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1Abstract

Time is the most valuable resource we have. Most time in a physicochemical
laboratory is spent measuring a variety of quantities: voltages, extinction coefficients,
temperatures, heat capacities, thermal diffusivity, density, and particle size to name
but a few. Another time consuming task is data analysis. Certain analysis tools,
like the radial distribution function are impossible to compute by hand due to the
sheer amount of data.

During my PhD, I developed automated measurement and data analysis tools and
applied them to specific research questions. These tools allowed my colleagues and me
to gain a better understanding of nanostructured particulate systems. Furthermore,
we could deduce structure-property relationships that govern heat flow in particulate
matter. Most of the tools I created come in the form of software. My programming
languages of choice are Python 3 and C++. They allow both rapid and object
oriented software development.

My research focused on two main topics: heat transport and particulate systems.
Both topics are intertwined in the diverse projects I completed during my PhD. Each
project had its own, unique challenges that I addressed with programming. I will
use the following paragraphs to summarize important results from each project.

Monodisperse, spherical, particles can self-assemble into hexagonal monolayers at
the air-water interface. We discovered a new way to create non-close packed colloidal
monolayers with all possible 2D Bravais lattices (chapter 10). My particle analysis
tools were instrumental in the discovery of this new method. I developed a theoretical
framework that allows us to predict and understand the lattice transformation.

While developing automated particle analysis, I solved a 35 year old problem. No
efficient way was known for computing the 3D radial distribution function, g(r),
in finite volumes from particle coordinates. The radial distribution function is a
powerful tool to investigate the structure of particulate systems. My new, analytic
algorithm will help other researchers analyze particle distributions in finite volumes
more efficiently (chapter 11). Finite particulate systems often occur during the
analysis of colloidal materials.
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Colloidal systems are an ideal model system to study heat transport in particulate
materials. Therefore, we used colloidal glasses to study the effect of two parameters:
the size distribution and the particle material. We reproduce our experimental
results with COMSOL simulations. These simulations require a well controlled
3D model of the colloidal structure. I developed software that transforms particle
coordinates from molecular dynamic simulations into a 3D model for COMSOL.
These simulations facilitated our discovery of percolation pathways in binary colloidal
assemblies (chapter 12). We also found that colloidal glasses, created by mixing
particles of different size, have a reduced thermal conductivity due to tortuous
thermal pathways (chapter 13). These discoveries provide new design guidelines for
particulate thermal insulation materials.

I extended our thermal characterization toolbox by implementing the lock-in ther-
mography technique. Automating the data analysis with software was important to
speed up the data analysis and to create reproducible results. Lock-in thermography
is ideally suited to characterize freestanding thin films. We applied lock-in thermo-
graphy to characterize two different materials: highly anisotropic Bragg stacks made
from Hectorite and polyvinylpyrolidone (PVP) and sandwich membranes consisting
of electrospun polyurethane and silver nanowires. We discovered a record high
thermal anisotropy in the layered Hectorite / PVP samples. Furthermore, we were
able to correlate, for the first time, strong thermal anisotropy with the Young’s
and sheer moduli (chapter 14). Lock-in thermography also allowed us to probe
fiber alignment and island formation during stretching of the sandwich membranes.
I obtained the 2D order parameter for the fibers through image analysis. The
implementation of a line laser even allowed measuring anisotropic thermal transport
within the plane of the non-woven material (chapter 15).

Since lock-in thermography proved to be an invaluable tool for our research, we
extended lock-in thermography in two directions. We showed that lock-in thermog-
raphy can be applied to thermally thin films that are translucent for both visible
and infrared radiation. Thermal losses, either by radiation or convection, have
a negligible effect on the final results (chapter 16). In addition, I improved the
excitation signal used for lock-in thermography. I designed two optimized multi
frequency excitation signals with minimal DC heating: a square wave with reduced
duty cycle and a sum of sine waves. Reducing DC heating is important to reduce
distortions created by temperature dependent thermal properties. Custom analysis
software was essential for measuring the reduced DC heating and optimizing the
excitation signals. These signals allow us to measure at multiple frequencies with
optimal signal efficiency (chapter 17). We think that these multi frequency signals
can be adapted to a wide range of frequency domain methods.
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Zusammenfassung

Zeit ist die wertvollste Ressource, die wir haben. Die meiste Zeit in einem physikalisch-
chemischen Labor wird damit verbracht, eine Vielzahl von Größen zu messen:
Spannungen, Extinktionskoeffizienten, Temperaturen, Wärmekapazitäten, Temper-
aturleitfähigkeit, Dichte und Partikelgröße, um nur einige zu nennen. Eine weitere
zeitaufwändige Aufgabe ist die Datenanalyse. Bestimmte Analysewerkzeuge, wie die
radiale Verteilungsfunktion, sind aufgrund der schieren Datenmenge nicht manuell
berechenbar.

Während meiner Promotion entwickelte ich automatisierte Mess- und Datenanalyse
Werkzeuge und wandte sie auf spezifische Forschungsfragen an. Diese Werkzeuge
ermöglichten es meinen Kollegen und mir ein besseres Verständnis für nanos-
trukturierte Partikelsysteme zu erlangen. Darüber hinaus konnten wir Struktur-
Eigenschaftsbeziehungen ableiten, die den Wärmefluss in partikulären Systemen
bestimmen. Die meisten meiner Werkzeuge basieren auf Software. Meine bevorzugten
Programmiersprachen sind Python 3 und C++. Sie ermöglichen sowohl eine schnelle
als auch eine objektorientierte Softwareentwicklung.

Meine Forschung konzentrierte sich auf zwei Hauptthemen: Wärmetransport und
Partikelsysteme. Beide Themen sind in den verschiedenen Projekten, die ich während
meiner Doktorarbeit abgeschlossen habe, miteinander verknüpft. Jedes Projekt hatte
seine eigenen, einzigartigen Herausforderungen, die ich mittels selbstgeschriebener
Programme gelöst habe. In den folgenden Abschnitten werde ich wichtige Ergebnisse
aus jedem Projekt zusammenfassen.

Monodisperse, kugelförmige Partikel können sich an der Luft-Wasser-Grenzfläche
von selbst zu hexagonalen Monolagen zusammenfügen. Wir haben einen neuen
Weg gefunden, nicht dichtgepackte kolloidale Monolagen mit allen möglichen 2D
Bravais-Gittern zu erzeugen (Kapitel 10). Durch meine Partikelanalysewerkzeuge
hab ich maßgeblich zur Entwicklung dieser neuen Methode beigetragen. Ich habe
einen theoretisches Modell entwickelt, das es uns ermöglicht, die Gitterumwandlung
vorherzusagen und zu verstehen.
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Bei der Entwicklung einer automatisierten Partikelanalyse habe ich ein 35 Jahre altes
Problem gelöst. Kein effizienter Weg war bekannt, um die 3D radiale Verteilungs-
funktion g(r) in endlichen Volumina aus Partikelkoordinaten zu berechnen. Die
radiale Verteilungsfunktion ist ein leistungsfähiges Werkzeug zur Untersuchung der
inneren Struktur von partikulären Systemen. Mein neuer, analytischer Algorithmus
wird anderen Forschern helfen, Partikelverteilungen in endlichen Volumina effizienter
zu analysieren (Kapitel 11). Partikuläre Systeme in endlichen Volumina treten
häufig bei der Analyse von kolloidalen Materialien auf.

Kolloidale Systeme sind ein ideales Modellsystem zur Untersuchung des Wärmetrans-
ports in partikulären Materialien. Wir verwendeten deshalb kolloidale Gläser um den
Einfluss von zwei Parametern zu untersuchen: die Partikelgrößenverteilung und das
Partikelmaterial. Wir reproduzieren unsere experimentellen Ergebnisse mit COM-
SOL Simulationen. Diese Simulationen erfordern ein gut kontrolliertes 3D-Modell
der kolloidalen Struktur. Ich habe eine Software entwickelt, die Partikelkoordinaten
aus molekulardynamischen Simulationen in ein 3D-Modell für COMSOL umwandelt.
Diese Simulationen ermöglichten uns die Entdeckung von Perkolationspfaden in
binären kolloidalen Materialien (Kapitel 12). Wir haben auch festgestellt, dass
kolloidale Gläser, die durch das Mischen von Partikeln unterschiedlicher Größe
entstehen, eine geringere Wärmeleitfähigkeit aufgrund von gewundenen Wärmewe-
gen aufweisen (Kapitel 13). Diese Entdeckungen bieten neue Designrichtlinien für
partikuläre Wärmedämmstoffe.

Ich habe unseren Werkzeugkasten zur thermischen Charakterisierung durch den
Aufbau der Lock-in Thermografie erweitert. Die Automatisierung der Datenanalyse
mittels Software war wichtig, um die Datenanalyse zu beschleunigen und reproduzier-
bare Ergebnisse zu erzielen. Die Lock-in Thermografie eignet sich hervorragend
zur Charakterisierung von freistehenden dünnen Schichten. Wir haben die Lock-
in-Thermografie eingesetzt, um zwei verschiedene Materialien zu charakterisieren:
hochanisotrope Bragg-Stacks aus Hectorit und Polyvinylpyrolidon (PVP) und Sand-
wichmembranen aus elektrogesponnenen Polyurethan- und Silber-Nanofasern. Wir
entdeckten eine rekordverdächtig hohe thermische Anisotropie in den geschichteten
Hectrorit / PVP-Proben. Darüber hinaus konnten wir erstmals eine starke ther-
mische Anisotropie mit den Elastizitäts und Schub Modul korrelieren (Kapitel 14).
Die Lock-in Thermografie ermöglichte es uns auch, die Faserausrichtung und Insel-
bildung durch Verstreckung zu untersuchen. Ich habe den 2D-Ordnungsparameter
für die Fasern durch Bildanalyse erhalten. Die Implementierung eines Linienlasers
ermöglichte sogar die Messung des anisotropen Wärmetransports innerhalb der
Ebene des Vliesstoffes (Kapitel 15).

xxii



Da sich die Lock-in Thermografie als wertvolles Werkzeug für unsere Forschung
erwiesen hat, haben wir die Lock-in Thermografie in zwei Richtungen erweitert.
Wir haben gezeigt, dass die Lock-in Thermografie auf thermisch dünne Schichten
angewendet werden kann, die sowohl für sichtbares Licht als auch für Infrarot-
strahlung durchlässig sind. Wärmeverluste, zum Beispiel durch Strahlung oder
Konvektion, haben einen vernachlässigbaren Einfluss auf das Endergebnis (Kapi-
tel 16). Darüber hinaus habe ich das Anregungssignal für die Lock-in Thermografie
verbessert. Ich habe zwei optimierte multifrequenz Anregungssignale mit minimaler
Gleichstromerwärmung entwickelt: eine Rechteckwelle mit reduzierter Einschalt-
dauer und eine Summe von Sinuswellen. Die Reduzierung der Gleichstromheizung
ist wichtig, um Messfehler zu reduzieren, die durch temperaturabhängige thermische
Eigenschaften entstehen. Selbst entwickelte Analysesoftware war unerlässlich, um
die reduzierte Gleichstromerwärmung zu messen und die Anregungssignale zu opti-
mieren. Diese Signale ermöglichen es uns, bei mehreren Frequenzen mit optimaler
Signalwirkung zu messen (Kapitel 17). Wir sind der Meinung, dass diese Mehrfre-
quenzsignale an eine breite Palette von Methoden angepasst werden können die in
der Frequenzdomäne arbeiten.
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Bragg reflections in colloidal superballs (Fig. 5.1a) were first explained in detail by
Vogel et al.[14],[20] They created these superballs by evaporating emulsified droplets
of colloidal dispersions. The frustrated colloidal self-assembly in a spherical confine-
ment creates different crystalline domains. Each domain scatters light, wavelength
dependent in different directions. Overall, the spherical symmetry creates uniform
Bragg scattering in all directions. Vibrant and homogeneous structural colors are
the result of the particle arrangement.

Barako et al.[15] showed that electrons in inverse metallic opals (Fig. 5.1b) move
ballistically over small length scales. They used heat as a probe for electron movement.
Heat is mainly carried by two types of particles in solid materials: electrons and
phonons. Both particles move diffusively on a macroscopic scale due to scattering.
The small features in the inverse opal, created by the highly ordered particle template,
are of similar size as the electron mean free path. The ballistic scattering of electrons
at the surfaces creates heat transport that differs from purely diffusive models.

Particle nested inverse opals (Fig. 5.1c) contain individual particles surrounded by a
bicontinous layer. They are synthesized by infusing core-shell colloids with a third
phase. A subsequent removal of the particle shells creates a bicountinous nest for
the core particles. Particle nested inverse opals are a promising structural motive
for battery electrodes.[21] The core particles could store ions and expand into the
space around them. The continuous solid part in the bicountinous layer can act as
the electrode for charge collection. The continuous pores create diffusion pathways
for the ions in the electrolyte. These beneficial properties depend on the structure
of the initial core-shell particles.

Hierarchical filter membranes with defined pore sizes (Fig. 5.1d) are accessible from
colloidal monolayers by float-casting. These microsieves[17] have superior flux, size
selectivity, and clogging resistance due to their uniform and thin pores. The pore
size can be as small as 200 nm. Applications range from microsieve emulsification,
to beverage filtration, and ultra fine aerosol generation for drug delivery. The
uniformity of the membrane directly reflects the initial particle arrangement and
size distribution.

Binary mixtures of colloidal particles (Fig. 5.1e) can self-assemble into lattices with
quasi-crystalline order. Quasicrystals have long range rotational symmetry without
translation symmetry. Photonic crystals with quasi-crystalline order exhibit band
gaps with higher symmetry than classic crystals. The high symmetry band gaps
minimize the optical losses in distributed feedback lasers built with quasi-crystalline
materials.[22]
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Orthogonally functionalized gold nanomeshes (Fig. 5.1f) are a promising approach to
control the adsorption of colloidal particles at interfaces.[19] Electrostatic forces guide
the charged colloids preferentially into the holes of the nanomesh. Individual particles
can be selectively and reversible adsorbed into separate holes. The adsorption can
be well controlled by the pH and the ionic strength of the dispersion. Analyzing the
positions of the adsorbed colloids gives us a better understanding of the process.

Colloidal monolayers of equal particles usually self-assemble into an hexagonal
monolayer. However, creating different lattice structures is beneficial for their
application as nanolithography masks,[23] waveguides,[24] and plasmonic sensors.[25]

These examples show that the function of a colloidal particulate system is strongly
correlated with its structure. There are two key challenges during the structural
analysis of particulate systems:

1. digitizing the particle positions, and

2. analyzing the particle coordinates.

A variety of techniques exist to determine particle coordinates at different length
scales. They usually rely on 2D imaging and then extracting particle positions
through image analysis. Particles are either placed at local intensity maxima[26]

or at the geometric center of their boundary (e.g. the center of the boundary
circle for spherical particles). Both methods rely on manual user input to optimize
certain parameters like intensity thresholds or particle size and distance ranges. The
resulting particle positions should always be checked by a human for correctness.

Common imaging techniques for 2D particulate materials are scanning electron
microscopy,[19],[27]–[29] transmission electron microscopy,[18],[30], scanning tunneling
microscopy,[31] atomic force microscopy,[32]–[35] and optical microscopy.[36],[37]

Three dimensional particle structures are imaged with tomography or confocal
microscopy.[38],[39] Probe beams for tomography range from neutron radiation[40] to
electron beams[41] and focused x-rays.[42] Both techniques have in common that they
produce an image stack. Particle positions in the individual images are detected and
then linked in 3D through the image stack to yield the 3D particle distribution.

The standard tool to analyze particle coordinates is the radial distribution function,
g(r). We can determine the crystal structure, average inter particle distances, domain
sizes, and interaction potentials between particles from g(r). Efficiently computing
g(r) in small, finite, volumes was an unsolved problem for over 35 years.1 I used
these tools to analyze particle assemblies made from colloids.

1see Larsen and Shaw[43] on page 4264, left column, fourth paragraph.
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In addition to the particle arrangement, Figure 5.2 demonstrates that a lot of other
parameters additionally influence the effective properties of a colloidal superstructure.
These are size and shape of the individual particles (Fig. 5.2a), the adhesion between
adjacent spheres and their contact area (Fig. 5.2b). The chemical composition of a
colloidal particle can vary from polymeric to dielectric or even metallic (Fig. 5.2e),
which can be further integrated into a heterogenous composition of colloidal assem-
blies (Fig. 5.2d). Finally, also the gas surrounding the polymer ensemble can have a
strong influence (Fig. 5.2f) on the thermal properties.

a) b) c)

d) e) f)
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Fig. 5.2.: Different parameters that can be controlled in colloidal assemblies: a) internal
and external pore sizes, b) interface area between particles, c) degree of order, d)
percolation in binary systems, e) different organic and inorganic materials, f) gas
pressure in pores changes the gas thermal diffusivity.

All of the above listed parameters render colloidal materials a very interesting and
rich system to investigate heat transport in particulate systems. The colloidal as-
sembly features translate into a variety of thermal transport phenomena, specifically:
The pore size and type (internal vs. external) can be small enough to create the
Knudsen effect.[44] The overlap between particles has a strong influence on heat
transport.[45]–[47] The particle order changes both the density and the number of
thermal pathways between particles.[48] Binary colloidal mixtures contain percolation
pathways above a certain particle ratio.[49] Different colloidal materials have different
intrinsic thermal conductivites.[50] Consequently, heat transport and heat transport
characterization in nanostructured materials evolved as an important research topic
during my PhD thesis.
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5.3 Heat Transport

Thermal energy is present everywhere.[51],[52] We can neither confine it, nor fully
transform it into another, more useful, type of energy.[53] Heat is thermal energy
that moves from one object to another. The driving force is a temperature difference
between the objects. Heat is transported by three different mechanisms: radiation,
convection, and conduction.

My work focuses on heat flow in solid materials where conduction is the main
transport mechanism. Two quantities are necessary to describe heat flux in solids:
thermal conductivity and thermal diffusivity. Intuitively, the thermal conductivity
determines how much heat flows between two objects in thermal equilibrium. The
thermal diffusivity describes the temperature distribution in thermal equilibrium
and how fast it is reached. Both quantities are necessary to describe heat transfer.

Guiding the flow of heat is essential for many practical applications. We can group
these applications into two main categories:

• thermal management (efficiently removing heat) and,

• thermal insulation (preventing heat flux).

Thermal management deals with waste heat. The most prominent example are
integrated circuits. Modern computer processors have a thermal design power
of more than 100 W. This waste heat has to be removed through the packaging.
Common surface areas are 52 × 45 mm2. This is equivalent to a specific heating
power of roughly 42 kW/m2, similar to the cooktop on an oven.

Most of the thermal resistance between the electronics and the heat sink originate
from interfaces. Microscopic surface roughness at these interfaces prevents efficient
heat transfer. The technical solution to this challenge are thermal interface materials.
These soft materials, with a high thermal conductivity, fill the gaps and facilitate
heat flux. Paste like metal alloys are commonly used today. They outperform
dielectric thermal pastes based on silicones and ceramics like alumina.[54] However
their electrical conductivity is a serious disadvantage. Spilling these metal pastes
onto the surrounding chip can destroy the device. Recent approaches focus therefore
on dielectric pastes. Suh and coworkers[55],[56] presented a soft thermal interface
material with a thermal conductivity of up to 100 W/mK, similar to solid metals. The
high thermal conductivity is created by a high volume fraction of silver nanoflowers.
They could demonstrate a significant reduction in the processor temperature of a
smart phone.
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Rechargeable batteries have seen tremendous improvement over the last decades.[57]

The applications range from smart phones to power tools and electric vehicles. Man-
aging the temperature of a battery pack is important to avoid thermal runaway[58]

and increase battery lifetime.

The kinetics of chemical reactions inside a battery are also temperature dependent.
Cars in a cold climate should be able to operate even when the battery is cold.
Heating the battery with its own electric energy is inefficient. Active battery
management is complicated and consumes energy.[59] A better approach is to retain
the waste heat, created by the cell reactions during start up. This requires an
adaptive thermal insulation with a reversible and temperature dependent thermal
conductivity. Dames and coworkers[60] designed a passive interface thermal regulator
that fulfills these requirements. Their regulator is based on a shape memory alloy.
Thermal conduction pathways are created above a certain temperature. Excess heat
is then efficiently removed once the battery has reached its operating temperature.

Thermal insulation is also important for energy efficient homes. My shared student
apartment, built in the 1920’s, needs 232 kWh/m2· year for heating in the form of natural
gas.2 Heating accounts for 70 % of the energy consumption in homes.[61] Newly built
homes in Germany are required to have good thermal insulation.[62] Proper thermal
insulation reduces the heating requirements of a home to 15 kWh/m2· year.[63]

Common insulation materials are mineral wool and expanded polystyrene foam.
Both have thermal conductivities in the range from 36 to 32 mW/mK close to the value
of still air (26.2 mW/mK).[64] There are two ways to reduce the thermal conductivity
further. One can remove the air and create vacuum insulation panels with a very
low thermal conductivity of < 5 mW/mK. However, these panels loose their superior
thermal insulation properties when they are punctured.[65]

Another way is to reduce the pore size of foams while keeping the foam density
constant. This reduces the intrinsic thermal conductivity of the gas in the pores
via the Knudsen effect.[44] Small pores limit the mean free path of the gas particles.
This creates a ballistic transport regime where the mean free path is determined
by the pore size and not the gas properties. The reduction in the mean free path,
relative to the free gas reduces the thermal conductivity of the gas phase. Air has a
mean free path of around 65 nm.[66] Creating foams with small enough pores that
show the Knudsen effect remains challenging.[67],[68]

2According to my energy bill in 2018.
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Thermal insulation using clothes is an important part of our everyday lives. More
humans die from cold weather than hot weather.[69] Clothing enables us to live in
places that are otherwise too cold to survive.3 Nature optimized insulating fur over
millions of years. A good example are polar bears (Ursus maritimus).[70] Their
white fur consists of hollow fibers. The trapped, non convecting air inside the fibers
creates good thermal insulation. Bionic hollow polymer fibers adapt this principle.[71]

They are widely used to create clothing with good thermal insulation. A prominent
example are lightweight sleeping bags.[72] The encapsulated air retains the thermal
insulation properties even when wet.

Improving the insulation of clothing requires knowledge about heat transport in
fabrics and individual fibers. Lock-in thermography (see section 6.6) is intrinsically
suited to measure heat transport in thin 2D materials and fibers. We use lock-in
thermography to characterize thin films and nonwovens.

Lock-in thermography with a line laser was first described by Wolf et al.[73] They
used a static line laser and their IR camera pixels were aligned with the heat flux.
Simavilla et al.[74] extended lock-in thermography with a point source to anisotropic
polymer films. Pradere et al.[75] used lock-in thermography to measure micron sized
carbon and ceramic fibers. They were able to measure the thermal diffusivity of
their fibers up to 2700 K. Mendioroz et al.[76] analyzed different experimental factors
that influence the accuracy of lock-in thermography measurements. They focused
on a simple analysis technique called the slope method.

Lock-in thermography has proven vital in the correct measurement of individual
fibers. Huang et al.[77] investigated heat transport in spider silk fibers with a self
built DC heating technique. They claimed that spider silk has an extraordinarily
high thermal diffusivity around 10−4 m2/s. Later work from Fuente et al.[78] with
lock-in thermography revealed that spider silk only has an average thermal diffusivity
of 2 · 10−7 m2/s, as expected for organic materials. The previously measured high
thermal diffusivity was most likely a measurement artifact caused by heat losses.
Heat losses strongly influence lock-in thermography measurements too,[79] especially
for thin fibers.[78] Accurate measurements of fibers require vacuum.[80]

In summary, lock-in thermography is a mature tool to analyze heat transport in thin
films and fibers. Artifacts from heat losses are well understood and can be avoided
by measuring in vacuum.

3Like Bayreuth during winter.
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6Methods

Method development was a central part of my PhD. I used programming and
mathematics to create new scientific tools. These tools are indispensable for our
research. I will use the following sections to describe the tools I developed and
used.

The first part describes tools to analyze and predict stretched colloidal monolayers.
I present a simple approach to describe stretching of lattices. My method differs
from the transfer matrix method used in our publication.[81] However, the results are
identical. My new approach is advantageous, because it is simpler. The second part
contains information about particle assembly generation and analysis. I will show
how we generated complex 3D particle assemblies for heat transport simulations.
Understanding the result from these simulations required an in depth look at next
neighbors in a particulate system. Details on the computation of g(r) are not
included in this section. An explanation of both my new algorithm and the radial
distribution function is in the SI of our publication (please see chapter 11). The
last part is dedicated to heat transport characterization techniques. I first present a
commercially available technique: Xenon flash analysis. I then present two custom
built setups: the photoacoustic technique and lock-in thermography. We use these
methods in the publications presented in chapters 12 through 17.

6.1 The Programming Language Python 3

The programming language Python[82] is a powerful, interpreted, scripting language
that allows fast and efficient creation of programs. There are many active program-
mers that maintain a healthy ecosystem of add-ons for all sorts of endeavors. The
matplotlib library,[83] NumPy,[84] and SciPy[85] are important extensions for scientists
to name but a few. I use matplotlib in this work to visualize all data generated from
the calculations and the post-processing routines. Python is intrinsically slower in
execution than compiled languages like C++. This is not an issue for me. The faster
development usually compensates the longer runtime. Overall, Python is a good
choice for scientific programming because it is simple, concise, and the source code
is easy to read.
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6.2 Analyzing Stretched Hexagonal Lattices

I now derive the theoretical framework to describe uniaxial stretching of arbitrary,
2D lattices. I then use this framework to stretch hexagonal lattices. We can also
predict the necessary stretch factor and direction to create a specific lattice from a
hexagonal lattice. This formulation is different from the one in our publication (see
Hummel et al.[81] or chapter 10) but yields identical results. I use vectors instead of
matrices to describe stretching. Using only vectors and dot products is superior to
a matrix based formulation. Dot products of vectors are commutative (changing
the order preserves the results) and distributive (multiplying a sum is the same as
summing the multiples).[86] These properties greatly simplify the manipulation of
equations.

y

x

a

S e1

e2

Fig. 6.1.: Coordinate system used in the following sections. The stretch vector, ~S, (orange)
encloses the angle, α, with the y-axis and is collinear with the stretch axis (black
dashed line). The reduced primitive translation vectors, ~e1 and ~e2, define the
original hexagonal lattice (black circles).

Figure 6.1 shows the orientation of the original hexagonal lattice (black circles) and
the coordinate system I use. One pair of primitive translations vectors, ~e1, ~e2, that
define the hexagonal lattice are

~e1 =
(

1
0

)
, and ~e2 = −1

2 ·
(

1√
3

)
. (6.1)

The stretch vector, ~S, is collinear with the stretch axis and given by

~S =
(
−S · sin(α)
S · cos(α)

)
= S ·

(
− sin(α)

cos(α)

)
= S · ~R(α). (6.2)

S is the stretch factor and ~R(α) the stretch direction. We choose α to start at the
y-axis because the monolayer transfer happens along the vertical direction.
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6.2.1 Stretching with a Stretch Vector

In this section, I introduce a description of uniaxial stretching in 2D using only the
stretch vector, ~S. I decompose the original particle position vector into two vectors.
One vector is stretched and the other one stays the same.

S

a
c

b

Fig. 6.2.: The stretch vector ~S (orange) and an arbitrary vector ~a. We decompose the
vector ~a into the vectors ~b and ~c. The vector ~b is collinear to ~S. The vector ~c is
perpendicular to ~S.

We decompose an arbitrary vector ~a into two orthogonal vectors, ~b and ~c, according
to Figure 6.2. We choose the two vectors such that

~a = ~b+ ~c, and therefore, ~c = ~a−~b. (6.3)

The vector ~b is the projection of ~a onto ~S given by

~b =
(
~a ◦ ~R

)
· ~R. (6.4)

I use the ”◦“ operator to denote dot products. The advantage of this decomposition
is that ~c is not stretched by ~S. Only ~b is stretched. Stretching ~b is simple because ~S
and ~b are collinear. We simply multiply ~b with the stretch factor S. Overall, the
stretched vector of ~a, called ~a′, is given by

~a′ = S ·~b+ ~c. (6.5)

Next, we insert the equations for ~b (Eq. (6.4)) and ~c (Eq. (6.3)) and get

~a′ = S ·
(
~a ◦ ~R

)
· ~R+ ~a−~b, (6.6)

~a′ = S ·
(
~a ◦ ~R

)
· ~R+ ~a−

(
~a ◦ ~R

)
· ~R. (6.7)

Rearranging and factoring yields

~a′ = ~a+ (S − 1) ·
(
~a ◦ ~R

)
· ~R . (6.8)

This is the final equation we use when we stretch a vector using only the stretch
vector ~S = S · ~R.

6.2 Analyzing Stretched Hexagonal Lattices 11



6.2.2 The Length of a Stretched Vector

I now derive the equation for the squared length of a stretched vector. We will use
the squared length on the next page to identify square, hexagonal, and rectangular
lattices.

We start with a well known equation from vector analysis.[86] The dot product of a
vector with itself equals the square of its length:

~a′ ◦ ~a′ = |~a′|2. (6.9)

A square always means multiplication of numbers, not vectors. We insert the
equation for a stretched vector (Eq. (6.8)), yielding

|~a′|2 =
[
~a+ (S − 1) ·

(
~a ◦ ~R

)
· ~R
]
◦
[
~a+ (S − 1) ·

(
~a ◦ ~R

)
· ~R
]
. (6.10)

Next, we multiply the square brackets and combine similar terms into

|~a′|2 = ~a ◦ ~a+ 2 · (S − 1) ·
(
~a ◦ ~R

)2
+ (S − 1)2 ·

(
~a ◦ ~R

)2
·
(
~R ◦ ~R

)
. (6.11)

Note, that ~R has unit length

~R ◦ ~R = |~R|2 = 12 = 1, (6.12)

which simplifies equation (6.11) to

|~a′|2 = ~a ◦ ~a+ 2 · (S − 1) ·
(
~a ◦ ~R

)2
+ (S − 1)2 ·

(
~a ◦ ~R

)2
. (6.13)

Again, we combine terms with equal factors

|~a′|2 = ~a ◦ ~a+
[
2 · (S − 1) + (S − 1)2

]
·
(
~a ◦ ~R

)2
, (6.14)

and expand the terms in the square brackets into

|~a′|2 = ~a ◦ ~a+
[
2 · S − 2 + S2 − 2S + 1

]
·
(
~a ◦ ~R

)2
. (6.15)

Simplifying the square brackets gives us the final equation for the squared length of
a stretched vector

|~a′|2 = ~a ◦ ~a+
(
S2 − 1

)
·
(
~a ◦ ~R

)2
. (6.16)

We directly see that for S = 1, meaning we do not stretch, we get

|~a′|2 = ~a ◦ ~a = |~a|2, (6.17)

as we would expect.
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6.2.3 The Phase Line for Lattices with Equal Length

In this section, I derive the equation for the phase line containing square, hexagonal,
and rectangular lattices. These lattices have in common that their reduced primitive
translation vectors have equal length. We need an equation that connects the
stretching direction, α, with the stretch factor, S. We start by setting the lengths of
the stretched primitive translation vectors equal

|~e1
′| != |~e2

′|. (6.18)

Instead of using the absolute values, we proceed with their squares

|~e1
′|2 = |~e2

′|2. (6.19)

Next, we use the corresponding equations (6.16) for the squared length

|~e1
′|2 = ~e1 ◦ ~e1 + (S2 − 1) · (~e1 ◦ ~R)2, (6.20)

|~e2
′|2 = ~e2 ◦ ~e2 + (S2 − 1) · (~e2 ◦ ~R)2 (6.21)

and insert them into equation (6.19) to get

~e1 ◦ ~e1 + (S2 − 1) · (~e1 ◦ ~R)2 = ~e2 ◦ ~e2 + (S2 − 1) · (~e2 ◦ ~R)2. (6.22)

We separate the terms with S on the right side

~e1 ◦ ~e1 − ~e2 ◦ ~e2 = (S2 − 1) · (~e2 ◦ ~R)2 − (S2 − 1) · (~e1 ◦ ~R)2, (6.23)

and factor out the term (S2 − 1) yielding

~e1 ◦ ~e1 − ~e2 ◦ ~e2 = (S2 − 1) ·
[
(~e2 ◦ ~R)2 − (~e1 ◦ ~R)2

]
. (6.24)

Again, we separate the term with S on one side

S2 − 1 = ~e1 ◦ ~e1 − ~e2 ◦ ~e2

(~e2 ◦ ~R)2 − (~e1 ◦ ~R)2
, (6.25)

and solve for S, assuming S > 0, to get

S(α) =
√√√√1 + ~e1 ◦ ~e1 − ~e2 ◦ ~e2[

~e2 ◦ ~R(α)
]2
−
[
~e1 ◦ ~R(α)

]2 . (6.26)

The equation for S(α) depends on the specific primitive lattice vectors, ~e1 and ~e2.
All phase lines are accessible by inserting different primitive lattice vectors for a
hexagonal lattice.
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As an example, we compute the phase line from the primitive translation vectors
given in section 6.2. These vectors are defined by

~e1 =
(

1
0

)
, and ~e2 = −1

2 ·
(

1√
3

)
. (6.27)

We insert ~e1, ~e2, and ~R into equation (6.26) and get

S(α) =

√√√√√√√√√√√1 +

(
1
0

)
◦
(

1
0

)
−
(
−1

2

)
·
(
−1

2

)
·
(

1√
3

)
◦
(

1√
3

)
[
−1

2 ·
(

1√
3

)
◦
(
− sin(α)
cos(α)

)]2

−
[(

1
0

)
◦
(
− sin(α)
cos(α)

)]2 . (6.28)

We then multiply the dot products, yielding

S(α) =

√√√√√1 +
1− 1

4 · (1 + 3)(
−1

2 ·
[√

3 · cos (α)− sin (α)
])2
− [sin (α)]2

. (6.29)

The numerator, 1− 1
4 · (1 + 3), simplifies to 0, leaving us with

S(α) =
√

1 = 1 . (6.30)

Figure 6.3 shows the resulting phase line S(α) embedded into the continuous phase
diagram for the length ratio between reduced primitive lattice vectors.

S(a)

Fig. 6.3.: Phase diagram for the length ratio between stretched primitive lattice vectors.
The original lattice was close packed hexagonal. The white line represents the
phase line for equal length given by equation (6.30). Other phase lines for equal
length are accessible by using other primitive translation vectors for a hexagonal
lattice.
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6.2.4 The Phase Lines with Orthogonal Lattices

A second set of phase lines contain square and rectangular lattices. These lattices
have in common that their reduced primitive translation vectors are orthogonal. We
look for an equation between the stretching direction, α, and the stretch factor, S.
We want the stretched primitive translation vectors, ~e1

′ and ~e2
′, to be orthogonal.

Therefore, their dot product has to be zero

~e1
′ ◦ ~e2

′ != |~e1
′| · |~e2

′| · cos (90°) = |~e1
′| · |~e2

′| · 0 = 0. (6.31)

Next, we insert the equations (6.8) for the stretched basis vectors[
~e1 + (S − 1) ·

(
~e1 ◦ ~R

)
· ~R
]
◦
[
~e2 + (S − 1) ·

(
~e2 ◦ ~R

)
· ~R
]

= 0 (6.32)

and expand the dot product in the middle into

~e1 ◦ ~e2 + 2 · (S − 1)
(
~e1 ◦ ~R

) (
~e2 ◦ ~R

)
+ (S − 1)2

(
~e1 ◦ ~R

) (
~e2 ◦ ~R

) (
~R ◦ ~R

)
= 0.
(6.33)

Again, we use the fact that ~R has unit length which simplifies equation (6.33) to

~e1 ◦ ~e2 + 2 · (S − 1) ·
(
~e1 ◦ ~R

)
·
(
~e2 ◦ ~R

)
+ (S − 1)2 ·

(
~e1 ◦ ~R

)
·
(
~e2 ◦ ~R

)
= 0. (6.34)

We combine terms with equal factors

~e1 ◦ ~e2 +
[
2 · (S − 1) + (S − 1)2

]
·
(
~e1 ◦ ~R

)
·
(
~e2 ◦ ~R

)
= 0, (6.35)

and simplify the square bracket into

~e1 ◦ ~e2 +
[
2 · S − 2 + S2 − 2 · S + 1

]
·
(
~e1 ◦ ~R

)
·
(
~e2 ◦ ~R

)
= 0, (6.36)

~e1 ◦ ~e2 +
[
S2 − 1

]
·
(
~e1 ◦ ~R

)
·
(
~e2 ◦ ~R

)
= 0. (6.37)

Finally, we solve for S by separating all terms containing S on the left side

S2 − 1 = −~e1 ◦ ~e2(
~e1 ◦ ~R

)
·
(
~e2 ◦ ~R

) . (6.38)

The stretch factor S has to be positive, which leaves us with

S(α) =
√√√√1− ~e1 ◦ ~e2[

~e1 ◦ ~R(α)
]
·
[
~e2 ◦ ~R(α)

] . (6.39)

The equation for S(α) depends on the specific basis vectors ~e1 and ~e2. All orthogonal
phase lines are accessible by using a different primitive basis.
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As an example, we compute the phase line from the primitive basis given in section 6.2.
The primitive translation vectors are

~e1 =
(

1
0

)
, and ~e2 = −1

2 ·
(

1√
3

)
. (6.40)

We insert ~e1, ~e2, and ~R into equation (6.39) and get

S(α) =

√√√√√√√√√√1−
−1

2 ·
(

1
0

)
◦
(

1√
3

)
[(

1
0

)
◦
(
− sin(α)
cos(α)

)]
·
[
−1

2 ·
(

1√
3

)
◦
(
− sin(α)
cos(α)

)] . (6.41)

Solving the dot products yields

S(α) =

√√√√√1 +
−1

2

sin (α) ·
(
−1

2 ·
[√

3 cos(α)− sin(α)
]) . (6.42)

Finally, we cancel the factor −1/2 and obtain

S(α) =
√√√√1 + 1

sin (α) ·
[√

3 cos(α)− sin(α)
] . (6.43)

Figure 6.4 shows the resulting phase line S(α) embedded into the continuous phase
diagram for the angle between reduced primitive translation vectors.

S(a)

Fig. 6.4.: Phase diagram for the angle between reduced primitive translation vectors. The
original lattice was hexagonal. The red line indicates the phase line for orthogonal
lattices described by equation (6.43).
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6.2.5 Reduced Primitive Basis from a Stretched Basis

I now present an algorithm that computes the reduced primitive basis of a stretched
2D lattice. This algorithm was first proposed by Lagrange and Gauss.[87],[88] I use
this algorithm to compute the phase diagrams of a stretched hexagonal lattice. The
challenge is, that stretching the reduced primitive basis does not necessarily yield the
reduced primitive basis of the stretched lattice. We need the reduced primitive basis
to determine the Bravais type of the stretched lattice. The angle and length ratio
between the reduced primitive translation vectors determine the Bravais type.

