected.

These results are consistent with previous findings. Zelmer & Currah (1995) firstly

isolated a clamp-bearing basidiomycete from pelotons of C. trifida roots and

demonstrated that the same fungus is ectomycorrhizal on Pinus contorta seedlings.

Taylor (1998) observed associations between thelephoroid fungi and C. trifida in North

America and studies comparing DNA sequences of fungi on C. maculata with those of

ectomycorrhizal fungi on adjacent tree roots have confirmed that these coral root

orchids are indeed associated with ectomycorrhizal fungi (Taylor & Bruns, 1997).

McKendrick et al. (2000b) found that the specificity of C. trifida towards fungi

exclusively belonging to the Thelephora/Tomentella complex applies from the earliest

stages of seed germination through adulthood and flowering.

C. maculata and C. mertensiana are known to form mycorrhizas exclusively with

fungi in the Russulaceae (Taylor & Bruns, 1999; Taylor et al., 2004) and the desert

orchid Hexalectris spicata is specialized on ectomycorrhizal Sebacinaceae (Taylor et

al., 2003). The relationship of these fungi to their ectomycorrhizal partners, however, is

unlikely to be as specific (Zelmer & Currah, 1995; Gardes & Bruns, 1996).

Since it has been estimated that about 15 % of net C fixation by ectomycorrhizal

trees is allocated to their ectomycorrhizal fungal partners (Finlay & Söderström, 1992),

McKendrick et al. (2000a) concluded that the switch in achlorophyllous orchids from

soil-inhabiting rhizoctonia-type mycorrhizal association, to one involving

ectomycorrhizal fungi might be based upon better access of the latter to C supplies.

Chlorophyll content
C. trifida individuals contained on average 26 ± 11 µg/gfw of Chl a+b (Table 1) which

accounts for only 1 % of the chlorophyll amount detected in green leaves of

Cephalanthera damasonium (Julou et al., 2005). However, the area-to-mass ratio of

stems and leaves is highly different and relating to the same mass, stems contain

considerably more non-assimilating tissues than leaves. Thus, the chlorophyll content in

stems of the leafless orchid C. trifida must be lower than the chlorophyll content in

green leaves of plants.
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Table 1. Fresh weight, stem height, chlorophyll contents (Chl a, Chl b, Chl a+b) and
chlorophyll ratios (Chl a/b) of the aboveground biomass of ten Corallorhiza trifida
individuals collected from a dense Fagus sylvatica forest in NE Bavaria, Germany.
Means ± 1 SD are shown in bold.

This also becomes apparent from the close (P < 0.001), negative correlations between

Chl a+b content and fresh weight of each C. trifida individual (r2 = 0.896, Figure 2), or

between Chl a+b content and stem height (r2 = 0.893, not shown).

Figure 2. Correlation of chlorophyll a+b content and fresh weight of the aboveground
biomass of ten Corallorhiza trifida individuals collected from a dense Fagus sylvatica
forest in NE Bavaria, Germany: y = -83.12 x + 60.267; r2 = 0.896; P < 0.001.

Fresh weight [g] Stem height [cm] Chl a [µg/gfw] Chl b [µg/gfw] Chl a+b [µg/gfw] Chl a/b
0.498 16.0 8.5 4.2 12.7 2.0
0.573 14.5 8.5 4.4 12.9 1.9
0.247 9.7 30.6 10.8 41.4 2.8
0.313 10.4 21.6 8.7 30.3 2.5
0.363 12.5 20.5 7.9 28.4 2.6
0.466 13.0 16.1 7.6 23.7 2.1
0.348 11.8 21.3 9.1 30.4 2.3
0.226 9.5 31.3 13.6 44.9 2.3
0.529 16.0 10.2 5.0 15.2 2.1
0.550 13.0 13.1 7.8 20.9 1.7

0.411 ± 0.128 12.6 ± 2.4 18.2 ± 8.4 7.9 ± 2.9 26.1 ± 11.2 2.2 ± 0.3
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In 1940 already, Montfort & Küsters found that inflorescences of C. innata R.Br. (= C.

trifida) contained 33 % (and stems with young fruits even 60 %) of the chlorophyll

content detected in inflorescences of the fully autotrophic orchid Listera ovata.

Cummings & Welschmeyer (1998) determined the pigment composition for ten species

of putatively achlorophyllous angiosperms including two orchids (Cephalanthera

austinae and Corallorhiza maculata) by HPLC. They detected chlorophyll a in all taxa,

but chlorophyll b was only detected in Corallorhiza. Compared to the total content of

chlorophyll and chlorophyll-related pigments in C. maculata (26.75 ng/gfw) (Cummings

& Welschmeyer, 1998), C. trifida contains a three orders of magnitude higher amount

of chlorophyll (Table 1). Furthermore, the mean chlorophyll a/b ratio of C. trifida

(Table 1) is similar to that found in other C3 plants (Larcher, 2003).

If photosynthetic function of a plant is altered or absent, concomitant changes in

the plastome may have occurred (Palmer et al., 1988). Following this assumption,

Freudenstein & Doyle (1994) examined the variation in plastid DNA among species of

Corallorhiza. They found deletions of genes relevant for photosynthesis in all

investigated Corallorhiza species  with  the  exception  of C. trifida and concluded that

Corallorhiza may be a genus “on its way” to a heterotrophic existence. However, more

recent  studies  have  shown  that  the  deletion  of  photosynthesis  genes  in  the  plastid

genome is not necessarily linked to the trophic strategy of the plants (Randle & Wolfe,

2005; Young & dePamphilis, 2005) and C. trifida frequently is still described as a non-

photosynthetic plant.

Isotope signature and nutrient gain from the fungal partner
Based on Bonferroni-corrected (Holm, 1979) Mann-Whitney U-tests, highly significant

differences existed between the isotope signatures of all tested groups (obligate

autotrophic plants REF, C. trifida individuals CT, obligate myco-heterotrophic plants

MH). Compared to the REF group (mean 15N = -6.1 ± 1.2 ‰, mean 13C = -32.0 ± 1.3

‰), myco-heterotrophic species were significantly enriched by 11.2 ± 3.1 ‰ in 15N and

by 8.3 ± 1.0 ‰ in 13C (Figure 3), which is in accordance with the enrichment factors

observed in other obligate myco-heterotrophic plants relative to accompanying

autotrophic plants (Zimmer et al., 2007). Individuals of C. trifida were also highly

enriched in both, 15N and 13C, compared to the autotrophic reference plants showing the

incorporation of fungal-derived organic compounds.
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Figure 3. Mean 15N and 13C values in the aboveground biomass of C. trifida (CT,
circle), two obligate myco-heterotrophic plant species (MH, triangle up) and in leaves of
seven fully autotrophic species (REF, triangle down) collected from a dense Fagus
sylvatica forest in NE Bavaria, Germany. Boxes are defined by standard deviations of
the mean  values from each group (REF, CT, MH). For numbers of replicates see
Materials and Methods section. Plant species: Ap, Acer pseudoplatanus; Cm,
Convallaria majalis; Ct, Corallorhiza trifida; Fs, Fagus sylvatica; Fv, Fragaria vesca;
Hs, Hieracium sylvaticum; Mh, Monotropa hypopitys; Nn, Neottia nidus-avis; Rs, Rubus
saxatilis; Sa, Sorbus aucuparia.

However, relative to obligate myco-heterotrophic plants, C. trifida was significantly

depleted in the heavy stable isotopes of N and C (Figure 3). The latter is different to

findings in C. maculata which has isotope signatures typical of a fully myco-

heterotrophic plant (Zimmer et al., 2007). Hence, in contrast to other species of the

genus, aboveground organs of C. trifida are photosynthetically active. Therefore,

flowering adults of this species are not fully but only partially myco-heterotrophic. This

does not exclude full myco-heterotrophy during belowground phases of this orchids’

life cycle. The individuals investigated in this study also use high amounts of soil borne

nitrogen. According to the linear mixing model, C. trifida gains 52 ± 5 % of its N from

fungal association and 77 ± 10 % of its total C demand is derived from fungi. These

results confirm findings by Montfort & Küsters (1940) who observed photosynthesis in

C. innata (= C. trifida)  by  measuring  the  plants’  CO2 exchange. They found that

inflorescences and especially stems with maturing fruits were able to compensate for

respiratory losses of CO2 through assimilation and calculated a quotient Q (Q =
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assimilation / respiration) of 2.2 for the plants including young fruits, indicating a

positive CO2 balance. The detection of a higher C than N gain from fungi (Student’s t-

test, P < 0.001) is unusual for partially myco-heterotrophic plants (see Gebauer &

Meyer, 2003; Bidartondo et al., 2004; Zimmer et al., 2007) and might be caused by a

nitrogen limited fungal partner. Since several Tomentella species are wood inhabiting

(Küffer & Senn-Irlet, 2005) and may therefore have lower N concentrations than those

living on humus (Gebauer & Taylor, 1999) C. trifida might be forced to supply its N

demand through higher uptake of soil born inorganic nitrogen.

As it has now been shown quantitatively that C. trifida is able to supply its

nitrogen and carbon demand through autotrophic processes, this leafless orchid should

no longer be referred to as fully or obligate myco-heterotrophic. A possibly similar

situation has been shown for the Mediterranean orchid Limodorum abortivum (Girlanda

et al., 2006). L. abortivum also  has  reduced  leaves,  associates  predominantly  with

narrow clades of ectomycorrhizal fungi (Russula spp.) and contains photosynthetic

pigments. However, its photosynthetic activity was found to be insufficient to

compensate for respiration in adult plants (Girlanda et al., 2006).
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Abstract
While measurements of tissue stable isotope signatures and isotope mixing models have

suggested that the green orchid Corallorhiza trifida is photosynthetically active and

hence only partially myco-heterotrophic, these assumptions have not been validated by

direct analysis of carbon assimilation.

The photosynthetic capabilities of three orchid species assumed on the basis of the

indirect methods or chlorophyll content to have differing trophic strategies: Neottia

nidus-avis (fully myco-heterotrophic), Cephalanthera damasonium (partially

autotrophic), C. trifida (partially autotrophic), as well as saplings of an autotrophic tree,

Fagus sylvatica, were investigated by combining the determination of chlorophyll

content and fluorescence, with direct measurement of the potential for CO2 assimilation

using 13C isotope tracers in the field.

Chlorophyll content and fluorescence values were indicative of ineffective

photochemical processes in Neottia and reduced efficiency of photochemical processes

in Corallorhiza. These differences are reflected in the mean assimilation rates of 13CO2

of 594 ± 129, 331 ± 72, 12.4 ± 2.4 and 7.3 ± 0.9 mg g-1 h-1 for Fagus, Cephalanthera,

Corallorhiza and Neottia respectively.

Our study, while confirming the fully myco-heterotrophic status of Neottia and the

partially autotrophic condition in Cephalanthera, also demonstrates under field

conditions that Corallorhiza is physiologically closer to the fully myco-heterotrophic

condition than has previously been recognized.

Introduction
The overwhelming majority of plants form mutualistic symbioses with soil fungi,

termed mycorrhizas, in which the plant supplies fixed carbon (C) to the fungal

symbionts in return for the provision of mineral nutrients by the fungal partner (Smith

& Read, 2008). The functional status of these symbioses in orchids has however, been

controversial. It is accepted that all orchids begin their life cycle with a myco-

heterotrophic (sensu Leake, 1994) growth phase in which the fungal symbionts provide

C and mineral nutrients to the orchid seedling (McKendrick et al., 2000a; Smith, 1966)

without obvious benefit to themselves. It is also thought that, with the exception of a

small proportion of species (c. 1%) that retain the fully myco-heterotrophic

(achlorophyllous) condition in adulthood, the green shoots of orchids emerging
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aboveground have the potential for autotrophy. Cameron et al. (2008a & 2006) showed

that the green forest orchid Goodyera repens was able to engage in a mutualistic

symbiosis with its fungus partner, the partnership enabling the plant to repay the C

invested in it during its early achlorophyllous stage. However, the generality of this

observation in other green orchids remains to be elucidated. The extent to which the

green shoots are actually photosynthetic is less clear in those orchid species, such as

Corallorhiza trifida Chatel. in which leaves have been reduced to scales but green stems

and capsules appear to retain some potential for autotrophic activity.

Progress towards identification of the sources of C and N acquired by orchids has

been provided by measurements of the natural abundance of these elements in their

tissues (Gebauer & Meyer, 2003). These reveal that fully myco-heterotrophic orchids

have distinctively enriched delta 13C (and 15N) signatures relative to those seen in

species that are autotrophic at maturity. Zimmer et al. (2008) showed that in

Corallorhiza the natural abundance of tissue 13C  was  slightly  depleted  ( 13C = -25.6)

relative to that seen in the neighboring chlorophyll-free orchid Neottia nidus-avis ( 13C

= -24) and the ericaceous herb Monotropa hypopitys ( 13C  =  -22),  both  of  which  are

generally accepted to be fully myco-heterotrophic. In contrast, Corallorhiza, Neottia

and Monotropa were  all  shown  to  be  significantly  enriched  in 13C relative to co-

occurring green autotrophic reference plants ( 13C = -32). These findings, by

themselves, are indicative of a rather low photosynthetic capability in Corallorhiza.

However, using data obtained by the application of a two source mixing model

proposed by Gebauer & Meyer (2003), Zimmer et al. (2008) went on to calculate that

up to 23% of the carbon gained by Corallorhiza may be derived from photosynthetic

activity. These authors recognized the need to validate such estimated values through

direct measurements of photosynthetic C gain. The need for such validation has been

further highlighted by Barrett & Freudenstein (2008) who confirmed the presence of the

plastid-encoded RuBisCo large subunit gene, rbcL, in Corallorhiza trifida as well as in

its closest relatives in the genus, and called for direct measurements of the potential of

these plants to express photosynthetic activity.

Here, by in situ field measurements in the same population that was used by

Zimmer et al. (2008), we determined the ability of C. trifida and of co-occurring species

known to be either fully (Neottia nidus-avis (L.) Rich.) or partially myco-heterotrophic

orchid (Cephalanthera damasonium (Miller) Druce) or autotrophic (small saplings of
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Fagus sylvatica L.), to fix atmospheric CO2. By coupling the measurement of

chlorophyll fluorescence and content, we re-evaluate the nutritional status of this orchid.

Materials and Methods

Field site
All  experiments  were  undertaken  at  a  forest  site  located  in  NE  Bavaria,  Germany

(49°40 N and 11°23 E) at 522 m elevation with mean annual precipitation of 820 mm

and mean annual temperature of 8°C (German weather service, http://www.dwd.de).

The site is a dense broadleaf forest dominated by Fagus sylvatica with a sparse and

patchy cover of understory vegetation. Soil is lithic leptosol originating from Jurassic

dolomite with a shallow organic layer and a pH of 7.2 (0-5 cm) measured in H2O

(Zimmer et al., 2008). Total chlorophyll extractions, measurements of chlorophyll

fluorescence parameters and 13CO2 pulse chase experiments were performed in May

2008.

