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Abstract

Green sulfur bacteria survive under the lowest light conditions. They have perfectly

adapted to this environment by evolving a unique light-harvesting apparatus, the chloro-

some. This highly e�cient antenna structure allows these bacteria to grow photosynthet-

ically by absorbing only a few photons per bacteriochlorophyll molecule per day. The

chlorosome is considered as a sack that accommodates hundreds of thousands bacteri-

ochlorophyll (BChl) c, d or e molecules depending on the bacterial species and growth

conditions. The BChls build supramolecular assemblies solely by self-assembly. This is

in contrast to other photosynthetic light-harvesting antenna systems, for which a pro-

tein sca�old imposes the proper positioning of the chromophores. The electronically

excited states of these molecular assemblies can be described as Frenkel excitons whose

photophysical properties depend crucially on the mutual arrangement of the pigments.

The high light-harvesting e�ciency of the chlorosomes and the self-assembly of the

BChls into secondary structures within the chlorosome has promoted enormous interest

in the structure-function relations of these molecular assemblies, as they can serve as

blueprints for arti�cial light-harvesting systems. However, details about their structural

organization of the supramolecular BChl arrangement in the chlorosomes are the subject

of an ongoing debate, and conclusive structural information at atomic resolution is not

available yet. Several models for their secondary structures, including tubular and lamel-

lar aggregates, have been proposed to date. This variety re�ects the sample heterogeneity

inherent to this natural system.

The photophysical properties and their relation to the supramolecular organization

of the chlorosome become accessible by optical spectroscopy. Therefore, in this thesis,

spectroscopic techniques were used to study the structure-function relationship of the

secondary structures in chlorosomes. However, the great heterogeneity of the samples

leads to inhomogeneous broadening of the spectra, and subtle spectral features that might

be characteristic for speci�c structural properties get obscured by ensemble averaging. In

order to minimize the inherent sample heterogeneity polarization-resolved �uorescence-

excitation spectroscopy was performed on individual chlorosomes from the photosynthetic

green sulfur bacterium Chlorobaculum (Cba.) tepidum. This approach makes it possible

to reveal the properties of the exciton states without ensemble averaging.

Furthermore, this technique was combined with mutagenesis. Hence, chlorosomes from

the wild type and two mutants of Cba. tepidum were studied, in particular the bchR

I



single mutant and the bchQR double mutant. In these mutants, the various options

for methylation of the bacteriochlorophyll molecules, which are a primary source of the

structural and spectral heterogeneity of wild type chlorosome samples, are reduced via

the deactivation of distinct genes.

The spectra of all studied chlorosomes show a strong intensity modulation as a func-

tion of the polarization of the incident radiation, which clearly indicates that collective

excitations dominate the spectrum. A global analysis of the spectra revealed that the

broad ensemble absorption band around 740 nm consists of several spectral contribu-

tions. The observed photophysical properties of individual chlorosomes are consistent

with cylindrical supramolecular structures.

Here, the information obtained from polarization-resolved �uorescence-excitation spec-

troscopy, cryo-electron microscopy, and theoretical modeling is combined with results

previously obtained from nuclear magnetic resonance spectroscopy and cryo-electron mi-

croscopy. It is demonstrated that only the combination of these techniques yields an un-

ambiguous description of the molecular packing of bacteriochlorophylls in chlorosomes.

The results of these techniques show that in contrast to some suggestions in the liter-

ature, for the chlorosomes from the wild type as well as for those from mutants, the

dominant secondary structural element features tubular symmetry. Moreover, the sec-

ondary structures of all three species follow a very similar construction principle, which

is rolling up the lattice structure reported in [1] under an angle δ onto a cylinder.

The experimental results are compared with predictions from computer simulations of

the cylindrical model structure. Studying variations of the structural parameters yields

an explanation about the inhomogeneously broadened absorption bands. Moreover, the

simulations provide a quantitative estimate of the curvature variation of these aggregates

that might explain the ongoing debates concerning the chlorosome structure. From the

correlation of spectral parameters, speculations about the degree of variation of the

structural elements are made, and the composition of individual chlorosomes is deduced.

Finally, a combination of all the results gives a conclusive picture of the interior of the

chlorosomes.
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Zusammenfassung

Grüne Schwefelbakterien wachsen zum Teil in extrem lichtarmen Lebensräumen. Sie

haben sich perfekt an diese Umgebung angepasst, indem sie einen einzigartigen Apparat

zum Sammeln von Licht entwickelt haben, das Chlorosom. Diese hoche�ziente Anten-

nenstruktur ermöglicht diesen Bakterien eine photosynthetische Lebensweise, obwohl ih-

nen nur wenige Photonen pro Bakteriochlorophyllmolekül und Tag zur Verfügung stehen.

Das Chlorosom ist eine sack-ähnliche Struktur und beinhaltet je nach Bakterienart und

Wachstumsbedingungen hunderttausende von Bakteriochlorophyll (BChl) c-, d - oder e-

Molekülen. Die BChl bilden innerhalb des Chlorosoms supramolekulare Strukturen durch

Selbstaggregation. Diese Eigenschaft unterscheidet sie von anderen Lichtsammelkom-

plexen, die ein Proteingerüst zur richtigen Positionierung der Chromophore nutzen. Die

elektronisch angeregten Zustände der molekularen Aggregate in Chlorosomen lassen sich

als Frenkel-Exzitonen beschreiben, deren photophysikalische Eigenschaften entscheidend

von der gegenseitigen Anordnung der Pigmente abhängen.

Die hohe Lichtsammele�zienz der Chlorosome und die Selbstorganisation der BChl

zu sekundären Strukturen innerhalb des Chlorosoms hat ein enormes Interesse an der

Struktur-Funktion-Beziehung dieser molekularen Aggregate erregt, da sie als Blaupausen

für künstliche Lichtsammelsysteme dienen können. Es gibt jedoch eine laufenden Dîskus-

sion über die Einzelheiten der strukturellen Organisation der supramolekularen BChl-

Anordnung in den Chlorosomen und bisher sind keine schlüssigen Strukturinformationen

in atomarer Au�ösung verfügbar. In mehreren Arbeiten wurden verschiedene Modelle

für die sekundäre Struktur vorgeschlagen, unter anderem Modellstrukturen von Aggre-

gaten mit einer Anordnung der BChl in Röhren und Lamellen. Die Vielfalt der Modelle

spiegelt die diesem natürlichen System innewohnende Heterogenität der Proben wider.

Die photophysikalischen Eigenschaften und ihr Zusammenhang mit der supramoleku-

laren Organisation des Chlorosoms werden durch optische Spektroskopie zugänglich.

Daher wurden in dieser Arbeit spektroskopische Techniken benutzt, um die Struktur-

Funktion-Beziehung der sekundären Strukturen in den Chlorosomen zu untersuchen.

Die groÿe Heterogenität der Proben führt jedoch zu einer inhomogenen Verbreiterung

der Spektren, und feine spektrale Merkmale, die für bestimmte Struktureigenschaften

charakteristisch sein könnten, werden durch die Ensemble-Mittelung überdeckt. Zur Min-

imierung der inhärenten Probenheterogenität, wurde an einzelnen Chlorosomen des pho-

tosynthetischen grünen Schwefelbakteriums Chlorobaculum (Cba.) tepidum polarisation-

III



saufgelöste Fluoreszenzanregungsspektroskopie durchgeführt. Dieser Ansatz ermöglicht

es, die Eigenschaften der Exzitonzustände ohne Ensemble-Mittelung zu untersuchen.

Durch Kombination dieser Technik mit Mutagenese konnten Chlorosome des Wildtyps

und von zwei Mutanten von Cba. tepidum untersucht werden, nämlich Chlorosome des

bchR-einfach-Mutanten und des bchQR-doppel-Mutanten. Bei diesen Mutanten werden

die verschiedenen Möglichkeiten für die Methylierung der Bakteriochlorophyllmoleküle

durch die Deaktivierung verschiedener Gene reduziert. Die verschiedenen Seitenketten

der BChl stellen die Hauptquelle für die strukturelle und spektrale Heterogenität der

Wildtyp-Proben dar.

Die Spektren aller untersuchten Chlorosome zeigen eine starke Intensitätsmodulation

in Abhängigkeit von der Polarisation der einfallenden Strahlung auf. Dies weist eindeutig

darauf hin, dass kollektive Anregungen das Spektrum dominieren. Eine globale Analyse

der Spektren ergab, dass die breite Ensemble-Absorptionsbande bei 740 nm aus mehreren

spektralen Beiträgen besteht. Die beobachteten photophysikalischen Eigenschaften der

einzelnen Chlorosome können mit zylindrischen supramolekularen Strukturen erklärt wer-

den.

In dieser Arbeit werden Informationen aus der polarisationsaufgelösten Fluoreszen-

zanregungsspektroskopie, Kryo-Elektronenmikroskopie und theoretischen Modellierung

mit Ergebnissen kombiniert, die zuvor aus der NMR-Resonanzspektroskopie und auch

Kryo-Elektronenmikroskopie gewonnen wurden. Es wird gezeigt, dass nur eine Kombi-

nation dieser Techniken eine eindeutige Beschreibung der molekularen Anordnung von

Bakteriochlorophyllen in Chlorosomen liefert. Die Ergebnisse dieser Techniken zeigen,

dass im Gegensatz zu einigen Modellen in der Literatur, sowohl für die Chlorosome des

Wildtyps als auch für die der Mutanten, das dominierende sekundäre Strukturelement

eine zylindrische Symmetrie aufweist. Darüber hinaus folgen die sekundären Strukturen

aller drei Spezies einem sehr ähnlichen Konstruktionsprinzip, das darin besteht, die in

[1] verö�entlichte Gitterstruktur unter einem Winkel δ auf einen Zylinder aufzurollen.

Die experimentellen Ergebnisse werden mit Vorhersagen aus Computersimulationen

von zylindrischen Modellstruktur verglichen. Die Untersuchung von Variationen der

Strukturparameter liefert eine Erklärung für die inhomogen verbreiterten Absorptions-

banden. Darüber hinaus liefern die Simulationen eine quantitative Schätzung der Varia-

tion der Krümmung dieser Aggregate. Damit könnten die laufenden Diskussionen über

die Struktur von Chlorosomen erklärt werden. Aus der Korrelation spektraler Parameter

werden Spekulationen über den Grad der Variation der Strukturelemente angestellt und

die Zusammensetzung einzelner Chlorosome daraus abgeleitet. Die Kombination aller

Ergebnisse ergibt schlieÿlich ein schlüssiges Bild des Inneren der Chlorosome.
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1 Introduction

The law of conservation of energy is one basic principle in physics [5, 6]. It states that

energy can neither be created nor destroyed.

Wir gehen aus von der Annahme, dass es unmöglich sei, durch irgend

eine Combination von Naturkörpern bewegende Kraft fortdauernd aus

dem nichts zu erscha�en. Hermann von Helmholtz, 1847

We will set out with the assumption that it is impossible,by any

combination whatever of natural bodies, to produce force continually

from nothing. A. Henfrey & T. Huxley, 1853

� �

Energy is needed in everyday life of every human. We need energy for many applica-

tions, such as heating, driving machines (locomotion), and lighting. Although energy can

neither be produced nor consumed, we still refer to energy production and consumption.

We talk about energy production when we mean the conversion of energy from di�erent

sources into forms that are useful for humans. On the other hand, we refer to energy con-

sumption when this energy is used by humans and converted into useless forms (like heat

released to the environment). As the population grows, so does the worldwide consump-

tion of energy [7]. Until now, energy production has been mainly based on fossil fuels

(70 %). Both the dwindling reserves of fossil fuels and their contribution to the destruc-

tion of the environment and climate are increasing the need for environmentally friendly

alternatives for energy production. By far, the most important energy source available

to us is the sun. Its energy can be used directly in form of solar energy or indirectly in

form of bioenergy (biomass), hydropower, and wind energy. Together with geothermal

and marine energy, they form the category of renewable energies. Solar energy is already

being harnessed utilizing photovoltaics, solar thermal energy, solar chemical energy, and

solar updraft towers. However, the e�ciency of such power plants is often still very low.

Silicon-based solar cells have, for example, the energy e�ciency of up to 19 %, whereas

organic solar cells, which in contrast to silicon-based ones, are cheap and environmentally

friendly to manufacture, only have an energy e�ciency of 15 % [8]. While we have been

working on the development and improvement of such techniques for less than 200 years,
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1 Introduction

biological organisms have been using solar energy in the direct form for billions of years,

namely with photosynthesis. It might, therefore, be an opportunity to use nature as a

model for e�cient and environmentally friendly harvesting of solar energy.

The idea of observing nature in order to transfer its phenomena to technical innovations

is well known through Leonardo da Vinci. However, even before the famous polymath,

people were fascinated by mimicking nature. For example, the possibility of rising into the

air like a bird inspired them to draw and then to build �rst �ying machines. Inventiveness

and perseverance made it possible, that today not only people can travel long distances

quickly by air, but also that large quantities of goods are transported between continents.

This mimicry of nature in the �eld of technology is called Bionics. Nature provides the

ideas for bionic inventions. Nevertheless, in order to apply these phenomena to modern

technologies, it is necessary to study nature. This means, in the case of solar energy,

studying photosynthesis.

Photosynthesis is a type of metabolism. The metabolism of living organisms is based

on the conversion of energy. It represents the sum of chemical and physical processes

that convert food or fuel into energy or life-sustaining building blocks. Di�erent types of

metabolism can be found depending on the type of living being. In biological evolution,

bacteria developed di�erent sizes, shapes, and metabolism. In this way, they were able to

adapt to almost every habitat. Bacteria are found in environments with moderate tem-

peratures like the human body (mesophiles) but also in extreme habitats like hydrother-

mal vents (extremophiles). Species of extremophile bacteria are able to thrive in extreme

conditions. They can survive very high or very low temperatures, high pressure, acids, ra-

diation, and dryness [9]. The ability to adapt to extreme conditions makes these bacteria

interesting for biomimetics. There are organisms whose highly e�cient photosynthesis

apparatuses enable them to live photoautotrophically, i.e., exclusively with light as their

energy source, even at the lowest light �uxes. Green sulfur bacteria, for example, only

need a light intensity of 1 % of full moonlight, which corresponds to 109 photons/(s cm2),

to grow phototrophically [10]. These organisms must exhibit a molecular structure that

absorbs, transfers, and converts photons into chemical energy in a highly e�cient way,

to achieve such e�ciency of the photosynthesis process. The light-harvesting antennae

of the mentioned green bacteria are called chlorosomes. In the chlorosome, these bacte-

ria form supramolecular structures of chromophores via self-assembly. The self-assembly

represents an outstanding feature, which is in contrast to other light-harvesting antennas

that require protein sca�olds for the arrangement of the chromophores. The electronic

structure in all light-harvesting antennae systems is determined by the spatial arrange-

ment of the individual molecular building blocks. This yields a strong structure-function-

relationship. Therefore, optical spectroscopy o�ers access to the construction of these

systems. Natural systems often show a heterogeneity regarding their composition and

structure. Their experimental spectra are broadened by these biological variations, and
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spectral features might be lost by ensemble-averaging. Hence, spectroscopy on single

objects such as individual antenna systems yields an essential contribution to elucidating

the design and function of these structures [11]. For the reasons stated above, the chloro-

some represents a supramolecular approach towards arti�cial light-harvesting studying

the structure and function of such e�cient light harvesting-apparatuses, in order to create

photosynthetic materials based on porphyrins and chlorophylls that convert solar energy

into electricity or biofuel [12]. The subject of this thesis is, therefore, the study of the

secondary structures in chlorosomes.

This thesis presents a study of �uorescence-excitation spectroscopy on individual chloro-

somes from the green sulfur bacterium Cba. tepidum. In combination with several other

techniques such as mutagenesis, cryo-electron microscopy, and theoretical modeling, this

leads to the elucidation of the structure in individual chlorosomes. Furthermore, the vari-

ations of the structures in chlorosomes were studied with the presented techniques. Most

of the results presented in this thesis have already been published in the publications [2]

and [3]. The thesis is organized as follows:

First, the photosynthesis of green sulfur bacteria is introduced, and the composition

and structure of chlorosomes are described in detail, including their supramolecular ar-

rangement of the chromophores (see chapter 2). Chapter 3 gives an overview of the

research on chlorosomes so far, including the most relevant results. Special attention is

given to contrasting models of the pigment arrangement in chlorosomes in the literature.

Speculations are made about the cause of these apparent contradictions. In the second

half of this chapter, a model structure is presented in more detail, which was developed

using measurements on the chlorosomes of mutants of Cba. tepidum. Since this work is

based on measurements on the wild type and mutants of this species, this model serves

as a starting point for the interpretation of the experiments in this work. In order to

be able to draw conclusions from the spectroscopic experiments on the structure of the

examined chlorosomes, the photophysical properties of molecular aggregate structures

are considered in chapter 4. Materials and methods used for the experiments on the

chlorosomes are presented in chapter 5. The experiments on individual chlorosomes from

the green sulfur bacterium Cba. tepidum are presented and evaluated in chapter 6. In

chapter 7, the data is discussed and interpreted in terms of a model structure. In chap-

ter 8, a summary of the results of the experiments and the resulting information on the

structure of the aggregates in chlorosomes is given. The appendix contains additional

diagrams of the data, as well as supporting information on the results.
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2 Light-harvesting in green sulfur

bacteria

One type of metabolism used by plants, algae, archaea, and some species of bacteria is

photosynthesis. It is a unique, physiologic process in which the energy of absorbed light

is transformed into chemically stored energy. Photosynthetic species use this process to

convert low-energy substances into high-energy biomolecules. Depending on the species,

photosynthesis evolves in numerous di�erent ways. The term photosynthesis summa-

rizes a variety of biochemical processes that convert light energy into chemical energy.

The �rst step in a photosynthesis reaction is the absorption of light. Photosynthetic

organisms use di�erent types of light-harvesting antenna to collect light. Among them

are photosystems I and II in green plants and cyanobacteria, the LH2-complex, and the

LH1-complex in purple photosynthetic bacteria and phycobilisomes in cyanobacteria and

algae [13�15], and chlorosomes found in green sulfur bacteria and some green non-sulfur

bacteria. The chlorosomes are an early invention of antenna systems in photosynthesis

and highly e�cient [16, 17]. The photosynthesis of various species di�ers by the re-

ductants, processes, and structures that occur in the cell for photosynthesis. All these

processes have in common the extraction of electrons by oxidation of the reductant. In

this process, an electron is brought to a higher energy level by using light energy. The

electron is used to form the energy-rich compounds ATP and NAD(P)H from ADP and

NAD(P)+. These compounds extract carbon from carbon sources (carbon dioxide (CO2)

or organic compounds) and synthesize high-energy organic substances. The photosyn-

thesis process can be divided into oxygenic and anoxygenic photosynthesis. As the name

suggests, anoxygenic photosynthesis does not produce oxygen as a by-product of the

process. This type of photosynthesis is carried out by obligate anaerobes, such as green

sulfur bacteria [13, 18�20].

Since in this work, the antenna complexes of the green sulfur bacteria Chlorobaculum

tepdium (Cba. tepidum) were studied, this chapter only describes the photosynthesis

of green sulfur bacteria∗. The focus will be on the structure of such bacteria and their

photosynthetic process towards their antenna complexes, the chlorosomes.

∗For a detailed description of plant photosynthesis see references [13, 18, 19] and references [19, 20] for
the photosynthesis of algae, archaea, and bacteria
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2 Light-harvesting in green sulfur bacteria

2.1 The structure of green sulfur bacteria

Bacteria (and other living organisms) that perform photosynthesis are called phototrophs.

Phototrophs produce complex organic compounds (e.g., proteins) from simple substances

present in their surroundings with light as an energy source. The class of phototrophic

bacteria includes green sulfur bacteria, non-sulfur bacteria, cyanobacteria, and purple

bacteria. The green sulfur bacteria represent a photoautotrophic and anaerobic family of

bacteria. The green sulfur and non-sulfur bacteria have their unique light-harvesting com-

plexes in common, the so-called chlorosomes. However, they belong to di�erent phyla†:

chlorobi or chloro�exi. An example of a photoautotrophic green non-sulfur bacterium

is Chloro�exus aurantiacus [21�23]. On the other hand, the bacterium Chlorobaculum

tepidum (formerly known as Chlorobium tepidum), belongs to the known representatives

of the green sulfur bacteria [10, 24�26]. In �gure 2.1, a sketch illustrates the schematic

structure of a green-sulfur-like bacterium next to an electron microscopy image, which

was taken from reference [24]. The electron micrograph shows a thin section of cells

from Cba. tepidum. Typically the dimensions of an individual cell of Cba. tepidum are

0.6�0.8 µm x 1.3�2.6 µm.

Cell wall

Chlorosomes

Cell membrane

Ribosomes

Chlorosome

Nucleoid (DNA)

0.5 µm

Figure 2.1: Schematic illustration of the structure of prokaryotic cells of green sulfur bacteria
based on an electron microscopy image [24].

