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Abstract

Earth’s plate tectonics provides the basis for different material cycles, which ex-
change chemical compounds, like water, between Earth’s surface and mantle. At
subduction zones, the oceanic lithosphere sinks into the mantle, transporting both
chemically bound water within minerals and free water within its pore space into
Earth’s interior. At shallow depth the free water is expelled from the pore space
through compaction. However, a significant amount of water remains chemically
bound in hydrous mineral phases. With increasing pressure and temperatures those
hydrous minerals break down, releasing water, which percolates into the mantle
wedge. Those dehydration reactions provide the main source of water in subduction
zones, causing partial melt in the mantle wedge and trigger volcanism at the Earth’s
surface. As already small amounts of water have significant effects on chemical and
physical properties of the mantle, it is therefore of crucial importance to constrain
the amount of water entering the Earth’s mantle. Until now the distribution and
total amount of water in Earth’s mantle is under debate and estimates for water
storage in the deeper mantle range from 0.25 - 4 ocean masses. For this reason it
is of major importance for several geoscience disciplines, including Hydrogeology,
Petrophysics and Volcanology to investigate fluid flow and its related processes on
various scales.

A key parameter controlling fluid flow is the permeability of rocks. Thus, as per-
meability is a function of the rock microstructure, an accurate determination and
prediction of this parameter is necessary. Numerical predictions, where laboratory
measurements struggle, has become an important method to complement laboratory
approaches. Employing high grid resolutions, this prediction becomes computation-
ally very expensive, which makes it necessary to develop methods that maximize
accuracy and efficiency. For this reason the method of stencil rescaling is imple-
mented into the Finite Difference code LaMEM (Lithosphere and Mantle Evolution
Model) by Anton Popov. The stencil rescaling method improves the description
of the solid-fluid interface and therefore allows for a more accurate computation of
permeability in porous media using Darcy’s law at low Reynolds numbers. The ac-
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curacy of this method is successfully verified by comparing numerical to analytical
solutions for a set of simplified model setups. Results show that stencil rescaling sig-
nificantly increases the accuracy at no additional computational costs. Additionally,
the modeling framework is used to predict the permeability of a Fontainebleau sand-
stone and to demonstrate numerical convergence. Results show very good agreement
with experimental measurements as well as with previous studies. As the flow of
non-Newtonian fluids through porous media has gained importance in recent years
due to, e.g. the use of nanofluids for enhanced oil recovery, additionally the ability
of the code to simulate the flow of power-law fluids through porous media is also
demonstrated. As in case of a Newtonian fluid, results show good agreement with
analytical solutions.

However, as most of Earth’s dynamics like magma migration and ground water flow
occur on a larger scale, it is necessary to parameterize permeability, which can be
used as input parameter to investigate fluid flow in large-scale numerical simula-
tions. For this reason several soda-lime glass bead samples with various porosities
are sintered. Microstructural parameters like effective porosity and effective specific
surface are determined using image processing. Furthermore, flow properties like
hydraulic tortuosity and permeability are computed using LaMEM. By fitting an
analytical equation for the microstructural and flow properties to porosity, a mod-
ified Kozeny-Carman equation for isotropic low-porosity media is obtained. This
permeability parameterization can be used to simulate fluid flow on the large-scale.
In comparison to numerically computed and experimentally measured permeability
values this parameterization shows good agreement.

To investigate also the fluid flow on the macroscale results on modelling fluid flow in
subduction zones are presented. In a first step a corner flow benchmark is performed
successfully and a water migration scheme is implemented into the Finite Element
code MVEP2. Water migration is modelled with the following three steps:

1) Determination of the amount of free water and bound water as well as the
maximum storage capacity of each marker.

2) Extraction of the pressure gradients of the solid phase flow to compute Darcy
velocities.

3) Advection of the free water along the computed Darcy velocities.
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Markers containing more chemically bound water than the storage capacity are
oversaturated and dehydrate, whereas markers are undersaturated if the chemically
bound water is below the water storage capacity, leading to hydration in case wa-
ter is present. First simulations using this routine with different grid resolutions
show that the total amount of water is conserved. Future studies are required to in-
clude temperature profiles and several normal faults, enriched with water, to finally
investigate the effect on the resulting fluid flow within subduction zones.
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Zusammenfassung

Plattentektonik auf der Erde bildet die Grundlage für verschiedene Materialzyklen,
welche chemische Komponenten, wie beispielsweise Wasser, zwischen der Erdober-
fläche und dem Erdmantel austauschen. An Subduktionszonen sinkt die ozeanische
Lithosphäre in den Erdmantel und transportiert in Mineralen gebundenes und freies
Porenwasser ins Erdinnere. Während Porenwasser bereits in geringen Tiefen durch
Kompaktion freigesetzt wird, kann das in Mineralen gespeicherte Wasser in größere
Tiefen transportiert werden. Mit zunehmendem Druck und Temperatur jedoch zer-
fallen ebenso jene wasserhaltigen Minerale, und Wasser gelangt in den darüberlie-
genden Mantelkeil. Diese Zerfallsreaktionen bilden die Hauptquelle für Wasser im
Erdmantel, welche sowohl partielles Schmelzen im Mantelkeil als auch Vulkanis-
mus an der Erdoberfläche verursachen. Da bereits eine geringe Menge an Wasser
einen signifikanten Einfluss auf die chemischen und physikalischen Eigenschaften
des Mantels hat, ist die Ermittlung der Menge an Wasser im Mantel von erheb-
licher Relevanz. Bis heute ist die genaue Menge und Verteilung des im Erdmantel
vorhandenen Wassers umstritten und Schätzungen reichen von Werten zwischen 0.25
und 4 Ozeanmassen. Daher ist es von entscheidender Bedeutung für unterschied-
liche geologische Disziplinen – wie der Hydrogeologie, Petrophysik und Vulkano-
logie – Flüssigkeitsströmungen und damit verbundene Prozesse auf verschiedenen
Größenskalen zu untersuchen.

Ein Schlüsselparameter, der die Flüssigkeitsströmungen kontrolliert, ist die Per-
meabilität der Gesteine. Da diese jedoch eine Funktion der Mikrostruktur darstellt,
ist deren präzise Bestimmung und Prognose auf der Mikroskala notwendig. Per-
meabilitätsbestimmungen werden meist experimentell durchgeführt, wobei diese of-
tmals eine Vielzahl an Einschränkungen aufweisen. Um diesen entgegenzuwirken,
können numerische Berechnungen ergänzend hinzugezogen werden. Da diese sehr
rechenintensiv sind, ist die Entwicklung neuer Techniken und Methoden zur Verbesser-
ung der Präzision und Effizienz der Messwerte notwendig. Aufgrund dessen wurde
die Stencil-rescaling-Methode in den Finite Differenzen-Code LaMEM (Lithosphere
and Mantle Evolution Model) genutzt. Die Stencil-rescaling-Methode verbessert
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die Beschreibung der Trennfläche zwischen Flüssigkeit und Gestein und erlaubt
mit Hilfe des Gesetzes von Darcy eine präzisere Bestimmung der Permeabilität in
porösen Medien bei niedrigen Reynoldszahlen. Zur Verifizierung der Methodenpräzi-
sion werden anhand verschiedener einfacher Modelle numerische mit analytischen
Lösungen verglichen. Die Ergebnisse zeigen, dass das Stencil-rescaling die Präzi-
sion ohne zusätzlichen Rechenaufwand signifikant erhöht. Ergänzend dazu wird in
diesem Rahmen die Permeabilität eines Fontainebleau Sandsteins modelliert und
hierbei numerische Konvergenz gezeigt. Die Resultate sind in sehr guter Übere-
instimmung mit experimentellen Messungen und vorherigen Studien. Aufgrund
des sichtbar steigenden Interesses an Strömungen nicht-Newtonischer Flüssigkeiten,
wie beispielsweise der Benutzung von Nanofluiden zur tertiären Ölgewinnung, wird
die Fähigkeit des Codes gezeigt, Strömungen durch poröse Materialien mit nicht-
linearen Rheologien zu simulieren. Wie im vorherigen Fall, stehen ebenso hierbei
die Ergebnisse im guten Einklang mit analytischen Lösungen.

Da jedoch die meisten dynamischen Prozesse in der Erde, wie beispielsweise die
Magmamigration sowie die Grundwasserströmungen, auf großen Skalen stattfinden,
ist eine Parametrisierung der Permeabilität von der Mikroskala auf die Makroskala
notwendig. Aufgrund dessen werden verschiedene Natron-Kalk-Glasproben mit un-
terschiedlichen Porositäten gesintert. Daraufhin werden die Mikrostrukturpara-
meter - wie effektive Porosität und effektive spezifische Oberfläche -mit Hilfe von
Bilddatenverarbeitung bestimmt. Des Weiteren werden Strömungsparameter - wie
hydraulische Tortuosität und Permeabilität - mit LaMEM berechnet. Durch das
Fitten einer analytischen Gleichung für diese Parameter an die Porosität kann eine
modifizierte Kozeny-Carman-Gleichung für isotrope Materialen mit geringen Poros-
itäten erhalten werden. Diese Parametrisierung kann im Weiteren dazu benutzt
werden, Permeabilität in großskaligen Modellen zu simulieren. Um diese Paramet-
risierung zu überprüfen, wird diese mit experimentell gemessenen und numerisch
berechneten Werten der Permeabilität vergleichen. Hierbei lassen sich innerhalb der
generierten Ergebnisse gute Übereinstimmungen feststellen.

Um ebenso die Flüssigkeitsströmungen auf der Makroskala untersuchen zu können,
werden Flüssigkeitsströmungen in Subduktionszonen modelliert. In einem ersten
Schritt wird ein Corner-flow-benchmark erfolgreich reproduziert sowie eine Wasser-
Migrations-Routine in drei Schritten in den Finite Elemente-Code MVEP2 imple-
mentiert. Diese Routine besteht aus folgenden Schritten:

1) Die Menge an freiem und gebundenem Wasser sowie die maximale Wasser-
speicherkapazität jedes Markers wird bestimmt.
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2) Um Darcy-Geschwindigkeiten zu berechnen werden die Druckgradienten im
Gestein extrahiert.

3) Das freie Wasser wird mit den berechneten Darcy-Geschwindigkeiten advek-
tiert.

Marker, in denen die Menge des chemisch gebundenen Wassers über der Speich-
erkapazität liegt, sind übersättigt und dehydrieren, wobei freies Wasser entsteht.
Marker, die weniger chemisch gebundenes Wasser enthalten als die Speicherkapazität
erlaubt, sind untersättigt und hydrieren, falls Umgebungswasser zur Verfügung
steht. Simulationen mit verschiedenen Gitterauflösungen zeigen, dass innerhalb der
Routine die Gesamtmenge des Wassers erhalten bleibt. Zukünftige Studien sollten
ein Temperaturfelde sowie mehrere Abschiebungen, welche mit Wasser gefüllt sind,
beinhalten, um schlussendlich den Effekt auf die resultierende Flüssigkeitsströmung
in einer Subduktionszone zu untersuchen.
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1.1 Deep Earth Volatile Cycle

Earth’s dynamic nature influenced and shaped the history of humankind since its
beginning. In 1912 Alfred Wegener introduced the theory of continental drift (We-
gener, 1912), which was further developed into the theory of plate tectonics (Mor-
gan, 1968; Wilson et al., 2014) that is supposed to drive most of Earth’s dynamics.
Today it is well-known that oceanic and continental plates float atop the mechan-
ically weaker asthenospheric mantle (Clauser, 2014). Where plates meet, different
types of boundaries relative to their motion develop, namely convergent, divergent
and transform fault. Along convergent boundaries between oceanic and continental
plates, the oceanic plate subducts below the continental one due to density differ-
ences and is dragged into the mantle. At these subduction zones major expressions
of Earth’s dynamics like earthquakes, volcanic activity and mountain-building occur
(Crowley et al., 2011; Hacker, 2008; van Keken et al., 2002).

Additionally, subduction zones provide the input mechanism for deep material cycles.
Within the Deep Earth Volatile Cycle, volatiles like water, sulfur, nitrogen and car-
bon are exchanged between Earth’s surface and the deeper mantle (Hirschmann and
Dasgupta, 2009; Dasgupta and Hirschmann, 2010; Hirschmann, 2018). One of the
key players, taking an important role in Earth’s evolution and dynamics, is H2O as it
affects the chemical (Bercovici and Karato, 2003) and physical properties (Hirth and
Kohlstedt, 1995; Mei and Kohlstedt, 2000) of the mantle. H2O can be transported
into Earth’s mantle via (i) pore water, (ii) hydrous minerals and (iii) Nominally An-
hydrous Minerals (NAMs). At the seafloor, oceanic plates are transported from mid
ocean ridges towards subduction zones by plate tectonics. Throughout the plate’s
residence on the seafloor sediments are added continously onto it, storing both pore
water and chemically bound water. Additionally by cooling and bending the oceanic
crust becomes fractured (Faccenda et al., 2009; Hatakeyama et al., 2017), hydrating
the uppermost few kilometers of the oceanic plate (Peacock, 2001; Ranero et al.,
2003). The pore water is expelled by compaction at shallow depths (4-11 km) into
the mantle (Abers et al., 2017; van Keken et al., 2011; Korenaga, 2017), whereas
chemically bound water may be transported deeper into the mantle. Finally, due to
hydrothermal activity the basaltic crust and underlying peridotite react with sea-
water to form hydrous minerals such as amphibole, chlorite, and serpentine (Watts
et al., 1980; McAdoo and Martin, 1984; Schmidt and Poli, 1998; Iwamori, 2004;
Rüpke et al., 2004). However, most of the hydrous minerals break down during sub-
duction releasing H2O through dehydration reactions. The released aqueous fluids
migrate into the overlying mantle wedge, where they may trigger partial melting to
form volcanic arcs (Syracuse et al., 2010; van Keken et al., 2008). In cold subduc-
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tion zones, hydrous minerals can carry H2O down to depths in excess of 200 km
(Schmidt and Poli, 1998). The transition zone is marked by two distinct seismic
discontinuities, the 410 km, where olivine transforms into wadsleyite and the 660
km where wadsleyite turns into ringwoodite (Frost and McCammon, 2008; Jacobsen
and Smyth, 2013). As both minerals can host significant amounts of H2O, Earth’s
transition zone is supposed to serve as a major H2O reservoir, fed by continously
sinking slabs (Smyth and Jacobsen, 2013).

However, the distribution and total amount of water stored in Earth’s mante is
poorly understood. Experimental and theoretical studies suggest that upper mantle
rocks, especially transition zone rocks, have the ability to store significant amounts
of water within their crystal structure (Smyth, 1987; Ohtani, 2005), while the water
storage capacity decreases in the lower mantle (Bercovici and Karato, 2003). Es-
timates for the amount of water within the entire mantle range from ≈ 0.25 − 4

ocean masses (Ringwood, 1975; Ahrens, 1989; Jambon and Zimmermann, 1990;
Hirschmann et al., 2005). Figure 1.1 highlights the main processes leading to de-
hydration of a subducting plate and therefore triggering fluid flows at various depths.

Figure 1.1: Schematic drawing of the deep earth water cycle based on Rüpke et al. (2004) highlight-
ing major steps of dehydration within a subduction zone. (1) Shows the excess of fluids at shallow
depth through compaction. (2) At intermediate depth water is released from oceanic crust and
sediments. (3) Deep fluid release from the oceanic crust and through metamorphic dehydration
reactions e.g. deserpentinization.
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1.2 Fluid flow

In geosciences rocks consist of pore space and a solid matrix. If the pore space is
connected, fluid flow and mass transfer can take place. In the Earth’s crust rocks
undergo compaction with increasing pressure at shallow depths of 4-11 km (Abers
et al., 2017), leading to a decrease in the pore space to ≈ 1 − 4% (Hyndman,
1988; Peacock et al., 2011). At depths between 25-240 km several metamorphic
dehydration reactions take place, releasing chemically bound water and triggering
partial melt, which maintain the porosity due to increasing fluid pressure and volume
change (Peacock, 1990; Stern, 2002).

In general, flow of fluids and gases can be described by the well-known Navier-Stokes
equations as follows (Landau and Lifshitz, 1987; Bear, 1988):

∂ρ

∂t
+∇ · (ρv) = 0 (1)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇P +∇ ·

[
η
(
∇v +∇vT

)]
+∇ [ζ (∇ · v)] + F, (2)

where ρ is the density, t is the time, v is the velocity, P is the pressure, η is the
shear viscosity coefficient, ζ is the volumetric viscosity coefficient and F represents
gravitational body forces ρg. Assuming incompressibility of the fluid (∇ · v = 0)

yields:

∇ · v = 0 (3)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇P +∇ ·

[
η
(
∇v +∇vT

)]
+ F, (4)

In porous media fluid flow can be characterized by the Reynolds number which
relates inertial to viscous forces:

Re =
ρvL

η
, (5)

with L being the characteristic length of the domain. Due to the small pore size,
flows in porous media commonly exhibit small Reynolds numbers and are thus con-
sidered to be laminar (Bear, 1988). Choosing the following characteristic variables

x′ =
x

L
, (6)

y′ =
y

L
, (7)

z′ =
z

L
, (8)
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∇′ = ∇
1/L

, (9)

v′ =
v
v
, (10)

t′ =
t

L/v
, (11)

P ′ =
P

ηv/L
, (12)

one can non-dimensionalize eq. (3)+(4) to:

∇ · v = 0 (13)
Re

St

∂v′

∂t′
+Rev′ · ∇′v′ = −∇′P ′ +∇′ ·

[
η
(
∇′v′ +∇v′T

)]
+ F, (14)

Considering a steady flow (for which the Strouhal number St = rL
v
, with r being

the frequency of vortex shedding, is unity) and laminar flow conditions (Re << 1)
inertial forces can be neglected, leading to the Stokes equations (dimensional form):

∇ · v = 0 (15)

−∇P +∇ ·
[
η
(
∇v +∇vT

)]
+ F = 0 (16)

When viscosity can be assumed to be constant the Stokes equations further simplify
to:

∇ · v = 0 (17)

−∇P + η∇2v + F = 0 (18)

Solving these equations provides solutions for velocity u and pressure P for a given
pressure gradient across the computed domain.

To further take temperature into account the governing equation for conservation
of energy is solved:

ρCp
DT

Dt
=

∂

∂xi

(
κ
∂T

∂xi

)
+H, (19)

with ρ denoting the density, Cp the heat capacity, DT/Dt the total derivative of
temperature T , κ the thermal conductivity and H the additional term for radiogenic
heating.

An important parameter controlling fluid flow is permeability, describing the ability
of fluids to pass through a porous material. Fluid flow and therefore permeability
can be estimated on different scales, ranging from crustal (Fehn and Cathles, 1979;
Norton and Taylor Jr, 1979) to pore scale (Brace, 1984). As permeability strongly
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depends on microstructure (Mostaghimi et al., 2013; Keehm, 2003), an accurate
determination on the microscale is necessary. A first empirical law on fluid flow
through a bed of sand was derived experimentally by Henry Darcy (Darcy, 1856).
In Darcy’s law a permeability k is defined relating the flow rate Q to an applied
pressure gradient ∆P/L as well as the fluid viscosity η:

k = − ηLQ

∆PA
, (20)

where A is the cross-sectional area of the porous medium. Using the computed
velocity field from eq. (3)+(4) in the z direction, the volume- averaged velocity
component vm is calculated (Osorno et al., 2015):

vm =
1

Vf

∫
Vf

|vz| dv, (21)

with Vf being the volume of the fluid phase. Making use of eq. (20) and Q = vm ·A,
the permeability k of the domain can be computed as

k =
ηvmL

∆P
. (22)

In the literature various formulations relating permeability to several geometric prop-
erties of the void space exists. In 1933 a formulation for permeability, developed
from dimensional considerations and verified experimentally was made by Fair and
Hatch (1933) reading:

k =
1

β

(1− φ)2

φ3

 γ

100

∑
(m)

Pm
dm

2−1

, (23)

with β being a packing factor, found experimentally to be 5, φ being the porosity, γ
being a sand shape factor, varying between 6 for spherical grains and 7.7 for angular
ones, m being the number of sieves, Pm being the weight percentage of sand held in
between adjacent sieves, and furthermore dm being the geometric mean diameter of
adjacent sieves.