Chlorophyll content
The youngest fully expanded leaf was removed from four individuals of Neottia nidus-

avis and Cephalanthera, four saplings of Fagus and the whole stem of eight individuals

of Corallorhiza.  Shoots  were  harvested  and  kept  on  ice  in  the  dark  until  extraction  of

chlorophyll (within 1 hour). Dry weights were estimated using the fresh weight/dry

weight ratio of additional harvested leaves/stems and the surface area estimated using

the fresh weight/area ratio of the same leaves/stems (data not shown). Leaves or stems

were  ground  in  a  mortar  and  pestle  with  a  small  amount  of  acid  washed  sand  (as  an

abrasive) and 5 ml of 80 % ice-cold acetone. The mortar and pestle was washed out

twice with a further 2 ml of acetone and transferred to a centrifuge tube. The samples

were centrifuged at 8000 g for 5 minutes and the supernatant diluted to 10 ml total

volume with 80 % ice-cold acetone. The optical density of the supernatant was

measured at 645 and 663 nm using a Hitachi U-2001 spectrophotometer.

Chlorophyll a (mg l-1) = (12.7 x OD663) – (2.69 x OD645)

Equation 1

Chlorophyll b (mg l-1) = (22.9 x OD645) – (4.68 x OD663)
Equation 2



CHAPTER 3.2 The nutritional mode of Corallorhiza trifida 91

The chlorophyll concentration (mg l-1 of extract) was calculated according to Arnon

(1949) using equations 1 and 2 above and re-expressed as mg of chlorophyll per cm2

(surface area) to facilitate comparison of stem data collected from Corallorhiza with

leaf data from the other species. Surface area of the Corallorhiza stem was calculated as

a truncated cone.

Chlorophyll fluorescence
The maximum and steady state quantum yields (Fv/Fm and PSII,  respectively)  of  the

youngest fully expanded leaf of four individuals of Cephalanthera and Fagus or the top

of the stem below the first flower of intact Corallorhiza and Neottia shoots was

measured in the field using a pulse-modulated fluorimeter (FMS2, Hansatech Ltd,

King's Lynn, England). Fv/Fm is defined by equation 3 and PSII by  equation  4  after

Maxwell & Johnson (2000).

m
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FFFF 0/
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m

tm
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FF

'
'
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Equation 4

Where F0 is  the minimal level of fluorescence,  Fm is the maximum fluorescence (after

the application of the saturating flash), F’m is the maximum fluorescence in the light and

Ft is the steady state fluorescence immediately prior to the flash.

 Samples were dark-adapted for 15 minutes prior to measurements of Fv/Fm, and

the intensity of the 0.7 second light pulse of 8000 mol photons m-2 s-1. Leaves were

adapted to an actinic beam until F0 stabilized to obtain PSII. In the PSII

measurements, the light pulse had an intensity of 8000 mol photons m-2 s-1 for 0.7

seconds. All fluorescence parameters were estimated as per the manufacturer’s

instructions.

In-situ 13CO2 pulse labeling
Four individuals of Neottia and Cephalanthera, four saplings of Fagus and eight

individuals of Corallorhiza were identified in the field and sealed into a plastic bag (that

transmitted  on  average  95  %  PAR).  A  PTFE  vial  containing  50  mg  of  99  atom  %
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a) b) c)

d)

Ca13CO3 was attached to the inside wall of the bag (4000 cm3) prior to labeling. A gas-

tight seal was made around the stems using anhydrous lanolin. HCl (1 % v/v) was

injected through the wall of the bag and into the vial to liberate 13CO2 and the resulting

hole sealed with PTFE tape (Figure 1b). Plants were maintained in the labeling bags for

four hours and the photosynthetically active radiation (PAR) was recorded at canopy

height every hour throughout the labeling period. Four control plants of each species

studied were harvested and dried in order to establish the natural abundance 13C

signature of the plants.

Figure 1. a) Corallorhiza trifida, b) Neottia nidus-avis and c) Cephalanthera
damasonium growing beneath a stand of Fagus near Bayreuth, Bavaria, Germany and d)
labeling chamber for the introduction of the 13CO2 label.
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At harvest, plants were dried at 80 oC for  48  hours  and  weighed  (there  was c. 1 hour

between harvest and samples entering the drying oven, labeled and unlabeled samples

were dried in separate ovens). The samples were homogenized separately and a 5 g

subset of each constituent part was analyzed for 13C by continuous flow mass

spectrometry (PDZ Europa 2020 Isotope Ratio Mass Spectrometer – IRMS coupled to a

PDZ ANCA GSL preparation unit). Data were collected as 13C relative to the Pee Dee

Belemnite international standard and re-expressed as atom %. The excess (above

background) mass of 13C was calculated using Equation 5.

100
%

100
CMAtAtM contlab

Ex

Equation 5

Where MEx =  Mass  (excess)  of  the  isotope  in g, Atlab =  atom  %  of  the  isotope  in

labeled plant, Atcont =  atom  %  of  the  isotope  in  paired  control  plant, M =  biomass  of

sample ( g) and %C = percentage of carbon.

Statistical analysis
Differences between treatment means were analyzed by ANOVA followed by Fisher’s

multiple  comparison  test  using  Minitab  13  (Minitab  Inc.,  PA,  USA).  Data  were

transformed either using Log10 or Box-Cox (Minitab 13) transformations when they

failed to meet the assumptions of ANOVA. Untransformed means and associated

standard errors are presented.

Results

Chlorophyll content

The total amount of chlorophyll a + b ( g cm-2) was significantly different between all

means (ANOVA [Log10]: d.f. = 3,17; F = 368; P < 0.001) with Neottia containing the

lowest amount of chlorophyll and Cephalanthera the  highest  (Figure  2a).  In  contrast,

there was no significant difference in the chlorophyll a:b ratio of Fagus, Cephalanthera

and Corallorhiza. The chlorophyll a:b ratio of Neottia was however significantly higher

than that of all other species (ANOVA [Log10]: d.f. = 3,17; F = 60.3; P < 0.001) (Figure

2b).
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Figure 2. Total  chlorophyll  content  (a)  and  a:b  ratio  (b)  in Neottia nidus-avis (myco-
heterotroph), Corallorhiza trifida (partial myco-heterotroph sensu Zimmer et al., 2008),
Cephalanthera damasonium (partial myco-heterotroph sensu Gebauer & Meyer, 2003)
and Fagus sylvatica (autotroph). Chlorophyll content is expressed as a function of
surface area of the sample leaves in all cases except Corallorhiza which is leafless. In
this latter case stems were analysed and the surface area calculated as a truncated cone.
Bars with differing letters are significantly different (ANOVA: P < 0.05). Error bars
represent + 1 SE. N = 4 - 8.

Chlorophyll fluorescence parameters (Fv/Fm and PSII)

Maximum quantum yield (Fv/Fm) was measured for Fagus, Cephalanthera and

Corallorhiza but could not be measured for Neottia as  steady  state  F0 was never

detected (Figure 3a). Fv/Fm was highest for Fagus (0.85 ± 0.001) and was significantly

different from Cephalanthera (0.81 ± 0.003) (ANOVA: d.f. = 2,12; F = 43.4; P <

0.001), although both values are considered to be within the range for healthy plants
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(Maxwell & Johnson 2000). Fv/Fm for Corallorhiza (0.71 ± 0.015) was significantly

lower than that of both Fagus and Cephalanthera (ANOVA: d.f. = 2, 12; F = 43.4; P <

0.001) (Figure 3a). The steady state quantum yield of photosystem II ( PSII) was

determined for Fagus (0.85 ± 0.005), Cephalanthera (0.80 ± 0.012) and Corallorhiza

(0.71 ± 0.020) but again could not be measured for Neottia (Figure 3b). PSII values

recorded for all species were significantly different (ANOVA: d.f. = 2,12; F = 22.2; P <

0.001) (Figure 3b).

Figure 3. Maximum  (Fv/Fm -  a)  and  steady  state  ( PSII - b) quantum yield of
photosystem II for the stems of Neottia nidus-avis (myco-heterotroph) and Corallorhiza
trifida (partial myco-heterotroph) and the leaves of Cephalanthera damasonium (partial
myco-heterotroph) and Fagus sylvatica (autotroph). Bars with differing letters are
significantly different (ANOVA: P < 0.05). Error bars represent + 1 SE. N = 4 - 8. NB:
No values for Fv/Fm or PSII could be obtained for Neottia as steady state F0 was  not
detectable following the application of the actinic beam.
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In-situ 13CO2 pulse labeling
The shoots of all target species; Fagus, Cephalanthera, Corallorhiza and Neottia

contained the 13C label (atom % excess and thus above background) after 4 hours of

exposure (Figure 4).

Figure 4. Total amount of 13C (a) and the percentage of the supplied 13C (b) present in
plant shoots of Neottia nidus-avis (myco-heterotroph), Corallorhiza trifida (partial
myco-heterotroph), Cephalanthera damasonium (partial myco-heterotroph) and Fagus
sylvatica (autotroph) after four hours exposure to a 13CO2 source. Mean
photosynthetically active radiation ( mol photons m-2 s-1) is given above each bar. Bars
with differing letters are significantly different (ANOVA: P < 0.05). Error bars
represent + 1 SE. N = 4 - 8.
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There was significantly more of the 13C label ( g  g-1 DWT)  in  the  shoots  of

Cephalanthera and Fagus than that detected in either Corallorhiza or Neottia (ANOVA

[Box-Cox]: d.f. = 3,19; F = 91.8; P < 0.001) (Figure 4a). However, there were no

significant  differences  in  the  amount  of  the 13C  label  present  in  the  tissues  of

Cephalanthera compared with Fagus or those of Corallorhiza compared with Neottia

(ANOVA: P > 0.05) (Figure 4a). In terms of the proportion of the 13CO2 label supplied

that was fixed by the plant; there was no significant difference in the percentage of the

label fixed by Fagus compared with Cephalanthera (ANOVA [Box-Cox]: P > 0.05;

Figure 4b). Both Fagus and Cephalanthera fixed a significantly greater percentage of

the label supplied than either Corallorhiza or Neottia whilst, somewhat surprisingly,

Neottia contained a greater percentage of the label than Corallorhiza (ANOVA [Box-

Cox]: d.f. = 3,19; F = 95.1; P < 0.001) (Figure 4b).

The amount of 13C present in the plant shoots and the percentage of the label fixed

are not functions of light availability as there is no relationship between

photosynthetically active radiation (PAR) and 13C content (Figure 4).

Discussion
A recent analysis (Zimmer et al., 2008) of the enrichment of the stable isotopes 13C and
15N in tissues of Corallorhiza trifida indicated a small but statistically significant

depletion in the natural abundance of these two elements ( 13C = -25.6 and 15N = -0.3)

in this orchid relative to that seen in co-occurring plants of the fully myco-heterotrophic

orchid Neottia nidus-avis ( 13C = -24.0; 15N = 4.9).  These values are similar to those

recorded in the present study ( 13C = -24.2 and -23.15 for Corallorhiza and Neottia

respectively; Appendix A). The observed difference between the two orchids was

interpreted to indicate that Corallorhiza obtained  a  proportion  of  its  carbon  from

photosynthesis. Indeed, Zimmer et al., (2008), on the basis of a stable isotope mixing

model, concluded that the Corallorhiza plants which they analyzed had gained c. 23%

of their carbon through autotrophic C fixation. Since the levels of C fixation by

Corallorhiza observed in the present study were only c.  2  %  of  those  seen  in  co-

occurring Fagus, it would seem that its photosynthetic capacity is an order of magnitude

lower than that of normal autotrophs.

Since, during their short period of development above ground, the green stems of

this orchid will normally be exposed to diffuse irradiance, it is logical to expect that
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some autotrophic activity could occur in their tissues. The presence of genes encoding

for chlorophyll synthesis (Barrett & Freudenstein, 2008), the demonstration of the

occurrence of chlorophylls a and b by Zimmer et al., (2008) and in the present study, as

well of chlorophyll fluorescence, are also supportive of the notion that some potential

for autotrophy can be expected in this orchid. However, all of these approaches to the

question of the extent of photosynthetic activity in Corallorhiza are essentially indirect,

there being only one previous report of direct analysis of its ability to assimilate C

(Montfort & Küsters, 1940). This indicated that some autotrophic C fixation did occur

in the orchid.

The direct measurements of 13CO2 assimilation reported in the present study

indicate that under similar conditions of irradiance, the quantitities of C fixed by

photosynthesis in Corallorhiza are negligible relative to those seen in a co-occurring

partially myco-heterotrophic (sensu Julou et al., 2005) leafy green orchid

Cephalanthera damasonium or in saplings of Fagus sylvatica. Moreover, the amount of
13CO2 assimilated by Corallorhiza was not significantly different from that detected in

the tissues of Neottia. In this later case, the 13CO2 detected must be a result of diffusion,

incorporation into organic acids via the PEP carboxylase pathway or through non-

photochemical processes as, by general consent, Neottia is unable to photosynthesize

owing to a lack of critical light harvesting pigments (Menke & Schmidt, 1976; Reznik

et al. 1969; Reznik, 1958; Montfort & Küsters, 1940; Drude, 1873).

Since  our  measurements  were  made  under  conditions  of  direct  diffused  solar

irradiance and at the stage of maximum shoot extension in plants with fully developed

green  seed  capsules  it  seems  unlikely  that  there  are  other  environmental  or

developmental conditions that would be more favorable for the expression of

photosynthetic activity. Indeed, since all species examined co-occurred on identical

substrates within a few meters other it is reasonable to assume that they were all

experiencing the same soil conditions. Further, the phenology of this orchid is such that

the opportunity for significant autotrophic accumulation of C is inevitably restricted as

the flowering spikes only are exposed above ground for a very restricted period of time,

normally not more than two months. Additional direct measurements of the kind

described here are desirable and preferably these should be carried out over a period

longer than the 4 hour duration employed in this study. Nonetheless, it is apparent from

the results obtained in the parallel analyses of Cephalanthera that this period of

exposure is sufficient to reveal C fixation when and where it is taking place. Moreover,
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such exposure times are as long as or longer than those routinely employed for

assessment of photosynthetic activity using infrared gas analysis techniques.