Prokaryotic cells show a simpler structure than the eukaryotic cells of multicellular

organisms. The intracellular components (e.g., proteins and DNA) are not organized

in cellular compartments but located in the cytoplasm enclosed by the cell membrane.

The cell wall surrounds the membrane and provides structural support and protection

†A phylum (plural: phyla) is a level of taxonomic rank. The terms phylum and division are accepted
as equivalent.
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2.2 Photosynthesis, light-harvesting and the antenna complex: the chlorosome

for the cell. The cell membrane, a phospholipid bilayer, encloses the cell interior and

separates it from the extracellular environment. Proteins, embedded in the membrane,

control the uptake and release of substances. The cytoplasm consists mainly of water

and contains the intracellular components, organic molecules, salts, and enzymes. As

there are no compartments in prokaryotes, the area in the cytoplasm containing the

single DNA is denoted the nucleoid. The ribosomes are the macromolecular complexes

in cells for the production of proteins. The chlorosomes represent a special type of vesicle

in these bacteria, namely the antenna complex of the bacterium. They are located at

the cell membrane [24]. Their structure and function are described in detail in the next

section.

2.2 Photosynthesis, light-harvesting and the antenna

complex: the chlorosome

Photosynthesis in green sulfur bacteria

The light absorption and energy transfer process of green sulfur bacteria in the context

of the photosynthesis structures in the cell is shown in �gure 2.2. The antenna sys-

tem, in this case, the chlorosome, absorbs a photon. Chlorosomes can be described as

a large ellipsoid bag stu�ed with self-aggregated chromophores [27, 28]. The structure

of the chlorosome is described in detail below. The resulting excitation energy is then

transported in the direction of a reaction center via FMO complexes, which are located

between the chlorosome and the cell membrane. The FMO complex (named after the sci-

entists who discovered it, Fenna, Matthews and Olson [29, 30]), a chlorophyll-containing

protein structure, ensures a directed energy transport towards the reaction center via

an energy cascade [31]. In �gure 2.2, it is depicted that the Fe-S type reaction centers

are embedded in the cell membrane. This is where redox reactions take place in which

the reductant (H2S) is decomposed. In this reaction, elemental sulfur H3O+-ions and

electrons are generated.

The structure of the chlorosome

One of the key aspects of photosynthesis in terms of e�ciency is the absorption of light.

For e�cient light-harvesting, the cell needs a large absorption area, and a broad radi-

ation spectrum must be covered. Individual pigments can only collect a little amount

of light because they are small and usually have only narrow absorption bands. There-

fore the pigments in antenna systems are often organized in light-harvesting complexes,

such as the chlorosome. The chlorosome is a large ellipsoidal vesicle with dimensions

of 100�200 nm (length), 40�60 nm (width) and 10�40 nm (height) [16, 32�35]. The en-

velope, the cytoplasmic boundary of the chlorosome, consists of a lipid monolayer. It
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2 Light-harvesting in green sulfur bacteria

Proteins

Quencher

Carotenoids

BChl aggregates

Protein CsmA

BChl a

FMO

Reaction

Center

Cell Membrane

Chlorosome

Lipid Envelope

Baseplate

Light

Figure 2.2: This schematic model shows the structure of the photosynthesis apparatus of green
sulfur bacteria. The chlorosome is displayed as a cut through its longitudinal axis.
The individual components of the chlorosome, such as the lipid envelope, proteins,
chromophores, and the baseplate, are labeled. The light absorption and energy trans-
fer is represented by the arrows. This �gure is adapted from reference [16].

contains the chlorosome proteins, which are unique to the chlorosomes. The chlorosome's

envelope contains 200 000�250 000 self-aggregated chromophores, which corresponds to

a concentration in the order of 1�3M. Despite the high concentration of chromophores,

it is remarkable that the proper positioning of the chromophores avoids the expected

quenching. In contrast to other antenna systems, this arrangement is achieved without

a supporting protein structure, purely by self-aggregation. The secondary structures are

stabilized by van der Waals forces and hydrogen-bonding interactions. In addition to the

secondary structures of bacteriochlorophylls, the interior of the chlorosome also contains

carotenoids and quinones. The carotenoids make up 10 % of the pigments contained in

the chlorosome. In addition to their function as absorbers, they serve as a photoprotec-

tor in the light-harvesting complexes and are possibly involved in the arrangement of the

BChls. Quinones regulate the energy transfer from the BChl molecules to the baseplate.

They quench excitations in the presence of oxygen to slow down the rate of photosyn-

thesis to protect the light-harvesting aggregates. The region of the envelope facing the

cell membrane is called the baseplate. The baseplate is a paracrystalline structure of

bacteriochlorophyll a and the protein CsmA. As a single BChl a molecule is bound per
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CsmA protein, the chromophore density of BChl a in the baseplate is not as high as the

concentration of chromophores inside the chlorosome [16, 31, 36].

Structural and spectral properties of bacteriochlorophyll

There are di�erent types of photosynthetic pigments in phototrophic bacteria: BChl a,

b, c, d, e, f, and g. They di�er in their structure and their attached side chains. Bacteri-

ochlorophylls a, b, and g are bacteriochlorins. Their molecules feature a bacteriochlorin

macrocycle ring with two reduced pyrrole rings. Bacteriochlorophylls c and d, as well

as BChl e, and BChl f are chlorins. Chlorin molecules are composed of a macrocycle

ring with one reduced pyrrole ring. The most commonly occurring BChls in chlorosomes,

which form the secondary light-collecting structures, are BChl c and d [17]. Since the

structure of the monomers is important in the formation of aggregates in chlorosomes,

the molecular structure of BChl c and d is shown in �gure 2.3. The molecular structure

consists of a derivatized porphyrin ring and a Mg2+ ion in its center. Another 5th ring is

attached to the porphyrin of the bacteriochlorophyll backbone. Depending on the type

of BChl, various side chains (R1, R2, R3) are attached to the backbone. The table in

�gure 2.3 lists the side groups with which BChl c or BChl d is created.

OH

N N

NN

Mg

O
O

O

Farnesyl

R2

R3

R1
20

8

12

Qx

Qy

BChl c BChl d

R1 methyl H

R2 ethyl
n-propyl
isobutyl

ethyl
n-propyl
isobutyl

R3 ethyl
methyl

ethyl
methyl

Figure 2.3: Molecular structure of BChl c and d (adapted from [1]). The possible side groups for
R1, R2 and R3 are listed in the table [37].

In �gure 2.4 the absorption spectra of monomeric BChl a, BChl c and BChl d are

shown. The absorption of bacteriochlorophylls shows two absorption bands, one in the

blue/UV regime and one in the red or near-infrared region, as shown in �gure 2.4. These

absorption bands are the result of transitions of electrons in the conjugated π-systems.

The two higher-energy transitions are commonly called Soret bands, whereas the lower-

energy transitions are called Qx- and Qy-band. The electronic transitions have di�erent
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2 Light-harvesting in green sulfur bacteria

orientations with respect to the molecular structure. The transition with the highest

energy is polarized along the y-axis of the molecule and is called Qy-band. Analogously,

the transition polarized along the x-axis of the molecule is referred to as theQx-transition.

The direction of the transition dipole moments is represented by the red arrows in �gure

2.3 [38].

The structure of the BChl monomer, more precisely the side chains R1, R2 and R3

determine the absorption properties of the monomer. The absorption peak of the Qy-

peak of BChl a (770 nm) is strongly shifted to the red with respect to the Qy-peak of

BChl c (666 nm) and BChl d (655 nm). The absorption spectra of bacteriochlorophyll

monomers can already give a small insight into the absorption properties of chlorosomes.

With an absorption band in the visible range from 350�550 nm, carotenoids extend the

absorption band of the chlorosomes [36].
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Figure 2.4: Absorption spectra of BChl monomers. a, c and d label the spectra from BChl a
(dashed line), BChl c (solid line) and BChl d (dotted line). The absorptivity of a
BChl molecules is in the order of 105M−1 cm−1. The data is extracted from reference
[36].

However, the properties of the monomers di�er considerably from those of the ag-

gregated chromophores in chlorosomes. Since the function (absorption properties and

energy transport) of BChl aggregates is strongly linked to their structure (arrangement

of molecules), the next chapter will describe in detail the state of knowledge about the

secondary structures in chlorosomes and present published model structures.
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3 Secondary structures in chlorosomes

3.1 Research on chlorosomes and previous model structures

The molecular organization of the light-harvesting structures in chlorosomes determines

the e�ciency of energy transfer in the antenna complex [39]. The supramolecular ar-

rangement of BChl to secondary structures is crucial for their ability to collect light, as

it dictates the character of the electronically excited states. Therefore the structure of

chromophore aggregates in chlorosomes is the focus of many research projects and still

a subject of debate. In order to get an impression of the �eld of research on the internal

structure of chlorosomes, an overview of previous research results in this �eld will be

given below. The overview is limited to the chlorosomes of green bacteria and does not

claim to be complete, as there are countless publications in this �eld.

In 1964 chlorosomes, at that time called chlorobium vesicles, were extracted from cells

of Chlorobium strain for the �rst time [32]. The intravesicular structures of chlorosomes

from Chlorobium thiosulfatophilum were characterized by electron microscopy in 1979 (see

�gure 3.1a). With this technique, structures with diameters of 9�10 nm were observed

in the chlorobium vesicles. They were described as �commonly but not always circular�

[40]. A model of the supramolecular architecture of these structures in chlorosomes from

Chloro�exus aurantiacus using freeze-fracture electron microscopy was presented in 1978

by Staehelin et al. (see �gure 3.1b). In their description the chlorosome was in the form

of an elongated sac, containing rod-shaped elements with diameters of approximately

5.2 nm, which are made up of periodically repeating globular subunits. Furthermore,

they report that the rod elements extend the full length of the chlorosome [41].

An important �nding in the investigation of the supramolecular structures in the

chlorosomes was the selfassembly of the BChls. The BChls form aggregates within the

chlorosomes without a protein framework [27, 28]. Based on this, the arrangement of

the pigments with respect to each other was investigated in detail, as it determines the

supramolecular structure of the aggregates. Spectroscopic methods such as absorption,

emission, and linear dichroism spectroscopy were used to obtain information about the

mutual orientation of the transition dipole moments of the pigment molecules [42]. Since

the transition dipole moments have a �xed position within the chromophores, molecular

modeling was used to create initial models of the aggregate structures from chlorosomes

of Chloro�exus aurantiacus and Cba. tepidum built up from individual molecules [43].
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(a) (b)

Figure 3.1: (a) Electron microscopy image of the vesicle fraction of Chlorobium thiosulfatophilum

[40]. (b) Freeze-fractured electron microscopy image of chlorosomes illustrating the
closely packed, parallel rod elements and the crystalline baseplate (arrow) [41].

In the following years, further experimental techniques such as NMR spectroscopy were

used to re�ne the presented models [44]. The improvement of cryo-electron microscopy

to higher resolutions and using x-ray scattering brought up a lamellar model structure

of semicrystalline lateral arrays for the arrangement of BChls in chlorosomes [45] (see

�gure 3.2). It is worth noting that up to this point, only ensembles of chlorosomes were

studied in the spectroscopical experiments. Therefore, only statements about the inter-

chlorosome heterogeneity of an ensemble were made, since di�erences between individual

chlorosomes cannot be investigated with these techniques. Single-particle techniques

diminish the inter-chlorosome heterogeneity as only one chlorosome at a time is studied.

This leaves only the intra-chlorosome heterogeneity, which means that the structures

within a chlorosome can also di�er from each other.

In 2006, �uorescence spectra of individual chlorosomes were measured to investigate

the excited states of chlorosomes [47]. With this technique, the extent of inhomogeneity

within a single chlorosome was estimated, and it was shown that the spectra of the chloro-

somes of Cba. tepidum are already inhomogeneously broadened at the single-chlorosome

level. As the single-molecule techniques add a large value in the studies of chlorosomes,

recent studies investigated the exciton states of the aggregates in individual chlorosomes

by polarization-resolved �uorescence-excitation spectroscopy [48, 49]. The measurements

on chlorosomes from the wild type of Cba. tepidum revealed a strong modulation of the

�uorescence-excitation spectrum as a function of the polarization of the excitation light.

This feature of the spectra indicates a high degree of organization of the chromophores

into secondary structures in chlorosomes. Furthermore, the polarization features are con-

sistent with a helical arrangement of BChl molecules in cylinders and/or spirals. This
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(a) (b)

Figure 3.2: (a) Electron cryomicroscopy (cryo-EM) image of a chlorosome [45]. (b) Schematic
representation of lamellar structures a chlorosome with a parallel orientation of the
lamellae with respect to the long axis of the chlorosome [46].

was shown by comparing simulated spectra of various models of the supramolecular or-

ganization of BChls in chlorosomes to the experimental ones. In this way, spectroscopic

experiments contribute to the elucidation of the secondary structures in chlorosomes.

Ganapathy et al. published in 2009 and 2012 the most detailed structural model of

chlorosomes to date [1, 50]. These studies use a combination of several experimental

and theoretical techniques to investigate the chlorosomes of the wild type and mutant

species of Cba. tepidum. A lattice arrangement of the BChls was obtained by NMR

spectroscopy and molecular modeling. In combination with the information from cryo-

electron microscopy, the lattice was used to develop a cylindrical model of the secondary

structures in chlorosomes. The tubular model structure was obtained by wrapping the

2D lattice onto a cylindrical surface. This model represents a milestone in the research

on chlorosomes. It serves, therefore, as a starting point for model development in this

work. This model is described in detail in section 3.4.

Time-resolved studies of the excitation energy transfer in chlorosomes also contribute

to the development of structural models of chlorosomes [51, 52]. In order to determine

model structures from time-resolved femtosecond transient absorption spectroscopy, sim-

ulations of various models generated by molecular mechanics calculations were conducted.

Statements about the structural arrangement of the chromophores can only be drawn

from a comparison of experiment and theoretical modeling, as is the case for all spectro-

scopic methods.

The �ndings in research on chlorosomes so far show that the secondary structures

in chlorosomes of various species are di�erently developed. Various experimental tech-
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3 Secondary structures in chlorosomes

niques revealed intra- and inter-chlorosome heterogeneity, which was observed as varia-

tions in the spectra of individual chlorosomes. These heterogeneities are associated with

structural variations of the supramolecular arrangements. These variations also prevent

structural determination with atomic resolution using X-ray crystallography.

It is clear that the heterogeneity of the chlorosome samples has to be diminished, and

single-chlorosome techniques have to be used to study the structure of chlorosomes by

spectroscopy. Although the mentioned studies deal with the challenges resulting from

the heterogeneity of the samples, still di�erent models for the secondary structures of

chlorosomes are debated in the literature. In the following, these di�erent models will,

therefore, be compared, and possible reasons for this contradiction will be discussed.

3.2 Contrasting models of cylinders and lamella structures

in chlorosomes

As we are looking at a natural system, with a signi�cant degree of heterogeneity, it is

not surprising that several studies have found di�erent models for the structure of BChl

arrangement in chlorosomes. First microscopic images of the interior of chlorosomes

showed cylindrical structures [40].

(a) (c)(b)chlorosome
envelope

rod elements

lamellar
aggregates multiwalled

tubes

curved
lamella

Figure 3.3: Models of the internal structural elements in chlorosomes. (a) Cylindrical structures
[53], (b) lamella structures [45], (c) mixture of di�erently curved structural elements
[52].

The model of BChls arranged in cylindrical structures, as depicted in �gure 3.3a, was

con�rmed, re�ned, and extended by further experimental and theoretical methods [44,

53�56]. Nevertheless, from the results of similar methods, a lamella model was concluded

[45, 46, 57] (see �gure 3.3b). In particular, it was claimed that data from higher resolution

cryo-EM and X-ray di�raction is only compatible with a lamellar organization of the

BChls and rule out the cylindrical model. As illustrated in �gure 3.3b the results from

these studies suggest a model of curved lamellar structures. Based on further cryo-EM

observations, as well as spectroscopic experiments, also a model of curved elements with

cylindrical symmetry was proposed [1, 50, 58, 59] (see �gure 3.3c). A possible way out of
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3.3 Mutants of Cba. tepidum created by gene inactivation

this debate of contrasting models might be a combination of these structures within one

chlorosome, which was presented by Linnanto et al. [52]. Since all these models are the

result of well designed and carefully conducted studies, it is not helpful to question one

model or the other. It is, therefore, necessary to consider explanations that may clarify

this con�ict.

Most studies on the secondary structures in chlorosomes from Cba. tepidum were per-

formed on ensemble samples of chlorosomes from the wild type stem of Cba. tepidum.

Such studies do not take into account the di�erences between chlorosomes and can,

therefore, only provide information about an average from the structures in an ensem-

ble of chlorosomes. The elimination of this inter-chlorosome heterogeneity has already

contributed to the elucidation of the secondary structures in chlorosomes [47, 58�60].

Nevertheless, it is very likely that di�erent growth conditions, such as lighting intensity,

nutrient content, and other environmental factors, can lead to di�erent formations of the

aggregates. Therefore, intra-chlorosome heterogeneity remains a problem in elucidating

these structures.

3.3 Mutants of Cba. tepidum created by gene inactivation

Since the individual aggregates in the chlorosome are composed of individual BChls,

it can be assumed that the structure of the BChls contributes to the heterogeneity of

structures in chlorosomes. As seen in �gure 2.3, various side groups can be attached to

the molecular structure of BChl.

Table 3.1: Possible side groups of BChl c and BChl d as synthesized in wild type of Cba. tepidum
as well as the side groups of bacteriochlorophyll synthesized by the mutants bchR,
bchQR and bchQRU [37].

BChl c BChl d bchR bchQR bchQRU

R1 methyl H methyl methyl H

R2 ethyl
n-propyl
isobutyl

ethyl
n-propyl
isobutyl

ethyl
n-propyl
isobutyl

ethyl ethyl

R3 ethyl
methyl

ethyl
methyl

methyl methyl methyl

In table 3.1 on the left side, the possible side groups of BChl from table 2.3 are listed

again. The chlorosomes of the wild type of Cba. tepidum contain mostly BChl c with

a variation of the listed side groups. It is easy to understand that a mixture of these

BChls may lead to di�erent structures of the secondary elements in chlorosomes. In

2003 Bryant et al. created mutants of Cba. tepidum. By gene deactivation they reduced
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3 Secondary structures in chlorosomes

the methylation of the side groups R1, R2 and R3. On the right hand side of table 3.1

the remaining side groups for the BChl of the bchR mutant, the bchQR mutant and the

bchQRU mutant are shown. The terms bchQ, bchR, and bchU denote the deactivated

genes [37]. The mutants show a similar photosynthetic growth rate as the WT, with a

slightly reduced light-harvesting e�ciency.

Comparing the absorption spectrum of BChl c in �gure 2.4 and the absorption spec-

trum of the wild type chlorosomes, which contain almost exclusively BChl c, in �gure

3.4 a shift of the Qy-peak absorption peak of the spectrum from the chlorosome to larger

wavelength (peak position 740 nm [4]) with respect to the monomer spectrum (peak po-

sition 666 nm [36]) can be observed. The shift of the peak position in the spectrum is a

result of the self-aggregation of the BChls in chlorosomes and the resulting interaction

of the monomers.
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Figure 3.4: Absorption spectra of an ensemble sample of chlorosomes from the wild type, the
bchR mutant, the bchQR mutant, and the bchQRU mutant. (data from [4])

The mutations bchR and bchQ do not change the peak position of the absorption spec-

trum of the chlorosomes from these species (peakbchR = 740 nm, peakbchQR = 743 nm)

compared to the spectrum of the wild type chlorosomes (peakWT = 743 nm), as can

be seen in �gure 3.4. In contrast the mutation bchU converts the BChl c to BChl d.

The peaks of the absorption spectrum of the BChl d monomer (655 nm) as well as the

one of the bchQRU mutant chlorosomes containing BChl d (716 nm) are blue shifted

with respect to the BChl c and the WT spectra, respectively. On the blue wing the

spectra exhibit the absorption peak of the Qx transition dipole moment masked by the

strong absorption peak of the Qy transition dipole moment. On the red wing the ab-

sorption of BChl a from the baseplate of the chlorosomes occurs in the shoulder of the
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3.4 Cylindrical model structures for aggregates in chlorosomes

Qy-peak. The spectra also show a reduction of the width of the Qy-peak in the spectra

of the chlorosomes of the bchR mutant and the bchQR mutant (both FWHM = 39 nm)

compared to one of the wild type chlorosomes (FWHM = 55 nm). The decrease of the

absorption bandwidth yields an explanation for the reduced light-harvesting performance

of the mutants compared to the WT.