A reduced basis consists of primitive translation vectors with minimal length. The
angle between the reduced basis vectors in 2D is always between 60 and 120 degree.
Due to symmetry in 2D, we can limit the range to either [60 to 90] or [90 to 120]
degree. We choose the range [60 to 90] degree in our publication.[81]

(a) (b)

Fig. 6.5.: a) Close packed hexagonal lattice with color coded particles in the first and second
coordinations sphere around the center. b) Resulting non-close packed lattice
when the lattice in a) is stretched in the direction and amount defined by the
black vector. Note that the primitive lattice vectors point to different particles.
The dotted blue vector, created by stretching one of the primitive lattice vectors
in a) is no longer a reduced primitive lattice vector.

Figure 6.5 illustrates the change of the reduced primitive basis. The unstretched
primitive basis vectors (Figure 6.5a) point to a red and green dashed particle. In
contrast, the reduced primitive basis vectors of the stretched lattice (Figure 6.5b)
point to a red dashed and yellow dotted particle. The dotted blue vector is no longer
a reduced primitive translation vector.
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e1

Fig. 6.6.: Primitive lattice vectors for a hexagonal lattice. Every combination of the blue
and an orange vector is a primitive base. However, only the solid and dotted
orange vectors form a reduced primitive base with the blue vector. In this work,
we further limit the angle between reduced primitive grid vectors to [60°; 90°].

To derive the lattice vector reduction algorithm we look at special properties of
lattices. A lattice has infinitely many primitive lattice vectors that form a primitive
base as shown in Figure 6.6. Subtracting an integer multiple of a primitive lattice
vector from its peer yields a new primitive lattice vector

~e3 = ~e1 + k · ~e2, for all k in Z. (6.44)

The idea is to repeatedly generate shorter lattice vectors by subtracting an integer
multiple of one from another. The apparently optimal reduction factor, µ, creates a
new lattice vector with minimal length.

e1

e2g

Fig. 6.7.: Projection of vector ~e1 onto the vector ~e2. The length ratio between the orange
and blue vector is the optimal reduction factor, µ.

We obtain the optimal factor by projecting one lattice vector (~e1) onto the other
(~e2) as shown in Figure 6.7. The dot product between the two vectors divided by
the length of the base vector gives us the length of the projected vector:

~e1 ◦ ~e2
|~e2|

= |~e1| · |~e2| · cos (γ)
|~e2|

= |~e1| · cos (γ) . (6.45)

γ, denotes the angle between ~e1 and ~e2.
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We then determine how often the projected vector fits into the base vector. The
precise value is

µ = |~e1| · cos (γ)
|~e2|

= |~e1| · |~e2| · cos (γ)
|~e2|2

= ~e1 ◦ ~e2
|~e1|2

. (6.46)

However, we can only use integer factors for the subtraction. The resulting vector is
otherwise no longer a lattice vector. Therefore, we round µ to the nearest integer

µ′ = round
(
~e1 ◦ ~e2
|~e1|2

)
. (6.47)

The new, shorter, primitive lattice vector, ~e3, is then given by

~e3 = ~e2 − µ′ · ~e1. (6.48)

We repeat this process for the shorter pair (~e2, ~e3) until the vector lengths stay
constant. The pseudocode for this procedure is shown in algorithm 1. My imple-
mentation of this algorithm in Python 3 is in the appendix A.1.

Algorithm 1 Lagrange-Gauss algorithm to reduce primitive lattice vectors. Adapted
from Steven Galbraith.[89]

Ensure: |~e1| < |~e2|
1: procedure ReduceBasis(~e1, ~e2)
2: A← |~e1|2

3: µ← (~e1 ◦ ~e2)/A
4: ~e1 ← ~e1 −Round(µ) · ~e2 . Shorten one basis vector
5: B ← |~e2|2

6: while B < A do . Check if the basis can be reduced
7: Swap(~e1, ~e2)
8: A← B

9: µ← (~e1 ◦ ~e2)/A
10: ~e1 ← ~e1 −Round(µ) · ~e2 . Shorten one basis vector
11: B ← |~e2|2

12: end while
13: return ~e1, ~e2 . Return the reduced primitive basis
14: end procedure
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6.2.6 Bravais Type of Stretched Monolayer Samples

Real samples are never perfect. They always contain a certain amount of noise,
distortions, and defects. We had to determine the Bravais type of a stretched
monolayer from SEM images. The challenge was the slight disorder in the non-close
packed lattices. Without the disorder, it would be possible to directly measure
the primitive translation vectors and determine the Bravais type from the SEM
images.

a
b

Fig. 6.8.: 2D histogram of the vectors between particle pairs from the SEM image in
Figure 6.9. Each black dot represents an inter-particle vector. Clusters in the
distribution are candidates for the primitive translation vectors. Reproduced
from Hummel et al.[81] with permission from the American Chemical Society.

I extracted the average primitive translation vectors with the scatter plot shown
in Figure 6.8. Each black dot represents an inter particle vector. The dots form
clusters with finite size due to the slight disorder in the sample. The centers of these
clusters are candidates for the average primitive translation vectors, ~a and ~b. Only
vectors that create a unit cell with minimum size are primitive translation vectors.
The area of a unit cell, A, is

A = |~a| · |~b| · sin
(
^(~a,~b)

)
. (6.49)

Therefore, we have to choose the smallest vectors, defined by the cluster centers in
Figure 6.8. We then compute the reduced primitive translations vectors with the
Lagrange-Gauss algorithm from section 6.2.5. Finally, we determine the Bravais
type from the angle between the translations vectors and their length ratio.
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6.2.7 Extracting Particle Positions from Images

We primarily used scanning electron microscopy (SEM) to image colloidal monolayers.
SEM is superior to optical microscopy due to its higher resolution. We needed the
particle positions and their size distribution from the SEM images. The particle
positions allow us to determine the Bravais type of the stretched lattice. We quantify
the, usually low, particle polydispersity from their size distribution. To facilitate
these goals, I programmed a graphical user interface around Matlab’s circle detection
function. We call it the ParticleSizer.

Fig. 6.9.: SEM image of a stretched monodomain. The red circles indicate the particles found
by MATLAB’s circle detection function after optimizing the search parameters
manually. Reproduced from Hummel et al.[81] with permission from the American
Chemical Society.

My software (see appendix A.4) detects all circles in an image as shown in Figure 6.9.
The user optimizes different search parameters until most of the particles are correctly
identified. Both particle size and position are recorded. The size distribution is
automatically fitted with a log-normal distribution. The large number of particles
in an image ensure statistically significant results with minimal effort. All data and
figures are automatically saved.
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6.2.8 Next Neighbor Analysis

Contact between particles determines the exchange of matter and energy between
them. For instance, heat and electricity flow from particle to particle through
the contact between them.1 Another example is particle diffusion in foams with
connected pores. The open pores can be interpreted as connected particles. The
connection area and density strongly influence particle diffusion.[90]

The radial distribution function, g(r), can show us local order around each particle.
However, we needed to take an in depth look at the first coordination sphere around
each particle. We needed to extract both the particle positions and the contact
between the particles. Our samples contained small and large particles. This was an
additional challenge that had to be addressed.

No NN

S Only

S+L

Search 
Radius CP

S

L

S  1S  2

Fig. 6.10.: Different regions around a large central particle in a mixture of large and small
particles. The innermost region (yellow) contains no other particles then the
central particle (excluded volume). Only small particles are present in the
intermediate, green, range. Both particle types are available as neighbors for
radial distances larger than the large particle diameter. The amount, and type,
of particles found as next neighbors strongly depends on the search radius
(coordination sphere).

I developed custom software to analyze the particles in the first coordination sphere.
We defined the first coordination sphere as a sphere with twice the radius of the
large particles. This coordination sphere contains small particles that can be both
contact and non-contact neighbors as shown in Figure 6.10. The advantage of my
analysis was the distinction between contact and non-contact neighbors.

1We assume the space between particles is empty and we neglect radiative heat transport.
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A random close jammed set of particles with two sizes contains two types of neighbors:
touching neighbors and next neighbors (see Figure 6.10). Touching neighbors are
in contact with the central particle. Next neighbors are particles inside the first
coordination sphere around a central particle. A next neighbor is not necessarily
touching the central particle. Two particles are in contact if the sum of their radii
(ri) is larger than their center to center distance:

d ≤ (r1 + r2). (6.50)

Based on this distinction, I computed the contact areas between the particles. The
contact area, A, between a pair of particles is given, without proof, as

A = π ·

r2
1 −

(
d2 − r2

2 + r2
1

2 · d

)2
 . (6.51)

Furthermore, I computed the effective density of the particle assemblies. The true
density has to take the particle overlap into account. Therefore, I had to subtract the
intersection volume between each pair (i, j) of particles. This intersection volume,
Vintersect(i, j), is given by the sum of two spherical caps:

Vintersect(i, j) = π

[
2r3
i

3 − r
2
i · (ri − rj)−

(ri − rj)3

3

]
+ (6.52)

π

[
2r3
j

3 − r
2
j · (rj − ri)−

(rj − ri)3

3

]
.

The effective density, ρeff, is then given by

ρeff = ρparticle ·

N∑
k=1

4
3πr

3
k −

N∑
i,j;i 6=j

Vintersect(i, j)

Vassembly
, (6.53)

where ρparticle is the density of the particles.
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6.3 Computing Custom Colloidal Glasses

We simulated heat transport in colloidal assemblies to unveil microscopic effects
that influence heat flux. We discovered percolation thresholds in binary colloidal
glasses (see chapter 12) and a reduction of the effective thermal conductivity through
increased thermal pathways (see chapter 13). These simulations are an indispensable
tool for our research.

We used COMSOL Multiphysics,[91] a finite element software package for our simu-
lations. These simulations require a detailed 3D model of our colloidal assemblies.
Therefore, we computed the particle coordinates for a random close jammed colloidal
glass with molecular dynamics.[92] The challenge was to decorate the coordinates
randomly with different particles. These particles could vary in size and can be either
filled or hollow spheres. Overlap between different materials had to be removed.
Finally, we needed to import the structure into COMSOL.

{        }{          }P O O H

Fig. 6.11.: Graphical equation for the creation of complex 3D particle assemblies. The
blue circle represents a solid polymer particle. The hollow sphere is created by
subtracting a hole (white) from a solid sphere (gray).

I developed Python scripts (see section A.2) that generate random mixtures of solid
and hollow particles. We can adjust both the mixing ratio and the particle type.
The result is an AutoCAD script[93] with three separate sets of solid spheres:

• one for polymer colloids (P),

• one for the outer shell of hollow silica particles (O),

• and one for the holes in the hollow silica particles (H).

These sets were then added and subtracted according to the scheme shown in
Figure 6.11. The resulting structure, in the AutoCAD file can then be imported
into COMSOL.

The hollow particles in the actual samples consist of relatively hard silica. In
contrast, the solid particles are softer polymer colloids. We therefore assumed that
the hard hollow spheres push into the soft solid spheres. We modeled this behavior
by assigning the overlap volume between two particles fully to the silica particle.
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Fig. 6.12.: 3D random assembly of solid and hollow sphere particles. The hard hollow spheres
penetrate into the softer solid spheres, similar to the real sample. Reproduced
from Ruckdeschel et al.[49] with permission from the American Physical Society.

A rendering of the resulting 3D particle assembly is shown in Figure 6.12. We
cut a cubic subset from the particle assembly to simulate heat transport in all
three directions. We can then either average the results for isotropic samples or
compare heat flux in different direction. This was especially useful during our
discovery of percolation thresholds. Percolation paths, in these small samples, are
first formed in one direction. A significant difference in the direction dependent
thermal conductivity hinted the presence of a percolation path.

The particle overlap was a critical factor. Heat flux in colloidal glasses is strongly
influenced by the size of the connection areas between particles.[45] My script allows
us to adjust the relative particles sizes to ensure a consistent overlap. In addition, I
computed the contact area distribution for further analysis.
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6.4 Xenon Flash Analysis

Xenon flash analysis is a commercially available method to determine the thermal
diffusivity of bulk materials.[94] We used a XFA500 from Linseis with a cooled
InSb infrared detector. This instrument can change both temperature, gas pressure
and composition during a measurement. The samples have to be around 5 mm in
diameter with a homogeneous thickness of at least 1 mm.

Fig. 6.13.: a) Components of a Xenon flash analysis instrument. The sample with homoge-
neous thickness is coated with graphite on both sides. This coating ensures good
absorption of the light flash on the bottom and strong IR emission on the top.
b) Raw data from a Xenon flash analysis measurement and the corresponding
fit. Reproduced from Ruckdeschel et al.[49] with permission from the American
Physical Society.

A single measurement proceeds as follows: A short light flash is absorbed on the
bottom of the sample. The absorbed energy increases the surface temperature by a
few Kelvin. Heat starts to diffuse through the sample and heats up the top surface.
An infrared detector then measures the temperature rise on the top as a function of
time (see Figure 6.13b).

Different methods have been developed to analyze the shape of the surface tempera-
ture evolution. Parker et al.[94] used the half rise time, t1/2 to compute the thermal
diffusivity, α, from a Xenon flash measurement

α = 1.38 · d2

π2 · t1/2
. (6.54)

Note that the sample thickness, d, contributes quadratically to the end result. A
homogeneous, and well characterized, thickness is important for accuracy.
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6.5 The Photoacoustic Technique

The conversion of intensity modulated light into pressure waves (sound) in matter is
called the photoacoustic effect. A prominent use is photoacoustic tomography,[95] a
3D medical imaging method based on ultrasound.

We use photoacoustic to characterize through plane heat flux in thin films.[96]

Our setup is optimized for thin films between 500 nm and 1 µm. Films outside
of this range create an unacceptably large error. The films are on top of a well
characterized reference substrate, like quartz. A thin (≈ 100 nm) gold layer acts
as a heat transducer during the measurement. Both the precise sample and gold
thickness are required for the data analysis.

Fig. 6.14.: Crosssection through a photoacoustic measurement cell. The sample forms the
bottom of a gas tight cell, filled with helium. A modulated laser beam is coupled
into the cell through a sapphire window and periodically heats the sample surface.
This creates pressure waves in the helium. Helium creates strong pressure waves
due to its large thermal conductivity. The microphone on the right converts the
pressure waves into an electric signal. Reproduced from Wang et al.[97]

A crosssection through a photoacoustic cell is shown in Figure 6.14. The photoacous-
tic signal is generated as follows: An intensity modulated laser beam periodically
heats the sample surface. The heat diffuses both into the sample and into the helium,
depending on the samples thermal properties. This increases the temperature of the
helium. As a result, the helium periodically expands and creates pressure waves.
A sensitive microphone converts the pressure waves into an electric signal. We use
a lock-in detector to measure the phase, φ, of the pressure waves. Sweeping the
excitation frequency, ω, gives us φ(ω). A second measurement of a thermally thick
substrate yields a reference phase, φ0(ω). We then fit a model to the phase difference,

∆φ(ω) = φ(ω)− φ0(ω), (6.55)

to obtain the thermal diffusivity and conductivity of the thin film. The general fit
equation for a multilayered structure was developed by Hu et al.[98]
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6.6 Lock-in Thermography

6.6.1 Introduction

Lock-in thermography is the combination of thermography with lock-in detection[99]

to measure heat transfer in solid materials. Thermography measures the surface
temperature of a sample with high temporal (milliseconds) and spatial (micrometer)
resolution. Lock-in detection is superior to other detection methods due to its good
noise rejection.
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Fig. 6.15.: Surface temperature vs. time recorded with our IR camera near the heating
center during a lock-in thermography measurement. I included the baseline
(orange) to compute the true DC temperature offset. The line laser starts to
periodically heat the sample at t = 34.8 s. Thermal equilibrium is then reached
after less than 30 s.

The basic idea behind lock-in thermography is to periodically heat the sample and
analyze its temperature response in the frequency domain. Periodic excitations
have a long history of use for heat transfer measurements. They were first used by
Ångström in 1863.[100] Measurements with periodic perturbations are advantageous
over constant or impulse perturbations. The amplitude and phase of periodic signals
can be measured with high precision by lock-in detection.

A focused line laser periodically heats the sample during the measurement. The
temperature oscillations approach equilibrium within a few periods as shown in
Figure 6.15. There are two important quantities: the DC temperature offset, ∆TDC

and the amplitude of the periodic signal ∆T1st. We employ lock-in detection to
extract ∆T1st once equilibrium has been reached. We then compute the thermal
diffusivity from the change of ∆T1st with distance from the excitation source.
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Fig. 6.16.: Possible combinations of sample and heating dimensionality. Useful heating
geometries range from point (0D) to line (1D) and area (2D). A sample dimension
is considered negligible thin when its thickness is small relative to the thermal
decay length µ of the excitation. This results in three distinct sample geometries:
fiber (1D), thin film (2D), and bulk (3D).

Bulk samples (see Figure 6.16) are mostly investigated for non destructive testing.[101]

Cracks and air bubbles impede heat flow. Lock-in thermography enables us to detect
cracks and bubbles in construction materials like concrete[102] or fiber composites.[103]

Another application of non destructive testing are electronic components. A good
overview on fault detection in electronics is the book by Breitenstein.[104]

Samples for thermal diffusivity measurements with lock-in thermography fall into
two categories: thin films (2D) and fibers (1D). We can excite such samples with
either a point or a line source (see Figure 6.16). A 2D excitation is not useful because
the thermal oscillations would decay along a thermally thin dimension. A dimension
is thermally thin when it is much smaller than the thermal decay length:

µ =
√
α

πf
, (6.56)

at frequency, f , and thermal diffusivity, α.
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Line sources are generally superior to point sources. A line source can fully replace a
point source. In addition, a line source increases the signal-to-noise ratio by exciting
a larger sample area. A line source creates a 1D heat flow profile, even in anisotropic
samples. This simplifies the data analysis for anisotropic samples. Rotating the line
source gives us access to the full 2D thermal diffusivity tensor. Thin fibers are easily
excited by a line source whereas a points source requires careful alignment.

Lock-in thermography requires samples that are:

• Sufficiently thin, d� 2 ·
√

α
πf , in at least one dimension

• Sufficiently strong emissivity (can be improved by evaporating 25 nm carbon)

• Homogeneous and sufficiently high absorption at the laser wavelength

• At least 10× 10 mm in size

• Mechanically stable (freestanding films or fibers holding their own weight)

• Stable in vacuum (to reduce thermal losses)
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6.6.2 Excitation Signals in Lock-in Thermography

Different excitation signals are used for lock-in thermography (see Fig. 6.17). The
standard signal is a sine wave. Sine waves contain only one spectral component.
However, they are fairly difficult to produce. Square waves are often used instead due
to their simple on/off modulation. Square waves contain higher harmonics that can
be measured and analyzed. I developed a new, multiplexed, signal (see chapter 17).
The idea is to combine sine waves with the desired frequencies and amplitudes into
one signal. This creates a smaller DC offset and higher signal yield. Short pulses
are mostly used for non-destructive testing. They are commonly produced by flash
lamps.
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Fig. 6.17.: Different excitation signals and data analysis used for lock-in thermography.
Standard lock-in thermoraphy uses a sinusoidal excitation and analyzes the
resulting amplitude and phase. The other signals contain higher harmonics that
can be measured and analyzed for different purposes.
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6.6.3 Infrared Thermography

Every object emits thermal radiation.[105] The amount of thermal radiation depends
on the temperature. Thermography uses the thermal radiation to image an ob-
ject.[106] However, IR cameras do not measure temperature. Instead they measure
the radiated power emitted and reflected by the object within a certain wavelength
range.[107],[108] A calibration to the objects emissivity, ε, allows us to infer the surface
temperature. The Stefan-Boltzmann law[109] describes the radiated power in all
directions, P , per surface area, A, as a function of absolute temperature, T

P = ε · σ ·A · T 4. (6.57)

σ is the Stefan-Boltzmann constant and has a value of 5.67 · 10−8 W/m2K4.[110] Note
that the radiated power is proportional to T 4. The emissivity, ε(λ), measures how
good a surface emits radiation with a certain wavelength. Black bodies have a
constant emissivity of 1. Their thermal radiation spectrum[111] follows Planck’s law:

P (λ) = 2 · π · h · c2

λ5 · 1
exp

(
h·c

λ·kb·T

)
− 1

(6.58)
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Fig. 6.18.: Thermal radiation power per area and wavelength emitted by a surface with
emissivity 1 (black body) at 30 °C. The maximum power is emitted around
9.55 µm. The total power per square meter is 478 W/m2. Our IR camera collects
and detects light in the wavelength range from 7.5 to 14 µm (blue region). This
amounts to around 43 % of the received power from the surface.

Our IR camera uses a microbolometer array to detect infrared radiation. Figure 6.18
shows the spectrum of a black body at 30 °C. Only radiation between 7.5 to 14 µm
is captured by the microbolometer. The radiation is absorbed by the surface of a
bolometer pixel. This changes its temperature. The temperature change is detected
through a change in electric resistance. The main advantage of a microbolometer
array is the operation at room temperature. No cooling is required.
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6.6.4 Our Lock-In Thermography Setup

Lock-in thermography requires a fairly simple, robust, and compact setup relative
to techniques like frequency- or time domain thermo reflectance.[112],[113]

PC

IR Camera

Signal Generator

Modulator Laser

Vacuum chamber

Sample

TTL

Fig. 6.19.: Components of our lock-in thermography setup. An intensity modulated laser
beam is focused on the thin film inside the vacuum chamber. The laser periodi-
cally heats the sample. The intensity of our diode laser is modulated with an
analog signal (e.g. sine or square) from the signal generator. Our IR camera can
be phase locked to the signal generator via a TTL signal. Lock-in detection is
handled by the software.

The components of our setup are shown in Figure 6.19. We use a VarioCAM HD 875
from Infratec for thermal imaging. The pixel size with the close-up lens is 29 µm at a
working distance of 33 mm. We placed the IR camera onto a micrometer controlled
translation stage aligned with the laser axis. This allows us to manually focus the
camera by adjusting the camera-sample distance instead of changing the focus. We
designed a custom vacuum chamber and sample holder. The vacuum chamber is
mounted on a x-y-z micrometer translation stage for alignment. A rotary vane pump
from Vacuubrand, type RZ 9, ensures a gas pressure of less than 10−3 hPa. The low
pressure significantly reduces the heat losses from the sample.

The sample is periodically heated by the laser from the back. We use a diode laser
type 13LR12-m125+55CM-520-56-O08-T15-PS-7 from Schäfter+Kirchhoff. This
laser has a wavelength of 520 nm and creates a 40 µm (1/e2) laser line at a working
distance of 122 mm. Both the beam shaping optics and the modulation capability
are encapsulated within the small laser module. We create the analog modulation
signal with a RIGOL DG1000 signal generator. Arbitrary signals can be defined with
.raf files. I generate the .raf files with the Python script shown in appendix A.3.12.
In addition, we can generate a square wave TTL signal with the IR camera. This
allows us to phase lock the laser modulation to the IR camera.
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6.6.5 Thermogram Pixel Size Calibration

Measuring thermal diffusivity, with dimension (length2/time), requires information
about temperature, distance, and time. Therefore, we need to know the precise
length scale in our thermograms. We decided to calibrate the pixel size in our lock-in
thermography setup with a length standard.

1 cm

Fig. 6.20.: Length standard with 600 µm wide lines made from SU-8 photoresist on a silicon
waver, mounted on a 3D printed frame. Silicon and SU-8 transmit and emit IR
radiation differently which creates contrast.

I prepared the length standard with photolithography. Figure 6.20 shows a pho-
tograph of our length standard. The parallel lines are spaced 600 µm apart. SU-8
photoresist and the silicon waver substrate have different optical properties in the
IR. This creates contrast in the resulting thermograms (see Fig. 6.21a).
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Fig. 6.21.: a) Thermogram of the calibration sample inside the vacuum chamber. The
round line boundary is the edge of the IR window. The user selects a rectangular
region, containing only lines, for averaging. b) Horizontally averaged intensity
profile as a function of vertical position. My software automatically computes
the pixel size from the averaged profile.

We insert the reference at the sample position and take an IR image (Fig 6.21a)
after manually focusing. The user selects a rectangular area containing only lines.
My software then computes the pixel size from the averaged horizontal cross section
(Fig. 6.21b). Our IR camera has a pixel size of 29 µm at closest focus. My source
code for the pixel calibration procedure is in appendix A.3.5.
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6.6.6 Analysis for Isotropic Films Heated by a Point Laser

The data analysis for isotropic thin films, excited by a point source, was developed
by Fabbri et al.[114] and Zhang et al.[115] I modified their analysis such that all image
pixels above the noise background are used. My software allows rapid data analysis
(< 1 min per measurement) with minimal user input. This increases productivity
and ensures repeatability. My modified version follows these steps:

1. Detect the center pixel by searching for the highest amplitude

2. Convert pixel positions to radial distance from the center

3. Linearize the amplitude as a function of radial distance

4. Extract the slopes of amplitude and phase vs. radial distance

5. Compute the thermal diffusivity from the slope product with Eq. (6.63)

(a) (b)

Fig. 6.22.: Position dependent amplitude (a) and phase (b) of the temperature oscillations
on the sample surface. The sample is heated by a focused laser beam. The red
dot is the center pixel with the highest amplitude. A user defined circle (white
dashed line) shows the region used for the radial conversion.

Step 1: I detect the center, where the focused laser hits the sample, from the
amplitude image (Fig. 6.22a). The center pixel, (xc, yc), is the pixel with the highest
amplitude. A linear search through the amplitude image yields the center pixel. I
assume, that the amplitude and phase image (Fig. 6.22b) have the same center.

Step 2: We then convert the 2D amplitude and phase images into radial data. We
use the Pythagorean theorem

(x− xc)2 + (y − yc)2 = r2, and solve for r =
√

(x− xc)2 + (y − yc)2 (6.59)

to convert the pixel coordinates (x, y) into radial distance, r, from the center (xc, yc).
Each pixel now has a radial distance assigned to it.
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Step 3: We linearize the amplitude by computing

Alinearized = ln
(
Aradial ·

√
r
)
. (6.60)

The phase already follows a linear trend when plotted against the radial distance.

(a) (b)

Fig. 6.23.: Linearized amplitude (a) and phase (b) of the temperature oscillations as a
function of radial distance. The black dashed lines indicate the fit boundaries.
The slopes of amplitude (mA) and phase (mφ) are obtained by a linear fit.

Step 4: Next, we perform a linear fit of the linearized data. The fit boundaries
(rmin, rmax) are limited by the thermal decay length

µ =
√
α

πf
. (6.61)

The minimal fit distance should be: rmin > 2 ·µ.[116] The maximal distance is usually
limited by the noise floor. Note, that the thermal decay length must be smaller than
the sample dimension, L. Reflections from the sample boundary would otherwise
disturb the measurement. The sample boundary can be neglected when[76]

L/µ < 5. (6.62)

In this case, the thermal oscillations decayed before they reached the sample boundary.
In practice, the user selects the linear range by hand, having in mind the minimal
distance, rmin. I use all selected pixels for the linear fit.

Step 5: Finally, we compute the thermal diffusivity, α, from the amplitude and
phase slopes (mA and mφ) according to

α = π · f
|mA ·mφ|

. (6.63)

Measuring at different excitation frequencies, f , can reduce the error of the thermal
diffusivity, α.
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6.6.7 Analysis for Anisotropic Films Heated by a Line Laser

The data analysis for isotropic thin films, excited by a line source, was developed by
Wolf et al.[73] I extended their analysis to anisotropic samples. I use a line laser as
the line source. The laser line can point in an arbitrary orientation perpendicular to
the sample. My software automatically detects the laser line position and orientation.
My modified version follows these steps:

1. Detect the laser line position and orientation

2. Convert the pixel positions to linear distance from the laser line

3. Linearize the amplitude data

4. Extract the slope from a linear fit of amplitude and phase vs. linear distance

5. Compute the thermal diffusivity from the slope product with Eq. (6.72)

(a) (b)

Fig. 6.24.: Position dependent amplitude (a) and phase (b) of the temperature oscillations
on the sample surface. The automatically detected laser lines are indicated by
the white line and red dot. Only data within the red rectangle is used for the
linear conversion.

Step 1: I detect the line center (xc, yc) by averaging the n ≈ 5000 pixels with the
highest amplitude:

xc = 1
n

n∑
i=0

xi, yc = 1
n

n∑
i=0

yi. (6.64)

Next, I fit a line through the n pixel positions. I assume, that the line passes through
the center. This reduces the fit parameters to the direction of the line. There are
two challenges during the line fit:

1. vertical lines have an infinitely large slope, and

2. linear regression only minimizes the offset in the y-direction.
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I avoid large slopes by representing the line by its angle, β, with the x-axis:

y = tan(β) · (x− xc) + yc. (6.65)

If the fit produces a sometimes imperfect slope outside of [-1, 1], I switch the x and
y coordinates, redo the fit, and recompute the direction β. This procedure ensures
that the fitted slope is always between [-1, 1].

Linear regression only minimizes the y-difference between the fit line and the pixels.
This creates a bias toward differences in the y-direction. I solved this issue with
orthogonal distance regression.[117] This ensures that the orthogonal distance from
each pixel to the laser line is minimized.

C

P
R

L

Fig. 6.25.: Vector representation of the line laser, ~L, with the center, ~C, as the reference
and ~R as the direction vector. The black dashed line indicates the shortest
distance from a pixel, ~P , to the laser line.

Overall, I use a vector representation (see Fig. 6.25) of the laser line

~L(λ) =
(
xc

yc

)
+ λ ·

(
sin(β)
cos(β)

)
= ~C + λ · ~R(β), λ in R, (6.66)

for further computations. The resulting laser line and center are shown in Figure 6.24.
I assume that the amplitude and phase images have the same laser line.

Step 2: Convert the pixel positions to linear distance from the laser line. We need
both the shortest distance to the line, dShortest, and the distance from the closest
point on the line to the center, dCenter. The center distance, on the line, is the
projected length of the connection between the pixel position and the center:

dCenter =
∣∣∣(~C − ~P

)
◦ ~R(β)

∣∣∣ (6.67)

We then use the Pythagorean theorem to compute the shortest distance to the line:

dShortest =
√∣∣∣(~C − ~P

)∣∣∣2 − d2
Center (6.68)

The two sides of the laser line are mirror images. Therefore, we can use pixels from
both sides of the line for analysis to reduce the noise.
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Step 3: We linearize the amplitude data by computing

Alinearized = ln (Aline) . (6.69)

The phase is already linear as a function of distance from the laser line.

(a) (b)

Fig. 6.26.: Position dependent amplitude (a) and phase (b) of the temperature oscillations
on the sample surface. The black dashed lines indicate the fit boundaries. The
slopes of amplitude (mA) and phase (mφ) are obtained by a linear fit.

Step 4: Next, we perform a linear fit of the linearized data. The fit boundaries
(dmin, dmax) are limited by the laser line width, dlaser, the thermal decay length

µ =
√
α

πf
, (6.70)

and the sample dimension perpendicular to the laser line, L. The sample boundary
can be neglected when[76]

L/µ < 5. (6.71)

In this case, the thermal oscillations have decayed long before they reached the
sample boundary. However, the thermal diffusivity, α, is not know before the
measurement. In practice, the user selects the linear range by hand, having in mind
the minimal distance, dmin. I use all individual pixels within the linear region for
the linear fit.

Step 5: We then compute the thermal diffusivity, α, from the amplitude and phase
slopes (mA and mφ) according to

α = π · f
|mA ·mφ|

. (6.72)

We can repeat this process for different orientation of the line laser to obtain the
direction dependent thermal diffusivity.
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a) b)

Fig. 6.27.: Direction dependent thermal diffusivity of MT200+ Kapton foil in a cartesian
coordinates system (a) and in polar coordinates (b). The black lines are fitted
ellipses to the data. I measured the sample in two orientations that are approxi-
mately 90° rotated. The results are very similar in both orientation. This test
ensures that the measured anisotropy is intrinsic to the Kapton foil and not a
measurement artifact.

Figure 6.27 shows the direction dependent thermal diffusivity of Kapton. I fit an
ellipse to the data to extract the thermal diffusivity along the major and minor axis
together with the direction of the major axis (see Table 6.1). The thermal diffusivity
in the major axis direction is approximately 23 % larger than along the minor axis.
Rotating the sample by 90° rotates the measured anisotropy also by ≈ 90°.

Tab. 6.1.: Anisotropic thermal diffusivity of Kapton (MT200+) measured with line laser
lock-in thermography. The sample was rotated by ≈ 90° between orientation 1
and 2. The measured anisotropy rotates accordingly.

Thermal Diffusivity [mm2/s]
Orientation Direction Major Axis Minor Axis Ratio

1 87° 2.128 1.690 1.259
2 3° 2.180 1.778 1.226
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6.6.8 Analysis Software Architecture

During my PhD, I used programming to build and automate scienti�c tools. The

analysis software library is an essential part or our lock-in thermography setup.

Developing our own software allows us to tailor its functionality to our speci�c

needs.

My software reduces the time for data analysis fromhours to minutes. Only minimal

user input is required. The di�erent steps and results are automatically saved and

documented in a report. Plots of important quantities are automatically generated.

The plots and reports can be directly used in lab notes by the user.

Fig. 6.28.: Class hierarchy of the lock-in thermography analysis software. The object
oriented design facilitates maintenance, extension, and reuse of the code. Red
arrows indicate inheritance between a parent class and the derived child classes.
Black arrows indicate composition of classes.

I used object oriented programming for the software layout. This is the current

industry standard for software development. A good overview on object-oriented

design is the book by Gammaet al.[118] The main idea behind object-oriented

programming is encapsulation and reuse. Both data and methods are grouped by

task and encapsulated into di�erent classes. Composition (the use of one class inside

another) and inheritance (the transfer of data and functions from a parent to a

child class) make it easy to reuse code for di�erent tasks. A clear hierarchy (see

Fig. 6.28) between the classes makes the code easier to understand, extend, reuse,

and maintain. The entire source code for the lock-in thermography analysis is in

appendix A.3.
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7.2 Synopsis

During my PhD, I utilized programming and mathematics to advance measurement
and analysis techniques. I applied computational tools to a variety of research
projects. They range from particle self-assembly to create nanostructured materials
and consecutive thermal transport characterization to the development of new
thermal transport metrology. The following paragraphs contain a summary of the
diverse research challenges I faced and how I approached them during my PhD.

b

c

|a‘|=|b‘|

a‘^ b‘

a

Fig. 7.2.: a) Z-type transfer of a hexagonal monolayer onto a hydrophobic substrate. The
original close packed hexagonal monolayer (left) on the water is transformed
into a non-close packed monolayer (right) on the substrate. b) Stretch factor -
direction phase diagram for initially hexagonal close packed lattices. Square and
hexagonal lattices occur at specific points, rectangular lattices appear on the solid
lines. The remaining space is filled with oblique lattices. c) SEM images non-close
packed particle monolayers after the transfer to a hydrophobic substrate. All five
Bravais types are accessible. Scale bars are 1 µm. Reproduced and adapted from
Hummel et al.[81] with permission from the American Chemical Society.

My colleagues and I discovered a new technique to produce non-close packed colloidal
monolayers (see chapter 10). Our technique starts from close packed, hexagonal,
monolayers of colloidal particles floating on the surface of water. These monolayers
are usually transferred to a substrate for further processing as shown in Figure 7.2a.
We found that the monolayer experiences an uniaxial stretch when transfered to a
hydrophobic substrate. The stretch factor is only determined by the contact angle
between the substrate and water.
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All five Bravais lattices are accessible with our technique (see Fig. 7.2b, c). This
opens up new possibilities to tune the optical band structure of colloidal photonic
crystals. Another application would be anti-reflective coatings similar to the concept
from Stelling et al.[119]

(a) (b)

Fig. 7.3.: 2D lattices of the original, densely packed hexagonal lattice (a) and the resulting,
stretched lattice (b). The unit cell vectors are shown in blue. The stretch direction
and amount is indicated by the black arrow. Particles in the first two coordination
spheres are color coded. Note, that a simple, uniaxial stretch transforms a closed
packed hexagonal lattice into a non-close packed hexagonal lattice.

In this work, I developed different tools to analyze the lattice transformation. Our
hypothesis was, that the lattice transformation was a simple uniaxial stretch. We
developed a theoretical description of uniaxial stretching with linear algebra. I later
simplified our approach by using only vectors to describe stretching (see section 6.2).
There are three important parameters that define an uniaxial stretch:

α: the direction of the uniaxial stretch, relative to the transfer direction,

β: the original orientation of the lattice, relative to the transfer direction,

S: the stretch factor.

I developed a Python script (see appendix A.1.2) to visualize the effect of an uniaxial
stretch on a close packed hexagonal lattice. Figure 7.3 shows an example computed
with my script. A simple, uniaxial, stretch can transform a close packed hexagonal
lattice into a non-close packed hexagonal lattice. This was unintuitive to us. In fact,
every Bravais lattice type is accessible from a non-close packed hexagonal lattice by
uniaxial stretching.
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b = -16° S = 1.78

α = 3°

AB

b = 23° S = 1.73

α = 6°

A

B

Fig. 7.4.: SEM images of non-close packed domains. The transfer direction is vertical. Both
domains are from the same sample. Therefore, we assume that they experienced
the same transformation. Our theory predicts that both domains are stretched
by a very similar amount (1.73-1.78) in the same direction as the transfer. The
only difference is the relative orientation of the original close packed hexagonal
domains. The original domains were rotated relative to each other by around 30°.
Scale bar is 2 µm. Adapted from the PhD thesis of Miriam E. J. Hummel.[120]

We had to proof that the lattice transformation is an uniaxial stretch. We used the
following line of reasoning:

The monolayers contain domains with different lattice orientations. Note, that we
had no control over the orientation of the close packed hexagonal lattice during
the transfer. We assume that all domains experience the same transformation. We
analyzed two domains on the same substrate, assuming the transformation is an
uniaxial stretch. Figure 7.4 shows two non-close packed domains on the same sample
and the corresponding analysis. We found that:

• Both domains experience very similar stretch factors and directions.

• The stretch direction is parallel to the transfer direction (vertical).

• The original lattices are rotated by 30° relative to each other. This is common
in polycrystalline close packed colloidal monolayers.[121]

From these results, we concluded that the transformation is indeed an uniaxial
stretch in the transfer direction.
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We now move from colloidal particles that are arranged in 2D monolayers to 3D
assemblies. These assemblies can be ordered crystals or unordered glasses. Both
types find applications ranging from photonic crystals[122] to thermal insulation
materials[123] and sensors.[124] Their function is strongly coupled to their structure.
The standard tool to analyze their structure is the radial distribution function, g(r),
also called pair correlation function.[125]

0 1 2 3 4 5 6
Radial Distance / µm

0

1

2

3

g(
r)

Correct
OVITO

Fig. 7.5.: Comparison of two radial distribution functions computed from the same set of
particle coordinates. Note that g(r) computed with OVITO[126] artificially decays
to zero at large radii. Adapted from Kopera et al.[127]

I helped my colleague Astrid Rauh, to extract particle positions from confocal
microscopy images of colloidal crystals. We then used the radial distribution function,
computed with OVITO,[126] to analyze these particle positions (see Figure 7.5). The
resulting g(r) showed an artificial decay to zero at large radii. We realized that this
artifact was caused by the small, finite sample volumes.