Another formulation proposed by Krumbein and Monk (1943) using a purely em-
pirical approach stated as follows:

k = Cd2, (24)

where C is a dimensionless coefficient found to be 6.17 × 10−4 by Krumbein and
Monk (1943) and d is the effective grain size.



7 1.2. FLUID FLOW

An also often used formulation for permeability in porous media is the well-known
Kozeny-Carman equation (Kozeny, 1927; Carman, 1937, 1956):

k = k0
φ3

S2τ 2
, (25)

where k0 is the dimensionless Kozeny constant depending on the channel geometry
(e.g. k0 = 0.5 for cylindrical capillaries), S is the specific surface, defined as the total
interfacial surface area of pores per unit bulk volume, and τ being the tortuosity.
The tortuosity describes tortuous stream tubes filling up the entire void space and
is defined as Le/L, where Le is the effective length of the tortuous stream tube and
L is the length of the domain. Experimentally, Carman (1937) found that τ =

√
2.

This relation was derived assuming that the medium consists only of continuous,
tortuous channels with constant cross-section (Carman, 1937; Bear, 1988).

However, in porous media tortuous pathways most likely do not obey these assump-
tions and therefore applying this equation to porous media remains challenging and
in some cases fails for low porosities (Bernabe et al., 1982; Bourbie et al., 1992) or
mixtures of different shapes and material sizes (Carman, 1937; Wyllie and Gregory,
1955) and small samples sizes. For this reason, the Kozeny-Carman equation has
been modified and extended to account for various correlations between tortuosity,
specific surface and porosity (Comiti and Renaud, 1989; Pech, 1984; Mavko and
Nur, 1997; Mota et al., 2001; Pape et al., 2005).

For example, Comiti and Renaud (1989) proposed a tortuosity-porosity relation as
follows:

τ(φ) = 1−Bln(φ), (26)

where parameter B is determined experimentally for different kind of particles. Mota
et al. (2001) found, by measuring the electrical conductivity of a medium filled with
spherical particles, that tortuosity relates to porosity as denoted:

τ(φ) = φ−0.4. (27)

Most of these relations used tortuosity as a fitting parameter and used materials
having φ > 30%.

However, the determination of permeability and of microstructral parameters in
three dimensions remains challenging. Especially for several geological processes,
like magma migration, fluid flows play an important role on various scales. For
example in subduction zones, fault zones and fractures are first order control mech-
anisms for fluid flow and drainage patterns (Carson and Screaton, 1998; Moore,
1989; Saffer and Tobin, 2011). Due to compaction of sediments with increasing
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depth porosity drops from ≈ 50% near the trench to / 10% at 20-40 km landwards,
which results in a decrease of permeability by 3-4 orders of magnitude (Saffer and
McKiernan, 2005; Gamage and Screaton, 2006). This densification limits the ability
of fluids to access permeable conduits and favors the development of stresses trig-
gering earthquakes (Ellsworth, 2013; Terakawa et al., 2012). Furthermore certain
processes like compaction and clogging by precipitation and dissolution of minerals
may also feature the change of permeability with time (Bear, 2018).
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2.1 Experimental permeability measurement

To model fluid flow in a specific tectonic or lithological setting, permeability is one
of the most difficult parameters to estimate as it can vary by more than 10 orders
of magnitude (Freeze and Cherry, 1979). Due to enhanced flow in mesoscopic fea-
tures like fractures, laboratory measurements of permeabilities can differ from in
situ permeabilities (Brace, 1980). Furthermore variations in temperature and pres-
sure, which are related to metamorphic processes, may influence the permeability
significantly. For this reason, several different experimental techniques have been
developed over the decades, trying to estimate permeability accurately (Ferland et
al., 1996; Takeuchi et al., 2008; David et al., 1994; Brace, 1984). Within the scope
of this work the measurement method of Takeuchi et al. (2008) is described in more
detail.

Permeameter : The permeameter (Fig. 2.1) is composed of an air compressor, a
pressure regulator (RP1000-8-04, CKD Co.; Precision ±0.1 %), an analog pressure
gauge, a digital pressure manometer (testo526-s, Testo Inc.; Precision ±0.05 %), a
sample holder and a flow meter (Alicat, M-10SCCM; Precision ±0.6%). The gas-
flow line is connected from the bottom of the sample-holder (high-pressure side) to
the top of the sample holder (low-pressure side) via the digital manometer. All parts
are connected by pressure-proof tubes (5 mm in inner diameter). The measurement
is performed under steady-state gas flow from the high-pressure side through the
samples to the low-pressure side, at which the digital flow meter is attached.

Sample preparation: Before preparing the samples for permeability measurements,
they are digitized using micro Computed Tomographic scans (micro-CT) performed
at Tohoku University (ScanXmate-D180RSS270) with a resolution ≈ 6 − 10µm,
according to the method of Okumura and Sasaki (2014). To perform air flow meas-
urements some preparations of the samples are necessary. In a first step, samples
are wrapped by a commercially available high-viscous water-proof resin to prevent
the intrusion of the less-viscous resin (Technovit 4071, Heraeus Kulzer GmbH & Co.
or Presin, Nichika Inc.) into the pore space. Afterwards the upper and lower end
surfaces of the embedded samples were exposed by grinding and polishing. In par-
ticular, the flatness of the resin part at both end surfaces is of crucial importance to
prevent any leakage of the working gas at the contact area between the O-rings and
the end surface of the samples, which are sandwiched between the acrylic plates.

Sample measurement: The air flow measurements take place at room temperature.
During the measurement the resulting flow is evaluated at several pressure gradients.
This procedure is performed to confirm both laminar flow conditions, represented
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Figure 2.1: Schematic configuration of the experimental assembly used to measure permeability
(modified from Takeuchi et al. (2008)).

by a linear increase of the flow rate with increasing pressure, and reproducibility of
the measurements.

Determination of permeability: Darcy’s law is applied to the measurement results
(eq. (20)) to determine permeability of the samples. Recently, several volcanology
studies showed that at high flow rates the flow of the working gas is not always
laminar and therefore with increasing flow rate, energy is lost through inertia (Rust
and Cashman, 2004; Wright et al., 2006, 2007). Therefore, before using Darcy’s law
the effect of compressibility and inertia of the working gas need to be considered.
For this reason, a modified version of Darcy’s equation, the Forchheimer equation
(Forchheimer, 1901) is used, which incorporates the nonlinear relationship between
gas volume flux to a modified pressure gradient reading as:

P 2
2 − P 2

1

2P0H
=

η

k1

ν0 +
ρ

k2

ν2
0 , (28)

P2 and P1 denote the pressures at the inlet and outlet, P0 the actual pressure at
the point of measurement, H the distance between the inlet and outlet, ν0 the gas
volume flux which is calculated from the flow rate divided by cross-sectional area
of the sample, k1 the Darcian and k2 the non-Darcian permeability. Density ρ and
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viscosity η of air are assumed to be constant. To only compute the permeability
considering compressibility of the working gas, a modified version of Darcy’s law is
used (Takeuchi et al., 2008), reading as follows :

P 2
2 − P 2

1

2P0H
=
ην0

k
, (29)

The left-hand side of eq. (29) represents the modified pressure gradient that includes
the compressibility of the working gas. Within the scope of the study we checked for
both inertia and compressibility, which were found to be negligible as the determined
values for permeability differ by less than 10% from the values obtained using Darcy’s
law.

2.2 Digital Rock Physics

Permeability can be determined experimentally through a wide range of different
techniques. Typical limitations for experimental permeability measurements on pore
scale are: (i) change of the sample’s microstructure and therefore its physical pro-
perties through cracking and self-filtration (Zeinijahromi et al., 2016; Dikinya et al.,
2008), (ii) pressure changes due to the influence of wall effects (Ferland et al., 1996),
(iii) difficulties to measure irregular grain shapes and small grain sizes of the porous
medium (Cui et al., 2009; Gerke et al., 2015) and finally (iv) to measure small
sample sizes. Moreover laboratory measurements do not provide information on the
pathways and the microstructure, which have a crucial influence on the permeability.

At this point Digital Rock Physics (DRP) can help to complement laboratory experi-
ments and enhance the understanding of the sample microstructure (Dvorkin et al.,
2003). In detail DRP, which can be described as an "image-to-compute" approach
(Fig. 2.2), uses numerical simulations to investigate transport and elastic proper-
ties at the pore scale level (Knackstedt et al., 2009; Andrä et al., 2013b; Saxena
et al., 2017). The images of the pore space are obtained using different techniques
e.g. X-ray Computed Tomography (micro-CT; Saxena et al. (2017) and Andrä et
al. (2013a)) and Nuclear Magnetic Resonance (NMR; Arns et al. (2001) and Arns
(2004)). In a next step these images are used to construct a three dimensional rep-
resentation of the pore space. To compute transport and elastic properties different
numerical techniques including Lattice-Boltzmann method (LBM) (Bosl et al., 1998;
Guo and Zhao, 2002; Pan et al., 2004), Finite Differences method (FDM) (Gerke
et al., 2018; Manwart et al., 2002; Shabro et al., 2014) and Finite Elements Methods
(FEM) (Akanji and Matthai, 2010; Bird et al., 2014; Garcia et al., 2009) are used.
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In recent years the approach of DRP has proved to significantly complement the
physical laboratory as a non-destructive method to rigorously predict flow properties
(e.g., tortuosity, relative/absolute permeability), elastic properties (e.g., formation
factor, elastic moduli) and electrical properties (e.g., electric conductivity/resistivity).
Recent studies also provided computations of multiphase flow, which is of crucial
importance for some geological processes (e.g., magma migration) and furthermore
for industrial applications including enhanced oil recovery (Koroteev et al., 2014;
Berg et al., 2013; Berg et al., 2014; Liu et al., 2007). With the ascent of new techno-
logies and increasing computational resources, DRP will be able to compute elastic,
flow and electrical properties of larger, highly resolved images in the near future;
thus, improving the precision and understanding of microstructural parameters.

Figure 2.2: Schematic sketch of the Digital Rock Physics workframe.

2.3 Numerical techniques

Physical laws are often expressed in terms of Partial Differential Equations (PDEs).
Depending on the geometry and problem, a vast majority of the physical problems
can not be solved analytically. Instead, the equations can be solved numerically
using different discretization methods. Several of these discretizations methods can
be used, but within the scope of this thesis only the Finite Difference method (FDM)
and the Finite Element method (FEM) are described briefly in the following section.

2.3.1 Finite Difference Method

The Finite Difference method (FDM) is a numerical method for solving differential
equations and is used in nearly all natural science fields. These equations are ap-
proximated by replacing the derivative with differential quotients. For the sake of
simplicity a one dimensional case is considered, where a derivative of a function u
at a point x states as follows:

∂u

∂x
≈ u(x+ ∆x)− u(x)

∆x
. (30)
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Figure 2.3: A sketch showing the different types of finite difference schemes.

For a sufficiently small ∆x the right-hand side represents a good approximation of
the derivative. Apart from eq. (30), which represents a first order forward finite dif-
ference, two additional forms of the approximations can be used, namely backwards
and central finite difference as follows (Fig. 2.3):

∂u

∂x
≈ u(x)− u(x−∆x)

∆x
, (31)

∂u

∂x
≈ u(x+ ∆x)− u(x−∆x)

2∆x
. (32)

The accuracy of these approximations differs in terms of the local truncation errors
O(∆x), defined as the misfit between the exact value and the numerical approxim-
ation. The Taylor-Series expansion for u(x+ ∆x) states that:

u(x+ ∆x) = u(x) + ∆x
∂u(x)

∂x
+

∆x2

2

∂2u(x)

∂x2
+

∆x3

6

∂3u(x)

∂x3
+O(∆x4). (33)

Solving for ∂u(x)
∂x

leads to:

u(x+ ∆x)− u(x)

∆x
=
∂u(x)

∂x
+O(∆x), (34)

with u(x+∆x)−u(x)
∆x

being the approximation for forward finite differences, ∂u(x)
∂x

being
the exact quantity of interest and O(∆x) the truncation error. For u(x −∆x) the
Taylor-Series expansion reads as:

u(x−∆x) = u(x)−∆x
∂u(x)

∂x
+

∆x2

2

∂2u(x)

∂x2
− ∆x3

6

∂3u(x)

∂x3
+O(∆x4) (35)
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Similarly, we obtain

u(x)− u(x−∆x)

∆x
=
∂u(x)

∂x
+O(∆x), (36)

with u(x)−u(x+∆x)
∆x

being the approximation for backward finite difference, ∂u(x)
∂x

being
the exact quantity of interest and O(∆x) the truncation error.

A higher order approximation of ∂u(x)/∂x is obtained by substracting eq. (35) from
eq. (33). The results is represented as:

u(x+ ∆x)− u(x−∆x) = 2∆x
∂u(x)

∂x
+

∆x3

3

∂3u(x)

∂x3
+O(∆x5). (37)

Dividing by 2∆x leads to:

u(x+ ∆x)− u(x−∆x)

2∆x
=
∂u(x)

∂x
+O(∆x2), (38)

where u(x+∆x)−u(x−∆x)
2∆x

is the central finite difference approximation, ∂u(x)
∂x

is the exact
quantity of interest and O(∆x2) is the truncation error. In contrast to eq. (33) and
eq. (35), representing forward and backward finite differences, the truncation error
for central finite differences (eq. (38)) is smaller for small ∆x. Therefore a central
finite difference scheme is more accurate than forward and backward finite difference
schemes.

Accordingly, a second order partial differential equation therefore reads as follows:

∂2u

∂x2
≈ u(x+ ∆x)− 2u(x) + u(x−∆x)

∆x2
(39)

In Finite Differences the discretized Stokes equations (assuming constant viscosity
and density; eqs. (17) and (18)) in x, y, z direction denote as:

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0, (40)

η

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
− ∂P

∂x
+ ρgx = 0, (41)

η

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
− ∂P

∂y
+ ρgy = 0, (42)

η

(
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)
− ∂P

∂z
+ ρgz = 0. (43)
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2.3.2 Finite Element Method

The Finite Element method (FEM) is a numerical technique to obtain approxim-
ate solutions of partial differential equations and is widely used in scientific and
engineering applications (e.g. Rieg et al., 2019). Instead of approximating the par-
tial differential equations directly as with Finite Differences (section 2.3.1), FEM
provides approximations of differential equations using an integral of the equation
over the model domain, represented by an assembly of finite elements. The solution
of a partial differential equation is approximated by a simple polynomial function
on each element. In a next step, the polynomial functions are pieced together and
the integral is evaluated as a sum of contributions from each finite element.

Before applying FEM to a partial differential equation it is necessary to transform
the equation into a more suitable, so-called weak formulation. Initially the weak
formulation was introduced to investigate the behaviour of the solution of partial
differential equations. For this reason the Stokes equations (eqs. (17) and (18)) are
multiplied with so-called test functions q and w, leading to:

(∇ · v)q = 0, (44)

− η∆v · w +∇P · w = f · w. (45)

By integrating over the domain Ω we get∫
Ω

(∇ · v)q dx = 0, (46)∫
Ω

−η∆v · w dx+

∫
Ω

∇P · w dx =

∫
Ω

f · w dx. (47)

Using integration by parts and the Gauss divergence theorem yields the weak for-
mulation of the Stokes equation: ∫

Ω

(∇ · v)q dx = 0, (48)∫
Ω

η∇v : ∇w dx−
∫

Ω

(∇ · w)P dx =

∫
Ω

f · w dx, (49)

which is then usually numerically discretized in two dimensions by (i) meshing the
domain with quadrilateral or triangular elements and (ii) approximating the integrals
with appropriate sums e.g. using Gaussian quadrature:

∫ 1

−1

f(ξn) dξ ≈
nip∑
n=1

f(ξn)wn, (50)
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where ξ are the local coordinates and wi the weights for each integration point and
nip the total number of intergration points per element. The resulting system of
equations is then solved iteratively using e.g. Powell-Hestenes iterations (see section
2.3.5)

2.3.3 Marker-and-Cell method

In order to describe motion in an appropriate way, two principal and distinct ap-
proaches can be used: the Lagrangian and Eulerian formulations. Within the scope
of this thesis both methods - Finite Difference and Finite Element - are used.

In the Lagrangian description each node of the computational mesh follows the
particle motion resulting in deformation of the grid, often used in structural geo-
logy and solid geomechanics (Ismail-Zadeh and Tackley, 2010). A difficulty in the
application of this description is the loss of accuracy due to large strains within the
computational mesh and therefore in most cases it is necessary to use remeshing
techniques.

In the Eulerian description, mainly used in fluid mechanics and geodynamics, the
computational mesh is fixed and the continuum moves and deforms with respect
to the computational grid (Gerya, 2010). Therefore using the Eulerian formulation
remeshing is not required, but this method struggles to follow free surfaces and
material interfaces.

Whereas in Finite Differences, due to the fixed grid, only the Eulerian description
can be used, Finite Elements are capable of using both approaches. However, when
using the Lagrangian approach, remeshing is necessary due to distorted elements,
introducing numerical diffusion. To minimize numerical diffusion and track material
properties, a so-called Marker-and-Cell-method (MAC) can be used. An often used
approach is to combine the use of Lagrangian advecting points (particles or markers)
with an fixed Eulerian grid (Christensen, 1982; Woidt, 1978). In this method, prop-
erties are initially distributed on Lagrangian markers, which are advected through
the domain according to a computed velocity field. In the following, the advected
markers, carrying material properties like density and viscosity, are interpolated onto
the Eulerian grid by using, for example, weighted-distance averaging. In order to
move Lagrangian points, different advection schemes ranging from simple first-order
advection scheme to higher order Runge-Kutta advection schemes can be used.
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2.3.4 LaMEM

In the present work we will use the Finite Difference code LaMEM (Lithosphere
and Mantle Evolution Model (Kaus et al., 2016)) solving the Stokes equations as
stated above (see section 2.3.1). To discretize the governing equations (eqs. (17)
and (18)), LaMEM employs a staggered grid finite difference scheme (Harlow and
Welch, 1965). Within the staggered grid pressures are defined in the middle of the
staggered grid cell, whereas velocities are defined on cell faces (Fig. 2.4).

The discretized system is then solved using an iterative multigrid scheme to obtain
values for velocities v and pressure P . To this end, we employ a V-cycle geometric
multiplicative multigrid solver (Fedorenko, 1964; Wesseling, 1995) which is part of
the PETSc library (Balay et al., 2010). As LaMEM is written to simulate large-
scale deformation of the Earth’s lithosphere and mantle, it is therefore also able to
handle complex rheologies, including dislocation, diffusion and Peierls creep and is
furthermore highly scalable for the use on high performance parallel computers.

In this thesis LaMEM is used in Chapters 4 and 5. In Chapter 4 LaMEM, employing
the technique of stencil rescaling, is benchmarked against several numerical settings,
whereas in Chapter 5 it is used to compute fluid flow and permeability of granular
glass bead samples. As the modelled domains of porous media samples are three-
dimensional with sizes of 5123 voxels, the ability of LaMEM to compute fluid flow
in parallel on large computational clusters is necessary.