3.4 Cylindrical model structures for aggregates in

chlorosomes

Ganapathy et al. obtained a cylindrical model structure by reducing intra-molecular het-

erogeneity in the chlorosomes via mutagenesis and combining information from NMR,

cryo-EM, and molecular modeling [1, 50]. In their study, they investigated the arrange-

ment of BChl d molecules with respect to each other in the chlorosomes of the bchQRU

mutant obtained by magic-angle spinning (MAS), solid-state NMR spectroscopy. They

observe a syn- and an anti-conformation of the BChls. The syn (see �gure 3.5a) and

anti (see �gure 3.5b) refers to the orientation of the OH ligation of the BChls with

respect to their farnesyl side chain. From the experimental data, they developed new

possible structural models on a molecular basis: a stacking model based on antiparallel

monomer stacking (�gure 3.5d) and an alternating syn-anti monomer stacking model

(�gure 3.5f). Density functional theory (DFT) calculations for the new models and the

previously published parallel-stack model (�gure 3.5c) [55] and piggy-back dimer model

(�gure 3.5e) [61] showed that only the syn-anti model and the parallel-stack model could

explain the experimental data.

In cryo-EM images of end-on views of chlorosomes from the bchQRU mutant coaxial

cylinders were observed. In side views, the concentric structures produced a spacing of

(2.10± 0.12) nm, which corresponds to an increment of the cylinder radius by 2.1 nm.

Furthermore, a spacing of (0.83± 0.01) nm was observed in the direction of the long axis

of the cylinders. The spacings are a clear indication for a helical arrangement with a

repeat distance of 0.83 nm. The structural arrangement of the BChl d molecules was

determined using molecular modeling. Supramolecular models based on the �ndings

of the NMR spectroscopy could reproduce the spacings from the cryo-EM images and

determined the structure presented in �gure 3.6.

The obtained lattice structure is shown in �gure 3.6a. It consists of a unit cell that

accommodates two molecules, which are represented by their transition dipole moments

depicted in the form of arrows. The unit cell features the lattice constants a = 1.25 nm

and b = 0.98 nm inclined by an angle γ = 122◦. The colors (red and green) of the arrows

represent a tilt of the molecules transition dipole moments by an angle α = ±4◦ in or out

of the lattice plane. This tilt of the dipole moments is a result of the syn-anti monomer
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Figure 3.5: (a,b) Syn- and anti-conformation of the BChls. S denotes the syn-orientation (green)
and A the anti-orientation (red) of the BChl molecules. (c-f)Schematic representation
of four stacking models for the arrangement of BChl molecules. (c) Parallel-stack
model, (d) antiparallel monomer stack model, (e) piggy-back dimer model, (f) syn-
anti monomer stack model [1].

arrangement. The transition dipole moments enclose an angle of η = 35◦ with the a-axis

of the lattice. An overview of the lattice parameters is given in table 3.2. A tubular model

structure was obtained by wrapping the 2D lattice structure, which represents the near-

order of the molecules, onto a cylindrical surface. The rolling direction for the structure

of the bchQRU mutant chlorosomes is determined by the stacking distances measured

in the cryo-EM experiments. The corresponding rolling vector is labeled CQRU in �gure

3.6a. The resulting cylinder structure is shown in �gure 3.6b. With the help of the

gridlines of the lattice structure, it can be seen that the molecule stacks form helices

running along the surface of the cylinder.

The lattice structure obtained for the arrangement of the BChl d molecules in the

chlorosomes from the bchQRU mutant was then used in combination with the analysis

of cryo-EM images to develop a model for the secondary structures in chlorosomes of
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3.4 Cylindrical model structures for aggregates in chlorosomes

(a) (b) (c)

a

b

γ

η

α = −4◦

α = 4◦

bchQRU wild type

βQRU = 55◦ βWT = 35◦

d

d

δ

CWT

C
Q
R
U

Figure 3.6: Model structures of the secondary elements in chlorosomes as presented in [1]. (a) The
lattice structure, which features a unit cell with lattice parameters a and b inclined by
an angle γ, was obtained from NMR and molecular modeling. The arrows indicate the
transition dipole moments of the molecules. The transition dipole moments make an
angle η with the a-axis and are tilted by the angle α in or out of the plane. The rolling
vectors are referred to as CWT and CQRU. (b) Together with the information from
cryo-EM the lattice structure from panel a was wrapped in a horizontal direction onto
a cylindrical surface to create a supramolecular structure model for the chlorosomes of
the bchQRU mutant. (c) The information from cryo-EM implicated a rolling vector,
which inclines an angle δ with the a-axis for the structure of the secondary elements
in the chlorosomes from the wild type [1].

the wild type. The cryo-EM images of chlorosomes from the wild type showed a unique

organization of BChls in individual chlorosomes. Despite this structural heterogeneity,

the Fourier transforms of the cryo-EM images showed a spacing of d = (1.22± 0.03) nm

(see �gure 3.6c).

It was thus concluded that the aggregates in chlorosomes from the WT could be de-

scribed by a model of wrapping the lattice structure along the rolling vector CWT , which
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3 Secondary structures in chlorosomes

Table 3.2: Parameters of the 2D lattice structure of the arrangement of BChls obtained by NMR
and molecular modeling [1, 50].

a 1.25 nm

b 0.98 nm

γ 122◦

η 35◦

encloses an angle of δ = 90◦ with the a-axis. The projected model structure shows a

layer line in the Fourier transform at 1.25 nm and therefore supports this model.

Using the presented structures, it is possible to determine the angle β that is enclosed

by the transition dipole moment and the long axis of the cylinders. For the chlorosomes

of the bchQRU mutant, this leads to an angle of βQRU = 55◦, whereas an angle of

βWT = 35◦ is obtained for the chlorosomes of the wild type.

Table 3.3: Summary of the values of the model parameters for the WT, the bchQR mutant and
the bchQRU mutant from references [1, 50].

WT bchQR bchQRU

δ (◦) 90 90 0
β (◦) 35 35 55
d (nm) 1.22 0.69 0.83

In a similar study from 2012 [50], chlorosomes from the bchQR mutant were investi-

gated in addition to the WT chlorosomes. The NMR measurements and DFT calcula-

tions showed that for the bchQR mutant chlorosomes, the BChls is arranged in domains

of parallel all syn or all anti stacking. This arrangement results in a stacking distance

d of 0.69 nm as this spacing always represents the distance between two syn or two anti

homologues of BChl (see �gure 3.7b). Despite establishing a di�erent stacking model for

BChls in the bchQR mutant chlorosomes the lattice structure presented in �gure 3.6 re-

mains the same except for the alignment of the dipole moments, which point alternating

in and out of the lattice plane for the WT, whereas a domain-behavior was found for the

bchQR mutant, as shown in �gure 3.7.

A summary of the model parameters, i.e. the angle δ of the rolling vector with respect

to the a-axis, the angle β of the BChl dipole moments with respect to the cylinder axis,

and the stacking distances d of the molecules in the direction of the long axis of the

cylinders, is given in table 3.3 for the model structures of the WT, the bchQR mutant,

and the bchQRU mutant.

In conclusion, these studies presented a lattice structure for the near-order of BChls. A

cylindrical model structure was developed by wrapping this grid along the rolling vector
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Figure 3.7: Schematic representation of stacking models for the arrangement of BChl molecules
in chlorosomes of (a) the WT, and (b) the bchQR mutant. Periodicities of 0.69 nm
and 1.22 nm, respectively, are indicated. The arrows indicate the direction of the
long axis of the chlorosome. A and S stand for BChl molecules that are syn- and
anti-coordinated, respectively [50].

CQRU for the bchQRU mutant chlorosomes and along CWT for the WT and the bchQR

mutant chlorosomes. It has to be noted that the rolling direction of the bchQRU mutant

model is perpendicular to the rolling direction of the WT model.
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4 Photophysics of molecular aggregates

Spectroscopical methods are often used to study the electronic excitations of molecular

aggregates, like light-harvesting antenna systems. The correct analysis of the experimen-

tal results requires an understanding of the photophysics of such systems. A theoretical

description of the interaction between light and a complex system of molecules, such as

the chlorosome, is based on limitations and simpli�cations. Therefore, it is necessary

to have a look at a simple system like a dimer to develop the basic formalism for the

excitation of complex molecular aggregates.

4.1 The dimer model

E

|f〉

|g〉
1 2 1 2

V12 V12

Figure 4.1: Schematic representation of a ground (groundstate |g〉) and an excited (excited state
|f〉) energy level of two molecules with interaction V12 and resonant energy transfer.

The most simple representation of a molecular aggregate is the dimer model. The two

molecules of a dimer are connected by covalent bonds (via atomic bonds) or non-covalent

bonds, e.g., van der Waals-, dipole-, electrostatic-, and hydrophobic interactions. In

�gure 4.1 the individual molecules are labeled 1 and 2. With two two-level molecules

there are four possible states of the system: both in groundstate |g〉, either molecule

1 (|1〉) or molecule 2 excited (|2〉), or both excited (|12〉). The states |1〉 and |2〉 are
degenerated. As long as there is no interaction between the molecules, these are the

eigenstates of the system. If there is an interaction between the molecules, the states

are getting mixed. In �gure 4.1, only the resonant energy transfer is shown. Due to the

interaction V12 of the molecules, energy is transferred from either molecule 1 to molecule

2 or the other way around. This can be written as Hamiltonian:

H = V12 (|2〉〈1|+ |1〉〈2|) (4.1)
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4 Photophysics of molecular aggregates

The energies of the dimer result as the diagonal elements of the Hamiltonian H = H0 +

V12:

E± =
1

2
(E1 + E2)± 1

2

√
(E1 − E2)2 + 4 |V12|2 (4.2)

With Em = 1
2 (E1 + E2) and ∆ = 1

2 (E1 − E2), E± translates to:

E± = Em ±
1

2

√
∆2 + |V12|2 (4.3)

The eigenstates, also called exciton states of the system are:

|+〉 = − cos
Θ

2
|1〉+ sin

Θ

2
|2〉 (4.4)

|−〉 = − sin
Θ

2
|1〉+ cos

Θ

2
|2〉 (4.5)

with tan Θ = |V12|
∆ . In the point dipole approximation, where the expansion of the

molecules can be neglected, the interaction can be written as:

V12 =
~µ1 · ~µ2

|~r12|3
− 3

(~µ1 · ~r12)(~µ2 · ~r12)

|~r12|5
(4.6)

The interaction V12 depends on the distance ~r12 between the two molecules and the

position of the molecules, or rather their transition dipole moments ~µ to each other

[62]. Exciton-exciton and exciton-phonon interactions are explicitly not considered in

this description.

It should be noted that in this approach, the interaction between the molecules is al-

ways small. Within this approximation, the interaction can be further divided into strong

and weak coupling depending on the ratio of interaction to disorder
∣∣V12

∆

∣∣. Correctly, this
interaction would rather be called weak and very weak coupling.

Weak coupling

The term weak coupling is used, if the transition energies of the monomers in the dimer

di�er strongly from each other or if the interaction between the monomers is small, i.e.,∣∣V12
∆

∣∣ � 1. In this situation, the monomers are almost uncoupled, and the excitations

are strongly localized. Incoherent energy transfer takes place between the chromophores,

which can be described within the framework of the Förster theory [63]. Such a dimer is

also called an inhomogeneous dimer.

Strong coupling

In a homogeneous dimer, one �nds almost identical transition energies of the molecules.

The disorder becomes negligible in relation to the interaction. The system therefore has
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4.1 The dimer model

a strong coupling (
∣∣V12

∆

∣∣� 1).

The eigenstates of this dimer system arise to |±〉 = 1√
2

(|1〉 ± |2〉) with the energies

E± = ω0 ± V12, where ω0 denotes the transition energy between the ground and the

excited state. These eigenstates are coherent standing waves, which are delocalized over

several molecules and are called Frenkel excitons [64�66]. The total dipole operator of

this system results in ~̂M = ~̂µ1±~̂µ2 and is dependent on the shear angle α of the transition

dipole moments with respect to their connecting vector r12. The optical response of the

dimer depicted in �gure 4.2a can be calculated from the matrix elements of the total

dipole operator:

〈±| ~̂M |g〉 =
(~µ1 ± ~µ2)√

2
= m2 (1± cosα) (4.7)

Subsequently, the interaction V12 between pigments is also dependent on the arrange-

ment of the transition dipole moments relative to each other. In the dimer arrangement

E

E0

Dimer

E0 + 2V

E0 − 2V

Monomer J-aggregate H-aggregate

Eg

(a) (b)

~r12

~µ2~µ1

α

E0 + V

E0 − V

Figure 4.2: (a) Schematic illustration of the transition dipole moments µ1 and µ2 together with
their connecting vector r12. Both transition dipole moments have a shear angle α with
the connecting vector. (b) Interaction of monomers with each other in the form of a
dimer changes the transition energy of the resulting system. The transition energy
of the dimer is either increased or decreased in relation to the transition energy of
the monomers. The arrangement of the molecules is represented by the position of
their transition dipoles illustrated by the arrows on the left and on the right sides
of the energy levels. In the arrangement of H- or J-aggregates, only one transition
is optically allowed. The optically allowed transition is indicated by the thick black
arrow, respectively [67].

shown in �gure 4.2a, V12 is dependent on the shear angle α between the transition dipole

moments and calculates to:

V12 =
µ2

r3
12

(1− 3 cos2 α) (4.8)

Here µ2 is the product of the dipole strength µ1 and µ2. The interaction V12 consists of

a distance dependent part V = µ2

r312
and an orientational factor (1− 3 cos2 α).
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4 Photophysics of molecular aggregates

In �gure 4.2b, the energies of the monomer and the dimer are shown. The increase

or decrease of the energy of the allowed transition state relative to the transition en-

ergy of the monomers E0 depends on the interaction V12 and thus the orientation of the

monomers to each other. Therefore, di�erent arrangements of the transition dipole mo-

ments to each other are considered. On the one hand, the vectors of the transitions are

linear in one row while, in the other case, they are parallel. For these arrangements, only

one of the resulting transitions is optically allowed and has the entire oscillator strength.

This energy state is indicated by the level marked in black and the corresponding tran-

sition with the black arrow. In case of the optically allowed transition with a decrease

of the transition energy, the aggregate is called J-aggregate, in case of an increase, it is

called H-aggregate [68�71].

4.2 Molecular aggregates

One chlorosome contains several hundred thousand chromophores. Previous research (see

section 3.1) has shown that these are arranged in aggregates, and many studies suggest a

cylindrical arrangement. In order to describe the photophysics of such a system, the dimer

system is extended to a linear aggregate chain and a ring in the following. Finally, the

linear aggregate and the ring aggregate are combined to describe a cylindrical aggregate.

4.2.1 Linear aggregate

The dimer system is now extended to N molecules, resulting in a linear molecular aggre-

gate. The energy levels of the N molecules are shown in �gure 4.3. As only homogenous

aggregates are considered, the transition energies of all molecules are equal to E0. Be-

tween all molecules, there is again an interaction of V . The interaction between molecule

m and molecule n is denoted by Vnm. The electronic excitation of such a supramolecular

molecule aggregate can be described by the model of Frenkel excitons [64, 65].

E

E0

Eg

1 2 n m N

Vnm

Figure 4.3: Schematic representation of a ground and an excited energy level of N molecules with
interaction V

Therefore the electronically excited states are described by a Frenkel exciton Hamilto-
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4.3 Light-matter interaction in cylindrical aggregates

nian using the Heitler-London approximation and open boundary conditions.

H =
∑
n

E0|n〉〈n|+
1

2

∑
n,m
n6=m

Vnm|m〉〈n| (4.9)

The excitation transfer interaction Vnm between the molecules is now extended from the

dimer model to the aggregate model.

Vnm =
~µn · ~µm
|~rnm|3

− 3
(~µn · ~rnm)(~µm · ~rnm)

|~rnm|5
(4.10)

~rnm denotes the relative position vector with ~rnm = ~rn−~rm. Considering only the nearest
neighbor interaction, the one-exciton eigenstates of the Hamiltonian result in:

|k〉 =

√
2

N + 1

∑
n

sin

(
πkn

N + 1

)
|n〉 (4.11)

with the eigenenergies

Ek = E0 + 2V cos

(
2πk

N

)
(4.12)

The interaction between the monomers Vnm is now replaced with V as we assume only

transfer interactions between neighboring chromophores. k denotes the number of the

quantum state. The model clearly describes a collective excitation of all molecules as all

states are delocalized on the linear aggregate chain. For N = 2, equations 4.11 and 4.12

reproduce the results for the homogenous dimer in section 4.1. The nondegenerate state

with k = 1 holds nearly the entire oscillator strength of this system [72, 73].

4.2.2 Homogeneous ring

It is inevitable to move from open boundary conditions to periodic boundary conditions

when looking at a ring-shaped aggregate instead of a linear one. The eigenstates calculate

to:

|k〉 =
1√
N

∑
n

exp
(
i2πk

n

N

)
|n〉 (4.13)

and eigenenergies correspond to 4.12. Only three of the eigenstates are dipole allowed,

k = 0, and the degenerated one with k = ±1. In a homogeneous, undisturbed ring, the

oscillator strength resides only in the two degenerated states k = ±1 [74].

4.3 Light-matter interaction in cylindrical aggregates

In section 3.4, models for cylindrical aggregates as secondary structures in chlorosomes

were presented. The cylindrical aggregates were constructed from a two-dimensional
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4 Photophysics of molecular aggregates

lattice, which is rolled onto a cylinder surface. A detailed theoretical analysis of such

systems was developed by Didraga et al. [74�79] In these studies, the cylindrical aggregate

is presented as a composition of a stack of rings rotated with respect to each other, as

can be seen in �gure 4.4.

β

h
Φ1

Φ2

n2 = 1, 2, . . . , N2

n
1

=
1
,2
,.
..
,N

1

r

α

Figure 4.4: The cylindrical aggregate is composed of a stack of rings rotated with respect to
each other. The position of the molecules generates helices proceeding around the
cylinder. With the given parameters (r,n1,N1,n2,N2,Φ1,Φ2,h,α,β) the position of
each molecule and the orientation of its transition dipole moments is fully de�ned
[75].

The cylinder of radius r is composed of N1 rings, where n1 denotes the number of the

ring. Φ1 is the azimuthal angle between adjacent rings in the stack, n2 the number of the

monomer on an individual ring, and N2 the total number of monomers on a ring. The

cylinder consists of N = N1 · N2 monomers. Φ2 denotes the azimuthal angle between

adjacent monomers within a ring, with Φ2 = 2π
N2

. The distance between successive rings

is given by h. ~rn denotes the position of the center of monomer n on the cylinder.

~rn =

r cos(n1Φ1 + n2Φ2)

r sin(n1Φ1 + n2Φ2)

n1h

 (4.14)

To describe the photophysics of cylindrical aggregates, in addition to the position of

the monomers, the orientation of their transition dipole moments must be de�ned. The

transition dipole moments of monomers incline an angle β with respect to the cylinder

axis. The projection of the transition dipole moments in the plane of the rings makes

an angle α with the local tangent of the ring. The orientation of the transition dipole
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4.3 Light-matter interaction in cylindrical aggregates

moment ~µ(n) of monomer n is given by:

~µ(n) =

µ sin(β) sin(n1Φ1 + n2Φ2 ± α)

µ sin(β) cos(n1Φ1 + n2Φ2 ± α)

µ cos(β)

 (4.15)

The electronically excited states are described by the Hamiltonian in equation 4.9. As

for the linear and for the ring aggregate, the interaction of the system only depends on

the relative positions of the molecules n and m and is given in equation 4.10. The total

exciton eigenstates ~k = (k1, k2) result from the solution of the Hamiltonian to

|~k〉 = |k1, k2〉 =

√
1

(N1 + 1)N2

∑
n

sin

(
πk1n1

N1 + 1

)
exp

(
i2πk2

n2

N2

)
|n〉 (4.16)

Only the bands with k2 = 0 and k2 = ±1 (degenerated) are dipole-allowed. It emerges

from this that only these states contribute to linear absorption spectra. The absorption

spectrum of an isotropic ensemble is then given by

A(ω) =
∑
k

Okδ (ω − Ek) (4.17)

The spectrum is composed of peaks at exciton eigenfrequencies Ek, which are weighted

with the oscillator strength Ok. Further calculations of the oscillator strength yield that

only the exciton bands with k2 = 0 and k2 = ±1 contain states with oscillator strength.

The states in the k2 = 0 band are polarized parallel to the axis of the cylinder, whereas

the states in the k2 = ±1 bands are polarized perpendicular to the cylinder axis. The

oscillator strengths of these bands show an proportionality of cos2 β for the k2 = 0 band

and a proportionality of sin2 β for the k2 = ±1.

A linear dichroism (LD) spectrum is the di�erence of the absorption spectra from lin-

early polarized light with mutually perpendicular polarization vectors. The calculations

of the exciton states show that it is possible to take LD spectra of individual cylinders

or oriented samples of cylinders.

LD(ω) = A‖(ω)−A⊥(ω) (4.18)

In principle, it is possible to measure the angle β with this technique. In systems con-

sisting of several cylinders measuring β with this technique relies strongly on a good

alignment of the cylinders. However, the measurement of polarization-resolved spectra

can provide even more information about a system, like the chlorosomes, in which perfect

orientation cannot be achieved.
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5 Materials and methods

5.1 Preparation of chlorosomes

The chlorosome samples were prepared by the group of D. A. Bryant at Pennsylvania

State University. As described in reference [80] cultures of Chlorobaculum tepidum strain

ATCC 49652 were cultivated at 48 ◦C and harvested after 7 days. The cells were me-

chanically disrupted using a chilled French press. The chlorosomes were separated from

the membranes on a continuous sucrose density gradient. The isolated chlorosomes were

suspended in phosphate bu�er (containing 1 mM PMSF and 2 mM DTT).