Building on my work with Astrid, I developed a new algorithm to compute the
radial distribution function in finite volumes (see chapter 11). This was an unsolved
problem for over 35 years.1

Important milestones during this project were:

1. Automatic extraction of 3D particle positions from confocal images

2. Understanding the origin of the g(r) decay to zero at large radii

3. Derivation of the analytic solution for the sphere - box intersection volume

4. Discovery of a natural upper bound for the radial distance

5. Proof that the computational requirements are similar to known algorithms
1see Larsen and Shaw[43] on page 4264, left column, fourth paragraph.
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Fig. 7.6.: Particles (blue) confined in a finite, rectangular sample volume. The red shells
are bins for the local radial distribution function around individual particles.
Note that parts of the shell extend beyond the sample boundary. Ignoring the
finite sample boundaries causes the artificial decay of g(r) to zero at large radii.
Adapted from Kopera et al.[127]

The radial distribution function is, in essence, a histogram of the average normalized
radial particle density. Figure 7.6 show the radial bins (red circles) around some
selected particles. We compute the particle density inside each radial bin by dividing
the number of particles in the bin through the bin (shell) volume. These bins can
extend beyond the finite sample volume where no particle coordinates are known.
Neglecting this fact during the computation of g(r) causes an underestimated particle
density and therefore, the decay to zero at large radii.

My solution addresses this issue. I use the intersection volume between a radial bin
and the sample volume when I compute the particle density. I focused on rectangular
cuboids (boxes) as the sample volume. However, my approach works for arbitrary
sample shapes. I derived an analytic solution for the intersection volume between a
shell and a box. There are many different cases to consider. However, I capture all
of these cases with analytic equations and if-else logic (see SI in chapter 11).

The essential part of my algorithm is the analytic equation for a subvolume of a
sphere. Imagine two perpendicular planes cutting into a sphere centered around the
origin. The planes are a distance a and b, respectively, away from the origin. The
volume of the smallest wedge is then given by

Vcut(Rs, a, b) = R3
s

6 ·
[
π − 2 · arctan

(
a · b

Rs ·
√
R2

s − a2 − b2

)]
(7.1)

+ 1
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]
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·
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]

+ a · b ·
√
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3 , with a, b ≥ 0, and R2

s > a2 + b2

with Rs as the sphere radius. This analytic solution gives my approach a superior
computational efficiency compared to numeric integration.
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a) b)

c) d)

2N

Fig. 7.7.: a) Radial distribution functions computed from an FCC test dataset with three
different methods. The correct (blue) g(r) originates from a larger dataset where
the radial bins never extend beyond the sample volume. The simple (orange) g(r)
ignores the finite nature of the sample volume. My analytic algorithm produces
an g(r) that is almost indistinguishable from the correct g(r). The absolute error
(b) reinforces this result. c) Comparison of the compute time for the simple
algorithm and my new analytic algorithm as a function of particle number, N .
Both have a computation complexity of O(N2). My analytic algorithm is slightly
slower. However, the relative time difference (d) becomes negligible for large
datasets. Adapted from Kopera et al.[127]

I tested both the accuracy and computational complexity of my new analytic
algorithm. The results are shown in Figure 7.7. My analytic algorithm produces a
g(r) that is almost indistinguishable from the correct g(r). The absolute error for
my algorithm vanishes in the noise background as compared to the large error from
the simple algorithm. The error decreases for large radial distances in contrast to the
simple algorithm. One concern regarding my new algorithm was the computational
efficiency. My new algorithm is slightly slower than the wrong, simple algorithm (see
Fig. 7.7c). However, the computational complexity is O(N2), similar to the simple
algorithm. This means, that the absolute runtime difference becomes negligible for
large datasets with many particles (see Fig. 7.7d).
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Building and analyzing particulate systems was an essential part of the following two
projects. We asked the question how the particle type and arrangement influences
heat transport in colloidal assemblies. To answer these questions, we first synthesized
binary colloidal glasses that consisted of solid polymer and hollow silica colloids
with similar size. Our goal was to understand the influence of the mixing ratio on
heat flux (see chapter 12). Therefore, we measured their thermal conductivity with
Xenon flash analysis. In addition, we simulated heat flux in binary colloidal glasses
with COMSOL Multiphysics.[91] My interface to COMSOL allowed us to simulate
the effective thermal conductivity of our colloidal glasses.

Fig. 7.8.: a) Thermal conductivity as a function of polymer particle volume fraction. Both
finite element simulations (FEM) and mixing models describe the influence of the
mixing ration on the thermal conductivity well. b) Simulated thermal conductivity
for a mixture of diamond and hollow silica particles. Effective medium theory
(EMT) is able to describe the percolation threshold around 30 % diamond particles.
c) Thermal percolation paths emerging in a colloidal glass made from diamond
and hollow silica particles. Note the strong heat flux through diamond particles
in the x-direction. Reproduced from Ruckdeschel et al.[49] with permission from
the American Physical Society.

Figure 7.8 shows the results of our COMSOL simulations and the experiments.
The data show a linear change in the thermal conductivity as a function of the
solid sphere volume fraction. Effective medium theory[128],[129] and different mixing
models describes the influence of the solid sphere volume fraction on the effective
thermal conductivity well (see Figure 7.8a). Percolation theory[130] is able to
describe the onset of percolation in our simulations. However, only a very high
thermal conductivity contrast, on the order of 1:500, would create a measurable
percolation threshold. Our results add to the understanding of heat transport in
binary particulate systems.
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Colloidal glasses are random colloidal assemblies. They can be prepared reproducibly
by mixing particles of different sizes. We hypothesized that the amorphous structure
of colloidal glasses creates superior thermal insulation. Therefore, we prepared
a series of colloidal glasses with different ratios of large and small particles (see
chapter 13). Martin Dulle conducted molecular dynamic simulations to gain insight
into the structure of a binary colloidal glass.

a)

b)

Fig. 7.9.: a) Histograms of next neighbors (NNN) and touching neighbors (NTN) for a
binary mixture of 80 % small and 20 % large particles. The particle size ratio is
0.79. On average, there are more next neighbors than touching neighbors. This
indicates that a significant amount of particles is close to each other, but they do
not touch. b) Thermal pathways in a colloidal glass (left) and a colloidal crystal
(right). The random jamming in the glass increases the conduction paths for heat.
Reproduced from Nutz et al.[48] with permission from John Wiley and Sons.

My analysis yielded the distribution of next neighbors and touching neighbors. An
exemplary histogram for a binary mixture of 80 % small and 20 % large particles is
shown in Figure 7.9. There are at least two non-contact neighbors inside the first
coordination sphere. This reduces the number of connections between the particles
and increases the thermal path length. We confirmed the presence of tortuous paths
with COMSOL simulations (see Figure 7.9b).
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We discovered that an addition of ≈ 10 % of particles with different size destroys
the colloidal crystallization. The resulting colloidal glass has a lower density and
extended thermal pathways. This in turn reduces the effective thermal conductivity
by ≈ 50 %. Our findings provide new design guidelines for thermal insulation
materials.

The two previous projects employed Xenon flash analysis (XFA) as a tool to assess the
thermal diffusivity in three-dimensional colloidal crystals. I gave a brief description
of XFA in section 6.4. XFA is a well established method for monolithic samples of
appropriate size and thickness. However, XFA is not suited for thin films, in-plane
thermal transport, or anisotropic thermal conductivities. Therefore, we built and
acquired additional thermal transport metrology to characterize nanostructured
materials. I will focus on thermography, and in particular, lock-in thermography,
since this is the area where I contributed most. I will first present two recent
publications that rely on results from (lock-in) thermography. I then highlight my
contributions to method development around lock-in thermography.

Fig. 7.10.: Structure of a Hectorite/PVP Bragg stack. The TEM crosssections show the
large scale arrangement of clay nanosheets into perfectly ordered stacks. Small
angle x-ray scattering reveals diffraction peaks up to the 9th order. This further
underlines the high degree of order present in the samples. Reproduced from
Wang et al.[97]

Synthetic clays have been developed into a versatile material class.[131]–[134] These
clays can be produced in bulk quantities with platelets larger than 10 µm. Delami-
nating the clay down to sheets with intrinsic thickness (1.0 nm) creates individual
nanosheets with aspects ratios[135] larger than 2 · 104. This large aspect ratio
forces the nanosheets into almost perfect parallel stacks when the dispersion dries.
We used the nanosheet dispersions to create 1D hybrid Bragg stacks. We choose
polyvinylpyrrolidon (PVP) as the filler between the nanosheets. This ensures a
large contrast in both the thermal conductivity and the mechanical properties of
the layers.

52 Chapter 7 Thesis Overview



We used lock-in thermography to measure the isotropic in-plane thermal diffusivity
and the photoacoustic method[136],[137] for the through plane thermal diffusivity. In
addition, Brillouin light scattering[138] was used to probe phonons in the GHz range.
These measurements provide information on the direction dependent sound velocities,
which ultimately yield the full elastic stiffness tensor of this hybrid material.

Fig. 7.11.: The density (a), the specific heat capacity (b), and the in-plane thermal con-
ductivity (c) of our composites are a linear function of the hectorite content. In
contrast, the thermal conductivity through the hectorite/PVP stack shows a
broad minimum for all mixtures compared to the pure components. The thermal
conductivity anisotropy (e) reaches values as high as 40 for a 1:1 volume mixture
of hectorite and PVP. Reproduced from Wang et al.[97]

Measuring the in-plane thermal conductivity efficiently and reproducible was an
important task in this project. The data analysis procedure that I outlined in
chapter 6.6.6 fulfilled this requirement. Based on my development, we found that
the in-plane thermal diffusivity is 40 times higher than the through plane thermal
diffusivity. This is an exceptionally large anisotropy for a dielectric material.[139]

The strong anisotropy between the in-plane and through plane direction is mirrored
in the mechanical properties. In addition, the through plane thermal conductivity
(0.09 W⁄mK) is very low for a bulk material.

Another interesting and potentially anisotropic material class are electrospun nonwo-
vens. They are created by spinning a polymer solution from a needle with the help
of an electric field. The fibers in these nonwovens are usually randomly oriented
and form a porous network. Applications of nowovens range from filters[140] to
superhydrophobic surfaces[141] and reinforcement for composite materials.[142] We
use nonwovens, made from thermoplastic polyurethane (TPU), to create smart
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textiles. Polyurethane fibers are flexible and elastic. Those properties are preserved
in the composite nonwovens. We add functionality by filtering a dispersion of silver
nanowires directly through the nonwoven. This creates a thin, electrically conductive
layer on top that can be used as a strain sensor or an electric conductor. We protect
the silver nanowire layer by electro spinning a second layer of TPU on top.
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Fig. 7.12.: (a-c) Laser scanning microscopy images of thermoplastic polyurethane nonwovens
under different amounts of strain. (d) 2D order parameter computed from images
like (a-c). The fibers align almost perfectly above 100 % strain. (e, h) Amplitude
of the thermal oscillations during a lock-in thermography measurement. The
white line represents the location of the line laser. Changing the angle θ gives
us access to the direction dependent thermal diffusivity (f, i). (g) Ratio of
the thermal diffusivity in the major and minor axis of the ellipse fits in (f,
i). Note that the anisotropy changes linearly for both pure thermoplastic
polyurethane fibers and with added silver nanowires on top. However, the pure
polymer fibers show a much stronger increase in anisotropy. Reproduced from
Gao et al.(doi: 10.1002/adfm.201907555)

We used lock-in thermography and laser scanning microscopy to probe the anisotropic
alignment of TPU fibers during stretching. The laser scanning microscopy images
(a-c) show an increasing alignment of the TPU fibers in the stretching direction. I
quantified the alignment with the 2D order parameter, S2D, computed from these
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images (Fig. 7.12d). S2D approaches 1, at a strain of around 100 %. This indicates
near perfect alignment of the fibers. Lock-in thermography with a newly implemented
line laser allows us to probe heat flux in every in-plane direction. Heat travels faster
along a fiber than between the fibers. The anisotropy in the fiber orientation is
therefore mirrored as an anisotropic heat flux (Fig. 7.12f, i).

Fig. 7.13.: c) Optical microscopy images of TPU and silver nanowire composite nonwovens.
The light and dark regions at increasing strain are created by cracks in the silver
nanowire layer. d) SEM image of a cracked silver nanowire layer ontop of a
TPU nonwoven. The violet color marks silver deposits measured by EDX. e)
Thermograms of our composite films. The sample is heated with a constant
current. We can visualize the bottlenecks as hot spots due to their larger heating
power. Reproduced from Gao et al.(doi: 10.1002/adfm.201907555)

In addition to the thermal transport along the polymer fibers the electrical conduc-
tivity along the silver nanowire network in this composite material is important. The
silver nanowire layer gradually looses its initially high electric conductivity during
stretching. We found that stretching creates cracks in the silver nanowire layer. We
confirm the crack formation both with optical microscopy (Fig. 7.13c) and scanning
electron microscopy coupled with energy dispersive x-ray spectroscopy (Fig. 7.13d).
The cracks create bottlenecks for an electric current. A constriction with higher
electric resistance manifests itself as a hot spot. These hot spots dynamically change
during stretching. Thermography allowed us to look at hot spots in the otherwise
encapsulated silver nanowire layer. We think that such conductive and breathable
nonwovens find application as both strain sensors and current conductors in smart
textiles.
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The previous two publications showed that lock-in thermography is a valuable
technique for thermal characterization. Structural anisotropies can be revealed
by measuring heat flux in different directions. One of the primary advantages of
lock-in thermography is the simple data analysis called the slope method invented
by Zhang et al.[115] and Fabbri et al.[114] We extended and validated their approach
to semi-transparent samples. We discovered that the slopes method is still valid for
thermally thin films even if they are translucent to both visible and IR radiation.
Consequently, lock-in thermography is a robust characterization technique that can
be applied to a wide range of materials.

Fig. 7.14.: Model for a semi-transparent film excited by a modulated point laser in the
center. The film is translucent for both the laser wavelength and infrared
radiation. This potentially complicates the analysis of lock-in thermography
measurements. Black arrows indicate possible heat losses through radiation on
both sides. Reproduced from Philipp et al.[116] with permission from American
Chemical Society.

Our analytic, 2D heat conduction model (see Figure 7.14) includes heat losses on
both sides by radiation and convection, a Lambert-Beer type absorption of the laser
beam in the sample, and heat transport by thermal radiation in the sample. In
addition to theoretical modeling, we prepared and measured thin polymer films
with different absorption coefficients and thicknesses. We varied the absorption by
melt blending phenol red into PMMA and LDPE. Phenol red absorbs both the laser
light with a wavelength of 488 nm and infrared radiation in the range where our IR
camera is sensitivity. Figure 7.15 shows the results of our validation experiments.
We observed no dependence of the measured thermal diffusivity on the dye content.
Therefore, we concluded that the changing laser absorption and radiative thermal
transport have no influence on the lock-in thermography measurements.
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Fig. 7.15.: Thermal diffusivity measured by lock-in thermography for three different poly-
mers. The dashed lines represent the accepted literature values. We controlled
the laser absorption by blending different amounts of Phenol Red (PR) into the
films. We tested the influence of the film thicknesses with the PEEK samples.
All measured thermal diffusivities are well within the accepted literature values.
Adapted from Philipp et al.[116] with permission from the American Chemical
Society.

My latest project (see chapter 17) addresses DC heating in frequency domain
thermal characterization methods. DC heating is an inevitable side-effect when the
sample can only be heated and not cooled. This increases the average measurement
temperature. The measured thermal properties are changed because they generally
depend on temperature. In addition, the DC heating wastes energy and therefore
reduces the signal efficiency. My new signals reduce DC heating and allow us to
measure multiple lock-in frequencies simultaneously. This concept is very likely
applicable to other characterization techniques operating in the frequency domain. I
present two optimized excitation signals: a square wave with shorter duty cycle and
a sum of sine waves. The square wave can be represented by its Fourier series as

I(t) = I0 ·
[
D +

∞∑
n=1

2 · sin (πnD)
πn

· cos
(2πnt

T

)]
. (7.2)

We can use the higher harmonics to measure lock-in thermography at multiple
frequencies simultaneously. Reducing the duty cycle directly reduces the DC heating.
The sum of sine waves is given by

I(t) = S +
N∑
n=1

An · cos (2πfn · t+ φn) . (7.3)

This signal has many degrees of freedom. I describe the different steps necessary to
optimized both the signal-to-noise ratio and the DC component of such a multiplexed

7.2 Synopsis 57



signal. The key idea is to add partially negative sine waves into a fully positive
signal. This interference between the sine waves reduces the DC component.

a) b)

Fig. 7.16.: a) Temperature amplitudes of the DC component and 1st harmonic of a square
wave as a function of duty cycle. The dashed lines represent the corresponding
values for a single sine wave with equal amplitude and frequency. Note, that
a square wave with 50 % duty cycle creates temperature amplitudes similar
to a sine wave. Reducing the duty cycle reduces the DC component of the
square wave. b) Temperature amplitudes of the DC component and 1st and 2nd

harmonic of the sum of two sine waves as a function of relative phase shift. The
sum of two sine waves has a minimal DC component at zero phase shift. The
DC component is even smaller than for individual sine waves (solid line).

Figure 7.16a shows the measured DC heating (blue dots) for a square wave as a
function of duty cycle. Reducing the duty cycle from 50 % to 20-25 % decreases
the DC heating from 3 to 1 K. The relative power in the 1st harmonic doubles (see
chapter 17.4.2). The power in the signal is then used more efficiently. A square wave
with a duty cycle of around 20-25 % is therefore superior to a sine wave. Figure 7.16b
shows the measured DC heating (blue dots) for the sum of two sine waves as a
function of relative phase shift between the sine waves. A pronounced minimum
occurs at a relative phase shift of 0°. The amplitudes of the two sine waves (orange
and green dots) show no phase shift dependence. The DC component is reduced by
about 46 % relative to a phase shift of 180°. I also show that multiplexed lock-in
thermography with a square wave or the sum of four sine waves yields similar results
as a sequential measurement with individual sine waves. The resulting thermal
diffusivities are within a ± 2 % margin of error. We conclude that multiplexed
excitation signals are beneficial for frequency domain techniques. They allow us to
reduce DC heating and measure at multiple frequencies simultaneously. We think
that this method will be useful for other researchers working with frequency domain
heating techniques.
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7.3 My Contributions to Joint Publications

7.3.1 Ordered Particle Arrays via a Langmuir Transfer
Process: Access to Any Two-Dimensional Bravais
Lattices

Miriam E. J. Hummel, Christian Stelling, Bernd A. F. Kopera, Fabian A. Nutz,
Matthias Karg, Markus Retsch, Stephan Förster

We published this article in Langmuir 2018, 35, 973-979

Miriam E. J. Hummel and Christian Stelling first observed stretching of colloidal
monolayers during the water to substrate transfer. They manufactured the colloidal
monolayers and characterized the samples with scanning electron microscopy and
optical microscopy. I developed the ParticleSizer software in Matlab to extract
particle sizes and positions from the microscopy images. Together with Miriam, I
developed the analysis procedure for extracting unit cell parameters from colloidal
monolayers. We also derived the analytic equations for phase boundaries in the
direction - stretch factor phase diagrams. I developed a python script to compute
the continuous direction - stretch factor phase diagrams and predict the particle
arrangement in the stretched state. Fabian A. Nutz synthesized the colloidal particles.
Markus Retsch and Stephan Förster supervised this project. The manuscript was
written through contributions from all authors.

7.3.2 Computing the 3D Radial Distribution Function from
Particle Positions: An Advanced Analytic Approach

Bernd A. F. Kopera and Markus Retsch
We published this article in Analytical Chemistry 2018, 90, 23, 13909-13914

I identified the need for a better way to compute the radial distribution function in
finite volumes. I derived the analytic solution for the intersection volume between
a sphere and a rectangular box and wrote software to test and benchmark my
new algorithm. I wrote the manuscript, created all figures and the supporting
information. Markus Retsch proofread the manuscript and guided this paper
through the submission and peer-review process.
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7.3.3 Low Thermal Conductivity through Dense Particle
Packings with Optimum Disorder

Fabian A. Nutz, Alexandra Philipp, Bernd A. F. Kopera, Martin Dulle and
Markus Retsch

We published this communication in Advanced Materials 2018, 30, 1704910

Fabian A. Nutz and Markus Retsch conceived the project. Fabian A. Nutz synthesized
the colloidal particles and glasses, characterized the structure with scanning electron
microscopy and measured thermal diffusivity with xenon flash analysis. Alexandra
Philipp took lead on the finite element simulations and corrected the manuscript.
I analyzed particle positions computed with molecular dynamic simulations. I
developed custom software to distinguish between contact and non-contact neighbors
and analyze the contact area for different particle size mixtures. I helped writing the
manuscript, interpret the results and prepare figures. Marting Dulle performed the
molecular dynamic simulations and helped writing the manuscript. Markus Retsch
supervised this project and wrote the manuscript.

7.3.4 Thermal transport in binary colloidal glasses:
Composition dependence and percolation
assessment

Pia Ruckdeschel, Alexandra Philipp, Bernd A. F. Kopera, Flora Bitterlich,
Martin Dulle, Nelson Pech-May and Markus Retsch

We published this full paper in Physical Review E 2018, 97, 022612

Pia Ruckdeschel synthesized all particles and characterized the colloidal glasses
with scanning electron microscopy. She prepared the manuscript together with
Alexandra Philipp. Finite element simulations using COMSOL Multiphysics were
performed by Alexandra Philipp and Flora Bitterlich. I supported these simulations
with Python software that generated the 3D mixtures of solid and hollow sphere
particles. This included an essential interface between particle position lists and
AutoCAD. The particle positions were generated by Martin Dulle using molecular
dynamics simulations. I also analyzed the particle positions by computing the radial
distribution function. Nelson Wilbur Pech-May reformated the manuscript in LATEX
and contributed to the scientific discussion. Markus Retsch supervised this project
and corrected the manuscript.
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7.3.5 Tunable thermoelastic anisotropy in hybrid Bragg
stacks with extreme polymer confinement

Zuyuan Wang, Konrad Rolle, Theresa Schilling, Patrick Hummel, Alexandra
Philipp, Bernd A.F. Kopera, Anna M. Lechner, Markus Retsch, Josef Breu,

George Fytas
We published this article in Angewandte Chemie Int. Ed., 10.1002/anie.201911546

Zuyuan Wang and Konrad Rolle performed the mechanical characterization with
Brillouin light scattering. Theresa Schilling prepared the composite Hectorite
samples. Partick Hummel measured the through plane thermal diffusivity with
the photo-accoustic method. Alexandra Philipp measured the in-plane thermal
diffusivity with lock-in thermography. Alexandra Philipp and I implemented and
built the lock-in thermography setup. Anna Lechner measured differential scanning
calorimetry. Markus Retsch, Josef Breu, and George Fytas supervised the work and
corrected the manuscript.

7.3.6 Breathable and flexible polymer membranes with
mechanoresponsive electric resistance

Qiang Gao, Bernd A. F. Kopera, Jian Zhu, Xiaojian Liao, Chao Gao, Markus
Retsch, Seema Agarwal, Andreas Greiner

Our manuscript (adfm.201907555) is accepted in Advanced Functional Materials.

Andreas Greiner conceived the concept and guided the project. Qiang Gao and
Seema Agarwal designed experiments regarding sample preparation. Qiang Gao
prepared all samples, and performed the initial electric and mechanic characteri-
zation. Furthermore, he contributed the electron microscopy images and prepared
the first draft of the manuscript. Jian Zhu assisted in the design of the electric
characterization and discussed the results. Xiaojian Liao assisted in the preparation
of polycaprolactone short fibers and discussed the results. I analyzed the fiber
orientation in the nonwovens from optical microscopy images to obtain the strain
dependent order parameter. I measured the direction and strain dependent thermal
diffusivity with my self built line laser lock-in thermography setup. I characterized
the strain dependent ohmic heating in the samples using thermography. I prepared
some of the figures and helped writing the manuscript. Chao Gao discussed and
evaluated the work. Markus Retsch, Seema Agarwal, and Andreas Greiner discussed
with the other coauthors, evaluated the work and revised the first draft of the
manuscript.
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7.3.7 Direct measurement of the in-plane thermal diffusivity
of semitransparent polymers by lock-in thermography:
an extension of the slopes method

by Alexandra Philipp, Nelson W. Pech-May, Bernd A. F. Kopera, Anna Lechner,
Sabine Rosenfeldt, Markus Retsch

We published this article in Analytical Chemistry 2019, 91, 13, 8476-8483

Alexandra Philipp prepared all samples. She also measured lock-in thermography to
obtain the thermal diffusivity and characterized the optical properties with infrared
and optical spectroscopy. Nelson W. Pech May derived the theoretical framework. I
developed the software to efficiently analyze lock-in thermography measurements. I
prepared and tested the pixel size calibration procedure for thermographic imaging.
I helped developing the vacuum chamber and build the laser setup. I also measured
part of the thin film samples with lock-in thermography. Anna Lechner measured
differential scanning calorimetry on all samples. Sabine Rosenfeldt measured small
angle x-ray scattering and analyzed the corresponding data. The manuscript was
written through contributions from all authors.

7.3.8 Reducing DC heating in lock-in thermography: the
advantage of thermal multiplexing

Bernd A. F. Kopera and Markus Retsch
in preparation

I developed the idea to reduce DC heating in frequency domain techniques by
destructive interference of partially negative excitation signals. I built the lock-in
thermography setup, programed the numeric exploration of the phase parameter
space. I also developed a method to measure the DC temperature rise and used
this method to characterize the different excitation signals. I wrote the manuscript,
created all figures and the supporting information. Markus Retsch proofread the
manuscript and provided valuable guidance during the inception of this idea.
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8Outlook

There are many more project ideas that originated during my PhD. I use this last
chapter to outline some of the promising ideas for future work. These projects will
all depend on future development and improvement of tailor-made code for the
measurement and analysis of upcoming material systems.

8.1 Lock-In Thermography

• Combine lock-in thermography with laser flash analysis. This would
allow us to obtain in-plane and through-plane thermal diffusivity on the same
sample. This project requires: an IR camera with a higher frame rate due to the
fast thermal equilibration in the thin films necessary for lock-in thermography
and an intense pulsed light source with an illumination are of around 1 cm2.
The challenge is to balance two mutually exclusive goals: A short pulse length
and large thermal energy deposited in the sample.

• Extend fiber lock-in thermography to smaller fiber diameters. Ex-
tending the characterization of non-woven materials in chapter 15 requires
thermal transport characterization down to individual fibers. This would
additionally open the possibility to understand highly interesting materials
such as: spider silk threads, carbon fiber rovings, electrospun polymer fiber
assemblies, and animal hair with good thermal insulation. This project requires
a smaller pixel size in the IR images. Otherwise, the partial cover of the pixels
by the fiber distorts the temperature measurement. Furthermore, the working
distance for high resolution IR microscope objectives is small. Redesigning
the vacuum chamber with a thinner IR window and a sample mount close to
the window is therefore necessary. Thermal losses for such high surface area
materials may add an additional source of complication.

• Implement thermal conductivity measurements. Pure lock-in thermog-
raphy can only measure thermal diffusivity because only the temperature
distribution is recorded. Measuring thermal conductivity requires a known
heat flux through the sample. The publication on line laser lock-in ther-
mography by Brendel et al.[73] includes an extension for measuring thermal
conductivity. This extension requires precise knowledge of the absorbed laser
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power in the sample. We could calibrate the absorbed power by measuring
reference materials with known thermal conductivity. Another way is to replace
the line laser with a line heater, a thin metallic line on the sample surface
with a known resistance. Applying a known AC current to this line generates
a precise heating power.

8.2 Particle Position Analysis

• Analyze the internal structure of different colloidal assemblies. Col-
loidal particles can be arranged by a variety of techniques: evaporation induced
self-assembly,[46] filtration,[49] and dip coating.[143] In addition, destroying the
colloidal stability might lead to fractal structures.[144] Mixing colloidal parti-
cles with different sizes also creates glassy assemblies.[48] We could compare
the internal structure of the resulting colloidal assemblies. The experimental
challenge lies in determining the particle positions e.g. from fluorescent con-
focal microscopy images. Afterwards, the colloidal particle network could be
analyzed with graph theory.[145]

• Investigate the effect of missing particles. Sometimes, particle positions
are missing in a dataset. This might cause problems during the radial distri-
bution function computation. It is therefore important to develop a robust
framework for error estimation in this case.

• Derive analytic intersection volumes for different sample shapes. My
work on g(r) was recently cited by Catarineu et al.[7] Their particle set (helium
bubbles) is bounded by a cone. My algorithm is still applicable once the
analytic intersection volume between a sphere and a cone is known.

• Analyze the effect of the user defined bin size in g(r). The radial
distribution function is in essence a histogram. The bin width is choosen by
the researcher. A large bin width averages g(r) whereas a small bin width
increases the noise. There is currently no rule available to choose the bin width.
Quantifying the effects of a finite bin width would therefore be an interesting
research project.

• Develop image analysis for elliptical particles. The challenge is the
efficient detection and separation of elliptic particle boundaries. Spherical
particles have a high symmetry. This facilitates boundary detection. Ellip-
tical particles have two important characteristics. Their position and their
orientation. Extracting the orientation is important to detect liquid crystalline
order.
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[37] E. Abbe, ”Beiträge zur Theorie des Mikroskops und der mikroskopischen
Wahrnehmung,“ Archiv für mikroskopische Anatomie, vol. 9, no. 1, pp. 413–
418, 1873.

67



[38] F. Bossler, J. Maurath, K. Dyhr, N. Willenbacher, and E. Koos, ”Fractal ap-
proaches to characterize the structure of capillary suspensions using rheology
and confocal microscopy,“ Journal of Rheology, vol. 62, no. 1, pp. 183–196,
2018.

[39] K. Hauf and E. Koos, ”Structure of capillary suspensions and their versatile
applications in the creation of smart materials,“ MRS Communications, vol. 8,
no. 02, pp. 332–342, 2018.

[40] S. Gruber, N. Vorhauer, M. Schulz, et al., ”Estimation of the local sublimation
front velocities from neutron radiography and tomography of particulate
matter,“ Chemical Engineering Science, vol. 211, p. 115 268, 2020.

[41] J. Wang, C. F. Mbah, T. Przybilla, et al., ”Magic number colloidal clusters
as minimum free energy structures,“ Nature Communications, vol. 9, no. 1,
2018.

[42] M. Chau, B. A. F. Kopera, V. R. Machado, et al., ”Reversible transition
between isotropic and anisotropic thermal transport in elastic polyurethane
foams,“ Materials Horizons, vol. 4, no. 2, pp. 236–241, 2017.

[43] M. L. Larsen and R. A. Shaw, ”A method for computing the three-dimensional
radial distribution function of cloud particles from holographic images,“
Atmospheric Measurement Techniques, vol. 11, no. 7, pp. 4261–4272, 2018.

[44] M. Knudsen, ”Die molekulare Wärmeleitung der Gase und der Akkommoda-
tionskoeffizient,“ Annalen der Physik, vol. 339, no. 4, pp. 593–656, 1911.

[45] P. Ruckdeschel, T. W. Kemnitzer, F. A. Nutz, J. Senker, and M. Retsch,

”Hollow silica sphere colloidal crystals: Insights into calcination dependent
thermal transport,“ Nanoscale, vol. 7, no. 22, pp. 10 059–10 070, 2015.

[46] F. A. Nutz, P. Ruckdeschel, and M. Retsch, ”Polystyrene colloidal crystals:
Interface controlled thermal conductivity in an open-porous mesoparticle
superstructure,“ Journal of Colloid and Interface Science, vol. 457, pp. 96–
101, 2015.

[47] F. A. Nutz and M. Retsch, ”Interfacial and volumetric sensitivity of the
dry sintering process of polymer colloidal crystals: A thermal transport and
photonic bandgap study,“ Physical Chemistry Chemical Physics, vol. 19,
no. 24, pp. 16 124–16 130, 2017.

[48] F. A. Nutz, A. Philipp, B. A. F. Kopera, M. Dulle, and M. Retsch, ”Low Ther-
mal Conductivity through Dense Particle Packings with Optimum Disorder,“
Advanced Materials, vol. 30, no. 14, p. 1 704 910, 2018.

[49] P. Ruckdeschel, A. Philipp, B. A. F. Kopera, et al., ”Thermal transport in
binary colloidal glasses: Composition dependence and percolation assessment,“
Physical Review E, vol. 97, p. 022 612, 2 2018.

68 Chapter 9 References



[50] Y. S. Touloukian, Thermophysical Properties of Matter. New York: IFI/Plenum,
1973.

[51] A. A. Penzias and R. W. Wilson, ”A measurement of excess antenna temper-
ature at 4080 Mc/s.,“ The Astrophysical Journal, vol. 142, p. 419, 1965.

[52] R. S. Mulliken, ”The band spectrum of boron monoxide,“ Nature, vol. 114,
no. 2862, pp. 349–350, 1924.
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4 Physical Chemistry, RWTH University, 52074 Aachen, Germany

Published in Langmuir, 2019, 35, 973-979
Reproduced with permission from ACS Publications

77



10.1 Abstract

We demonstrate how to directly transform a close-packed hexagonal colloidal mono-
layer into nonclosepacked particle arrays of any two-dimensional symmetry at the
air/water interface. This major advancement in the field of nanoparticle self-assembly
is based on a simple one-dimensional stretching step in combination with the particle
array orientation. Our method goes far beyond existing strategies and allows access
to all possible two-dimensional Bravais lattices. A key element of our work is the
possibility to macroscopically stretch a particle array in a truly one-dimensional
manner, which has not been possible up to now. We achieve this by stretching the
nanoparticle array at an air/water interface during the transfer process. The degree
of stretching is simply controlled by the wettability of the transfer substrate. To
retain the symmetry of the transferred structure, the capillary forces upon drying
have to be circumvented. We demonstrate two concepts based on thermal fixation
for this. It allows for the first time to fabricate nonclose-packed, nonhexagonal
colloidal monolayers on a macroscopic length scale.

10.2 Introduction

Solid substrates patterned with particle arrays are a key component for the fab-
rication of functional surfaces and thin film devices. They have applications in
lithography,[1]–[3] optics,[4] photonics,[5] high-density data storage, as well as adhe-
sive/nonadhesive surfaces.[6] Established preparation methods are based on block
copolymers,[7],[8] direct assembly of colloidal particles on solid substrates,[9] or liquid
interface-mediated assembly.[10] These techniques readily yield hexagonal closep-
acked (hcp) particle arrays. For many applications, it is highly desirable to use
nonclose-packed particle arrays with tunable interparticle distances and nonhexago-
nal symmetries to control optical, adhesive, or magnetic surface properties, e.g. in
the case of antireflective coatings[11] or photonic band gap devices.[12]

However, nonclose-packed particle arrays are not readily accessible. One fabrication
route is based on the assembly of colloidal particles at the oil/water interface. Here,
attractive capillary forces, which lead to the formation of close-packed arrays, are
screened, and repulsive electrostatic interactions become dominant. This method
allows increasing the interparticle distances up to several times the particle diame-
ter.[13],[14] However, the colloidal monolayers lose their nonclose-packed character
during transfer from the oil/water interface to a solid substrate due to the onset of
attractive capillary forces.
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A second fabrication method starts from hcp particle arrays on solid substrates. The
monolayers are then transformed into nonclose-packed arrays by plasma etching,
which reduces the diameter of the colloids without affecting their position.[10],[15]

Here, the initial particle diameter predetermines the interparticle distance and
the particle size cannot be reduced indefinitely due to limitations of the etching
process.[16],[17] Further methods to prepare nonclose-packed particle monolayers com-
prise spin-coating,[18] substrate swelling,[19] shrinking of close-packed particles,[20],[21]

or degradation[22],[23] of a polymer shell of core-shell particles. However, all these
approaches merely produce hexagonal arrays.

Nonhexagonal ordered arrays are not accessible with standard self-assembly methods
and usually require multiplestep procedures. One approach to nonclose-packed,
nonhexagonal arrangements is based on the combination of isotropic swelling and
anisotropic stretching of close-packed monolayers on elastomeric substrates. De-
pending on the individual stretching steps, the particles are separated along given
directions yielding more complex arrays.[24] Besides, structured substrates have been
used as templates to assemble colloidal particles in close-packed or nonclose-packed
arrays with various lattice geometries.[25]–[27] The combination of hard and soft
colloidal particles alongside with a restriction of the available surface area has
also been demonstrated to result in nonhexagonal and nonclose-packed particle
arrangements.[28] This experimental work is supported by modeling based on a hard
core-soft shell interaction potential (Jagla potential).[29] Overall, there is currently
no simple method available that could produce ordered nonclose-packed arrays of
any symmetry in a controlled manner.

Here, we report a straightforward fabrication method for nonclose-packed particle
arrays with any of the possible two-dimensional Bravais lattice symmetries. It starts
from the readily accessible hcp monolayers, which are assembled at the water/air
interface and collected on solid substrates. The transfer to the substrate induces a
controlled, purely onedimensional stretching of the hcp-array leading to a variety
of symmetries depending on the transfer angle and degree of stretching. This
method can be applied to colloidal particles of various compositions and yields
nanostructured areas of macroscopic size.
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10.3 Experimental Section

Synthesis of Poly(n-butyl acrylate-co-methyl methacrylate)
P(nBA-co-MMA) Particles

Monodisperse P(nBA-co-MMA) particles were prepared by emulsifier-free emulsion
polymerization. 450 ml Milli-Q water was mixed with 35 ml MMA and 15 ml nBA,
respectively. The mixture was equilibrated at 75 °C under a slight argon flow for
15 min. Subsequently, 2 ml of acrylic acid was added to the mixture followed by
a further equilibration step for 5 min. The polymerization was started by a rapid
injection of 150 mg potassium peroxodisulfate dissolved in 5 ml Milli-Q water. The
reaction was carried out overnight. The polymerization was quenched by exposure
to air. Residual educts were removed by dialysis against water for 5 days, changing
water twice a day. Particles with a mean diameter of 434± 12 nm and with a glass
transition temperature of 61 °C were obtained.

Preparation of Hydrophobic Substrates

Hydrophobic substrates were prepared by spin-coating glass slides with either
polystyrene (PS), poly(n-butyl acrylate-co-styrene) (P(nBA-co-S)), or poly(methyl-
methacrylate) and subsequent annealing at 200 °C for 5 min. SU-8 substrates were
obtained by spin-coating SU-8 2050. After soft baking at 65 °C for 1 min and 95 °C
for 7 min, the substrate was exposed to UV light for 2× 4 s. A post-exposure bake
was carried out at 65 °C for 1 min and 95 °C for 6 min. Poly(tetrafluoroethylene)
(PTFE) films were used as received.

Preparation of Colloidal Crystals

The preparation of hcp monolayers is described in detail in ref [25]. Aqueous
particle dispersions with a concentration of 2.5 wt% were spin-coated on cationically
functionalized glass slides at a speed of 4000 rpm. Freely floating monolayers were
assembled at the water/air interface by slow immersion of the particle-coated glass
substrate into a 0.1 mM sodium dodecyl sulfate solution in Milli-Q water. The
aqueous phase was adjusted to pH 12 by adding 30 % aqueous NH3. A hydrophobic
substrate was immersed through the floating monolayer at an angle of 45° relative
to the water surface and was left at the bottom of the beaker with the monolayer
facing upwards. After heating the water near the glass transition temperature of the
particles for 5 min on a hotplate, the monolayers were removed from the solution
and dried under ambient conditions.
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Characterization

Scanning electron microscopy (SEM) images were obtained using a LEO 1530 Gemini
Field Emission SEM (Carl Zeiss AG, Oberkochen, Germany) at 3.00 kV.