Figure 2.4: Staggered grid and location of computed variables.
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2.3.5 MVEP2

In this thesis the 2D Lagrangian thermo-mechanical Finite Element code MVEP2,
developed at the University of Mainz, is used to simulate fluid flow within a subduc-
tion zone (Chapter 6). MVEP2 uses an efficient matrix assembly method developed
by Dabrowski et al. (2008) combined with a marker-and-cell approach to track ma-
terial parameters. Several geodynamic processes can be simulated and phase trans-
itions, sedimentation and erosion as well as melt extraction are included. MVEP2
solves eqs. (17) and (18) using a finite element discretization resulting in a discrete
saddle point problem Ax = b :(

K G

GT −ΛM

)(
v

P

)
=

(
ρg

0

)
, (51)

where K is the discretized Laplace operator, G is the discretized gradient operator,
Λ is the penalty factor and M is the mass matrix. Within the calculation the
second row of eq. (51) is solved for P . In the following, the solution for P is then
substituted into the first row of eq. (51). This system of equation can then be solved
using Powell-Hestenes iterations (Cuvelier et al., 1986).
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In geosciences the flow of fluids is a key process for magma migration and ground
water flows on multiple scales. A parameter controlling fluid flow on the micro- and
macroscale is permeability. As permeability itself is controlled by its microstructure
an accurate determination on the microscale is necessary (Mostaghimi et al., 2013).
For this reason various studies measured permeability experimentally using differ-
ent methods (Keehm, 2003; Bernabe et al., 1982; Bourbie et al., 1992; Brace, 1984).
Most of laboratory measurements exhibit some limitations (Zeinijahromi et al., 2016;
Gerke et al., 2018; Ferland et al., 1996; Dikinya et al., 2008; Cui et al., 2009) and do
not provide information on flow and microstructural parameters. Therefore, the ap-
proach of Digital Rock Physics (DRP) gained significant importance to complement
and enhance laboratory measurements. Digital Rock Physics (DRP) uses struc-
tural images (e.g., micro computed tomography (CT), Nuclear Magnetic Resonance
(NMR) images) (Dvorkin et al., 2003; Arns et al., 2001; Arns, 2004) and different
numerical techniques (e.g. Finite Difference (Manwart et al., 2002; Shabro et al.,
2014; Gerke et al., 2018), Finite Element (Garcia et al., 2009a; Akanji and Matthai,
2010; Bird et al., 2014), Lattice-Boltzmann method (Bosl et al., 1998; Pan et al.,
2004; Guo and Zhao, 2002)) to compute flow, elastic (Saxena and Mavko, 2016; Sax-
ena et al., 2017a) and microstructural parameters (Knackstedt and Zhang, 1994).
With the ascent of new technologies it has become possible to use DRP on large
computational clusters and therefore provide new insights on 3D flow patterns and
high resolution microstructural features.

The aim of the work presented in this cumulative thesis is to use DRP to investigate
fluid flow and processes involved in the Deep Earth Volatile Cycle on multiple scales
ranging from the micro- to the macroscale.

The first project (Chapter 4) uses the stencil rescaling method to improve the com-
putation of fluid flow and therefore permeability on the pore scale. We benchmark
the Finite Difference code LaMEM against various analytical solutions including
simple Hagen-Poiseuille tubes and simple cubic packing. We furthermore can re-
produce the experimentally measured permeability for a Fontainebleau sandstone
sample and additionally show numerical convergence.

The second project (Chapter 5) uses an interdisciplinary approach to provide a
permeability parameterization to use as input parameter in large-scale numerical
models. For this reason we sinter glass bead sample with various porosities and de-
termine permeability experimentally and numerically. We furthermore investigate
the microstructure in terms of effective porosity, effective specific surface and hy-
draulic tortuosity using image processing. By using the well-known Kozeny-Carman
relation a parameterization for permeability is proposed, representing sedimentary
rocks down to ≈ 20 km.
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Finally, the last project (Chapter 6) investigates fluid flow on the large-scale in a
subduction zone. We use the Finite Element code MVEP2 to compute the solid velo-
city within the mantle wedge by reproducing the analytical solution for a cornerflow,
whereas the fluid velocity is computed by implementing a water migration scheme.
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3.1 Pore-scale permeability prediction

This section summarizes the following published paper included in Chapter 4:

Eichheimer, P., Thielmann, M., Popov, A., Golabek, G. J., Fujita, W., Kottwitz,
M. O. and Kaus, B. J. P. (2019): Pore-scale permeability prediction for Newtonian
and non-Newtonian fluids, Solid Earth, 10, 1717–1731, doi: 10.5194/se-10-1717-
2019.

Author contributions: PE did the bulk of the work, including writing, visualiza-
tion, methodology and running simulations. MT and GJG designed the study and
contributed to manuscript writing. AP implemented stencil rescaling into LaMEM.
WF assisted in code benchmarking. MOK performed the resolution test for Fon-
tainebleau subsamples. BJPK contributed to data interpretation and manuscript
writing.

In recent years several authors used the approach of Digital Rock Physics to compute
fluid flow and permeability including Finite Difference-, Finite Element- and Lattice-
Boltzmann method (e.g. Gerke et al., 2018; Akanji and Matthai, 2010; Mostaghimi
et al., 2013; Saxena et al., 2017b). Some of these studies still show large errors
compared to experimental measurements, which can be related to the influence of
segmentation and resolution (Andrä et al., 2013; Keehm, 2003). In case of high
resolution structural images, it is still challenging to compute fluid flow even with
the use of large computational clusters. To increase efficiency and precision for these
computations, the method of stencil rescaling can be applied which has been used
in different manners (Mostaghimi et al., 2013; Manwart et al., 2002; Vasilyev et al.,
2016).

When computing fluid flow of a porous medium using Finite Differences attention
needs to be drawn on the interface between the solid and fluid phase (see Section
4.4). The stencil rescaling approach, implemented by Anton Popov, improves the
computation at these boundaries. To demonstrate the increased precision LaMEM
is benchmarked against several numerical settings for which analytical solutions are
known, showing very good agreement. For a Fontainebleau sandstone sample we re-
produce an experimentally measured permeability and furthermore show numerical
convergence (see Fig. 3.1).

In recent years, the flow of non-Newtonian fluids as of nanofluids and magma has
gained significant interest in several scientific fields (Johnston et al., 2004; Sulei-
manov et al., 2011; Mader et al., 2013; Choi, 2009). For this reason we show the
ability of LaMEM to handle complex fluid rheologies by computing fluid flow within
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Figure 3.1: Computed permeability values against grid resolution. Orange symbols denote simula-
tions using Lattice-Boltzmann method (LBM) and explicit jump stokes (EJ Stokes), both methods
are used in Andrä et al. (2013b). Blue data points represent simulations using stencil rescaling
while simulations represented by red dots use the standard method. Brown dotted line symbolizes
the experimental estimate from Keehm (2003). Similar convergence has been also observed in
Lattice-Boltzmann simulations (Khirevich et al., 2015; Khirevich and Patzek, 2018).

a Fontainebleau sandstone sample using a non-Newtonian fluid rheology. In Fig. 3.2
the applied pressure ∆P at the top boundary is plotted against the volume average
velocity vm. The computed slopes are in good agreement with the used power-law
coefficients of 0.5 and 1.

In conclusion, the method of stencil rescaling shows:

• Stencil rescaling can compute fluid flow and permeability more precisely at no
additional computational costs.

• We reproduce the experimentally and numerically determined permeability for
a Fontainebleau sandstone sample. Furthermore we show numerical conver-
gence for the first time.

• The ability of LaMEM to compute fluid flow with non-Newtonian rheology is
demonstrated for a Fontainebleau sandstone sample.

Figure 3.2: Computed results for the Fontainebleau sample using non-Newtonian rheology. a)
shows the mean velocity against the applied pressure at the top boundary. Red and blue tri-
angles symbolize each simulation and the corresponding dotted black line represents the fitted
curve through the obtained data with slope 1

n . b) illustrates computed streamlines of the Fon-
tainebleau subsample using a power law coefficient of 0.5. Solid material is displayed in grey and
the streamlines are colored according to computed velocities.
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3.2 Numerical and experimental permeability de-

termination

This section summarizes the following submitted manuscript included in Chapter 5:

Eichheimer, P., Thielmann, M., Fujita, W., Golabek, G. J., Nakamura, M., Ok-
umura, S., Nakatani, T. and Kottwitz, M. O. (2020): Combined numerical and
experimental study of microstructure and permeability in porous granular media,
Solid Earth, 11, 1079-1095, doi: 10.5194/se-11-1079-2020.

Author contributions: PE contributed in designing the study, sample preparation
and permeability measurements. Futhermore PE did visualization, writing, meth-
odology and running simulations. MT contributed in data interpretation, method-
ology, designing the study and manuscript writing. WF performed sample prepara-
tion and permeability measurements. GJG contributed in designing the study, data
interpretation and manuscript writing. MN designed the study and contributed in
data interpretation. SO contributed in sample preparation and measurement. TK
sintered the glass bead porous media. MOK performed the resolution test.

Fluid flow within sedimentary rocks is of major importance in subduction zone
modelling. Most of the large-scale numerical models assume permeability to be
constant or to change according to porosity-permeability relations estimated from
arbitrary samples (Bryant et al., 1975; Neuzil, 1994; Gamage et al., 2011). Therefore,
parameterizing permeability requires systematic datasets. Yet, very few data sets
exist investigating the microstructure and related flow parameters using systematic
data sets. Using an interdisciplinary approach, we parameterize permeability using
both numerical and experimental methods providing permeability parameterizations
only dependent on porosity, which an be used as input parameter for large-scale
numerical simulations.

In the following, various glass bead samples are sintered ranging from 2 - 22%
porosity. The permeability of the glass bead samples is measured experimentally
using the permeameter of Takeuchi et al. (2008) and numerically using LaMEM
(Kaus, 2010; Eichheimer et al., 2019). A summary of the entire workflow is shown
in Fig. 3.3.

To predict permeability accurately we determine necessary microstructural paramet-
ers using image processing. The resulting relations for specific surface and hydraulic
tortuosity, using the relations of Koponen et al. (1996) and Koponen et al. (1997)
as a function of porosity, read as follows:
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Figure 3.3: Workflow process map - red arrows mark the experimental workflow, whereas blue
arrows indicate the numerical workflow.

S(φeff) = − 3

3.8509× 10−4m
φeff , ln(φeff) (52)

τ(φeff) = −0.8712φeff + 3.021. (53)

By plugging the microstructural relations (eq. (52) and (53)) into several permeab-
ility parameterization we are able to compare the experimentally and numerically
determined values to the predictions (see Fig. 3.4). The well-known Kozeny-Carman
relation and the permeability parameterization used in Martys et al. (1994) are cap-
able to predict the numerically and experimentally determined permeabilities obtai-
nedin our study. We therefore provide modified versions of these parameterizations
reading as:

k = k0
(φeff − φc)

3

[−0.8712φeff + 3.021]2 ·
[
− 3

3.8509×10−4 m
φeff ln(φeff)

]2 , (54)



3.2. NUMERICAL AND EXPERIMENTAL PERMEABILITY
DETERMINATION 38

k =
2[1−min(φeff)− φc][
− 3

3.8509×10−4m
φeff ln(φeff)

]2 [min(φeff)− φc]4.2, (55)

with φc being the critical porosity below which not continous path through the
sample exists. This critical porosity is determined from the sintered glass bead
samples. Eqs. (54) and (55) represent permeability of sedimentary rocks, like sand-
stones, down to ≈ 20 km. Using this workflow the permeability for different grain
shapes and rock types, typically for subduction zones can be parameterized.

In conclusion, this study shows:

• Microstructural parameters (effective porosity, effective specific surface and
hydraulic tortuosity) are successfully determined using image processing.

• A modified version of the Kozeny-Carman relation is provided, which can be
used as input parameter for large-scale geodynamic simulations.

• The permeability parameterization is tested against experimentally measured
and numerically calculated permeability values, showing good agreement.
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Figure 3.4: Computed and measured permeability against minimum effective porosity. Symbols
of the same shape and color represent the same sample. Samples with grey face color represent
measured values, whereas color only symbols stand for computed subsamples. The computed per-
meabilities represent the geometric mean values of all subsamples. To verify existing permeability
parameterizations, we plotted the relations of Revil and Cathles III (1999), Garcia et al. (2009b)
and Carman (1956) and Martys et al. (1994) against the experimental and numerical permeabil-
ities. Note that estimated errors for the experimental permeability measurements (tab.5.1a) are
smaller than the displayed symbols. Some subsamples with low effective porosity did not show
a continuous pathway throughout the subsample, thus we assumed a very low permeability of
10−20 m2.
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3.3 Fluid flow in subduction zones

This section summarizes the manuscript in preparation included in Chapter 6:

Eichheimer, P., Thielmann, M. & Golabek, G. J. : Modelling of volatiles in Earth’s
mantle, in prep.

Author contributions: PE performed the benchmarks on corner flow and wa-
ter migration as well as visualization, data interpretation and writing. The water
migration scheme was implemented by MT and PE. Furthermore MT and GJG
contributed in data interpretation, manuscript writing and designing this study.

For decades, the input of volatiles, especially H2O, through subduction zones into
the deep mantle has been investigated by several studies, leading to a wide variety
of estimated values (see Fig. 3.5; von Huene and Scholl, 1991; Wallmann, 2001;
Rüpke et al., 2004; Iwamori, 2007; Johnson and Pruis, 2003; van Keken et al., 2011;
Magni et al., 2014; Korenaga et al., 2017; Abers et al., 2017; Cai et al., 2018). Water
is transported into the mantle as pore or mineralogically bound water. The pore
water is mostly released at shallow depth (< 20 km) through expulsion (Miller et al.,
2003; Hensen et al., 2004; Abers, 2005). At depth between 20− 100 km additional
water is released from both sediments and altered oceanic crust, which could lead to
’cold upwellings’ (Gerya et al., 2002). At depths larger than > 100 km, deep fluids
are released due to metamorphic dehydration reactions such as those of serpentine
and amphibole. These fluids rise upwards into the mantle wedge leading to arc
volcanism (Schmidt and Poli, 1998; Davies, 1999; Stern, 2002; Rüpke et al., 2004;
Ohtani, 2005).

To investigate fluid flow within a subduction zone the Finite-Element code MVEP2
is used to simulate fluid flow in the mantle wedge. Modelling fluid flow within a
subduction zone requires to compute the solid velocity of the mantle wedge and
fluid velocity of the percolating water. Movement of the solid mantle wedge is
successfully benchmarked against an analytical solution for corner flow taken from
Batchelor (1967). Additionally the fluid velocity of H2O is computed using a three
step water migration scheme from Quinquis and Buiter (2014): (1) the amount
of free and bound water as well as the maximum storage capacity of each marker
is determined. (2) the pressure gradients of the solid phase flow are extracted to
compute Darcy velocities. (3) the free water is advected along the pressure gradients
with the computed Darcy velocities.

The interpolation of free water between markers and mesh is done using a k-nearest
neighbour algorithm. If the amount of mineralogically bound water of the marker
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Figure 3.5: Estimated values of water influx into the mantle suggested by various authors. As ex-
plained above predictions differ since authors focused on different influx mechanisms and therefore
used various assumptions. Red lines indicate the mean estimate, whereas blue boxes represent the
minimum and maximum estimated values from each study.

exceeds the water storage capacity, the marker is oversaturated in water and dehyd-
rates. The released free water moves through the model along the corresponding
pressure gradients. If the mineralogically bound water of the marker is below the
storage capacity, the marker is undersaturated in water and no free water is released.
Instead it can incorporate free water, which was released through dehydration of
oversaturated particles.

Figure 3.6 shows a benchmark setup employing a hydrated sphere. The hydrated
sphere moves along the given pressure gradient, hydrating the surrounding dry rock
material with increasing time. In the last timestep the entire amount of free water
is incorporated by the previously undersaturated markers.
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In summary, this study shows:

• The analytical solution from Batchelor (1967) is successfully reproduced, which
describes the solid velocity in the mantle wedge.

• A three step water migration scheme is successfully implemented and tested.
The scheme conserves the total amount of water throughout the simulations.

Figure 3.6: Benchmark setup using an hydrated sphere. a) shows the initial setup. An oversat-
urated sphere is placed within an undersaturated material. b) represents the applied pressure
gradient in non-dimensional units. c) shows the model evolution over time. The free water moves
upwards and is consumed by the undersaturated rock material. In the last timestep free water
is completely incorporated into the surrounding rocks. All parameters in this model are non-
dimensional.
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4.1 Abstract

The flow of fluids through porous media such as groundwater flow or magma migra-
tion are key processes in geological sciences. Flow is controlled by the permeability
of the rock, thus an accurate determination and prediction of its value is of crucial
importance. For this reason, permeability has been measured across different scales.
As laboratory measurements exhibit a range of limitations, the numerical prediction
of permeability at conditions where laboratory experiments struggle has become an
important method to complement laboratory approaches. At high resolutions, this
prediction becomes computationally very expensive, which makes it crucial to de-
velop methods that maximize accuracy. In recent years, the flow of non-Newtonian
fluids through porous media has gained additional importance due to e.g., the use
of nanofluids for enhanced oil recovery. Numerical methods to predict fluid flow in
these cases are therefore required.

Here, we employ the open-source finite difference solver LaMEM to numerically pre-
dict the permeability of porous media at low Reynolds numbers for both Newtonian
as well as non-Newtonian fluids. We employ a stencil rescaling method to better
describe the solid-fluid interface. The accuracy of the code is verified by comparing
numerical solutions to analytical ones for a set of simplified model setups. Results
show that stencil rescaling significantly increases the accuracy at no additional com-
putational cost. Finally, we use our modeling framework to predict the permeability
of a Fontainebleau sandstone, and demonstrate numerical convergence. Results show
very good agreement with experimental estimates as well as with previous studies.
We also demonstrate the ability of the code to simulate the flow of power law fluids
through porous media. As in the Newtonian case, results show good agreement with
analytical solutions.

4.2 Introduction

Fluid flow within rocks is of interest for several Earth Science disciplines including
petrology, hydrogeology and petroleum geoscience, as fluid flow is relevant to the
understanding of magma flow, groundwater flow, and oil flow respectively (Manwart
et al., 2002). Permeability estimates can be inferred on several scales ranging from
macroscale (crust) (Fehn and Cathles, 1979; Norton and Taylor Jr, 1979) over meso-
scale (e.g. bore hole) (Brace, 1984) to pore scale (e.g. laboratory) (Brace, 1980).
Permeability at crustal scale is of great importance as crustal scale permeability is a
function of its complex microstructure, therefore an accurate prediction of permeab-
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ility on the pore scale is necessary (Mostaghimi et al., 2013). Typical limitations
for laboratory measurements on pore scale are: (i) change of the sample’s micro-
structure and therefore its physical properties through cracking and self-filtration
(Zeinijahromi et al., 2016; Dikinya et al., 2008) (ii) pressure changes due to the
influence of wall effects (Ferland et al., 1996) and finally (iii) difficulties to measure
irregular grain shapes and small grain sizes of the porous medium (Cui et al., 2009;
Gerke et al., 2015).

At this point numerical modelling can help to compute permeabilities and under-
stand the microstructures as well as flow patterns in three dimensional pore struc-
tures. To compute fluid flow directly within 3D pore structures it is necessary to
determine the morphology of the investigated sample. This can be achieved by
digital rock physics (DRP). It is a powerful tool which allows to improve the un-
derstanding of both pore scale processes and rock properties. DRP approaches use
2D or 3D microstructural images to compute fluid flows (Fredrich et al., 1993; Fer-
réol and Rothman, 1995; Keehm, 2003; Bosl et al., 1998), which are obtained using
modern techniques including x-ray computer tomography and magnetic resonance
imaging (Dvorkin et al., 2011; Arns et al., 2001; Arns, 2004). In a first step the ob-
tained microstructural images undergo several stages of segmentation (binarization,
smoothing etc.) necessary to create a three dimensional pore space. The subsequent
computation of fluid flow through the reconstructed three dimensional pore space is
tackled with either Lattice- Boltzmann (Bosl et al., 1998; Pan et al., 2004; Guo and
Zhao, 2002) , Finite Difference (Manwart et al., 2002; Shabro et al., 2014; Gerke
et al., 2018) or Finite Element methods (Garcia et al., 2009; Akanji and Matthai,
2010; M. Bird et al., 2014). The computed velocity field is then used to estimate per-
meability (Keehm, 2003; Saxena et al., 2017) and other physical properties (Saxena
and Mavko, 2016; Knackstedt et al., 2009).