A bchR mutant and bchQR mutant species have been created as described in references

[81, 37]. The chlorosomes from these species were extracted in the same way as the

ones from the WT. The exact growth conditions of the wild type species and the mutant

species, as well as the exact procedure that was used for the extraction of the chlorosomes,

can be looked up in reference [80].

5.2 Preparation of single-particle samples

Stock solutions of chlorosomes (OD733=58 for a sample of 1 cm thickness) from the wild

type, the bchR mutant and the bchQR mutant were stored at −20 ◦C in a bu�er solution

(5 mM dipotassium phosphate (K2HPO4), 5 mM monopotassium phosphate (KH2PO4),

150 nM sodium chloride (NaCl), pH 7.2 at room temperature). For the preparation

of a single-particle sample, the stock solutions were diluted in the same bu�er to a

concentration of nM. An amount of about 10 µl of the diluted sample was adsorbed

onto a SiO2 substrate under nitrogen atmosphere for 20 min to 30 min. The chlorosomes

align with their long axis parallel to the substrate surface [58, 59]. After spin-coating

the samples for 30 s at 2000rpm to remove any remains from the bu�er, the sample was

mounted in a helium bath cryostat [2�4].

At room temperature, prereducing the samples with sodium dithionite (Na2S2O4)

5 mM causes a signi�cant increase in the �uorescence emission. At cryogenic tempera-

tures, however, there is no dependence of the �uorescence intensity on the reduction of

the sample [4]. Therefore the reducing treatment of the samples was only used for room

temperature measurements.
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5 Materials and methods

5.3 Single-particle spectroscopy

Two individual home-build wide�eld/confocal microscopes for �uorescence-excitation

spectroscopy were used to study the spectral properties of chlorosomes from the WT

and the mutants of Cba. tepidum. The design and function of the setups are similar. A

helium bath cryostat was used to perform spectroscopy at cryogenic temperature. By

storing the sample in super�uid helium, the thermal molecular movement and dephas-

ing are reduced and, therefore, also spectral widening. Furthermore, photostability is

increased, and photobleaching is nearly completely suppressed. In the following, the

general microscope setup is described. The speci�c components are listed that were used

in the setup for the experiments on the WT samples, whereas those used in the setup

for the mutants are given in square brackets. Subsequently, details of the polarization-

resolved spectroscopy part of the setup will be discussed.
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Figure 5.1: Schematic illustration of the single-particle spectroscopy setup. The �gure shows the
beam path of the laser-generated excitation light to the sample in the cryostat and
the detection path for the emitted light. The sample and the objective are located in
the cryostat. The section enlargements show a single-particle sample of chlorosomes
and the cross-section of a chlorosome. Dashed lines indicate optics that were variably
positioned in the beam path.

A tunable titanium:sapphire (Ti:Sa) laser (3900 S, Spectra Physics; [899-01, Coherent])

that is pumped by a frequency-doubled continuous-wave neodymium-yttrium-vanadate

(Nd:YVO4) laser (Millenia Vs, Spectra Physics; [Verdi V10, Coherent]) provided the

excitation light in the setup presented in �gure 5.1. The laser wavelength was scanned

between 718 nm and 775 nm (698 nm�795 nm for the bchR and bchQR mutant) with a rate

of 3 nm/s (2.8 nm/s) by rotating a birefringent �lter via a motorized micrometer screw

(Actuator 850 F, Motion Controller MM4005, Newport; [Nanomover, Melles Griot]). The
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5.3 Single-particle spectroscopy

accuracy and the reproducibility of the wavelength variation of the excitation beam was

1 cm−1 and was veri�ed with a wavemeter (WaveMaster, Coherent; both setups). The

laser beam was linear polarized, perpendicular to the table plane. The laser intensity was

controlled using a continuously variable neutral density �lter (Variable wedge attenuator

M-925B, Newport; both setups). It was adjusted to 25 W/cm2 (5 W/cm2 for the bchR and

the bchQR mutant). A bandpass �lter (SP 785 RazorEdge, AHF Analysentechnik; [BP

736/128, AHF Analysentechnik]) was used to suppress nonampli�ed �uorescence from

the laser crystal. A system of two lenses (Edmund Optics) was used to expand the beam

so that the diameter of the excitation beam corresponds to the diameter of the posterior

focal plane of the objective. In this setup, it was possible to place a pinhole between

the two lenses to spatially clean the beam pro�le. However, since the beam showed a

clean pro�le, this was omitted. The excitation path was separated from the detection

path using a glas wedge (96 % transmission). The part of the beam transmitted by the

glas wedge was used for the reference measurement of the laser power parallel to the

data acquisition (LaserMate-Q, Coherent; both setups). A combination of a scanning

mirror (Thorlabs), a telecentric lens system (f = 100 mm, Edmund Optics), and an

objective (Mikrothek, NA = 0.85; [Edmund Optics, NA = 0.85]) was used to direct

the di�raction-limited laser spot on single particles. The objective was mounted in the

cryostat and used for focusing the laser beam as well as the collection of the emission

from the sample. After passing suitable detection �lters (LP 780, AHF Analysentechnik;

[BP 850/80, AHF Analysentechnik]) to block residual laser light, the emission from a

single particle was focused onto a single photon counting avalanche photodiode (APD)

(PCM-AQR-16, PerkinElmer; [SPCM-AQR-15, PerkinElmer]).

For localizing single particles, a wide-�eld �uorescence image was recorded by defo-

cusing the excitation with an additional lens (Edmund Optics) in the excitation path to

a spot size of about 20 µm. The wide-�eld �uorescence image was then recorded with a

charge-coupled device camera (CCD) (iKon, Andor; [LUCAEM R 604, Andor Technology

Ltd.]). From this image, individual, spatially well-seperated chlorosomes were selected.

After removing the wide-�eld lens, the di�raction-limited laser spot was directed onto

the selected chlorosomes.

Polarization-resolved spectroscopy

The polarization of the excitation light was rotated in steps of steps of 6.2◦ (3◦) between

two successive scans by a half-wave plate (Achromatic half-wave plate 400 nm�800 nm,

Thorlabs Inc.; both setups) operated by a stepper motor to investigate the polarization

dependence of the absorption properties of the samples. A rotation of the wave plate

by a certain angle corresponds to twice the angle of rotation of the polarization of the

linear excitation light. For each particle, 97-250 of such scans were recorded to determine
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5 Materials and methods

the spectral position and polarization dependence of bands [2, 3]. Since the polarization

of the emission of the chlorosomes does not depend on the polarization direction of

the excitation light, the measurement is not in�uenced by the fact that excitation and

detection beams are partially combined, i.e., the emission passes the waveplates [82].

5.4 Model simulations

For simulations of spectra of the secondary structures in chlorosomes, a model structure

was used where the 2D lattice structure, obtained from NMR and molecular modeling [1],

was wrapped onto a cylindrical structure (see �gure 3.6). Details of this model structure

have already been described in section 3.4. The model described in reference [1] presented

two rolling directions of the lattice. As seen in �gure 3.6 these rolling vectors CWT and

CQRU are parallel or perpendicularly to the a axis of the lattice. This model was used

as a starting point. Details of the theoretical description of cylindrical aggregates were

given in section 4.3. The adaptation of this model and details to the �ne-tuning of the

model parameters are described in sections 7.1 and 7.2.

For the simulations, the standard Frenkel exciton Hamiltonian in the Heitler-London

approximation was used (see equation 4.9). The excitation transfer interaction between

molecules n and m (equation 4.10) was calculated in the point-dipole approximation.

The Hamiltonian for a particular cylinder was diagonalized, which yielded the collective

excited states. The exciton eigenstates and exciton energies were obtained from the nu-

merical diagonalization of the Frenkel Hamiltonian. From these eigenstates and energies,

the �uorescence excitation spectrum was calculated.

FE(ω) = S−1
k

∑
k

|µk · e|2 exp
[
− (h̄ω − Ek)2 /2S2

k

]
(5.1)

The inhomogeneous width Sk expressed as a standard deviation can be converted into a

FWHM:

Wk = 2
√

2 ln 2Sk (5.2)

For the simulation of multiwalled cylinders, inter-wall dipole interactions were neglected

[75, 76].
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6 Polarization-resolved

�uorescence-excitation spectroscopy of

individual chlorosomes

The following chapter presents, among others, the experiments and the results from

publications [2] and [3] and puts them into context. Sections are partly taken directly

from the publications.

In chapter 2, the unique features - high light-harvesting e�ciency and self-assembly

in the absence of a protein sca�old - of chlorosomes with respect to their structure and

function were described. Hence, it is understandable that there is a huge interest in

elucidating the design principles of such natural systems, because of the great impact of

the strategies that are considered for the development of novel organic solar cells [83�

85]. However, the detailed supramolecular organization of the BChls in chlorosomes,

which dictates the nature of the electronically excited states that determine their light-

harvesting performance, is the subject of a still ongoing debate. Previous studies have

led to various models for the structure, including tubular, lamellar, and rolled lamellar

formations [42, 44, 45, 52, 54, 55, 58, 59, 86] (see section 3.1). In the course of chapter 3,

it was explained that this diversity is a direct consequence of the large degree of the struc-

tural heterogeneity of the chlorosomes; i.e., variations occur in the size of the aggregates

and mixtures of the various types of BChl molecules, which prevent structural determi-

nation with atomic resolution using X-ray crystallography. The most detailed structural

model that has been proposed to date has emerged from combining genetic modi�cation

of the BChl homolog distribution, cryo-EM imaging, molecular modeling, and solid-state

nuclear magnetic resonance (NMR) (see section 3.4) [1, 50]. Owing to the more uniform

pigment content of a triple mutant (bchQRU ) and a double mutant (bchQR) from the

species Cba. tepidum, in which the compositions of the BChl side chains were controlled

[87], it was possible to grow bacteria with chlorosomes that were structurally more ho-

mogeneous than those of the wild type (WT). This yielded a detailed microscopic picture

for the bchQRU mutant chlorosomes, which in turn has been transferred into a struc-

tural model for the WT chlorosomes, and the bchQR mutant chlorosomes, featuring the

arrangement of BChl c molecules in multilayer tubular superstructures (see section 3.4).

Additional information about the supramolecular arrangement of the molecular building
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6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

blocks is accessible from optical spectroscopy [33, 48, 49, 88]. This is because the proper-

ties of the electronically excited states, such as their energetic positions, their oscillator

strengths, or the mutual orientations of their transition dipole moments, depend crucially

on the structure and the resulting intermolecular interactions within such aggregates [77,

89, 90]. Therefore, the photophysics of molecular aggregates was discussed in chapter 4.

Analyzing the photophysics of these systems allows one to test whether a proposed struc-

tural model is compatible with the experimentally observed spectra and to discriminate

between di�erent structures.

In summary, none of the previous studies have led to a detailed structural model

with regard to the structure and photophysics of the chromophoric assembly, either

because of inherent sample heterogeneity, a signi�cant degree of structural disorder in the

chlorosomes themselves or because spectroscopic data was not considered. Therefore, in

this thesis, polarization-resolved �uorescence-excitation spectroscopy was used to obtain

information about the structural arrangement of the secondary structures in chlorosomes.

Using the detailed model from Ganapathy et al. as a starting point, it seems obvious to

study the chlorosomes from the WT and bchQRU mutant spectroscopically. However,

the bchU mutation included in the triple mutant converts BChl c into BChl d (see section

3.3). Unfortunately, this shifts the monomer absorption from 666 nm to 655 nm in organic

solvents [36], and correspondingly, the absorption peak for BChl d containing chlorosomes

shifts to about 729 nm [80], which is out of the spectral range accessible for �uorescence-

excitation spectroscopy in our experimental setup (see chapter 5). Therefore, in this

study, chlorosomes from the WT were compared to those from the bchQR double mutant

and those from the bchR single mutant. In the bchQR mutant strain, the composition of

all three side groups of the BChl molecules is de�ned, yet the spectral positions of the

absorption bands are still within the experimentally accessible range because this mutant

also produces BChl c [50, 87]. The bchR mutant is included as there was no published

model of the structure to date. Furthermore, the lower degree of de�ned side chains in

the BChl monomers of this mutant allows a comparison of the spectral heterogeneity of

the chlorosomes from the WT, the bchR mutant, and the bchQR mutant.

Before going into detail and to avoid confusion, it is worthwhile to clarify once more the

hierarchies in the structural arrangements of the BChl molecules (as described in chapter

2). First, the BChl monomers form supramolecular aggregates, which determine the in-

ternal structure of chlorosomes. Hence, a single chlorosome refers to a small subensemble

of several tens of molecular aggregates, each consisting of thousands of BChl molecules.

Three organizational levels are distinguished: monomers - aggregates - chlorosomes.
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6.1 Spectra of chlorosomes from the wild type, the bchR mutant and the bchQR mutant

6.1 Spectra of chlorosomes from the wild type, the bchR

mutant and the bchQR mutant

Figure 6.1 shows examples of polarization-resolved, �uorescence-excitation spectra from

individual chlorosomes at low temperature (1.2 K-1.5 K). Each row shows three examples

of the spectra from the WT, the bchR mutant, and the bchQR mutant.
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Figure 6.1: Examples of polarization-resolved �uorescence-excitation spectra of individual chloro-
somes in a two-dimensional representation. All spectra have been recorded at 1.2 K-
1.5 K. (Top row) WT, stack of 97 spectra, recorded with an excitation intensity of
25 W cm−1. (Center row) bchRmutant and (Bottom row) bchQRmutant, stack of 200
spectra, recorded with an excitation intensity of 5 W cm−1. The relative normalized
intensity is given by the color bar.

The spectra in the top row have been taken from single chlorosomes from the WT,

whereas the center row shows spectra from single chlorosomes from the bchR mutant and

the bottom row from single chlorosomes from the bchQR mutant. An individual pattern

displays 97 (WT) or 200 (bchR and bchQR mutant) consecutively recorded �uorescence-
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6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

excitation spectra, for which the horizontal axis corresponds to the photon energy of

the excitation light and the vertical axis corresponds to the polarization angle. Between

two successive scans, the linear polarization of the excitation light was rotated by a few

degrees. The resulting �uorescence intensity is given by the color code. The spectra

show a band that arises from the Qy-transition of aggregated BChls (see �gure 3.4). For

details of the experiments see section 5.3.
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Figure 6.2: (a) Polarization-resolved �uorescence-excitation spectrum of an individual chloro-
some from the bchR mutant at low temperature (1.5 K). The black line indicates the
absorption maximum of the ensemble spectrum of the chlorosomes from the bchR mu-
tant at 740 nm (13 513 cm−1). (b) Polarization-independent �uorescence-excitation
spectrum (average over all polarizations in panel a) (black) (c) The black line shows
the �uorescence intensity modulation as a function of the polarization of the excita-
tion light, whereas the blue line shows a cos2-�t of the data.

Between individual chlorosomes, the spectral patterns show variations in their appear-

ance. However, despite these variations, two observations are striking. First, for the

chlorosomes from the bchQR mutant (�gure 6.1 bottom) and for the chlorosomes from

the bchR mutant (�gure 6.1 center), the widths of spectral features are signi�cantly re-

duced with respect to those from the WT chlorosomes (�gure 6.1 top). This clearly

re�ects the reduction in heterogeneity owing to the de�nition of the BChl side groups by

mutagenesis. This e�ect could already be observed in the ensemble absorption spectra

(see �gure 3.4) of the WT and mutant chlorosomes. Second, for all spectra of the WT,

the bchR mutant, and the bchQR mutant, the intensity is clearly modulated as a func-

tion of the polarization of the excitation light with a periodicity of 180◦ over the entire

spectral band. Considering that the spectra are generated by the interaction of hundreds

of thousands of transition dipole moments, the observed polarization dependence is most

remarkable, indicating that collective excitations dominate the spectrum. This re�ects a

high degree of organization of the BChl molecules that contribute to a single chlorosome

spectrum. This polarization feature was observed in each of the 75 recorded spectra from

individual chlorosomes of the WT, 66 spectra of the bchR mutant, and 29 spectra of the

bchQR mutant.

In �gure 6.2, a more detailed view on the polarization dependend features of the
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6.2 Analysing polarization-resolved spectra with a global �t routine

spectrum of an individual chlorosome from the bchR mutant is shown (the spectrum in

panel a was taken from �gure 6.1). Averaging over all polarizations of the polarization-

resolved �uorescence-excitation spectrum yields the spectrum shown by the black line in

�gure 6.2b, which features an asymmetric band with a width of 479 cm−1 (FWHM) and

a maximum at 13 476 cm−1. The modulation of 180◦ as a function of the polarization of

the excitation light, as seen in the spectra of all measured chlorosomes (see also �gure

6.1), is a clear indication for the orientation of the secondary structures in chlorosome.

In a 2D representation of the �uorescence intensity as a function of the polarization at a

distinct wavelength, the cos2-modulation can be observed directly. Figure 6.2c shows the

modulation of the �uorescence intensity as a function of the polarization of the excitation

light at 740 nm (13 513 cm−1). 740 nm equals the maximum of the ensemble absorption

spectrum of the chlorosomes from the bchR mutant (see �gure 3.4). The �t (blue) with

a cos2-function shows a good agreement with the data.

6.2 Analysing polarization-resolved spectra with a global �t

routine

In order to analyze the �uorescence-excitation spectra and the underlying spectral con-

tributions more quantitatively, a �t routine based on the following general expression for

the polarization-resolved �uorescence-excitation spectrum was developed:

F (E,Θ) = B +

4∑
i=1

Ai(E) · [cos (Θ− ϕi)]2 · exp

(
−(E − Ei)2

W 2
i /4 ln 2

)
(6.1)

Here B is a small constant to account for background signals, i counts the spectral con-

tributions associated with the individual chlorosome, Θ is the polarization angle of the

incident light with respect to a laboratory frame, and ϕi represents the angle of the

projection of the transition dipole vector of the respective spectral component onto the

sample plane with respect to some arbitrary reference axis. Finally, Ai give the ampli-

tudes of the spectral bands. The latter is assumed to have a Gaussian form characterized

by the energetic center position Ei and a width (full width at half-maximum (FWHM))

denoted by Wi. The Gaussian lineshape is de�ned by:

1

S2
i

exp

(
−(E − Ei)2

2S2
i

)
with Si =

Wi

2
√

2 ln 2
(6.2)

The experimental 2D polarization-resolved spectra are �tted to equation 6.1 using a

standard, nonlinear �tting approach based on the least-squares method. The amplitudes

Ai(E) and the phase angles ϕi were treated as global parameters. The number of spec-

tral contributions i taken into account was restricted to four, because this is the minimal
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6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

number of transitions necessary to reproduce all the features of the experimental spectra

reasonably well. These considerations also resulted in consistent and physically reason-

able values for the �t parameters (see below). Note that there is a total of 17 (B, 4 · ϕi,
4 · Ai, 4 · Ei, 4 ·Wi) independent �tting parameters associated with these four spectral

bands. These parameters were used in a global �tting procedure, i.e. 97-200 spectra are

�tted with these parameters at once.
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Figure 6.3: (a) Polarization-resolved �uorescence-excitation spectrum of an individual chloro-
some from the bchR mutant (see �gures 6.1 and 6.2) (b) Fluorescence-excitation
spectrum of panel a averaged over all polarizations (black), together with its decom-
position into four Gaussians (colored). (c) Fitted polarization-resolved �uorescence
excitation spectra according to equation 6.1.

Figure 6.3b displays the decomposition of the polarization-averaged spectrum from

�gure 6.3a (also �gure 6.2a) into four Gaussian transition bands. For future reference,

these bands are labeled 1-4, in order of increasing energy. For the example in �gure 6.3,

this analysis revealed broad absorption bands with energy positions (FWHM) of E1 =

13 437 cm−1 (W1 = 226 cm−1), E2 = 13 484 cm−1 (W2 = 280 cm−1), E3 = 13 629 cm−1

(W3 = 487 cm−1), and E4 = 13 716 cm−1 (W4 = 464 cm−1). The mutual polarization

angles between the various absorption bands, determined as ∆Φij = |ϕi−ϕj | if the result
is less than 90◦ and ∆Φij = |180◦ − |ϕi − ϕj || otherwise, are given by ∆Φ12 = 79.4◦,

∆Φ13 = 4.4◦, ∆Φ14 = 80.7◦, ∆Φ23 = 83.8◦, ∆Φ24 = 1.3◦, and ∆Φ34 = 85.1◦. The �tted

2D polarization spectrum for the measurement presented in �gure 6.3a is shown in �gure

6.3c.