Particle positions and diameters were determined from the SEM images using
MATLAB’s circle detection function (Figure 10.11). From the particle positions,
the average stretched basis vectors (~a′) and (~b′) were then determined by averaging
all interparticle vectors with a Python script (Figure 10.11). Contact angle measure-
ments were performed on an OCA 20 (DataPhysics Instruments GmbH, Filderstadt,
Germany).

10.4 Results and Discussion

We prepared the particle monolayers at the water/air interface via an estab-
lished method.[30] As model particles, we chose spherical polymer colloids (poly(n-
butylacrylate-co-methylmethacrylate)) (P(nBA-co-MMA)) with a diameter of
434 ± 12 nm. The monolayers consist of large single-crystalline domains, resulting
in intense iridescent colors. These monolayers were subsequently transferred onto
solid substrates to fabricate the desired nonclose-packed and nonhexagonal particle
arrays (Figure 10.1).

Fig. 10.1.: Fabrication of non-close packed monolayers. (a) A hcp monolayer from the
water/air interface is transferred to the lower side of a hydrophobic substrate by
submerging the substrate through the monolayer into the subphase. Thereby the
particle monolayer is stretched into a nonclose-packed array. (b) The particles
are immobilized on the substrate via thermal adhesion near the glass transition
temperature (Tg) of the particles or the substrate. In the final step, the substrate
with the monolayer can be recovered from the solution, whereas the structure is
preserved.
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We first tested the conventional transfer of a monolayer onto a hydrophilic substrate,
which is withdrawn from the water (Z-type deposition [31]). As expected, this leads
to the formation of ordered hcp particle arrays (Figure 10.5a).[30] The preparation
of nonclose-packed arrays requires transferring the monolayer onto a hydrophobic
substrate by immersion into water (X-type deposition). This is possible if the contact
angle of the substrate is larger than a critical angle, in our case θc ∼ 65°. The
monolayer is then deposited on the lower side of the substrate. We hypothesized,
that during the transfer of the monolayer to the substrate, the monolayer would
align and stretch into the transfer direction, such that nonclose-packed ordered
arrays are accessible (Figure 10.5a). Unfortunately, the subsequent removal of the
substrate from the aqueous solution resulted in the formation of a collapsed particle
assembly (Figure 10.5b). This is a consequence of attractive capillary forces acting
during the removal and drying. Nevertheless, a closer inspection of the SEM images
revealed that the particles were not completely disordered, but showed a preferential
alignment along the diagonals of the image. This indicated that the particles have
indeed become aligned into nonclose-packed arrays, but then rearranged into close-
packed structures and lost their order during removal of the substrate from the
aqueous solution.
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Fig. 10.2.: Stretched particle arrays. (a) Definition of the initial hcp domain orientation
angle δ stretching angle α and stretching vector ~S. (b) Dependence of the
stretching factor S on the contact angle θ of the substrates. (c) Polymer
particles on substrates with different contact angles: SU-8 (θ = 69°), P(S-co-
nBA) (θ = 86°), PS (θ = 96°), and PTFE film (θ = 106°). The stretching
factor S decreases with the increasing contact angle with at a constant stretching
direction β. Scale bars are 1 µm.

To suppress the rearrangement, we immobilized the particle arrays prior to the
removal from the aqueous solution by increasing their adhesive contact area on
the substrate (Figure 10.6). For polymer particles with moderate glass transition
temperatures (Tg), this can be conveniently done by thermal fixation near the Tg of
the particles (Figure 10.5b). We also provide an alternative concept for arbitrary
particles. These can be thermally immobilized on substrates coated with a thin poly-
mer interlayer with adequately low glass transition temperature (Figure 10.7). One
can imagine further fixation strategies such as chemical crosslinking or an exchange
of the solvent.[13] After this fixation step, we were able to recover the substrate from
the aqueous solution without affecting the particle positions (Figure 10.5c). An
example for the successful immobilization of a nonclose-packed particle array with
nonhexagonal order covering the entire substrate (1× 1 cm2) is shown in Figure 10.5.
This demonstrates that the transfer onto hydrophobic substrates can generate large
area, nonclosepacked particle arrays, and that a fixation step is crucial to maintain
the structure.
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The broad implication of this transfer method bases on the fact that the obtained type
of particle array is completely defined by the transfer direction and the stretching
factor and can be theoretically predicted as shown in Figure 10.2a. We derive this
mathematically, starting from the base vectors ~e1 and ~e2 of the hexagonal unit cell
of the hcp-layer which are given as

~e1 =
(

1
0

)
; ~e2 =

(
−0.5
−0.5

√
3

)
(10.1)

The orientation of the hcp domain at the water/air interface before it is transferred
to the substrate is specified by the rotation angle δ. The base vectors ~a, ~b for the
oriented hcp domain prior to transfer can be calculated using a rotation matrix

~a =
[
cos δ − sin δ
sin δ cos δ

]
◦ ~e1 (10.2)

~b =
[
cos δ − sin δ
sin δ cos δ

]
◦ ~e2 (10.3)

The stretching vector ~S with a stretching factor S = |~S| determines the degree
of stretching upon transfer of the hcp domain to the substrate. Additionally, the
direction is defined by the angle α between the stretching vector ~S and the y-axis.
(Figure 10.2a). Mathematically, the stretching process can be described by a sequence
of rotation by an angle −α (M−α), followed by uniaxial stretching along the y-axis
(MS), and finally a back rotation (Mα) with the matrices

Mα =
[
cosα − sinα
sinα cosα

]
(10.4)

MS =
[
1 0
0 S

]
(10.5)

This results in the following stretching matrix (M = Mα ◦MS ◦M−α) and the
stretched vectors ~a and ~b the final particle array

M =
[

cos2 α+ sin2 α · S sinα · cosα · (1− S)
sinα · cosα · (1− S) cos2 α+ sin2 α · S

]
(10.6)

~a′ = M ◦ ~a (10.7)

~b′ = M ◦~b (10.8)

With this calculation, we show that the obtained two-dimensional arrays, character-
ized by the base vectors ~a′ and ~b′, are completely determined by the parameters δ,
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α, and S. In the reversed case, where the stretching factor and direction need to be
determined from the observed array, the equations to calculate δ, α, and S are given
in the Supporting Information (eqs (10.10) and (10.11)). The two orientation angles
δ and α are fully determined by the domain orientation and immersion direction
and can be reduced to an angle β = α− δ, which describes the effective stretching
direction with respect to the direction of the hcp array at the water/air interface.
Because of its 6-fold rotational symmetry it is sufficient to consider an angular
range 0° ≤ |β| ≤ 30°. The same structures evolve for all angles |β ± n · 60°|, when
keeping S constant, with n being an integer. We further demonstrate that also
the stretching factor S can be well controlled experimentally. This is possible by
adjusting the substrate contact angle Θ as shown in Figure 10.2b.[31] A wide range of
contact angles was realized by spin-coating glass substrates with different polymers
or directly using a poly(tetrafluoroethylene) (PTFE) film. We thus covered a range
of contact angles from PTFE (Θ = 106°), polystyrene (PS) (Θ = 96°), poly(n-
butyl acrylate-co-styrene) (P(nBA-co-S)) (Θ = 86°), SU-8 photoresist (Θ = 69°) to
poly(methyl methacrylate) (Θ = 68°). Using the different substrates leads to a large
variation of the stretching parameter S at a constant stretching direction of Θ = 15°,
starting from the same floating hcp monolayer (Figure 10.2c). Substrates with a
very high contact angle (Θ = 106°) exhibit almost no stretching and the observed
structures usually show a hexagonal close-packed arrangement. Lowering the contact
angle leads to increasing stretching factors of the original monolayer. Contact angles
near the critical angle (Θ = 69°) result in remarkably large stretching factors, which
promote the formation of particle lines and large tetragons. We want to stress two
important properties of this interfacial stretching concept

(1) Since we work at the air/water interface, a truly one-dimensional stretching is
possible. Lateral shear forces are negligible, which is in contrast to previous
stretching strategies employing elastomeric substrates.[19],[32] This strongly
increases the macroscopic homogeneity of the transferred structure.

(2) High stretching factors up to 400 % can be realized, simply by adjusting the
hydrophobicity of the target substrate.
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Fig. 10.3.: Particle array symmetries determined by β and S. (a) Phase diagram for Bravais
lattice structures as a function of the stretching factor S and stretching angle β.
(b) Particle monolayers are stretched to yield the five possible Bravais lattices
in the two-dimensional space. (From left to right) Square, hexagonal, centered
rectangular, rectangular, and oblique. Scale bars are 1 µm

The observed dependence of the stretching factor S on the substrate contact angle
Θ can be well rationalized in terms of the flow pattern in the water sub phase
during immersion of the substrate (Figure 10.9). This has been described in detail
in the literature.[31] For contact angles smaller than θc ≈ 65° the subphase shows a
split-injection streamline such that the monolayer moves away from the contact line.
Thus, X-type monolayer transfer is impossible. For slightly larger contact angles the
monolayer starts to flow towards the contact line, but at a velocity smaller than the
immersion velocity of the substrate. This leads to a large ratio between the immersed
substrate area Asub and transferred monolayer area Amon, which determines the
stretching factor S = Asub/Amon. Increasing the contact angle beyond θc increases the
flow velocity of the monolayer towards the substrate, thus decreasing the stretching
factor. At high contact angles, e.g., for PTFE, the monolayer transfer and substrate
immersion velocity eventually become equal. This results in a transfer ratio close
to unity, so that the stretching factors approach S ≈ 1. With this, we show that
the stretching factor can also be well controlled experimentally over a large range
(between S ≈ 1 and ≈ 4) via the substrate contact angle.
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Fig. 10.4.: Uniform stretching of multicrystalline monolayers. (a) Optical microscopy image
of large area, single-crystalline domains, and correlative electron microscopy on
a sample with S ≈ 1.7 (PS). Scale bars are 50 µm (optical microscopy) and 2 µm
(electron microscopy). (b) Laser diffraction at various spots on one sample with
S ≈ 1.7. Four distinct array symmetries can be found when scanning across the
substrate: (from left to right) rectangular, close-packed particle lines, oblique,
and square.

Figure 10.3a demonstrates the full potential of this simple approach. All possible two-
dimensional Bravais lattices symmetries are accessible by tuning both the stretching
factor S and the effective stretching direction β. A square array of particles is
obtained by stretching with a factor of S =

√
3 ≈ 1.73 and a stretching direction

along one of the vectors defining the initial hexagonal unit cell (β = 30°). An ideal
non close-packed hexagonal array can be realized by stretching with a factor of
S = 3 along one of the initial vectors (β = 30°), whereas a centered rectangular
array is the result for S 6= 1.73 and S 6= 3 at β = 30°.
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For rectangular arrays, there exist various discrete combinations of stretching factors
and directions that fulfill the following equation

S = 1√
sinβ·(√3−tanβ)√

3·sinβ+cosβ

(10.9)

which is indicated by the branch ∑. For all other parameter combinations and
β 6= 30° and β 6= 0° oblique lattices are obtained. Close-packed particle lines,
corresponding to highly extended oblique lattices, can be fabricated by choosing
β = 0°. Thus, nonclose-packed particle arrays for any of the five two-dimensional
Bravais lattices (square, hexagon, rectangular, centered rectangular, and oblique)
can be realized by a suitable combination of domain orientation and stretching
factor.

Our findings have broad implications for the fabrication of ordered particle arrays, as
the method should generally apply to all nano- and micro-scale particles that can be
assembled at the water/air interface and transferred to a hydrophobic substrate. A
crucial step is the immobilization of the particles on the substrate. For this purpose,
we thermally fixated the monolayers to increase adhesive contact to the substrate,
but also covalent or other noncovalent binding strategies are well conceivable. The
fixation chemistry may thereby originate from the particle itself (e.g., its Tg) or the
target substrate (e.g., spincoated interlayer with appropriate Tg). We note that the
immersion velocity of the substrate (1 mm/min to 1 cm/s) has no significant influence
on the resulting particle arrays. At these time scales the advancing contact angle
can be assumed constant, which completely defines the magnitude of stretching.[31]

Moreover, the immersion angle (30°− 90°) can also be neglected as only the local
contact angle has to be considered.

In contrast to the stretching of monolayers on rubber substrates, which inherently
show a contraction in the direction perpendicular to the strain direction, our method
yields a uniform and purely one-dimensional stretching across the whole substrate.
In Figure 10.4a, an optical microscopy image is shown of a monolayer transferred
to a PS substrate. Two extended single-crystalline domains can be discerned from
the distinct scattering colors corresponding to different domain orientations. We
demonstrate that these distinct lattices are well-explained by the same degree of
stretching; solely their initial orientation to the stretching direction differs. The
absolute stretching value is constant across the whole image (S ≈ 1.7) and identical
structures are found within the whole singe-crystalline areas. A possible limitation for
the preparation of large-area arrays could be the size limitation of the monocrystalline
hcp domains. However, the area of monocrystalline domains formed by the method
outlined above[30] is already sufficiently large for micro-optical applications.[33]
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A series of diffraction measurements on our samples, using a focused laser beam
shows distinct scattering patterns, which can be attributed to monocrystalline areas
with specific symmetry (Figure 10.4b).

Finally, excellent techniques have been reported to reach uniform domain orientation
of even larger size.[34],[35] The combination of such improved methods for monocrys-
talline colloidal monolayer formation with in situ techniques to assess, the monolayer
lattice orientation will finally allow to fix the stretching direction β and consequently
to deterministically fabricate a specific pre-defined Bravais lattice. Depending on
the particle size (length scale) and composition (contrast), different methods can be
envisioned for this task. Most straightforward will be laser diffraction experiments
or direct optical microscopy at the air/water interface. More challenging will be
grazing-angle X-ray scattering methods, which, however, will be able to address the
sub-100 nm length scale as well.

10.5 Conclusion

In conclusion, we demonstrated a convenient and versatile method for the preparation
of ordered nonclose-packed particle arrays with symmetries of any of the two-
dimensional Bravais lattices. We are able to predict and experimentally realize a
variety of ordered particle arrays by tuning only two parameters, the contact angle
of the substrate and the stretching direction relative to the monolayer orientation.
Compared to existing routes to nonclose-packed colloidal crystals, our approach is
superior with respect to its simplicity, variability, and scalability. Up to now many
of the fabricated array symmetries that we show have not been accessible by other
self-assembly methods. The presented technique offers a new approach to enable the
preparation of a large variety of defined ordered particle arrays to tune their optical,
photonic, and wetting properties to specific applications. Furthermore, this method
is compatible with batch and conti nuous soluti on surface processing methods with
immediate implications for the generation of ordered particle arrays on a variety of
solid and flexible substrates.

Associated Content

The Supporting Information is available free of charge on the ACS Publications
website at DOI:10.1021/acs.lang-muir.8b03047. SEM images and photographs,
calculations of stretching parameters and SEM image analysis are presented.
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10.7 Supporting Information

Fig. 10.5.: SEM images of particle monolayers on hydrophilic and hydrophobic substrates.
The insets show the corresponding fast Fourier transform (FFT). (a) Particles
on a hydrophilic glass substrate (hcp structure). (b) Particles on a hydrophobic
substrate without thermal fixation (collapsed line structure). (c) Particles on a
hydrophobic substrate with thermal fixation (non-close-packed oblique structure).
Scale bars are 5 µm.

Fig. 10.6.: Side view SEM images of (a) non-immobilized and (b) immobilized particles.
Without thermal annealing, the particles can be viewed as hard spheres which
feature a minimum contact area on the substrate. Upon drying of the monolayer,
these particles are subject to capillary forces that lead to a shift to new particle
positions. Thermal annealing of the particles above their glass transition tem-
perature Tg leads to an increase of the contact area on the substrate. In the
viscous state, the particles fuse onto the substrate and become immobilized at
their positions even under capillary stress. Scale bars are 500 nm.
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Fig. 10.7.: SEM images of particle monolayers immobilized on hydrophobic substrates
with moderate glass transition temperature. PS Particles (Tg ≈ 105 °C) with
a diameter of (a) 453 nm and (b) 2560 nm thermally fixated on spin-coated
P(nBA-co-MMA) (Tg ≈ 55 °C) layer. Scale bars are 5 µm.

Fig. 10.8.: Immobilized particle monolayer. (a) Photograph of an immobilized particle
monolayer on a hydrophobic substrate. The iridescent color preserved after
drying of the monolayer indicate an intact positional arrangement of the parti-
cles. (b) Laser diffraction of an immobilized particle monolayer. The fourfold
symmetric peaks confirm the presence of an extended particle domain with
square symmetry. Scale bars are 1 cm.

Calculation of δ, α and S

Experimentally found structures can be assigned to specific stretching parameters δ,
α and S. For this the stretched vectors ~a′ and ~b′ with the coordinates x′a, y′a and
x′b, y′b have to be extracted from SEM images. The coordinates are inserted into
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the following two equations to calculate α and S. In order to determine the right
parameters, the results of both ~a′ and ~b′ have to be screened with respect to δ.

α = arccot
(
y′ − y(δ)
x′ − x(δ)

)
(10.10)

S = x′ − x(δ) · cos2 α+ y(δ) · sinα · cosα
x(δ) · sin2 α+ y(δ) · sinα · cosα (10.11)

Fig. 10.9.: Streamline profiles upon immersion of a solid substrate at different contact
angles.[146] The dotted line indicates the critical angle θc below which an X-type
is impossible.

Fig. 10.10.: SEM image of a stretched monodomain. The red circles indicate the particles
found by MATLAB’s circle detection function after optimizing the search
parameters manually.
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Fig. 10.11.: 2D histogram of the distance between particle pairs and the corresponding
angle with the x-axis for the SEM image in Figure 10.10. Each black dot
represents an inter-particle connection. A Gaussian kernel density estimator is
used to calculate the smooth distribution function (color). Local maxima in the
distribution, with small interparticle distances, represent possible candidates
for the stretched basis vectors ~a′ and ~b′ in polar coordinates.
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11.1 Abstract

The radial distribution function, g(r), is ubiquitously used to analyze the internal
structure of particulate systems. However, experimentally derived particle coordi-
nates are always confined to a finite sample volume. This poses a particular challenge
on computing g(r): Once the radial distance, r, extends beyond the sample bound-
aries in at least one dimension, substantial deviations from the true g(r) function
can occur. State of the art algorithms for g(r) mitigate this issue for instance by
using artificial periodic boundary conditions. However, ignoring the finite nature of
the sample volume distorts g(r) significantly. Here, we present a simple, analytic
algorithm for the computation of g(r) in finite samples. No additional assumptions
about the sample are required. The key idea is to use an analytic solution for the
intersection volume between a spherical shell and the sample volume. In addition,
we discovered a natural upper bound for the radial distance that only depends on
sample size and shape. This analytic approach will prove to be invaluable for the
quantitative analysis of the increasing amount of experimentally derived tomography
data.

11.2 Introduction

The radial distribution function, g(r), is an important tool to analyze the internal
structure of particulate systems. Examples include the analysis of colloid assem-
blies,[1] particle dynamics,[2]–[5] plasma physics,[6] sphere packings,[7],[8] and protein
diffusion.[9] Real space particle positions become increasingly available with the
advent of TEM tomography,[10],[11] positron emission tomography,[12] and microcom-
puted X-ray tomography.[13] The crystal structure, number of next neighbors, and
interaction potentials between particles are accessible from g(r).[14],[15] Thus, g(r) is
a very powerful tool to analyze complex 3D particle positions in a quantitative way.
However, computing g(r) is challenging for finite samples once the radial distance,
r, exceeds the sample in at least one dimension. No particle positions are known
outside the measurement boundaries. This has to be taken into account once the
radial distance reaches beyond the sample volume. Figure 11.1 shows the effect of
ignoring the finite sample volume.
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Fig. 11.1.: Radial distribution functions for a Gaussian disturbed FCC lattice of 665 particles.
Note that g(r) computed with the simple algorithm artificially decays to 0 at
large radii. The correct g(r) approaches 1. The artificial decay is caused by
ignoring the boundaries of the finite sample volume.

The simple algorithm, which does not take the sample volume into account, has lower
peak heights and artificially decays to 0 at large radii. We tested the established
software packages OVITO[16] and MDAnalysis.[17] Both use this simple algorithm
and normalize g(r) incorrectly without periodic boundaries. This problem is not
new: Current algorithms for the computation of g(r) fall into three categories:

1. One can extend the finite sample to infinity by applying periodic boundaries.[15]

In this case, the radial distance never exceeds the now infinitely large sample
volume. However, this is an additional, unnecessary assumption about the
sample. Periodic boundaries on all samples introduce artificial periodicities (see
Supporting Information (SI) Section 11.8.2) and should therefore be avoided.

2. Another way to compute g(r) is to average over a smaller subset of the sample
and at the same time limit the radial distance. In this case, the correct g(r) is
obtained. However, this procedure creates an unnecessary trade-off between
noise reduction and the maximal radial distance. A significant amount of
information is thereby lost (see SI Section 11.14).

3. The third way is to estimate g(r) with a Monte Carlo algorithm.[18] This
method is robust and simple. However, all Monte Carlo algorithms feature an
intrinsic trade-off between computational runtime and numeric precision.
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Thus, there is currently no efficient method available to compute g(r) from finite
samples, i.e., from experimentally derived particle coordinates such as (high resolu-
tion) fluorescence microscopy or electron or X-ray tomography. Here, we present
an efficient, analytic, algorithm for the correct computation of g(r). No additional
assumptions about the sample are required. Our key idea is to use an analytic
solution for the intersection volume between the sample and a spherical shell. Using
this intersection volume, we normalize g(r) in finite samples correctly. At the same
time, our algorithm takes all particles within the measured volume into account.
Consequently, this results in good long-range correlations at a low noise. The
maximal radial distance is only limited by the total sample dimensions.

11.3 Theory

Radial Distribution Function

We now present a brief description of the standard algorithm for computing g(r). A
good explanation of g(r) is presented by Younge et al.[18] The radial distribution
function is the normalized average radial particle number density histogram. Normal-
ized means that the radial particle density is divided by the average particle density
in the sample. The average particle density is given by the number of particles in the
sample, #PSample, divided by the sample volume, VSample. The local radial particle
density is computed as follows. First, we create concentric spherical shells, with
thickness, ∆r, around a central particle. The volume of such a shell, VShell(r,∆r), is
given by

VShell(r, δr) = 4
3π
[(
r + δr

2

)3
−
(
r − δr

2

)3]
(11.1)

Each of these shells corresponds to a radial bin in the g(r) histogram. Therefore, we
get the local particle number density by dividing the particle number in each shell,
#P (r,∆r), by the corresponding shell volume. Note that this procedure assumes
that the entire shell is filled with particles. The local g(r) around the central particle
is then given by

gLocal(r, δr) = #P (r, δr)
VShell(r, δr)

÷ #PSample
VSample

(11.2)

We then compute the local g(r) using every particle in our sample as the central
particle. Averaging all local g(r) reduces noise and yields the final g(r). We call
this procedure the simple algorithm when the finite sample volume is not taken into
account. Further details for computing g(r) are given in SI Section 11.8.1. The key
problem with this procedure is that the shell volume is not calculated correctly at
the edges of a finite set of particle coordinates. Consequently, g(r) converges to 0
instead of 1 in the simple case for large distances.
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Possible Shell-Sample Intersection Volumes

The key idea of this paper is to use the shell-sample intersection volume for normal-
izing g(r). Three likely sample volumes are shown in Figure 11.2. The intersection
volume between a sphere and a shell has been published by Freireich et al.[19] Spheri-
cal sample boundaries occur in colloidal superballs[20] and spherical nanoparticles.

Fig. 11.2.: Possible sample boundary shapes: (a) sphere, (b) cylinder, (c) rectangular
cuboid (box). Only the central particle is shown for clarity. The intersection
volume between a spherical shell and the sample volume is shown in red. This
intersection volume is essential for computing the correct g(r).

Cylinders are the natural sample shape for confocal scanning microscopy and
transmission electron microscopy. A lens creates a focal plane bounded by a
circle. Scanning through different heights creates a cylindrically shaped volume.
Unfortunately, the intersection volume between a sphere and a finite cylinder has
no analytic solution. A good numeric approximation is presented by Mueller.[21] In
practice, most sample boundaries are rectangular cuboids (boxes). They are created
by rectangular detectors and scanning in a perpendicular manner through the sample.
Therefore, we will focus on rectangular sample volumes in the following. The general
case of the intersection between a sphere and an arbitrary polyhedron was recently
solved by Strobl et al.[22] We adapt their approach to derive the intersection volume
between a spherical shell and a box and apply it to the g(r) normalization problem.

Shell-Box Intersection Volume

We now derive the intersection volume between a spherical shell and a rectangular box,
VShell-Box. Every spherical shell is bounded by two concentric spheres. Both spheres
have their center at the central particle. Figure 11.3 shows a cross section through a
shell-box intersection with important intersection volumes highlighted. We set the
central particle as the origin of our Cartesian coordinate system (see Figure 11.4).
The axes of our coordinate system align with the edges of the rectangular box.
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Fig. 11.3.: Cross section through a box intersected by a spherical shell. Three important
intersection volumes are shown.

We compute the volume of a spherical shell by subtracting the inner boundary sphere
from the outer boundary sphere like

VShell-Box(r, δr) = VSphere-Box(r + δr

2 )− VShell-Box(r − δr

2 ). (11.3)

Fig. 11.4.: Cartesian coordinate system with the central particle at the origin. The faces
of the rectangular box are defined by their intersection with the axes at xb, yb,
and zb. Only the corner in the all positive octant is shown.

Therefore, we have to find the intersection volume between a sphere of radius R
and a box. This simplification is valid, because the intersection of the inner sphere
and the box is always completely inside the intersection volume of the outer sphere
and the box. To further simplify the intersection volume, we split each sphere into
eight octants along the coordinate planes. Each sphere octant is intersected by at
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most three of the six box faces. These three faces are adjacent to a single corner.
This is true, because the center of the sphere and our coordinate system is always
inside the box. Furthermore, we mirror all octants into the all positive octant (I).
Mirroring preserves the volume. This allows us to treat all octants the same and in
turn significantly reduce the number of possible cases. Figure 11.4 shows the corner
of the box in the all positive (first) octant of our coordinate system. The boundary
positions are defined by the intersections of the box faces with the coordinate axes,
named xb, yb, and zb. Overall, the sphere-box intersection volume, VSphere-Box, is
the sum of all the octant-corner intersection volumes

VSphere-Box =
8∑
i=1

VOctant,i - Corner,i (11.4)

There are a few cases to consider. First, the corner of the box can be fully inside
the sphere octant (see Figure 11.20). In this case, the remaining intersection volume
is only bounded by the box faces and is given by (xb · yb · zb). Next, we look at a
single box face intersecting the sphere octant (see Figure 11.21). Here, a quarter of
a spherical cap is removed from the sphere octant. This is true for every face, as
long as there is no overlap between the spherical caps. Therefore, we test every face
of the box corner for overlap with the sphere octant. If they overlap, we remove the
respective quarter of a spherical cap. Finally, we have to test for an overlap of the
spherical caps. We test this case by checking

a2 + b2 < R2 (11.5)

for all three possible box face pairs (a, b) ∀ a, b ∈ (xb, yb, zb) a 6= b If the spherical
caps overlap, we add the overlap volume back to the remaining octant. This is
necessary, because we removed the overlap volume twice in the previous step (see
Figure 11.24). We call the overlap volume between two spherical caps a spherical
cut. We derived the volume of a spherical cut in SI Section 4 as

Vcut(Rs, a, b) = R3
s

6 ·
[
π − 2 · arctan

(
a · b

Rs ·
√
R2

s − a2 − b2

)]
(11.6)

+ 1
2 ·
[
arctan

(
a√

R2
s − a2 − b2

)
− π

2

]
·
[
R2

s · b−
b3

3

]

+ 1
2 ·
[
arctan

(
b√

R2
s − a2 − b2

)
− π

2

]
·
[
R2

s · a−
a3

3

]

+ a · b ·
√
R2

s − a2 − b2
3 .

Scheme 3 summarizes the procedure for the octant-corner intersection volume. Note,
that this algorithm only uses analytic expressions for the respective volumes. No
numeric integration is required.
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Algorithm 2 Overlap volume between an octant and a corner
Ensure: R, xb, yb, zb ≥ 0 . Mirror into the all positive octant

1: procedure OctantVolume(R, xb, yb, zb)
2: if x2

b + y2
b + z2

b ≤ R2 then
3: return xb · yb · zb . The corner is inside the octant
4: end if
5: VOctant ← 1

8 ·
4
3 · π ·R

3 . Start with a complete octant
6: for b ∈ [xb, yb, zb] do
7: if b < R then . Remove the spherical caps
8: VOctant ← VOctant − π

12 · (2 ·R3 − 3 · b ·R2 + b3)
9: end if

10: end for
11: for (a, b) ∈ [(xb, yb), (xb, zb), (yb, zb)] do
12: if a2 + b2 < R2 then . Add the cap intersections
13: VOctant ← VOctant + SphereCutVol(R, a, b)
14: end if
15: end for
16: return VOctant

17: end procedure

Analytic Algorithm for g(r)

We now use this analytic solution for the shell-box intersection volume, VShell-Box,
derived in the last section, to normalize g(r) correctly. To do so, we modify (11.2)
by using the actual shell-box intersection volume instead of the simple shell volume.
The equation for the local g(r) becomes

gLocal(r, δr) = #P (r,∆r)
VShell-Box(r,∆r) ÷

#PSample
VSample

(11.7)

The local particle density in the shell, at radius r, is now correct even if the shell
extends beyond the sample boundaries. We added a detailed description of the full
algorithm in Pseudocode and an exemplary Python and C++ implementation in the
Supporting Information.
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11.4 Results

Improved Accuracy

We tested our new algorithm against an exemplary data set. The data set consists of
Gaussian disturbed FCC particles in a cubic sample volume (see SI Section 11.10.1).
We used a set of 665 particles to compute g(r) with the simple and our new analytic
algorithm. A second set, consisting of 29659 particles, allowed us to compute the
correct g(r) as a reference. We computed the correct g(r) by averaging over a smaller
subset (see SI section 11.13) of the 29659 particles and limiting the radial distance.
Our results are summarized in Figure 11.5. The correct g(r) (blue line) and the
analytic g(r)(green line) overlap almost perfectly.

Fig. 11.5.: (a) Comparison of the correct g(r) (dashed blue line) and g(r) computed with
the simple (orange line) and our new analytic algorithm (green line). The correct
g(r) almost perfectly matches the analytic g(r) (dashed blue line and solid green
line overlap). (b) Absolute error of g(r) computed with the two algorithms.
Note that our analytic algorithm has significantly less error than the simple
algorithm.
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This overlap also manifests itself in a small absolute error, shown in Figure 11.5b.
In contrast, the simple g(r) (orange line) is significantly different over the entire
radial distance. Large absolute errors are observed, especially at the peak positions.
Even the first maxima, at small radii, are affected. This proves the importance
of normalizing g(r) correctly in finite samples. Quantifying the error in g(r) is
not well understood and has hardly been discussed up to now. We expect that
the main parameters influencing the error are the particle number, size, distance,
surface-to-volume ratio, and the surface roughness. An accurate and quantitative
error analysis of g(r) in finite samples is now feasible with our analytical analysis.
The unambiguous evaluation of these presumably interrelating parameters, however,
requires rigorous experiments and is beyond the scope of our contribution.

Maximal Useful Radial Distance

Our algorithm extends the radial distance, for which g(r) can be computed correctly,
in finite samples. However, there is an intrinsic limit. This limit is created by the
finite nature of the sample. Figure 11.6 shows arectangular sample volume and g(r)
computed from a set of FCC particles in this sample volume.
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Fig. 11.6.: (a) Rectangular box with dimensions Lx, Ly, and Lz. This box is the boundary
of our sample. Averaging over the red subvolume could be used to avoid the
normalization problem. The radius of a circumscribed sphere, Rmax, is the
maximal useful radial distance for this sample. (b) Absolute error of g(r)
computed with our analytic algorithm. The error is small for radii smaller than
Rmax.

A subvolume and the corresponding limiting radius are shown in red. The subvolume
approach has a severe trade-off between radial distance and noise reduction. But,
more importantly, this limit is much higher than the limit when we avoid the
normalization problem by averaging over a small subvolume (see SI Section 11.13).
All particles outside the red volume are not available as central particles. Our
approach removes this limitation and increases the maximal radial distance. The
radius of the circumscribed sphere

Rmax = 1
2 ·
√
L2

x + L2
y + L2

z (11.8)

is the maximal useful radial distance for a sample. The absolute error of g(r) increases
significantly beyond Rmax. This increase in error indicates a natural upper bound.
We think that the increase in error is associated with the occurrence of empty shells.
Assume we chose a particle at the center of the sample volume as our central particle.
Every shell will contain particles up to the radial distance, Rmax. Shells beyond Rmax
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are empty, because they are fully outside the sample volume. Furthermore, their
intersection volume with the box is also empty. This leaves us with an undefined
state, because we divide zero particles by zero volume. Removing these cases from
the computation reduces the shells available for averaging (see Figure 11.5b). This
in turn increases the noise and therefore the absolute error. Radial distances beyond
Rmax should therefore not be considered for the computation of g(r).

Computational Performance

We tested the computational performance of our analytic algorithm by comparing it
to the simple algorithm. We implemented both algorithms in C++ and measured
the runtime as a function of the particle number, N . Figure 11.7a compares the
runtime for the two algorithms.

Fig. 11.7.: (a) Runtime comparison for the two g(r) algorithms as a function of particle
number. Both algorithms have a computational complexity close to O(N2).
(b) Relative difference in computation time between the simple and analytic
algorithm. The increase in runtime for our analytic algorithm becomes negligible
for large particle sets.
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We benchmarked all programs on a Dell Latitude E7440 Notebook with an Intel
Core i5-4300 clocked at 2.5 GHz and 8 GB RAM. Our implementation of the analytic
algorithm in C++ needs 15 min to compute g(r) from 17969 particle coordinates. Both
algorithms have an approximated complexity of O(N2)). This result is expected,
because the local g(r) is computed for every particle (N times) in the set. Computing
the local g(r) requires a look at every neighbor (N times) of the central particle.
Therefore, the computational complexity should scale with N2. We can explain
the slight divergence from N2 as follows. Our implementation computes g(r) up to
Rmax. This distance increases with increasing particle number, because the sample
volume becomes larger. Therefore, the number of shells increases with increasing
radial distance. This leads to a slight divergence from the expected O(N2) behavior.
However, our implementation is not optimized for computational performance. For
instance, the particle positions can be stored in a k-d tree data structure. This would
allow an efficient nearest neighbor search around the central particle.[23] Furthermore,
the computation of the individual local g(r)’s can be executed concurrently.

11.5 Conclusion

We presented an analytic algorithm for the computation of the correct 3D radial
distribution function, g(r), from real space particle coordinates. It is now possible
to compute the radial distribution function accurately without further assumptions
about the measured sample. This is possible through a normalization of g(r) using
the intersection volume between a spherical shell and the sample volume. This
algorithm will allow for a more quantitative and detailed analysis of experimentally
obtained particle packings and object spacings. With the advent of widespread
experimental access to reconstructed 3D data, this work will improve the analysis of
particulate systems and help uncover long-distance correlations in finite samples.

Associated Content

The Supporting Information is available free of charge on the ACS Publications
website at DOI: 10.1021/acs.analchem.8b03157. Detailed derivation of the equations
together with exemplary implementations of the simple and analytic g(r) algorithm
in Python 3, C++, and Pseudocode.
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11.7 Supporting Information

11.8 Theory

11.8.1 How to Compute g(r) from Particle Coordinates

This section describes how the radial distribution function, g(r), is computed from
particle coordinates. First, we look at the relation between g(r) and the local particle
density

ρ(r) = ρavg · g(r) ⇔ g(r) = 1
ρavg

· ρ(r). (11.9)

The average density, ρavg, is given by the number of all particles, N , divided by the
known sample volume, VSample, like

ρavg = N

VSample
. (11.10)

The actual local particle density, ρreal(r), at one specific radius, r, is hard to obtain.
Technically, ρreal(r), is defined by

ρreal(r) = lim
∆r→0

#P(r− ∆r
2 , r + ∆r

2 )
VShell(r − ∆r

2 , r + ∆r
2 )

. (11.11)

Here, #P denotes the number of particles in a spherical shell with the given inner
and outer radii. This definition has some issues when it comes to actually computing
ρ(r) and g(r). Both the volume of a spherical shell and the number of particles in
the shell approach zero when ∆r approaches zero. In practice, this issue is solved by
using a finite ∆r. The equation for the estimated local particle density is therefore

ρcalc(r,∆r) =
#P(r− ∆r

2 , r + ∆r
2 )

VShell(r − ∆r
2 , r + ∆r

2 )
. (11.12)

Before we analyze the implications of using a finite, ∆r, we take a look at the shell
volume. The volume of a spherical shell is given by the difference of the inner and
outer bounding sphere. Therefore, we have

VShell(r,∆r) = Vsphere(r+ ∆r
2 )−Vsphere(r−

∆r
2 ) = 4

3π
[(
r + ∆r

2

)3
−
(
r − ∆r

2

)3]
(11.13)

We simplify this equation by expanding the cube roots into

4
3π
[
r3 + 3r2 · ∆r

2 + 3r · ∆r2

4 + ∆r3

8 −
[
r3 − 3r2 · ∆r

2 + 3r · ∆r2

4 − ∆r3

8

]]
.

(11.14)
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Next, we add all terms with equal power, which leaves us with

VShell(r,∆r) = 4
3 · π ·

[
3 · r2 ·∆r + ∆r3

4

]
= 4π · r2 ·∆r + π · ∆r3

3 . (11.15)

This equation gives us a simple way to calculate the volume of a spherical shell.
Equation (11.12) becomes

ρcalc(r,∆r) =
#P(r− ∆r

2 , r + ∆r
2 )

4πr2∆r + π∆r3

3
. (11.16)

(a) (b)

Fig. 11.8.: (a) Slightly distorted cubic grid of particles. The red circles create spherical
shells around the central green particle. Each shell has a certain number of blue
particles in it. (b) Histogram showing the particle density, ρ(r), as a function of
radial distance.

Figure 11.8 illustrates the procedure defined in equation (11.12). We move the
center of our radial coordinate system onto a single particle. The red shells have a
thickness of ∆r. The average density in each shell is the number of particles divided
by the shell volume (see equation (11.10)). The radial distribution function around
a single particle, i, is therefore given by

gi(r,∆r) = 1
ρavg

·
#P(r− ∆r

2 , r + ∆r
2 )

4πr2∆r + π∆r3

3
. (11.17)

We now average over all possible particles

gcalc(r,∆r) = 1
N
·
N∑
i=1

gi(r,∆r), (11.18)

to get better statistics. Note, that we assumed a homogeneous particle distribution.

11.8 Theory 115



11.8.2 The Effects of Artificial Periodic Boundaries

In this section, we look at the effecs of applying artificial periodic boundaries to our
sample. Figure 11.9 shows a small sample volume with periodic boundaries. The
spherical shells for the g(r) computation are now always inside the sample volume.