In recent years, the flow of non-Newtonian fluids has gained significant interest
due to their use in a wide range of applications including geology, medicine and
other industrial processes (e.g. Johnston et al., 2004; Choi, 2009; Suleimanov et
al., 2011; Mader et al., 2013). Nanofluids contain nanometer-sized particles and
have been shown to significantly enhance the efficiency of oil recovery (Wasan and
Nikolov, 2003; Huang et al., 2013), whereas the bubbles and/or crystal content of
magmas controls their rheology and thus ultimately their eruption style (Mader
et al., 2013; Cassidy et al., 2018). If the suspended particles are much smaller
than the system to be modeled, the behaviour of these suspensions is commonly
described using an effective rheology, exhibiting non-Newtonian behaviour in most
cases. For magmas it is not quite clear which physical process is responsible for the
non-Newtonian behaviour (Deubelbeiss et al., 2011) as the non-Newtonian behaviour
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usually originates from the interaction of suspended particles with each other and
the surrounding fluid. Therefore, it is necessary to develop numerical models that
can simulate non-Newtonian flow through porous media.

In this paper we enhance the open-source finite difference solver LaMEM to model
fluid flow on pore-scale with both Newtonian as well as non-Newtonian rheologies.
We show that rescaling the staggered grid stencil to better describe velocity com-
ponents parallel to the fluid-solid interface significantly improves the accuracy. The
code is verified using analytical solutions and then used to perform the permeability
computations for a digital Fontainebleau sandstone sample (Andrä et al., 2013b).

4.3 Fluid flow in porous media

Fluid flow in porous media can be characterized with the Reynolds number which
relates inertial to viscous forces:

Re =
ρvL

η
, (56)

where ρ is fluid density, v is velocity in direction of the flow, L is the characteristic
length and η the fluid viscosity. Due to the small pore size, flows in porous media
commonly exhibit small Reynolds numbers and are thus considered to be laminar
(Bear, 1988). For geological applications, Reynolds numbers typically are around
10−9 − 10−10 for magmas (Glazner, 2014) and range from 10−8 to 10−5 for ground
water flow. This allows to simplify the incompressible Navier-Stokes equations to
the Stokes equations (ignoring gravity):

∂vi
∂xi

= 0, (57)

∂

∂xj

[
η

(
∂vi
∂xj

+
∂vj
∂xi

)]
− ∂P

∂xi
= 0, (58)

where P denotes pressure, v the velocity component and x the spatial coordinate.

If the pore structure of a porous medium is known, eq. (57) and eq. (58) can be used
to directly model laminar fluid flow within this medium. However, at larger scales
direct numerical simulation of porous flow is not feasible. In the case of Newtonian
fluids, it is common to define a permeability k which relates the flow rate Q to the
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applied pressure gradient ∆P/L as well as fluid viscosity η:

k = − ηLQ

∆PA
, (59)

where A is the cross-sectional area of the porous medium. Eq. (59) is also known as
Darcy’s law and forms the basis of an effective description of Newtonian fluid flow
in porous media (Andrä et al., 2013b; Saxena et al., 2017; Bosl et al., 1998). As
stated above, this permeability is commonly determined by experimental methods
on all scales. With the advent of numerical models for subsurface fluid flow (e.g.,
FEFLOW (Diersch, 2013)), it has become possible to predict large scale subsurface
fluid flow using micro permeabilities as input parameter. Therefore an accurate
prediction of micro permeabilies is necessary.

One possibility to do this is to relate the porosity φ of the medium to its permeability
k. Deriving the exact nature of this relationship is not trivial and has been subject
to a significant amount of research (Kozeny, 1927; Carman, 1937, 1956; Mavko and
Nur, 1997). Due to the strong dependency of the permeability not only on porosity,
but also on the 3D structure of the pore space, these approaches still suffer from
inaccuracies. Due to the development of pore-scale numerical models, it has become
possible to determine and refine the porosity-permeability relationship using direct
numerical simulation on the basis of computed tomography (CT). These simulations
typically provide solutions for fluid velocity v and pressure P for a given pressure
gradient across the sample. From the velocity field in z- direction the volume-
averaged velocity component vm is calculated (e.g. Osorno et al., 2015):

vm =
1

Vf

∫
Vf

|vz| dv, (60)

where Vf is the volume of the fluid phase. Making use of eq. (59) and Q = vm · A,
the intrinsic permeability ks of the sample can then be computed as:

ks =
ηvmL

∆P
. (61)

As described above, the flow of non-Newtonian fluids through porous media has
gained considerable attention in recent years. Here, we use a power law rheology
given by:
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η =


η1, if ε̇ < ε̇1

η0

(
ε̇
ε̇0

)n−1

η2, if ε̇ > ε̇2

(62)

where η1 and η2 are the upper and lower cutoff viscosities at the corresponding
strain-rates ε̇1 and ε̇2. η0 is the fluid viscosity at the reference strain-rate ε̇0 and
ε̇ =

√
1
2
ε̇ij ε̇ij the effective strain-rate. n is the power law exponent. With the

definition adopted here, fluids with n < 1 are called shear-thinning, while fluids
with n = 1 behave as Newtonian fluids and n > 1 are considered shear-thickening
fluids. Note that this definition of n differs from the common definition used in
geodynamical modelling (called n′ here), where n′ = n−1.

In the case of non-Newtonian fluids, the definition of a permeability is not as straight-
forward as in the Newtonian case. Several studies have attempted to describe porous
media permeability for non-Newtonian fluid rheologies. Until now a general descrip-
tion could not be found as used approaches differ. To develop a nonlinear variant
of Darcy’s law, R. Bird et al. (2006) assumed that porous media can be represented
by parallel pipes and scaled up these capillary models to general porous media. By
doing so, he suggested that the average velocity vm scales as a function of the driving
force F or the pressure gradient ∆P/L (R. Bird et al., 2006; Larson, 1981):

vm =

(
k

ηeff

∆P

L

) 1
n

= KF (F )
1
n (63)

where k is the permeability, ηeff an effective viscosity and KF a related model
parameter. If n = 1 and ηeff = η, eq. (59) is recovered. Both the fraction k/ηeff
as well as KF depend on porosity φ, stress exponent n, the reference viscosity η0

and the pore scale geometry of the medium. Consequently, a simple expression
for the permeability k has not been found yet. Attempts to generalize Darcy’s
law based on eq. (63) include effective medium theories (Sahimi and Yortsos, 1990),
pore network models (Shah and Yortsos, 1995) and pore-scale numerical simulations
(Aharonov and Rothman, 1993; Vakilha and Manzari, 2008). Irrespective of the
chosen approach and the exact form of either k/ηeff or KF , eq. (63) implies that
a logarithmic plot of vm vs. either ∆P/L or F should produce a straight line with
slope 1/n.
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4.4 Method

We solve the system of governing equations (57) and (58) on a cubic lattice using the
finite difference code LaMEM, which has originally been developed to simulate large
scale deformation of the Earth’s lithosphere and mantle (Kaus et al., 2016). Here,
we will focus on modeling the flow of a fluid with both linear and non-linear viscosity
η through a rigid porous matrix. LaMEM employs a staggered grid finite difference
scheme (Harlow and Welch, 1965) to discretize the governing equations (Fig. 4.1).
Pressures are defined in the middle of the staggered grid cell, whereas velocities are
defined on cell faces. Based on the data from CT-scans, each cell is assigned either
a fluid or a solid phase. The discretized system is then solved using an iterative
multigrid scheme to obtain values for velocities v and pressure P . To this end, we
employ multigrid solvers which are part of the PETSc library (Balay et al., 2010).
As only cells belonging to the fluid phase exhibit non-zero values for the velocity,
the velocity components belonging to solid cells are directly set to zero and only
considered as boundary conditions. This greatly reduces the degrees of freedom of
the system to be solved and hence also the computational cost. Pressures are fixed
on the top and bottom boundaries and free slip boundary conditions are employed
on the side boundaries. As described above, no slip boundary conditions apply at
the solid-fluid interface. To solve the linear system of equations a V-cycle geometric
multiplicative multigrid solver is used (Fedorenko, 1964; Wesseling, 1995). The
multigrid solver operates on up to five multigrid levels depending on the given input
model. Convergence criteria are given by a relative convergence tolerance of 10−8

and an absolute convergence tolerance of 10−10 (see appendix 4.8.1). The absolute

Figure 4.1: Staggered grid and location of variables.
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convergence tolerance atol is defined as the absolute size of the residual norm and
rtol the decrease of the residual norm relative to the norm of the right hand side.
Therefore convergence at iteration k is reached for:

‖rk‖2< max(rtol · ‖b‖2, atol), (64)

where rk = b − Cxk with b is the right-hand-side vector, x the solution vector of
the current timestep k and C the matrix representation of a linear operator (Balay
et al., 2010).

Assigning solid and fluid phases to different cells defines the location of the fluid-
solid interface. In the case of a staggered grid, the location of the interface therefore
does not correspond to the location of the interface-parallel velocity component.
To illustrate this issue, the discretization stencil of a shear stress component τxy is
shown in Fig. 4.2. When no interfaces are present (Fig. 4.2a) the finite different
discretization results in the following expression (k-index is omitted for brevity):

τxy(i,j) = η
vx(i,j) − vx(i,j−1)

∆y
+ η

vy(i,j) − vy(i−1,j)

∆x
(65)

When stencils contain rock cells (e.g. Fig. 4.2b) we can straightforwardly enforce
the no-flow conditions at their boundaries:

vx(i,j−1) = 0,

vy(i−1,j) = 0,
(66)

to obtain:
τxy(i,j) = η

vx(i,j)

∆y
+ η

vy(i,j)

∆x
. (67)

This form, however, does not enforce interface-parallel velocities to be zero at the
interface locations, which results in sub-optimal convergence. Alternatively, the
exact constraints can be enforced:

vx(i,j) + vx(i,j−1)

2
= 0,

vy(i,j) + vy(i−1,j)

2
= 0,

(68)

which will give:
τxy(i,j) = 2η

vx(i,j)

∆y
+ 2η

vy(i,j)

∆x
. (69)

The specific expression will depend on the exact subset of cells occupied by rock.
The discretization of the other components is performed in a similar manner. The
above modification of the shear stress discretization stencil is called here "stencil res-
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Figure 4.2: Staggered grid stencil rescaling. a) Stencil without interfaces and b) with solid inter-
faces. The sketch is based on a cross section of Fig. 4.1 in the x− y plane.

caling". Similar approaches have already been presented in the literature (Vasilyev
et al., 2016; Mostaghimi et al., 2013; Manwart et al., 2002). Both Manwart et al.
(2002) and Mostaghimi et al. (2013) presented tests to validate their method. The
test performed in Manwart et al. (2002) (permeability of a cubic array of spheres)
exhibits nonmonotonous convergence of the numerical solution. Mostaghimi et al.
(2013) validated their method by comparing the numerical solution to the analyt-
ical solution of flow between two parallel plates. They found that they were able
to compute the velocity "to within machine accuracy" if they used more than two
grid cells, but did not provide any information about convergence of the effective
permeability.

4.5 Comparison with analytical solutions

To verify the method presented above, we performed a series of benchmark tests
where we compared numerical solutions of simplified model setups to their respective
analytical solutions. For simplicity, we non-dimensionalized the governing equations
(57) and (58) as well as the rheology given in eq. (62) with characteristic values for
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viscosity ηc, length lc, stress τc and velocity vc:

η = ηc · η̃, (70)

xi = lc · x̃i, (71)

τ = τc · τ̃ , (72)

vi = vc · ṽi =
lcτc
ηc
· ṽi, (73)

where the characteristic value for vc can be derived from the other characteristic val-
ues. Non-dimensional values are denoted with a .̃ For the remainder of this section,
we will only use non-dimensional values and drop the ˜ for simplicity. Benchmark
tests are organized as follows: first, we will present three benchmark tests for the
flow of a Newtonian fluid through i) a single tube, ii) multiple tubes and iii) through
a simple cubic sphere pack, which is followed by a benchmark test of power law fluid
flow through a single tube. The difference between numerically and analytically
computed permeabilities is then expressed using the L2 norm of their relative misfit:

‖δk‖2 =

√(
kcomp − kana

kana

)2

, (74)

where kcomp is the computed and kana the analytically obtained permeability.

4.5.1 Newtonian flow through a single vertical tube

For a single vertical tube, the analytical solutions for both velocity v and flow rate
Q are given as (e.g. Poiseuille, 1846; Landau and Lifshitz, 1987):

v =
∆P

4ηL
(R2 − r2), (75)

Q =
π∆P

8ηL
R4, (76)

where ∆P
L

is the pressure drop in z-direction, R is the radius of the pipe and r the
integration variable. The characteristic scales in this case are given by ηc = η0,
τc = ∆P and lc = R so that the pipe radius R, fluid viscosity η and pressure
difference ∆P all take values of 1. The cubic model domain has an edge length of 4
units. Combining eq. (76) with eq. (59), the non-dimensional permeability is then
given by:
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k =
Lπ∆P

8ηL
R4

∆PA
=

π

128
. (77)

To assess the effect of different spatial resolutions, we conduct a resolution test
where we increase resolution from 83 to 2563 nodes with a constant grid spacing in
each direction. Four sets of resolution tests were conducted. In the first two sets,
permeability was computed using the standard finite difference approach without
stencil rescaling. The two sets then differ due to the exact location of the pipe. In set
1, the location of the pipe was chosen in such a way that the pipe surface aligned with
the numerical grid (standard, ON NODE) so that computational nodes were directly
located on the fluid/solid interface in in x- and y-direction. In set 2 (standard,
OFF NODE), the location of the pipe was shifted so that the fluid/solid interface
was located between the respective computational nodes. The same procedure was
applied to sets 3 and 4 where stencil rescaling was employed. The reason to do that
was to determine the effect of well-aligned computational nodes, as this is often not
the case in more complex geometries.

As expected, the numerical results generally show higher accuracy when stencil
rescaling is employed and when node locations and interfaces of the tube are aligned
(see Fig. 4.3). The order of convergence is linear for cases without rescaling or
when the tube interface does not coincide with grid nodes, but superlinear if both
rescaling is employed and interface and node location coincide.

4.5.2 Newtonian flow through multiple vertical tubes

In natural rocks larger channels tend to dominate the overall permeability. To assess
this effect, we compute the flow through several straight tubes with different radii
(Fig. 4.4). We use four pipes with non-dimensional radii given as R1 = 2, R2 = 1,
R3 = 8, R4 = 4. The viscosity of the fluid is 1 and edge length of the cubic domain is
8. The simulations are performed in a similar manner as the single tube benchmark
by increasing the number of grid points from 83 to 2563. For each tube the analytical
solution (eqs. (75) and (76)) is computed and the cumulative analytical permeability
value is compared against computed values. The non-dimensional permeability in
this case reads as:

k =
LQ(R4

1 +R4
2 +R4

3 +R4
4)

∆PA
(78)

The individual tubes contribute to the absolute permeability as follows: P1 = 0.3662
%, P2 = 0.0229 %, P3 = 93.7514 %, P4 = 5.8595 %.
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Figure 4.3: Hagen-Poiseuille benchmark results. Shown is the error norm ‖δk‖2 vs. spatial resol-
ution. The different curves show cases where the tube surface coincides with a nodal point (ON
NODE) or not (OFF NODE). Blue lines represent simulations using stencil rescaling, whereas red
lines denote simulations without stencil rescaling. To highlight convergence black lines with given
slopes were added.

As observed for the single tube setup, the results show a lower relative error for
calculations employing the stencil rescaling compared to those without. Furthermore
as shown for the setups with single tube the results are more accurate in cases
where the numerical grid aligns with the tube surface. As expected, the overall
permeability is dominated by the largest tube, as we do not see any significant
changes within the relative error of the computed permeability.

4.5.3 Newtonian flow through simple cubic (SC) sphere packs

In order to verify the code for more complex geometries as the vertical tube, we
here consider simple cubic (SC) sphere packs. Sphere packs provide a geometry for
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Figure 4.4: Multiple tube Hagen-Poiseuille benchmark. Lines and symbols correspond to the same
cases as in Fig. 4.3. To highlight convergence black lines with given slopes were added.

different packings as the porous medium is homogeneous. The setup has dimensions
of 2 in all directions.

The permeability of an SC sphere pack is given by (Sangani and Acrivos, 1982; Bear,
1988):

k =
φ3 · d2

sp

180 · (1− φ)2
, (79)

where dsp is the sphere diameter and φ is the porosity for simple cubic packing of
1− π

6
≈ 0.476, respectively.

Figure 4.5 shows the increase in accuracy with increasing number of grid points
employed. The presented relative errors of the permeability value are computed in
the same manner as shown in eq. (74). The simulations employing stencil rescaling
show a better convergence and seem to saturate against an relative error of 10−1,
demonstrating the influence of boundary effects through applied no-slip boundary
conditions (finite size effect).
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Figure 4.5: Computed ||δk||2 norm of the misfit between analytically and numerically computed
permeabilities. The inset shows the discretization using 4 spheres in each direction (64 spheres in
total). Streamlines are computed around those spheres and colorized with the computed velocity.
Blue dots show results using stencil rescaling and red dots results with the standard method. To
highlight convergence black lines with given slopes were added.

4.5.4 Power law fluid flow through a single vertical tube

In order to verify the computed value we compare this setup against an analytical
solution of Hagen-Poiseuille flow with power law fluid behaviour. For the single
tube configuration described in Section 4.5.1 and a power law rheology, the velocity
within the tube is given by (e.g. Turcotte and Schubert, 2002):

vz(r) =
C1

1
n

+ 1
·
(

∆P

L

) 1
n

·

([
R

2

] 1
n

+1

− r
1
n

+1

)
, (80)

where C1 = 2η
− 1

n
0 (see Appendix 4.8.2), R is the tube radius and r the width of

the tube in Cartesian coordinates. Figure 4.6 shows a good agreement between the
numerical and analytical velocities for non-Newtonian fluids when using 0.5 and 2

as values for the power law exponents, covering most fluids used for enhanced oil
recovery (e.g. Najafi et al., 2017; Xie et al., 2018).
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Figure 4.6: Comparison of analytical and numerical velocities for Hagen-Poiseuille flow with a
power law fluid. Analytical velocities are represented as colored lines and numerical velocities as
colored symbols.