Chlorophyll fluorescence parameters for Corallorhiza indicate on the one hand the

presence of active photosystem II reaction centers but on the other that the quantum

efficiency of PS II ( PSII) is reduced. In this orchid, the mean value of 0.7 for Fv/Fm was

substantially lower than the multi species average of 0.83 recorded for healthy

autotrophs by Maxwell & Johnson (2000). Such a value is potentially indicative of

photo inhibition (Cameron et al., 2008b), though the analyses of Ritchie (2006) suggest

that the values of Fv/Fm and PSII recorded here for Corallorhiza are not necessarily so

depressed as to predict the absence of photosynthesis. Our failure to detect more than

minimal C fixation suggests therefore that most of the excitation energy of the light

harvesting  complex  of  PSII  (LHCII)  is  being  transferred  to  an  alternative  electron

acceptor, it then being dissipated as heat through non photosynthetic metabolism as

described by Krause & Weis (1991). Such non photochemical quenching processes

(NPQ) are known to be facilitated by xanthophylls (Johnson et al., 1993). Neither NPQ

nor carotenoid composition of Corallorhiza could be measured in the present study, but

in view of the observation (Bungard et al., 1999) that the non-photosynthetic

holoparasite Cuscuta reflexa possesses a novel type of NPQ – related xanthophyll cycle

linked with the transition from autotrophy to heterotrophy, analyses of these pathways

in the orchid are called for.

Clearly, C. trifida, while retaining the genes encoding for chlorophyll synthesis

(Barrett & Freudenstein, 2008), represents a late stage in the evolutionary development

towards complete myco-heterotrophy. However, it appears from the present study that

in a physiological context this orchid has moved more closely towards the fully myco-

heterotrophic condition than has previously been recognized. These observations are

consistent with those indicating that, in nature, C. trifida is routinely involved in

tripartite symbiotic associations between ectomycorrhizal fungi and autotrophic

overstory trees (Zelmer & Currah, 1995; McKendrick et al., 2000b). The mycelia of the

fungal partners have been shown to provide pathways through which carbon is

transferred from the trees to the large coralloid root systems which constitute the slowly

developing below ground storage structures characteristic of this genus (McKendrick et

al., 2000a). Having formed such an effective mechanism for assimilate acquisition it is

perhaps not surprising that the contribution of photosynthesis to the C economy of the

orchid, has, as indicated here by direct measurements, been so greatly reduced.
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Appendix (available online)

Appendix A. Figure showing the natural abundance 13C signature (relative to the Pee
Dee Belemnite international standard) of Neottia nidus-avis, Corallorhiza trifida,
Cephalanthera damasonium and Fagus sylvatica.  Error  bars  represent  ±  1  SE.  Points
with differing letter codes are significantly different (ANOVA: d.f. = 3,10; F = 114.8; P
< 0.001), n = 3 - 4.
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Letter
In the field of orchid research species within the tribe Cranichideae have been at the

center of attention due to the recent findings of Cameron et al. (2006, 2008) of carbon

transport from adult Goodyera repens (L.) R. Br. orchids to their mycorrhizal fungus

Ceratobasidium cornigerum (Bourdot) D.P. Rogers. The dependency of orchids in their

early stages of development on fungi is a long recognized trait of the family (Bernard,

1909; Dearnaley, 2007). However, there has been much controversy over the potential

for carbon “repayment” to the fungi once the orchid has formed leaves and is capable of

assimilating its own carbohydrates through photosynthesis (Alexander & Hadley, 1985;

McCormick et al., 2006; Smith & Read, 2008).

Using 14C labeled carbon either fed to the mycelia of the orchids’ fungal symbiont

or to the plant as 14CO2 Cameron et al. (2008) were able to quantify the carbon transport

between the orchid and fungus over an eight-day period. Their findings were that the net

transfer of carbon from G. repens to C. cornigerum was over five times greater than that

of carbon transported from the fungus to the plant. While this extremely well-executed

study provides the “first full bidirectional C budget for any mycorrhizal association”

(Cameron et al., 2008), there are some limitations of their model and methods that must

be taken into account. As mentioned in their recent article and the commentary by

Johnson (2008), the C allocation to fungal biomass within the orchids’ roots cannot be

separated from that to the roots alone nor can C respiration from the plant versus the

fungus. Furthermore, the use of radiocarbon labeling gives measurements of carbon

flow  within  a  system  for  only  a  relatively  short  period  of  time.  Also,  since  many  of

these labeling experiments are carried out in the laboratory it is difficult to then relate

results to any field setting. A complementary method that has been applied to examine

C and N gains from fungi by partially and fully myco-heterotrophic plants associated

with ectomycorrhizal (ECM) and litter or wood decaying saprotrophic (SAP) fungi is

the use of naturally occurring stable isotopes of carbon and nitrogen (13C:12C and
15N:14N) (Gebauer & Meyer, 2003; Trudell et  al., 2003; Ogura-Tsujita et al., 2008).

Measured isotope abundances are denoted as  values  and  are  calculated  according  to

the equation: 15N or 13C = (Rsample/Rstandard - 1) x 1000 [‰], where Rsample and Rstandard

are the ratios of heavy isotope to light isotope of the samples and the respective

standard. In contrast to radiocarbon labeling, the analysis of field collected plants’ bulk

carbon isotope values gives an integrated view of carbon assimilation throughout the

period the tissue was synthesized (Dawson et al., 2002).
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While there is a sub-set of orchid species that remain myco-heterotrophic for their entire

life cycle and lack the ability to photosynthesize (Leake, 1994), it has been thought that

green species are completely released from their dependency on heterotrophic C gain

once leaves are formed (Alexander & Hadley, 1985). However, recent analysis of some

green orchids’ carbon and nitrogen isotope signatures has revealed that many of these

putative autotrophic orchids that associate with ECM fungi actually still partially rely on

these fungi to meet their carbon demands. These orchid species have been referred to as

mixotrophs or partial myco-heterotrophs. Unlike obligate myco-heterotrophic orchids

that have 13C signatures most similar to their fungal symbionts, mixotrophic orchids

tend to have 13C signatures intermediate between those of surrounding autotrophic and

myco-heterotrophic plants (Bidartondo et  al., 2004; Julou et al., 2005; Abadie et al.,

2006; Tedersoo et al., 2007; Zimmer et al., 2007).

Interestingly an additional category of orchids that are depleted in 13C compared

to surrounding autotrophic plants is emerging from recent stable isotope analysis of

species in the closely related tribes Orchideae and Cranichideae (Liebel HT et al.,

unpublished), the latter containing the genus Goodyera (data herein). We collected leaf

samples of Goodyera oblongifolia Raf. from four sites in northern California and

southern Oregon, USA, and Goodyera repens from a single site in the Austrian Alps

(Table 1).

Table 1: Sampling locations in the USA (CA, OR) and Austria (Vorarlberg) including
Goodyera and reference species collected (n = number of replicates), and mean ± 1 SD

15N and 13C values [‰] in leaves of Goodyera and reference species.

Location Species (n) 15N 13C

El Dorado National Forest, CA
38 54’01.70”N 120 34’26.77”W

El Dorado National Forest, CA
38 54’3.47”N 120 34’28.40”W

Plumas National Forest, CA
40 03’36.02”N 120 51’32.99”W

Willamette National Forest, OR
44º18’36.00”N 122º00’36.02”W

Marultal, Vorarlberg
47°11’44’’N 9°53’57’’E

Goodyera oblongifolia (4)
Abies concolor (5)

G. oblongifolia (5)
A. concolor (5)
Ribes roezlii (5)

G. oblongifolia (5)
A. concolor (5)

G. oblongifolia (1)
Tsuga heterophylla (5)

G. repens (5)
Knautia sylvatica (5)
Mercurialis perennis (5)
Vaccinium vitis-idaea (5)

-2.4 ± 0.8
-3.4 ± 0.9

-3.2 ± 0.8
-4.0 ± 0.7
-4.3 ± 1.2

-2.0 ± 1.1
-3.8 ± 1.1

-1.6
-2.2 ± 0.8

-6.2 ± 1.1
-8.9 ± 0.8
-7.7 ± 0.6
-9.7 ± 0.9

-32.3 ± 0.8
-31.0 ± 0.3

-33.3 ± 1.2
-30.6 ± 0.7
-31.4 ± 0.6

-33.2 ± 0.7
-30.4 ± 1.0

-33.4
-31.9 ± 1.9

-36.6 ± 1.9
-32.1 ± 0.6
-30.3 ± 0.7
-30.5 ± 0.5
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The site in the Alps was an open rocky outcrop habitat,  while all  samples collected in

the USA were from the deeply shaded understories of mixed conifer forests. Altogether,

leaves of 15 G. oblongifolia and five G. repens individuals were collected. In addition,

at each sampling site a minimum of five autotrophic individuals from at least one

species were collected for a total of 40 individuals of six species (Table 1). These

collections were used as reference plants representative of the autotrophic understory.

The collected plant samples were then analyzed for carbon and nitrogen stable

isotope abundances via elemental analyzer/continuous flow isotope ratio mass

spectrometry at either the BayCEER - Laboratory of Isotope Biogeochemistry

University of Bayreuth, Germany or at the Center for Stable Isotope Biogeochemistry at

University of California Berkeley as described in Zimmer et al. (2007). Once  values

were obtained for all samples from the USA (Table 1), the 15N and 13C values of all

reference plants were tested for inter-site variation with a one-way ANOVA and

Tukey’s HSD. Due to significant differences at an  0.05 among 15N  values  of  the

reference plants between two sites in California (P = 0.007) the  values from the USA

could not be pooled to make comparisons across sites between Goodyera samples and

their respective references. To make these comparisons  values for both elements and

all samples collected in the USA and the single Austrian site (for consistency) were

converted into site-independent enrichment factors ( ) and pooled based on species

identity  and  location  (USA  or  Austria).  The  calculation  of  factors systematically

eliminates the majority of the influence of spatial variation on  values  due  to  site-

specific differences in C and N isotope abundances, thus allowing for comparisons of

these values across sites (Emmett et al., 1998; Gebauer & Taylor, 1999; Preiss &

Gebauer, 2008). First, for each site the 13C and 15N values  of  reference  plants  were

averaged. Then, on a per site basis these averages were subtracted from the Goodyera

samples’ and reference plants’ 13C and 15N values to create site-independent

enrichment factors (  = xS - xR) for each sample where xS = 13C or 15N of

individual samples per site and xR = mean 13C or 15N of all reference plants per site.

The resulting mean of both 13C and 15N  factors of the autotrophic reference plants is

equal to 0 ‰. However, the enrichment factors of individual reference plants cluster

around 0 ‰, reflecting the small inter- and intraspecific variations in their isotope

signatures that are not significantly different between sites.

The two Goodyera species’  factors separated as distinct groups for both

elements based on the differences of their  values from the mean of their respective
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references (Figure 1). The variance around the mean 13C or 15N values of reference

plants used to calculate 15N and 13C is retained by calculating  factors for not only

both Goodyera species,  but  reference  plants  on  a  site  by  site  basis.  Statistical

comparisons between the individual enrichment factors of individual Goodyera repens,

G. oblongifolia plants and their respective autotrophic references from either Austria or

western USA were made by Mann-Whitney U tests. Both Goodyera repens (P = 0.002)

and G. oblongifolia (P = 0.008) were significantly enriched in 15N compared to

surrounding autotrophic plants (Figure 1). In contrast, both Goodyera species were

significantly depleted in 13C  in  comparison  to  their  references  (P < 0.001; Figure 1).

Goodyera repens plants from the open sunny habitat in the Alps were considerably

more depleted in 13C compared to G. oblongifolia from deeply shaded forests.

Figure 1. Mean enrichment factors ( ) of 13C and 15N  from  the  leaves  of Goodyera
oblongifolia (open triangle), Goodyera repens (closed triangle) and each species of
autotrophic reference plants collected in the USA (open circles) and in Austria (closed
circles). Error bars indicate 1 SD for each Goodyera species and their respective
reference plants.

Although the sample size of G. oblongifolia and G. repens individuals collected in this

study were relatively small, the stable isotope evidence presented here shows that these

orchids do not exhibit any trends toward full or partial myco-heterotrophy. In fact, these

orchids’ consistent depletion in 13C compared to surrounding autotrophic plants reveals

a distinct nutritional strategy. The physiological mechanism leading to this depletion
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remains unknown, but may be related to the transfer of 13C enriched C compounds from

these orchids to their associated fungi (sensu Gleixner et al., 1993). This would fit well

with Cameron et al.’s (2006, 2008) findings of C transfer from orchid to fungus, as well

as with isotope food-chain models where the source of a nutrient is left depleted in the

heavy isotope compared to the sink (Fry, 2006). What is unclear is why Goodyera

species would be significantly more depleted in 13C than surrounding autotrophic

mycorrhizal plants that are transferring substantial amounts of carbon to their fungal

symbionts (Smith & Read, 2008).

Habitat may also play a key role in determining the 13C enrichment factors of

Goodyera species. For instance, there exists some evidence that green orchids capable

of partial myco-heterotrophy increase their dependency on fungal assimilated C when in

deeply shaded habitats, leading their leaf 13C values to become more enriched than

those of surrounding autotrophic plants (Bidartondo et  al., 2004; McCormick et al.,

2004; Zimmer et al., 2007). If G. oblongifolia individuals from our forested sites were

at an earlier stage of seedling development more dependent on heterotrophic carbon

gain than G. repens from  open  sites,  then  this  could  explain  why  the  previous  is  less

depleted in 13C than the latter. The significant enrichment in 15N  (a  hallmark  of  all

myco-heterotrophic orchids studied to date) found in both Goodyera species supports

this  and  Cameron et al.’s (2008) statement that these orchids are more parasitic upon

their fungal symbionts than other mycorrhizal plants and therefore may govern the

amount of nutrient exchange to the fungus. This idea of ‘orchid control’ over its

mycorrhizal associations is further exemplified by the unique morphology of orchid

mycorrhizas  where  fungi  that  are  known  to  be  saprotrophic  or  ectomycorrhizal  when

independent of orchids form intracellular coils when in association with orchids

(Rasmussen, 2002).

Based on Cameron et al.’s (2006, 2008) work Goodyera repens now provides the

first example of an orchid species that upon becoming photosynthetically active can

transfer carbon back to its mycorrhizal fungus. Unlike other green orchids studied to

date, species within the tribes Orchideae and Cranichideae including G. repens and G.

oblongifolia are the first species found to be depleted in 13C compared to surrounding

autotrophic  plants  (Liebel  HT et al., unpublished; data herein). In summary, based on

carbon stable isotope abundances and identity of their mycorrhizal associates it is now

clear that terrestrial orchids can utilize at least four nutritional strategies: autotrophy,

where green orchids have carbon isotope signatures indistinguishable from surrounding
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autotrophs and mainly associate with Rhizoctonia species (a polyphyletic group of

fungi); partial myco-heterotrophy, where green orchids have carbon isotope signatures

intermediate between those of autotrophs and myco-heterotrophs and associate with

ECM fungi; obligate myco-heterotrophy, where orchids have lost the ability to

photosynthesize, are specialized on either ECM or SAP fungi, and are enriched in 13C

similar to their host fungi; and an additional strategy found in green orchids in the tribes

Orchideae and Cranichideae, which mainly associate with ceratobasidioid and

tulasnelloid fungi and are depleted in 13C compared to surrounding autotrophs (Figure 1;

Liebel HT et al., unpublished). The variability of the ecology and physiology of orchids

is not surprising for the largest plant family whose evolutionary history potentially

stretches back to the late Cretaceous (Ramírez et al., 2007). While there is still much to

discover about the intriguing Orchidaceae, combining the use of naturally abundant

isotopes and radioactive tracers along with molecular methods, especially those that

allow comparisons at the genotype level (Johnson, 2008), will continue to help us

understand the links between the evolutionary history of orchids, their physiology and

interactions with fungi.
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Abstract
During early development orchids are fully dependent on mycorrhizal fungi (i.e., myco-

heterotrophic). At maturity they become autotrophic, partially myco-heterotrophic or

remain fully myco-heterotrophic. Using carbon (C) and nitrogen (N) stable isotope

signatures and fungal DNA analyses, we compared orchids from the Mediterranean

region, a hotspot of orchid diversity, and from the adjacent islands of Macaronesia in

order to understand how ecological factors and habitat types determine the occurrence

of different nutritional modes and impose restrictions upon orchid distribution. We

hypothesized that partial and full myco-heterotrophy would be restricted to light-limited

forest understories because these nutritional modes are constrained by the occurrence of

suitable ectomycorrhizal fungi.