Fig. 11.9.: Small sample volume extended to infinity by periodic boundary conditions. Note
the creation of artificial periodicities.

(a) (b)

Fig. 11.10.: (a) Colloidal assemble measured with confocal scanning microscopy and ana-
lyzed with TrackPy. (b) Radial distribution function for the particle assembly
in a. Periodic boundaries distort the peak shape and position.

The effects of periodic boundaries are most pronounced for small samples. Larger
finite sample volumes are less affected by periodic boundaries. The main effects
are:

• Stitching errors from unknown sample boundary positions

• Artificial periodicities, especially in small samples

• Rough boundaries from missing particles distort g(r)
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Fig. 11.11.: a) Simple cubic lattice with periodic boundaries a half next neighbor distance
away from the outer most particles. No stitching errors (artificial periodicities)
are created. b) Same lattice as in a) but with a tighter boundary. The red
distance is artificial. c) g(r) of a simple cubic lattice with 2197 particles
arranged in a cubic sample volume. The unit cell has size 1 and the particle
positions are distorted with a 3D Gaussian blur (σ = 0.07). The graph labeled
true boundary corresponds to a) and the tight boundary to b). Our analytic
solution uses a tight boundary but reproduces the true boundary case well.
Note the large peak at r < 1 created by the stitching error when a tight periodic
boundary is used. The size of this peak strongly depends on the particle number
in the sample and the sample shape. The position of the peak is at r > 1 when
the boundary is more then a half next neighbor distance away from the outer
most particle.

Fig. 11.12.: g(r) of a simple cubic lattice arranged in a cubic sample volume similar to
Figure 11.11 c). We increase the number of particles in the sample volume from
729 to 9261. The unit cell is 1. The artificial peak at r < 1 is reduced when
the particle number is increased. We attribute this decrease to the decreasing
surface to volume ratio.
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11.8.3 The Effects of Averaging Over a Small Subvolume

In this section we look at a way of avoiding the normalization problem. We avoid it
by confining the averaging over the local g(r) to a small sub-volume. At the same
time, we limit the radial distance as shown in Figure 11.13. The spherical bins now
never reach beyond the finite sample volume.

Fig. 11.13.: Finite sample volume with a smaller subvolume (dashed lines). The radial
distance is limited to Rmax. Averaging is only perfomed over the particles in
the subvolume. The spherical bins (yellow) never reach beyond the sample
boundaries.

Fig. 11.14.: Radial distribution function for our FCC test data set. The confined average
algorithm produces the same g(r) as the analytic algorithm. However, radial
distances beyond Rmax are not accessible and information is lost.

The main effect of this method is a limited radial distance. There is also a trade-off
between radial distance and noise reduction. Less particles are available for averaging,
increasing the noise.
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11.8.4 The Intersection Volume Between a Shell and a Box

In this section, we derive the intersection volume between a spherical shell and a
rectangular box. During the calculation of g(r), the volume of a spherical shell,
occupied by particles, is needed. In practice, the box where we have information
about the particle positions is finite. Therefore, we need the intersection volume
between the spherical shell and the box to properly normalize g(r). We assume that
the center of the spherical shell is always inside the box. This assumption is valid
since the center of our shell is a known particle. Furthermore, we assume that the
walls of the box are perpendicular to each other.

Fig. 11.15.: Intersection volume (red) between a spherical shell and a rectangular box (blue).
The green particle is at the center of the spherical shell. The red volume is
needed to normalize g(r).

An example rendering of a spherical shell, protruding outside of a box, is shown in
Figure 11.15. The red volume is the intersection volume between the spherical shell
and the blue box.
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Fig. 11.16.: Definition of the box boundaries. Without loss of generality, we assume that
the center of this coordinate system is at the center of the current particle. We
can always shift the center of the COSY because the coordinates of the central
particle are known.

The boundaries of the box are defined in Figure 11.16. The center of our Cartesian
coordinate system is at the center of the special shell. To calculate the red intersection
volume we proceed as follows. First, we dived the problem into smaller subproblems
that are easier to solve. We then solve the subproblems and reassemble their solutions
into the final solution.

We note that the volume of a spherical shell is given by the volume of the inner
sphere minus the outer sphere like

Vshell = Vouter sphere − Vinner sphere. (11.19)

Fig. 11.17.: The volume of a spherical shell is given by the difference of the inner and outer
sphere. This is true as long as the inner sphere is fully inside the outer sphere.

A graphical proof of equation (11.19) is given in Figure 11.17. The intersection
volume between the smaller sphere and the box is always completely inside the
intersection volume of the larger sphere and the box. Therefore, equation (11.19)
also holds when both spheres are intersected by a box. We reduced our original
problem to the problem of finding the intersection volume of a sphere and a box.
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(a) (b)

Fig. 11.18.: Separation of a sphere (a) into eight octants (b) along the planes of the Cartesian
coordinate system. The octants are moved away from the center for clarity.

Next, we use the intrinsic symmetries present in a sphere and a box. To do so, we
split the sphere into eight octants as shown in Figure 11.18. Note, that the walls
of our rectangular box are perpendicular to the axes of the Cartesian coordinate
system. Three walls of our box cut into each octant at most, since the center of
the sphere is always inside the box. Therefore, we reduced the original problem
to finding the remaining volume of an octant intersected by three perpendicular
boundaries. Overall, the sphere volume is then given by the sum of the remaining
octant - box intersection volumes like

Vsphere =
8∑
i=1

VOctant(i). (11.20)

For simplicity, we mirror all octants into the first octant bounded by three positive
axes. This mirroring reduces the number of different cases significantly. Mirroring
preserves the volume. The labels for the new boundaries are shown in Figure 11.19.
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Fig. 11.19.: The three boundaries: xb, yb, and zb, defining the dimensions of the corner.
Note that we can always mirror a corner into the all positive octant of the
COSY. This does not affect the intersection volume between the corner and
the sphere octant.

We are looking for a simple algorithm to calculate the intersection volume between
a sphere and a box. Using the above definitions and simplifications we arrive at the
following function:

1 def SphereVolume(Rs, Xmin, Xmax, Ymin, Ymax, Zmin, Zmax):
2
3 VSphere = 0
4 # abs() mirrors the boundaries into the first octant
5 for xb in [abs(Xmin), abs(Xmax)]:
6 for yb in [abs(Ymin), abs(Ymax)]:
7 for zb in [abs(Zmin), abs(Zmax)]:
8 VSphere += OctVolume(Rs, xb, yb, zb)
9 return VSphere

This leaves us with the challenge of finding a simple solution for the intersection
volume of a box corner with a sphere octant (OctVolume(Rs, xb, yb, zb)). Again we
look for patterns that might simplify this task. First we look at the case that the
intersection volume is only bounded by the box and not by the sphere. This is the
case when

x2
b + y2

b + z2
b ≤ R2

s . (11.21)
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Fig. 11.20.: Intersection volume (red) between a box corner and an octant. The box corner
is fully inside the octant.

Figure 11.20 shows the case of a box corner inside the octant. In this case, the orange
box corner in Figure 11.19 is inside or on the sphere. Therefore, the intersection
volume is given by:

OctVolume(Rs, xb, yb, zb) = xb · yb · zb. (11.22)

This is a special case and we have to treat it as such. Next, we look at a single plane
intersecting the octant. This situation is shown in Figure 11.21.

Fig. 11.21.: Single boundary intersecting the sphere octant. A quarter of a spherical cap
(red) is removed from the octant by the plane (blue).

A single plane removes a quarter of a spherical cap (red) from the octant. For now,
we assume that the three planes do not intersect themselves. A boundary plane, B,
intersects the octant only when it is closer to the origin than the sphere radius:

B < Rs. (11.23)

11.8 Theory 123



In this case, we subtract a quarter of a spherical cap, derived in appendix 11.8.7,

1
4 · Vcap(Rs, B) = π

4 ·
[2

3 ·R
3
s −R2

s ·B + 1
3 ·B

3
]

(11.24)

from the octant. The last thing left to consider is the overlap between two spherical
caps. Two boundary planes, a, and b, intersect each other inside the octant, when

a2 + b2 < R2
s . (11.25)

This case is shown in Figure 11.22.

Fig. 11.22.: Two boundaries intersecting the octant. The boundaries also intersect them-
selves inside the octant. During the first step, we subtracted the red volume
twice from the octant. Therefore, we have to add the intersection volume
between the two spherical caps (red).

For simplicity, we name the intersection volume of two spherical caps a spherical
cut. The volume of a spherical cut is derived in section 11.8.5. For every pair
of boundaries, we have to check if they intersect. If they do, we need to add the
spherical cut volume, since we removed it twice when we removed the spherical
caps. Overall, we obtain the following algorithm for the volume of a sphere octant
intersected by up to three planes:

1 def OctVolume(Rs, xb, yb, zb):
2
3 # if all boundaries intersect inside the octant
4 if xb**2 + yb**2 + zb**2 < Rs**2:
5 return xb * yb * zb
6 # if they dont intersect we start with a full octant
7 VOctant = 1/8 * 4/3 * pi * Rs**3
8 # then, we remove the spherical caps
9 for B in [xb, yb, zb]:

10 if B < Rs:
11 VOctant -= pi/4*(2/3*Rs**3-B*Rs**2+1/3*B**3)
12 # finally, we add the intersections of the caps
13 for (a, b) in [(xb, yb), (xb, zb), (yb, zb)]:
14 if a**2 + b**2 < Rs**2:
15 VOctant += VSphereCut(Rs, a, b)
16 return VOctant
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With these two algorithms and equation (11.19) we are able to efficiently calculate
the intersection volume between a spherical shell and a rectangular box.

11.8.5 The Volume of a Spherical Cut

In this section, we derive the volume of a spherical cut. Without loss of generality, we
limit ourselves to the X- and Z-boundary planes. Figure 11.23 shows a 3D rendering
of the spherical cut in red. The red volume is created by slicing a sphere twice, once
perpendicular to the X-, and once perpendicular to the Z-axis.

Fig. 11.23.: Spherical cut (red) created by slicing a sphere with two planes perpendicular
to the X and Z axis. The parts created by the cuts are exploded for better
visualization. Note that we defined the cut volume to be half of the red volume.

The integral to obtain the red volume directly is hard to solve. Therefore, we look
for a decomposition into easier integrals. We choose the decomposition shown in
Figure 11.24.

Fig. 11.24.: Decomposition used to calculate the volume of a spherical cut (red) by adding
and subtracting different volumes from the spherical part. Note that the
volumes are rendered from two octants for easier understanding. Only the
internal volume (green) is hard to obtain.

Using this decomposition, the volume of a spherical cut is given by

Vcut(Rs, xb, zb) = 1
8 ·Vsphere(Rs)−

1
4 ·Vseg(Rs, xb)− 1

4 ·Vseg(Rs, zb) +Vint(Rs, xb, zb).
(11.26)
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All volumes, except for the green, internal volume, Vint are known. We insert the
volume of the spherical segment derived in section 11.8.6 and get

Vcut(Rs, xb, zb) = 1
8 ·

4
3πR

3
s−

π

4 ·
[
R2

s · xb −
x3

b
3

]
− π4 ·

[
R2

s · zb −
z3

b
3

]
+Vint(Rs, xb, zb).

(11.27)
The analytic solution for the internal volume, Vint, is given in appendix 11.8.8. We
insert the solution for Vint into equation (11.27) and obtain

Vcut(Rs, xb, zb) = 1
8 ·

4
3πR

3
s −

π

4 ·
[
R2

s · xb −
x3

b
3

]
− π

4 ·
[
R2

s · zb −
z3

b
3

]
+ (11.28)

zb · xb ·
√
R2

s − x2
b − z2

b
3 + 1

2 · arctan

 xb√
R2

s − x2
b − z2

b

 · [R2
s · zb −

z3
b
3

]
+

1
2 · arctan

 zb√
R2

s − x2
b − z2

b

 · [R2
s · xb −

x3
b

3

]
− R3

s
3 · arctan

 zb · xb

Rs ·
√
R2

s − x2
b − z2

b

 .
Next, we factor out the R3

s/6 terms in the square brackets to simplify the equation
into

Vcut(Rs, xb, zb) = R3
s

6 ·

π − 2 · arctan

 zb · xb

Rs ·
√
R2

s − x2
b − z2

b

 (11.29)

+ 1
2 ·

arctan

 zb√
R2

s − x2
b − z2

b

− π

2

 · [R2
s · xb −

x3
b

3

]

+ 1
2 ·

arctan

 xb√
R2

s − x2
b − z2

b

− π

2

 · [R2
s · zb −

z3
b
3

]

+
zb · xb ·

√
R2

s − x2
b − z2

b
3 .

This is the final analytic solution for the volume of the spherical cut, Vcut. In general,
a boundary pair, (a, b), for which

a2 + b2 < R2
s (11.30)
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holds, creates the following spherical cut volume:

Vcut(Rs, a, b) = R3
s

6 ·
[
π − 2 · arctan

(
a · b

Rs ·
√
R2

s − a2 − b2

)]
(11.31)

+ 1
2 ·
[
arctan

(
a√

R2
s − a2 − b2

)
− π

2

]
·
[
R2

s · b−
b3

3

]

+ 1
2 ·
[
arctan

(
b√

R2
s − a2 − b2

)
− π

2

]
·
[
R2

s · a−
a3

3

]

+ a · b ·
√
R2

s − a2 − b2
3 .
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11.8.6 The Volume of a Spherical Segment

In this section, we derive the volume of a spherical segment. A spherical segment of
height, B, is shown in Figure 11.25.

Fig. 11.25.: Spherical segment (green) of height, B, inside a sphere of radius, Rs.

A spherical segment can be viewed as a rotation body. The rotation axis is vertical
(z) and the radius, R, depends on the height. Using Pythagoreans theorem, we see
that

R2 + z2 = R2
s ⇔ R2 = R2

s − z2. (11.32)

To get the volume of the spherical segment, Vseg, we integrate over tiny discs along
the z-axis like

Vseg(Rs, B) =
B∫

0

π ·R2 dz =
B∫

0

π ·
[
R2

s − z2
]

dz. (11.33)

Then, we split the integral at the minus sign and factor out the sphere radius, Rs,
to get

π ·

 B∫
0

R2
s dz −

B∫
0

z2 dz

 = π ·

R2
s ·

B∫
0

1 dz −
B∫

0

z2 dz

 . (11.34)

Finally, we solve the integrals by

π ·
[
R2

s · [z]B0 −
[1

3 · z
3
]B

0

]
= π ·

[
R2

s · [B − 0]−
[1

3 ·B
3 − 1

3 · 0
3
]]
, (11.35)

which leaves us with

Vseg(Rs, B) = π ·
[
R2

s ·B −
1
3 ·B

3
]
. (11.36)

This is the final equation for the volume of a spherical segment as a function of the
boundary position, B, and the sphere radius, Rs.
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11.8.7 The Volume of a Spherical Cap

In this section, we derive the volume of a spherical cap. A spherical cap is shown in
Figure 11.26. This volume is very similar to the volume of a spherical segment.

Fig. 11.26.: Spherical cap (green) with radius, Rs, and height, Rs −B.

First, we note that a spherical cap is just a hemi-sphere minus a spherical segment:

Vcap(Rs, B) = 1
2 ·

4
3πR

3
s − Vseg(Rs, B) (11.37)

We insert the equation for a spherical segment, derived in appendix 11.8.6, and
simplify the first term to get

Vcap(Rs, B) = 2
3πR

3
s − π ·

[
R2

s ·B −
1
3 ·B

3
]
. (11.38)

Finally, we factor out π and obtain

Vcap(Rs, B) = π ·
[2

3 ·R
3
s −R2

s ·B + 1
3 ·B

3
]
. (11.39)

This is the final equation for the volume of a spherical cap as a function of the
boundary position, B, from the sphere center.
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11.8.8 The Internal Volume Vint

In this section, we derive the volume of the internal element, Vint. Figure 11.27
shows a rotated drawing of Vint inside a Cartesian coordinate system.

Fig. 11.27.: Integration in Cartesian coordinates yields the volume under a 3D surface. In
our case, the 3D surface (green) is part of the surface of a sphere.

To obtain Vint, we integrate a section of the surface of a sphere. The section
is bounded by perpendicular planes through xb and zb. These planes are also
orthogonal to their respective coordinate axis. A sphere, with its center at the origin,
is defined by

x2 + y2 + z2 = R2
s . (11.40)

The height, h(x, z) = y, is therefore

h(x, z) =
√
R2

s − z2 − x2. (11.41)

To obtain the volume under the green surface, we integrate along the x and z
coordinate. The integration boundaries are from 0 to the values xb and zb respectively,
like

Vint(Rs, xb, zb) =
xb∫
0

zb∫
0

h(x, z) dz dx =
xb∫
0

zb∫
0

√
R2

s − z2 − x2 dz dx. (11.42)

We solve the two nested integrals one after another. First we integrate over the
z-coordinate. Applying the anti-derivative, given in appendix 11.8.9, we get

Vint =
xb∫
0

[
1
2 ·
[
z ·
√
R2

s − z2 − x2 +
(
R2

s − x2
)
· arctan

(
z√

R2
s − z2 − x2

)]]zb

0
dx.

(11.43)

130 Chapter 11 Computing the 3D Radial Distribution Function



We insert the upper and lower bound, yielding

Vint =
xb∫
0

1
2 ·

zb ·
√
R2

s − z2
b − x2 +

(
R2

s − x2
)
· arctan

 zb√
R2

s − z2
b − x2


(11.44)

− 1
2 ·
[
0 ·
√
R2

s − 02 − x2 +
(
R2

s − x2
)
· arctan

(
0√

R2
s − 02 − x2

)]
dx.

Since arctan(0) = 0, we are left with

Vint =
xb∫
0

1
2 ·

zb ·
√
R2

s − z2
b − x2 +

(
R2

s − x2
)
· arctan

 zb√
R2

s − z2
b − x2

 dx.

(11.45)
Next, we split the remaining integral into three parts. We also bring the factor of 2
onto the side of Vint. This gives us

2 · Vint = zb·
xb∫
0

√
R2

s − z2
b − x2 dx (11.46)

+R2
s ·

xb∫
0

arctan

 zb√
R2

s − z2
b − x2

 dx

−
xb∫
0

x2 · arctan

 zb√
R2

s − z2
b − x2

 dx.

We now have three individual integrals to solve. We label them according to

2 · Vint = zb · I1 +R2
s · I2 − I3. (11.47)

For simplicity, we define the terms

A = R2
s − z2

b and S =
√
R2

s − z2
b − x2

b =
√
A− x2

b, (11.48)

that are always greater than 0. The anti-derivative of the first integral,

I1 =
xb∫
0

√
R2

s − z2
b − x2 dx =

xb∫
0

√
A− x2 dx (11.49)

is solved in appendix 11.8.9 and yields

I1 =
[1

2 ·
[
x ·
√
A− x2 +A · arctan

(
x√

A− x2

)]]xb

0
. (11.50)

11.8 Theory 131



Inserting the upper and lower boundaries gives us

I1 = 1
2 ·

xb ·
√
A− x2

b +A · arctan

 xb√
A− x2

b

 (11.51)

−1
2 ·
[
0 ·
√
A− 02 +A · arctan

( 0√
A− 02

)]
.

Since arctan(0) = 0, we are left with

I1 = 1
2 ·
[
xb · S +A · arctan

(
xb
S

)]
. (11.52)

The second integral,

I2 =
xb∫
0

arctan

 zb√
R2

s − z2
b − x2

 dx =
xb∫
0

arctan
(

zb√
A− x2

)
dx, (11.53)

is solved in appendix 11.8.10 and yields

I2 =
[
zb· arctan

(
x√

A− x2

)
(11.54)

+x· arctan
(

zb√
A− x2

)

−Rs· arctan
(

x · zb

Rs ·
√
A− x2

)]xb

0

.

Inserting the upper and lower boundaries gives us

I2 = zb· arctan

 xb√
A− x2

b

 (11.55)

+xb· arctan

 zb√
A− x2

b


−Rs· arctan

 xb · zb

Rs ·
√
A− x2

b


−
[
zb· arctan

( 0√
A− 02

)

+0· arctan
(

zb√
A− 02

)

−Rs· arctan
( 0 · zb

Rs ·
√
A− 02

)]
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Since arctan(0) = 0, we are left with

I2 = zb · arctan
(
xb
S

)
+ xb · arctan

(
zb
S

)
−Rs · arctan

(
xb · zb
Rs · S

)
. (11.56)

The third integral,

I3 =
xb∫
0

x2 · arctan

 zb√
R2

s − z2
b − x2

 dx =
xb∫
0

x2 · arctan
(

zb√
A− x2

)
dx, (11.57)

is solved in the appendix 11.8.11, like[
− zb

6 · x ·
√
A− x2 − zb

6 ·
(
z2

b − 3 ·R2
s
)
· arctan

(
x√

A− x2

)
(11.58)

+x3

3 · arctan
(

zb√
A− x2

)
− R3

s
3 · arctan

(
zb · x

Rs ·
√
A− x2

)]xb

0

.

Inserting the upper and lower boundaries gives us

−zb
6 · xb ·

√
A− x2

b −
zb
6 ·

(
z2

b − 3 ·R2
s
)
· arctan

 xb√
A− x2

b

 (11.59)

+x3
b

3 · arctan

 zb√
A− x2

b

− R3
s

3 · arctan

 zb · xb

Rs ·
√
A− x2

b


−
[
− zb

6 · 0 ·
√
A− 02 − zb

6 ·
(
z2

b − 3 ·R2
s
)
· arctan

( 0√
A− 02

)

+03

3 · arctan
(

zb√
A− 02

)
− R3

s
3 · arctan

(
zb · 0

Rs ·
√
A− 02

)]
.

Since arctan(0) = 0, we are left with

I3 =−xbzbS

6 − zb
6
(
z2

b − 3R2
s
)

arctan
(
xb
S

)
+ (11.60)

x3
b

3 arctan
(
zb
S

)
− R3

s
3 arctan

(
zbxb
RsS

)
. (11.61)

Now, we combine the solutions for the three integrals and get:

2 · Vint = zb ·
[1

2 ·
[
xb · S +

(
R2

s − z2
b
)
· arctan

(
xb
S

)]]
(11.62)

+R2
s ·
[
zb · arctan

(
xb
S

)
+ xb · arctan

(
zb
S

)
−Rs · arctan

(
zb · xb
Rs · S

)]
−[−xb · zb · S

6 − zb
6 ·

(
z2

b − 3R2
s
)
· arctan

(
xb
S

)
+

x3
b

3 · arctan
(
zb
S

)
− R3

s
3 · arctan

(
zb · xb
Rs · S

)
].
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Next, we expand all products to remove the brackets

2 · Vint = zb · xb · S
2 + zb ·

(
R2

s − z2
b
)

2 · arctan
(
xb
S

)
(11.63)

+R2
s · zb · arctan

(
xb
S

)
+R2

s · xb · arctan
(
zb
S

)
−R3

s · arctan
(
zb · xb
Rs · S

)
+ xb · zb · S

6 + zb
6 ·

(
z2

b − 3R2
s
)
· arctan

(
xb
S

)
− x3

b
3 · arctan

(
zb
S

)
+ R3

s
3 · arctan

(
zb · xb
Rs · S

)
.

We then factor out the arcus tangens functions

2 · Vint = zb · xb · S
2 + xb · zb · S

6 (11.64)

+ arctan
(
xb
S

)
·
[
zb ·

(
R2

s − z2
b
)

2 +R2
s · zb + zb

6 ·
(
z2

b − 3R2
s
)]

+ arctan
(
zb
S

)
·
[
R2

s · xb −
x3

b
3

]
+ arctan

(
zb · xb
Rs · S

)
·
[
R3

s
3 −R

3
s

]
.

Next, we take a closer look at the term in the square brackets containing zb and see
that

zb ·
(
R2

s − z2
b
)

2 +R2
s · zb + zb

6 ·
(
z2

b − 3R2
s
)

= (11.65)

zb ·R2
s

2 − z3
b
2 +R2

s · zb + z3
b
6 −

zb ·R2
s

2 =

R2
s · zb −

z3
b
3

Using equation (11.65), we simplify the terms into

2 · Vint = 2 · zb · xb · S
3 + arctan

(
xb
S

)
·
[
R2

s · zb −
z3

b
3

]
(11.66)

+ arctan
(
zb
S

)
·
[
R2

s · xb −
x3

b
3

]
+ arctan

(
zb · xb
Rs · S

)
·R3

s ·
[
−2

3

]
.

Finally, we bring the factor of 2 on the other side

Vint = zb · xb · S
3 + 1

2 · arctan
(
xb
S

)
·
[
R2

s · zb −
z3

b
3

]
(11.67)

+ 1
2 · arctan

(
zb
S

)
·
[
R2

s · xb −
x3

b
3

]
− R3

s
3 · arctan

(
zb · xb
Rs · S

)
,
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and substitute S =
√
R2

s − x2
b − z2

b back into the equation

Vint =
zb · xb ·

√
R2

s − x2
b − z2

b
3 + 1

2 · arctan

 xb√
R2

s − x2
b − z2

b

 · [R2
s · zb −

z3
b
3

]

(11.68)

+ 1
2 · arctan

 zb√
R2

s − x2
b − z2

b

 · [R2
s · xb −

x3
b

3

]
− R3

s
3 · arctan

 zb · xb

Rs ·
√
R2

s − x2
b − z2

b

 .
This is the final equation for the internal volume, Vint, as a function of the octant
radius, Rs, and the boundary positions, xb and zb.

11.8.9 Proof for the Integral I1

In this section, we proof that the integral

I1 =
∫ √

A− x2 dx, (A− x2) > 0 (11.69)

is solved by
1
2 ·
[
x ·
√
A− x2 +A · arctan

(
x√

A− x2

)]
+ C. (11.70)

To do so, we take the derivative of equation (11.70) with respect to x. Note that

d
dx arctan (x) = 1

1 + x2 . (11.71)

The derivative is then given by

d
dx

1
2 ·
[
x ·
√
A− x2 +A · arctan

(
x√

A− x2

)]
+ C = (11.72)

1
2 · [1 ·

√
A− x2 + x · 1

2
√
A− x2 · (−2x)+

A · 1
1 + x2

A−x2

·

√
A− x2 − x · 1

2
√
A−x2 · (−2x)

A− x2 ].

We combine all fractions to get

1
2 ·
[√

A− x2 − x2
√
A− x2 + A

A− x2 + x2 ·
[√

A− x2 + x2
√
A− x2

]]
. (11.73)

Finally, we simplify the fractions and see that

1
2 ·
[√

A− x2 − x2
√
A− x2 +

√
A− x2 + x2

√
A− x2

]
=
√
A− x2, (11.74)
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which is the integrand we were looking for. Therefore, the integral, I1, is solved by
the anti-derivative given in equation (11.70).

11.8.10 Proof for the Integral I2

In this section, we prove that the integral

I2 =
∫

arctan
(

zb√
A− x2

)
dx, (A− x2) > 0 (11.75)

is solved by the following anti-derivative

zb · arctan
(

x√
A− x2

)
+ x · arctan

(
zb√
A− x2

)
−Rs · arctan

(
x · zb

Rs ·
√
A− x2

)
+ C.

(11.76)
To prove that, we calculate the derivative with respect to x like

d
dx zb· arctan

(
x√

A− x2

)
(11.77)

+ d
dx x· arctan

(
zb√
A− x2

)
− d

dx Rs· arctan
(

x · zb

Rs ·
√
A− x2

)
+ C

We calculate the three derivatives individually. The first derivative is given by

d
dx zb · arctan

(
x√

A− x2

)
= zb ·

1
1 + x2

A−x2

·
1 ·
√
A− x2 − x · 1

2·
√
A−x2 · (−2x)

A− x2

(11.78)
we simplify the fractions and get

zb
A− x2 + x2 ·

[√
A− x2 + x2

√
A− x2

]
. (11.79)

The x2 cancel each other out, leaving us with

zb
A
·
[√

A− x2 + x2
√
A− x2

]
. (11.80)

Next, we create equal denominators in the square brackets

zb
A
·
[
A− x2
√
A− x2 + x2

√
A− x2

]
, (11.81)

which leaves us with

d
dx zb · arctan

(
x√

A− x2

)
= zb√

A− x2 . (11.82)
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The second derivative is

d
dx x· arctan

(
zb√
A− x2

)
= (11.83)

1 · arctan
(

zb√
A− x2

)
+x · 1

1 + z2
b

A−x2

·

√
A− x2 · 0− zb · 1

2
√
A−x2 · (−2x)

A− x2 .

We combine the main fractions and get

arctan
(

zb√
A− x2

)
+ x

A− x2 + z2
b
· zb · x√

A− x2 . (11.84)

Using our definition A = R2
s − z2

b we have

d
dx x · arctan

(
zb√
A− x2

)
= arctan

(
zb√
A− x2

)
+ zb · x2

(R2
s − x2) ·

√
A− x2 . (11.85)

The third derivative is given by

d
dx Rs · arctan

(
zb · x

Rs ·
√
A− x2

)
= (11.86)

Rs ·
1

1 + z2
b·x2

R2
s ·(A−x2)

·
Rs ·
√
A− x2 · zb − zb · x ·Rs · 1

2
√
A−x2 · (−2x)

R2
s · (A− x2) .

We combine the main fraction while factoring out zb ·Rs from the numerator, to get

R2
s · zb

R2
s · (A− x2) + z2

b · x2 ·
[√

A− x2 + x2
√
A− x2

]
(11.87)

Next, we create identical denominators in the square brackets

R2
s · zb

R2
s · (A− x2) + z2

b · x2 ·
[
A− x2
√
A− x2 + x2

√
A− x2

]
, (11.88)

which leaves us with

R2
s · zb

R2
s · (A− x2) + z2

b · x2 ·
A√

A− x2 , (11.89)

Before we proceed, we take a closer look at the largest denominator and see that

R2
s ·
(
A− x2

)
+ z2

b · x2 = (11.90)

R2
s ·A−R2

s · x2 + z2
b · x2 =

R2
s ·A+ x2 ·

(
z2

b −R2
s
)
.

Since
A = R2

s − z2
b ⇔ −A = (z2

b −R2
s ), (11.91)
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we have
R2

s ·A−A · x2 = A ·
(
R2

s − x2
)
. (11.92)

Using this identity in equation (11.89), we get

R2
s · zb

A · (R2
s − x2) ·

A√
A− x2 , (11.93)

which leaves us with

d
dx Rs · arctan

(
zb · x

Rs ·
√
A− x2

)
= R2

s · zb

(R2
s − x2) ·

√
A− x2 . (11.94)

Finally, we combine all the separate derivatives like

zb√
A− x2 + arctan

(
zb√
A− x2

)
+ zb · x2

(R2
s − x2) ·

√
A− x2 −

R2
s · zb

(R2
s − x2) ·

√
A− x2 .

(11.95)
We expand the first fraction to create equal denominators like(

R2
s − x2) · zb

(R2
s − x2) ·

√
A− x2 +arctan

(
zb√
A− x2

)
+ zb · x2

(R2
s − x2) ·

√
A− x2−

R2
s · zb

(R2
s − x2) ·

√
A− x2 .

(11.96)
Then, we add all fractions

zb ·
(
R2

s − x2)+ zb · x2 −R2
s · zb

(R2
s − x2) ·

√
A− x2 + arctan

(
zb√
A− x2

)
, (11.97)

and expand the round brackets into

zb ·R2
s − zb · x2 + zb · x2 −R2

s · zb

(R2
s − x2) ·

√
A− x2 + arctan

(
zb√
A− x2

)
. (11.98)

We see, that all terms in the numerator cancel each other out, leaving us with

arctan
(

zb√
A− x2

)
, (11.99)

which is the integrand we were looking for. Therefore, the integral, I2, is solved by
the anti-derivative given in equation (11.76).

11.8.11 Proof for the Integral I3

In this section, we proof that the integral

I3 =
∫
x2 · arctan

(
zb√
A− x2

)
dx, (A− x2) > 0 (11.100)
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is solved by

−zb
6 · x ·

√
A− x2 − zb

6 ·
(
z2

b − 3 ·R2
s
)
· arctan

(
x√

A− x2

)
(11.101)

+x3

3 · arctan
(

zb√
A− x2

)
− R3

s
3 · arctan

(
zb · x

Rs ·
√
A− x2

)
+ C.

To do so, we take the derivative of this solution with respect to x like

−zb
6 ·

d
dxx·

√
A− x2 (11.102)

−zb
6 ·

(
z2

b − 3 ·R2
s
)
· d

dx arctan
(

x√
A− x2

)
+ d

dx
x3

3 · arctan
(

zb√
A− x2

)
−R

3
s

3 ·
d

dx arctan
(

zb · x
Rs ·
√
A− x2

)
.

We calculate the derivatives separately. The first derivative is given by

−zb
6 ·

d
dxx ·

√
A− x2 = −zb

6 ·
[
1 ·
√
A− x2 + x · 1

2
√
A− x2 · (−2x)

]
. (11.103)

We simplify the terms in the square brackets and get

zb
6 ·

[
x2

√
A− x2 −

√
A− x2

]
. (11.104)

Then, we expand the second term in the square bracket

zb
6 ·

[
x2

√
A− x2 −

A− x2
√
A− x2

]
, (11.105)

and simplify, which leaves us with

−zb
6 ·

d
dxx ·

√
A− x2 = zb

6 ·
2 · x2 −A√
A− x2 . (11.106)

The second derivative is given by

−zb
6 ·

(
z2

b − 3 ·R2
s
)
· d

dx arctan
(

x√
A− x2

)
= (11.107)

−zb
6 ·

(
z2

b − 3 ·R2
s
)
· 1

1 + x2

A−x2

·
1 ·
√
A− x2 − x · 1

2
√
A−x2 · (−2x)

A− x2 .

We multiply the fractions

−zb
6 ·

(
z2

b − 3 ·R2
s
)
· 1
A− x2 + x2

[√
A− x2 + x2

√
A− x2

]
, (11.108)
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and simplify to get

−zb ·
(
z2

b − 3 ·R2
s
)

6 ·A ·
[√

A− x2 + x2
√
A− x2

]
. (11.109)

Then, we expand the terms in the square brackets

−zb ·
(
z2

b − 3 ·R2
s
)

6 ·A ·
[
A− x2
√
A− x2 + x2

√
A− x2

]
, (11.110)

which leaves us with

−zb
6 ·

(
z2

b − 3 ·R2
s
)
· d

dx arctan
(

x√
A− x2

)
= −zb ·

(
z2

b − 3 ·R2
s
)

6 ·
√
A− x2 . (11.111)

The third derivative is given by

d
dx

x3

3 · arctan
(

zb√
A− x2

)
= (11.112)

x2 · arctan
(

zb√
A− x2

)
+x3

3 ·
1

1 + z2
b

A−x2

·

√
A− x2 · 0− zb · 1

2
√
A−x2 · (−2x)

A− x2 .

We combine the fractions

x2 · arctan
(

zb√
A− x2

)
+ x3

3 ·
1

A− x2 + z2
b
· x · zb√

A− x2 , (11.113)

and simplify the denominator, using A = R2
s − z2

b, yielding

d
dx

x3

3 · arctan
(

zb√
A− x2

)
= x2 · arctan

(
zb√
A− x2

)
+ x4 · zb

3 · (R2
s − x2) ·

√
A− x2 .

(11.114)
The last derivative is given by

−R
3
s

3 ·
d

dx arctan
(

zb · x
Rs ·
√
A− x2

)
= (11.115)

−R
3
s

3 ·
1

1 + z2
b·x2

R2
s ·(A−x2)

·
Rs ·
√
A− x2 · zb − zb · x ·Rs · 1

2
√
A−x2 · (−2x)

R2
s · (A− x2) .

We combine the fractions, leaving us with

−zb ·R4
s

3 · 1
R2

s · (A− x2) + z2
b · x2 ·

[√
A− x2 + x2

√
A− x2

]
. (11.116)
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Before we proceed, we take a closer look at the largest denominator and see that

R2
s ·
(
A− x2

)
+ z2

b · x2 = (11.117)

R2
s ·A−R2

s · x2 + z2
b · x2 =

R2
s ·A+ x2 ·

(
z2

b −R2
s
)
.

Since A = R2
s − z2

b ⇔ −A = z2
b −R2

s we get

R2
s ·A−A · x2 = A ·

(
R2

s − x2
)

(11.118)

Using this identity, we combine the fractions to get

− R4
s · zb

3 ·A · (R2
s − x2) ·

[√
A− x2 + x2

√
A− x2

]
. (11.119)

Next, we create equal denominator in the square brackets

− R4
s · zb

3 ·A · (R2
s − x2) ·

[
A− x2
√
A− x2 + x2

√
A− x2

]
, (11.120)

which leaves us with

−R
3
s

3 ·
d

dx arctan
(

zb · x
Rs ·
√
A− x2

)
= − R4

s · zb

3 · (R2
s − x2) ·

√
A− x2 . (11.121)

Finally, we sum up all the individual derivatives and get

zb
6 ·

2 · x2 −A√
A− x2 −

zb ·
(
z2

b − 3 ·R2
s
)

6 ·
√
A− x2 + x2 · arctan

(
zb√
A− x2

)
(11.122)

+ x4 · zb

3 · (R2
s − x2) ·

√
A− x2 −

R4
s · zb

3 · (R2
s − x2) ·

√
A− x2 .

We add the fractions like

2 · x2 · zb −A · zb − z3
b + 3 ·R2

s · zb

6 ·
√
A− x2 + x2 · arctan

(
zb√
A− x2

)
(11.123)

+ zb ·
(
x4 −R4

s
)

3 · (R2
s − x2) ·

√
A− x2 .

We simplify the second fraction with the third binomic equation:

(a+ b) · (a− b) = a2 − b2. (11.124)

This leaves us with

2 · x2 · zb −A · zb − z3
b + 3 ·R2

s · zb

6 ·
√
A− x2 +x2·arctan

(
zb√
A− x2

)
+zb ·

(
x2 −R2

s
)
·
(
x2 +R2

s
)

3 · (R2
s − x2) ·

√
A− x2

(11.125)
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We now cancel the R2
s − x2 = −(x2 −R2

s ) terms and are left with

2 · x2 · zb −A · zb − z3
b + 3 ·R2

s · zb

6 ·
√
A− x2 + x2 · arctan

(
zb√
A− x2

)
− 2 · zb ·

(
x2 +R2

s
)

6 ·
√
A− x2 .

(11.126)
Again, we add the fractions with identical denominators. We also use A = R2

s − z2
b

in the numerator, giving us

2 · x2 · zb −
(
R2

s − z2
b
)
· zb − z3

b + 3 ·R2
s · zb − 2 · zb ·

(
x2 +R2

s
)

6 ·
√
A− x2 +x2·arctan

(
zb√
A− x2

)
(11.127)

We expand the terms in the round brackets

2 · x2 · zb −R2
s · zb + z3

b − z3
b + 3 ·R2

s · zb − 2 · zb · x2 − 2 · zb ·R2
s

6 ·
√
A− x2 +x2·arctan

(
zb√
A− x2

)
.