4.6 Application to Fontainebleau sandstone

To verify the ability of the code to handle more complex flows through natural
samples and to validate previously computed permeability values we used the CT
data for a Fontainebleau sandstone sample provided by Andrä et al. (2013b) with
dimensions 2.16 mm × 2.16 mm × 2.25 mm (resolved with 288×288×300 grid
points). In order to optimize the computation and reduce computational resources
a subsample with dimensions of 2563 is used for further computations. The sample
mainly consists of monodisperse quartz sand grains and is therefore a very popular
sample for numerical and experimental permeability measurements. Furthermore
sandstone is known to be an ideal reservoir rock and is of certain interest for several
geological fields, especially in exploration geology. Laboratory measurements of the
given sample with porosity ≈ 15.2 % result in a permeability value of ≈ 1100mD

(Keehm, 2003).
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4.6.1 Newtonian flow

As in previous tests we compute the permeability of the extracted subsample using
eqs. (59) and (60). Figure 4.7a shows streamlines colored using computed fluid
velocities and Fig. 4.7b the local pressure. For a resolution of 2563, we obtain per-
meabilities which are comparable to previously computed permeabilities of the same
sample (Fig. 4.8, Andrä et al., 2013b), with the rescaled stencil method yielding
significantly lower values at higher resolutions. As previous tests show, permeabil-
ities may be overestimated at lower resolutions. To test this effect, we increased the
resolution of the Fontainebleau subsample by a factor of 2, 3 and 4 (5123,7683,10243).
The resolution increase is achieved by subdividing a voxel into 2,3 or 4 voxels. We
do not apply any interpolation or stochastic reconstructions to conserve spacial stat-
istics as discussed by Karsanina and Gerke (2018). Determining the effects of these
more sophisticated methods on computed permeabilities will require further work
in the future. Figure 4.8 shows a comparison between the computed and meas-
ured values for the given Fontainebleau dataset. With increasing resolution of the
subsample the computed permeability value converges to the laboratory value. In
comparison to the initial resolution of 2563 the computed permeability values de-
creased by ≈ 24.6 % when using a grid resolution of 10243. Additionally the benefit
of stencil rescaling can also be seen here, as e.g. the simulation with a resolution
of 5123 and stencil rescaling predicts nearly the same permeability as the case with
doubled resolution and no stencil rescaling. Clearly, the models converge to a value
that is close to the measured value. The numerical convergence is computed for sev-
eral subsamples (see Appendix 4.8.3). Figure 4.8 shows the convergence of a single
subsample. Previous studies have also observed this convergence with increasing
resolution, albeit not always from above (e.g. Zakirov and Galeev, 2019). Similar

Figure 4.7: Newtonian fluid flow through the Fontainebleau sandstone sample. Streamlines colored
using computed fluid velocities are shown in a) and streamlines colored using fluid pressures are
shown in b).
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behaviour has also been observed in LBM simulations (e.g Khirevich et al., 2015;
Khirevich and Patzek, 2018).

Figure 4.8: Computed permeability values against grid resolution. Orange symbols denote simula-
tions using Lattice-Boltzmann method (LBM) and explicit jump stokes (EJ Stokes), both methods
are used in (Andrä et al., 2013b). Blue data points represent simulations using stencil rescaling,
while simulations represented by red dots use the standard method. Brown dotted line symbolizes
the experimental estimate from Keehm (2003).

4.6.2 Power law fluid flow

To demonstrate the capability of the code to compute the flow of non-Newtonian
fluids through porous media, we computed the average flow velocity vm for a square
subsample of the Fontainebleau sandstone sample described above using the power-
law rheology given in eq. (62). The edge length of the subsample was 1.92 mm,
which corresponds to a CT resolution of 2563 voxels. To increase accuracy, we in-
creased this resolution by a factor of 2 to a resolution 5123. As seen in the Section
4.6.1, results at this resolution may overestimate the actual permeability value. The
chosen resolution thus represents a compromise between accuracy and computa-
tional cost. The reference viscosity was set to η0 = 1 Pas and η1 and η2 were set to
10−3 and 106 respectively. Two sets of simulations using a power law exponent of
0.5 and 1 were performed. In each set the applied pressure at the top boundary is
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changed from 1 - 16 Pa. In Fig. 4.9 we plot the applied pressure at the top boundary
against the computed average velocity. For both sets of simulations the computed
slopes of (19982± 9)× 10−4 and (1000009± 3)× 10−6 are in good agreement with
the imposed power law coefficients of 0.5 and 1 (eq. (63)).

Figure 4.9: Computed results for the Fontainebleau sample using non-Newtonian rheology. a)
shows the mean velocity against the applied pressure at the top boundary. Red and blue tri-
angles symbolize each simulation and the corresponding dotted black line represents the fitted
curve through the obtained data with slope 1

n . b) illustrates computed streamlines of the Fon-
tainebleau subsample using a power law coefficient of 0.5. Solid material is displayed in grey and
the streamlines are colored according to computed velocities.

4.7 Discussion and conclusion

In this paper, we presented the capability of the open-source finite difference solver
LaMEM to compute the permeability of given porous media. The code was veri-
fied using a set of benchmark problems with given analytical solutions ranging from
Hagen-Poiseuille flow through vertical tubes to more complex flow through simple
cubic sphere packs. Using CT Data of a Fontainebleau sandstone, we then demon-
strated that the code is able to predict the permeability of natural porous media. In
both benchmarks and application tests, the benefits of the stencil rescaling method
can be observed, as this method provides significantly more accurate results at no
additional computational cost.

Benchmarking results for single and multiple tubes demonstrate that the permeab-
ility calculation improves considerably in case the fluid-solid interface and the nu-
merical grid are at least partially aligned. Cases using the stencil rescaling solutions
with a velocity change on a computational node produce smaller relative errors.

Similar to studies using the Lattice-Boltzmann method (LBM) (Knackstedt and X.
Zhang, 1994; D. Zhang et al., 2000; Keehm, 2003) our resolution test for the Fon-
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tainebleau subsample shows that the computed permeability value also decreases
with increasing grid resolution. For instance, computing the permeability of Fon-
tainebleau sandstone sample with grid resolution of 10243, calculations employ-
ing stencil rescaling give approximately the same permeability value as suggested
by laboratory measurements, while simulations without employing stencil rescaling
overestimate the computed permeability by ≈ 14.72 %. (Fig. 4.8). However, this
behaviour may also be the opposite depending on the numerical implementation of
the respective numerical method (e.g. Khirevich et al., 2015; Khirevich and Patzek,
2018; Zakirov and Galeev, 2019).

The computation of permeabilities in a three dimensional pore space using micro-CT
data strongly depends on a reasonable quality of the micro-CT images followed by
several steps of segmentation in order to resolve tiny fluid pathways. Although high
quality input data is required in most cases, it is usually computationally expensive
to use the entire micro-CT scan with full resolution; thus, representative subvolumes
or a reduced numerical resolution has to be used as computational resources are
limited.

Additionally, the segmentation of the CT data has a considerable effect on the com-
puted permeability as discussed in Andrä et al. (2013a), since segmentation of the
acquired micro-CT data has a major effect on the three dimensional pore space and
therefore on the obtained value. In two phase systems (fluid/solid), segmentation is
straightforward whereas it may become more difficult in multiphase systems. All of
the above points are a source of uncertainty and need to be considered when com-
paring numerical calculations to laboratory measurements for rock samples. Fur-
thermore we showed that LaMEM is able to compute non-Newtonian fluid flow in
porous media, which is not only relevant for geosciences but also of importance for
industrial applications (Saidur et al., 2011).

Furthermore it should be kept in mind that solver options like convergence criteria
may influence the obtained permeability result. Figure 4.10 (see Appendix 4.8.1)
highlights the effect of different relative tolerances on the computed permeability
value. In order to avoid spurious results, we recommend to test the influence of the
relative and absolute tolerance on the model outcome.

The simulations were performed on the clusters of University of Bayreuth and Uni-
versity of Mainz using different amount of CPUs depending on the size of the com-
puted domain. As an example a simulation with 5123 voxels uses 1024 CPUs, 185 GB
RAM and requires 5790 s computation time. Apart from LaMEM finite difference
codes like FDMSS (Gerke et al., 2018) compute permeability of porous media more
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efficient, but these codes mostly are not able to compute fluid flow using non-linear
viscosity.

In conclusion the capability of the open-source finite difference solver LaMEM to
accurately simulate Newtonian and non-Newtonian fluid flow in porous media is suc-
cessfully demonstrated for different setups with an increasing geometric complexity
including pipe flow, ordered sphere packs and a micro-CT dataset of Fontainebleau
sandstone.

Acknowledgements

This work has been funded by DFG project International Research Training Group
2156 (IRTG) Deep Earth Volatile Cycles and by BMBF GEON project PERMEA.
M.T. has received funding from the Bayerisches Geoinstitut Visitors Program. Simu-
lations were performed on the btrzx2 cluster, University of Bayreuth and the Mogon
II cluster, Johannes Gutenberg University, Mainz. We would like to thank Kirill
Gerke and Stéphane Beaussier for their constructive reviews that helped to improve
the manuscript.

4.8 Appendix

4.8.1 Convergence criteria

To determine whether a numerical solution converges, two convergence criteria are
used, which are absolute and relative convergence tolerance. To test the effect on
the numerical solution we varied both while computing permeability of three dif-
ferent setups. Our results show that the obtained permeability value saturates for
relative convergence tolerances < 10−7. Thus for all further simulations a relative
convergence tolerance of 10−8 is used (Fig. 4.10). A change in the absolute conver-
gence tolerance did not have any effect on the computed solution, therefore we use
a absolute convergence tolerance of 10−10.

4.8.2 Definition of C1

C1 is an constant arising during the derivation of eq. (80), which is related to the
nonlinear rheology used in Turcotte and Schubert (2002). This rheology is written
as:
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Figure 4.10: Results of simulations for a) Hagen-Poiseuille single tube, b) simple cubic sphere
pack and c)+d) Fontainebleau sandstone using different relative/absolute convergence tolerances.

ε̇ = C1τ
n′ , (81)

where n′ is the stress exponent as used for power law materials in geodynamics.
Replacing τ with τ = 2ηε̇ leads to:

ε̇ = C1(2ηε̇)n
′
. (82)

Solving eq. (82) for η results in:

η =
1

2
C
− 1

n′
1 ε̇

1
n′−1. (83)

We can now define a reference viscosity η0 at a reference strain rate ε̇0. This reference
viscosity then reads as:

η0 =
1

2
C
− 1

n′
1 ε̇0

1
n′−1. (84)
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Assuming ε̇0 = 1 and solving for C1 then provides us with the following expression:

C1 = 2η−n
′

0 = 2η
− 1

n
0 . (85)

4.8.3 Permeabilities of different Fontainebleau subsamples

In order to show numerical convergence of the given Fontainebleau sample several
subsamples were extracted and the resolution increased to 5123, 7683 and 10243 grid
points. Figure 4.11 displays the convergence with increasing grid resolution. The
different subsamples show a variance of around 12 % for the computed permeability
value.

Figure 4.11: Numerical convergence of different Fontainebleau subsamples with increasing grid
resolution. All subsamples displayed were computed using stencil rescaling. For comparison the
computed permeabilities from Andrä et al. (2013b) are shown. The dotted brown line symbolizes
the experimental estimate taken from Keehm (2003).
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5.1 Abstract

Fluid flow on different scales is of interest for several Earth science disciplines like
petrophysics, hydrogeology and volcanology. To parameterize fluid flow in large-
scale numerical simulations (e.g. groundwater and volcanic systems), flow properties
on the microscale need to be considered. For this purpose experimental and numer-
ical investigations of flow through porous media over a wide range of porosities are
necessary. In the present study we sinter glass bead media with various porosities
and measure the permeability experimentally. The microstructure, namely effective
porosity and effective specific surface, is investigated using image processing. We
determine flow properties like tortuosity and permeability using numerical simula-
tions. We test different parameterizations for isotropic low porosity media on their
potential to predict permeability by comparing their estimations to computed and
experimentally measured values.

5.2 Introduction

The understanding of transport and storage of geological fluids in sediments, crust
and mantle is of major importance for several Earth science disciplines including vol-
canology, hydrology and petroleum geoscience (e.g. Manwart et al., 2002; Ramandi
et al., 2017; Honarpour, 2018). In volcanic settings melt segregation from partially
molten rocks controls the magma chemistry, and outgassing of magmas influences
both magma ascent and eruption explosivity (Collinson and Neuberg, 2012; Lamur
et al., 2017; Mueller et al., 2005). In hydrogeology fluid flow affects ground water
exploitation and protection (Domenico and Schwartz, 1998; Hölting and Coldewey,
2019), whereas in petroleum geoscience it controls oil recovery efficiency (Suleimanov
et al., 2011; Hendraningrat et al., 2013; Zhang et al., 2014).

A key parameter for fluid flow is permeability. Permeability estimations have been
performed on several scales ranging from pore scale (Brace, 1980) to macroscale
(Fehn and Cathles, 1979; Norton and Taylor Jr, 1979; Gleeson and Ingebritsen,
2016). As the permeability on the macroscale is a function of its microstructure
it is necessary to accurately predict permeability based on microscale properties
(Mostaghimi et al., 2013). To achieve this goal, various experimental and numerical
approaches have been developed over the years (e.g. Keehm, 2003; Andrä et al.,
2013b; Gerke et al., 2018; Saxena et al., 2017).

Assuming laminar flow (Bear, 1988; Matyka et al., 2008), flow through porous media
can be described using Darcy’s law (Darcy, 1856), which relates the fluid flux Q to
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an applied pressure difference ∆P

Q = −kA∆P

ηL
, (86)

where k is the permeability, A is the cross sectional area, η is the fluid viscosity and
L is the length of the domain.

Accurately determining and predicting permeability is thus of crucial importance to
quantify fluid fluxes in porous media. Until today it remains challenging to relate
permeability to the microstructure of porous media. This has resulted in numerous
parameterizations developed for different materials and structures (Kozeny, 1927;
Carman, 1937, 1956; Martys et al., 1994; Revil and Cathles III, 1999; Garcia et al.,
2009).

A first simple capillary model to predict the permeability of a porous medium was
proposed by Kozeny (1927)

k = k0
φ3

S2
, (87)

where k0 is the dimensionless Kozeny constant depending on the channel geometry
(e.g. k0 = 0.5 for cylindrical capillaries), φ is the porosity and S is the specific
surface area (ratio of exposed surface area to bulk volume). Later this relation was
extended by Carman (1937, 1956), to predict fluid flow through a granular bed with
a given microstructure. To account for the effect of the microstructure on fluid flow,
Carman (1937, 1956) introduced the term tortuosity, which he defined as the ratio
of effective flow path Le to a straight path L.

τ =
Le
L

(88)

Introducing this relation into eq. (87) leads to the well-known Kozeny-Carman
equation:

k = k0
φ3

τ 2S2
, (89)

Using experimental data, Carman (1956) determined that tortuosity τ is ≈
√

2.
Today, the Kozeny-Carman equation - or variants thereof - is widely used in vol-
canology (Klug and Cashman, 1996; Mueller et al., 2005; Miller et al., 2014), hy-
drogeology (Wang et al., 2017; Taheri et al., 2017), two-/multi-phase flow studies
(Wu et al., 2012; Keller and Katz, 2016; Keller and Suckale, 2019) and soil sciences
(Chapuis and Aubertin, 2003; Ren et al., 2016). The Kozeny-Carman equation
was derived assuming that the medium consists only of continuous curved channels
with constant cross-section (Carman, 1937; Bear, 1988). However, in porous media
pathways most likely do not obey these assumptions. Applying this equation to
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porous media therefore remains challenging and in some cases fails for low porosit-
ies (Bernabe et al., 1982; Bourbie et al., 1992) or mixtures of different shapes and
material sizes (Carman, 1937; Wyllie and Gregory, 1955). Consequently, alternative
permeability parameterizations have been developed by different authors (Martys
et al., 1994; Revil and Cathles III, 1999; Garcia et al., 2009).

Using numerical modeling, Martys et al. (1994) derived a universal scaling law for
various overlapping and non-overlapping sphere packings which reads as:

k =
2(1− φ− φc)

S2
(φ− φc)f , (90)

with f = 4.2 and φc being the critical porosity, below which no connected pore
space exists. They showed that eq. (90) is valid for a variety of porous media
including mono-sized sphere packings, glass bead samples and experimentally meas-
ured sandstones. Despite the predictive power of this parameterization it might not
give reasonable estimations for permeability in case the porous medium consists of
rough surfaces and large isolated regions (voids).

The study of Revil and Cathles III (1999) used electrical parameters to derive the
permeability of different types of shaly sands, i.e., the permeability of a clay-free
sand and the permeability of a pure shale. By using electrical parameters which
separate pore throat from total porosity and effective from total hydraulic radius,
Revil and Cathles III (1999) were able to improve the Kozeny-Carman relation,
being only dependent on grain size. In a first step the authors developed a model
for the permeability of a clay-free sand as a function of the grain diameter, the
porosity, and the electrical cementation exponent reading as:

Λ =
R2

2m2F 3
, (91)

with Λ being the effective electrical pore radius, R being the grain radius, m being
the cementation exponent and F being the formation factor. Using the relation of
the formation factor to porosity by Archie’s law F = φ−m (Waxman and Smits,
1968), m = 1.8 (Waxman and Smits, 1968) and d = 2R for the grain diameter the
authors derived a permeability parameterization for natural sandstones:

k =
d2φ5.1

24
, (92)

which is in good agreement with experimentally measured data by Berg (1975).

Based on numerical simulations of fluid flow in polydisperse grain packings with
irregular shapes, Garcia et al. (2009) proposed an alternative parameterization by
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fitting the numerical results with the following equation:

k = φ0.11D2, (93)

where D2 is the squared harmonic mean diameter of the grains. They also showed
that this parameterization also fits experimental results quite well and concluded
that grain shape and size polydispersity have a small but noticeable effect on per-
meability.

As can been seen from eq. (89),(90),(92),(93) the different parameterizations focus
on specific types of porous media and relate different microstructural properties to
permeability. While properties such as porosity and mean grain diameter are rel-
atively straightforward to determine, others, such as specific surface and tortuosity,
are much harder to access. This is why several parameterizations have been de-
veloped to quantify these properties (Comiti and Renaud, 1989; Pech, 1984; Mota
et al., 2001; Pape et al., 2005). These studies either use experimental, analytical
or numerical approaches for mostly two dimensional porous media with porosities
> 30%.

Since the ascent of Digital Rock Physics (DRP), it has become viable to study
microstructures of porous media in more detail using micro Computed Tomography
(micro-CT) and Nuclear Magnetic Resonance (NMR) images (Arns et al., 2001;
Arns, 2004; Dvorkin et al., 2011). Together with numerical models, these images
can then be used to compute fluid flow within porous media to determine their
permeability. For this purpose several numerical methods including Finite Elements
(FEM), Finite Differences (FDM) and Lattice Boltzmann method (LBM) (Saxena
et al., 2017; Andrä et al., 2013b; Gerke et al., 2018; Shabro et al., 2014; Manwart
et al., 2002; M. Bird et al., 2014) have been used.

Yet, very few data sets exist that systematically investigate microstucture (poros-
ity and specific surface) and related flow parameters (tortuosity and permeability),
in particular at porosities < 30%. Most of the previous studies either measure
permeability experimentally without investigating its microstructure or compute
permeability and related microstructural parameters, that cannot be compared to
experimental data sets. To remedy this issue, we here sinter porous glass bead
samples with porosities ranging from 1.5%− 21% and investigate their microstruc-
ture using image processing. This porosity range is representative of sedimentary
rocks up to a depth of ≈20 km (Bekins and Dreiss, 1992). Permeability is then
measured experimentally using a permeameter (see section 5.3.2; Takeuchi et al.
(2008) and Okumura et al. (2009)) and numerically using the finite difference code
LaMEM (see section 5.3.7; Kaus et al. (2016) and Eichheimer et al. (2019)). The the-
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oretical permeability predictions described above in eqs. (89),(90),(92),(93) require
microstructural input parameters such as porosity, specific surface and tortuosity.
Within this study these parameters are determined and related to porosity. We
therefore provide permeability parameterizations depending on porosity only and
verify against numerically and experimentally determined values.

5.3 Methods

Here we first describe the experimental workflow including sample sintering and
permeability measurement, followed by the numerical workflow featuring image pro-
cessing, computation of fluid velocities and determination of both tortuosity and
permeability. Figure 5.1 shows an overview of the entire workflow which will be
explained in detail in the following section.