This is so far the widest assessment of orchid nutrition in natural ecosystems.

Covering a range of habitats from dark forests to open sites, leaf and root samples of 35

orchid species from 14 genera were collected from 20 locations in continental Italy,

Sardinia (Mediterranean) and Tenerife (Macaronesia) to test for myco-heterotrophy.

Mycorrhizal fungi were identified via molecular analyses and stable isotope analyses

were applied to test whether organic nutrients are gained from the fungal associates.

Our results show that only orchids of the tribe Neottieae growing in dark forests

and associating with ectomycorrhizal fungi rely heavily or fully on myco-heterotrophy.

Interestingly, orchids exhibiting this nutritional mode are missing in Macaronesia. Adult

orchids of open habitats in the Mediterranean and Macaronesia show weak or no N

gains from fungi and do not profit from C gain through myco-heterotrophy. Some of

them may even provide C to their fungal partners.

We conclude that partial and full myco-heterotrophy in Mediterranean orchids are

restricted to Neottieae of light-limited ectomycorrhizal forests, thus raising the novel

hypothesis that, rather than orchid dispersal limitation, the limited diversity of host

ectomycorrhizal plants and fungi is the reason for the lack of myco-heterotrophic

orchids in Macaronesia.

Introduction
Early research by Bernard (1909) first described how orchids live in close mycorrhizal

symbiosis with fungi. Since that time, orchid mycorrhizas have attracted much interest

from plant ecologists and mycologists. Previous studies investigating orchid nutrition
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have mainly focused on temperate regions with only marginal consideration of regions

with Mediterranean climate (see Gebauer & Meyer, 2003; Selosse et al., 2004; Girlanda

et al., 2006), despite the fact that the Mediterranean region shows a much higher orchid

diversity (e.g., 56 species in Germany (Rothmaler, 2000) versus 108 orchid species in

Italy alone (Ministero dell’Ambiente e della Tutela del Territorio, 2007)). In striking

contrast, the adjacent climatically similar Macaronesian region is poor in orchid species

(16 orchid species in Macaronesia including only eight orchid species in the Canary

Islands (Eriksson et al., 1979; Hohenester & Welß, 1993).

Orchids typically produce extremely light ‘dust seeds’ which are easily

transported over large distances by the wind. Thus, orchid seed dispersal between the

Mediterranean and Macaronesia is to be expected. The tiny seeds do not contain

sufficient endosperm for germination and depend on nutrient supply by a fungal partner.

In developing orchids (i.e., protocorms), Bernard detected easily cultivable saprotrophic

or pathogenic rhizoctonia-forming fungi (belonging to the basidiomycete genera

Tulasnella, Thanatephorus, Ceratobasidium and the biotrophic clade B of Sebacina;

Bernard, 1909; Weiss et al., 2004; Smith & Read, 2008). Perhaps with the exception of

a few epiphytic tropical orchids, all orchids investigated so far remain mycorrhizal

during their entire life cycle (Smith & Read, 2008).

There are some non-photosynthetic orchids that completely depend on their fungal

partners throughout their life. Altogether, about 200 fully myco-heterotrophic orchids

(MHO) have been described (Leake, 1994). Many MHOs depend on ectomycorrhizal

(ECM) fungi that are simultaneously associated with overstorey plants (Bidartondo,

2005). Furthermore, MHOs of the tribe Neottieae often exhibit a pronounced

mycorrhizal specificity towards hardly cultivable lineages of ECM fungi (Selosse et al.,

2002; Bidartondo et al., 2004). Within other tribes of the Orchidaceae, ECM fungi have

also been found to form associations with Hexalectris and Corallorhiza species

(McKendrick et al., 2000; Taylor et al., 2003). These orchids’ dependence on ECM

fungi was revealed by molecular identification of fungi forming coils (i.e., pelotons)

inside orchid roots (Taylor & Bruns, 1997) in combination with stable isotope natural

abundance analysis (Gebauer & Meyer, 2003). The latter technique is useful to

understand pathways for the acquisition of fungi-derived organic C and N based on

stable isotope abundances in plant leaf tissue. The method is based on the observation

that tissues from fruiting bodies of ectomycorrhizal fungi show a higher abundance of

the heavy stable isotopes 13C (Gleixner et al., 1993; Högberg et al., 1999) and 15N
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(Gebauer & Dietrich 1993) in comparison to neighboring autotrophic plants. MHOs

relying on ECM fungi are therefore also enriched in both 13C and 15N similarly to ECM

fungi themselves (Trudell et al., 2003). Using stable isotope natural abundance analysis,

some green orchids previously considered to be fully autotrophic (e.g., Cephalanthera

and Epipactis spp.) were found to also have isotope signatures distinct from surrounding

plants. Such orchids showing 13C and 15N abundances intermediate between autotrophic

non-orchid neighboring plants and fully MHOs were classified as partially myco-

heterotrophic (Gebauer & Meyer, 2003). This physiological phenomenon is not limited

to the Orchidaceae, as a similar mechanism has recently been discovered also in

pyroloids (Ericaceae) (Tedersoo et al., 2007; Zimmer et al., 2007; Hynson et al.,

2009a). Furthermore, even non-photosynthetic forms of generally green species may

survive due to myco-heterotrophic nutrient supply (Julou et al., 2005; Abadie et al.,

2006).

It has never been investigated whether the occurrence of full and partial C and/or

N myco-heterotrophy (i.e., heterotrophy sensu Larcher, 2003 and Lüttge et al., 2005) is

coupled to specific types of habitats and how the diversity of ectomycorrhizal plants and

fungi constrains the distribution of these nutritional modes. Here, in the widest test for

myco-heterotrophy in natural ecosystems carried out to date, the nutritional mode of

Mediterranean and Macaronesian orchids growing in open habitats, shrubland, forest

gaps and forests was investigated in continental Italy and the islands of Sardinia

(Mediterranean) and Tenerife (Macaronesia), to test whether the occurrence of full and

partial myco-heterotrophy among orchids is restricted to habitats distinguished by their

light regime and available fungi.

Materials and methods

Study sites
Orchids of three main regions were investigated: (1) the northern part of continental

Italy (N 44.1-45.2°; E 7.1-10.1°), (2) the Mediterranean island of Sardinia (Italy, N

41.2-39.7°; E 9.4-9.8°) and (3) the Macaronesian island of Tenerife (Spain, N 28.2-

28.4°; W 16.5-16.8°). The Mediterranean sites are characterized by summer droughts

and a maximum of precipitation between October and May (mean annual precipitation

at the sites: 800 – 1150 mm in continental Italy; 450 – 800 mm on Sardinia). The

temperatures rarely reach 0 °C in winter and rise in summer to mean temperatures
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around 25 °C in the months July and August. The mean annual precipitation of

investigated sites on Tenerife is 400 – 700 mm (with an additional component from

humidity combed out by pine trees from daily orographic fog due to the permanent

stream from north easterly trade winds at a site with Orchis canariensis). The rainy

period lasts from October to March; the mean annual temperatures vary from 10-18 °C

according to altitude and exposure (Höllermann, 1982; García Canseco, 2004).

Orchids from 20 sites were investigated. Each of these sites was classified as one

of the following habitat types: open habitat, shrubland, forest and forest gap. Since all

orchids investigated in deciduous forests developed leaves after tree canopy

development and disappeared before fall of tree leaves, a further distinction according

to orchid phenology between deciduous and evergreen forests was not necessary. The

different habitat types are distinguished by accompanying plant species, mycorrhizal

associations and light climate. To clarify the habitat-dependent light climate, relative

light availability (%) was calculated by comparing simultaneously performed PAR

measurements (Quantum Sensor, Li-Cor, Lincoln, NE, USA) close to the orchid leaves

and above the canopy or outside the forests, respectively. Mean relative light

availability was the lowest at forest (7 ± 4 %; n = 4) and shrubland sites (7 %; n = 2)

and the highest at open sites (84 ± 18 %; n = 10) whereas irradiances at forest gap sites

ranged in-between (57 ± 30 %; n =  3).  In  continental  Italy,  sites  had  a  maximum

distance of 270 km and plants were collected at three open grassland sites, two

deciduous broadleaf forest sites and one forest gap. Sites on Sardinia were distributed

among the whole island (max. distance of 165 km) and orchids were sampled at seven

open habitat sites (grassland, degraded steppe or open places in patchy macchia), two

evergreen (Quercus ilex) forest sites and one shrubland site. Plant material on Tenerife

was taken from one open grassland site, two gaps of coniferous (Pinus canariensis)

forest  and  one  shrubland  site  with  a  maximum  distance  of  40  km.  Detailed  site

descriptions including vegetation characteristics, light availability data, geographic

coordinates and details on the collected species can be found in Appendix A.

Standardized vegetation surveys per plot, recording all plant species surrounding

the target orchid within 1m2, were set up and the mycorrhizal type of each species was

investigated using the review article on the phylogenetic distribution of mycorrhizas in

land plants of Wang & Qiu (2006). Plants that depend on ectomycorrhizal associations

(mainly Fagaceae, Pinaceae and Cistaceae) were found in most plots irrespective of

habitat type (see Table 2).
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Sampling scheme and investigated species
A total of 35 orchid species were investigated (27 members of the tribe Orchideae, one

of the Cranichideae and seven of the Neottieae). Five of the 35 orchid species were

collected in two of the three main regions. In continental Italy, 15 orchid species of all

three tribes were sampled, while the 19 orchid species collected on Sardinia belong to

the tribes Orchideae and Neottieae and the six species from the Macaronesian region

exclusively belong to the Orchideae. All samples were collected in April and May 2007

except for Barlia metlesicsiana on Tenerife (collected in 2008). Orchid species

nomenclature follows Baumann et al. (2006) except for the island endemites of Sardinia

(Delforge, 2005).

Sites having at least five individuals of an orchid species growing a minimum of

two  meters  apart  from  each  other  (to  avoid  sampling  orchid  clones)  were  located.  To

evaluate the orchids’ stable isotope signatures, each of the orchid plots (i.e., area around

the orchid, max. 1 m apart) additionally had to contain three autotrophic reference

plants (listed in Appendix A). For each orchid species, samples were collected from five

plots yielding five replicates to allow statistical validation (except for Cephalanthera

damasonium, n = 2). One to two leaves of the orchid and the reference plants were

sampled. Leaf material was taken at approximately the same height as it is known that

the CO2 uptake and stomatal regulation at different heights above the surface results in

different 13C values due to different CO2 sources (soil vs. atmosphere), light climate

and vapour pressure (Farquhar et al., 1989; Gebauer & Schulze, 1991; Bauer et al.,

2000). As Neottia nidus-avis has only a few small bracts, a section of the above-ground

inflorescence was collected instead of leaves.

Analysis of stable isotope abundance and N concentration
Leaf and stem samples were oven-dried at 105°C and ground to a fine powder. Relative

C and N isotope abundances were measured using a dual element analysis mode with an

elemental analyzer coupled to a continuous flow isotope ratio mass spectrometer as

described in Bidartondo et al. (2004). Measured isotope abundances are denoted as

values, which were calculated according to the following equation: 13C or 15N  =

(Rsample/Rstandard-1) x 1000 [‰], where Rsample and Rstandard are the ratios of heavy isotope

to light isotope of the samples and the respective standard. Standard gases were

calibrated with respect to international standards by using the reference substances

ANU sucrose and NBS 19 for carbon isotopes and N1 and N2 for nitrogen isotopes,
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provided by the International Atomic Energy Agency (Vienna, Austria). Reproducibility

and accuracy of the isotope abundance measurements were routinely controlled by

measures of the test substance acetanilide (Gebauer & Schulze, 1991). At least six test

substances with varying sample weight were routinely analyzed within each batch of 50

samples. Maximum variation of 13C and 15N within as well  as between batches was

always below 0.2 ‰. Nitrogen concentrations in the leaf samples were calculated from

sample  weights  and  peak  areas  using  a  daily  six-point  calibration  curve  based  on  the

acetanilide measurements (Gebauer & Schulze, 1991). Acetanilide has a constant N

concentration of 10.36 %.

Statistics
ANOVA analysis and post hoc comparisons based on Tukey HSD test of reference

plant 13C and 15N values indicated a significant site effect for 50 % of the sites (P <

0.001). Thus, a normalization of  values was necessary in order to compare data

between the 20 sites. As described by Preiss & Gebauer (2008), the 13C  and  15N

values of the orchids and the non-orchid autotrophic reference plants were used to

calculate normalized enrichment factors for each sample as S = S - REF;  with  S  as

single value of a sample from an autotrophic, partially or fully myco-heterotrophic

orchid and REF as mean value of all autotrophic reference plants from the respective

plot. Although it has been shown that the 13C and 15N signature of fully autotrophic C3

plants in temperate climates does not systematically depend on their life form or

mycorrhizal status (Gebauer & Dietrich, 1993; Gebauer & Meyer, 2003; Zimmer et al.,

2007), we kept the spectrum of reference plants as diverse as possible (monocotyledons

/ dicotyledons, tree saplings / herbs, evergreen / deciduous, ectomycorrhizal / ericoid- /

arbuscular- or non-mycorrhizal) to minimize errors when calculating relative

enrichments of the orchids.

To test for significant differences the Kruskal-Wallis non-parametric test and

Bonferroni-corrected Mann-Whitney U-tests (Holm, 1979) for post hoc comparisons

were used. For the calculations of the enrichment factors of Serapias cordigera

(Sardinia) only two reference species were taken into account. Centaurium maritimum

(L.) Fritsch was excluded as a reference species as it showed surprisingly high 13C and
15N values. Some members of Gentianaceae are fully myco-heterotrophic (Imhof,

1999; Imhof & Weber, 2000); hence, a partially myco-heterotrophic nutritional mode

may be expected in members of this family.
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A cluster analysis (Ward’s method, Euclidean distance measure) based on the relative

enrichment in 13C and 15N of the different orchid species collected in the three sampling

areas in comparison to the respective non-orchid references ( -values) was carried out to

identify groups within the dataset.