(11.128)
All terms in the numerator cancel each other out, which leaves us with

x2 · arctan
(

zb√
A− x2

)
. (11.129)

Therefore, the integral, I3, is solved by the anti-derivative given in equation (11.101).
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11.9 Pseudo code

Algorithm 3 Overlap volume between an octant and a corner
Ensure: R, xb, yb, zb ≥ 0 . Mirror into the all positive octant

1: procedure OctantVolume(R, xb, yb, zb)
2: if x2

b + y2
b + z2

b ≤ R2 then
3: return xb · yb · zb . The corner is inside the octant
4: end if
5: VOctant ← 1

8 ·
4
3 · π ·R

3 . Start with a complete octant
6: for b ∈ [xb, yb, zb] do
7: if b < R then . Remove the spherical caps
8: VOctant ← VOctant − π

12 · (2 ·R3 − 3 · b ·R2 + b3)
9: end if

10: end for
11: for (a, b) ∈ [(xb, yb), (xb, zb), (yb, zb)] do
12: if a2 + b2 < R2 then . Add the cap intersections
13: VOctant ← VOctant + SphereCutVol(R, a, b)
14: end if
15: end for
16: return VOctant
17: end procedure

Algorithm 4 Compute the volume of a spherical cut.
Ensure: R,A,B ≥ 0, A2 +B2 < R2

1: procedure SphereCutVol(R,A,B)
2: Root←

√
R2 −A2 −B2

3: Vcut ← R3

6 ·
(
π − 2 · arctan

(
A·B
R·Root

))
4: Vcut ← Vcut + 1

2 ·
(
arctan

(
A

Root

)
− π

2

)
·
(
R2 ·B − B3

3

)
5: Vcut ← Vcut + 1

2 ·
(
arctan

(
B
Root

)
− π

2

)
·
(
R2 ·A− A3

3

)
6: Vcut ← Vcut + 1

3 ·A ·B ·Root
7: return Vcut

8: end procedure

Algorithm 5 Compute the shell-box intersection volume.
Ensure: Rmin ≥ 0, Rmax > 0, Rmin < Rmax, xmin < xmax, ymin < ymax, zmin <

zmax

1: procedure ShellVolume(Rmin, Rmax, xmin, xmax, ymin, ymax, zmin, zmax)
2: InnerShell← SphereVolume(Rmin, xmin, xmax, ymin, ymax, zmin, zmax)
3: OuterShell← SphereVolume(Rmax, xmin, xmax, ymin, ymax, zmin, zmax)
4: return OuterShell − InnerShell
5: end procedure
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Algorithm 6 Compute the sphere-box intersection volume.
Ensure: R ≥ 0, xmin < xmax, ymin < ymax, zmin < zmax

1: procedure SphereVolume(R,Boundaries)
2: VSphere ← 0 . Start with an empty volume
3: for xb ∈ [|xmin|, |xmax|] do
4: for yb ∈ [|ymin|, |ymax|] do
5: for zb ∈ [|zmin|, |zmax|] do
6: VSphere ← VSphere + OctantVolume(R, xb, yb, zb)
7: end for
8: end for
9: end for

10: return VSphere
11: end procedure

Algorithm 7 Compute the shell-sphere intersection volume.
Ensure: Rmin ≥ 0, Rmax > 0, Rmin < Rmax

1: procedure ShellSphereVolume(Rmin, Rmax, Rboundary, xc, yc, zc, CentralP )
2: dx← xc − CentralP.XPos
3: dy ← yc − CentralP.Y Pos
4: dz ← zc − CentralP.ZPos
5: PartD ←

√
dx2 + dy2 + dz2 . Distance between the sphere and the shell

centers
6: InnerSphere← SphereSphereVolume(Rmin, Rboundary, PartD)
7: OuterSphere← SphereSphereVolume(Rmax, Rboundary, PartD)
8: return OuterSphere− InnerSphere
9: end procedure

Algorithm 8 Compute the sphere-sphere intersection volume.
Ensure: Rsphere ≥ 0, Rboundary > 0, Dist > 0

1: procedure SphereSphereVolume(Rsphere, Rboundary, Dist)
2: if PartD > Rsphere +Rboundary then . Check if the spheres intersect
3: return 0
4: end if
5: A← Rboundary −

R2
boundary−R

2
sphere+Dist2

2·Dist

6: B ← R2
boundary−R

2
sphere+PartD2

2·Dist − (Dist−Rsphere)
7: InnerCap← A · (3 ·Rboundary −A)
8: OuterCap← B · (3 ·Rsphere −B)
9: IntersectV ol← π

3 · (OuterCap+ InnerCap)
10: return IntersectVol
11: end procedure
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Algorithm 9 Compute g(r) from a particle set bounded by a rectangular box.
Ensure: ∆r > 0, Rectangular box boundary. . Positive radial bin size

1: procedure RDF(Particles,∆r)
2: Bounds← FindBoundary(Particles) . Determine the sample boundaries
3: VSample ← Bounds.Lx ·Bounds.Ly ·Bounds.Lz
4: RhoMean← Particles.size()

VSample
. Mean particle density

5: Rmax← 1
2 ·
√
Bounds.L2

x +Bounds.L2
y +Bounds.L2

z . Maximal radial
distance

6: BinNum← bRmax∆r c . Number of radial bins
7: r ← [ ] . Empty list for the radial bins
8: for k = 0, k < BinNum do
9: r.append((k + 0.5) ·∆r) . List with radial bin centers

10: k ← k + 1
11: end for
12: Gr ← [0...] . Empty bins for g(r)
13: NonEmptyShells← [0...] . Keeps track of non empty shells
14: for CentralP ∈ Particles do . Use every particle as the center
15: LocalGr ← [0...] . Empty bins for the local g(r)
16: for Neighbor ∈ Particles ∧Neighbor 6= CentralP do
17: D ← Distance(Neighbor, CentralP ) . Inter particle distance
18: Idx← b 1

∆r ·Dc . Index into LocalGr
19: LocalGr[Idx]← LocalGr[Idx] + 1 . Bin the particle
20: end for
21: ShiftBounds← ShiftCenter(Bounds, CentralP ) . Shift the COSY

center to CentralP
22: for k = 0, k < BinNum do . Compute the local particle density
23: Vshell ← ShellVolume(r[k]− ∆r

2 , r[k] + ∆r
2 , ShiftBounds)

24: if Vshell > 0 then
25: LocalGr[k]← LocalGr[k]/Vshell . Use the shell-box intersection

volume
26: NonEmptyShells[k]← NonEmptyShells[k] + 1
27: end if . Empty intersection volumes are not used
28: end for
29: Gr ← Gr + LocalGr . Add up all local g(r) bins for averaging
30: end for
31: for k = 0, k < BinNum do
32: Gr[k]← Gr[k]/NonEmptyShells[k] . Average over all non emtpy shells
33: end for
34: Gr ← Gr

RhoMean . Final normalization by the average particle density
35: return r, Gr
36: end procedure

11.9 Pseudo code 145



Algorithm 10 Compute g(r) from a particle set bounded by a sphere.
Ensure: ∆r > 0, Rectangular box boundary. . Positive radial bin size

1: procedure RDF(Particles,∆r)
2: xc ←Mean(Particles.XPos) . Determine the boundary sphere center
3: yc ←Mean(Particles.Y Pos)
4: zc ←Mean(Particles.ZPos)
5: Radii← Distance(Particles, (xcenter, ycenter, zcenter)) . Radial particle

distances from the center
6: Rboundary ←Max(Radii) . Sphere surrounding all particles
7: VSample ← 4

3 · π ·R
3
boundary

8: RhoMean← Particles.size()
VSample

. Mean particle density
9: BinNum← bRboundary

∆r c . Number of radial bins
10: r ← [ ] . Empty list for the radial bins
11: for k = 0, k < BinNum do
12: r.append((k + 0.5) ·∆r) . List with radial bin centers
13: k ← k + 1
14: end for
15: Gr ← [0...] . Empty bins for g(r)
16: for CentralP ∈ Particles do . Use every particle as the center
17: LocalGr ← [0...] . Empty bins for the local g(r)
18: for Neighbor ∈ Particles ∧Neighbor 6= CentralP do
19: dx← Neighbor.XPos− CentralP.XPos . Inter particle distance
20: dy ← Neighbor.Y Pos− CentralP.Y Pos
21: dz ← Neighbor.ZPos− CentralP.ZPos
22: Idx← b 1

∆r ·
√
dx2 + dy2 + dz2c . Index into LocalGr

23: LocalGr[Idx]← LocalGr[Idx] + 1 . Bin the particle
24: end for
25: for k = 0, k < BinNum do . Compute the local particle density
26: Vshell ← ShellSphereVolume(r[k] − ∆r

2 , r[k] +
∆r
2 , Rboundary, xc, yc, zc, CentralP )

27: if Vshell > 0 then
28: LocalGr[k]← LocalGr[k]/Vshell . Use the shell-box intersection

volume
29: end if
30: end for
31: Gr ← Gr + LocalGr . Add up all local g(r) bins for averaging
32: end for
33: Gr ← Gr

Particles.size() . Average over all particles
34: Gr ← Gr

RhoMean . Final normalization by the average particle density
35: return r, Gr
36: end procedure
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11.10 Source code

11.10.1 FCC Coordinate Generation

1 from numpy import sqrt
2 from random import random
3 from numpy.random import normal
4 from matplotlib.pyplot import *
5 from mpl_toolkits.mplot3d import Axes3D
6
7 """
8 This program calculates FCC coordinates.
9 A 3D Gaussian disturbance can be added.

10 Random Sphere Point Picking Algorithm from:
11 G. Marsaglia, The Annals of Mathematical Statistics,
12 1972, Vol. 43, No. 2, 845-646
13 """
14
15 ### DASHBOARD
16 SimuName = "FCC_Blurr_Cube" # Name of the Experiment and the Files
17 GitterKonst = sqrt(2) # Cell constant for the FCC unit cell
18 PartDiam = 1 # Diameter of the Particles
19 Blurr = True # add a 3D gaussian blurr?
20 sigma = 0.07 # standard deviation of the blurr
21 Lx = 4 # Distance in x-direction from -Lx to Lx
22 Ly = 4 # Distance in y-direction from -Ly to Ly
23 Lz = 4 # Distance in z-direction from -Lz to Lz
24
25 def calcFCCCoor(GitterKonst, Lx, Ly, Lz):
26
27 CoorList = []
28 XLim = int(Lx/GitterKonst*5)
29 YLim = int(Ly/GitterKonst*5)
30 ZLim = int(Lz/GitterKonst*5)
31 L = GitterKonst/2
32 A = [0, L, L]
33 B = [L, 0, L]
34 C = [L, L, 0]
35 for h in range(-ZLim*2, ZLim*2, 1):
36 for k in range(-YLim*2, YLim*2, 1):
37 for l in range(-XLim*2, XLim*2, 1):
38 NewX = h * A[0] + k * B[0] + l * C[0]
39 NewY = h * A[1] + k * B[1] + l * C[1]
40 NewZ = h * A[2] + k * B[2] + l * C[2]
41 if abs(NewX) < Lx and\
42 abs(NewY) < Ly and\
43 abs(NewZ) < Lz:
44
45 CoorList.append([NewX, NewY, NewZ])
46
47 return CoorList
48
49 def getRandOffset(sigma):
50
51 x1 = 2
52 x2 = 2
53 while x1**2 + x2**2 >= 1:
54 x1 = random()*2-1
55 x2 = random()*2-1
56 R = normal(0, sigma)
57 Wurzel = sqrt(1 - x1**2 - x2**2)
58 x = 2 * x1 * Wurzel
59 y = 2 * x2 * Wurzel
60 z = 1 - 2 * (x1**2 + x2**2)
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61
62 return [x * R, y * R, z * R]
63
64 def addGaussianBlurr(CoorList, sigma):
65
66 BlurrList = []
67 for P in CoorList:
68 Offset = getRandOffset(sigma)
69 NewX = P[0] + Offset[0]
70 NewY = P[1] + Offset[1]
71 NewZ = P[2] + Offset[2]
72 BlurrList.append([NewX, NewY, NewZ])
73
74 return BlurrList
75
76 def plotCorr(CoorList, SimuName):
77
78 X = [0] * len(CoorList)
79 Y = [0] * len(CoorList)
80 Z = [0] * len(CoorList)
81 for P in range(0, len(CoorList), 1):
82 X[P] = CoorList[P][0]
83 Y[P] = CoorList[P][1]
84 Z[P] = CoorList[P][2]
85
86 fig = figure()
87 ax = fig.add_subplot(111, projection = "3d", aspect = "equal")
88 ax.scatter(X, Y, Z)
89 ax.set_xlabel("X")
90 ax.set_ylabel("Y")
91 ax.set_zlabel("Z")
92 savefig(SimuName + "_3D.png", dpi = 600)
93 show()
94
95 return True
96
97 def saveData(CoorList, SimuName):
98
99 DataFile = open(SimuName + "_rawCoor.txt", "w")

100 for Particle in CoorList:
101 DataFile.write(str(Particle[0]) + "\t" +\
102 str(Particle[1]) + "\t" +\
103 str(Particle[2]) + "\n")
104 DataFile.close()
105
106 return True
107
108 def createAutoCADFile(CoorList, PartDiam, SimuName):
109
110 CADFile = open(SimuName + "_CAD.scr", "w")
111 for Particle in CoorList:
112 CADFile.write("SPHERE\n") # SPHERE command
113 CADFile.write(str(round(Particle[0], 5)) + ",") # X-Position
114 CADFile.write(str(round(Particle[1], 5)) + ",") # Y-Position
115 CADFile.write(str(round(Particle[2], 5)) + "\n")# Z-Position
116 CADFile.write(str(PartDiam/2) + "\n") # Radius
117
118 CADFile.write("\n") # Blank line at the end
119 CADFile.close()
120
121 return True
122
123 ###MAIN
124 print("Calculating FCC Coordinates.")
125 FCC = calcFCCCoor(GitterKonst, Lx, Ly, Lz)
126 print("Particle Number: " + str(len(FCC)))
127 if Blurr == True:
128 print("Adding a Gaussian blurr with Sigma = " + str(sigma))
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129 FCC = addGaussianBlurr(FCC, sigma)
130
131 print("Saveing the Coordinats to a .txt file.")
132 saveData(FCC, SimuName)
133 print("Creating a AutoCAD file.")
134 createAutoCADFile(FCC, PartDiam, SimuName)
135 print("Plotting the Coordinates.")
136 plotCorr(FCC, SimuName)

11.10.2 Simple g(r) Implementation in Python 3

1 from scipy import spatial
2 from numpy import sqrt, pi, zeros
3
4 """
5 This function calculates the pair correlation function g(2)(r)
6 for a dense set of particles in a rectengular box. The particle
7 coordinates are supplied as [[x, y, z],...] lists.
8 All particles are used as central particles.
9 The spherical shell might extend beyond the known region.

10 A KDTree data structure is used for efficiency.
11 """
12
13 def RDF_Simple(Particles, r, dr):
14
15 # preallocate list for Gr
16 Gr = zeros(len(r))
17 # maximal radial distance
18 MaxDist = r[-1] + dr/2
19 # sort all Particles in a KDTree
20 ParticleTree = spatial.KDTree(Particles)
21 # use every particle as the center once
22 k = 0
23 for CentralP in Particles:
24 # these are the indices for the particles at most MaxDist away:
25 NNIndices = ParticleTree.query_ball_point(CentralP,\
26 MaxDist, p = 2, eps = 0)
27 # look at every other particle at most MaxDist away:
28 for Neighbour in NNIndices:
29 if CentralP != Particles[Neighbour]:
30 # calc the distance to the neighbour
31 dx = CentralP[0] - Particles[Neighbour][0]
32 dy = CentralP[1] - Particles[Neighbour][1]
33 dz = CentralP[2] - Particles[Neighbour][2]
34 d = sqrt(dx**2 + dy**2 + dz**2)
35 # what bins is the particle in?
36 IdxList = [k for k in range(0, len(r), 1)\
37 if abs(r[k] - d) <= dr]
38 # add one to every bin the particle is in
39 for Pos in IdxList:
40 # count the particle
41 Gr[Pos] += 1
42 k += 1
43 print("Finished Particle " + str(k) + " of " + str(len(Particles)))
44 # final normalization
45 Gr[0] = 0
46 BoxVol = (max(Particles[0]) - min(Particles[0]))*\
47 (max(Particles[1]) - min(Particles[1]))*\
48 (max(Particles[2]) - min(Particles[2]))
49 for i in range(1, len(r), 1):
50 Gr[i] /= len(Particles) # average over all central particles
51 # the most inner shells are spheres!
52 if r[i]- dr/2 > 0:
53 # by the shell volume
54 Gr[i] /= 4/3 *pi * ((r[i] + dr/2)**3 - (r[i]- dr/2)**3)
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55 else:
56 Gr[i] /= 4/3 *pi * (r[i] + dr/2)**3 # by the shell volume
57 Gr[i] *= BoxVol / len(Particles) # by the number density
58
59 return Gr

11.10.3 Analytic g(r) Implementation in Python 3

1 from numpy import sqrt, pi, zeros, ones, arctan
2 from random import random, seed
3 from time import time
4 seed(time())
5
6 """
7 This function calculates the pair correlation function g(2)(r)
8 for a dense set of particles in a rectengular box. The particle
9 coordinates are supplied as [[x, y, z],...] lists.

10 All particles are used as central particles.
11 The spherical shell might extend beyond the known region.
12 An empty sourrounding is assumed.
13 """
14
15 def SphereCutVol(Rs, A, B):
16
17 Root = sqrt(Rs**2-A**2-B**2)
18 Vcut = 1/6*Rs**3*(pi - 2*arctan(A*B/(Rs*Root)))
19 Vcut += 1/2 * (arctan(A/Root) - pi/2)*(Rs**2*B-1/3*B**3)
20 Vcut += 1/2 * (arctan(B/Root) - pi/2)*(Rs**2*A-1/3*A**3)
21 Vcut += 1/3 * A * B * Root
22
23 return Vcut
24
25 def OctVolume(Rs, xb, yb, zb):
26
27 # if all boundaries are fully in the octant
28 if xb**2 + yb**2 + zb**2 < Rs**2:
29 return xb * yb * zb
30 # if no boundary intersects we start with
31 VOctant = 1/8 * 4/3 * pi * Rs**3
32 # remove the spherical caps
33 for B in [xb, yb, zb]:
34 if B < Rs:
35 VOctant -= pi/4*(2/3*Rs**3-B*Rs**2+1/3*B**3)
36 # add the intersections of the caps
37 for (a, b) in [(xb, yb), (xb, zb), (yb, zb)]:
38 if a**2 + b**2 < Rs**2:
39 VOctant += SphereCutVol(Rs, a, b)
40
41 return VOctant
42
43 def SphereVolume(Rs, BoxBounds):
44
45 [Xmin, Xmax, Ymin, Ymax, Zmin, Zmax] = BoxBounds
46 VSphere = 0
47 # abs() mirrors the boundaries into the first octant
48 for xb in [Xmin, Xmax]:
49 for yb in [Ymin, Ymax]:
50 for zb in [Zmin, Zmax]:
51 VSphere += OctVolume(Rs, abs(xb), abs(yb), abs(zb))
52
53 return VSphere
54
55 def ShellVolume(Rmin, Rmax, BoxBounds):
56
57 # check for negative Rmin values
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58 Rmin = max([Rmin, 0])
59 InnerShell = SphereVolume(Rmin, BoxBounds)
60 OuterShell = SphereVolume(Rmax, BoxBounds)
61 Volume = OuterShell - InnerShell
62
63 return Volume
64
65 def RDF_AnalyticNorm(Particles, r, dr):
66
67 # Gr averaged over all particles
68 Global_Gr = zeros(len(r))
69 # Keep track of the usefull shell volumes
70 NonEmptyShells = zeros(len(r))
71 # maximal radial distance
72 MaxDist = r[-1] + dr/2
73 # Box boundaries
74 XList = [Particles[k][0] for k in range(0, len(Particles), 1)]
75 YList = [Particles[k][1] for k in range(0, len(Particles), 1)]
76 ZList = [Particles[k][2] for k in range(0, len(Particles), 1)]
77 BoxBounds = [min(XList), max(XList),\
78 min(YList), max(YList),\
79 min(ZList), max(ZList)]
80 # box size
81 Lx = BoxBounds[1] - BoxBounds[0]
82 Ly = BoxBounds[3] - BoxBounds[2]
83 Lz = BoxBounds[5] - BoxBounds[4]
84 print("Lx = " + str(Lx))
85 print("Ly = " + str(Ly))
86 print("Lz = " + str(Lz))
87 MeanDensity = len(Particles) / (Lx * Ly * Lz)
88 # use every particle as the center once
89 for CentralP in range(0, len(Particles), 1):
90 # local Gr around the current particle
91 Local_Gr = zeros(len(r))
92 # look at every other particle at most MaxDist away:
93 for Neighbour in range(0, len(Particles), 1):
94 if CentralP != Neighbour:
95 # calc the distance to the neighbour
96 dx = Particles[CentralP][0] - Particles[Neighbour][0]
97 dy = Particles[CentralP][1] - Particles[Neighbour][1]
98 dz = Particles[CentralP][2] - Particles[Neighbour][2]
99 d = sqrt(dx**2 + dy**2 + dz**2)

100 # what bins is the particle in?
101 IdxList = [k for k in range(0, len(r), 1) if abs(r[k] - d) <= dr/2]
102 # add one to every bin the particle is in
103 for Pos in IdxList:
104 # count the particle
105 Local_Gr[Pos] += 1
106 # shift the center of box cosy
107 LocalBox = [BoxBounds[0] - Particles[CentralP][0],\
108 BoxBounds[1] - Particles[CentralP][0],\
109 BoxBounds[2] - Particles[CentralP][1],\
110 BoxBounds[3] - Particles[CentralP][1],\
111 BoxBounds[4] - Particles[CentralP][2],\
112 BoxBounds[5] - Particles[CentralP][2]]
113 # normalize with the shell volume
114 for RIdx in range(0, len(r), 1):
115 SVolume = ShellVolume(r[RIdx]-dr/2, r[RIdx]+dr/2, LocalBox)
116 if SVolume > 0.0:
117 Local_Gr[RIdx] /= SVolume
118 NonEmptyShells[RIdx] += 1
119 # normalize by the mean particle density
120 Local_Gr = Local_Gr / MeanDensity
121 # save in the global gr for the average over particles
122 Global_Gr = Global_Gr + Local_Gr
123 print("Finished Particle " + str(CentralP) + " of " + str(len(Particles)))
124
125 # final normalization considering the non empty shell volumes
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126 for k in range(0, len(Global_Gr), 1):
127 if NonEmptyShells[k] != 0:
128 Global_Gr[k] /= NonEmptyShells[k]
129 else:
130 print("All Shells at R = " + str(r[k]) + " are Empty!")
131
132 return Global_Gr

11.10.4 Analytic - Internal Volume

1 def VInt_Analytic(Rs, xb, zb):
2
3 S = sqrt(Rs**2-xb**2-zb**2)
4 Vint = 1/3 * (xb * zb * S)
5 Vint += 1/2 * arctan(xb/S)*(Rs**2*zb-(1/3)*zb**3)
6 Vint += 1/2 * arctan(zb/S)*(Rs**2*xb-(1/3)*xb**3)
7 Vint -= 1/3 * Rs**3 * arctan(xb*zb/(Rs * S))
8
9 return Vint

11.10.5 Monte Carlo - Internal Volume

1 def VInt_MC(Rs, xb, zb, NPoints):
2
3 InsidePoints = 0
4 for k in range(0, NPoints, 1):
5 # random point in the first (Rs,Rs,Rs) octant
6 XRand = random() * Rs
7 YRand = random() * Rs
8 ZRand = random() * Rs
9 if XRand**2 + YRand**2 + ZRand**2 < Rs**2 and\

10 XRand < xb and ZRand < zb:
11 InsidePoints += 1
12
13 return InsidePoints / NPoints * Rs**3

11.10.6 Numeric Integration - Internal Volume

1 from numpy import sqrt, pi, arctan, linspace, array
2 from scipy.integrate import quad
3
4 def VInt_Num(Rs, xb, zb):
5
6 def height(x, z, Rs):
7 return sqrt(Rs**2 - x**2 - z**2)
8
9 def VInt(zb, Rs):

10
11 return quad(height, 0, xb, args = (zb, Rs))[0]
12 Volume = quad(VInt, 0, zb, args = (Rs))[0]
13
14 return Volume

152 Chapter 11 Computing the 3D Radial Distribution Function



11.10.7 Analytic - Spherical Cut Volume

1 def SphereCutVol(Rs, A, B):
2
3 Root = sqrt(Rs**2-A**2-B**2)
4 Vcut = 1/6*Rs**3*(pi - 2*arctan(A*B/(Rs*Root)))
5 Vcut += 1/2 * (arctan(A/Root) - pi/2)*(Rs**2*B-1/3*B**3)
6 Vcut += 1/2 * (arctan(B/Root) - pi/2)*(Rs**2*A-1/3*A**3)
7 Vcut += 1/3 * A * B * Root
8
9 return Vcut

11.10.8 The Octant Sum

1 def SphereVolume(Rs, Xmin, Xmax, Ymin, Ymax, Zmin, Zmax):
2
3 VSphere = 0
4 # abs() mirrors the boundaries into the first octant
5 for xb in [abs(Xmin), abs(Xmax)]:
6 for yb in [abs(Ymin), abs(Ymax)]:
7 for zb in [abs(Zmin), abs(Zmax)]:
8 VSphere += OctVolume(Rs, xb, yb, zb)
9 return VSphere

11.10.9 The Octant Volume

1 def OctVolume(Rs, xb, yb, zb):
2
3 # if all boundaries intersect inside the octant
4 if xb**2 + yb**2 + zb**2 < Rs**2:
5 return xb * yb * zb
6 # if they dont intersect we start with a full octant
7 VOctant = 1/8 * 4/3 * pi * Rs**3
8 # then, we remove the spherical caps
9 for B in [xb, yb, zb]:

10 if B < Rs:
11 VOctant -= pi/4*(2/3*Rs**3-B*Rs**2+1/3*B**3)
12 # finally, we add the intersections of the caps
13 for (a, b) in [(xb, yb), (xb, zb), (yb, zb)]:
14 if a**2 + b**2 < Rs**2:
15 VOctant += VSphereCut(Rs, a, b)
16 return VOctant

11.10.10 Monte Carlo - Spherical Cut Volume

1 def SphereCutVol_MC(Rs, A, B, NPoints):
2
3 InsidePoints = 0
4 for k in range(0, NPoints, 1):
5 # random point in the first (Rs,Rs,Rs) octant
6 XRand = random() * Rs
7 YRand = random() * Rs
8 ZRand = random() * Rs
9 if XRand**2 + YRand**2 + ZRand**2 < Rs**2 and\

10 XRand > A and YRand > B:
11 InsidePoints += 1
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12
13 return InsidePoints / NPoints * Rs**3

11.10.11 Monte Carlo - Sphere Volume

1 def SphereVolume_MC(Rs, Xmin, Xmax, Ymin, Ymax, Zmin, Zmax, NPoints):
2
3 InsidePoints = 0
4 for k in range(0, NPoints, 1):
5 # random point in the box
6 XRand = random() * (Xmax-Xmin) + Xmin
7 YRand = random() * (Ymax-Ymin) + Ymin
8 ZRand = random() * (Zmax-Zmin) + Zmin
9 # if the point is inside the sphere

10 if XRand**2 + YRand**2 + ZRand**2 < Rs**2:
11 InsidePoints += 1
12
13 return InsidePoints / NPoints*(Xmax-Xmin)*(Ymax-Ymin)*(Zmax-Zmin)

11.10.12 Simple g(r) in C++

1 #include <iostream>
2 #include <sstream>
3 #include <chrono>
4 #include <cmath>
5 #include <cstdlib>
6 #include <string>
7 #include <fstream>
8 #include <istream>
9 #include <vector>

10 #include <streambuf>
11
12 long double pi = 3.1415926535897932384626433;
13
14 struct Box
15 {
16 long double Xmin = 0;
17 long double Xmax = 0;
18 long double Ymin = 0;
19 long double Ymax = 0;
20 long double Zmin = 0;
21 long double Zmax = 0;
22 long int PartNum = 0;
23 };
24
25 struct Particle
26 {
27 long double XPos = 0;
28 long double YPos = 0;
29 long double ZPos = 0;
30 };
31
32 std::vector<std::string> split(const std::string& s, char delimiter)
33 {
34 std::vector<std::string> tokens;
35 std::string token;
36 std::istringstream tokenStream(s);
37 while (std::getline(tokenStream, token, delimiter))
38 {
39 tokens.push_back(token);
40 }

154 Chapter 11 Computing the 3D Radial Distribution Function



41 return tokens;
42 };
43
44 inline std::vector<Particle> readPartCoor(const std::string FileName)
45 {
46 // open the raw data file
47 std::ifstream DataFile(FileName + ".txt");
48 std::string TxtData;
49 // get length of file:
50 DataFile.seekg(0, std::ios::end); // go to the end of the file
51 TxtData.reserve(DataFile.tellg()); // allocate enough space
52 DataFile.seekg(0, std::ios::beg); // go to the beginning of the file
53 TxtData.assign((std::istreambuf_iterator<char>(DataFile)),
54 std::istreambuf_iterator<char>());
55 DataFile.close();
56 // split the data into lines
57 std::vector<std::string> datalines = split(TxtData, '\n');
58 Particle P; // single particle struct
59 std::vector<Particle> Particles; // list of particles
60 std::cout << "The first lines in the raw data file are:" << std::endl;
61 std::cout << datalines.at(0) << std::endl;
62 std::cout << datalines.at(1) << std::endl;
63 std::cout << datalines.at(2) << std::endl;
64 std::cout << datalines.at(3) << std::endl;
65 std::cout << "The RawDataFile has " << datalines.size() <<
66 " lines." << std::endl;
67 for(long int k = 0; k < datalines.size() ; k++)
68 {
69 std::vector<std::string> results;
70 // split the individual lines (X, Y, Z)
71 results = split(datalines.at(k), '\t');
72 // save the single particle positions
73 P.XPos = std::stold(results.at(0));
74 P.YPos = std::stold(results.at(1));
75 P.ZPos = std::stold(results.at(2));
76 Particles.push_back(P);
77 }
78 return Particles;
79 };
80
81 inline Box FindBoxBounds(const std::vector<Particle> Particles)
82 {
83 // Box boundaries
84 Box BoxBounds;
85 // initialize the boundaries with the first particle
86 BoxBounds.Xmin = Particles.at(0).XPos;
87 BoxBounds.Xmax = Particles.at(0).XPos;
88 BoxBounds.Ymin = Particles.at(0).YPos;
89 BoxBounds.Ymax = Particles.at(0).YPos;
90 BoxBounds.Zmin = Particles.at(0).ZPos;
91 BoxBounds.Zmax = Particles.at(0).ZPos;
92 BoxBounds.PartNum = Particles.size();
93 // loop over all other particles and find minima and maxima
94 for(long int Pos = 1; Pos < Particles.size(); Pos++)
95 {
96 if(Particles.at(Pos).XPos < BoxBounds.Xmin)
97 BoxBounds.Xmin = Particles.at(Pos).XPos;
98 if(Particles.at(Pos).XPos > BoxBounds.Xmax)
99 BoxBounds.Xmax = Particles.at(Pos).XPos;

100 if(Particles.at(Pos).YPos < BoxBounds.Ymin)
101 BoxBounds.Ymin = Particles.at(Pos).YPos;
102 if(Particles.at(Pos).YPos > BoxBounds.Ymax)
103 BoxBounds.Ymax = Particles.at(Pos).YPos;
104 if(Particles.at(Pos).ZPos < BoxBounds.Zmin)
105 BoxBounds.Zmin = Particles.at(Pos).ZPos;
106 if(Particles.at(Pos).ZPos > BoxBounds.Zmax)
107 BoxBounds.Zmax = Particles.at(Pos).ZPos;
108 };
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109 return BoxBounds;
110 };
111
112 inline std::vector<long double> RDF_AnalyticNorm(
113 const std::vector<Particle> Particles,
114 const std::vector<long double> r,
115 const long double dr, const Box BoxBounds)
116 {
117 // Gr averaged over all particles
118 std::vector<long double> Global_Gr(r.size(), 0);
119 // maximal radial distance
120 long double MaxDist = r.at(r.size()-1) + dr/2.0;
121 // box size
122 long double Lx = BoxBounds.Xmax - BoxBounds.Xmin;
123 long double Ly = BoxBounds.Ymax - BoxBounds.Ymin;
124 long double Lz = BoxBounds.Zmax - BoxBounds.Zmin;
125 // Show this to the user
126 std::cout << "The Sample Volume has the following size:" << std::endl;
127 std::cout << "Lx = " << Lx << std::endl;
128 std::cout << "Ly = " << Ly << std::endl;
129 std::cout << "Lz = " << Lz << std::endl;
130 long double MeanDensity = Particles.size() / (Lx * Ly * Lz);
131 // use every particle as the center once
132 for(long int CentralP = 0; CentralP < Particles.size(); CentralP++)
133 {
134 // local Gr around the current particle
135 std::vector<long double> Local_Gr(r.size(), 0);
136 // look at every other particle at most MaxDist away:
137 for(long int Neighbour = 0; Neighbour < Particles.size(); Neighbour++)
138 {
139 if(CentralP != Neighbour)
140 {
141 // calc the distance to the neighbour
142 long double dx = Particles.at(CentralP).XPos -
143 Particles.at(Neighbour).XPos;
144 long double dy = Particles.at(CentralP).YPos -
145 Particles.at(Neighbour).YPos;
146 long double dz = Particles.at(CentralP).ZPos -
147 Particles.at(Neighbour).ZPos;
148 long double d = std::sqrt(dx*dx + dy*dy + dz*dz);
149 // what bins is the particle in?
150 for(long int RPos = 0; RPos < r.size(); RPos++)
151 {
152 if(std::abs(r.at(RPos) - d) <= dr/2.0)
153 {
154 Local_Gr.at(RPos) += 1;
155 }
156 }
157 }
158 }
159 // local box for the shell box intersection volume
160 Box LocalBox = BoxBounds;
161 // shift the center of the box cosy
162 LocalBox.Xmin = BoxBounds.Xmin - Particles.at(CentralP).XPos;
163 LocalBox.Xmax = BoxBounds.Xmax - Particles.at(CentralP).XPos;
164 LocalBox.Ymin = BoxBounds.Ymin - Particles.at(CentralP).YPos;
165 LocalBox.Ymax = BoxBounds.Ymax - Particles.at(CentralP).YPos;
166 LocalBox.Zmin = BoxBounds.Zmin - Particles.at(CentralP).ZPos;
167 LocalBox.Zmax = BoxBounds.Zmax - Particles.at(CentralP).ZPos;
168 // normalize with the shell volume
169 for(long int RIdx = 0; RIdx < r.size(); RIdx++)
170 {
171 // calculate the shell box intersection volume
172 long double SVolume = 4.0/3.0 * pi *
173 (std::pow(r.at(RIdx)+dr/2.0, 3) - std::pow(r.at(RIdx)-dr/2.0, 3));
174 Local_Gr.at(RIdx) /= SVolume;
175 // normalize by the mean particle density
176 Local_Gr.at(RIdx) /= MeanDensity;
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177 // save in the global gr for the average over particles
178 Global_Gr.at(RIdx) += Local_Gr.at(RIdx);
179 }
180
181 if(CentralP % 1000 == 0)
182 std::cout << "Finished Particle " << CentralP <<
183 " of " << Particles.size() << std::endl;
184 }
185 // final average over all particles
186 for(long int k = 0; k < Global_Gr.size(); k++)
187 {
188 Global_Gr.at(k) /= Particles.size();
189 }
190
191 return Global_Gr;
192 };
193
194 void SaveData(const std::string SimuName, const std::string FileName,
195 const std::vector<long double> Gr,
196 const std::vector<long double> r,
197 const long double dr, const long double ComputeTime,
198 Box BoxBounds)
199 {
200 // box size
201 long double Lx = BoxBounds.Xmax - BoxBounds.Xmin;
202 long double Ly = BoxBounds.Ymax - BoxBounds.Ymin;
203 long double Lz = BoxBounds.Zmax - BoxBounds.Zmin;
204 long double RmaxNatural = std::sqrt(Lx*Lx + Ly*Ly + Lz*Lz)/2.0;
205 std::ofstream DataFile;
206 DataFile.open(SimuName + ".txt", std::ios::out);
207 DataFile.precision(25);
208 DataFile << "Results for the radial distribution function computation." <<
209 std::endl;
210 DataFile << "Particle File Name: " << FileName << std::endl;
211 DataFile << "Computation time for g(r): " << ComputeTime <<
212 " nanoseconds." << std::endl;
213 DataFile << "Radial Bin Width dr: " << dr << std::endl;
214 DataFile << "Number of radial Bins: " << r.size() << std::endl;
215 DataFile << "Number of Particles in the sample: " <<
216 BoxBounds.PartNum << std::endl;
217 DataFile << "Average Particle Number Density: " <<
218 BoxBounds.PartNum / (Lx * Ly * Lz) << std::endl;
219 DataFile << "Maximal useful radial distance: " << RmaxNatural << std::endl;
220 DataFile << "Box Boundary Xmin: " << BoxBounds.Xmin << std::endl;
221 DataFile << "Box Boundary Xmax: " << BoxBounds.Xmax << std::endl;
222 DataFile << "Box Boundary Ymin: " << BoxBounds.Ymin << std::endl;
223 DataFile << "Box Boundary Ymax: " << BoxBounds.Ymax << std::endl;
224 DataFile << "Box Boundary Zmin: " << BoxBounds.Zmin << std::endl;
225 DataFile << "Box Boundary Zmax: " << BoxBounds.Zmax << std::endl;
226 DataFile << "Box Boundary X-length: " << Lx << std::endl;
227 DataFile << "Box Boundary Y-length: " << Ly << std::endl;
228 DataFile << "Box Boundary Z-length: " << Lz << std::endl;
229 DataFile << "Box Volume: " << Lx * Ly * Lz << std::endl;
230 DataFile << "# r \t g(r)" << std::endl;
231 for(long int l = 0; l < r.size(); l++)
232 {
233 DataFile << r.at(l) << "\t";
234 DataFile << Gr.at(l) << std::endl;
235 }
236 DataFile.close();
237 };
238
239 int main(void)
240 {
241 // Dashboard
242 std::string SimuName = ""; // Name of the simulation
243 std::string FileName = ""; // Name of the simulation
244 long int Bins = 1; // number of sample calculations
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245 long double dr = 1; // bin size
246 // User Input
247 std::cout << "Please enter the following information:" << std::endl;
248 std::cout << "Name for the simulation: ";
249 std::cin >> SimuName;
250 std::cout << "Particle File Name: ";
251 std::cin >> FileName;
252 std::cout << "Bin size (dr): ";
253 std::cin >> dr;
254 std::cout << "Starting g(r) computation." << std::endl;
255 // output precision
256 std::cout.precision(20);
257 // read in the raw particle coordinates
258 std::vector<Particle> Particles = readPartCoor(FileName);
259 // benchmark the g(r) calculation
260 auto start = std::chrono::steady_clock::now();
261 // find the Box Boundaries
262 Box BoxBounds = FindBoxBounds(Particles);
263 // box size
264 long double Lx = BoxBounds.Xmax - BoxBounds.Xmin;
265 long double Ly = BoxBounds.Ymax - BoxBounds.Ymin;
266 long double Lz = BoxBounds.Zmax - BoxBounds.Zmin;
267 // maximal useful radial distance
268 long double RMAX = std::sqrt(Lx*Lx + Ly*Ly + Lz*Lz)/2.0;
269 // show the maximal usefull radius to the user
270 std::cout << "Maximal usefull radius: " << RMAX << std::endl;
271 // Number of Bins
272 Bins = static_cast<long int>(RMAX / dr);
273 // the radial position and g(r) vector
274 std::vector<long double> r(Bins, 0);
275 std::vector<long double> Gr(Bins, 0);
276 // create the radial distance vector
277 for(long int k = 0; k < Bins; k++)
278 {
279 r.at(k) = k * RMAX/Bins;
280 }
281 // compute the radial distribution function
282 Gr = RDF_AnalyticNorm(Particles, r, dr, BoxBounds);
283 auto end = std::chrono::steady_clock::now();
284 auto diff = end - start;
285 double ComputeTime = std::chrono::duration <double, std::nano> (diff).count();
286 // information for the user
287 std::cout << "Time for the g(r) computation: ";
288 std::cout << ComputeTime;
289 std::cout << " nanoseconds" << std::endl;
290 // save all the data into a file
291 SaveData(SimuName, FileName, Gr, r, dr, ComputeTime, BoxBounds);
292 std::cout << "Program Finished!" << std::endl;
293 };