Figure 5.1: Workflow process map - red arrows mark the experimental workflow, whereas blue
arrows indicate the numerical workflow.
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5.3.1 Sample sintering

Glass bead cylinders with different porosities were sintered under experimental con-
ditions as summarized in Table 5.1. For this purpose soda-lime glass beads with
diameters ranging from 0.9 to 1.4 mm were utilized as starting material (see grain
size distribution in appendix 5.6.4). For each sample, we prepared a graphite cyl-
inder with 8.0 mm inner diameter and ≈10 mm height. Additional samples with
diameters of 10 and 14 mm were prepared to check for size effects (see table 5.1a).
At the bottom of the graphite cylinder a graphite disc (11.5 mm diameter and 3.0

mm thick) was attached using a cyanoacrylate adhesive (see Fig. 5.2 inset). The
glass beads were poured into the graphite cylinder and compressed with steel rods
(8-14 mm diameter) before heating.

The glass bead samples were then sintered in a muffle furnace at 710 ◦C under
atmospheric pressure. The temperature of 710 ◦C was found to be suitable for
sintering of the glass beads as it is slightly below the softening temperature of soda-
lime glass around 720− 730 ◦C (Napolitano and Hawkins, 1964) and well above the
glass transition temperature of soda-lime glass at ≈550 ◦C (Wadsworth et al., 2014).
At 710 ◦C the viscosity of the employed soda-lime glass is on the order of 107 Pa s

(Kuczynski, 1949; Napolitano and Hawkins, 1964; Wadsworth et al., 2014) allowing
for viscous flow of the glass beads at their contact surface driven by surface tension.
Using different time spans ranging from 60− 600 minutes the viscous flow at 710 ◦C

controls the resulting porosity of the sample.

After sintering, the sample was cooled down to 550 − 600 ◦C within ≈5 minutes.
Afterwards the sample was taken out of the furnace to adjust to room temperature
and prevent thermal cracking of the sample. In a next step the graphite container
was removed from the sample. It should be noted that during the process of sintering
gravity slightly affects the porosity distribution within the glass bead sample (see
Fig. 5.2). However, the subsamples used to compute the numerical permeability
do not cover the whole height of the sample, thus the effect of compaction on the
results is limited.

5.3.2 Experimental permeability measurement

In a first preparation step we wrap a highly viscous commercial water resistant resin
around the sample to avoid pore space infiltration. In a next step we embed the
sample within a less viscous resin (Technovit 4071, Heraeus Kulzer GmbH & Co. or
Presin, Nichika Inc.) to create an airproof casing. The upper and lower surface of the
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Figure 5.2: Computed porosity of each CT-slice from top to the bottom of a full sample (z-axis;
sample Ex14). The diagram shows that gravity affects the porosity of the sample. Porosity minima
correspond to distinct layers of glass bead within the sample. The inset a) provides a sketch of the
sample structure. In the inset the red color outlines the cylindrical shape, blue the surface area A of
the cylinder and L the height of the sample. b) shows chosen locations for the squared subsamples
1-4. Additional four subsamples (5-8) are placed similarly below subsamples 1-4 overlapping in
z-direction.

sample were grinded and polished to prevent leaks during experimental permeability
measurements (Fig. 5.1; Sample preparation).

The experimental permeability measurements were conducted at Tohoku University
using a permeameter, described in Takeuchi et al. (2008) and Okumura et al. (2009).
To determine the permeability the air flow through a sample is measured at room
temperature. The pressure gradient between sample inlet and outlet is controlled
by a pressure regulator (RP1000-8-04, CKD Co.; Precision ±0.1 %) at the inlet
side. To monitor the pressure difference a digital manometer (testo526-s, Testo
Inc.; Precision ±0.05 %) is used. Air flow through the sample is measured using a
digital flow meter (Alicat, M-10SCCM; Precision ±0.6%). As Darcy’s law assumes
a linear relationship between the pressure and flow rate, we measure the gas flow
rate at several pressure gradients (see Fig. 5.8 in Appendix 5.6.3) to verify our
assumption of laminar flow conditions. The permeability of all samples is calculated
using Darcy’s law (eq. (86)) based on measured values (table 5.1a).
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a) Experimental parameters b) Numerical parameters
Sample Area Height Capsule ∅ Time Tot. weight Permeability Porosity Porosity Porosity

A L D tsint m Kmeas φtot φeff min(φeff)
(cm2) (mm) (mm) (min) (g) (m2) (%) (%) (%)

X02 0.438 5.11 8 120 0.574 (3.1± 0.2)× 10−11 20.94 20.94 11.38
X11 0.434 3.63 8 180 0.575 (1.91± 0.09)× 10−14 6.72 4.75 1.80
X14 0.407 5.12 8 60 0.576 (3.4± 0.2)× 10−12 13.28 13.22 4.26
X15 0.412 4.76 8 480 0.575 (5.7± 0.3)× 10−15 2.54 1.21 0.96
X16 0.808 5.05 10 120 0.899 (3.1± 0.2)× 10−14 6.07 4.50 2.66
X17 1.569 5.18 14 120 1.762 (1.41± 0.07)× 10−12 12.90 12.85 10.77
X29 0.441 4.55 8 300 0.576 (6.3± 0.3)× 10−13 9.01 8.97 5.95
X30 0.420 4.81 8 600 0.574 (1.52± 0.08)× 10−12 7.12 7.03 4.18
X31 0.423 4.73 8 300 0.576 (2.1± 0.1)× 10−12 9.92 9.87 6.12
X32 0.342 4.47 8 480 0.576 (3.7± 0.2)× 10−12 13.52 13.44 8.93
X33 0.412 4.80 8 180 0.575 (1.53± 0.08)× 10−11 15.97 15.96 11.33
X35 0.411 4.78 8 360 0.575 (2.2± 0.1)× 10−11 14.17 14.15 8.92
X36 0.372 4.15 8 420 0.575 (6.9± 0.4)× 10−12 10.71 10.67 6.78

Table 5.1: a) displays experimental parameters of sintering conditions and parameters used to
compute permeability using Darcy’s law. A denotes the sample surface area, L the height of the
glass bead cylinders and D the inner diameter of each capsule. Additionally, the sintering time
tsint, the total weight of the glass beads m, and the experimentally measured permeability Kmeas

are given. In b), we list the total, effective and minimum effective porosity φtot, φeff , min(φeff) of
each sample. These porosities have been obtained with image processing (see section 5.3.4).

5.3.3 Micro-CT images and segmentation

Before preparing the samples for permeability measurements all samples are digit-
ized using micro Computed Tomographic scans (micro-CT) performed at Tohoku
University (ScanXmate-D180RSS270) with a resolution ≈ 6 − 10µm according to
the method of Okumura and Sasaki (2014). Andrä et al. (2013a) showed that the
process of segmentation of the micro-CT images may have a significant effect on the
three dimensional pore space and therefore the computed flow field. In two-phase
systems (fluid + mineral), as in this study, the segmentation is straightforward due
to the high contrast in absorption coefficients between glass beads and air, while it
can become quite complex for multiphase systems featuring several mineral phases.
In the present study the segmentation of the obtained micro-CT images was done
using build-in MatLab functions. In a first step the images are binarized using
Otsu’s method (Otsu, 1979). Additional smoothing steps of the images are per-
formed. In a next step the two dimensional micro-CT slices are stacked on top of
each other, resulting in a three dimensional representation of the pore space (Fig.
5.1; 3D structure).
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5.3.4 Porosity determination

Porosity is an important parameter describing microstructures. It is defined as the
ratio of the total pore space VV to the bulk volume of the sample Vb (R. Bird et al.,
2006):

φtot =
VV
Vb

(94)

In a first step, the total porosity of each sample is determined by counting the amount
of solid and fluid voxels. In a second step, we determine the isolated pore space
using a flooding algorithm implemented in MatLab (bwconncomp). This isolated
pore space is then subtracted from the total pore space to obtain an effective pore
space Veff . As a bonus, this procedure reduces the computational cost for numerical
permeability determinations by removing the parts of the pore space that do not
contribute to fluid flow and thus permeability. The effective porosity φeff is then
defined as the volume of all percolating pore space clusters VVeff

to the bulk volume
of the sample:

φeff =
VVeff

Vb
(95)

It should be mentioned that in a simple capillary model φeff = φ since no isolated
pore space exists. It should also be noted that only the effective porosity is used to
determine microstructural and flow properties later in this study.

As described in section 5.3.2, the porosity of the samples is not homogeneous, but
increases towards the sample bottom due to gravity. As permeability may not neces-
sarily be affected by the total porosity, but rather by the minimum effective porosity
in a sample (in a slice perpendicular to the flow direction), we also determined the
minimum effective porosity of each sample (see table 5.1b).

5.3.5 Effective specific surface

The specific surface is defined as the total interfacial surface area of pores As per
unit bulk volume Vb of the porous medium (Bear, 1988):

S =
As
Vb

(96)

As in the previous section we compute the effective specific surface of all percolating
pore space clusters and neglect isolated pore space. To determine the effective
specific surface we use the extracted connected clusters and compute an isosurface
of the entire three dimensional binary matrix. In a next step the area of the resulting
isosurface As is calculated.
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5.3.6 Numerical method

The relationship between inertial and viscous forces in fluid flows is described by
the Reynolds number:

Re =
ρvL

η
, (97)

where ρ is the density, v the velocity component, L denotes the length of the domain
and η is the viscosity of the fluid. For laminar flow conditions (Re < 1, see Fig.
5.8 Appendix 5.6.3) and ignoring gravity, the flow in porous media can be described
with the incompressible Stokes equations:

∂vi
∂xi

= 0 (98)

∂

∂xj

[
η

(
∂vi
∂xj

+
∂vj
∂xi

)]
− ∂P

∂xi
= 0 (99)

with P being the pressure and x the spatial coordinate. For all simulations, we
employed a fluid viscosity of 1 Pas.

The Stokes equations are solved using the finite difference code LaMEM (Kaus et al.,
2016; Eichheimer et al., 2019). LaMEM employs a staggered grid Finite Difference
scheme (Harlow and Welch, 1965), where pressures P are defined at the cell centers
and velocities v at cell faces. Based on the data from the CT-scans, each cell is
assigned either a fluid or a solid phase. The discretized system of equations is then
solved using multigrid solvers of the PETSc library (Balay et al., 2019). As only cells
within the fluid phase contribute to fluid flow the discretized governing equations are
only solved for these cells. This greatly decreases the number of degrees of freedom
and therefore significantly reduces the computational cost. Due to computational
limitations and the densification at the bottom of the samples (see Fig. 5.2) we
extract 8 overlapping subvolumes per full sample (see Fig. 5.2b), with sizes of 5123

cells. For each subvolume we compute effective porosity, effective specific surface,
hydraulic tortuosity and permeability.

5.3.7 Numerical permeability computation

From the calculated velocity field in z-direction the volume-averaged velocity com-
ponent vm is calculated (e.g. Osorno et al., 2015):

vm =
1

Vf

∫
Vf

|vz| dv, (100)
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where Vf is the volume of the fluid phase. Using Darcy’s law (eq. (86); Andrä
et al., 2013b; Bosl et al., 1998; Morais et al., 2009; Saxena et al., 2017) an intrinsic
permeability ks is computed via:

ks =
ηvm
∆P

(101)

5.3.8 Hydraulic tortuosity

Tortuosity is not only highly relevant for the Kozeny-Carman relation, but is also
used in various engineering and science applications (Nemati et al., 2020). It has
a major influence on liquid-phase mass transport (e.g. in Li-ion batteries (Thorat
et al., 2009) and membranes (Manickam et al., 2014)), the effectiveness of tertiary
oil recovery (Azar et al., 2008) and evaporation of water in soils (Hernández-López
et al., 2014). In recent years, several definitions for tortuosity have been suggested
(Clennell, 1997; Bear, 1988; Ghanbarian et al., 2013). For the remainder of this
study we will calculate and apply the so-called hydraulic tortuosity (Ghanbarian et
al., 2013). Assuming that hydraulic tortuosity changes with porosity, both numer-
ical and experimental studies published different relations of hydraulic tortuosity to
porosity. In most of the cases the hydraulic tortuosity is assumed to be constant as
it is difficult to determine experimentally, which is rarely done. It should be men-
tioned that the following hydraulic tortuosity-porosity relations have been obtained
for porous media with > 30% porosity.

Matyka et al. (2008) numerically determined the hydraulic tortuosity by using an
arithmetic mean given as:

τh =
1

N

N∑
i=1

τ(ri), (102)

where τ = Le/L is the hydraulic tortuosity of a flow line crossing through point ri
(eq. (88)) and N the total number of streamlines.

Koponen et al. (1996) computed the hydraulic tortuosity numerically using:

τh =

∑
i τ

n(ri)v(ri)∑
i v(ri)

, (103)

where v(ri) = |v(ri)| is the fluid velocity at point ri and points ri are chosen randomly
from the pore space (Koponen et al., 1996).
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One of the most common relations for hydraulic tortuosity is a logarithmic function
of porosity reading as follows:

τh(φ) = 1−Bln(φ), (104)

where B is a constant found experimentally for different particles (e.g. 1.6 for wood
chips (Pech, 1984; Comiti and Renaud, 1989), 0.86 to 3.2 for plates (Comiti and
Renaud, 1989)). By numerically computing hydraulic tortuosity for two dimensional
squares, Matyka et al. (2008) obtained B = 0.77. A different experimental relation
for hydraulic tortuosity measuring the electric conductivity of spherical particles was
proposed by Mota et al. (2001):

τh(φ) = φ−0.4 (105)

Investigating numerically two-dimensional porous media with rectangular shaped
particles Koponen et al. (1996) proposed a different relation:

τh(φ) = 1 + 0.8(1− φ) (106)

In the present study the hydraulic tortuosity is determined according to eq. (102),
which requires to compute the tortuosity τ of individual streamlines within each
sample. Streamlines describe a curve traced out in time by a fluid particle with
fixed mass and are described mathematically as:

∂xi
∂t

= v(x, t), (107)

with v being the computed velocity field obtained from the numerical simulation
and t being the time. Integrating eq. (107) yields

xi = xi(x
0, t), (108)

where x0 is the position of the prescribed particle at t = 0. Eq. (107) is solved
using built-in MatLab ODE (Ordinary Differential Equation) solvers. To compute
the streamline length all fluid cells at the inlet of the subsample are extracted and
used as streamline starting points. Using the computed velocity field and eq. (107)
the streamline length for each starting point is calculated. Hence, up to 40000
streamlines need to be computed for a subsample with ≈20% porosity, whereas for
a subsample with ≈5% porosity up to 5000 streamlines are computed.
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5.4 Results

In this section we analyze the different samples in terms of porosity, specific surface,
hydraulic tortuosity and permeability. All data for each subsample presented here
are given in the supplementary tables (see table 1 - 13). Effective porosity and
effective specific surface are computed for both subsamples and full samples, whereas
hydraulic tortuosities and permeabilities are only computed for subsamples due to
computational limitations. In the present study we analysed 13 samples and 104
subsamples.

5.4.1 Porosity

The total porosity for each sample and subsample is analysed using image processing
and ranges from 2.5−21% (see table 5.1b and supplement table 1-13). The effective
porosity is determined by extracting all connected clusters within the samples and
ranges from 1.21− 21% (see also table 5.1b). The analysis of the micro CT images
also showed that during sintering densification of the samples occurs (see Fig. 5.2).
For this reason we furthermore report the minimum effective porosity min(φeff).
Assuming an effective porosity for the entire sample therefore does not seem to be
representative as during the laboratory measurements a first order control mechan-
ism of the fluid flow and therefore permeability is the lowest porosity within the
entire sample.

5.4.2 Effective specific surface

Figure 5.3 shows the computed specific surfaces for all subsamples and all full
samples with increasing effective porosity. Koponen et al. (1997) used the following
relationship to predict the specific surface:

S = − n

R0

φeff ln(φeff), (109)

where n is the dimensionality and R0 is the hydraulic radius of the particles. The
hydraulic radius is defined as 2Vp/M (e.g. Bernabé et al., 2010), with Vp being the
pore volume and M being the pore surface area. For a regular simple cubic sphere
packing with φ = 0.476 the estimated hydraulic radius is ≈ 151µm. To relate the
computed values for the effective specific surface to the effective porosity the above
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equation is fitted, resulting in a hydraulic radius of 385.09µm:

S = − 3

3.8509× 10−4m
φeff ln(φeff) (110)

The fit between eq. (109) and our data shows good agreement which is also reflected
in a value of R2=0.975 (see Fig. 5.3).

Figure 5.3: Effective specific surface as a function of effective porosity. Blue triangles represent
subsample data from this study and red squares the effective specific surface of full samples. Full
sample data points are plotted in order to show that in terms of effective specific surface subsamples
represent full samples very well. The black curve represents the fitted curve according to eq. (110).

5.4.3 Hydraulic tortuosity

We computed hydraulic tortuosities for all subsamples which exhibit a percolating
pore space. Results are shown in Fig. 5.4, where we compare different hydraulic
tortuosity-porosity parameterizations presented in section 5.3.8 to our data. In
Fig. 5.4a)-c), we compare our data (denoted by grey squares) with one of the
three porosity-hydraulic tortuosity parameterizations (denoted by solid and dashed
lines), whereas in Fig. 5.4d), we show a simple linear fit to our data. In general,
computed hydraulic tortuosities are quite scattered and show variations ranging
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from values of about 2 to values of around 4. In Fig. 5.4a) we compare our data
to the hydraulic tortuosity parameterization from Matyka et al. (2008) (see eq.
(104)), which is denoted by a dashed black line. We refitted this parameterization
using our data, with the result shown by the red solid line with corresponding
95% confidence bounds with the coefficient of determination R2 = −1.6317. In
Fig. 5.4b) and c), similar comparisons are shown, but for the parameterizations
by Koponen et al. (1996) (Fig. 5.4b) and Mota et al. (2001) (Fig. 5.4c). In both
cases, we show the original parameterizations as a black dashed line and the fitted
parameterizations as a colored solid line with colored dashed lines indicating the
95% confidence bounds. As for the parameterization by Matyka et al. (2008), these
two parameterizations do not fit our data very well, as is also indicated by their low
R2 values (R2 = −5.6017 and R2 = 0.0758 respectively). Finally, in Fig. 5.4c), we
show a linear fit to our data together with the 95% confidence bounds. As indicated
by the low R2 value of 0.0274, this fit does also not represent the data very well.
For this reason we use the arithmetic mean of the computed hydraulic tortuosities
for later permeability predictions. Nevertheless, we do observe that despite the
large scatter, hydraulic tortuosity largely remains relatively constant with decreasing
porosity, thus indicating that the pore distribution of our experimental products
is homogeneous and the geometrical similarity of pore structure was kept during
sintering. This is in contrast to the parameterizations of Matyka et al. (2008) and
Mota et al. (2001), both predicting a significant increase in tortuosity as small
porosities are approached, but agrees with the model of Koponen et al. (1996).

5.4.4 Permeability

In Fig. 5.5, measured permeabilities for all samples are shown as grey symbols (see
also table 5.1a for measured values). We here chose to plot sample permeabilities
vs. the minimum of the effective porosity, the reason being the intrinsic porosity
variations in each sample (see section 5.3.4). Figure 5.6 in the appendix shows both
the effective porosity and minimum effective porosity of each sample.

Measured permeabilites range from values of around 10-14 m2 to about 10-11 m2,
depending on porosity. Although experimental measurements are scattered, a clear
trend can be observed. At porosities close to the critical porosity, permeabilities are
very low, but rapidly increase when porosities increase slightly. At larger porosities,
permeabilities further increase, but this increase is significantly less rapid.