Statistical analyses were performed with SPSS v.11.5 (SPSS Inc., Chicago, IL,

USA) and PC-ORD v.5.03 (MjM Software, Gleneden Beach, OR, USA). Data are given

as means ± 1 SD.

Molecular identification of mycorrhizal fungi
From each of the five individuals of each orchid species two root sections colonized by

fungi were sampled and placed in lysis buffer (CTAB). Roots of four orchid species

from continental Italy (Ophrys fuciflora, Orchis purpurea, Orchis laxiflora and

Serapias vomeracea) were analyzed at the Dipartimento di Biologia Vegetale in Torino.

From these samples genomic DNA was extracted, amplified and sequenced as described

in Girlanda et al. (2006). All other orchid root samples were analyzed at the Royal

Botanic Gardens in Kew. These samples were frozen and thawed three times before

grinding the softened tissue with a micropestle. Genomic DNA was extracted following

methods described elsewhere (Gardes & Bruns, 1993) but using GeneClean® II Kit (Q-

BioGene, Carlsbad, CA, USA) for DNA binding and purification. Using polymerase

chain reaction (PCR), the nuclear ribosomal internal transcribed spacer (ITS) region was

amplified with the fungal-specific primers ITS1F and ITS4 and PCR using conditions

described in Gardes & Bruns (1993). Positive PCR products were purified using

QIAquick®Multiwell  PCR  Purification  Kit  (Quiagen,  Valencia,  CA,  USA).  DNA

sequencing was performed on an ABI3730 Genetic Analyzer using BigDye® v.3.1

Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and absolute

ethanol/EDTA precipitation. Electrophoretograms were checked using Sequencher v.4.5

(Gene Codes Corporation, Ann Arbor, MI, USA). All samples with strong PCR

amplification of single templates were compared to GenBank using BLAST to ascertain

taxonomic affinity. If impure electrophoretograms were obtained the PCR products

were cloned using the TOPO TA Cloning® Kit  (Invitrogen,  Carlsbad,  CA,  USA)  and

analyzed as described above. All unique DNA sequences have been submitted to

GenBank (FJ688104-FJ688132 and FJ809762-FJ809770).
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Results

Stable isotope abundances
The cluster analysis based on the orchids’ isotope signatures revealed three categories

(see Appendix B and boxes in Figure 1): (1) orchids collected in forests, (2) orchids of

open habitats and forest gaps and (3) an intermediate group composed of orchids from

all four habitat types (open, forest gap, shrubland and forest). While orchids from

continental Italy and Sardinia cover all three clusters, the group of forest orchids is

missing on Tenerife (Figure 1). Species belonging to this group of typically forest-

dwelling orchids are members of the tribe Neottieae  and characterized by considerable

enrichments in 13C and 15N in comparison to non-orchids of the respective habitats

(Figure 1). The highest enrichment in 13C (6.4 ± 1.8 ‰) and 15N (13.9 ± 1.9 ‰) was

found for Neottia nidus-avis, the only chlorophyll-lacking orchid of this investigation,

that accordingly shows enrichment factors characteristic of fully MHOs associated with

ECM fungi (Preiss & Gebauer, 2008). The cluster of orchids from open sites and forest

gaps is composed of species of the tribes Orchideae and Cranichideae. They are

relatively enriched in 15N compared to non-orchid references though their 15N

enrichment is considerably lower than that of orchids from forest sites. With regard to

the 13C signature, most of these species are statistically not distinguished from

surrounding photosynthetic reference plants while some show relative 13C depletion

(Table  1).  The  intermediate  orchid  group  comprises  members  of  all  three  tribes

including two neottioids in continental Italy (Cephalanthera longifolia and Listera

ovata). Plants of this category do not show the typical high enrichment in 13C and 15N as

forest orchids do but they are enriched in 13C compared to non-orchids from their

respective sites and to most orchids of open habitats.
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Figure 1.  Enrichment  factors  ( )  for 13C and 15N of 35 orchid species collected at 20
sites in continental Italy, Sardinia and Tenerife. Orchids of the tribe Neottieae are
indicated with black, Orchideae with white and Cranichideae with grey symbols. The
boxes  represent  one  SD  of  the  mean   values  for  three  groups  of  orchids  as  obtained
from a cluster analysis: orchids of open habitats (left boxes), typical forest orchids (right
boxes, not present on Tenerife) and orchids with intermediate isotope signatures (middle
boxes). After normalization, mean  values of the autotrophic references are equal to
zero. All  values of 13C and 15N of orchids and reference species as well as the diagram
of the cluster analysis are available in Appendix A and B.
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Table 1. Nitrogen concentrations and significances for the relative enrichment or
depletion in 13C and 15N of all investigated orchid species compared to their respective
autotrophic reference plants. Several orchids show significantly higher N concentrations
than the reference plants (*, P < 0.05; **, P < 0.01; ***, P < 0.001). Species of the tribe
Neottieae are given in bold. n = 5 for all orchid species, except for Cephalanthera
damasonium (n = 2); full dataset including reference plants is available in Appendix A.

REGION /
Orchid species

Enrichment (+) or
depletion (-) in 13C

Enrichment (+) or
depletion (-) in 15N

N conc. ± 1 SD
[mmol/gDM]

CONTINENTAL ITALY
Cephalanthera damasonium + + 2.92
Cephalanthera longifolia +   ** +   *** 3.10 ± 0.41 ***
Limodorum abortivum +   *** +   *** 2.40 ± 0.40 *
Listera ovata +   *** +   *** 3.13 ± 0.37 ***
Aceras anthropophorum - +   * 1.59 ± 0.17
Ophrys fuciflora - +   *** 2.52 ± 0.26 ***
Ophrys sicula -    * +   *** 1.03 ± 0.17
Ophrys sphegodes -    * +   * 1.86 ± 0.33 *
Orchis laxiflora -    * +   ** 1.84 ± 0.13
Orchis morio - +   *** 1.53 ± 0.26
Orchis pauciflora -    * +   * 1.11 ± 0.19
Orchis purpurea +   ** +   *** 1.66 ± 0.13
Orchis tridentata + +   *** 1.70 ± 0.25
Serapias vomeracea - +   *** 1.24 ± 0.20
Spiranthes spiralis - +   *** 2.43 ± 0.29 ***
SARDINIA
Cephalanthera longifolia +   *** +   *** 3.37 ± 0.22 ***
Epipactis helleborine +   *** +   *** 3.68 ± 0.44 ***
Limodorum abortivum +   *** +   *** 2.16 ± 0.27 ***
Limodorum trabutianum +   *** +   *** 2.35 ± 0.20 ***
Neottia nidus-avis +   *** +   *** 2.59 ± 0.12 ***
Aceras anthropophorum -    ** +   ** 1.48 ± 0.24
Barlia robertiana +   *** +   *** 0.94 ± 0.21
Gennaria diphylla + +   * 1.61 ± 0.43 ***
Ophrys apifera -    * +   ** 1.68 ± 0.06 ***
Ophrys incubacea - +   * 1.50 ± 0.46
Orchis brancifortii - +   *** 1.39 ± 0.11
Orchis ichnusae -    ** +   *** 2.01 ± 0.05
Orchis longicornu + +   ** 1.73 ± 0.27 *
Orchis papilionacea - +   *** 1.73 ± 0.31 **
Orchis provincialis -    * +   *** 1.89 ± 0.20 ***
Serapias cordigera - + 1.12 ± 0.13
Serapias lingua - +   *** 1.44 ± 0.20 *
Serapias nurrica + +   * 1.93 ± 0.38 ***
Serapias parviflora - +   *** 1.40 ± 0.33

(Continued)
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Table 1. Continued

REGION /
Orchid species

Enrichment (+) or
depletion (-) in 13C

Enrichment (+) or
depletion (-) in 15N

N conc. ± 1 SD
[mmol/gDM]

TENERIFE
Barlia metlesicsiana - +   ** 2.03 ± 0.47 *
Gennaria diphylla +   *** +   * 2.09 ± 0.16
Habenaria tridactylites +   ** + 1.90 ± 0.30
Neotinea maculata - + 2.27 ± 0.27
Orchis canariensis -    * +   ** 1.59 ± 0.13 ***
Serapias parviflora + +   *** 1.60 ± 0.19 ***

Cephalanthera longifolia –  one  of  the  five  species  that  were  sampled  at  two different

sites - falls into the group of forest orchids (Sardinia) or the intermediate group

(continental Italy), depending on the respective habitat type. In continental Italy

Cephalanthera longifolia was collected at a forest gap with relative light availability of

23 % and on Sardinia in a densely shaded forest with only 2 % of irradiance reaching

the understorey plants. Serapias parviflora was also collected on two different sites with

varying relative light availability of 62 % and 90 % and belongs to the group of orchids

of open habitats on Sardinia while individuals collected at the more exposed grassland

terraces on Tenerife are slightly enriched in 13C (not significantly, Table 1) and

therefore fall into the intermediate group (Figure 1).

Regarding the orchids’ taxonomy, it becomes apparent that all neottioids are

significantly enriched in 13C and 15N compared to autotrophic reference plants (Figure

1, Table 1) -  some of them (e.g., Epipactis helleborine on Sardinia) even as strong as

obligate myco-heterotrophs. Most representatives of the Orchideae and Cranichideae

show significant relative enrichments in 15N as well, but only a few members of the

Orchideae (i.e., Gennaria diphylla from Tenerife, Barlia robertiana, Orchis purpurea,

and Habenaria tridactylites) are additionally enriched in 13C.  For  some species  of  the

genera Ophrys, Orchis and Aceras (all Orchideae), a significant depletion in 13C in

relation to their autotrophic reference plants was found (Table 1).

Nitrogen concentrations
The total N concentrations in leaf material of the neottioids (2.85 ± 0.58 mmol/gDM,

DM: dry mass, n =  42)  are  significantly  (P < 0.001) higher than in leaves of non-

neottioid orchids (1.67 ± 0.44 mmol/gDM, n = 155). However, the group of non-neottioid

orchids still has significantly (P < 0.001) higher leaf total N concentrations than the
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group of autotrophic reference species (1.40 ± 0.53 mmol/gDM, n = 513) though this

latter effect was not always significant on a species level based on plot comparisons

(Table 1).

Molecular identification of mycorrhizal fungi
All investigated orchid roots contained fungal pelotons inside their root cortex cells and

mycorrhizal fungi could be identified from 50 % of these roots. All neottioids from

which fungal DNA could be extracted and analyzed are associated with ECM fungi

(Table 2). The highest specificity to ECM partners is found in Neottia nidus-avis and

Limodorum species.  In  only  few  species  of  forest  gaps  and  shrublands  obligate  ECM

fungi could be found (Orchis canariensis and Gennaria diphylla) and the majority of

orchids of open habitats are associated with rhizoctonia-forming basidiomycetes (e.g.,

Ceratobasidium and Tulasnella) and ascomycetes (e.g., Leptodontidium).

Table 2. Mycorrhizal fungi of orchids from continental Italy, Sardinia and Tenerife and
presence (+) / absence (-) of ectomycorrhizal (ECM) plants at the respective sites. All
roots were collected in 5 replicates. Obligate ectomycorrhizal fungi are indicated in bold

Tribe REGION/
Orchid species Mycorrhizal fungi ECM

plants

CONTINENTAL ITALY
Ophrys fuciflora Ceratobasidium† (2), Tulasnella*† (5) +
Ophrys sphegodes Tulasnella*† (2) -
Orchis laxiflora Ceratobasidium† (2), Tulasnella*† (5) -
Orchis purpurea Ceratobasidium† (2), Tulasnella*† (4) -

Orchideae

Serapias vomeracea Ceratobasidium† (1), Sebacina*† (1),
Tulasnella*† (5)

+

SARDINIA
Cephalanthera longifolia Hebeloma (1), Russula (2), Tomentella (1) +
Epipactis helleborine Leptodontidium (1), Pyronemataceae* (3),

Tuber (2)
+

Limodorum abortivum Russula (5) +
Limodorum trabutianum Russula (4), Sebacina* (1) +

Neottieae

Neottia nidus-avis Sebacina* (5) +
Barlia robertiana Thanatephorus (3) -
Gennaria diphylla Cenococcum (1), Lactarius (3), Russula (1) +
Ophrys apifera Tulasnella* (4) +
Ophrys incubacea Thanatephorus (1), Tulasnella* (4) +
Orchis ichnusae Tulasnella* (1) -
Orchis longicornu Ceratobasidium (2), Leptodontidium (1) +
Orchis papilionacea Ceratobasidiaceae (1), Tulasnella*† (1) +
Orchis provincialis Tulasnella* (3) +
Serapias lingua Ceratobasidium† (1), Thanatephorus† (1) -

Orchideae

Serapias parviflora Leptodontidium (1) +
(Continued)
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Table 2. Continued

Tribe REGION/
Orchid species Mycorrhizal fungi ECM

plants

TENERIFE
Gennaria diphylla Leptodontidium† (1), Pezizaceae*† (3) ?
Habenaria tridactylites Ceratobasidium† (1), Leptodontidium† (2) ?
Neotinea maculata Leptodontidium† (3), Ceratobasidiaceae† (3),

Ceratobasidium† (1), Tulasnella*† (1)
+

Orchis canariensis Russula† (1), Tulasnella* (4) +

Orchideae

Serapias parviflora Leptodontidium† (2) +

Notes: *,  taxa  that  contain  some  ECM  lineages; †,  taxa  detected  by  cloning  PCR
products; ( ), number of orchid individuals in which a fungus was detected; ?, presence
of species that are not classified for their mycorrhizal condition but are phylogenetically
closely related to ectomycorrhizal plants

Discussion

Nutritional modes in orchids from the Mediterranean and Macaronesia
All fungal partners successfully identified in neottioids, solely forest orchids, turned out

to be ectomycorrhizal fungi, either exclusively (e.g., Limodorum abortivum) or together

with root endophytic saprotrophs (e.g., Epipactis helleborine) (Table 2). Neottia nidus-

avis, Limodorum abortivum and L. trabutianum show high mycorrhizal specificity

towards only one or two fungal genera. The only fully MHO of this investigation,

Neottia nidus-avis, is restricted to the genus Sebacina in the area that we have

examined. This is consistent with investigations on this orchid in other parts of Europe

showing that N. nidus-avis is associated with fungi belonging to the ECM clade of

Sebacina (McKendrick et al., 2002; Selosse et al., 2002). Both Neottia nidus-avis and

Limodorum species  were  regarded  as  fully  myco-heterotrophic  orchids  at  a  site  in

France (Gebauer & Meyer, 2003). The study of Girlanda et al. (2006), however,

suggested partial myco-heterotrophy in L. abortivum as chlorophyll is formed in the

stem and the small leaves of this orchid and photosynthesis was detected. Isotope data

in our present work confirm the latter finding. Investigated individuals of Limodorum

abortivum and L. trabutianum of this study are less enriched in 13C than obligate myco-

heterotrophic plants (Figure 1). It thus can be concluded that these Limodorum plants

are not solely using the organic fungal source but additionally assimilate C through

photosynthesis, as it was recently described for the leafless Corallorhiza trifida

(Zimmer et al., 2008; but see also Cameron et al. 2009). Cephalanthera longifolia and

Epipactis helleborine collected  at  a  forest  site  on  Sardinia  are  characterized  by  strong
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enrichments in 13C and 15N showing that they are mainly nourished via myco-

heterotrophic means. Since enrichment factors of Epipactis helleborine are even within

the range of fully myco-heterotrophic plants, we suggest that this orchid almost

completely relies on fungal nutrient supply under extreme dark conditions. In summary,

all investigated neottioids of the Mediterranean region turned out to be strongly (or even

fully) myco-heterotrophic. There were only four species besides the tribe Neottieae

(Orchis purpurea in continental Italy, Barlia robertiana on Sardinia, Habenaria

tridactylites and Gennaria diphylla on  Tenerife)  with  apparent  organic  C  and  N  gain

from their fungal partners. Only the latter was associated with ECM fungi but we know

from investigations on some fully myco-heterotrophic orchids that saprotrophic fungi

can also be an effective nutrient source, at least in warm and humid climates (Yamato et

al., 2005; Yagame et al., 2007; Ogura-Tsujita et al., 2009).