Statistical analysis of the Gaussian conrtibutions to the

polarization-resolved, �uorescence-excitation spectra

This procedure was employed to analyze the polarization-resolved �uorescence-excitation

spectra from 75 individual chlorosomes of the WT, 66 individual chlorosomes from the

bchR, and 29 individual chlorosomes from the bchQR mutant from Cba. tepidum. 72 out

of the 75 spectra from the WT, 58 out of 66 from the bchR mutant, and all of the spectra
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6.2 Analysing polarization-resolved spectra with a global �t routine

from the bchQR mutant could be decomposed into four spectral contributions similar to

the example given in �gure 6.3. The remaining spectra could not be analyzed in this

way, and they were not considered for further analysis. The decomposed spectra of all

the examples given in �gure 6.1 can be found in the appendix A.1. The histograms in

�gure 6.4 display the statistics of the energetic positions (a,c,e) and the widths (b,d,f)

of the four bands for the analyzed chlorosomes. It is important to note that a single

chlorosome corresponds to a small subensemble of molecular aggregates. Hence, each

entry in the histograms represents an average over such a subensemble, whereas the

whole histogram represents the distribution of these averages within the macroscopic

ensemble of chlorosomes. The histograms presented in �gure 6.4 can be characterized by

the statistical parameters summarized in table 6.1.

Table 6.1: Mean values (standard deviations) of the spectral positions Ei and linewidths Wi

(FWHM) of the Gaussians obtained from sets of 72, 58, and 29 individual chlorosomes
of the WT, the bchR, and the bchQR strains.

strain WT bchR bchQR

Epeak,overall (cm−1) 13366(97) 13609(33) 13492(21)
Woverall (cm−1) 783(91) 437(54) 441(70)

E1 (cm−1) 13170(56) 13468(26) 13452(18)
W1 (cm−1) 310(86) 233(35) 198(25)

E2 (cm−1) 13274(59) 13502(41) 13471(21)
W2 (cm−1) 432(76) 270(41) 230(28)

E3 (cm−1) 13517(80) 13685(39) 13656(40)
W3 (cm−1) 685(109) 495(66) 404(31)

E4 (cm−1) 13649(91) 13747(52) 13695(45)
W4 (cm−1) 701(98) 501(63) 408(27)

The distribution of the peak positions of the overall (polarization averaged) spectra,

shown in the �rst two rows of table 6.1, are characterized by a mean of E = 13 366 cm−1

for the WT chlorosomes and a width (standard deviation) of 97 cm−1, which is about

a factor of 3 to 4 larger than the 33 cm−1 that have been found for the width of the

corresponding distribution of the bchR chlorosome sample and the 21 cm−1 of the bchQR

chlorosome sample. This indicates a more homogeneous overall absorption band for the

chlorosomes of the bchR mutant and the bchQR mutant, which is also re�ected in the

statistics of the underlying spectral contributions, revealing narrow distributions for the

energy positions and FWHMs as summarized in table 6.1. The reduction of sample

heterogeneity is re�ected by the decrease of the FWHM of the absorption band, which

arises from the Qy transition of the aggregated BChls, from 783 cm−1 for the WT to

437 cm−1 for the bchR mutant and 441 cm−1 for the bchQR mutant.
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Figure 6.4: Top: WT; Center: bchR mutant; Bottom: bchQR mutant. (a,c,e) Distributions of
the spectral peak positions of the �tted Gaussians and (b,d,f) distributions of the
widths (FWHM) of the �tted Gaussians.

For the WT chlorosomes, the widths of 310 cm−1 and 432 cm−1 of the two spectral

components E1 and E2 are signi�cantly narrower than the 685 cm−1 and 701 cm−1 values

that have been found for the spectral components E3 and E4. The same holds true for

the spectral components of the bchR mutant (233 cm−1 and 270 cm−1 vs 495 cm−1 and

501 cm−1) and for those from the bchQR mutant (198 cm−1 and 230 cm−1 vs 404 cm−1

and 408 cm−1). The statistics clearly show that there are two pairs of spectral components
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6.2 Analysing polarization-resolved spectra with a global �t routine

energetically close to each other, one in the low-energy part of the spectrum and another

one in the high-energy part of the spectrum. In the following analysis, the four spectral

components are grouped into a low-energy pair, E1 and E2, and a high-energy pair, E3

and E4. These pairs of two transitions will be referred to as the low-energy doublet

and the high-energy doublet. Moreover, from the FWHM distributions, it follows that

high-energy doublet transitions are broader than the low-energy components. The width

of the transitions are caused by inhomogeneous line broadening.
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Figure 6.5: Distributions of the relative phase angles ∆Φ between the bands 1 and 2 and between
the bands 3 and 4 for chlorosomes from (a,b) the WT, (c,d) the bchR mutant, and
(e,f) the bchQR mutant.

The information about the polarization angles of the bands is analyzed to obtain more

information about the arrangement of the transition dipole moments of the electronic

states. The di�erence of the polarization angles, ∆Φ12 and ∆Φ34, between the transitions

within one pair are determined for each individual chlorosome. The distributions of ∆Φ12

and ∆Φ34 for the WT, the bchR mutant and the bchQR mutant are presented in �gure

43



6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

6.5, whereas the mean values and standard deviations are given in table 6.2.

For the WT sample, the di�erences in phase angles between bands 1 and 2 form a

bimodal distribution peaking around 0◦ and 90◦, which is averaged out to the values of

(60± 34)◦ for the mean and the standard deviation. This illustrates the added value of

single-molecule techniques, which allow one to obtain information about the distributions

of parameters rather than only about their average values.

In contrast, the two spectral components in the low- and high-energy doublets for the

bchR chlorosomes and the bchQR chlorosomes are strongly perpendicularly polarized to

each other, as demonstrated by the narrowness of the distributions for ∆Φ12 and ∆Φ34.

This holds true for the distributions of ∆Φ34 for the WT chlorosomes. The distributions

of ∆Φij for the WT and the mutants are presented in the appendix, �gures A.4, A.5,

A.6. The mean values and standard deviations are given in table A.1.

Table 6.2: Mean values (standard deviations) of the relative phase angles between the bands 1
and 2 and between the bands 3 and 4 for the three types of chlorosomes.

ij 12 34

WT bchR bchQR WT bchR bchQR

∆Φij (deg) 60(34) 78(16) 83(6) 77(16) 87(3) 88(3)

The observed perpendicular polarization properties of the spectra of the mutants and

a part of the spectra of the WT are consistent with an underlying circular symmetry

for the overall BChl arrangement within an aggregate [75, 77, 79, 88]. Nevertheless,

previous to further evaluation of the data with regard to a cylindrical symmetry, the

partly deviating polarization behavior for the WT chlorosomes must be discussed.

6.3 Polarization properties of the spectra of individual

chlorosomes from the wild type

For the chlorosomes from the bchR mutant and the bchQR mutant, the phase di�erences

between the bands within the low-energy pair and the high-energy pair, ∆Φ12 and ∆Φ34,

mostly occur at 90◦ (see �gure 6.5). For the chlorosomes from the WT, this observation

is not that straightforward. Here, the phase di�erences between the bands in the high-

energy pair, ∆Φ34, also accumulate at 90◦, whereas those between the low-energy pair,

∆Φ12, show a bimodal distribution peaking at 0◦ and at 90◦.

To analyze this observation in more detail, �gure 6.6 displays the correlation between

the phase di�erences ∆Φ12 and ∆Φ13 for the WT, the bchR mutant and the bchQR

mutant. The data points can be divided roughly into two groups, namely, those that

exhibit hardly any correlation between ∆Φ12 and ∆Φ13 (group 1; grey shaded area in

�gure 6.6) and those that do exhibit strong correlation (group 2). Group 1 includes all
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6.3 Polarization properties of the spectra of individual chlorosomes from the wild type

chlorosomes of the bchQR mutant, 56 chlorosomes from the bchR mutant (97 %) and

53 chlorosomes from the WT (74 %). For the chlorosomes of group 1, the data points

cluster around ∆Φ12 ≈ 70◦ − 90◦ (1⊥2), and the spectra feature approximately two

mutually orthogonally polarized bands within each pair (in short: 1⊥2 and 3⊥4) and
in addition two predominantly parallel-polarized pairs of bands 1‖3 and 2‖4. Group 2

includes exclusively the remaining 26 % of the WT chlorosomes, and 3 % of the bchR

mutant chlorosomes studied. Here, it is found ∆Φ13 ≈ 65◦ − 90◦ (1⊥3) and ∆Φ12 ≤ 30◦

(1‖2). For this group of chlorosomes, the analysis of the polarization behavior of the

spectral bands yields approximately 1‖2, 3⊥4, and 1⊥3 (implying 1‖4, 2⊥3, and 2‖4).
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Figure 6.6: Correlation between the phase di�erences between the bands within the low-energy
pair, ∆Φ12, and the bands 1 and 3, ∆Φ13, for individual chlorosomes from the WT
(crosses), the bchR mutant (red triangles), and from the bchQR mutant (blue circles).
The shaded area indicates those chlorosomes that are referred to as WT-group1 in
the text.

In the following, it will be referred to the WT chlorosomes in the two groups as WT-

group1 and WT-group2, respectively. The distributions of the relative phase angles ∆Φij

from the chlorosomes of WT-group1 and WT-group2 are displayed separately in �gures

A.7 and A.8. The mean values and standard deviations are given in table A.1. The

chlorosomes from the bchR mutant are still assigned to one group since only a minority

of two of the chlorosomes show a di�erent polarization behavior. As an assignment of a

structure to the chlorosomes of WT-group2 is not that obvious as to the chlorosomes of

WT-group1, the bchR mutant, and the bchQR mutant, the chlorosomes of WT-group2

are not considered for the following analysis.
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6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

6.4 Orientation of the transition dipole moments of BChls

in cylindrical structures

The statistics (see table 6.1) clearly showed that there are two pairs of spectral com-

ponents energetically close to each other. For the WT-group1 chlorosomes, now, the

distributions for the energetic separations, ∆E12 and ∆E34 are given in �gure 6.7, to-

gether with the corresponding distributions for the bchR mutant, and the bchQR mutant.
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Figure 6.7: Distributions of the energetic separation between the low-energy bands ∆E12 and
the high-energy bands ∆E34 for an individual chlorosome of (a,b) the WT-group1,
(c,d) the bchR mutant and (e,f) the bchQR mutant.

For the WT-group1 chlorosomes, the distributions for the energetic separations of the

spectral components in the low- and high-energy pairs are rather wide with respect to

those from the bchR mutant and the bchQR mutant that generally are separated by less

than 100 cm−1. The same holds true for the widths of the mutual phase di�erences (see

�gures 6.5 and 6.8). The widths of the distributions for the mutants are clearly narrower
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6.4 Orientation of the transition dipole moments of BChls in cylindrical structures

than those of the corresponding distributions for the WT-group1 chlorosomes. This is

clearly re�ected by the corresponding standard deviations (see table 6.3), which decrease

in the order WT-group1, bchR (single mutation), bchQR (double mutation).
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Figure 6.8: Distributions of the relative phase angles ∆Φ12 and ∆Φ34 of the chlorosomes from
WT-group1.

The chlorosomes from the bchQR mutant, the bchR mutant as well as those assigned

to WT-group1 exhibit the typical polarization behavior that is associated with molecular

aggregates with an underlying tubular arrangement of the BChls [75, 77, 79]. Brie�y,

for an ideal and su�ciently long molecular aggregate of cylindrical symmetry, that is,

exhibiting neither structural nor energetic disorder, the electronic coupling between the

monomers gives rise to only three exciton states with a nonzero transition dipole moment

for transitions from and to the electronic ground state (see section 4.3). The transition

dipole moment of the lowest exciton state, µ‖, is oriented parallel to the symmetry axis

of the cylinder. In contrast, the other two transition dipole moments result from a pair

of degenerate exciton states with mutually orthogonal transition dipole moments, µ⊥x
and µ⊥y, both oriented perpendicularly with respect to the symmetry axis of the tube

(see �gure 6.9).

Table 6.3: Mean values (standard deviations) of the energetic separations and relative phase
angles between the bands 1 and 2 and between the bands 3 and 4 for the three types
of chlorosomes (WT-group1, bchR, bchQR).

ij 12 34

WT-group1 bchR bchQR WT-group1 bchR bchQR

∆Eij (cm−1) 71(66) 34(31) 19(13) 101(107) 62(53) 38(32)

∆Φij (deg) 79(10) 78(16) 83(6) 76(17) 87(3) 88(3)

Together with the information that the chlorosomes are oriented with their long axis

parallel to the surface of the substrate [59] and that for (the vast majority of) the molecu-

lar aggregates the long axes of the secondary structures within a chlorosome are oriented

parallel with respect to each other [1, 56, 91], this leads to a clear interpretation of bands
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6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

1-4 found in the analyses for the WT-group1, the bchR mutant, and the bchQR mutant

chlorosomes. Bands 1 and 2 result from pairs of exciton states with transition dipoles

parallel and perpendicular, respectively, to the axes of the cylindrical aggregates that

make up the chlorosomes. Bands 3 and 4 derive from similar pairs with higher energies.

µ‖

µ⊥x
µ⊥y

Figure 6.9: Molecular aggregate with cylindrical symmetry. Electronic coupling yields three ex-
citon states with dipole-allowed transitions to the electronic ground state. The corre-
sponding transition dipole moments are oriented parallel to the symmetry axis (µ‖)
and mutually orthogonal (µ⊥x, µ⊥y) with respect to that axis.

The widths of the various distributions in �gures 6.1 and 6.5 re�ect small variations in

the arrangements and (or) the microscopic disorder realizations of the light-harvesting

aggregates in individual chlorosomes, as will be demonstrated below. The distributions

for the mutual polarization angles between transitions in the low-energy doublet and

transitions in the high-energy doublet (∆Φ13, ∆Φ14, ∆Φ23, ∆Φ24; see table A.1) are

broader than those for ∆Φ12 and ∆Φ34, although there still seems to be some preference

for parallel or perpendicular orientations. A likely explanation for this is that the low-

and high-energy doublets originate from di�erent cylindrical arrangements that either

are not aligned perfectly parallel to each other or have di�erent disorder characteristics.

In principle, structural models that contain two molecules per unit cell also can give

rise to four optical peaks in total, two of which are parallel and two (2-fold degenerate

ones) that are perpendicular to the cylinder axis. In that case, it is expected that the

distributions of the mutual angles between the various transitions are all very similar,

which is in contrast to the data displayed in �gure 6.5 (also see �gures A.1, A.2, A.3).

Hence, on the basis of the statistics presented, transitions 1-4 likely do not all belong

to the same cylinder. The low-energy doublet, consisting of transitions 1 and 2, arises

from one type of tubular structure, while transitions 3 and 4, which form the high-energy

doublet, are associated with a slightly di�erent tubular arrangement.
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6.4 Orientation of the transition dipole moments of BChls in cylindrical structures

The abovementioned interpretation yields a direct relationship between the oscillator

strength of the parallel and perpendicular polarized exciton transitions and the angle β

between the transition dipole moments of the monomers and the symmetry axis of the

cylinder (see section 4.3 and reference [75]).

β = arctan

√
2O⊥
O‖

(6.3)

Here the additional factor of 2 accounts for the fact that the polarization-resolved mea-

surements are on average sensitive to only half of the perpendicular oscillator strength,

because it is known that the chlorosomes are oriented with their long axis parallel to the

surface of the substrate [59].
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Figure 6.10: Distributions of the ratio of the oscillator strength between bands 1 and 2 and
between bands 3 and 4 for an individual chlorosome of (a,b) the WT-group1, (c,d)
the bchR mutant and (e,f) the bchQR mutant.

The distributions of the ratios of the oscillator strength of the low- and high-energy
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6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

doublet, O1/O2 and O3/O4 are given in �gure 6.10 for the WT-group1 chlorosomes, to-

gether with the corresponding distributions for the bchR mutant, and the bchQR mutant.

For the WT-group1 chlorosomes, the distributions for the ratios of the oscillator strengths

of the spectral components in the low and high-energy pairs are rather wide with respect

to those from the bchR mutant, and the bchQR mutant. This is also re�ected by the

corresponding standard deviations (see table 6.4).

Table 6.4: Mean values (standard deviations) of the the ratios of the oscillator strengths between
the bands 1 and 2 and between the bands 3 and 4 for the three types of chlorosomes
(WT-group1, bchR, bchQR).

ij 12 34

WT-group1 bchR bchQR WT-group1 bchR bchQR

Oi/Oj 1.04(0.95) 0.95(0.35) 0.95(0.34) 1.42(0.77) 1.24(0.30) 1.13(0.13)

Denoting the monomer dipole angles thus derived from the low-energy and the high-

energy pair as β12 and β34, respectively, and using the data for the oscillator strengths,

the distributions of these angles as shown in �gure 6.11a for the WT-group1, in �gure

6.11b for the bchR mutant and in �gure 6.11c for the bchQR mutant are obtained. The

mean values and standard deviations of these histograms are given in table 6.5. Again,

the widths of the distributions decrease in the order WT-group1, bchR mutant, bchQR

mutant, which suggests that the structures of the molecular aggregates within the chloro-

somes are better de�ned when the homolog variation due to the BChl side groups is more

restricted. Yet, within statistical accuracy, all distributions are centered around a sim-

ilar mean of about 56◦ for β12 and 52◦ for β34. The di�erences in the values for dipole

angles β12 and β34 suggests that tubes responsible for the low and high energy doublet

transitions indeed have slightly di�erent structural arrangements.

Table 6.5: Mean values (standard deviations) of the distributions of the molecular dipole angles
β12 (low-energy doublet) and β34 (high-energy doublet) obtained from the spectral
analyses

WT-group1 bchR bchQR

β12 (deg) 57.3(9.6) 56(4.7) 56.1(4.5)
β34 (deg) 51.7(7.4) 52(3.4) 53.1(1.6)

The calculation of β is based on the assumption that the chlorosome represents an

ensemble of cylindrical structures, aligned parallel to each other. Nevertheless, for the

bchQR chlorosomes, in some cases, the cryo-EM images revealed secondary cylinder-like

structures, whose symmetry axes were oriented mutually orthogonal with respect to each

other. Therefore, the in�uence of a fraction of �misaligned� tubular structures on the

determination of β is modeled in the appendix, chapter B. The calculations show that
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Figure 6.11: Distributions of the angles β12 (low-energy pair) and β34 (high-energy pair) that are
enclosed between the transition dipole moments of the monomers and the symmetry
axis of the cylinder for (a) the WT-group1, (b) the bchR mutant, and (c) the bchQR

mutant.
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6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

the variation of β amounts to a few degrees depending on the fraction of �misaligned�

structures. Nevertheless, it cannot be excluded that the �misaligned� secondary struc-

tures contribute to a small extent also to the widths of the distributions shown in �gure

6.11.

6.5 Reconstruction of LD spectra from the

polarization-resolved spectra

In previous studies [58, 92], LD spectroscopy was used to study polarization-dependent

features of optical spectra rather than polarization-resolved spectroscopy. Polarization-

resolved spectroscopy provides spectra with almost any polarization relative to the ori-

entation of individual chlorosomes (see �gure 6.1), as these spectra were obtained by

rotating the polarization by a few degrees between two successive scans of the spectrum.

Therefore, LD spectra can be reconstructed from polarization-resolved spectra. It should

be noted that these LD spectra emerge from �uorescence-excitation spectra rather than

absorption spectra, which are commonly used in LD spectroscopy. For the chlorosomes

studied, the �uorescence-excitation spectrum is directly proportional to the absorption

spectrum [4]. Therefore, the spectra taken for the calculation of the LD spectra are

denoted with A(E).

In reference [92], it was found that the maxima of the modulation shown in �gure 6.2c,

at an angle Φ‖, can be associated with the transition dipole moment along the long axis

of the secondary, cylindrical structures in chlorosomes (see section 4.3). According to the

de�nition used in these publications, the angle Φ‖1 (the angle of the �rst maximum of

the modulation shown in �gure 6.2c) corresponds to a polarization of the excitation light

parallel to the long axis of the chlorosome with respect to a laboratory frame. Therefore,

the �uorescence-excitation spectrum at this polarization is de�ned as A‖(E) (where E

denotes the photon energy of the excitation light). The �uorescence-excitation spectrum

A⊥(E) occurs at an angle Φ⊥1 = Φ‖1 ± 90◦ of the polarization of the excitation light.

The angle Φ⊥1 is equivalent to the �rst minimum of the �t presented in �gure 6.2c.

The LD spectrum of an individual chlorosome is then reconstructed by subtracting the

�uorescence-excitation spectrum for the excitation with light that is parallel to the long

axis from the one with light that is perpendicular to it:

LD(E) = A‖(E)−A⊥(E) (6.4)

The spectra A‖(E) and A⊥(E) are averages over all polarizations Φ‖ = Φ‖1 + n · 180◦

(Φ⊥ = Φ⊥1 + n · 180◦) that occur in the polarization-resolved spectrum. Figure 6.12

presents four LD spectra of individual chlorosomes from the WT, the bchR mutant and

the bchQR mutant, respectively.
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6.5 Reconstruction of LD spectra from the polarization-resolved spectra
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Figure 6.12: Four representative LD spectra of individual chlorosomes (mid blue) from (a) the
WT, (b) the bchR mutant, and (c) the bchQR mutant, respectively, are shown.
The spectra were reconstructed from polarization-resolved �uorescence-excitation
measurements. The black line represents a spline �t of the data and serves as a
guide for the eye. The spectra are o�set along the vertical axis for clarity. At the
bottom of the �gure, the average of 72 LD spectra of individual chlorosomes from the
WT, 66 spectra of the bchR mutant, and 29 spectra of the bchQR mutant is shown
in black. The horizontal black line corresponds to the zero line of each spectrum.