Numerically 98 subsamples have been computed successfully with permeabilities
ranging from around 10-14 m2 to about 10-10 m2, depending on porosity (see table
1-13 in the supplement and Fig. 5.7 in the appendix). In comparison to the ex-
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Figure 5.4: (a)-(c) show the proposed relations for the hydraulic tortuosity according to (a)
Matyka et al. (2008), (b) Koponen et al. (1996) and (c) Mota et al. (2001) as black dashed lines.
The colored solid lines represent the fit of the computed data to those relations within the 95%
confidence bounds. Hydraulic tortuosities for all subsamples (grey squares) are computed according
to the method used in each of these studies. (d) shows the fit obtained in the present study. The
colored area in (d) illustrates the extending distribution of computed hydraulic tortuosities with
decreasing effective porosity.

perimentally measured samples, the numerical permeabilities tend towards higher
values, but show a clear trend.

As we split each sample in eight subsamples for numerical permeability computa-
tions, we need to average them to compute an effective sample permeability that
can then be compared to measured values. This upscaling issue is not trivial to
address and it is not clear yet which averaging method is appropriate. It is pos-
sible to put bounds on the effective permeability by using either the arithmetic or
harmonic mean of subsample permeabilities. However, these bounds correspond to
very specific geometrical sample structures. In the case of the arithmetic mean, the
medium is assumed to consist of parallel layers oriented parallel to the flow direction
whereas the harmonic mean is valid in the case of parallel layers orthogonal to the
flow direction. This is most often not the case. Therefore, different averaging meth-
ods have been developed to obtain adequate upscaling procedures for heterogeneous
porous media (e.g. Sahimi, 2006; Jang et al., 2011; Torquato, 2013). One of the
simplest averaging schemes that has been shown to be an appropriate approxima-
tion for heterogeneous porous media is the geometric mean (e.g. Warren and Price,
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1961; P. Selvadurai and A. Selvadurai, 2014; Jang et al., 2011), which reads as:

kg =

(
n∏
i=1

ki

)1/n

(111)

where i is the number of the subsample and n the total number of subsamples (eight
in this study). As several subsamples at low porosities did not exhibit a connected
pore space (thus not allowing for any fluid flow), we assumed a permeability of 10-20

m2 for these samples. The geometric averages of each subsample set are shown in
Fig. 5.5.

To determine the predictive power of the different permeability parameterizations
described in the introduction, we inserted the expressions for effective specific surface
and hydraulic tortuosity into the respective equations (eq. (89) & (90)).

The Kozeny-Carman equation then reads as:

k = k0
[min(φeff)− φc]

3

2.97152 ·
[
− 3

3.8509×10−4m
φeff ln(φeff)

]2 , (112)

with k0 = 0.5 being the geometrical parameter for spherical particles (Kozeny, 1927)
and φc = 0.01 as the critical porosity threshold. This threshold is lower than the
published value of φc = 0.03 (Van der Marck, 1996; Rintoul, 2000; Wadsworth et al.,
2016). However, one of the subsamples used in this study had a porosity of 0.01
while still exhibiting a percolating cluster. For this reason, we here employed a
critical porosity of φc = 0.01.

With our parameterization for S, the permeability parameterization of Martys et al.
(1994) reads as follows:

k =
2[1−min(φeff)− φc][
− 3

3.8509×10−4m
φeff ln(φeff)

]2 [min(φeff)− φc]4.2, (113)

From the grain size distribution of the glass beads used in this study (see Appendix
5.6.4), we also determined the average grain diameter d and the harmonic mean dia-
meter D, both within uncertainties equal to 1.20 mm. Inserting into the respective
parameterizations of Revil and Cathles III (1999) and Garcia et al. (2009) (see eq.
(92) and (93)) results in:

k =
[1.20× 10−3m]2min(φeff)5.1

24
, (114)

k = min(φeff)0.11[1.20× 10−3m]2 (115)
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The permeability parameterizations in general show similar trends but differ in the
predicted permeability value. The Kozeny-Carman relation shows good agreement
with the experimentally measured samples, but also shows some offset towards the
numerically computed values. A similarly good fit is obtained by the permeability
parameterization of Martys et al. (1994). The parameterizations by Garcia et al.
(2009) and Revil and Cathles III (1999) tend to underestimate permeability, which
might be related to their assumptions on the samples heterogeneity.

Figure 5.5: Computed and measured permeability against minimum effective porosity. Symbols
of the same shape and color represent the same sample. Samples with grey face color represent
measured values, whereas color only symbols stand for computed subsamples. The computed per-
meabilities represent the geometric mean values of all subsamples. To verify existing permeability
parameterizations, we plotted the relations of Revil and Cathles III (1999), Garcia et al. (2009)
and Carman (1956) and Martys et al. (1994) against the experimental and numerical permeabil-
ities. Note that estimated errors for the experimental permeability measurements (table 5.1a) are
smaller than the displayed symbols. Some subsamples with low effective porosity did not show
a continuous pathway throughout the subsample, thus we assumed a very low permeability of
10−20 m2.

5.5 Discussion and conclusion

In this paper, we determine the permeability of nearly isotropic porous media con-
sisting of sintered glass beads using a combined experimental-numerical approach.
We analyzed sample microstructures using CT data and determined flow properties
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both experimentally and numerically. Using this data, we test different permeab-
ility parameterizations that have been proposed in the literature. The goal of this
study was to particularly improve permeability parameterizations at low porosities
(<20%).

Two particular microstructural parameters that we determined were the specific sur-
face S and the hydraulic tortuosity τh. As these two parameters are frequently used
in permeability parameterizations, we tested whether existing parameterizations are
also valid in our case. We find that the effective specific surface is well predicted
by the parameterization eq. (109) proposed by Koponen et al. (1996), not only for
the chosen subsamples but also for the full samples. The fitted hydraulic radius of
0.385 mm is reasonable as the initial grain size of the glass beads is around 1 mm

and the hydraulic pore radius of the glass beads is reduced during sample sintering.

Only few studies have investigated hydraulic tortuosity for three dimensional porous
media (Du Plessis and Masliyah, 1991; Ahmadi et al., 2011; Backeberg et al., 2017).
As the hydraulic tortuosity is challenging to determine in experiments, experimental
studies have often used this parameter as a fitting variable. Our data shows that -
contrary to previous suggestions - the hydraulic tortuosity does not change signific-
antly with decreasing effective porosity (Matyka et al., 2008; Koponen et al., 1996;
Mota et al., 2001), at least at the low porosities investigated in this study. This
observation agrees with the study by Koponen et al. (1996), but is at odds with
the studies by Matyka et al. (2008) and Mota et al. (2001). The study by Koponen
et al. (1996) was based on 2D numerical simulations and found hydraulic tortuosity
values close to 2 whereas our data lies around a value of 3. The difference between
previous relations and our data is likely related to the different particle geometries
used and that previous studies were done in 2D, while we employ 3D samples.

Measured and computed permeabilities are generally in good agreement, with com-
puted permeabilities consistently yielding towards higher values than experiment-
ally measured permeabilities. The experimental measured permeabilities show some
scatter which might be related to heterogeneities within the sample. Interestingly,
numerical permeability computations based on subsamples show much less scatter.
Both the modified Kozeny-Carman relation and the parameterization by Martys et
al. (1994) predict numerically computed and experimentally measured permeability
values well. In the modified Kozeny-Carman relation, hydraulic tortuosity seems to
have a second order influence on the permeability of porous media. The permeability
parameterizations by Revil and Cathles III (1999) and Garcia et al. (2009) under-
estimate permeabilities, which could be related to the assumptions used in these
studies. It should be noted that Garcia et al. (2009) investigated heterogeneous
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sand packs and found that permeabilities for homogeneous packs are 1.6 – 1.8 times
higher.

There are several reasons for the discrepancy between experimental and numer-
ical values. First, numerical permeability predictions are based on simulations on
subsamples, where free slip boundary conditions are employed. These boundary
conditions do not accurately represent the flow field within the full sample and are
therefore a possible source of error. This error can be estimated to about 20-50%
of the computed value (Gerke et al., 2019). Second, the numerical computations
compute the flow field on a discretized grid with a given resolution. In particular
at low porosities, pore structures may be too small to be well resolved by the grid.
As discussed by previous studies the accuracy of permeability prediction improves
with increasing numerical resolution (Gerke et al., 2018; Keehm, 2003; Eichheimer
et al., 2019). To investigate this effect with respect to our samples, we computed
the permeability of two subsamples (Ex35Sub04 and Ex36Sub02 see supplemental
material) using an increased resolution of 10243 grid points. The two samples with
effective porosities at around 9 and 15% represent samples on both sides of the me-
dian of the present study’s effective porosity range (1.5 − 22%). The permeability
obtained using doubled grid resolution decreases only by around ≈ 2−4% compared
to the outcome of models with 5123 grid resolution (see Appendix 5.6.6). We are
therefore confident that the calculations with 5123 grid points provide sufficiently
accurate results. To further increase the accuracy of the numerical computations,
adaptive meshing methods could be useful.

Third and most important, it is not clear whether either the subsamples used in the
numerical computations or the full samples used for experimental measurements can
be considered representative volume elements at a certain porosity. The scatter that
we observe in both numerical and experimental permeability measurements indicates
that this may not be the case, in particular at porosities close to the critical porosity.
A potential remedy for this issue would be the use of larger samples in both exper-
iments and numerical simulations. However, using larger samples is not trivial. On
the numerical side larger samples require significantly more computational resources.
On the experimental side, larger samples reduce the resolution of the CT scans,
which would in turn reduce the value of microstructural analysis. Additionally, a
reduced CT resolution would also affect numerical permeability measurements.

We show that several permeability parameterizations (the modified Kozeny-Carman
equation and the permeability parameterization by Martys et al. (1994)) are capable
to predict the numerically and experimentally determined permeabilities obtained
in our study. However, this could only be done by determining several microstruc-
tural parameters from CT scans and by modifying the respective equations to fit
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our data. In that repsect, the parameterization by Martys et al. (1994) requires
less fitting parameters, which makes it in our opinion preferable. However, our res-
ults also show a significant scatter in both numerical and experimental permeability
measurements which are not predicted by either parameterization. This shows that
further work is needed to obtain a more universal parameterization connecting mi-
crostructural parameters to permeability. To first order, the different permeability
parameterizations can be used in numerical models to simulate fluid flow in isotropic
low porosity media on the larger scale. However, it has to be kept in mind that rocks
in nature are commonly more complex, as they (1) often consist of grains with dif-
ferent shapes and sizes, (2) contain fractures which serve as preferred pathways for
fluid flow and (3) often also contain anisotropic structures.

Nevertheless, our study demonstrates that numerical permeability computations can
complement laboratory measurements, in particular in cases of small sample sizes
or effective porosities < 5%. We provide segmented input files of several samples
with different porosities in the supplementary. We hope that this will allow other
researchers to use this data and our results to benchmark other numerical methods
in the future.
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5.6 Appendix

5.6.1 Minimum effective porosity

This figure shows the comparison between the effective porosity and the minimum
effective porosity, which may control the fluid flow within the sample. The minimum
effective porosity is used in Fig. 5.5.

Figure 5.6: Measured permeability against porosity. Symbols with grey face color represent sample
using the minimum effective porosity per sample, while red symbols display measured sample using
the effective porosity. Dashed lines show several permeability parameterizations.
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5.6.2 Permability of each subsample

This figure shows the computed permeability of each subsample together with the
measured permeability values and the permeability parameterizations.

Figure 5.7: Computed and measured permeability against minimum effective porosity. Symbols
of the same shape and color represent the same sample. Samples with grey face color represent
measured values, whereas color only symbols stand for computed subsamples. To verify existing
permeability parameterizations, we plotted the relations of Revil and Cathles III (1999), Garcia
et al. (2009) and Carman (1956) and Martys et al. (1994) against the experimental and numerical
permeabilities. Note that estimated errors for the experimental permeability measurements (table
5.1a) are smaller than the displayed symbols.
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5.6.3 Applicability of Darcy’s Law

For the numerical permeability computation using the Stokes equations we assume
laminar flow conditions and incompressibility. Laminar flow conditions are repres-
ented by a linear relationship between applied pressure gradient and flow rate (Fig.
5.8). Regarding the incompressibility of the working gas during the measurements
we computed permeabilities using both Darcy’s law (eq. (86)) and Darcy’s law for
compressible gas as follows (Takeuchi et al., 2008):

P 2
2 − P 2

1

2P2L
=
ην0

k
, (116)

with P2 and P1 being the pressures at the inlet and outlet side of the sample respect-
ively, and ν0 being the volume flux, which is calculated from the flow rate divided
by cross-sectional area of the sample. The left-hand side of eq. (116) represents the
modified pressure gradient that includes the compressibility of working gas. The dif-
ference between both computed permeabilities is less than 10 %, we therefore assume
the effect of compressibility to be minor.

Figure 5.8: The linear relations between applied pressure difference and flow rate show that Darcy’s
law is valid and no turbulent flow occurs. Solid lines represent measurements while increasing the
pressure difference and dashed lines while decreasing the pressure difference. The unit of sccm
refers to a standard cubic centimeter per minute.
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5.6.4 Grain size distribution of used glass beads

Figure 5.9: Size frequency distribution of the glass beads diameter. Beside the distribution, both
arithmetic mean d̃ and standard deviation σ are given.
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5.6.5 Permeability upscaling schemes

Figure 5.10: Computed and measured permeability against minimum effective porosity. Symbols
of the same shape and color represent the same sample. Samples with grey face color represent
measured values, whereas color only symbols stand for computed subsamples. The computed per-
meabilities represent the harmonic mean values of all subsamples. To verify existing permeability
parameterizations, we plotted the relations of Revil and Cathles III (1999), Garcia et al. (2009)
and Carman (1956) and Martys et al. (1994) against the experimental and numerical permeabil-
ities. Note that estimated errors for the experimental permeability measurements (table 5.1a) are
smaller than the displayed symbols.
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Figure 5.11: Computed and measured permeability against minimum effective porosity. Symbols
of the same shape and color represent the same sample. Samples with grey face color represent
measured values, whereas color only symbols stand for computed subsamples. The computed per-
meabilities represent the arithmetic mean values of all subsamples. To verify existing permeability
parameterizations, we plotted the relations of Revil and Cathles III (1999), Garcia et al. (2009)
and Carman (1956) and Martys et al. (1994) against the experimental and numerical permeabil-
ities. Note that estimated errors for the experimental permeability measurements (table 5.1a) are
smaller than the displayed symbols.
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5.6.6 Resolution test

Figure 5.12: Resolution test using samples Ex35Sub04 and Ex36Sub02 (for details see also tables
in the supplement). Colored squares denote standard resolution of 5123, whereas colored triangles
are simulations with resolution of 10243 voxels.
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5.6.7 Error propagation

Darcy’s Law:

k = − ηQL

∆PA
(117)

Partial derivations of Darcy’s Law (assuming η to be constant during the experi-
ment)

∂k

∂L
= − ηQ

∆PA
(118)

∂k

∂∆P
=

ηQL

∆P 2A
(119)

∂k

∂A
=

ηQL

∆PA2
(120)

∂k

∂Q
= − ηL

∆PA
(121)

Equation for error propagation:

∆k =

√(
∂k

∂L
∆L

)2

+

(
∂k

∂∆P
∆P

)2

+

(
∂k

∂A
∆A

)2

+

(
∂k

∂Q
∆Q

)2

(122)

As an example we compute the error using Darcy’s Law for sample Ex16sub02. We
use a precision for surface area determination A of 5 %, thickness of the sample d of
10 %, pressure measurement using the digital manometer ∆P of 0.05 % and for the
flow rate Q a precision of 1 %. Using the values of sample Ex16sub02 we compute
the misfits and finally the cumulative error, which is ≈5.09 %.

5.6.8 Geometric tortuosity

The geometric tortuosity is defined as (Adler, 1992; Ghanbarian et al., 2013):

τg =
Lg
L
, (123)

where Lg is the shortest pathway and L the length of a straight line through the
sample. In order to predict geometric tortuosity models based on several geometric
properties (e.g. particles size, arrangement, shape etc.) have been postulated. The
model of Yu and Li (2004) predicts the geometrical tortuosity of a porous medium
consisting of two-dimensional squared solid particles. The proposed equation states
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as follows:

τg =
1

2

1 +
1

2

√
1− φ+

√(
1−
√

1− φ
)2

+ (1− φ)/4

1−
√

1− φ

 (124)

Another model developed by Li and Yu (2011) describes the tortuosity for a Sierp-
inski carpet in 2D using a pore fractal model with different particles sizes:

τg =

(
19

18

)ln(φ)/ln(8/9)

(125)

Furthermore geometric tortuosity for three-dimensional porous media with different
shapes exist as proposed by Yun et al. (2006). This model also predicts geometric
tortuosity for spherical particles.

In this study the geometrical tortuosity is calculated using built-in MatLab func-
tions. In a first step the particles of the fluid phase at the top of the sample are
extracted and an undirected graph is computed for all particles of the fluid phase
at the bottom of the sample. The resulting arclength of each path of the undirected
graph is used to compute the geometric tortuosity according to eq. (123).

The geometric tortuosity represents the shortest geometric way through a given
porous medium and is not considered in the Kozeny-Carman relation. In our case
it serves as a comparison to the hydraulic tortuosity and as to our knowledge there
has not been any study computing the geometric tortuosity for three dimensional
non-overlapping spheres.

The computed geometric tortuosity of the sintered samples is shown in Fig. 5.13b.
In order to obtain reliable data we decided to plot the minimum, mean and max-
imum peak of each geometric tortuosity distribution as highlighted in Fig. 5.13a.
The shown geometric tortuosity is relatively small compared to studies of Yu and
Li (2004) and Li and Yu (2011), but shows a similar trend, especially towards small
porosities.
The fitted curves as a function of porosity represent the famous τ = 1 − Bln(φ)

type proposed by Comiti and Renaud (1989). This type of equation is used to pre-
dict hydraulic tortuosities of several materials and shapes, but broadly agrees with
our data and the geometric predictions by Yun et al. (2006) for three dimensional
spherical particles.
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Figure 5.13: a) Shows the distribution of geometric tortuosity within a subsample and the peaks
used for plotting. b) represents the prediction of geometric tortuosity against porosity using
different models for two and three-dimensional porous media. Blue squares represent the mean
computed geometric tortuosity, yellow the maximum values and red the minimum values of each
distribution.
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5.6.9 Detailed data tables for each sample
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Table 5.2: Table presenting all computed parameters for each subsample of full sample 02.
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6.1 Abstract

The transport and storage of water in the mantle significantly affects various ma-
terial properties of mantle rocks and thus water plays a key role in a variety of
geodynamical processes like tectonics and magmatism. Geological and seismological
observations suggest different inflow mechanisms of water via the subducting slab,
like slab bending, thermal cracking and serpentinization. Recent studies showed the
influence of thermal age, dipping angle and plate velocity of the downgoing litho-
sphere on the location and amount of water, which potentially can be transported
into the deep mantle. Most of the studies did not take the effect of normal faults
on storage and transport of water into account. To which extent both paramet-
ers influence the inflow and outflow of water into the mantle still remains unclear.
Therefore, we use high resolution 2D finite element simulations, which allow us to
resolve subducted sediments and crustal layers. For this purpose the finite element
code MVEP2, is tested against benchmark results. In a first step we reproduced
the analytical corner flow model used in the benchmark of van Keken et al. (2008).
In a next step a water migration scheme is implemented and tested. Further steps
consist of successively increasing model complexity, such as the incorporation of
temperature field and normal faults.