In orchids of open habitats, root endophytes are abundant and diverse. Most of the

mycorrhizal associates are part of the saprotrophic rhizoctonia-forming clades. Some of

them (e.g., Ceratobasidium spp. and Thanatephorus spp.) occur in the roots of several

orchid species and have the potential to link different orchid species through their

hyphal network. Orchids from exposed sites were frequently associated with members

of the cosmopolitan family Tulasnellaceae (Roberts, 1999) which is in accordance with

global investigations of orchid mycorrhizas (Dearnaley, 2007). It has to be mentioned

that the ecology of supposedly saprotrophic fungi could be more complex than generally

thought. For instance, a few Tulasnella, commonly regarded as exclusively saprotrophic

lineage, have been shown to form ectomycorrhizas with non-orchid plants (e.g.,

Bidartondo et al., 2003) and very exceptionally, Ceratobasidium may also be

ectomycorrhizal (Yagame et al., 2008). Isotope data of some Aceras, Orchis and Ophrys

species (tribe Orchideae) show significant depletion in 13C relative to their autotrophic

references (Table 1). This phenomenon occurs in both the Mediterranean and

Macaronesian region and has already been found for two Goodyera species (Hynson et

al., 2009b) and (though statistically not significant) for some other Orchis species

(Gebauer & Meyer, 2003). Depletion in 13C might be a consequence of a specific flux of

organic C compounds from the orchid to the fungus as it has been shown experimentally

for the green orchid Goodyera repens (Cranichideae) by Cameron et al. (2006, 2008).

They demonstrated that in vitro the C flux from Goodyera repens to its non-

ectomycorrhizal fungus (Ceratobasidium cornigerum) is over five times higher than the

fungus-to-plant C transfer. Depletion in 13C together with enrichment in 15N (as found
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for some Orchideae of open habitats in this study) could result from two simultaneous

processes: (1) organic nutrient gain from fungi leading to enrichment in both 13C and
15N and (2) the plant-to-fungus flux of sugars assimilated through photosynthesis and

thus enriched in 13C compared to leaf bulk C (Gleixner et al., 1993). Thus, while the 15N

signal from heterotrophic nutrient gain remains within the plant, the 13C enrichment can

dissolve - and if more C flows from the plant to the fungus (supposedly under high light

availability) it can even turn into a relative 13C depletion.

Nitrogen concentrations
The strikingly high N concentrations of neottioids may be caused by nutrient gain from

obligate ECM fungi. Such high N concentrations are in the range usually found for

legumes associated with N2-fixing bacteria (Gebauer et al., 1988). Fungi have similar C

concentrations, but considerably higher N concentrations than plants (see e.g., Gebauer

& Dietrich, 1993; Gebauer & Taylor, 1999). Thus, the incorporation of fungal

metabolites after lysis of the pelotons inside the root cells of myco-heterotrophic orchids

could produce an N surplus. Orchid species of open habitats display lower N

concentrations though they are in many cases still significantly increased compared to

autotrophic reference plants (Table 1). Previous studies on orchids from Central Europe

and Estonia reported similar ranges of leaf N concentrations (Gebauer & Meyer, 2003;

Abadie et al., 2006). Because orchids, as well as the majority of reference plants,

presumably receive their N through association with mycorrhizal fungi, there must be

physiological differences in how this occurs. For instance, the orchids could gain

organic N compounds (e.g., amino acids) from their fungi while other plants under

temperate climate conditions may be supplied preferentially with mineral N compounds

(Gebauer & Dietrich, 1993; Schulze et al., 1994).

Constraints on orchid nutrition and distribution
Gebauer (2005) suggested that light availability can determine the degree of myco-

heterotrophy since the contribution from photosynthesis should be reduced at very dark

sites. At a dense Quercus ilex forest on Sardinia Cephalanthera longifolia is mainly

nourished via myco-heterotrophic means. When growing at more exposed forest gaps,

Cephalanthera longifolia is  less  enriched  in  the  heavy  stable  isotopes  of  C  and  N

(Figure 1) and thus less dependent upon organic nutrient supply from mycorrhizal fungi,

fitting  Gebauer’s  hypothesis.  At  open  sites  where  orchids  were  rarely  associated  with
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(potential) ECM fungi, we found depletion in 13C for some members of the Orchideae.

Our findings indicate that a net plant-to-fungus C flux may occur in these species and

that this phenomenon might be coupled to open light-saturated habitats just as like

strong partial and full myco-heterotrophic nutrition is coupled to light-limited forest

understories.

There are no reports for any occurrence of neottioid orchids in the Macaronesian

region (Eriksson et al., 1979; Hohenester & Welß, 1993). The limited number of

ectomycorrhizal plants in the Macaronesian region might be a reason for this

observation. A maximum of 20 ECM plant species are reported to occur on Tenerife,

mostly belonging to the family Cistaceae (Hohenester & Welß, 1993). Despite the large

number  of  ECM  fungi  that  are  linked  to Cistus spp. (Comandini et al., 2006), it is

questionable whether these shrubs are able to act as efficient host plants in tripartite

symbioses between ECM plants, ECM fungi and orchids in Macaronesia. Orchis

canariensis was  the  only  orchid  on  Tenerife  that  was  found to  associate  with  obligate

ECM fungi (Table 2). Nonetheless, a C gain from partial myco-heterotrophy is likely

for the Macaronesian species Habenaria tridactylites and Gennaria diphylla, the latter

associating with Pezizaceae that contain some ECM lineages.

Conclusions
Based on the wide spectrum of species and habitats investigated, we conclude that high

dependence on myco-heterotrophy in orchids is related to only some taxonomic groups

(i.e., Neottieae) and to the light-limited understorey of forest sites. Even though forests

are present on the Macaronesian islands, fully myco-heterotrophic orchids are lacking

and the occurrence of partial myco-heterotrophy is rare. Our results raise the hypothesis

that this pattern is caused by the low diversity of ectomycorrhizal plants and/or suitable

ectomycorrhizal fungi. In order to test this hypothesis, we need to investigate whether

fully and partially myco-heterotrophic neottioids are able to germinate in the

Macaronesian region.
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Appendix

Appendix A. Site characteristics and 15N, 13C and nitrogen concentrations ± 1 SD in
the leaves of orchid species and their autotrophic reference species (n = 5, except for
Cephalanthera damasonium where n = 2) collected on sites of the following habitat
types: forest (F), forest gap (FG), shrubland (SL) or open habitat (O) in continental
Italy, Sardinia (Mediterranean region) and Tenerife (Macaronesian region). Asterisked
orchid species belong to the tribe Neottieae.

CONTINENTAL ITALY
Site description /
Orchids and autotrophic references

15N
[‰]

13C
[‰]

N conc.
[mmol/gDM]

Site 1 (O): N 44.3825°; E 8.25623°
Grassland dominated by Brachypodium
pinnatum, Bromus erectus and Carex flacca
relative light availability: 96 %

Aceras anthropophorum (L.) R.Br. -2.85 ± 0.14 -30.07 ± 0.90 1.59 ± 0.17
Pimpinella saxifraga L. -3.65 ± 2.90 -29.15 ± 0.53 1.56 ± 0.15
Salvia pratensis L. -4.74 ± 0.97 -29.08 ± 0.60 1.87 ± 0.18
Helianthemum apenninum (L.) Miller -6.71 ± 0.72 -30.56 ± 0.29 1.66 ± 0.16

Ophrys fuciflora (Crantz) Moench -2.36 ± 0.92 -30.49 ± 0.81 2.52 ± 0.26
Orchis morio L. -2.73 ± 0.75 -31.36 ± 1.69 1.53 ± 0.26
Plantago lanceolata L. -6.38 ± 0.42 -30.11 ± 0.50 1.40 ± 0.16
Helianthemum nummularium (L.) Miller -5.63 ± 0.72 -30.23 ± 0.60 1.54 ± 0.21
Bromus erectus Hudson -6.56 ± 0.81 -27.08 ± 5.21 1.89 ± 0.15

Ophrys sicula Tineo -2.69 ± 1.44 -31.43 ± 1.11 1.03 ± 0.17
Thymus vulgaris L. -7.99 ± 1.36 -30.54 ± 0.88 1.04 ± 0.23
Teucrium polium L. -8.36 ± 1.63 -28.91 ± 1.41 1.33 ± 0.36
Carex hallerana Asso -4.44 ± 0.78 -28.86 ± 0.81 1.10 ± 0.12

Ophrys sphegodes (Miller) -2.82 ± 0.63 -29.68 ± 1.13 1.86 ± 0.33
Sanguisorba minor Scop. -5.64 ± 0.57 -28.96 ± 0.36 1.30 ± 0.12
Prunus spinosa L. -3.39 ± 0.48 -28.38 ± 0.60 1.77 ± 0.10
Bromus erectus Hudson -5.56 ± 0.87 -28.27 ± 0.61 1.28 ± 0.09

Orchis laxiflora Lam. 2.80 ± 2.01 -30.02 ± 0.58 1.84 ± 0.13
Ranunculus bulbosus L. -1.56 ± 2.56 -29.19 ± 0.56 1.68 ± 0.22
Filipendula vulgaris Moench -1.23 ± 2.18 -29.22 ± 0.68 1.66 ± 0.27
Carex hirta L. 1.07 ± 0.64 -28.92 ± 0.56 1.65 ± 0.34

Orchis purpurea Hudson 1.64 ± 0.81 -28.25 ± 0.70 1.66 ± 0.13
Pimpinella saxifraga L. -3.33 ± 1.00 -29.24 ± 0.60 1.67 ± 0.18
Plantago lanceolata L. -5.23 ± 0.47 -29.73 ± 0.42 1.58 ± 0.24
Linum strictum L. -3.98 ± 0.53 -29.71 ± 0.50 1.53 ± 0.21

Serapias vomeracea (Burm.) Briq. -3.38 ± 0.37 -29.46 ± 0.37 1.24 ± 0.20
Bromus erectus Hudson -4.16 ± 0.25 -28.89 ± 1.07 1.53 ± 0.30
Sherardia arvensis L. -5.04 ± 0.39 -29.57 ± 0.20 1.38 ± 0.12
Crepis vesicaria L. -5.42 ± 0.59 -29.62 ± 0.43 1.17 ± 0.23

(Continued)
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Appendix A. Continued

CONTINENTAL ITALY
Site description /
Orchids and autotrophic references

15N
[‰]

13C
[‰]

N conc.
[mmol/gDM]

Site 1 (O): N 44.3825°; E 8.25623°
Grassland dominated by Brachypodium
pinnatum, Bromus erectus and Carex flacca
relative light availability: 96 %

Spiranthes spiralis (L.) Chevallier -2.07 ± 0.84 -29.48 ± 0.82 2.43 ± 0.29
Teucrium polium L. -7.30 ± 0.50 -30.40 ± 0.39 1.08 ± 0.07
Potentilla neumanniana Rchb. -5.96± 0.78 -28.39 ± 0.50 1.32 ± 0.07
Bromus erectus Hudson -5.53 ± 0.24 -27.65 ± 0.25 1.12 ± 0.12

Site 2 (O): N 44.0655°; E 10.1410°
Grassland dominated by Brachypodium
pinnatum and Teucrium botrys
relative light availability: not measured

Orchis pauciflora Ten. -0.33 ± 1.42 -29.89 ± 0.76 1.11 ± 0.19
Brachypodium pinnatum (L.) Beauv. -3.52 ± 1.11 -28.44 ± 0.79 1.72 ± 0.06
Teucrium botrys L. -2.23 ± 0.42 -28.26 ± 0.82 1.92 ± 0.37
Artemisia spp. -1.22 ± 0.43 -29.73 ± 0.43 2.41 ± 0.44

Site 3 (FG): N 45.1457°; E 7.1247°
Forest gap in a deciduous forest dominated
by Quercus pubescens
relative light availability: 23 %

Cephalanthera longifolia (Hudson) Fritsch* 0.02 ± 1.48 -26.87 ± 0.96 3.10 ± 0.41
Quercus pubescens Willd. -3.37 ± 0.78 -27.65 ± 1.55 1.56 ± 0.22
Teucrium botrys L. -5.59 ± 0.43 -30.67 ± 0.24 1.82 ± 0.18
Cichorium intybus L. -6.05 ± 0.74 -30.80 ± 0.95 2.15 ± 0.50

Site 4 (F): N 45.1457°; E 7.1247°
Shaded areas of a deciduous forest
dominated by Quercus pubescens
relative light availability: 11 %

Limodorum abortivum (L.) Swartz.* 11.74 ± 2.93 -23.52 ± 0.30 2.40 ± 0.40
Cichorium intybus L. -4.88 ± 0.26 -30.17 ± 1.58 2.14 ± 0.26
Quercus pubescens Willd. -4.16 ± 0.85 -27.32 ± 0.37 1.78 ± 0.24
Hedera helix L. -4.35 ± 0.95 -29.19 ± 0.52 1.25 ± 0.68

Site 5 (O): N 45.1457°; E 7.1247°
Grassland dominated by Festuca spp. and
Koeleria spp.
relative light availability: 89 %

Orchis tridentata Scop. -1.33 ± 0.94 -30.03 ± 0.72 1.70 ± 0.25
Teucrium polium L. -5.76 ± 0.62 -31.18 ± 0.38 1.13 ± 0.19
Leontodon spp. -6.20 ± 0.89 -30.24 ± 0.36 1.78 ± 0.14
Helianthemum apenninum (L.) Miller -5.27 ± 0.58 -30.35 ± 1.19 1.47 ± 0.17