11.10.13 Analytic g(r) in C++

1 #include <iostream>
2 #include <sstream>
3 #include <chrono>
4 #include <cmath>
5 #include <cstdlib>
6 #include <string>
7 #include <fstream>
8 #include <istream>
9 #include <vector>

10 #include <streambuf>
11
12 long double pi = 3.1415926535897932384626433;
13
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14 struct Box
15 {
16 long double Xmin = 0;
17 long double Xmax = 0;
18 long double Ymin = 0;
19 long double Ymax = 0;
20 long double Zmin = 0;
21 long double Zmax = 0;
22 long int PartNum = 0;
23 };
24
25 struct Particle
26 {
27 long double XPos = 0;
28 long double YPos = 0;
29 long double ZPos = 0;
30 };
31
32 std::vector<std::string> split(const std::string& s, char delimiter)
33 {
34 std::vector<std::string> tokens;
35 std::string token;
36 std::istringstream tokenStream(s);
37 while (std::getline(tokenStream, token, delimiter))
38 {
39 tokens.push_back(token);
40 }
41 return tokens;
42 };
43
44 inline std::vector<Particle> readPartCoor(const std::string FileName)
45 {
46 // open the raw data file
47 std::ifstream DataFile(FileName + ".txt");
48 std::string TxtData;
49 // get length of file:
50 DataFile.seekg(0, std::ios::end); // go to the end of the file
51 TxtData.reserve(DataFile.tellg()); // allocate enough space
52 DataFile.seekg(0, std::ios::beg); // go to the beginning of the file
53 TxtData.assign((std::istreambuf_iterator<char>(DataFile)),
54 std::istreambuf_iterator<char>());
55 DataFile.close();
56 // split the data into lines
57 std::vector<std::string> datalines = split(TxtData, '\n');
58 Particle P; // single particle struct
59 std::vector<Particle> Particles; // list of particles
60 std::cout << "The first lines in the raw data file are:" << std::endl;
61 std::cout << datalines.at(0) << std::endl;
62 std::cout << datalines.at(1) << std::endl;
63 std::cout << datalines.at(2) << std::endl;
64 std::cout << datalines.at(3) << std::endl;
65 std::cout << "The RawDataFile has " << datalines.size() <<
66 " lines." << std::endl;
67 for(long int k = 0; k < datalines.size() ; k++)
68 {
69 std::vector<std::string> results;
70 // split the individual lines (X, Y, Z)
71 results = split(datalines.at(k), '\t');
72 // save the single particle positions
73 P.XPos = std::stold(results.at(0));
74 P.YPos = std::stold(results.at(1));
75 P.ZPos = std::stold(results.at(2));
76 Particles.push_back(P);
77 }
78 return Particles;
79 };
80
81 inline long double SphereCutVol(const long double Rs,
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82 const long double A,
83 const long double B)
84 {
85 long double Root = std::sqrt(Rs*Rs-A*A-B*B);
86 long double Vcut = Rs*Rs*Rs*(pi - 2.0*std::atan(A*B/(Rs*Root))) / 6.0;
87 Vcut += (std::atan(A/Root) - pi/2.0)*(Rs*Rs*B-1.0/3.0*B*B*B) / 2.0;
88 Vcut += (std::atan(B/Root) - pi/2.0)*(Rs*Rs*A-1.0/3.0*A*A*A) / 2.0;
89 Vcut += A * B * Root / 3.0;
90
91 return Vcut;
92 };
93
94 inline long double OctVolume(const long double Rs,
95 const long double xb,
96 const long double yb,
97 const long double zb)
98 {
99 // if all boundaries are fully in the octant

100 if(xb*xb + yb*yb + zb*zb < Rs*Rs)
101 {
102 return xb * yb * zb;
103 }
104 // if no boundary intersects we start with a full octant
105 long double VOctant = pi * Rs*Rs*Rs / 6.0;
106 // remove the spherical caps
107 if(xb < Rs)
108 {
109 VOctant -= pi/4.0*(2.0/3.0*Rs*Rs*Rs-xb*Rs*Rs+1.0/3.0*xb*xb*xb);
110 }
111 if(yb < Rs)
112 {
113 VOctant -= pi/4.0*(2.0/3.0*Rs*Rs*Rs-yb*Rs*Rs+1.0/3.0*yb*yb*yb);
114 }
115 if(zb < Rs)
116 {
117 VOctant -= pi/4.0*(2.0/3.0*Rs*Rs*Rs-zb*Rs*Rs+1.0/3.0*zb*zb*zb);
118 }
119 // add the intersections of the caps
120 if((xb*xb + yb*yb) < (Rs*Rs))
121 {
122 VOctant += SphereCutVol(Rs, xb, yb);
123 }
124 if((xb*xb + zb*zb) < (Rs*Rs))
125 {
126 VOctant += SphereCutVol(Rs, xb, zb);
127 }
128 if((yb*yb + zb*zb) < (Rs*Rs))
129 {
130 VOctant += SphereCutVol(Rs, yb, zb);
131 }
132 return VOctant;
133 };
134
135 inline long double SphereVolume(const long double Rs, const Box BoxSize)
136 {
137 long double VSphere = 0.0;
138 // std::abs() mirrors the boundaries into the first octant
139 VSphere += OctVolume(Rs, std::abs(BoxSize.Xmin),
140 std::abs(BoxSize.Ymin), std::abs(BoxSize.Zmin));
141 VSphere += OctVolume(Rs, std::abs(BoxSize.Xmin),
142 std::abs(BoxSize.Ymin), std::abs(BoxSize.Zmax));
143 VSphere += OctVolume(Rs, std::abs(BoxSize.Xmin),
144 std::abs(BoxSize.Ymax), std::abs(BoxSize.Zmin));
145 VSphere += OctVolume(Rs, std::abs(BoxSize.Xmin),
146 std::abs(BoxSize.Ymax), std::abs(BoxSize.Zmax));
147 VSphere += OctVolume(Rs, std::abs(BoxSize.Xmax),
148 std::abs(BoxSize.Ymin), std::abs(BoxSize.Zmin));
149 VSphere += OctVolume(Rs, std::abs(BoxSize.Xmax),
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150 std::abs(BoxSize.Ymin), std::abs(BoxSize.Zmax));
151 VSphere += OctVolume(Rs, std::abs(BoxSize.Xmax),
152 std::abs(BoxSize.Ymax), std::abs(BoxSize.Zmin));
153 VSphere += OctVolume(Rs, std::abs(BoxSize.Xmax),
154 std::abs(BoxSize.Ymax), std::abs(BoxSize.Zmax));
155
156 return VSphere;
157 };
158
159 inline long double ShellVolume(const long double Rmin,
160 const long double Rmax,
161 const Box BoxSize)
162 {
163 long double InnerSphere = SphereVolume(Rmin, BoxSize);
164 long double OuterSphere = SphereVolume(Rmax, BoxSize);
165 long double ShellVol = OuterSphere - InnerSphere;
166
167 return ShellVol;
168 };
169
170 inline Box FindBoxBounds(const std::vector<Particle> Particles)
171 {
172 // Box boundaries
173 Box BoxBounds;
174 // initialize the boundaries with the first particle
175 BoxBounds.Xmin = Particles.at(0).XPos;
176 BoxBounds.Xmax = Particles.at(0).XPos;
177 BoxBounds.Ymin = Particles.at(0).YPos;
178 BoxBounds.Ymax = Particles.at(0).YPos;
179 BoxBounds.Zmin = Particles.at(0).ZPos;
180 BoxBounds.Zmax = Particles.at(0).ZPos;
181 BoxBounds.PartNum = Particles.size();
182 // loop over all other particles and find minima and maxima
183 for(long int Pos = 1; Pos < Particles.size(); Pos++)
184 {
185 if(Particles.at(Pos).XPos < BoxBounds.Xmin)
186 BoxBounds.Xmin = Particles.at(Pos).XPos;
187 if(Particles.at(Pos).XPos > BoxBounds.Xmax)
188 BoxBounds.Xmax = Particles.at(Pos).XPos;
189 if(Particles.at(Pos).YPos < BoxBounds.Ymin)
190 BoxBounds.Ymin = Particles.at(Pos).YPos;
191 if(Particles.at(Pos).YPos > BoxBounds.Ymax)
192 BoxBounds.Ymax = Particles.at(Pos).YPos;
193 if(Particles.at(Pos).ZPos < BoxBounds.Zmin)
194 BoxBounds.Zmin = Particles.at(Pos).ZPos;
195 if(Particles.at(Pos).ZPos > BoxBounds.Zmax)
196 BoxBounds.Zmax = Particles.at(Pos).ZPos;
197 };
198 return BoxBounds;
199 };
200
201 inline std::vector<long double> RDF_AnalyticNorm(
202 const std::vector<Particle> Particles,
203 const std::vector<long double> r,
204 const long double dr, const Box BoxBounds)
205 {
206 // Gr averaged over all particles
207 std::vector<long double> Global_Gr(r.size(), 0);
208 // Keep track of the usefull (non-empty) shell volumes
209 std::vector<long double> NonEmptyShells(r.size(), 0);
210 // maximal radial distance
211 long double MaxDist = r.at(r.size()-1) + dr/2.0;
212 // box size
213 long double Lx = BoxBounds.Xmax - BoxBounds.Xmin;
214 long double Ly = BoxBounds.Ymax - BoxBounds.Ymin;
215 long double Lz = BoxBounds.Zmax - BoxBounds.Zmin;
216 // Show this to the user
217 std::cout << "The Sample Volume has the following size:" << std::endl;
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218 std::cout << "Lx = " << Lx << std::endl;
219 std::cout << "Ly = " << Ly << std::endl;
220 std::cout << "Lz = " << Lz << std::endl;
221 long double MeanDensity = Particles.size() / (Lx * Ly * Lz);
222 // use every particle as the center once
223 for(long int CentralP = 0; CentralP < Particles.size(); CentralP++)
224 {
225 // local Gr around the current particle
226 std::vector<long double> Local_Gr(r.size(), 0);
227 // look at every other particle at most MaxDist away:
228 for(long int Neighbour = 0; Neighbour < Particles.size(); Neighbour++)
229 {
230 if(CentralP != Neighbour)
231 {
232 // calc the distance to the neighbour
233 long double dx = Particles.at(CentralP).XPos -
234 Particles.at(Neighbour).XPos;
235 long double dy = Particles.at(CentralP).YPos -
236 Particles.at(Neighbour).YPos;
237 long double dz = Particles.at(CentralP).ZPos -
238 Particles.at(Neighbour).ZPos;
239 long double d = std::sqrt(dx*dx + dy*dy + dz*dz);
240 // what bins is the particle in?
241 for(long int RPos = 0; RPos < r.size(); RPos++)
242 {
243 if(std::abs(r.at(RPos) - d) <= dr/2.0)
244 {
245 Local_Gr.at(RPos) += 1;
246 }
247 }
248 }
249 }
250 // local box for the shell box intersection volume
251 Box LocalBox = BoxBounds;
252 // shift the center of the box cosy
253 LocalBox.Xmin = BoxBounds.Xmin - Particles.at(CentralP).XPos;
254 LocalBox.Xmax = BoxBounds.Xmax - Particles.at(CentralP).XPos;
255 LocalBox.Ymin = BoxBounds.Ymin - Particles.at(CentralP).YPos;
256 LocalBox.Ymax = BoxBounds.Ymax - Particles.at(CentralP).YPos;
257 LocalBox.Zmin = BoxBounds.Zmin - Particles.at(CentralP).ZPos;
258 LocalBox.Zmax = BoxBounds.Zmax - Particles.at(CentralP).ZPos;
259 // normalize with the shell volume
260 for(long int RIdx = 0; RIdx < r.size(); RIdx++)
261 {
262 // calculate the shell box intersection volume
263 long double SVolume = ShellVolume(r.at(RIdx)-dr/2.0,
264 r.at(RIdx)+dr/2.0, LocalBox);
265 if(SVolume > 0.0)
266 {
267 Local_Gr.at(RIdx) /= SVolume;
268 NonEmptyShells.at(RIdx) += 1;
269 }
270 // normalize by the mean particle density
271 Local_Gr.at(RIdx) /= MeanDensity;
272 // save in the global gr for the average over particles
273 Global_Gr.at(RIdx) += Local_Gr.at(RIdx);
274 }
275 if(CentralP % 1000 == 0)
276 std::cout << "Finished Particle " << CentralP << " of "
277 << Particles.size() << std::endl;
278 }
279 // final normalization considering the non empty shell volumes
280 for(long int k = 0; k < Global_Gr.size(); k++)
281 {
282 if(NonEmptyShells.at(k) != 0)
283 {
284 Global_Gr.at(k) /= NonEmptyShells.at(k);
285 }
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286 else
287 {
288 std::cout << "All Shells at R = " << r.at(k) <<
289 " are Empty!" << std::endl;
290 }
291 }
292 return Global_Gr;
293 };
294
295 void SaveData(const std::string SimuName, const std::string FileName,
296 const std::vector<long double> Gr,
297 const std::vector<long double> r,
298 const long double dr,
299 const long double ComputeTime,
300 Box BoxBounds)
301 {
302 // box size
303 long double Lx = BoxBounds.Xmax - BoxBounds.Xmin;
304 long double Ly = BoxBounds.Ymax - BoxBounds.Ymin;
305 long double Lz = BoxBounds.Zmax - BoxBounds.Zmin;
306 long double RmaxNatural = std::sqrt(Lx*Lx + Ly*Ly + Lz*Lz)/2.0;
307 std::ofstream DataFile;
308 DataFile.open(SimuName + ".txt", std::ios::out);
309 DataFile.precision(25);
310 DataFile << "Results for the radial distribution function computation." <<
311 std::endl;
312 DataFile << "Particle File Name: " << FileName << std::endl;
313 DataFile << "Computation time for g(r): " << ComputeTime <<
314 " nanoseconds." << std::endl;
315 DataFile << "Radial Bin Width dr: " << dr << std::endl;
316 DataFile << "Number of radial Bins: " << r.size() << std::endl;
317 DataFile << "Number of Particles in the sample: " <<
318 BoxBounds.PartNum << std::endl;
319 DataFile << "Average Particle Number Density: " <<
320 BoxBounds.PartNum / (Lx * Ly * Lz) << std::endl;
321 DataFile << "Maximal useful radial distance: " <<
322 RmaxNatural << std::endl;
323 DataFile << "Box Boundary Xmin: " << BoxBounds.Xmin << std::endl;
324 DataFile << "Box Boundary Xmax: " << BoxBounds.Xmax << std::endl;
325 DataFile << "Box Boundary Ymin: " << BoxBounds.Ymin << std::endl;
326 DataFile << "Box Boundary Ymax: " << BoxBounds.Ymax << std::endl;
327 DataFile << "Box Boundary Zmin: " << BoxBounds.Zmin << std::endl;
328 DataFile << "Box Boundary Zmax: " << BoxBounds.Zmax << std::endl;
329 DataFile << "Box Boundary X-length: " << Lx << std::endl;
330 DataFile << "Box Boundary Y-length: " << Ly << std::endl;
331 DataFile << "Box Boundary Z-length: " << Lz << std::endl;
332 DataFile << "Box Volume: " << Lx * Ly * Lz << std::endl;
333 DataFile << "# r \t g(r)" << std::endl;
334 for(long int l = 0; l < r.size(); l++)
335 {
336 DataFile << r.at(l) << "\t";
337 DataFile << Gr.at(l) << std::endl;
338 }
339 DataFile.close();
340 };
341
342 int main(void)
343 {
344 // Dashboard
345 std::string SimuName = ""; // Name of the simulation
346 std::string FileName = ""; // Name of the simulation
347 long int Bins = 1; // number of sample calculations
348 long double dr = 1; // bin size
349 // User Input
350 std::cout << "Please enter the following information:" << std::endl;
351 std::cout << "Name for the simulation: ";
352 std::cin >> SimuName;
353 std::cout << "Particle File Name: ";
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354 std::cin >> FileName;
355 std::cout << "Bin size (dr): ";
356 std::cin >> dr;
357 std::cout << "Starting g(r) computation." << std::endl;
358 // output precision
359 std::cout.precision(20);
360 // read in the raw particle coordinates
361 std::vector<Particle> Particles = readPartCoor(FileName);
362 // benchmark the g(r) calculation
363 auto start = std::chrono::steady_clock::now();
364 // find the Box Boundaries
365 Box BoxBounds = FindBoxBounds(Particles);
366 // box size
367 long double Lx = BoxBounds.Xmax - BoxBounds.Xmin;
368 long double Ly = BoxBounds.Ymax - BoxBounds.Ymin;
369 long double Lz = BoxBounds.Zmax - BoxBounds.Zmin;
370 // maximal useful radial distance
371 long double RMAX = std::sqrt(Lx*Lx + Ly*Ly + Lz*Lz)/2.0;
372 // show the maximal usefull radius to the user
373 std::cout << "Maximal usefull radius: " << RMAX << std::endl;
374 // Number of Bins
375 Bins = static_cast<long int>(RMAX / dr);
376 // the radial position and g(r) vector
377 std::vector<long double> r(Bins, 0);
378 std::vector<long double> Gr(Bins, 0);
379 // create the radial distance vector
380 for(long int k = 0; k < Bins; k++)
381 {
382 r.at(k) = k * RMAX/Bins;
383 }
384 // compute the radial distribution function
385 Gr = RDF_AnalyticNorm(Particles, r, dr, BoxBounds);
386 auto end = std::chrono::steady_clock::now();
387 auto diff = end - start;
388 double ComputeTime = std::chrono::duration <double, std::nano> (diff).count();
389 // information for the user
390 std::cout << "Time for the g(r) computation: ";
391 std::cout << ComputeTime;
392 std::cout << " nanoseconds" << std::endl;
393 // save all the data into a file
394 SaveData(SimuName, FileName, Gr, r, dr, ComputeTime, BoxBounds);
395 std::cout << "Program Finished!" << std::endl;
396 };
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95447 Bayreuth, Germany

2 JCNS-1/ICS-1, Forschungszentrum Jülich, 52425 Jülich, Germany
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12.1 Abstract

The combination of various types of materials is often used to create superior
composites that outperform the pure phase components. For any rational design,
the thermal conductivity of the composite as a function of the volume fraction of
the filler component needs to be known. When approaching the nanoscale, the
homogeneous mixture of various components poses an additional challenge. Here, we
investigate binary nanocomposite materials based on polymer latex beads and hollow
silica nanoparticles. These form randomly mixed colloidal glasses on a sub-µm scale.
We focus on the heat transport properties through such binary assembly structures.
The thermal conductivity can be well described by the effective medium theory.
However, film formation of the soft polymer component leads to phase segregation
and a mismatch between existing mixing models. We confirm our experimental
data by finite element modeling. This additionally allowed us to assess the onset
of thermal transport percolation in such random particulate structures. Our study
contributes to a better understanding of thermal transport through heterostructured
particulate assemblies.

12.2 Introduction

Nanostructured materials have been the driving force for the tremendous development
of many modern technologies, such as high-performance processors and data storage
devices, sensors, or telecommunication equipment. (Opto) electronic devices have
benefited from the ongoing miniaturization, which allowed device density to increase
according to Moore’s law. However, this miniaturization is also accompanied by an
increased energy density and, consequently, by much higher, much more localized
temperatures. Thus, it becomes increasingly important to control the way heat
flows through these structures; one particular challenge is the dissipation of heat in
electronic elements.[1] Therefore, electrically insulating heat spreading materials are
used to prevent the formation of hot spots, which reduce the lifetime and reliability
of electronic materials.[2],[3] These materials are commonly polymers filled with a
highly thermally conductive micro- or nanomaterial.[4],[5] The thermal properties of
these polymer composites depend mainly on the geometry of the filler (i.e., shape
and size),[6] the volume fraction and distribution of the filler material in the matrix
(lattice type),[7] the contact between the filler particles,[8] and the thermal properties
of the components.[8] Advantages of polymer filled materials are easy processing and
good mechanical properties.

For the application as a heat spreading material, a composite material needs to
enhance the effective thermal conductivity greatly compared to that of its neat
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matrix. The filler material is typically much more expensive and/or less available
than the matrix component. Consequently, low loading fractions of the filler material
are highly desirable. An important quantity to characterize the minimum amount
of necessary filler is given by its percolation threshold. Percolation describes the
formation of long-range connectivity in randomly ordered systems. Expectedly, the
threshold shifts to lower filler volume fractions in composites by using small particles
with a large aspect ratio (like rods or fibers),[9] a lattice type with a large number of
neighbors (such as a face-centered cubic structure),[7] and a low contact resistance
between the filler particles.[10]

Percolation theory analytically describes the composition dependence of a binary
mixture of isotropic objects.[7] The relationship between the effective thermal con-
ductivity of the composite κeff and the volume fraction of the filler Vfiller is given by

κeff ∝ κfiller (Vfiller − Vc)n , (12.1)

where κfiller is the thermal conductivity of the filler, Vc the percolation threshold,
and n the percolation exponent [typically 2 in a three-dimensional (3D) experiment].
Based on this equation, Mamunya et al.[11] developed an analytic expression for the
electrical conductivity in composites, which can also be assigned to the effective
thermal conductivity (κeff)[8],

κeff =
(
φ1 − φc
F − φc

)t
(κ1 − κ2) + κ2, (12.2)

where κ1, κ2 are the thermal conductivities of the two components 1 and 2 (κ1 � κ2),
F is the maximum filling packing factor (here F = 1), φc is the percolation threshold
(φc = χcF ), which depends on the lattice structure (χc is the critical percolation
probability, χc = 0.27 for random close-packed structures),[12] φ1 is the volume
concentration of component 1, and t is a critical exponent which depends on the
dimension of the structure (3D structures: t = 2).[7] However, the percolation theory
cannot be applied to mixing ratios lower than the percolation threshold.

Therefore, the thermal conductivity of a composite material is often predicted by
binary mixing models. These can be applied to the entire mixing phase diagram.
The most common ones are the series and parallel model, the Maxwell-Eucken
(ME) model 1 and 2 and the effective medium theory (EMT).[13],[14] These are
summarized with their corresponding formulas in Fig. 12.1. The upper and lower
bounds are given by the parallel and series model, respectively, in which the layers
are aligned parallel or perpendicular to the heat flow direction. The ME model
1 and 2 assume separated inclusions in a dispersed, phase.[15] Thus, materials
with percolating pathways cannot be described by the Maxwell-Eucken models. A
better description is given by the EMT model. It considers a structure in which
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two components are randomly distributed with neither phase being dispersed or
continuous. Thus, continuous heat conduction pathways can be formed by either
particle type depending on the respective volume fraction.

Fig. 12.1.: Relative effective thermal conductivities κe for the series, the parallel, the
Maxwell-Eucken (ME), and the effective medium theory (EMT) model and the
corresponding equations. In the ME1 model, 1 is the continuous phase, whereas,
in the ME2 model, 1 is the dispersed phase. Adapted with permission from
Carson et al.[13]

Our contribution addresses two important aspects of composite materials. First,
choosing a colloidal approach, we can fabricate nanostructured colloidal materials
with any mixing ratio, which otherwise often suffer from macroscopic demixing or
clustering. This allows us to investigate the applicability of the existing mixing
models. Second, we shed light on thermal transport percolation in an isotropic
particle ensemble. We compare our experimental results with finite element method
(FEM) simulation, which provides a deeper understanding of the percolation evo-
lution. We base our study on two types of electrically insulating building blocks:
polymer latex beads and hollow silica nanoparticles. These are self-assembled into
randomly close-packed colloidal ensembles.

12.3 Experimental Section

12.3.1 Fabrication of binary colloidal glasses

Two types of nanoparticles were synthesized: hollow silica spheres and poly(methyl
methacrylate-co-n-butyl acrylate) [P(MMA-co-nBA)] particles. For the synthesis of
hollow silica nanoparticles, first, monodisperse polystyrene particles were prepared by
emulsifier-free emulsion polymerization.[16] Subsequently, the particles were coated
with a thin silica shell by a modified Stoeber condensation process.[17] Finally,
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the polystyrene core was removed by calcination. Monodisperse P(MMA-co-nBA)
particles were synthesized by emulsifier free emulsion polymerization. Colloidal
assemblies were prepared by a vacuum filtration system. Detailed information on the
synthesis of the particles and the assembly process can be found in the Appendix.

12.3.2 Characterization methods

Scanning electron microscopy (SEM) was used to image the colloidal assemblies.
Differential scanning calorimetry measurements were performed to determine the
specific heat capacity. Thermal diffusivity of the colloidal assemblies was measured
using a xenon flash apparatus. These measurements were done in vacuum at room
temperature and in helium (1000 mbar) in the temperature range from 25 °C to
150 °C. The densities of the hollow sphere assemblies and the unmolten colloidal
glasses were determined using a 3D digital surface profiler. The densities of the
molten colloidal assemblies were measured using Archimedes’ principle (buoyancy
method). Further details about the characterization methods are summarized in the
Appendix.

12.3.3 Finite element modeling

An amorphous particle assembly was obtained from molecular dynamics simulation.
This particle structure was used for the finite element method (FEM) simulations
of the effective thermal transport properties using COMSOL MULTIPHYSICS. A
random selection process assigned the two types of particles to the colloidal glass.
An exemplary structure used for FEM is shown in Fig. 12.2(c). For the simulation,
a temperature difference was applied to opposite faces of the cube. This defines the
temperature gradient across the colloidal structure and serves at the same time as a
heat source and a heat sink, respectively. Thermal insulation boundary conditions
are imposed on all other faces of the cube. The computed heat flux normal to
the isothermal faces was used to calculate the effective thermal conductivity using
Fourier’s law. More details on the finite element modeling can be found in the
Appendix.
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Fig. 12.2.: Finite element modeling (FEM) of binary colloidal assemblies with hollow silica
spheres. (a) Thermal conductivity data of the binary particle mixtures, the EMT,
ME1, and ME2 models in comparison to simulated data obtained from FEM.
(b) Thermal conductivity data from FEM of binary colloidal glasses consisting
of hollow spheres and diamond particles and the corresponding EMT (black
line), ME1 (dark blue line), and ME2 (light blue line) models. The gray lines
show the EMT model for binary particle mixtures with a decreasing thermal
conductivity ratio (κ1:κ2) between the two types of particles. The black dashed
line represents the fit by a percolation model [Eq.12.2]. (c) The geometry of
the binary colloidal glass with a diamond particle volume fraction of 36.5%
(blue particles) used for the FEM simulations and the corresponding heat flux
streamlines for the different directions (x, y, and z).

12.4 Results and Discussion

12.4.1 Binary colloidal assemblies

The binary colloidal assemblies are built from two types of particles with comparable
outer diameters and surface charges: copolymer particles P(MMA-co-nBA) with
a diameter of 441 ± 9 nm (ζ potential of -43 mV) and hollow silica nanoparticles
(HSNPs) with a diameter of 423±8 nm, a shell thickness of 25.3±1.2 nm (ζ potential
of -27 mV). The electron microscopy images of these particles are shown in Fig. 12.3.
Both images highlight the monodispersity of the particles. The polymeric particles
feature a shrunk and rough surface due to the sensitivity of the PMMA to the
electron beam.

We used vacuum filtration (see Fig. 12.4 and Appendix for more details) for the
self-assembly process, since this method enables a fast and facile assembly of the
particles into a colloidal glass with a random distribution of the two particle types.
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Particularly, minor density differences do not influence the particle distribution in
the colloidal glass using the filtration process. The number of polymer particles was
varied from 100% to 0% particles (see Table 12.1). The comparable particle size
and surface potential lead to a good particle distribution on the sub-µm scale in
the composite. This is validated by side-view SEM images. The inset in Fig. 12.5
shows the 50/50 mixture with red-colored hollow spheres for easier identification.
Additional SEM images of this 53P particle mixture demonstrate the homogeneous
particle distribution throughout the entire colloidal glass (Fig. 12.6). Only on a
local scale, small clusters comprising several particles of the same type can be seen.
The other particle composites are shown in Fig. 12.7.

12.4.2 Thermal transport properties of binary colloidal
glasses - Percolation effect

The thermal transport properties of the colloidal glasses were determined by xenon
flash analysis. The method allows the direct determination of the thermal diffusivity
α. The thermal conductivity κ can be calculated using the following equation:

κ = αcpρ. (12.3)

The specific heat capacity cp and density ρ data are plotted in Fig. 12.8.

Figure 12.5 shows the thermal conductivity data of the binary colloidal glasses for
different polymer particle volume fractions. For a colloidal glass consisting of hollow
silica spheres (0P), the thermal conductivity is extremely low with a value of only
13 mWm−1K−1. The heat transport is limited in these colloidal glasses due to several
structural properties on the nano- and mesoscale.[18],[19]

These are

(i) the hollow structure, which reduces the density to only 0.30 gcm−3,

(ii) the large amount of interfaces due to the particulate structure, which increases
the thermal resistance by means of inter particle constriction, and

(iii) the low packing parameter of the particles to reduce the density and inter
particle contact points even further.

Thus, silica hollow sphere colloidal glasses represent a highly insulating material
class.
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Fig. 12.3.: (a) Transmission electron microscopy images of the hollow silica nanoparticles.
(b) Scanning electron microscopy images of the P(MMA-co-nBA) particles.

The thermal conductivity of the investigated P(MMA-co-nBA) particle colloidal
glass is about 57 mWm−1K−1 at a density of 0.77 gcm−3, which compares well to the
value reported for 366 nm polystyrene colloidal crystals.[20] By mixing the two types
of particles, the thermal conductivity can be tuned within these bounds. We find that
the thermal conductivity increases monotonically with increasing polymer particle
ratio within the colloidal assemblies. Thus, we do not find any sign of reduced
thermal conductivity caused by mixing unlike particles, e.g., by additional interfacial
resistances. We also cannot infer a distinct percolation threshold, which would be
indicative for a preferred energy transport along a specific particle pathway.

Fig. 12.4.: Schematic setup of the vacuum filtration system. The parts were held together
by a spring clamp and put on a filter flask.
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We compare now our binary colloidal alloys to the existing set of mixing models.[13]

The EMT model describes our system across the whole volume fraction range
reasonably well. At low and high volume fractions, the ME models are also in
reasonable agreement. For these regions, the separated inclusion assumption of the
ME model is valid since the minority particle phase is dispersed in the majority
phase. Furthermore, the parallel and the series model are not adequate for our
colloidal alloys. The standard deviation of the experimental data and the proximity
of the highest and lowest thermal conductivity of the pure phase components does
not allow for further discrimination between these models. We prefer the EMT
model since it is conceptually applicable over the entire mixing range.

The finite element method is a useful tool to validate and understand the experimental
data in greater detail. Figure 12.2(a) compares the experimental values (black
squares) to the simulation results (red circles) based on a random close-packed
particle structure with random binary particle selection. FEM allows the screening
of various composition ratios easily. The resulting thermal conductivity data are
plotted along with the EMT mixing model (black line), the ME1 (dark blue line), and
the ME2 (light blue line) models. The data obtained from finite element modeling
fits very well to the experimental data and are well described by the EMT and
ME1 models. Thus, the FEM, EMT, and ME1 models are all suitable methods
to predict the thermal conductivity of binary colloidal glasses (with comparable
thermal conductivities of the two phases, which is discussed below). Furthermore,
the assumptions implemented in the FEM simulation, such as diffusive thermal
transport and no interfacial thermal contact resistance between adjacent spheres,
describe the experimental situation adequately well.

Tab. 12.1.: Designation of the binary colloidal assemblies and the corresponding polymer
particle volume fraction.

100P 89P 77P 65P 53P 27P 0P

Number of polymer particles [%] 100 87.5 75 62.5 50 25 0
Polymer particle volume fraction 1 0.89 0.77 0.65 0.53 0.27 0
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Fig. 12.5.: Thermal conductivity data of the binary colloidal glasses measured in vacuum
at 25 °C (black squares) in comparison to different mixing models: effective
medium theory (EMT), series model, parallel model, and Maxwell-Eucken (ME)
model 1 and 2. The inset shows a side-view scanning electron microscopy (SEM)
image of the colloidal assembly with a polymer particle volume fraction of 53%
(53P). The hollow silica spheres are red-colored.

Based on this validation of the applicability of our FEM simulation, we can now
use it to investigate the onset of percolation in binary colloidal crystals in greater
detail. Therefore, we selected two types of dielectric particles which possess a large
thermal conductivity contrast, which is experimentally hardly accessible: hollow
silica nanospheres and diamond particles. The large thermal conductivity contrast
should allow for a clear assessment of the percolation through the colloidal assembly.
We want to emphasize that the structure of the colloidal glass remains unchanged
since we only replace one type of particle species in the simulation volume. The
FEM results in comparison to the EMT (black line), ME1 (dark blue line), and
ME2 (light blue line) models are shown in Fig. 12.2(b). Additionally, we explore the
effect of the thermal conductivity difference between the respective components and
found that it should at least amount to κ1:κ2 = 1:500 in order to experimentally
observe a step like increase in thermal conductivity [gray lines in Fig. 12.2(b)].
The formation of percolation pathways is found at a diamond particle volume
fraction of about 30 %. In the range of this mixing ratio, a high degree of variability
between the individual simulation points results. As outlined in the Appendix, each
simulation was conducted along the x, y, and z axis of the simulation cube. In
Fig. 12.2(c) heat flow streamlines are shown for the different orientations with a
diamond particle volume fraction of 36.5%. While in y- and z direction the heat flow
is relatively low (thermal conductivity of ∼ 60 mWm−1K−1), the heat flow in the x
direction shows a percolation pathway which increases the thermal conductivity to
∼ 24000 mWm−1K−1). This large variability is indicative of a critical mixing ratio
close to the percolation threshold. Owing to the hardware limitation of the size of
our simulation cube, fully percolated pathways only span across distinct orientations
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in this regime. Increasing the number of diamond particles (> 50%) leads to a
colloidal glass with robust percolating pathways in all directions. The effective
medium theory describes this mechanism also quite well but overestimates the
thermal conductivity at high diamond particle ratios. A major difference compared
to the data shown in Fig. 12.2(a) (small differences in thermal conductivity between
the two components) is obvious in Fig. 12.2(b). Neither of the ME models describes
the FEM data adequately anymore. Both models strongly over- or underestimate
the effective thermal conductivity, respectively. The explicit percolation model
[Eq. 12.2], however, provides a complementary way to describe the simulated data.
In contrast to the EMT model, the percolation theory depends on the underlying
particle structure. In Eq. 12.2, κ1 and κ2 are the effective thermal conductivities
of the pure hollow sphere or diamond particle colloidal assembly. Therefore, the
maximum filling packing factor F equals 1. The percolation model is plotted in
Fig. 12.2(b) as a black dashed line and shows a clear consistency with the simulated
data above the percolation threshold at a mixing ratio of 27%. Owing to the random
particle packing of our isotropic spheres, both models (EMT and percolation theory)
predict a comparable percolation threshold. Furthermore, the percolation model
does not overestimate the effective thermal conductivity of the particles mixture, as
is the case for the EMT model.

Fig. 12.6.: Scanning electron microscopy images of the colloidal assembly with a polymer
particle volume fraction of 53% (53P) taken at different positions of the sample.
The hollow silica spheres are red colored.

To sum up, the EMT model describes the effective thermal conductivity of binary
particle mixtures across the entire mixing range reasonably well. The EMT model
is also valid for particle mixtures which possess a significant difference between the
individual thermal conductivities. However, the EMT model does not account for
the explicit structure of the particle ensemble. The percolation theory, on the other
hand, describes the onset of percolation equally well and is explicitly based on a
randomly close-packed structure. The percolation theory provides a complementary
possibility to describe the effective thermal conductivity beyond the percolation
threshold. In contrast to the EMT model, a lower bound of the effective thermal
conductivity is given by the percolation theory considering the right particle ordering.
Our simulation results thereby validate the analytical solution.
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Fig. 12.7.: Scanning electron microscopy images of the binary colloidal glasses comprising
polymer particle volume fractions between 100% and 0% before the heating
process.

12.4.3 Thermal transport properties of binary colloidal
glasses – Temperature dependency

We followed an additional route to investigate the heat transport through our binary
colloidal mixture experimentally by exploiting the known temperature dependence of
the thermal conductivity of polymer colloidal crystals.[20] Briefly, upon crossing the
glass transition temperature (Tg) of the constituting polymer, the effective thermal
conductivity of a pure polymer colloidal crystal increases by 200 %–300 %. We,
therefore, measured the temperature-dependent thermal conductivity. To facilitate a
homogeneous temperature distribution in the sample, measurements were performed
in helium at 1000 mbar. The thermal conductivity of the different particle ratios is
shown in Fig. 12.9(a). The thermal conductivity of the pure hollow silica nanoparticle
colloidal glasses shows a monotonic growth driven by the specific heat capacity
and no irreversible increase of the thermal conductivity. At the other extreme,
the pure polymer particle glass exhibits the expected sharp step-up of the thermal
conductivity after exceeding Tg due to the loss of the particulate structure [see SEM
images in Fig. 12.9(d)].

176 Chapter 12 Thermal Transport in Binary Colloidal Glasses



Fig. 12.8.: (a) The density of the different binary colloidal glasses. (b) Differential scanning
calorimetry measurements of the particle mixtures.