6.2 Introduction

Earth is the only planet in our solar system that is habitable due to the presence of
liquid water on its surface, which has been suggested to be essential for life (Pop-
kin et al., 2010). Volatiles such as H2O and CO2 have a strong impact on existing
plate tectonics and volcanism (Peacock, 1990; Iwamori, 1998; Hilton et al., 2002;
Wallace, 2005). On Earth subduction zones are suggested to play an important role
for the input of volatiles like water into the mantle (Pawley and Holloway, 1993;
Iwamori, 2007; Cagnioncle et al., 2007; Korenaga, 2017). At subduction zones,
several processes like plate bending, sediment/slab melting, thermal cracking and
serpentinization have been suggested to have a significant effect on the input and
output of water in Earth’s mantle (Iwamori, 1998; Stern, 2002; Korenaga, 2007; Fac-
cenda et al., 2008). Quantifying the transport and amount of water within Earth’s
mantle is a key to understand several of the distinct cycling processes. Subduction
of wet oceanic crust delivers a significant amount of water into the mantle, which
is assumed to cause the seismic velocity anomaly in the shallow mantle (Faccenda
et al., 2008). Bending of the subducting oceanic lithosphere triggers the develop-
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ment of faults up to 30 km depth allowing water to percolate downwards and enter
the subducting slab (Rüpke et al., 2004; Iwamori, 2007; van Keken et al., 2008;
Faccenda et al., 2009). In addition to plate bending, thermal cracking continuously
develops faults through constant cooling of the oceanic crust and therefore intro-
duces additional water into the mantle (Korenaga, 2007, 2017). Moreover, through
the plate’s residence at the seafloor continously sediments are added onto it, storing
both chemically bound and pore water (Rüpke et al., 2004).

The output of volatiles from the slab and mantle is also governed by several pro-
cesses. Following Rüpke et al. (2004) water is released into the mantle at different
depths. At shallow depth (< 20 km) sediments loose their water through fluid expul-
sion (Hensen et al., 2004). Between 20− 100 km sediments and the altered oceanic
crust release additional water, which could lead to cold upwellings in the ’subduc-
tion channel’ (Gerya et al., 2002). Additionally deep fluids are released (> 100 km)
from the hydrated lithosphere through deserpentinization, triggering arc volcanism
(Rüpke et al., 2004). The released water has a significant effect on both rheology of
the mantle wedge and slab (Bell and Rossman, 1992; Schmidt and Poli, 1998; Hirth
and Kohlstedt, 2013; Hacker, 2008) as well as on the melting processes within the
mantle wedge (von Huene and Scholl, 1991; Grove et al., 2006).

Despite the large number of studies on deep volatile cycling, it still remains un-
clear how much water is actually transported into the mantle and released through
dehydration. In recent years several authors focused on different mechanisms (e.g.
chemical, mechanical) affecting the deep volatile cycle and therefore a wide range of
estimations on the amount of water, which potentially could be transported into the
deeper mantle via subduction zones exist (von Huene and Scholl, 1991; Wallmann,
2001; Rüpke et al., 2004; Iwamori, 2007; Johnson and Pruis, 2003; van Keken et al.,
2011; Magni et al., 2014; Korenaga et al., 2017; Abers et al., 2017; Cai et al., 2018).
Figure 6.1 summarizes the influxes of water proposed by various studies.

The present study has the aim of investigating fluid flow and dehydration within
a subducting slab to predict the amount of water, which can potentially be trans-
ported into the deep mantle. Several studies assumed a continous distribution of
water within the subducting slab (Gerya and Meilick, 2011; Angiboust et al., 2012),
whereas other recent publications showed that in particular fault zones provide dis-
crete zones of concentrated amounts of water and therefore an increased permeability
(Carson and Screaton, 1998; Moore, 1989; Faccenda et al., 2008, 2009; Zhou et al.,
2015). For this reason we plan to employ several discrete zones of high permeability
and water concentration within the subducting slab. The distance between those
zones and the number of normal faults will be changed systematically to simulate



6.3. METHODS 134

Figure 6.1: Estimated values of water influx into the mantle suggested by various authors. As ex-
plained above predictions differ since authors focused on different influx mechanisms and therefore
used various assumptions. Red lines indicate the mean estimate, whereas blue boxes represent the
minimum and maximum estimated values from each study.

the effect on the fluid flow within the slab and its implications on the mantle wedge.

6.3 Methods

6.3.1 Governing equations

Conservation of mass and momentum for slow creeping incompressible rocks are
given as:

∂vi
∂xi

= 0, (126)

∂P

∂xi
− ∂τij
∂xj

= ρgi, (127)
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where v is the velocity, x the spatial coordinate, P the pressure, τ the deviatoric
stress tensor, ρ the density, g the gravitational acceleration. The density depends
on temperature:

ρ(T ) = ρ0[1− α(T − T0)], (128)

with ρ0 and T0 being the reference density and temperature. Furthermore α is the
thermal expansion coefficient. Due to the chosen setup, the rheology of the rocks is
assumed to be viscous only. In the present study we employ dislocation and diffusion
creep laws, where effective viscosities are given by:

ηdisl
eff = A−1/nε̇

−1/n
II exp

(
Edisl

nRT

)
, (129)

ηdiff
eff = A−1dp exp

(
Ediff

nRT

)
, (130)

with A, n,E, T,R being rheological prefactor, power law exponent, activation energy
for the respective creep law, temperature and the universal gas constant. ε̇II is the
second invariant of the strain rate and d is the grain size and p the grain size
exponent. The effective creep viscosity is computed via:

ηeff = min
[(
ηdisl

eff , η
diff
eff

)]
. (131)

Conservation of energy is given by:

ρCp

(
∂T

∂t
+ vi

∂T

∂xi

)
=

∂

∂xi

(
κ
∂T

∂xi

)
+H, (132)

with Cp being the heat capacity, t the time, κ the thermal conductivity and H the
radiogenic heat source term.

6.3.2 Numerical method & model setup

We consider a 2D model domain of 2500 km x 2000 km with a subducting slab placed
at the left corner of the setup and an underlying mantle. The slab is subdivided into
an upper and lower oceanic plate. In later stages it is planned to add several layers
of sediments on top of the slab introducting another source of water to the model.
The model domain is discretized using triangular elements with quadratic shape
functions for velocity and temperature and discontinuous linear shape functions for
pressure (Cuvelier et al., 1986). To reduce computational costs, mesh refinement is
used. Thus, the triangular mesh has a coarser resolution in the ambient mantle and
slab, whereas it is finer in the mantle wedge. For coarser parts of the mesh we have
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an average element area of 0.1452 (non-dimensional) and for finer parts an average
element area of 0.0059 (non-dimensional). According to the mesh refinement also
the marker density, tracking material properties, is denser for the mantle wedge,
whereas it is less dense in the slab and ambient mantle.

For the simulations the finite element code MVEP2 (Kaus, 2010; Thielmann et
al., 2014) is used. MVEP2 uses an efficient matrix assembly method (Dabrowski
et al., 2008) and was modified to simulate large-scale geological models. Material
properties are tracked on markers, which are used to transfer the properties from
the old deformed mesh to the current undeformed one (Thielmann and Kaus, 2012;
Thielmann et al., 2014). Furthermore as with time the mesh deforms we perform
remeshing after several time steps. The code solves eqs. (126)-(132), including the
Stokes conservative equations for incompressible materials (eqs. (126) and (127)).
To avoid numerical instabilities lower and upper viscosity cutoffs are set to 1018 and
1028 Pa s
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Figure 6.2: Model setup as used in the simulations. The inset represents the given velocity profile
of the left inflow/outflow boundary. Brown color shows the slab, whereas yellow color represents
the mantle wedge and red color the remaining mantle. Boundary conditions are set as indicated.
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The top boundary mimics a rigid continental plate and therefore the boundary
condition is set to no slip. Free slip conditions are employed at the right and bot-
tom boundary. To conserve mass and momentum within the modelled domain the
amount of material which is introduced into the domain via the subducting slab
needs to be extracted elsewhere. For this reason inflow/outflow boundary condi-
tions are implemented at the left side of the domain. The used velocity profile
is shown in Fig. 6.2; inset. In the future an initial temperature profile will be
set according to the subduction benchmark of van Keken et al. (2008). The tem-
perature profile of the subducting slab will be computed numerically solving a 1D
heat-diffusion equation for a half space cooling model. Isothermal top and bottom
boundaries will be set to 20 and 1350 ◦C, whereas the left and right boundary will
be set to zero flux.

6.4 Results

6.4.1 Corner flow

To produce reasonable results the code is tested against a benchmark for subduction
zones (van Keken et al., 2008). Several previous studies (Spiegelman and McKenzie,
1987; Davies and Stevenson, 1992; Iwamori, 2007) used an analytical solution based
on the corner flow of Batchelor (1967):

f(θ) = A′sin(θ) +B′cos(θ) + C ′θsin(θ) +D′θcos(θ), (133)

with θ is the dip angle of the slab and A′ to D′ are computed prefactors as stated
below:

A′ = −θ2
0, (134)

B′ = 0, (135)

C ′ = θ − sin(θ0)cos(θ0), (136)

D′ = sin2(θ0), (137)

with θ0 = 90◦ − θ. Figure 6.3 shows the analytical solution for the corner flow
between two fixed plates as derived by Batchelor (1967). Velocities within the slab
are prescribed using internal boundary conditions and are not part of the computed
analytical solution, which only applies for the mantle wedge.

Figure 6.4 a)+b) present the absolute error between the computed velocities from
MVEP2 and the analytical solution of Batchelor (1967). As the corner flow of
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Figure 6.3: Computed analytical solution of flow between two fixed plates (Batchelor, 1967). Black
arrows represent prescribed velocities in the slab due to internal boundary conditions. Blue arrows
symbolize computed velocities of the analytical solution from Batchelor (1967). Additionally black
lines show computed streamlines of the analytical solution.

Batchelor (1967) is only valid for the mantle wedge, velocities computed outside the
wedge introduce some errors at the boundary between mantle wedge and mantle
domain. To avoid these errors within the corner flow we extended the slab by
about 100 km, which results in excellent agreement with the analytical solution of
Batchelor (1967).

6.4.2 Water migration scheme

Subducting crust provides water to the mantle in two ways: (1) free water that is
contained in the pore space of the rocks and may percolate along grain boundaries
(Miller et al., 2003; Abers, 2005) and (2) chemically bound water in crystal structures
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Figure 6.4: a) + b) show the absolute error of velocity in x and y direction in comparison to the
analytical solution of Batchelor (1967). As the analytical solution is only valid for the corner flow,
prescribed velocities in the slab and computed velocities in the remaining domain are left blank.
c)+d) represent computed velocities in x and y direction. Black lines contour the slab and mantle
wedge.

(Davies, 1999; Stern, 2002). Once a slab starts subducting, free water stored in the
pore space of the rocks is released through compression and is not transported further
into the mantle. Hydrated minerals like chlorine, serpentine and amphibole release
mineralogically bound water when they undergo phase transitions.

In general, water migration can be modelled as a two-phase flow, but as we are
interested in a first order estimate of water migration behaviour, we try to keep the
models as simple as possible. We follow the work of Quinquis and Buiter (2014), in
which mineralogically bound water is advected along the solid phase flow and free
water migrates along pressure gradients. For this reason each marker of the model
does not only contain information on material properties, but additionally on the
amount of both bound and free water. The water migration scheme consists of three
steps: (1) determine the amount of free and bound water as well as the maximum
storage capacity of each marker. (2) extract pressure gradients of the solid phase
flow to compute Darcy velocities. (3) advect free water with the computed Darcy
velocities.
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The interpolation of free water between markers and mesh is done using a k-nearest
neighbour algorithm. If the amount of mineralogically bound water of the particle
exceeds the water storage capacity it is oversaturated in water and dehydration
occurs. The released free water moves through the model along the corresponding
pressure gradients. If the mineralogically bound water of the marker is below the
storage capacity it is undersaturated in water and no free water is released. Instead it
can incorporate free water, which was released through dehydration of oversaturated
markers. The velocity of the Darcy flow in x- and z-direction is computed via
(Faccenda et al., 2009, 2012):

vfx = vs −
k∆Px
ηfφ

, (138)

vfz = vs −
k(∆Pz − ρfg)

ηfφ
, (139)

where vs is the velocity of the solid, k is the permeability, ∆P the pressure difference
in x- and z- direction, ρf the fluid density, ηf the fluid viscosity, φ is the porosity
and g the gravitational acceleration.

Figure 6.5 shows the time evolution of a test setup assuming a rising sphere of free
water. At the beginning of the simulation the sphere is oversaturated in water,
whereas the surrounding rock is undersaturated. Due to the positive buoyancy the
free water moves upwards. During its rise, free water is absorbed by the previously
unsaturated rock until no free water is left. This benchmark shows that water is

Figure 6.5: Benchmark setup of an hydrated sphere. a) shows the initial setup. An oversaturated
sphere is placed within an undersaturated material. b) represents the applied pressure gradient
in non-dimensional units. c) shows the model evolution over time. The free water moves upwards
and is consumed by the undersaturated rock material. In the last timestep free water is completely
incorporated into the surrounding rocks. All parameters in this model are non-dimensional.
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Figure 6.6: Conservation of water using different element areas. Units of water content are non-
dimensional.

conserved over time (Fig. 6.6). Figure 6.6 a)-c) shows that with increasing numerical
resolution the conservation of water improves. Therefore we are confident that a
minimum average element area of 0.2803 (non-dimensional) as used in Fig. 6.6b is
sufficient for our simulations.

6.5 Conclusion

The present study demonstrates that MVEP2 is capable of successfully reproducing
the analytical solution of Batchelor (1967). To simulate fluid flow the water migra-
tion scheme from Quinquis and Buiter (2014) was implemented and tested. Further
studies are required to include sediments on top of the slab storing additional free
water and a rigid plate at the top boundary. Also a temperature field needs to
be included and its evolution tested against a benchmark for subduction zones by
van Keken et al. (2008). In the final steps distinct zones (e.g. fault zones, fractures)
with increased permeability and high amount of water will be introduced. Dur-
ing the simulations the amount and geometry of the distinct zones will be changed
systematically to investigate their influence on the resulting fluid flow in the sub-
ducting slab and the mantle wedge. Additonally to simulate the effect of dipping
angle and subduction velocity on the amount of water transported into the mantle
both parameters will be changed systematically.
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Symbol Description Proposed value

dsediment Thickness sediment (km) 6 (Turcotte and Schubert, 2002)
dplate Thickness rigid plate (km) 50 (van Keken et al., 2008)
dslab Thickness slab (km) 60 (Clauser, 2014)
vslab Velocity slab (cm/yr) 1-5 (Morishige and van Keken, 2018)
Aslab Dip angle slab (◦) 20-60

ρsediment Density sediment (kg/m3) 2600 (Athy, 1930)
ρplate Density rigid plate (kg/m3) 2700 (Athy, 1930)
ρslab Density slab (kg/m3) 2900 (Turcotte and Schubert, 2002)
ρmantle Density mantle (kg/m3) 3300 (Wilson et al., 2014)
ρ0f Density fluid (kg/m3) 1000 (Morishige and van Keken, 2018)

ηsediment Viscosity sediment (Pa s) 1020

ηplate Viscosity rigid plate (Pa s) 1024

ηslab Viscosity slab (Pa s) 1024 (Morishige and van Keken, 2018)
ηmantle Viscosity mantle (Pa s) 1021 (Clauser, 2014)
Tmantle Temperature mantle (◦C) 1400 (Wilson et al., 2014)
Tsurface Temperature surface (◦C) 273 (Wilson et al., 2014)
Tage Thermal age slab (Ma) 50 (Wilson et al., 2014)
κ Thermal conductivity (W/(mK)) 10−6

g Gravitational acceleration (m/s2) 9.81

Table 6.1: Table representing model parameters that will be used in further simulations. Addi-
tionally viscosities of the materials will also be changed to test different dislocation and diffusion
creep laws. So far these model parameters are suggestions and no simulations have been run using
the values given above.
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Fluid flow is essential for several geological fields, including hydrogeology, petrology
and volcanology. In geosciences several processes like volcanism are affected and
controlled by fluid flow occurring on different length scales. In subduction zones,
for example, dehydration of minerals releases water, which subsequently rises along
grain boundaries into the mantle wedge, leading to partial melting and volcanism.
Therefore this thesis had the aim to investigate fluid flow and its related parameters
on different scales ranging from pore- to macroscale.

The first manuscript presents the benchmarking of the implementation of the sten-
cil rescaling method into the Finite Difference code LaMEM. Code benchmarking
against a set of simplified model setups, for which analytical solutions of permeability
are known, show an increase in accuracy at no additional computational cost. Fur-
thermore I present results on the computation of permeability for a Fontainebleau
sandstone sample showing both numerical convergence and very good agreement
with experimentally measured permeability. Fluid flow using non-Newtonian rhe-
ology gains significant interest for example due to the use of nanofluids in enhanced
oil recovery. I therefore show also the ability of LaMEM to handle complex non-
Newtonian rheologies by computing the fluid flow through a Fontainebleau sand-
stone using a power-law rheology. However, the computation of permeability for
highly resolved rock sample images using LaMEM remains computationally expens-
ive. Different methods can compute permeability more efficiently in terms of shorter
computation times and less computational costs, but are only capable of using New-
tonian rheology. With the ascent of new technologies like machine learning and
increasing computational resources the computation of high resolution rock images
will improve in the future and therefore provide new insights into morphology and
fluid flow in three dimensional porous media.

To use this method for permeability prediction in large-scale numerical simulations,
parameterizations of permeability from the micro- to the macroscale are needed.
For this reason I sinter soda-lima glass bead samples with various porosities. Micro-
structural and flow parameters needed to predict permeability using the well-known
Kozeny-Carman equation are determined by using image processing and LaMEM.
The obtained modified Kozeny-Carman equation can be used to simulate fluid flow
and therefore permeability in large-scale numerical models. However, in application
to Earth’s crust this parameterization represents sedimentary rocks down to ≈20

km. For instance, especially in subduction zones a large variety of rocks and com-
positions are present. To account for those more complex microstructures, which
are important in subduction systems, parameterizations of permeability need to be
performed according to the present study. Future work should include the micro-
structural analysis and computation of permeability and hydraulic tortuosity for
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typical subduction zone rocks like antigorite. In subduction zones usually most of
the sediments have anisotropic properties, which can develop through compaction.
To which extent these properties influence permeability and therefore the fluid flow
on the large-scale remains at the moment unclear.

Modelling fluid flow on the large-scale led me to investigate fluid flow within a sub-
duction zone. For this purpose I designed a subduction zone setup, which is tested
against an analytical solution for corner flow. To simulate fluid flow I implemented
a water migration scheme, which allows chemically bound and pore water to move
through the model domain. This scheme supports the hydration and dehydration
of under- and oversaturated particles. First simulations show that the total amount
of water remains constant, in case the numerical resolution is sufficiently high. Fur-
ther studies are required including a benchmark of the temperature field based on
a half-space cooling model and the addition of several normal faults, filled with free
water. So far, in my models water, which is available through dehydration, is not
capable of lowering the melting point in the mantle and therefore creating partial
melting. Nevertheless, this study could give insights into water migration influenced
by normals faults and its overall effect on subduction zone dynamics.

To conclude, this thesis provides the methodology to determine permeability on
the microscale accurately using both Newtonian and non-Newtonian rheology. It
furthermore provides an experimental and numerical workflow to parameterize per-
meability from the micro- to the large-scale and additionally investigates the fluid
flow within a subduction zone. Future projects should apply the stencil rescaling
method (see Section 4) on several, in particular anisotropic minerals occurring in
subduction zones. This way parameterizations can be derived for permeability (see
Section 5), which can be used as an input parameter for complex large-scale numer-
ical simulations (see Section 6). These simulations could give new insights into the
effect of anisotropic permeability on the fluid flow occurring in subduction zones,
but moreover could provide estimates to which extent normal faults participate in
storage and transport of water into the deeper mantle.
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