(Continued)
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Appendix A. Continued

CONTINENTAL ITALY
Site description /
Orchids and autotrophic references

15N
[‰]

13C
[‰]

N conc.
[mmol/gDM]

Site 6 (F): N 45.151°; E 7.1744°
Mixed deciduous forest dominated by Acer
campestre, Tilia platyphyllos and Fraxinus
excelsior
relative light availability: 6 %

Cephalanthera damasonium (Miller) Druce*     6.11   -25.39   2.92
Acer campestre L.    -3.49   -29.52   1.42
Hedera helix L.    -3.70   -29.01   1.35
Prunus spinosa L.    -1.62   -28.40   1.52

Listera ovata (L.) R.Br.* -2.30 ± 0.74 -30.05 ± 0.59 3.13 ± 0.37
Ligustrum vulgare L. -5.65 ± 0.95 -32.47 ± 0.70 1.47 ± 0.21
Hedera helix L. -6.44 ± 0.50 -31.93 ± 0.22 0.97 ± 0.19
Tamus communis L. -4.49 ± 0.64 -31.28 ± 0.91 2.53 ± 0.37

SARDINIA
Site description /
Orchids and autotrophic references

15N
[‰]

13C
[‰]

N conc.
[mmol/gDM]

Site 7 (O): N 40.0054°; E 9.6667°
Degraded steppe dominated by Asphodelus
aestivus
relative light availability: 97 %

Barlia robertiana (Loisel.) Greuter 1.30 ± 0.43 -28.01 ± 0.40 0.94 ± 0.21
Anagallis foemina Miller -1.46 ± 0.36 -30.60 ± 0.29 0.66 ± 0.11
Scandix pecten-veneris L. -2.94 ± 0.47 -29.61 ± 0.91 0.79 ± 0.17
Asphodelus aestivus Auct. non Brot. -1.56 ± 0.48 -30.54 ± 0.23 1.17 ± 0.18

Serapias lingua L. -0.03 ± 1.08 -31.50 ± 0.77 1.44 ± 0.20
Asphodelus aestivus Auct. non Brot. -1.70 ± 0.83 -29.95 ± 0.52 1.37 ± 0.15
Scandix pecten-veneris L. -4.16 ± 0.77 -30.59 ± 0.26 0.89 ± 0.19
Anagallis foemina Miller -2.59 ± 0.39 -31.71 ± 0.58 0.83 ± 0.11

Site 8 (O): N 40.1595°; E 9.5072°
Grassland intensively grazed by cattle
relative light availability: 100 %

Orchis ichnusae (Corrias) J. Devillers-
Terschuren & P. Devillers 2.38 ± 0.50 -30.51 ± 0.81 2.01 ± 0.05
Santolina chamaecyparissus Auct. non L. -1.11 ± 0.58 -28.66 ± 0.70 2.64 ± 0.40
Teucrium marum L. -0.31 ± 0.67 -29.25 ± 0.52 1.53 ± 0.08
Anemone hortensis L. -1.61 ± 0.45 -29.95 ± 0.45 2.48 ± 0.37

(Continued)
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Appendix A. Continued

SARDINIA
Site description /
Orchids and autotrophic references

15N
[‰]

13C
[‰]

N conc.
[mmol/gDM]

Site 9 (O): N 39.8786°; E 9.5092°
Grassland dominated by Linum bienne and
Lavandula stoechas
relative light availability: 99 %

Orchis provincialis Balb. 0.59 ± 1.15 -29.90 ± 0.48 1.89 ± 0.20
Orchis papilionacea L. -0.43 ± 0.39 -30.23 ± 1.32 1.73 ± 0.31
Anthoxanthum odoratum L. -4.22 ± 0.74 -29.63 ± 0.45 1.10 ± 0.08
Asterolinum linum-stellatum (L.) Duby -2.88 ± 1.06 -28.43 ± 1.01 0.99 ± 0.26
Cistus crispus L. -2.11 ± 0.63 -29.20 ± 0.43 1.37 ± 0.13

Orchis longicornu Poiret -1.05 ± 1.10 -29.57 ± 0.44 1.73 ± 0.27
Cistus crispus L. -2.62 ± 1.22 -29.58 ± 0.70 1.37 ± 0.08
Sherardia arvensis L. -3.08 ± 0.85 -29.78 ± 0.74 1.45 ± 0.12
Anthoxanthum odoratum L. -5.33 ± 2.74 -29.74 ± 0.47 1.14 ± 0.13

Site 10 (F): N 39.8869°; E 9.5113°
Evergreen forest dominated by Quercus ilex
relative light availability: 2 %

Epipactis helleborine (L.) Crantz* 11.65 ± 3.27 -27.17 ± 1.23 3.68 ± 0.44
Cephalanthera longifolia (Hudson) Fritsch* 6.54 ± 0.67 -28.67 ± 1.81 3.37 ± 0.22
Geranium robertianum L. -3.69 ± 2.28 -35.34 ± 0.62 2.60 ± 0.50
Quercus ilex L. 0.08 ± 0.36 -31.89 ± 1.25 0.97 ± 0.05
Hedera helix L. -0.97 ± 1.75 -34.26 ± 0.44 1.45 ± 0.35

Neottia nidus-avis (L.) L.C.Rich.* 11.61 ± 1.67 -27.29 ± 1.65 2.59 ± 0.12
Cyclamen repandum S. et S. -4.41 ± 2.36 -34.32 ± 0.82 2.40 ± 0.13
Mycelis muralis (L.) Dumort. -1.81 ± 0.98 -34.73 ± 0.25 2.17 ± 0.16
Quercus ilex L. -0.73 ± 0.60 -32.08 ± 0.34 0.87 ± 0.08

Site 11 (O): N 39.7014°; E 9.4699°
Degraded steppe dominated by Asphodelus
aestivus
relative light availability: 48 %

Aceras anthropophorum (L.) R.Br. -0.40 ± 1.00 -30.36 ± 0.45 1.48 ± 0.24
Valantia hispida L. -2.81 ± 0.83 -28.94 ± 0.46 0.93 ± 0.09
Asphodelus aestivus Auct. non Brot. -2.46 ± 0.69 -28.04 ± 0.54 1.73 ± 0.19
Teucrium marum L. -1.45 ± 0.60 -28.34 ± 1.05 1.59 ± 0.23

Orchis brancifortii Bivona-Bernardi 1.83 ± 1.59 -30.11 ± 1.18 1.39 ± 0.11
Asphodelus aestivus Auct. non Brot. -1.66 ± 0.65 -28.84 ± 0.70 1.47 ± 0.11
Cistus monspeliensis L. -1.29 ± 0.82 -28.99 ± 0.93 1.14 ± 0.10
Leontodon tuberosus L. -2.11 ± 0.82 -29.45 ± 0.52 1.63 ± 0.13

(Continued)
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Appendix A. Continued

SARDINIA
Site description /
Orchids and autotrophic references

15N
[‰]

13C
[‰]

N conc.
[mmol/gDM]

Site 12 (O) N 40.4840°; E 9.7773°
Open places in a patchy shrubland dominated
by Erica arborea
relative light availability: 91 %

Serapias cordigera L. -1.28 ± 0.44 -31.77 ± 0.97 1.12 ± 0.13
Centaurium maritimum (L.) Fritsch -0.91 ± 0.60 -30.30 ± 0.27 0.97 ± 0.08
Cistus monspeliensis L. -4.31 ± 0.63 -31.31 ± 1.02 1.09 ± 0.20
Erica arborea L. -2.58 ± 0.70 -28.77 ± 1.22 0.76 ± 0.19

Site 13 (O): N 39.7405°; E 9.5729°
Grassland dominated by Aira caryophyllea,
Lophochloa cristata and Vulpia bromoides
relative light availability: 62 %

Ophrys apifera Hudson 2.24 ± 0.78 -33.37 ± 0.85 1.68 ± 0.06
Plantago lanceolata L. -1.10 ± 0.75 -31.57 ± 0.50 1.04 ± 0.15
Leontodon spp. 1.17 ± 5.40 -31.95 ± 0.78 1.25 ± 0.15
Cistus crispus L. -1.96 ± 2.23 -32.61 ± 1.24 0.92 ± 0.12

Ophrys incubacea Bianca 1.01 ± 0.83 -31.49 ± 3.57 1.50 ± 0.46
Asphodelus aestivus Auct. non Brot. 0.54 ± 0.95 -29.56 ± 0.87 1.42 ± 0.15
Anagallis foemina Miller -0.12 ± 0.68 -31.19 ± 1.59 0.87 ± 0.15
Sherardia arvensis L. -0.42 ± 0.52 -31.22 ± 1.52 0.94 ± 0.16

Serapias parviflora Parl. 2.93 ± 1.30 -30.83 ± 0.68 1.40 ± 0.33
Parentucellia viscosa (L.) Caruel -0.66 ± 0.19 -30.73 ± 0.22 2.64 ± 0.48
Lophochloa cristata (L.) Hyl. -0.26 ± 0.62 -30.96 ± 0.22 0.68 ± 0.06
Plantago lanceolata L. -0.71 ± 0.78 -30.63 ± 0.62 1.48 ± 0.42
Erica arborea L. -2.57 ± 0.82 -27.99 ± 0.89 1.05 ± 0.05

Site 14 (F): N 39.7405°; E 9.5729°
Evergreen forest dominated by Quercus ilex
relative light availability: 8 %

Limodorum abortivum (L.) Swartz.* 12.81 ± 2.24 -27.89 ± 0.39 2.16 ± 0.27
Carex distachya Desf. 0.28 ± 3.25 -34.03 ± 0.53 1.05 ± 0.15
Quercus ilex L. -0.46 ± 1.03 -31.87 ± 0.90 1.05 ± 0.12
Viburnum tinus L. -2.22 ± 0.85 -32.05 ± 0.86 0.82 ± 0.21

Limodorum trabutianum Batt.* 10.42 ± 3.13 -27.02 ± 0.60 2.35 ± 0.20
Arum pictum L. fil. -1.82 ± 1.55 -32.55 ± 0.72 1.92 ± 0.26
Quercus ilex L. -1.00 ± 1.18 -31.09 ± 0.97 1.07 ± 0.11
Smilax aspera L. -0.35 ± 1.14 -31.28 ± 0.48 1.01 ± 0.28

(Continued)
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Appendix A. Continued

SARDINIA
Site description /
Orchids and autotrophic references

15N
[‰]

13C
[‰]

N conc.
[mmol/gDM]

Site 15 (SL): N 41.1755°; E 9.3873°
Under shrubs in a patchy macchia dominated
by Cistus monspeliensis, Erica arborea and
Arbutus unedo
relative light availability: 2 %

Gennaria diphylla (Link) Parl. -2.16 ± 1.05 -29.91 ± 1.00 1.61 ± 0.43
Erica arborea L. -3.96 ± 0.89 -31.88 ± 1.47 0.85 ± 0.25
Quercus ilex L. -3.49 ± 1.36 -31.09 ± 0.68 0.82 ± 0.12
Arbutus unedo L. -3.38 ± 1.44 -30.19 ± 2.37 0.84 ± 0.15

Site 16 (O): N 41.1755°; E 9.3873°
Open places in a patchy macchia dominated
by Cistus monspeliensis, Erica arborea and
Arbutus unedo
relative light availability: 67 %

Serapias nurrica Corrias -0.15 ± 1.61 -29.45 ± 0.57 1.93 ± 0.38
Cistus monspeliensis L. -5.07 ± 1.26 -31.21 ± 1.19 1.13 ± 0.12
Lavandula stoechas L. -2.71 ± 2.06 -29.52 ± 1.24 0.91 ± 0.16
Erica arborea L. -2.57 ± 0.82 -27.99 ± 0.89 1.05 ± 0.05

TENERIFE
Site description /
Orchids and autotrophic references

15N
[‰]

13C
[‰]

N conc.
[mmol/gDM]

Site 17 (O): N 28.3284°; W 16.7845°
Grazed grassland
relative light availability: 90 %

Neotinea maculata (Desf.) Stearn. 1.17 ± 0.81 -31.43 ± 0.80 2.27 ± 0.27
Erica arborea L. -1.43 ± 1.01 -29.39 ± 0.85 0.95 ± 0.23
Allium roseum L. 0.07 ± 0.89 -32.24 ± 1.12 2.16 ± 0.29
Andryala pinnatifida Ait. 1.04 ± 1.08 -30.25 ± 0.92 2.33 ± 0.17

Serapias parviflora Parl. 1.91 ± 0.86 -28.03 ± 0.88 1.60 ± 0.19
Erica arborea L. -1.10 ± 0.94 -27.62 ± 1.35 1.02 ± 0.09
Plantago lagopus L. -0.63 ± 1.21 -31.15 ± 0.74 1.04 ± 0.20
Avena barbata Pot. ex Link -1.02 ± 0.59 -30.93 ± 0.51 1.02 ± 0.09

Site 18 (FG): N 28.3560°; W 16.4976°
Rocky outcrop in a Pinus canariensis forest
with Erica arborea, Cistus monspeliensis
and Cistus symphytifolius
relative light availability: 71 %

Orchis canariensis Lindl. -1.98 ± 1.25 -29.86 ± 1.05 1.59 ± 0.13
Erica arborea L. -3.63 ± 1.22 -28.87 ± 0.95 0.92 ± 0.30
Cistus monspeliensis L. -4.63 ± 0.46 -28.75 ± 0.43 0.92 ± 0.06
Cistus symphytifolius Lam. -4.38 ± 0.77 -28.81 ± 0.46 0.98 ± 0.10

(Continued)
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Appendix A. Continued

TENERIFE
Site description /
Orchids and autotrophic references

15N
[‰]

13C
[‰]

N conc.
[mmol/gDM]

Site 19 (SL): N 28.4429°; W 16.4547°
Erica arborea dominated shrubland
relative light availability: 12 %

Gennaria diphylla (Link) Parl. -0.01 ± 1.23 -28.12 ± 0.80 2.09 ± 0.16
Habenaria tridactylites Lindl. -0.66 ± 0.56 -30.36 ± 0.85 1.90 ± 0.30
Erica arborea L. -2.55 ± 0.95 -31.04 ± 0.62 0.84 ± 0.16
Hypericum canariense L. -1.24 ± 1.60 -33.46 ± 0.33 2.13 ± 0.22
Micromeria varia Benth. -1.58 ± 1.10 -34.51 ± 0.38 1.57 ± 0.49

Site 20 (FG): N 28.2323°; W 16.7608°
Open Pinus canariensis forest with wide
gaps
relative light availability: 77 %

Barlia metlesicsiana Teschner 1.58 ± 0.31 -27.55 ± 0.78 2.03 ± 0.47
Pinus canariensis Sweet ex. Spreng. -0.63 ± 0.74 -24.49 ± 0.55 0.84 ± 0.13
Asphodelus aestivus Brot. -1.76 ± 0.52 -28.30 ± 0.67 1.25 ± 0.12
Rumex lunaria L. 0.74 ± 0.65 -29.57 ± 0.44 1.13 ± 0.09
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Appendix B. Cluster  analysis  based  on  the  enrichment  factors  for 13C and 15N of the
different orchid species collected in continental Italy (C), on Sardinia (S) and Tenerife
(T); three important groups are labelled: a, forest orchids; b, orchids with intermediate
isotope signatures; c, orchids of open habitats and forest gaps. Habitat types in brackets:
(F) forest, (FG) forest gap, (O) open habitat, (SL) shrubland.