The spectra are reconstructed from the normalized polarization-resolved �uorescence-

excitation spectra. The black curve represents the �ltered data and serves as a guide

for the eye to identify positive and negative bands. Some of the LD spectra feature one

positive band, whereas others feature two bands. The LD spectra of the chlorosomes

from the bchR mutant and the bchQR mutant exhibit a positive band at lower energies

and a negative band at higher energies, whereas the sequence of positive and negative

bands is the other way around for the chlorosomes of the WT. In total, 68 spectra from

individual chlorosomes of the WT, 50 spectra of the bchR mutant chlorosomes, and 22

spectra of the bchQR mutant chlorosomes feature one band. The remaining 4 spectra of

the WT, 16 of the bchR mutant, and 7 of bchQR mutant feature two bands. It can also

53



6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

be noted that, in the spectra of the bchR mutant and the bchQR mutant, the intensity

of the positive band is signi�cantly higher than the intensity of the negative band.

The positive band of all spectra of the chlorosomes of the bchR mutant and the bchQR

mutant is roughly located around 13 450 cm−1. The measurements on chlorosomes from

the WT show a substantial variation in the position of the positive band. Again, this

represents the structural, and therefore spectral, heterogeneity in the WT chlorosomes.

Besides the LD spectra of individual chlorosomes, �gure 6.12 displays the average of

the LD spectra from individual chlorosomes at the bottom, which corresponds to an

ensemble spectrum. It can easily be seen that the ensemble spectrum only features one

positive band, whereas some of the individual spectra feature two bands. In the ensemble

spectrum, the negative band vanishes as only a minority of the spectra show a negative

band with low intensity.

Usually, the precise measurement of an ensemble LD spectrum depends on the perfect

alignment of the sample. The measurement of the presented LD ensemble spectra of

chlorosomes was realized with the single chlorosome technique. As an individual chloro-

some is per se oriented, as described above, the combination of their LD spectra to an

ensemble spectrum represents the spectrum of a perfectly aligned sample of chlorosomes.

Unlike other techniques of sample orientation, e.g., gel compression or orientation in

electric �elds [42, 93�95], this method leaves no room for deviation in the orientation of

the chlorosomes. A misalignment of the chlorosome sample yields the same spectrum,

yet the LD spectrum shows lower signal strength. Details on the e�ect of misalignment

of the sample on the LD spectra can be found in section B.2.

The polarization features of the LD spectra are often used to obtain information about

the orientation of the transition dipole moments in the sample. In principle, it is possi-

ble to calculate the angle of the molecular transition dipole moment with respect to the

cylinder axis β also from the LD spectra (see section 4.3). For such an analysis, however,

LD measurements on individual cylinders or a perfectly oriented sample are necessary.

Therefore, the exact determination of β from LD spectra for cylindrical aggregates relies

strongly on the proper alignment of the sample. For the misalignment of the cylinders

with respect to each other, this method overestimates β [75]. The chlorosome represents

an ensemble of cylindrical structures. Due to structural variations, the cylindrical struc-

tures are not perfectly parallel aligned with respect to each other. Therefore, it is not

possible to obtain information about the angle β in chlorosomes from the LD spectra.

This illustrates the added value of the polarization-resolved measurements since it was

possible to determine the angle β from the spectra of individual chlorosomes using global

analysis.

Furthermore, the LD spectra do not yield su�cient information to explain the dif-

ferences between the spectra of individual chlorosomes. However, as the LD spectra

were reconstructed from polarization-resolved measurements, the full information of these
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6.5 Reconstruction of LD spectra from the polarization-resolved spectra

measurements can be used to explain the LD spectra of individual chlorosomes. In �gure

6.13a,b the averaged �uorescence-excitation spectra of individual chlorosomes from the

bchR mutant and their Gaussian transition bands are shown. Below, in panel c,d the

corresponding LD spectra are shown. Similar to the spectra presented in �gure 6.12b, the

spectrum in �gure 6.13c features a positive, asymmetric band, whereas the LD spectrum

of the chlorosome in �gure 6.13d shows a positive and a negative band.

1
2

3

4

13000 13400 13800

−0.2

0.4

0.6

0.8

1

photon energy (cm−1)

in
te
n
si
ty

(a
.u
.)

avg.

0.2

0.2

0.2

0.2

0.2

in
t.

‖
(a
.u
.)

in
t.

⊥
(a
.u
.)

(a)

1 2 3

4

avg.

13000 13400 13800

−0.2

0.4

0.6

0.8

1

photon energy (cm−1)
in
te
n
si
ty

(a
.u
.)

(b)

13000 13400 13800
−0.4

−0.2

0

0.2

0.4

0.6

photon energy (cm−1)

L
D

(a
.u
.)

0.4

0.2

0

0.2

0.4

0.6

sh
ifttt

A
‖

(a
.u

.)
A

⊥
(a

.u
.)

(c)

13000 13400 13800
−0.4

−0.2

0

0.2

0.4

0.6

photon energy (cm−1)

L
D

(a
.u
.)

0.4

0.2

0

0.2

0.4

0.6

sh
ifttt

A
‖

(a
.u

.)
A

⊥
(a

.u
.)

(d)

Figure 6.13: (a,b) Fluorescence-excitation spectrum of an individual chlorosome (black) together
with its decomposition into four Gaussians (colored). Panel a was already shown
in �gure 6.2b. (c,d) LD spectra (mid blue) of the chlorosomes presented in a,b.
The parallel and perpendicular orientation of the chlorosomes were determined by
the maxima and minima of the �uorescence modulation presented in �gure 6.2c.
The gaussian contributions to the polarization resolved spectra are shown in yellow,
red, cyan and dark blue. In panels c and d the contributions of the gaussians
to the parallel spectrum are plotted to the positive axis of the spectrum, whereas
contributions to the perpendicular spectrum are plotted to the negative axis of the
spectrum.

One way to obtain an insight into the composition of the LD spectra of individual

chlorosomes is the analysis of the spectral contributions in �gures 6.13a,b. Therefore in

�gures 6.13c,d, the spectral contributions (red, yellow, cyan, dark blue) to the parallel

absorption (Gaussian transition bands at the angle Φ‖1) of the LD spectrum are plotted to

the positive axis in the spectrum, whereas the spectral contributions to the perpendicular
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6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes

absorption (Gaussian transition bands at the angle Φ⊥1) are plotted to the negative axis

of the graph. The analysis of the angles between spectral contributions (see section

6.2) showed that these transition bands are polarized more or less perpendicular to each

other. Accordingly, the parallel and the perpendicular part of the spectrum (presented

in the LD spectrum), consists mainly of two spectral contributions each. Contributions

1 and 3 give rise to A‖(ω) whereas contributions 2 and 4 form A⊥(ω). There are small

contributions from bands 1 and 3 to A⊥(ω) and bands 2 and 4 to A‖(ω). This results

from the fact that the gauss transition bands are not perfectly perpendicular to each

other. The angles Φ‖1 and Φ⊥1 are determined from the entire spectrum. Therefore, the

polarization maxima and minima of the individual spectral contributions might deviate

from these angles as the angle φi was treated as a free parameter in the �t of the Gaussian

contributions (equation 6.1). The LD spectrum results from the di�erences between the

parallel and the perpendicular contributions to the spectrum (see equation 6.4). Taking

the individual spectral contributions from the decomposed spectrum, the LD spectrum

can be written as:

LD(E) =

4∑
i=1

G
‖
i −

4∑
i=1

G⊥i (6.5)

G
‖
i denotes the individual contributions (i = 1, . . . , 4) to the parallel part of the spectrum

and G⊥i the individual contributions to the perpendicular part of the spectrum. The

individual contributions G‖i (G
⊥
i ) result from the �t (equation 6.1) at an angle Φ‖1 (Φ⊥1)

of the spectrum:

G
‖/⊥
i = Ai(E) ·

[
cos
(
Φ‖/⊥

)]2 · exp

(
−(E − Ei)2

W 2
i /4 ln 2

)
(6.6)

By comparing the spectral contributions to the LD spectrum in �gures 6.13c and

d, the origin of the bands of the LD spectra is revealed. For �gure 6.13c the energy

di�erences ∆Eij = Ei −Ej between bands 1 and 2, 3 and 4 (∆E12 and ∆E34) are small

compared to the ones in �gure 6.13d. The LD spectrum results from the di�erences in

amplitude of the individual contributions. As the amplitude of G‖3 is signi�cantly larger

than the amplitude of G⊥4 and the spectral separation ∆E34 small, there is no negative

contribution to the LD spectrum. On the other hand, for the spectrum shown in �gure

6.13d, the energetic separations ∆E34 are signi�cantly larger than for the spectrum in

�gure 6.13c. Together with nearly equal amplitudes of the contributions G‖3 and G
⊥
4 , this

results in a negative band of the LD spectrum at higher energies.

This analysis showed that the amplitude and the spectral separation of the gaussian

transition bands determine the formation of bands in the LD spectrum of individual

chlorosomes. The distribution of ∆E12 and ∆E34 in �gure 6.7 showed that only few

spectra show a large energetic separation ∆Eij . This explains the small number of
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6.6 Discussion of WT-group2

spectra with a negative LD band. Hence, in the ensemble spectrum, the small negative

band vanishes due to the larger number of spectra without a negative band (see �gure

6.12).

6.6 Discussion of WT-group2

The attention is now shifted to the chlorosomes that were assigned to WT-group2, which

make up 26 % of population observed. For this group, it was found above that the

polarization-resolved �uorescence-excitation spectra do not follow the �standard� pattern

that may be attributed to tubular structures. Instead, their spectra can be decomposed

into four contributions whose gross mutual polarization behavior can be expressed as

1‖2, 1⊥3, and 3⊥4 (implying 1‖4 and 2‖4). At �rst sight, the mutually orthogonal

WT-group2

0 20 40 60 80
0

20

40

60

∆Φ12 (deg)

o
cc
u
rr
en

ce

(a)

0 20 40 60 80
0

20

40

60

∆Φ34 (deg)

o
cc
u
rr
en

ce

(b)

WT-group1

0 20 40 60 80
0

20

40

60

∆Φ12 (deg)

o
cc
u
rr
en

ce

(c)

0 20 40 60 80
0

20

40

60

∆Φ34 (deg)

o
cc
u
rr
en

ce

(d)

Figure 6.14: Distributions of the relative phase angles Φ between the bands 1 and 2 and between
the bands 3 and 4 for the chlorosomes from (a,b) the WT-group2 and (c,d) WT-
group1.

transition dipole moments for the two transitions highest in energy (see �gure 6.14b)

seem to suggest that some structural elements of cylindrical symmetry prevail as well for

the WT-group2 chlorosomes.

However, it is worth noting that except for the deviation of the polarization pattern

from that of the WT-group1 chlorosomes, no other observations were found that could be

used for discriminating the two groups of chlorosomes. The distributions of the spectral

peak positions E1-E4 and the widths W1-W4 of the four bands cover a similar range for
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6 Polarization-resolved �uorescence-excitation spectroscopy of individual chlorosomes
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Figure 6.15: Top: WT-group2; Bottom: WT-group1. (a,c) Distributions of the spectral peak
positions of the �tted Gaussians and (b,d) distributions of the widths (FWHM) of
the �tted Gaussians.

both groups (see �gure 6.15). Summing the polarization-averaged spectra from individ-

ual chlorosomes for each group separately yields similar �uorescence-excitation spectra,

peaking at 13 458 cm−1 (743.1 nm) and 13 435 cm−1 (744.3 nm) with widths (FWHM) of

785 cm−1 and 766 cm−1 for WT-group1 and WT-group2, respectively. Interestingly, com-

paring the distributions of the spectral peak positions shown in �gure 6.15a,c reveals that

for the WT-group2 chlorosomes, the peak positions of the four �tted bands are spread

evenly across the spectrum. In other words, grouping the four bands into a low-energy

pair and a high-energy pair, which was an obvious step to take for the chlorosomes from

WT-group1, cannot be easily justi�ed for the WT-group2 chlorosomes. Hence, on the

basis of the information at hand, it cannot be ruled out that all four transitions come

from one superstructure.
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7 Structure and structural variations of

light-harvesting aggregates in

chlorosomes

The following chapter presents, among others, the interpretation of the data presented in

chapter 6, which has been published in references [2] and [3]. Sections are partly taken

directly from the publications.

The analysis of the optical features of the polarization-resolved spectra in chapter 6 elu-

cidated tubular arrangements of BChl as the dominant structure of the light-harvesting

aggregates in chlorosomes from the bchR mutant, the bchQR mutant, and in a major-

ity of the chlorosomes from the WT (WT-group1). The angle between the molecular

transition dipole moments and the cylinder axis (β) was determined from the analysis

of the polarization-resolved spectra. In order to associate the spectroscopic data with a

microscopic model, the lattice structure deduced by Ganapathy et al. from NMR and

molecular modeling (see section 3.4) is now used as a starting point. The results ob-

tained by the polarization-resolved, �uorescence-excitation spectroscopy are combined

with the information from this model and from cryo-electron microscopy images. The

combination of these techniques yields unambiguous information on the structure of the

bacteriochlorophyll aggregates within the chlorosomes. Furthermore, theoretical model-

ing will be used to simulate spectra of the obtained model structure.

The single-particle technique also revealed small spectral variations between the spec-

tra of individual chlorosomes, which can be interpreted as structural variations. These

variations are studied by theoretical modeling. Moreover, it is possible to estimate the

curvature variation of the secondary structures in chlorosomes quantitatively.

7.1 Modelstructure of the secondary structures in

chlorosomes

The data of the mutual polarization angles presented in section 6.2 showed that certain

optical transitions that underlie the spectra of individual chlorosomes are polarized more

or less perpendicular to each other, while others are polarized nearly parallel to each

other. The observed polarization properties are consistent with, and a strong independent
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7 Structure and structural variations of light-harvesting aggregates in chlorosomes

indication for, an underlying tubular symmetry for the overall BChl arrangement within

an aggregate [77, 79, 88]. The strong resonant excitation-transfer interactions between

the individual BChl molecules lead to the formation of Frenkel excitons, i.e., collective

electronic excitations shared by many molecules. The observations re�ect the robustness

of excitons in self-assembled nanotubes against the localization e�ects of random disorder

in their microscopic parameters, such as the transition energies of the individual molecules

as a result of random solvent shifts [96]. This robustness can be traced back to the

behavior of the exciton density of states near the band bottom and results in strongly

delocalized exciton states whose wave functions (and thus excitation densities) wind

around the tube at least once, which in turn leads to a clear distinction between optical

transitions with a polarization perpendicular and parallel, respectively, to the axis of the

tube [96]. This interpretation is con�rmed by cryo-EM imaging, which indeed reveals a

tubular arrangement of the BChl molecules.

Structural models for tubular aggregates can be obtained by wrapping a two-dimensional

lattice of molecules on a cylindrical surface [75]. In order to associate the spectroscopic

and cryo-EM imaging data with a microscopic model, as a starting point the type of

lattice deduced by Ganapathy et al. from NMR and molecular modeling for the chloro-

somes from the WT, the bchQRU mutant and the bchQR mutant was used [1, 50] (see

section 3.4). Thus, an oblique two-dimensional lattice, as depicted in �gure 7.1 is consid-

ered. This lattice is rolled on a cylindrical surface along the chiral vector C that makes

an angle δ with the a-axis. In order to obtain a seamless tube, the chiral vector should

connect two lattice points. Its length equals the tube's circumference.

To be able to translate the information about the angles β12 and β34 unambiguously

into model for the molecular arrangement of transition dipole moments on a cylindrical

surface, information from cryo-EM is needed. From the cryo-EM power spectra of indi-

vidual chlorosomes, a repeat distance (stacking distance d) in the tubular arrangement

of the BChl molecules within the aggregates of (1.24± 0.06) nm in the direction of the

cylinder axis was observed for the chlorosomes of the bchR mutant (see �gure A.9). This

value is close to the (1.22± 0.03) nm that has been found for the WT [1]. Table 7.1

provides the distances that were obtained from cryo-EM for the three species. Here, the

value of 0.69 nm found for the bchQR mutant [50] is signi�cantly smaller than the values

that have been found for the WT and the bchR mutant, respectively. However, this dis-

crepancy is easy to understand. The stacking distance is de�ned as the spacing between

adjacent, symmetry-equivalent BChls within the supramolecular structures. According

to reference [50], the structural changes induced by the bchQR mutation lead to a defor-

mation of the tetrapyrrole backbone of the BChl molecules that induces an arrangement

of the BChl molecules in extended domains of alternating stacks of BChl molecules either

in syn or anti orientation. In other words, in contrast to the chlorosomes of the WT

and bchR strains, for which the molecules are arranged in dimeric syn-anti stacks, the
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7.1 Modelstructure of the secondary structures in chlorosomes

γ

a

b

C δ

Figure 7.1: Lattice structure of the bacteriochlorophyll monomer arrangement as proposed in [1].
The rolling vector is referred to as C.

BChl molecules in the bchQR mutant are arranged in monomer stacks (see section 3.4).

As a consequence of this, the distance between adjacent, symmetry-equivalent BChls of

0.69 nm refers to the monomer repeat distance and not to the dimer repeat distance as

for the other two species. Considering that in the bchQR mutant the assembly in parallel

monomers is imposed by structural deformations of the BChl molecules, the value of

0.69 nm is in reasonable agreement with the 0.63 nm that results when the lattice param-

eter of a ≈ 1.25 nm of the unit cell shown in �gure 3.4 is cut in half. At any rate, from

the perspective of spectroscopy, it is impossible to distinguish between dimeric syn-anti

stacking or extended domains of monomeric (whether syn or anti) BChl arrangements

because for syn-anti stacking, the concomitant alternation of the transition dipole mo-

ments by only ±4◦ with respect to the plane of the cylinder is too small to make a

detectable impact on the spectra.

Hence, the stacking distances of the WT, the bchR mutant, and the bchQR mutant are

almost identical. The stacking distance of the WT was transferred into a supramolecular
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7 Structure and structural variations of light-harvesting aggregates in chlorosomes

Table 7.1: Summary of the values of the model parameters for the WT, the bchR mutant, and
the bchQR mutant obtained by spectroscopy (*), cryo-EM (this work ∗∗) and from
references [1, 50].

WT bchR bchQR

a (nm) 1.25 1.297/1.294 1.25
b (nm) 0.98 0.98 0.98
γ (◦) 122 122 122
η (◦) 35 35 35
β (◦) 57.3/51.7 ∗ 56/52 ∗ 56.1/53.1 ∗

d (nm) 1.22 1.24 ∗∗ 0.69

model structure by Ganapathy et al. using the molecular grid presented in �gure 7.1.

Therefore, the lattice structure is wrapped onto a cylindrical surface with an angle δ.

From the stacking distance, a rolling angle of δ = 90◦ was concluded for the WT. This

lead to a spatial periodicity given by the lattice constant a for the WT, which showed

good agreement with the stacking distance observed in cryo-EM for this species. The

lattice parameters are also listed in table 7.1.

(a) (b)

C

a

b

γ

δ

Figure 7.2: (a) Bravais lattice obtained from NMR for the short-range order of the BChl molecules
according to reference [1]. Each arrow represents the Qy transition dipole moment
of a BChl molecule. The molecules are arranged on the lattice as described in the
caption of �gure 3.6. (b) Wrapping the grid onto a cylindrical surface along a rolling

vector ~C (black arrow in part (a)) enclosing an angle of δ ≈ 70◦ with the a-axis of
the grid yields the model structure for secondary elements in the chlorosomes of the
WT, the bchR mutant and the bchQR mutant.
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7.2 Theoretical modeling of the spectra of model structures

The values β obtained by �uorescence-excitation spectroscopy for the WT-group1,

the bchR mutant and the bchQR mutant are provided in table 7.1. Remarkably, the

angles β are centered around a similar mean of about 55◦. The value of the angle β of

57.3◦/51.7◦ for the chlorosomes of WT-group1 is in contrast to the models presented in

reference [1], where an angle β = 35◦ was concluded for the wild type by modeling the

structural arrangement. In contrast to reference [1], the values β12 and β34 are obtained

experimentally. Thus, from the data it follows that the angles β for all three species,

WT-group1, bchR mutant, and bchQR mutant are very similar, indicating the same basic

arrangement of the transition dipole moments in the chlorosomes for these species.

Hence, with the additional information from the �uorescence-excitation experiments,

the interpretation of the data in terms of the models presented by Ganapathy et al. should

be reconsidered. The only way to explain both the �uorescence excitation experiments

and the cryo-EM measurements for the WT (WT-group1), the bchR mutant, and the

bchQR mutant is to use a rolling vector of δ ≈ 70◦ , which gives rise to the tube depicted

schematically in �gure 7.2.

The important conclusion from the above-presented data from NMR, cryo-EM, and

single-molecule spectroscopy yields for all three species, WT-group1, bchR, and bchQR,

the same basic arrangement of the transition dipole moments, that can be visualized by

wrapping the lattice obtained from NMR onto a cylindrical surface along a chiral vector

that includes an angle δ with the a-axis, as illustrated in �gure 7.2.

7.2 Theoretical modeling of the spectra of model structures

The above model was used to simulate the polarization-resolved �uorescence-excitation

spectra of cylindrical structures. For the theoretical modeling of a spectrum that can be

compared to the experimental chlorosome spectra, two cylindrical structures were used

to account for the low- and high-energy doublets of the spectrum, respectively.

In order to consider the (possibly) di�erent electrostatic local environments, slightly

di�erent (1.5 %) site energies for the BChl molecules in the two tubular structures are

used. In this context, it is important to note that, given the spacing between the concen-

tric cylinders of about 2.1 nm, the multiple cylinders can be treated as uncoupled systems

for modeling the optical spectra, as has been shown previously [88]. The parameters used

for the modeling are given in table 7.1.

The simulations have been carried out for cylindrical structures with radii r1 = 14.7 nm

and r2 = 9.7 nm that have a length of 30 nm each and N molecules. In order to obtain

closed cylinders that are consistent with the structure parameters given in table 7.1, the

lattice parameters of the grid were slightly varied as detailed in table 7.2. The angle β

is directly linked to the rolling angle δ via β = |(90◦ − δ + η) mod 180◦|. The stacking
distance d along the tube's axis is given by d = a · sin δ. For the dipole strength of
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Figure 7.3: Spectra of the individual cylinders used for the simulation shown in �gure 7.4. (a)
Polarisation-resolved spectrum from cylinder 1, and (b) polarisation-resolved spec-
trum averaged over all polarisations. (c,d) Polarisation-resolved and averaged spec-
trum from cylinder 2. The values used for the parameters of the simulation are given
in table 7.2.

the monomers µ2 = 30D2 was used [43], and for the site energies of the monomers

within the two cylinders 15 300 cm−1 and 15 500 cm−1 was used, respectively. A slight

di�erence in site energies can be the result of di�erent local environments, caused for

example by di�erent dielectric shielding. This is not unlikely if both cylinders together

make up a double-walled structure. Subsequently, the stick spectrum resulting from

eigenvectors and eigenvalues of the Hamiltonian (as described in section 5.4) was dressed

with a gaussian lineshapes. The width of the gaussians were chosen similar to the results

from the experiment (see �gure 6.4): S1 = 100 cm−1, S2 = 100 cm−1, S3 = 200 cm−1,

S4 = 200 cm−1. Figure 7.3 shows the contributions of the individual cylinders to the

overall spectrum in �gure 7.4.

The simulated spectrum presented in �gure 7.4, which is a combination of the spectra

from the two cylindrical arrangements, shows a reasonable agreement with the measured

one in �gure 6.3c. In particular, the energy spacing (both magnitude and direction)

between the transitions in the low- and high-energy doublets from the analysis of the ex-

perimental data (∆E12 = 34 cm−1, ∆E34 =62 cm−1, see �gure 6.3b) is reproduced rather
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7.2 Theoretical modeling of the spectra of model structures

Table 7.2: Parameters used to simulate the spectra presented in 7.3 and 7.4

Cylinder 1 Cylinder 2

a (nm) 1.297 1.294

b (nm) 0.98 0.98

d (nm) 1.21 1.24

r (nm) 14.7 9.7

δ (◦) 69 79

η (◦) 35 35

β (◦) 56 52

µ (D) 5.5 5.5

E0/hc (cm−1) 15300 15500

N 5152 3388

well by the simulations (∆E12 = 39 cm−1; ∆E34 =59 cm−1, see �gure 7.4b). For both

arrangements, the spatial periodicity (stacking distance of equivalent BChl molecules)

along the a-axis agrees within experimental accuracies with the results from cryo-EM. It

should be pointed out that the modeling is performed for single aggregates, whereas the

spectra have been taken for single chlorosomes that represent an assembly of aggregates.

In performing the simulation of �gure 7.4, �uctuations in the structure and model pa-
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Figure 7.4: Simulation of the polarization-resolved �uorescence-excitation spectrum from two
cylindrical aggregates. Each cylinder has a length of 30 nm. The molecules are ar-
ranged according to the proposed structure for the WT, the bchR mutant and the
bchQR mutant (see �gure 7.2). (a) Two-dimensional polarization-resolved representa-
tion. (b) Gaussian pro�les of the underlying transitions from cylinder 1 (red, yellow)
and cylinder 2 (cyan, blue).

rameters for a single aggregate, such as random transition energy disorder for molecules

within an aggregate, have not been taken into account. Furthermore, the value used for

the lattice constant a was allowed to di�er by at most a few percent, from that reported
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7 Structure and structural variations of light-harvesting aggregates in chlorosomes

by Ganapathy et al. [1], for the WT and bchQRU mutant. Given the di�erent side

groups of the BChl molecules, such a small variation is not unreasonable.

7.3 Spectral variations explained as variations of the model

structure

7.3.1 Simulations of variations of the radius r, rolling angle δ and lattice

parameter a

It should be emphasized that the above conclusions are based on quantities obtained

from the �uorescence-excitation experiments on individual chlorosomes. Each individual

entry in the distributions for the values of these quantities (see �gures 6.4, 6.5, 6.7, and

6.10) represents an average over the small ensemble of aggregates that constitutes the

particular chlorosome under study (intra-chlorosome variation). Hence, these distribu-

tions correspond to the ones of a macroscopic ensemble of chlorosomes. Their widths

re�ect the fact that, even for the mutant species, heterogeneity is still an important fac-

tor. Sources of heterogeneity may be variation in the structural model parameters as

well as random disorder in the exciton Hamiltonian resulting from local �uctuations.
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Figure 7.5: Simulated spectra from cylinder structures based on the model described in section
7.1. Each panel shows spectra for three cylinders that di�er with respect to each
other in one of the model parameters. (a) variation of the cylinder radius r, (b)
variation of the wrapping angle δ, (c) variation of the lattice parameter a of the unit
cell. In the individual panels the solid line corresponds to the spectral component
polarized parallel to the cylinder axis, and the dashed line corresponds to the spectral
component polarized perpendicular to the cylinder axis, whereas di�erent colours
refer to di�erent values of the parameters used.

In order to address the widths of the distributions of the spectral parameters more

quantitatively, the spectral positions and the intensities of the transitions as a function

of the radius r, rolling angle δ and lattice parameter a on the spectral positions and inten-

sities of the perpendicular and parallel absorption bands were calculated for a single-wall

cylindrical aggregate. Therefore, the values applied for one of the cylinder structures
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7.3 Spectral variations explained as variations of the model structure

(cylinder 1) used for �gure 7.4 were chosen as the default values (see table 7.3). Sub-

sequently, one of these parameters was varied within reasonable limits, while all other

parameters were �xed at their default values, see table 7.3∗. In particular, changing the

radius r of the cylinder, mainly a�ects the energy spacing between the superradiant tran-

sitions (�gure 7.5a). Furthermore, small changes of the rolling direction of the lattice, i.e.

the angle δ, a�ect the ratio of the oscillator strengths of the parallel and perpendicular

bands (�gure 7.5b). Finally, the unit cell parameter a in�uences the spectral position of

both bands (�gure 7.5c). Note that, d is directly related to a via d = a · sin δ.
These calculations show that broadening of the Gaussian transition bands as well as

the �uctuations seen in the histograms of �gures 6.4 and 6.2 might be caused by small

variations of the molecular arrangement and sizes of the tubes.

Table 7.3: Model parameters used to simulate the spectra displayed in �gure 7.5. The colours
in the legend on the left hand side correspond to the colours of the spectra shown in
the �gure. The grey background marks the parameters that were variied. The lattice
parameters may vary slightly from the default parameters to obtain closed cylinders.

Set of default values of cylinder 1

a (nm) d (nm) r nm δ (◦) η (◦) β (◦) N

Red 1.297 1.21 14.7 69 35 56 5152

Variation of radius r

Blue 1.297 1.21 9.2 69 35 56 3220
Black 1.297 1.21 7.4 69 35 56 2576

Variation of rolling angle δ

Blue 1.287 1.22 15.4 71 35 54 5400
Black 1.297 1.24 15.2 73 35 52 5324

Variation of lattice parameter a

Blue 1.269 1.18 14.8 69 35 56 5280
Black 1.250 1.17 13.5 69 35 56 4890

7.3.2 Correlation between the energetic separation of spectral

components and the radius of cylindrical structures

The evaluation of the polarization-resolved spectra revealed pairs of gaussian transitions

energetically close to each other (see section 6.2). In �gure 6.7 the statistics of the

energetic separations ∆E12 and ∆E34 of the two mutually orthogonal polarized spectral

components from the low-energy doublet and high-energy-doublet for WT-group1, the

∗Note that the lattice parameters may vary slightly from the default parameters to obtain closed
cylinders.
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7 Structure and structural variations of light-harvesting aggregates in chlorosomes

bchR mutant and the bchQR mutant were presented. Both doublets feature distributions

for their spectral seperation. Nevertheless, for an individual chlorosome, the spectral

separations within the low-energy doublet and the high-energy doublet, ∆E12 or ∆E34,

are correlated. Remarkably, �gure 7.6 shows that the energetic separations for all three

species (WT-group1, bchR, and bchQR) correlate and accumulate around a line that

roughly satis�es the relation ∆E34 ≈ 1.5 ·∆E12. Such correlations are not observable for

other combinations ∆Eij and ∆Ekl (for i, j 6= k, l), as it is demonstrated for the bchR

mutant in �gures A.10b,c.

r (nm)

14 8.4

0 50 100 150
0

50

100

150

200

250

∆E12 (cm−1)

∆
E

3
4

(c
m

−
1
)

WT-group1

bchR

bchQR

r
(n

m
)

14

8.4

6.1

4.8

Figure 7.6: Correlation between the energetic separations of the low- and high-energy doublet
∆E12 and ∆E34. The shaded area indicates the range of the most frequently observed
energy splittings. The structures on the top and on the right-hand side of the diagram
illustrate the radii of tubular structures that are consistent with the respective energy
di�erences. The particular radius scales displayed here have been obtained using
exciton model calculations.

For single-wall aggregates of tubular symmetry, the energetic separation between mutu-

ally orthogonal polarized spectral bands, i.e., ∆E12 and ∆E34, is related to the curvature

of the structure [77]. Explicitly, the energetic separation scales roughly proportional to
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7.3 Spectral variations explained as variations of the model structure

the curvature. Simulations, as in section 7.3.1, were made to link the energetic sep-

arations with actual values for radii. Therefore, the �uorescence-excitation spectra of

cylinders with parameters a = 1.297 nm, b = 0.98 nm, δ = 69◦, and η = 35◦ were sim-

ulated. The radius was varied between 3.7 nm and 16.6 nm. From these spectra, the

energetic splitting between the bands was analyzed. The data is presented in table 7.4.

The energetic splitting increases for increasing curvature, i.e. decreasing radius of the

underlying cylinder, see table 7.4 and �gure 7.7. The data has been �tted using the

equation [77]:

∆E = 8J sin2

(
s · sin θ + d · cos θ

2r

)
(7.1)

Here, J denotes the exciton transfer interaction, s, θ, and d are structural lattice param-

eters and r the radius of the cylindrical structure presented in reference [77].

Table 7.4: Relation between the radius of the underlying cylinder structure and the energetic
separation ∆E‖,⊥ of the two mutually orthogonal polarised bands in the spectrum.

r (nm) 3.7 5.5 7.4 9.2 11.1 12.9 14.7 16.6

∆E‖,⊥ (cm−1) 270 169 119 89 70 57 47 40

With the results from the simulation, it is possible to give a physical interpretation

of the energy di�erences ∆E12 and ∆E34 within both pairs of transitions for the WT-

group1, bchR, and bchQR species (the data is shown in �gure 6.7) and a speculation

about the relation between both pairs.

The data points of the energy splitting in �gure 7.6 accumulate around a line indicated

by the gray shaded area, that includes 89 % of the total data points (87 % for WT-group1,

86 % for bchR, 97 % for bchQR). For the chlorosomes from the WT-group1 and the bchR

mutant, ∆E12 (∆E34) covers the range of 0 cm−1 to 150 cm−1 (250 cm−1), whereas these

ranges are restricted for ∆E12 (∆E34) to 0 cm−1-50 cm−1 (150 cm−1), respectively, for

the bchQR mutant. This correlation implies, in particular, that the structure associated

with the low-energy doublet (12) has a smaller curvature than the one associated with the

high-energy doublet (34). This would be consistent with interpreting both doublets to

derive from concentric double- or multilayer tubular arrangements of the BChl aggregates

within the chlorosomes. Using values for the radius, obtained by the exciton model

calculations from above (see �gure 7.7), the variation of the radius is found to cover a

range of about 4 nm to 20 nm for WT-group1 and the bchR mutant, whereas this inter-

chlorosome variation is less pronounced for the bchQR mutant featuring structures with

radii in the range of 7 nm to 20 nm, that is lacking the structures with the strongest

curvature (see right and top axes in �gure 7.6).

Furthermore, the correlation between ∆E12 and ∆E34 is a strong signature for an

underlying structural hierarchy within the overall organization of the BChl assembly.
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7 Structure and structural variations of light-harvesting aggregates in chlorosomes
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Figure 7.7: Energetic separation ∆E‖,⊥ between the two mutually orthogonal polarized spectral
components in a doublet as a function of the cylinder radius. For this example
calculation the default values in table 7.3) have been used as parameters with a
variation of r. The data has been �tted using the equation given in reference [77].

The average curvature of the structural elements within a particular chlorosome displays

strong variations from one chlorosome to the other (interchlorosome variation) for all

three species. Given the widths of the distributions for ∆E12 and ∆E34 on the one hand

and the reasonable degree of correlation between their values in an individual chlorosome,

on the other hand, the data shown in �gure 7.6 provide information about the extremes

of the variations of the structural elements between the individual chlorosomes. Hence,

it is conceivable that for some chlorosomes the dominating spectral contributions stem

from structural elements with rather similar curvatures, �gure 7.8a, whereas for other

chlorosomes, the dominating spectral contributions stem from structural elements with

a higher degree of variation, �gure 7.8b. However, in a macroscopic ensemble of chloro-

somes, this will be manifested as a contribution to the broadening of the distributions.

Considering the strong variation of the radii of the structures in individual chlorosomes, it

is reasonable to speculate, that a chlorosome contains a mixture of secondary aggregates

with various radii (see �gure 7.8c).

The variations of the energetic splitting (i.e., the size of the tubular structures) within

one species may re�ect di�erent growth conditions for the di�erent bacteria from which

the macroscopic ensemble of chlorosomes is extracted, for example, di�erences in chloro-

some structure during the course of growth and biogenesis of these structures.

This idea is supported by the existence of some degree of correlation between the ener-

getic splitting within one of the doublets and the corresponding emitted intensity. Figure
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7.4 Discussion

7.9 displays the integrated emission intensity from a single chlorosome as a function of

the energetic splitting ∆E12. However, a quantitative comparison of the intensities was

di�cult to accomplish, because the experiments were carried out over an extended period

in time on di�erent setups using slightly di�erent experimental parameters (focussing,

transmission di�erences of optical �lters etc.). Therefore, six individual chlorosomes

36 nm
28 nm

(a)

17 nm
10 nm

(b)

40 nm to 60 nm

(c)

Figure 7.8: Speculation about the variation of the overall supramolecular arrangement of the
BChl molecules between individual chlorosomes. (a) Cylinders with an overall sim-
ilar curvature. (b) Cylinders with strongly varying curvatures. (c) Cylinders and
curved lamellae with strongly varying curvatures. The gray structure indicates the
phospholipid envelope.

were chosen featuring a small energetic splitting, an intermediate energetic splitting, and

a large energetic splitting ∆E12, respectively. The red crosses in �gure 7.9 correspond

to the median of both parameters (splitting and intensity) for each group separately.

Figure 7.9 displays a weak correlation between these parameters. The emitted intensity

is proportional to the number of monomers in the chlorosome. Furthermore the number

of BChls in a chlorosome is proportional to the size of the chlorosome and therefore its

state of growth. In particular, this means that chlorosomes that have a higher emission

are in general larger than chlorosomes emitting only a low intensity. The energetic split-

ting, on the other hand, is proportional to the curvature of the secondary structures in

chlorosomes. Therefore, the correlation of the emitted intensity and the energetic split-

ting suggests that during growth, the average radius of the tubular aggregates within

a chlorosome increases. This might result from an increased occurrence of multilayer

concentric BChl aggregates during growth, which would be favorable, as it leads to a

high-density packing of molecules.

7.4 Discussion

A large amount of information was obtained from the polarization-resolved, �uorescence-

excitation spectra of individual chlorosomes from the WT, the bchR single mutant, and
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7 Structure and structural variations of light-harvesting aggregates in chlorosomes
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Figure 7.9: Integrated intensity of the emission of single chlorosomes from WT-group1 as a func-
tion of the energetic splitting, ∆E12, of the low-energy doublet. The data correspond
to 3 groups of 6 chlorosomes each featuring a small, intermediate and large energy
splitting ∆E12. The red crosses correspond to the median of both parameters (in-
tensity and energetic splitting) for each subgroup of the chlorosomes.

the bchQR double mutant. The detailed analysis of these spectra allows to draw conclu-

sions about the structural arrangement of the BChls in chlorosomes, but also to determine

structural di�erences.

It was observed that the spectral heterogeneity diminished in the order WT > bchR

single mutant > bchQR double mutant, clearly demonstrating that the higher degree of

structural order achieved through the mutations allows better resolution of distinctive

spectral features (also see reference [87]). The bchR and bchQR mutations correspond

to a removal of methyl groups from the sidechains of the BChl c molecules, namely,

one at C-12 for bchR, and additional ones at C-8 for bchQR (see also table 3.1). It is

therefore tempting to speculate that the methylations e�ectively substitute for protein

interactions for �ne-tuning the site energies of the monomers to achieve a broadening

of the absorption band for better spectral coverage in the natural organisms. If so,

the methylations and the induced structural disorder would be of functional importance

for optimizing the light-harvesting e�ciency of the chlorosomes. From the linewidth

distributions of the single chlorosome spectra (see �gure 6.4b,d,f), it becomes apparent

that this overall broadening is already a property of the individual chlorosomes rather

than of the macroscopic population as a whole.

A global analysis revealed that the spectra of individual chlorosomes are composed of

four Gaussian transition bands. The statistics of the �t parameters showed that bands 1

and 2 result from pairs of exciton states with lower energies, whereas bands 3 and 4 derive
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7.4 Discussion

from similar pairs with higher energies. The polarization features of these pairs revealed

a cylindrical symmetry for the arrangement of the BChls in the chlorosomes of the bchR

mutant, the bchQR mutant and a vast majority of the WT chlorosomes. Therefore, the

low- and high-energy doublets are associated with di�erent cylindrical arrangements in

the chlorosome. The reason that both doublets have a di�erent average transition energy

may originate from di�erent solvent shifts for the molecular transition energies, owing to

a di�erent environment within a multilayer structure and (or) to slightly di�erent lattice

parameters for the di�erent cylindrical aggregates. It is also tempting to speculate,

that the correlation of the width (see �gure 6.4b,d,f) between the pairs of electronic

transitions, can be interpretated as a relaxation of the states of the higher-lying doublet

to the lower one. However, the correlation of the width of the transitions within one of the

doublets is not so easy to explain. In the chlorosomes the width of the transition parallel

to the cylinder axis is, in general, smaller than the width of the perpendicular one. A

study on arti�cial light-harvesting nanotubes (self-aggregated zinc chlorin monomers),

which mimic the secondary aggregates in chlorosomes, showed a inverse behaviour of

the FWHM of the transition bands [97]. Therfore, the origin of the correlation of the

width between the pairs of electronic transitions needs further investigation. However,

the study showed that this biomimetic light-harvesting aggregate might function as a

model system for the secondary structures in chlorosomes. The nanotubes reproduce

the angle β (angle between the molecular dipole moment of the BChls and the long axis

of the cylindrical aggregates), which was determined to be around 55◦ for all species

of chlorosomes (WT-group1, bchR mutant, bchQR mutant). Interestingly, this value

corresponds approximately to the magic angle. This connection shows impressively how

well designed the chlorosomes are. The arrangement of BChls close to the magic angle

allows the most e�cient absorption of photons regardless of their polarization.

Another important piece of information was obtained from cryo-EM experients. The

stacking distance along the axis of the tube is given by d = a · sin δ. The close agreement

between the stacking distance for the WT, the bchR mutant and the bchQR mutant

(table 7.1) suggested that all chlorosome arrangements are compatible with the same

structural model. Together with the angle β, which is directly linked to the rolling angle

δ via β = |(90◦ − δ + η) mod 180◦|, a model structure was build by wrapping the NMR

lattice reported in reference [1] onto a cylindrical surface along a rolling vector that is

inclined by about δ ≈ 70◦ with respect to the a-axis of the grid.