Orchideae: Aa, Aceras anthropophorum ((O) in C and on S); Bm, Barlia metlesicsiana
(FG); Br, B. robertiana (O); Gd, Gennaria diphylla ((SL) on S and T); Ht, Habenaria
tridactylites (SL); Nm, Neotinea maculata (O); Oa, Ophrys apifera (O); Of, O.
fuciflora (O); Oi, O. incubacea (O); Osi, O. sicula (O); Osp, O. sphegodes (O); Ob,
Orchis brancifortii (O); Oc, O. canariensis (FG); Oic, O. ichnusae (O);  Ol  C, O.
laxiflora (O); Ol S, O. longicornu (O); Om, O. morio (O); Opa S, O. papilionacea (O);
Opa C, O. pauciflora (O); Opr, O. provincialis (O), Opu, O. purpurea (O); Ot, O.
tridentata (O); Sc, Serapias cordigera (O); Sl, S. lingua (O); Sn, S. nurrica (O); Sp, S.
parviflora ((O)  on  S  and  T);  Sv, S. vomeracea (O). Neottieae: Cd, Cephalanthera
damasonium (F); Cl, Cephalanthera longifolia ((FG) in C and (F) on S); Eh, Epipactis
helleborine (F); La, Limodorum abortivum ((F) in C and on S); Lt, L. trabutianum (F);
Lo, Listera ovata (F); Nn, Neottia nidus-avis (F). Cranichideae: Ss, Spiranthes spiralis
(O).
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Abstract
While all members of the Orchidaceae are fully dependent on mycorrhizal fungi during

their achlorophyllous juvenile stages, mature plants may remain fully myco-

heterotrophic, become fully autotrophic or develop a nutritional mode where the carbon

gain through photosynthesis is complemented by organic carbon from fungal partners.

The latter, so-called partial myco-heterotrophy, is an intriguingly complex form of

mixotrophy. Current knowledge indicates a large range in the proportion of fungi-

derived carbon between and within partially myco-heterotrophic plant species.

However, the driving factors for this variation are hitherto mostly unknown. Here we

show for two green species of the orchid genus Cephalanthera that light availability is

the major determinant for the degree of myco-heterotrophy. Using leaf stable isotope

natural abundance analysis together with time-integrated micro-scale light climate

monitoring we could show that there is a sensitive reaction to varying light availability

within forests. Low light levels result in strong myco-heterotrophy while higher

irradiances successively drive the orchids towards full autotrophy. Our results

demonstrate that partial myco-heterotrophy is not a static nutritional mode but a

surprisingly flexible mechanism driven by light availability which allows a well

balanced utilization of carbon resources available in nature.

Introduction
Since the recent discovery of a novel nutritional mode in the world’s largest plant

family, the Orchidaceae, a dogma in plant sciences meaning that green plants are

autotrophic is no longer valid (G. Gebauer in Whitfield, 2007). Although green plants

are able to photosynthesize, some specialized terrestrial orchids have recently been

shown to additionally use an underground carbon source - their mycorrhizal fungi

(Gebauer & Meyer, 2003). A switch of their mycorrhizal associates from typical

Rhizoctonia species (a polyphyletic group of fungi) to ectomycorrhizal partners that are

simultaneously associated with trees enables the looting of organic nutrients

(Bidartondo et al., 2004). Analogue mechanisms have in the meantime also been found

in some green pyroloids (Ericaceae) (Zimmer et al., 2007; Tedersoo et al., 2007;

Hynson et al., 2009) and ongoing investigations continually reveal further species that

exhibit this exciting and complex form of mixotrophy (Bidartondo et al. 2004; Julou et

al., 2005; Abadie et al., 2006; Zimmer et al., 2008) which is more precisely referred to
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as partial myco-heterotrophy (Gebauer & Meyer, 2003). Although it can be

hypothesized that many more green plants from diverse taxa may up to now

unnoticeably gain organic compounds through myco-heterotrophic means, we know

very little on the mechanisms behind this ecologically relevant phenomenon.

Natural stable isotope abundances in organism tissues are a convenient tool to

study the utilization of isotopically distinguished nutrient sources. The incorporation of

fungi-derived carbon, e.g., is reflected by the green plants’ leaf isotope signature since

fungal tissues are enriched in the heavy carbon stable isotope 13C relative to

accompanying fully autotrophic plants (Högberg et al., 1999). Previous studies indicate

a large range in the proportion of fungi-derived carbon between and within partially

myco-heterotrophic species (Gebauer & Meyer, 2003; Bidartondo et al., 2004; Julou et

al., 2005; Abadie et al., 2006; Tedersoo et al., 2007; Zimmer et al., 2007, 2008; Hynson

et al., 2009; Cameron et al., 2009) but the driving factors for this variation remain

mostly unknown.

A comparison of three independent investigations on the trophic status of green

orchids at different forest types raised the hypothesis that the exploitation of

mycorrhizal fungi might be affected by the prevalent light climate (Gebauer, 2005). To

test this hypothesis experimentally, we combined leaf stable isotope natural abundance

analysis with time-integrated micro-scale light climate monitoring and investigated two

partially myco-heterotrophic orchid species (Cephalanthera damasonium and C. rubra)

together with 12 fully autotrophic and one fully myco-heterotrophic reference species.

Materials and Methods

Study sites and investigated species
Plant samples were collected in 2007 and 2008 from three forest sites in NE Bavaria: an

open Pinus sylvestris stand, a forest dominated by Fagus sylvatica and a mixed stand

composed of several conifer (e.g., Pinus sylvestris, Picea abies) and broadleaf species

(e.g., Fagus sylvatica, Acer campestre). All sites are located at 480 - 520 m a.s.l. and

characterised by mean annual precipitation of 700 - 1000 mm and mean annual

temperatures of 6 - 9 °C. In total, 224 understory plant samples were collected from a

fully myco-heterotrophic (Neottia nidus-avis, n = 11), a fully autotrophic (Cypripedium

calceolus, n = 9) and two partially myco-heterotrophic orchid species (Cephalanthera

damasonium, n = 18; C. rubra, n = 18); and from 11 diverse (monocotyledons /
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dicotyledons, tree saplings / herbs, evergreen / deciduous, ectomycorrhizal / arbuscular-

or nonmycorrhizal) autotrophic non-orchid species (Acer campestre, n = 9; A.

pseudoplatanus, n = 3; Anthericum ramosum, n = 12; Carex flacca, n = 20; Convallaria

majalis, n = 11; Euphorbia cyparissias, n = 20; Fagus sylvatica, n = 48; Fragaria

vesca, n = 3; Galium odoratum, n = 10; G. verum, n = 10; Polygala chamaebuxus, n =

22).

Micro-scale light climate monitoring
For each of the 56 orchid individuals, a 1-m2 plot including two to four autotrophic non-

orchids was selected. As soon as the young orchid shoots could be identified, a

calibrated light sensor (silicon photodiode BPW 21, Infineon, Germany) connected to a

mini data logger (HOBO H8, ONSET, USA) was installed right next to each shoot at

about 15 cm height. Irradiance was logged every 15 min from the day of sensor

installation until the development of seed capsules (2007: May 9 - June 20, 2008: Mai

18 - July 6). Measured values were converted into photosynthetically active radiation

(µmol photons m-2 s-1) and averaged as daily means (from sunrise to sunset). Due to the

equal global solar radiation from May to July in the two sampling years (2007: 488

kWh  m-2, 2008: 494 kWh m-2; weather station of the Ecological-Botanical Garden

Bayreuth), the measured relative light availability of understorey plants had not to be

adjusted.

Carbon stable isotope abundance analysis
Leaf samples (and stem samples of the leafless N. nidus-avis) were taken following the

criteria described by Gebauer & Meyer (2003). The plant material was oven-dried at

105 °C and ground to a fine powder. Relative C isotope abundances were measured

with an elemental analyzer coupled to a continuous flow isotope ratio mass

spectrometer as described in Bidartondo et al., (2004). Measured abundances are

denoted as  values, which were calculated according to the following equation: 13C =

(Rsample/Rstandard – 1) x 1000 [‰], where Rsample and  Rstandard are  the  ratios  of  heavy

isotope to light isotope of the samples and the respective standard. Standard gases were

calibrated with respect to international standards by using the reference substances

ANU sucrose and NBS 19, provided by the International Atomic Energy Agency

(Vienna, Austria).
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Data preparation and statistics
To facilitate precise data comparisons between sites and plots,  values were normalised

according to Preiss & Gebauer (2008): 13C values of the orchids and the non-orchid

autotrophic reference plants were used to calculate 13C enrichment factors ( ) of every

plant against the mean of the autotrophic plants for each plot: S = S - REF; with S as

single value of a sample from an autotrophic, partially or fully myco-heterotrophic

orchid and REF as mean value of all autotrophic reference plants from the respective

plot.

To test for significant (  = 0.05) correlations between measured light availability

and 13C values or enrichment factors ( ), respectively, regression analyses were

performed using SigmaPlot v. 11.0 (Systat Software, Inc., USA). Means are given ± 1

SD.

Results and Discussion

Responses of 13C on varying irradiance
13C values in leaves of autotrophic non-orchids ranged from -34.2 to -26.3 ‰ (Figure

1) and showed a significant, positive correlation with light availability (F1,166 = 70.2,

R2
adj. = 0.293, P < 0.001). These 13C values and their dependence on light climate are

based on the carbon isotope discrimination during C3 photosynthesis (fractionation

during carboxylation by Rubisco) and on stomatal regulation which affects the

intercellular partial pressure of CO2 (Farquhar et al., 1989). Leaf isotope signatures of

the fully autotrophic orchid Cypripedium calceolus responded  in  the  same  way  as

autotrophic non-orchids (F1,7 = 7.5, R2
adj. = 0.518, P = 0.029), demonstrating that

members of the Orchidaceae per se do not show any peculiarity in carbon nutrition.

This is consistent with findings by Zimmerman & Ehleringer (1990) who analysed the

carbon  isotope  composition  of  a  Panamanian  epiphytic  C3 orchid  (Catasetum

viridiflavum) and found higher 13C values with increasing irradiance due to increasing

stomatal limitation to photosynthesis.

The achlorophyllous orchid Neottia nidus-avis showed the highest 13C values of

all investigated species (-23.1 ± 1.07 ‰ on average). Such a relative 13C enrichment is

characteristic of all fully myco-heterotrophic plants that associate with ectomycorrhizal

fungi (Preiss & Gebauer, 2008) and fits the food-chain model (Trudell et al., 2003).



The major determinant for the degree of myco-heterotrophy CHAPTER 6154

Since these plants’ carbon demand is exclusively covered through organic compounds

supplied by fungi, 13C values of N. nidus-avis are not correlated with the micro-scale

light climate (F1,9 = 0.7, R2
adj. < 0.001, P = 0.411; Figure 1).

A quite interesting pattern was found for the two Cephalanthera species. Although

these green orchids are able to photosynthesize, their carbon isotope signatures do not

respond on varying light availability (F1,34 = 0.2, R2
adj. < 0.001, P = 0.637; Figure 1).

Their mean 13C  values  (C. damasonium: -28.1 ± 1.4, C. rubra: -28.6 ± 1.6) range

between those of fully autotrophic and fully myco-heterotrophic plants as typical for

partial myco-heterotrophs. At higher irradiances (above 250 µmol m-2 s-1)  95  %

confidence intervals of Cephalanthera individuals and fully autotrophic plants overlap

(Figure 1) indicating a complete autotrophic nutrition at sufficiently light-exposed sites.

However, since it has been shown that irradiance-dependent physiological effects can

strongly influence leaf 13C values, isotope data have to be related to a fine spatial scale

before assessing the question whether partial myco-heterotrophy is a flexible or a static

nutritional mode.

Figure 1. 13C values of 12 autotrophic plant species (n = 177) including the orchid C.
calceolus, two partially myco-heterotrophic Cephalanthera spp. (n = 36) and the fully
myco-heterotrophic orchid N. nidus-avis (n = 11), plotted against relative light
availability. Regression curves (solid lines) are given with 95 % confidence intervals
(dashed lines).
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Effects of irradiance on partial myco-heterotrophy
Regarding the normalized 13C enrichment of the Cephalanthera individuals after

relating the isotope data to references of the respective plot, the existence of a true

relation between enrichment factor  and micro-scale light availability becomes obvious

(F1,34 = 56.6, R2
adj. = 0.614, P < 0.001; Figure 2). Thus, the darker a habitat is, the more

fungi-derived carbon is incorporated (reflected by the proportional enrichment in 13C).

One could have the impression, that there also is a light-dependent reaction in the fully

myco-heterotrophic species (F1,9 = 18.9, R2
adj. = 0.641, P = 0.002), but this is the effect

resulting from referencing against autotrophic plants whose 13C values increase with

increasing irradiance while 13C values of N. nidus-avis remain constant (cp. Figure 1).

Under low light conditions, Cephalanthera individuals receive about half as much of

fungi-derived carbon as achlorophyllous plants while the proportion of heterotrophic

nutrition decreases with increasing irradiance (pointed out by arrows in Figure 2). At

sufficiently high irradiances, adult Cephalanthera plants cover their carbon demands

completely through assimilation of atmospheric CO2 as like as fully autotrophic non-

orchids and orchids (e.g., C. calceolus).

Figure 2. Correlation between relative enrichments in 13C ( ) calculated per plot (Preiss
& Gebauer, 2008) and relative light availability based on the data shown in Figure 1.
Regression lines (± 95 % confidence intervals) represent the range of isotope signatures
of autotrophic, partially myco-heterotrophic and fully myco-heterotrophic plants.
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Conclusions
Here we show that partial myco-heterotrophic Cephalanthera species strongly

supplement their carbon gain through photosynthesis by organic carbon from fungal

partners under low light conditions but nourish completely autotrophic when they are

exposed to sufficiently high irradiances. This demonstrates that partial myco-

heterotrophy is not a static nutritional mode but a surprisingly flexible mechanism

allowing a well balanced utilization of carbon resources available in nature. The fact

that the degree of myco-heterotrophy may successively change - driven by the prevalent

micro-scale light climate - could explain several discrepancies between previous studies

that investigated the trophic status of numerous green Orchidaceae and Ericaceae.
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