This uni�ed model structure for the secondary structures in chlorosomes from the WT,

the bchR mutant, and the bchQR mutant was obtained from the combination of informa-

tion from single-particle spectroscopy and cryo-EM with previous data from NMR and

molecular modeling. Recent studies also claimed that the combination of techniques is

necessary to obtain unambiguous information about the structure of the aggregates in

chlorosomes [98]. In contrast to the statement from Li et al. that their results contradict
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7 Structure and structural variations of light-harvesting aggregates in chlorosomes

the results presented in this work, values for the rolling vector δ similar to the one pre-

sented here arise from their theoretical study. The fact that another theoretical approach

comes up with similar results as the experimental study presented here supports again

the presented model structure.

Yet, only the experimental study on individual chlorosomes presented here enables

one to study di�erences in the details of the monomer arrangement between the strains,

and between the secondary structures within one strain. Interestingly, the simulations

revealed that the in�uence of the long-range order of the BChl arrangement, such as

variations of the curvature of the cylindrical surface or a spread in the rolling angle

are not decisive for the details in the ensemble absorption spectra of the chlorosomes.

A scatter in these parameters manifests itself mainly in the widths of the absorption

bands. The energy splittings observed between the various spectral peaks of individual

chlorosomes of the WT-group1, the bchR mutant, and bchQR mutant strains revealed

interesting information. In particular, (i) a strong correlation exists between the energetic

separations within the absorption doublets that are observed (i.e., ∆E12 vs. ∆E34). This

provides strong evidence for close similarities in the molecular arrangement for all three

chlorosome types and for a structural hierarchy in the molecular packing within one

chlorosome. In particular, the structure associated with the low-energy doublet (12)

has a larger radius than the one associated with the high-energy doublet (34). This

would be consistent with interpreting both doublets to derive from concentric double-

or multilayer tubular arrangements of the BChl aggregates within the chlorosomes. For

instance, the aggregates of radii r1 and r2 used in the above modeling (section 7.2)

may well be concentric tubes (as depicted in �gure 7.8). (ii) Within an ensemble of

chlorosomes from the same strain, the individual aggregates feature strong variations in

the curvature of their secondary structural elements. (iii) Between di�erent strains (here

WT, bchR mutant vs bchQR mutant), the chlorosomes feature strong variations in the

radii of their secondary structural elements. It appears that in the bchQR chlorosomes,

the tubular elements with small radii are lacking, which is in contrast to those from the

other two strains.

Given that distributions for all experimental parameters were observed, it is reasonable

to propose that a macroscopic ensemble of chlorosomes is best represented by a mixture

of organelles in which each individual chlorosome accommodates di�erently curved su-

perstructures (see �gures 7.6 and 7.8).

This conclusion is supported by the second spectral pattern that was found for about

one-quarter of the WT chlorosomes. The spectra showed features that might originate

from cylindrical as well as other secondary structural elements. As shown by the Vacha

group [58], for su�ciently large curvatures, it su�ces to consider only a quarter-cylinder

as the primary structural element to reproduce similar spectral signatures as obtained

for a closed cylinder. Hence, it �nally may be speculated that curved structural elements
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7.4 Discussion

other than closed cylinders, i.e., partial cylinders, lamellae, or spirals could contribute to

the observed spectral properties (see �gure 7.8c). This might also explain some of the

debates in the literature concerning di�erent supramolecular organisations of the BChl

molecules [1, 42, 44�46, 50, 52, 55, 57�59, 86, 89] (see section 3.2).
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8 Summary

In this thesis, individual chlorosomes from the WT, the bchR single mutant, and the

bchQR double mutant were studied by polarization-resolved, �uorescence-excitation spec-

troscopy. The polarization features observed in these spectra re�ected a high degree of

organization of the BChls molecules in the chlorosomes. This indicated the arrangement

of the BChls into secondary structural elements.

The analysis of the polarization-resolved spectra revealed two types of spectral patterns

for the chlorosomes of the WT. The optical features of the single-particle spectra of the

vast majority of the WT chlorosomes (75 %), as well as for the chlorosomes of the bchR

single mutant and the bchQR double mutant showed that the predominant structural

element for the meso-organization of the monomers features a tubular symmetry.

To pinpoint the precise structure of the light-harvesting aggregates in individual chloro-

somes, a combination of optical and cryo-EM and NMR experiments was used. Two es-

sential pieces of information were derived from these experiments. The optical data yield

the angle β, which is the angle between the molecular transition dipole moment of the

BChls and the long axis of cylindrical aggregates. The EM data yield the stacking dis-

tance along the axis of the tube. These two informations are combined to a model of the

molecular arrangement of BChls in secondary structures in the chlorosomes. The molec-

ular packing of these aggregates can be reproduced by wrapping the lattice structure

reported in reference [1] onto a cylindrical surface along a rolling vector that is inclined

by about δ = 70◦ with respect to the a-axis of the grid. For the WT chlorosomes, this

is in contrast to what has been reported before [1]. The presented model structure is

compatible with the data of the chlorosomes from all three species. This implies that the

secondary structures of all species can be described with a single model structure.

It was shown, that it is possible to reconstruct LD spectra from polarization-resolved,

�uorescence-excitation spectra of individual chlorosomes. Although this technique pro-

duces the LD ensemble spectrum of a perfectly aligned sample of chlorosomes, it does

not yield the spectroscopic information on which the presented model structure is based.

Simulations of spectra obtained by theoretical modeling of the presented structure

showed a good agreement with the experimental spectra. Furthermore, studying varia-

tions of the structural parameters complete the image that a chlorosome is best repre-

sented by a mixture of di�erently curved superstructures, wherein each structure corre-

sponds to a small variation of the presented model structure.

77



8 Summary

In summary, by combining information from single-particle spectroscopy and cryo-

EM with previous data from NMR and molecular modeling, the dominant structure

as well as the structural variation of the light-harvesting aggregates in chlorosomes of

Cba. tepidum was elucidated. The most important result of this work is that only the

combination of these techniques yields unambiguous information on the structure. In

contrast, the information from only one technique would have led to di�erent results [2,

3].
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A Additional experimental data

A.1 Decomposition of the polarization-resolved

�uorescence-excitation spectra

The polarization-resolved �uorescence-excitation spectra shown in �gure 6.1 were globally

�tted using the equation:

F (E,Θ) = B +

4∑
i=1

Ai(E) · [cos (Θ− ϕi)]2 · exp

(
−(E − Ei)2

W 2
i /4 ln 2

)
(A.1)

A.1.1 Spectra of the wild type
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Figure A.1: Examples of polarization-resolved �uorescence-excitation spectra of individual
chlorosomes from the WT (spectra from �gure 6.1) together with the spectra de-
composed into four Gaussians.
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A Additional experimental data

A.1.2 Spectra of the bchR mutant

bchR
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Figure A.2: Examples of polarization-resolved �uorescence-excitation spectra of individual
chlorosomes from the bchRmutant (spectra from �gure 6.1) together with the spectra
decomposed into four Gaussians.

A.1.3 Spectra of the bchQR mutant

bchQR
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Figure A.3: Examples of polarization-resolved �uorescence-excitation spectra of individual
chlorosomes from the bchQR mutant (spectra from �gure 6.1) together with the
spectra decomposed into four Gaussians.
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A.2 Distribution of the relative phase angles ∆Φij

A.2 Distribution of the relative phase angles ∆Φij

A.2.1 Distribution of ∆Φij of the wild type
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Figure A.4: Distributions of the relative phase angles ∆Φij of chlorosomes from the WT

A.2.2 Distribution of ∆Φij of the bchR mutant
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Figure A.5: Distributions of the relative phase angles ∆Φij of chlorosomes from the bchR mutant
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A Additional experimental data

A.2.3 Distribution of ∆Φij of the bchQR mutant

bchQR
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Figure A.6: Distributions of the relative phase angles ∆Φij of chlorosomes from the bchQR mu-
tant

A.2.4 Distribution of ∆Φij of WT-group1
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Figure A.7: Distributions of the relative phase angles ∆Φij of chlorosomes from WT-group1
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A.2 Distribution of the relative phase angles ∆Φij

A.2.5 Distribution of ∆Φij of WT-group2
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Figure A.8: Distributions of the relative phase angles ∆Φij of chlorosomes from WT-group2

A.2.6 Mean values and standard deviations of the distributions of the

relative phase angles

Table A.1: Mean values (standard deviations) of the relative phase angles ∆Φij between the
bands for the three types of chlorosomes.

∆Φij (deg) 12 13 14 23 24 34

WT 60(34) 33(32) 47(33) 78(14) 16(20) 77(16)

WT-group1 79(10) 15(16) 63(24) 76(16) 19(22) 76(16)

WT-group2 6(5) 81(7) 4(4) 84(6) 6(7) 80(7)

bchR 78(16) 28(27) 62(28) 67(26) 23(26) 87(3)

bchQR 83(6) 17(27) 69(24) 68(22) 19(25) 88(3)
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A Additional experimental data

A.3 Stacking distances of bchR mutant chlorosomes from

cryo-electron microscopy

Cryo-electron micrographs of bchR mutant chlorosomes appear rather similar to the

ones from WT chlorosomes. The lamellar organization, indicated by the stripes in the

direction of the long axis, appears somewhat less regular, suggesting more structural

heterogeneity at the microscopic level (�gure A.9a). Images of individual chlorosomes

were analysed by Fourier transformation of boxed areas. In the derived power spectra

equatorial re�ections are visible, originating from the lamellar spacing (green arrow in

�gure A.9b). Although more fuzzy, the average lamellar spacing of 2.1 nm was the same

as that found for the WT chlorosomes. A weak but signi�cant layer line is present at

1/1.24nm−1 (red arrow), suggesting a helical arrangement of the BChls in which hetero

(syn-anti) dimers are the building blocks of the chlorophyll stacks, again similar to WT

chlorosomes. 16 power spectra as in �gure A.9b were added after rotational alignment

to illustrate the periodicity more clearly in �gure A.9c.

C
(a) (b) (c)

1 nm−11 nm−125 nm

Figure A.9: (a) Cryo-electron micrograph of a bchR mutant chlorosome. (b) Power spectrum of
the boxed area in (a). A green arrow points at the equatorial re�ection originating
from the lamellar spacing. The red arrow indicates the position of a layer line at
1/1.24nm−1. (c) Averaged power spectrum from 16 individual cryo-EM images of
bchR mutant chlorosomes. The red arrow indicates the presence of a layerline at
1/1.24 nm−1. [2]
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A.4 Correlations between the energetic seperations of the spectral components

A.4 Correlations between the energetic seperations of the

spectral components

The correlation between the energetic separations ∆Eij and ∆Ekl (for i, j 6= k, l) of the

spectral components from the same individual chlorosome is shown in �gure A.10. A

signi�cant correlation is only observable for the energy splittings ∆E12 vs. ∆E34 of the

spectral components within the low- and the high-energy doublet (�gure A.10a).
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Figure A.10: Each cross corresponds to the energetic separations ∆Eij and ∆Ekl (for i, j 6= k, l)
of the spectral components of the same individual chlorosome from the bchRmutant.
(a) ∆E12 vs. ∆E34, i.e. between the spectral components within the low- and
the high-energy doublet. The correlation coe�cient for the full data set from 58
individual chlorosomes amounts to 0.7. If the data points marked in blue or red
are treated separately the correlation coe�cients are 0.93 (blue) and 0.95 (red),
respectively. Both relations are reasonably well represented by a linear dependence.
(b) ∆E13 vs. ∆E24. The correlation coe�cient amounts to 0.36. (c) ∆E14 vs.
∆E23. The correlation coe�cient amounts to 0.34. [2]

Two example spectra from chlorosomes that give rise to the data points marked in

red in �gure A.10a are shown in �gure A.11. The setup of the �gure is similar to that

of �gure 6.7. The �uorescence-excitation spectra of these chlorosomes showed �unusual�

features compared to the spectra from the other chlorosomes. For some of them the

emitted intensity drops to a low level during data acquisition (�gures A.11a,b), whereas

others display a pronounced shoulder on the high-energy side of the spectrum (A.11c,d).

Some of these chlorosomes exhibit both in their spectra: a drop in intensity as well as a

pronounced high-energy wing. In particular the high-energy spectral feature is tempting

us to speculate whether the data points marked in blue and red in �gure A.10a result

from two structural elements that di�er quantitatively in their pigment arrangement.

However, at the current stage this remains an open question.
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A Additional experimental data

bchR
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Figure A.11: Examples of spectra from individual chlorosomes that give rise to the data points
marked in red in A.10a. The top panels a,c correspond each to a stack of 250
�uorescence-excitation spectra from one particular chlorosome as a function of the
polarization of the excitation light. The spectra have been recorded at 1.5 K. At
the bottom (b,d) the black lines correspond to the �uorescence-excitation spectra
averaged over all polarisations, and the coloured lines represent the decomposition
into four Gaussians. [2]
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B E�ect of misalignment of structures

for polarization-resolved

�uorescence-excitation and LD spectra

B.1 Polarization-resolved spectra

For the bchQR chlorosomes, in some cases, the cryo-EM images revealed secondary

cylinder-like structures, whose symmetry axes were oriented mutually orthogonal with

respect to each other [50]. In order to test the in�uence of a fraction of �misaligned�

tubular structures within an individual chlorosomes on the optical spectra two extreme

situations were modeled:

1. Symmetry axes of the cylinders perpendicular with respect to each

other and perpendicular to the optical axis, see �gure B.1

O
(a)
1

O
(a)
2

Cylinder a Cylinder b

O‖

O⊥

O
(b)
1

O
(b)
2

Figure B.1: Schematic illustration of mutually perpendicular oriented cylinder structures, where
both symmetry axes are oriented perpendicular to the optical axis (perpendicular to
the plane of the paper). The resulting polarizations of the allowed exciton transi-
tions are indicated by the red arrows and the corresponding oscillator strengths are
denoted by O. The grey axes set the reference frame which determines parallel (‖)
and perpendicular (⊥) polarizations.

Without loss of generality it can be assumed that the majority of the secondary struc-
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B E�ect of misalignment of structures for polarization-resolved �uorescence-excitation

and LD spectra

tures is oriented as cylinder a, which sets the reference frame (‖, ⊥). Let n denote

the fraction of structures oriented as cylinder a. Then the contributions to the overall

oscillator strength are given as

O‖ = nO
(a)
1 + (1− n)O

(b)
1 (B.1)

O⊥ = nO
(a)
2 + (1− n)O

(b)
2 (B.2)

Under the reasonable assumption that the internal structures of the cylinders a and b

are equivalent,this yields

O
(a)
2 = O

(b)
1 and O

(a)
1 = O

(b)
2 (B.3)

and

O‖

O⊥
=
n
(
O

(a)
1 /O

(a)
2

)
+ (1− n)

n+ (1− n)
(
O

(a)
1 /O

(a)
2

) (B.4)

is found for the ratio of the measured oscillator strengths.

2. Symmetry axes of the cylinders perpendicular with respect to each

other and one symmetry axis parallel to the optical axis, see �gure B.2

Cylinder a Cylinder b

O
(a)
1

O
(a)
2

O‖

O⊥

O
(b)
1

O
(b)
2

Figure B.2: Schematic illustration of mutually perpendicular oriented cylinder structures, where
one symmetry axis is oriented perpendicular to the optical axis (perpendicular to
the plane of the paper). The resulting polarizations of the allowed exciton transi-
tions are indicated by the red arrows and the corresponding oscillator strengths are
denoted by O. The grey axes set the reference frame which determines parallel (‖)
and perpendicular (⊥) polarizations.

90



B.1 Polarization-resolved spectra

Under similar assumptions as above this yields

O‖ = nO
(a)
1 + (1− n)O

(b)
1 (B.5)

O⊥ = nO
(a)
2 + (1− n)O

(b)
2 (B.6)

and

O
(a)
2 = O

(b)
1 and O

(a)
2 = O

(b)
2 (B.7)

and �nally
O‖

O⊥
= n

O
(a)
1

O
(a)
2

+ (1− n) (B.8)

As detailed in chapter 6 the angle β between the monomer transition-dipole moments

and the symmetry axis of the cylinder is given as

β = arctan

√
2
O⊥
O‖

(B.9)

From the cryo-EM data it can be deduced that the fraction of �misaligned� structures

amounts at most to 10 %, i.e., n ≥ 0.9. Figure B.3 shows the variation of β as a function

of the fraction n of �properly oriented� cylinders for both scenarios for the range n = 1 to

n = 0.5. For the range of interest, i.e. n ≥ 0.9, and 0.75 ≤ O1/O2 ≤ 1.25, which covers

the bulk of the experimental data, the variation of β amounts to a few degrees.

Nevertheless, it cannot be excluded that those �misaligned� secondary structures that

have been observed in cryo-EM in the chlorosomes of the bchQR mutant, contribute to

a small extent also to the widths of the distributions shown in �gure 6.11.
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B E�ect of misalignment of structures for polarization-resolved �uorescence-excitation

and LD spectra
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Figure B.3: Variation of the angle β as a function of n and as a function of the ratio of the
oscillator strengths. The left-hand side refers to situation 1 (�gure B.1) and the right
hand side refers to situation 2 (�gure B.2). The grey area refers to the parameter
range that is relevant for this work.
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B.2 LD spectra

B.2 LD spectra

The LD spectra presented in �gure 6.12 are reconstructed from the polarization-resolved

spectra in a way that they represent a perfect alignment of the chlorosome with respect

to the parallel and perpendicular polarization of the excitation light. The in�uence of

the misalignment on the LD spectra is investigated by studying a single cylinder, as

schematically depicted in �gure B.4.

µ‖

θ

δ

µ⊥

Figure B.4: Schematic illustration of a cylinder with its transition dipole moments µ‖ and µ⊥.
Parallel to the long axis of the middle cylinder (grey) the reference axis of perfect
alignment is shown. The two cylinders sideways inclined represent misaligned cylin-
ders with an inclination θ with respect to the reference axis and a rotation of δ
around the axis.

The LD spectrum of a perfectly aligned single cylinder arises from absorption spectra

with a polarization of the excitation light parallel to the long axis of the cylinder (grey)

and perpendicular to it. The LD spectrum can be in�uenced by an inclination of the

cylinder of θ with respect to the long axis of the perfectly aligned cylinder and a rotation

δ around this axis. For cylinders, which are not perfectly aligned, the LD spectrum is:

LD ∼ (A‖ −A⊥) =
∣∣µ2
i

∣∣(∑
i

cos2 θi −
∑
i

sin2 θi

)
(B.10)

The e�ect of θ on the LD spectrum of an individual cylinder was studied by simulating
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B E�ect of misalignment of structures for polarization-resolved �uorescence-excitation

and LD spectra

polarization-resolved of individual cylinders, as in section 7.2. The LD spectra were then

reconstructed using an angle Φ‖,mis, which is slightly changed from from the angle Φ‖ by

an angle of misalignment θ.

Φ‖,mis = Φ‖ ± θ (B.11)

The angle Φ⊥,mis is chosen perpendicular to Φ‖,mis. In �gure B.5 shows the LD signal of

a single cylinder with an angle θ = 0◦, 15◦, 30◦, 45◦, 60◦ to the axis of perfect alignment.

The LD signal decreases as a result of a disorientation from this axis. At an angle θ = 45◦

the sign of the LD bands changes.
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Figure B.5: LD spectra of a simulated cylindrical arrangement of BChls. The di�erent spectra
result from a disorientation of the cylinder with respect to the perfectly aligned
reference axis.

The misalignment of chlorosomes in an ensemble can be studied in a similar way. The

LD spectrum of an ensemble with perfectly aligned chlorosomes is presented in �gure B.6.

The angle θ of misalignment equals zero. For individual chlorosomes a misalignment of

a random angle θ in the range from −15◦ to 15◦ (−30◦ to 30◦, and −60◦ to 60◦) is

now chosen. The ensemble LD spectrum results from the average of the 66 LD spectra of

individual chlorosomes with a random degree of misalignment θ. The spectra in �gure B.6

show that the LD signal is decreased by a higher factor of misalignment. Furthermore,

the noise remains the same for all spectra and the signal to noise ratio gets worse with

a lower degree of orientation of the chlorosomes.

It has to be noted that the ensemble LD spectra are not only in�uenced by a mis-

alignment of the chlorosomes with respect to the polarization of the excitation light. As

an individual chlorosome itself represents an ensemble of not perfectly aligned individual

cylindrical structures, the LD spectrum of an individual chlorosome is already obstructed

by the orientation of the aggregated structures.
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B.2 LD spectra
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Figure B.6: Ensemble LD spectra with a variation of the orientation of the chlorosomes with re-
spect to the perfect orientation. The ensemble spectrum from �gure 6.12 is shown in
blue for the perfect orientation with 0◦ with respect to the axis of perfect alignment.
For the other spectra for each of the 66 spectra a random degree of misalignment
was chosen in the range from −15◦ to 15◦ (−30◦ to 30◦, −60◦ to 60◦).
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