The other particle mixtures feature a transient behavior between these two cases, how-
ever, with marked differences between the heating and cooling cycle. Figure 12.9(b)
summarizes the differences before and after heating. In this case, any contribution
from gaseous transport can be excluded since these data were measured in vacuum.
While the thermal conductivity shows only minor increases of up to 50 % polymer
content, the rise is distinct for higher ratios, where the polymer constitutes the
majority phase. This can be attributed to the formation of a continuous polymer
network due to the loss of interfaces. This is accompanied by an increase of the
density shown in Fig. 12.9(c). Thus heat can be conducted faster through the molten
polymer phase [compare SEM image in Fig. 12.9(d)]. It is important to differentiate
this loss of structural integrity to the presence of percolating thermal transport
pathways across a particular particle type, as discussed in the previous section.
A percolating particle network should form at a polymer particle volume fraction
of about 27 %; yet, the temperature induced film formation becomes significant
only at polymer particle volume fractions > 50 %. The structural integrity at
elevated temperatures is compromised as soon as the polymer particles constitute
the majority phase. The comparison of the molten film to the effective medium
model [see Fig. 12.9(b)] reveals a second severe change to the homogeneity of the
nanocomposite. The agreement between the EMT model and the measurement is
much worse compared to the initial particle mixture. It now underestimates the
thermal conductivity of high polymer mixing ratios and overestimates it at lower
ratios. This hints towards a concomitant phase separation upon polymer annealing.
The SEM images after the heating cycle qualitatively support this interpretation.
Particularly for the case of low hollow sphere contents (89P and 77P), areas with
large hollowsphere aggregates, even with a high degree of local order, can be inferred.
These could originate from a relocation of the silica hollow spheres upon polymer film
formation and confirm the challenge to fabricate homogeneous composite materials
on the nanometer scale.
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Fig. 12.9.: (a) Temperature-dependent thermal conductivity of colloidal glasses in helium
at 1000 mbar. (b) Thermal conductivity of the particle assemblies in vacuum
before and after heating to 150 °C. The red dashed line represents the EMT
model.(c) Density of the colloidal assemblies before and after heating to 150 °C.
(d) Scanning electron microscopy images of the colloidal assemblies after heating
to 150 °C.

12.5 Conclusion

We investigated the thermal transport properties of binary colloidal glasses consisting
of hollow silica nanoparticles and P(MMA-co-nBA) polymer particles. Mixing these
two types of particles enables the fabrication of a nanocomposite material with
a homogeneous distribution of the two components. The thermal conductivity
increases from 13 mWm−1K−1 to 57 mWm−1K−1 in vacuum, depending on the
particle mixture. Established mixing models are suitable to describe the effective
thermal conductivity adequately. However, no percolation threshold can be observed
for such similar particle mixtures (regarding their thermal conductivity). Using
finite element modeling, we validated our experimental results and provided a better
understanding of the percolation threshold. We find that the thermal conductivity
ratio (κ1:κ2) between two types of particles must be at least 1:500 to observe a
distinct step in the mixing ratio dependency. Furthermore, the Maxwell-Eucken
mixing models fail to describe such nanocomposites with a large thermal conductivity
contrast.
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Heating the binary colloidal glasses above the glass transition temperature leads to a
melting of the polymer and a loss of the interparticle interfaces. Thus, a continuous
polymer network forms with solid particle inclusions for polymer contents > 50 %.
This can be understood as a threshold of structural integrity. Concomitantly,
the film formation induces a demixing of the hollow silica beads, resulting in a
heterogeneous structure. This is less well described by the EMT mixing model. Our
study contributes to a thorough understanding of percolation and effective thermal
transport properties in particulate nanocomposite materials.
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12.6 Appendix: Supporting Information

12.6.1 Materials

Styrene (≥ 99%, Aldrich), 2,2’-azobis(2-methylpropionamidine) dihydrochloride
(AIBA; 97%, Aldrich), [2-(methacryloxy)ethyl]trimethylammonium chloride (MTC;
70% solution in water, Polyscience), polyvinylpyrrolidone K30 (PVP,Mw ∼ 55 kgmol−1,
Aldrich), tetraethylorthosilicate (TEOS, ≥ 99%, Aldrich), ammonium hydroxide
solution (30%–33% in water, Aldrich), and potassium peroxodisulfate (KPS; ≥ 99%,
Aldrich) were used as received. Methyl methacrylate (MMA, 99%, Aldrich) and
n-butyl acrylate (nBA, ≥ 99%, Aldrich) were purified by filtration over an alumina
column (activated, basic, Brockmann I, Sigma-Aldrich). Ethanol was used in tech-
nical grade, and water was taken from a Millipore Direct Q3UV unit for all the
synthesis and purification steps.

12.6.2 Synthesis of hollow silica nanoparticles

The synthesis of hollow silica spheres comprises three steps. (i) First, monodisperse
polystyrene (PS) particles were prepared by emulsifier-free emulsion polymeriza-
tion.[16] For the synthesis, 1.8 g PVP were dissolved in 10 mL water and added to a
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500-mL three-necked flask equipped with a reflux condenser and a gas inlet. 225 mL
water, 26 mL styrene, and 75 µL MTC were added. The emulsion was degassed
and heated to the reaction temperature of 70 °C at a stirring speed of 850 rpm for
30 min. For the initiation of the polymerization, 0.6 g AIBA, dissolved in 5 mL
water, were added. After the nucleation, the stirring speed was reduced to 450 rpm,
and the reaction was carried out overnight under an argon atmosphere. (ii) In
the second step, the polystyrene particles were coated with a thin silica shell by
a modified Stoeber condensation process to obtain core-shell particles.[17] For the
synthesis, 1.9 vol% TEOS were added to an 81.4 vol% ethanol, 10.7 vol% water,
6.0 vol% ammonium hydroxide solution containing 9.73 mg mL−1 PS latex particles.
(iii) Subsequently, the polystyrene core was removed by calcining the particles at
500 °C for 12 h in air.

12.6.3 Synthesis of P(MMA-co-nBA) particles

The polymer particles were prepared by emulsifier-free emulsion polymerization. For
the synthesis, 450 mL water and a mixture of 40 mL and 10 mL MMA and nBA were
added to a 1000-mL three-necked flask, equipped with a reflux condenser and a gas
inlet. The emulsion was degassed and heated to the reaction temperature of 75 °C
at a stirring speed of 650 rpm. After 15 minutes, 2 mL of acrylic acid were added to
the mixture followed by a further equilibration step for 5 min. The polymerization
was initiated by a rapid injection of 150 mg KPS dissolved in 5 mL water. After
the nucleation, the stirring speed was reduced to 400 rpm to avoid the formation
of aggregates. The reaction was carried out overnight under an argon atmosphere.
Residual reagents were removed by dialysis against water for five days, changing
water twice a day.

12.6.4 Assembly into colloidal glasses

Colloidal assemblies were prepared by a vacuum filtration system from Merck
Millipore (see Fig. 12.4). As a filter paper, an MF-Millipore membrane filter with a
pore size of 0.2 µm was used. The sample size was reduced by a Teflon inset with a
diameter of 2 cm. After the assembly, the samples were dried in vacuum overnight.

12.6.5 Characterization methods

SEM was performed using a Leo 1530 instrument (Zeiss) using acceleration voltages
of 2 or 3 kV. The images were taken with an InLens and Everhart-Thornley secondary
electron detector.
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Differential scanning calorimetry (DSC) measurements were performed on a Discovery
Q2500 DSC (TAInstruments). For the determination of the specific heat capacity
the ASTM E1269 standard test method was used. Powders of the particles (∼ 10 mg)
were scanned in closed aluminum pans under a dry nitrogen flow of 50 ml min−1

over a temperature range from –40 °C to 210 °C with a heating rate of 20 °Cmin−1.
Two heating cycles were conducted, whereas only the second cycle was used for
evaluation.

Thermal diffusivity measurements of the colloidal assemblies were performed on a
xenon flash apparatus (Linseis, XFA500) equipped with an InSb infrared detector.
Before the measurements, the samples were coated with a thin graphitic layer
(∼ 15 µm) on each side to ensure a good absorbance at the bottom and a high
emissivity at the top side of the sample. The thickness of the graphite layer is
negligible compared to the thickness of the colloidal glasses (700–1500 µm). The
measurements were performed on at least three samples in vacuum (∼ 0.05 mbar) at
room temperature, and in helium (1000 mbar) in the temperature range from 25 °C
to 150 °C. The received data were evaluated by the software APROSOFT LASER
FLASH Evaluation v1.06 using the radiation fit model. The schematic setup and
the corresponding measurement signal, fitted by the radiation model, are shown in
Fig. 12.10. The thicknesses of the colloidal glasses were measured using a Litematic
VL50 (Mitutoyo) measuring unit.

Fig. 12.10.: Schematic setup of the xenon flash analysis and the corresponding measurement
signal with radiation fit. This fit model represents an extension to the finite-
pulse and heat loss corrections given by the combined fit model from Dusza.[21]

Moreover, it takes into account that part of the xenon flash is transmitted
to the rear sample surface, leading to an instantaneous temperature jump
analogous to Blumm et al.[22]
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The densities of the hollow sphere assemblies and the unmolten colloidal glasses
(0P–100P) were determined from the mass and volume of the monoliths. The
volume was measured using a 3D digital surface profiler (Keyence V3100), and
the mass was determined by weighing the colloidal glasses. The densities of the
molten colloidal assemblies (27P–100P) were measured using Archimedes principle
(buoyancy method). The colloidal glasses were hydrophobized by chemical vapor
deposition using hexamethyldisilazane (HMDS) to avoid the adsorption of water by
the hygroscopic silica network.

Fig. 12.11.: The radial distribution function of a random close-packed particle assembly
from molecular dynamics simulation (program LAMPPS). The two red lines
are at

√
3 and 2.

12.6.6 Finite element modeling

An amorphous structure of equally sized particles was compiled using a molecular
dynamics simulation. Precisely, we used the gran-hooke pair potential[23]–[25] in
LAMMPS on a set of 20,000 particles that were pulled by a gravitational force to
the bottom of a simulation box with periodic boundaries in x and y direction. The
g(r) of the resulting structure (Fig. 12.11) shows the distinct features of a random
sphere packing as described in the literature.[26]–[30]

This amorphous particle structure was used for the finite element method of the
effective thermal transport properties using COMSOL MULTIPHYSICS. A random
selection process assigned the two types of particles [hollow silica nanoparticles
and P(MMA-co-nBA) particles] to the simulated colloidal glass, yielding a binary
colloidal assembly with different polymer particle volume fractions. The particle
size has been adjusted such that the mutual contact points between the spheres
resemble the experiment. There, we find a relative contact area of about 0.6%–1%
of the total particle surface area per contact point. The absolute value of this
contact area is of minor relevance for the discussion, as it will only offset the
overall thermal conductivity. For the hollow silica spheres, the experimental shell
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thickness-to-radius ratio was used. Three cubes per mixture, each with around 100
particles, were cut out of the amorphous structure. The allowed number of particles
in the cube is limited by the physical memory of the simulation computer (128 GB).
An exemplary structure used for FEM is shown in Fig. 12.2(c). A temperature
difference was applied to opposite faces of the cube, while all remaining surfaces
were thermally insulating. Therefore, purely one dimensional thermal transport can
occur. Furthermore, no thermal resistance between the particles was considered.
The computed heat flux normal to the isothermal faces was used to calculate the
effective thermal conductivity using Fourier’s law [see Eq. 12.4],

κeff =
Q/A

∆T/h
, (12.4)

where Q is the heat flow rate normal to the isothermal faces, A the cross-sectional
area of the cube, ∆T the temperature difference (Thot − Tcold), and h the cube edge
length.

The simulation was conducted along all three directions (x, y, and z) of the cube.
The same simulations were undertaken using diamond instead of P(MMA-co-nBA)
to obtain data for a binary colloidal assembly having a higher thermal conductivity
contrast. The specific heat capacity, density, and thermal conductivity of all materials
used in FEM simulations are listed in Table 12.2.

Tab. 12.2.: Specific heat capacity, density, and thermal conductivity of silica, P(MMA-co-
nBA), and diamond used in FEM simulations.

Specific heat capacity Density Thermal conductivity
[Jg−1K−1] [g cm−3] [mW m−1K−1]

Silica 0.684 2.20 173a

P(MMA-co-nBA) 1.441 1.16 205
Diamondb 0.507 3.51 2,300,000

aThe thermal conductivity of silica is chosen such that the same effective thermal
conductivity is obtained as experimentally in vacuum. bThe literature values were
obtained from Salazar[31] and Slack.[32]
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[24] L. E. Silbert, D. Ertaş, G. S. Grest, et al., ”Granular flow down an inclined
plane: Bagnold scaling and rheology,“ Physical Review E, vol. 64, no. 5, 2001.

[25] H. P. Zhang and H. A. Makse, ”Jamming transition in emulsions and granular
materials,“ Physical Review E, vol. 72, no. 1, 2005.

[26] G. Mason, ”Radial distribution functions from small packings of spheres,“
Nature, vol. 217, no. 5130, pp. 733–735, 1968.

[27] G. T. Seidler, G. Martinez, L. H. Seeley, et al., ”Granule-by-granule recon-
struction of a sandpile from x-ray microtomography data,“ Physical Review
E, vol. 62, no. 6, pp. 8175–8181, 2000.

[28] A. S. Clarke and H. Jónsson, ”Structural changes accompanying densification
of random hard-sphere packings,“ Physical Review E, vol. 47, no. 6, pp. 3975–
3984, 1993.

12.7 References 185



[29] R. Y. Yang, R. P. Zou, and A. B. Yu, ”Computer simulation of the packing
of fine particles,“ Physical Review E, vol. 62, no. 3, pp. 3900–3908, 2000.

[30] A. R. Kansal, S. Torquato, and F. H. Stillinger, ”Diversity of order and
densities in jammed hard-particle packings,“ Physical Review E, vol. 66, no. 4,
2002.

[31] A. Salazar, ”On thermal diffusivity,“ European Journal of Physics, vol. 24,
no. 4, pp. 351–358, 2003.

[32] G. A. Slack, ”Thermal conductivity of pure and impure silicon, silicon carbide,
and diamond,“ Journal of Applied Physics, vol. 35, no. 12, pp. 3460–3466,
1964.

186 Chapter 12 Thermal Transport in Binary Colloidal Glasses



13Low Thermal Conductivity
through Dense Particle Packings
with Optimum Disorder

Fabian A. Nutz,1 Alexandra Philipp,1 Bernd A. F. Kopera,1 Martin Dulle2 and
Markus Retsch1

1 Department of Chemistry, University of Bayreuth, Universitätsstraße 30,
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13.1 Abstract

Heat transport plays a critical role in modern batteries, electrodes, and capacitors.
This is caused by the ongoing miniaturization of such nano-technological devices,
which increases the local power density and hence temperature. Even worse, the
introduction of heterostructures and interfaces is often accompanied by a reduction
in thermal conductivity, which can ultimately lead to the failure of the entire device.
Surprisingly, a fundamental understanding of the governing heat transport processes
even in simple systems, such as binary particle mixtures is still missing. This
contribution closes this gap and elucidates how strongly the polydispersity of a
model particulate system influences the effective thermal conductivity across such a
heterogeneous system. In a combined experimental and modeling approach, well-
defined mixtures of monodisperse particles with varying size ratios are investigated.
The transition from order to disorder can reduce the effective thermal conductivity
by as much as ≈ 50%. This is caused by an increase in the thermal transport path
length and is governed by the number of interparticle contact points. These results
are of general importance for many particulate and heterostructured materials and
will help to conceive improved device layouts with more reliable heat dissipation or
conservation properties in the future.

13.2 Introduction

Materials with low thermal conductivity are employed in many fields such as clothing,
refrigeration, building insulation, and thermoelectrics.[1] Concepts to reduce the
thermal conductivity of a given material either target the material composition or
its nano-, meso-, or microstructure. Generally, for bulk materials, a high thermal
conductivity is found in crystalline solids where phonons are able to transport
thermal energy over several hundred nanometers based on a well-defined crystal
lattice.[2]–[5] In contrary, low thermal conductivities are mostly found in disordered,
amorphous materials. Based on an increased scattering at the disordered structure,
the mean free path of phonons is strongly reduced, resulting in diffusive thermal
transport.[6],[7] Allen et al.[8],[9] proposed three different vibrational modes, namely
diffusons, propagons, and locons, to describe thermal transport in amorphous
matter. Increasing phonon scattering in bulk materials, subsequently leads to a
reduction in thermal conductivity. In dense materials this can be achieved by layered
structures,[10],[11] doping,[12],[13] or the embedding of nanoparticles,[14],[15] where
particularly crystalline solids are strongly affected. Zhang and Minnich investigated
how nanoparticle clusters with a particular size distribution can lower the thermal
conductivity in crystalline SiGe alloys even below its amorphous limit.[14]
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Besides the chemical composition of a certain material, the influence of the overall
structure is of high importance, too. The most obvious and well-known structural
influence is given by the introduction of porosity. This severely decreases the density
of a bulk material and consequently reduces the effective thermal conductivity.
Depending on the cell size of the porous material, highly insulating properties are
accessible.[16]–[19] Moreover, classical porous, granular matter becomes increasingly
important for a range of applications, which involve heterostructures and interfaces.
For instance, thermal management in high-density storage devices such as batteries
or supercapacitors is a critical safety concern.[20]–[22]

Colloidal assembly structures have been proven to be particular suitable to investigate
the influence of 3D nanostructuring on the effective thermal transport in granular
matter.[23] The thermal conductivity of colloidal crystals is mainly governed by the
geometrical constrictions at the interparticle contact points, and the material of the
particles itself.[24]–[26] While most colloidal assembly structures targeted periodically
ordered materials, the controlled introduction of disorder also showed to provide
fundamental insights, for instance, into the physics of phononic bandgaps in the
hypersonic regime.[27]

Fig. 13.1.: Structural characterization of binary colloidal assemblies. a) Optical and b)
scanning electron microscopy side view images of the edges of split colloidal
monoliths. c) UV–vis transmission spectra measured on dip-coated assemblies.
d) Fast Fourier transformation (FFT) images from scanning electron microscopy
images with a mixing ratio of 18 vol% L compared to a FFT image of 100 vol%
L colloidal crystal.
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In this work, we provide a conceptual understanding of the influence of structural
order on the thermal transport properties in particulate mesostructures. Therefore,
binary colloidal assemblies were fabricated from two monodisperse, differently sized
polystyrene (PS) particles. These buildings blocks are easily accessible by common
polymerization techniques[28],[29] and their self-assembly into superstructures is well-
established.[30] By mixing two differently sized particles, it is possible to control
the structural order of the resulting colloidal assembly. We clarify the underlying
effect of the thermal conductivity reduction by finite element modeling combined
with molecular dynamic simulations. We further demonstrate how to reduce heat
transport in disordered binary assemblies in a rational way.

Binary colloidal assemblies of PS particles possessing a diameter of 243 nm (S) and
306 nm (L) were fabricated by evaporation-induced self-assembly (size ratio ≈ 0.8).
For spectroscopic characterization, binary assemblies were additionally immobilized
on glass slides by dip-coating of 3 wt% aqueous particle dispersions. The mixing
ratio ranged from 0 to 100 vol% L. Optical microscopy and scanning electron images
of the edges of split monoliths are shown in Figure 13.1a,b and provide a qualitative
expression of how the mixing ratio translates into order and disorder.

From optical microscopy (Figure 13.1a), strong opalescent colors are visible for
samples consisting of only one particle type (0 and 100 vol% L) as well as for binary
assemblies only containing a small amount of differently sized specimen (9, 95,
and 97 vol% L). This is due to Bragg reflection. The difference in color between 0
and 100 vol% L monoliths arises from the size dependence of the Bragg reflectivity.
Different colors within one monolith can be attributed to the angle dependence of
the Bragg law, based on different crystal planes exposed to the surface.

For other mixing ratios, only weak overall Bragg reflection (66 and 86 vol% L) or
almost only diffuse scattering (18 and 40 vol% L) is visible. At these mixing ratios,
the polydispersity of the binary particle dispersion prevents large area particle
crystallization. Noteworthy, some embedded crystalline regions are observable for
several intermediate mixing ratios (40, 66, and 86 vol% L). This can be explained
by the strong tendency of demixing in binary colloidal dispersions.[31]–[33] The slow
self-assembly process (several days) of the dispersion enables the formation of phase
separated, multicrystalline, and amorphous areas. Scanning electron microscopy
(SEM) images validate the optical impression (Figure 13.1b). The pure colloidal
crystals feature a high degree of crystalline particle ordering. In contrast, for
intermediate mixing ratios, only a random packing of the particles is observed.
This is additionally highlighted by fast Fourier transformation (FFT) images of the
SEM images illustrated in Figure 13.1d. Whereas distinct reflexes are visible for
100 vol% L due to the hexagonal symmetry of the particle lattice, only smeared
Debye–Scherrer rings are obtained for 18 vol%-L monoliths. The smearing is based
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on the disordered mesostructure, whereas the observed Debye–Scherrer rings arise
from the different particle diameters present within the monoliths.

Fig. 13.2.: Thermal conductivity of the investigated assemblies with a size ratio of 0.8.
Color code indicates ordered (bluish) and disordered (greenish) assemblies. a)
Normalized thermal conductivity of binary PS colloidal assemblies possessing
different mixing ratios. The red arrow indicates the reduction of the thermal
conductivity due to the introduced disorder. b) Normalized density of the
colloidal assemblies. c) Thermal conductivity versus volume fraction of large
particles obtained by FEM. d) Exemplary streamlines present within a crystalline
and a disordered assembly with a size ratio of 0.8 and 16 vol% L. e) Thermal
conductivity versus relative streamline length of various size ratios. Error bars
in (c) and (e) arise from three individual simulations boxes at three different
directions in space.

We further quantify the intrinsic order of the binary colloidal films by UV-vis
transmission spectra of dip-coated samples,displayed in Figure 13.1c. A strong
Bragg peak is visible for 0 vol% L colloidal crystals at a wavelength of 559 nm.
At small mixing ratios of 9 vol% L, the Bragg peak broadens and the maxima is
less allocable due to the disturbance of the crystal lattice. A further increase of
the large particle volume fraction to 18 vol% L leads to a vanishing of the Bragg
peak. No distinct Bragg peaks are observable for intermediate mixing ratios from
44 to 86 vol% L, indicating a randomly packed structure. The Bragg peak of the
larger particle species reoccurs at 95 vol% L and reaches a maximum intensity for
100 vol% L at a wavelength 667 nm.
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Optical microscopy, SEM, and UV-vis characterization prove the highly crystalline
nature of the homo-particle ensembles, which define the edges of the mixture phase
diagram. The long-range order is quickly lost, when mixing two particles with a
size ratio of 0.8. Depending on the assembly process a complete suppression of
crystallinity can be found (dip-coating) or small, multicrystalline regions caused by
demixing prevail (dispersion drying).

Laser flash analysis (LFA) was performed on colloidal monoliths obtained from
evaporation-induced self-assembly. By determining the sample density and specific
heat capacity, it is possible to calculate the specimen’s effective thermal conductivity
(see the Supporting Information for details). The thermal conductivity, normalized
to the maximum initial value of the pure colloidal assemblies, as well as the normal-
ized thermal conductivity of intermediate mixing ratios are show in Figure 13.2a.
The color code helps to separate ordered samples (bluish) from randomly packed
assemblies (greenish) and correspond to the mixing ratios given in Figure 13.1.

Homo-particle colloidal assemblies (mixing ratio 0 and 100 vol% L) show a thermal
conductivity of 73 and 77 mWm−1K−1in absolute numbers, respectively. At small
mixing ratios of differently sized particles, the thermal conductivity slightly drops to
≈ 93% of the initial value. For intermediate mixing ratios, the thermal conductivity
drops significantly to ≈ 80%. This reduction can only partially be explained by the
reduced density of the intermediate assemblies as displayed in Figure 13.2b.

The reduction of the density for intermediate mixing ratios originates from the
prevented close packing of the particles during assembly. This leads to a space
filling which deviates from the theoretical maximum of 74%. Still, the density only
decreases to ≈ 90% of its initial value. Therefore, an additional effect is present,
which is responsible for the overall reduction of the thermal conductivity to 80%.

To elucidate this additional contribution, we performed finite element method (FEM)
modeling on binary particle mixtures possessing a size ratio of 0.8. The required
virtual assemblies were obtained by molecular dynamic (MD) simulations of the
assembly process. Exemplary particle assemblies obtained from MD simulations are
shown in Figure 13.7a (Supporting Information). We found highly crystalline particle
assemblies at the edges of the mixing diagram. In contrast to our experimental
findings, the crystallization process is already fully prevented at very small mixing
ratios (Figure 13.7a, left, Supporting Information). This is caused by the lack
of demixing or phase separation of the particles due to the short assembly time-
scale used for the MD simulation. FFT images of 0 and 9 vol% L assemblies
from MD simulation are compared to the experiment in Figure 13.7a (Supporting
Information), right. Thus, the fully amorphous structure obtained from the MD
simulation can be regarded as an ideally disordered case. Experimentally, some
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degree of crystallization will be difficult to exclude owing to the long timescale
allowed for the self-assembly process. FEM has been conducted using the software
COMSOL Multiphysics. Details on the modeling are described in the Supporting
Information. The calculated thermal conductivity against the volume fraction of
large particles is displayed in Figure 13.2c. Analogous to Figure 13.2a, the color code
indicates ordered (bluish) and disordered assemblies (green). The mixing diagram
shows a similar trend for the thermal conductivity as observed for the experiment,
with high thermal conductivities for ordered, and a reduced thermal conductivity for
disordered assemblies. A minimum thermal conductivity of only 55% of the initial
value is observed at a volume fraction of ≈ 16 vol% L. This is an almost twofold
enhancement of the insulation capability caused by the disordered structure, and it
is significantly lower compared to the experimental results. We ascribe this deviation
to the structural difference between the MD simulation and the experiment. As
outlined before, by MD simulation one can observe a more disordered distribution
of both particle types within the monolith, leading to a stronger reduction of the
thermal conductivity.

To explain the origin of the thermal conductivity reduction beyond the decrease in
density, we utilized FEM to analyze the length of the thermal transport pathway
through such a particulate assembly structure. This can be done by evaluating the
length of heat flux streamlines, which reach from the hot to the cold side of the
simulation box. Figure 13.2d shows two individual cases through an ordered (100 vol%
L) and disordered (≈ 16 vol% L) particle ensemble. Whereas in the ordered case, a
rather straight and unperturbed streamline is obtained, the introduction of disorder
strongly bents and perturbs the thermal transport path. The statistic evaluation
over the entire simulation box is given in Figure 13.2e, where we normalized the
streamline length on the length of the simulation box. One finds a direct correlation
between the streamline length and the thermal conductivity reduction. This finding
can be intuitively explained by a sort of effective thermal length, which differs from
the plain geometric size of the box. One may draw an analogy to the concept of the
diffusive optical path in a particulate powder, which is governed by the scattering
cross section of the constituting sphere.[34]

Most interestingly, the FEM simulation finds a strongly asymmetric shape of the
thermal conductivity reduction with two minima at moderately high and low mixing
ratios, respectively. These are not found in the experiment, presumably due to the
presence of mesocrystalline domains, embedded in the amorphous structure. We now
want to understand the origin of these minima and how the thermal conductivity
could be reduced even further. This question could be rephrased to how the
thermal streamline length can be further increased in such colloidal superstructures.
We, therefore, return to MD simulation and evaluate the local structure around
one particle more explicitly. We did this in a twofold way: (1) Using the radial
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distribution function we evaluate the number of particles surrounding a center
particle, which are within the local space of about +10% of the respective particle
diameter. (2) Using the individual coordinates of each particle pair, we extracted
the number of touching spheres around a central particle. We term the first one next
neighbors, and the second one contact neighbors. Quite expectedly, when introducing
disorder the average number of next and contact neighbors is reduced. For crystalline
assemblies, one can find an average number of next neighbors per particles of ≈ 12,
based on the face-centered cubic symmetry. For all disordered intermediate mixing
ratios, the number of next neighbors is reduced to ≈ 10 (Figure 13.7b, Supporting
Information). The next contact neighbor analysis yields ≈ 8 owing to the more
rigorous exclusion criterion. One can imagine that this reduction leads to less
pathways for heat to travel through the particle structures and therefore reduces
the thermal conductivity of the assemblies. However, we find that the mean number
of next neighbor particles merely reaches a broad plateau, and does not explain the
asymmetric shape shown in Figure 13.2c. We, therefore, evaluated the next neighbor
particle histograms explicitly. This is shown in Figure 13.3, where we present the
next neighbor histograms at selected mixing ratios (bottom row). We chose a special
illustration, to highlight the structural heterogeneity, when heat travels through
such a system. We, therefore, present a projection of all particles with the same
number of next neighbors that can be found within the simulated box. The color
code indicates particles possessing the same number of next neighbors from high
(blue) to low (red). It therefore provides a direct impression of how many particles
are clustered around one central sphere.

194 Chapter 13 Low Thermal Conductivity through Dense Particle Packings



Fig. 13.3.: Molecular dynamics simulations of the assembly process of a binary particle
mixture. Number of next neighbors per particle against volume fraction of
large particles. Size ratio is 0.8. Projection of the assemblies visualizes the
particles possessing the indicated number of neighbors. Histograms show the
relative frequency of particle neighbors per particle present within the different
assemblies.

For mixing ratios of 0 and 100 vol% L almost every particle possesses 12 next
neighbors. This indicates a nearly fully crystalline face-centered cubic assembly, with
few line and point defects being visible. The next neighbor distribution function
quickly broadens at intermediate mixing ratios. Most importantly, this distribution
function shows a strongly asymmetric behavior. For mixing ratios of 9–66 vol% L,
even more than 12 next neighbors per particles are present within the assembly,
whereas for high mixing ratios, the number of next neighbors is limited to 12. For
a low number of large particles (small mixing ratios), it is possible that one large
particle is decorated by a high number of smaller particles. In contrary, for high
mixing ratios of large particles, it is geometrically not possible to decorate a small
particle with a high number of large particles, since there is simply not sufficient
space. This asymmetry is less pronounced when considering the contact neighbors
(Figure 13.10, Supporting Information).The average contact number stays constant
with a tendency toward fewer contact points at the minimum volume fraction
≈ 20 vol% L. This discrepancy between a constant or reduced number of contact
neighbor particles compared to the evolution of many next neighbor particles hints
toward the importance of a jammed particle corona in close vicinity to the central
bead.
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We also conducted a thorough analysis of the interparticle constriction effect in
the Supporting Information (Figures 13.11–13.13, Supporting Information). We,
therefore, analyzed the average interparticle contact area and relate this to the
contact neighbor distribution. Using an ideal face-centered cubic reference system
we show that a reduction of the interparticle contact area leads to an increase in
thermal path length caused by a stronger bending of the heat flux stream lines
(Figure 13.11b, Supporting Information). However, the changes of the interparticle
contact area play a secondary role compared to the introduction of disorder and
consequently to the thermal path length.

The consequence of the asymmetric next neighbor distribution for the effective ther-
mal length is rather surprising. A reduction of the number of next neighbor particles
indeed leads to a reduction in thermal conductivity. However, even more efficient is
the introduction of a certain amount of many jammed and not necessarily directly
contacting particles, since this leads to an even stronger disturbance of the streamline
length due to a geometric extension of the predetermined thermal transport path.
This is accompanied by a minimum of the total number of interparticle contact
points within the simulation volume (Figure 13.10, Supporting Information).

To clarify how this transport pathway is governed by the size mismatch of the two
particles, we varied the size ratio of the particles between 0.9 and 0.54 at the mixing
ratio around 20 vol% L, which showed the lowest thermal conductivity. Noteworthy
for this data set, the experimental samples were prepared by filtration to speed
up the assembly time and therefore obtain particle structures, which are more
comparable to the MD assemblies. Both, experiment and FEM simulation, show a
systematic decrease of the thermal conductivity with a decreasing size ratio from 0.9
to 0.54 (Figure 13.4d). The increase of the thermal conductivity for the smallest size
ratio (0.54) for the experiment can be explained by an increasing tendency to demix
as outlined above. One also needs to take into account that fully crystalline binary
assemblies can be obtained for size ratios of < 0.41 owing to the octahedral voids in
face-centered cubic structures, which we approach with this small size ratio.[35]
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Fig. 13.4.: Influence of the size ratio (DS/DL) on the thermal conductivity at ≈ 20 vol%
L. a) Comparison of the heat flux densities of particle assemblies possessing
different size ratios. b) Histograms of the streamline length and c) next neighbors
per particle of the assemblies. d) Resulting thermal conductivity from FEM
compared to experimental data.

Figure 13.4a compares the heat flux density of the particle assemblies from size
ratios of 0.54, 0.8, and 0.9 to the heat flux density of a fully crystalline assembly
(size ratio: 1.0). Crystalline assemblies feature uniform and straight streamlines
(Figure 13.4a, 1.0), whereas a decreasing size ratio evokes a high degree of distortion.
This is especially obvious for the heat flux density of the size ratio 0.54, where one
large particle heavily impedes the heat flux through the entire particle box. The
qualitative impression from the heat flux density images is verified by comparing the
relative streamline lengths of the different size ratios (Figure 13.4b). The smaller
the size ratio, the higher the number of long streamlines, which can reach up to
140% relative to the length of the simulation box. This indicates that the less the
particle sizes match, the stronger the heat flux is bent along the particle network,
leading to an elongation of the thermal transport path.

The higher fraction of long streamlines coincides with a broadening of the next neigh-
bor distribution function with decreasing size ratio (Figure 13.4c). The broadening
increases the number of > 10 next neighbors, indicating an increasing decoration
of a large particle with small particles. However, due to the small number of large
particles at this volume fraction and size ratio combination (about 4% number ratio
of large particles) this effect is not visible in the average number of neighbors for the
whole assembly. Only when looking at the detailed next neighbor histograms the
results from the heat flux simulations can be understood (Figure 13.4c). For a size
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ratio of 0.54 a second fraction with even 25− 30 next neighbors is found. Looking
at the contact neighbor distribution for this sample, the number of touching spheres
remains rather constant at about 8 (Figure 13.10, Supporting Information). This
highlights the evolution of a densely jammed corona, where a small amount of large
particle clusters are decorated with smaller spheres. This constitutes an efficient
way to increase the thermal path length. Overall, the larger mismatch between the
two particle sizes led to a thermal conductivity reduction by 40% (size ratio 0.6) in
the experiment and 53% (size ratio 0.54) in the FEM simulation. We finally also
checked, whether 19 vol% L represents the absolute minimum with respect to the
mixing ratio. We, indeed, find the highest fraction of > 25 next neighbor particles
for this mixing ratio (Figure 13.9, Supporting Information). Higher or lower mixing
ratios (±5 vol% L) lead rapidly to a reduced number of next neighbors. Therefore,
a mixing ratio of 19 vol% L of large particles is sufficient to strongly reduce the
effective thermal transport across a binary particle mixture.

We finally compare this disorder derived thermal insulation effect to the thermal
conductivity of known polymer materials. The unique properties of colloidal crystals
and especially colloidal glasses can be inferred from the Ashby plot in Figure 13.5.[36]

It shows a direct relation between the thermal conductivity and the polymer density.
Using polymer foams, highly insulating materials are accessible, however, at the
expense of the materials density. Transitioning from colloidal crystals to colloidal
glasses, retains the materials density to a large extent, while the thermal conductivity
decreases. This opens the avenue to design highly insulating granular materials at a
retained high density.

Fig. 13.5.: Ashby plot of density versus thermal conductivity of bulk and foam polymer
materials. The introduction of disorder to a colloidal ensemble reduces the
thermal conductivity (measured in vacuum) while retaining a comparatively
high density.
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In summary, we investigated the influence of order and disorder in particle mixtures
on their thermal transport properties. We therefore choose a controlled mixture of
binary latex particles as a model system. In a combined approach, which comprised
experimental characterization, MD simulation as well as FEM, we were able to
relate the observed reduction in thermal conductivity to the local environment of the
colloidal particles. Quite surprisingly, the increase of next neighbor contact points at
low mixing ratios and at a high size mismatch between the binary spheres, represents
the most efficient way to attain a minimum thermal conductivity. This is achieved
at comparatively high density. The decisive concept is the increase in the effective
thermal length, across which the thermal energy needs to be transported. Overall,
disorder in a binary colloidal glass can reduce the thermal conductivity by as much
as ≈ 50% compared to its single phase, crystalline counterpart. Our findings are
of high importance for heterostructured and particulate materials, for applications
were a high insulation, but also a good heat dissipation are paramount. Owing to
the diffusive thermal transport in our system, our findings are of conceptual nature
and applicable to many other nano-, micro-, and macrostructured materials, beyond
simple latex beads. Most importantly, we want to stress the relevance of the concept
of an effective thermal length, which cannot only be increased by constriction but
may be even more strongly affected by additional pathways and detours.

13.3 Experimental Section

Details on the particle synthesis, binary colloidal self-assembly methods, and char-
acterization methods, as well as a detailed description of the thermal transport
characterization by laser flash analysis, molecular dynamics simulations, finite ele-
ment modeling, complementary contact particle analysis, and a discussion on the
influence of the particle contact area can be found in the Supporting Information.
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13.5 Supporting Information

Experimental Section

Materials: Potassium persulfate (KPS, ≥ 99 %, Aldrich), styrene (≥ 99 %, Aldrich)
and acrylic acid (99 %, AA, Aldrich) were used as received. Water was taken from a
Millipore Direct Q3UV unit for the entire synthesis and purification steps.

Particle Synthesis: In a typical synthesis, a 500 ml three-neck flask was charged
with 245 ml milliQ water and 30 ml of styrene. The mixture was heat to 75 °C at a
stirring speed of 650 rpm and allowed to equilibrate under a slight argon flow for
∼ 5 min. Subsequently, 3 ml of acrylic acid were added, and the mixture was allowed
to further equilibrate for ∼ 10 min. To initiate the polymerization, 100 mg KPS,
dissolved in 5 ml milliQ water were rapidly added to the mixture. The polymerization
was carried out overnight under a slight argon flow. To adjust the size of the particles
the amount of acrylic acid has been varied.[1],[2] The reaction was stop by exposing
the mixture to ambient atmosphere. The particles were purified by dialysis against
milliQ water for five days, changing water twice a day.

Binary colloidal self-assembly: Binary colloidal assemblies were fabricated by
evaporation-induced self-assembly of a given amount of prior mixed binary particle
dispersions in a PTFE beaker. The obtained monoliths generally possess a diameter
of ∼ 20 mm and a thickness of several hundred micrometers.

Dip-coating: Samples for UV-vis measurements were prepared on glass slides by
dip-coating 3 wt% of binary particle solutions. The glass slides were purified with
Hellmanex solution an ethanol prior to use. Furthermore, the dip-coating process
the glass slides were treated with oxygen plasma to ensure a constant wetting of the
particle solutions.

Methods:

Dynamic light scattering: Dynamic light scattering measurements were performed on
aqueous particle dispersion at a Malvern Zetasizer with 175° backscattering geometry
to determine the hydrodynamic diameter of the particles and their size distribution
Light microscopy: Bright field light microscopy side view images of the edges of split
of the colloidal assemblies were recorded on a Carl Zeiss Axio Imager.A2m light
microscope equipped with an AxioCam Icc 1 camera to get a qualitative impression
about the long range ordering of the colloidal particles.

13.5 Supporting Information 203



Scanning electron microscopy: To determine the hard sphere diameter of the particles,
scanning electron microscopy (SEM) was performed on a Zeiss Leo 1530 electron
microscope. Therefore, dilute particle dispersions were drop-casted on a silicon wafer
and sputtered with 1.3 nm platinum. Furthermore, SEM side-view images of the
edges of split of the colloidal monoliths were obtained to gain an impression of the
order within the interior of the monoliths. Fast Fourier transformation was applied
on the recorded images using the FFT function, implemented in the software ImageJ
146.r.

Differential scanning calorimetry: Heat capacity determination was carried out ac-
cording to ASTM E1269 on a TA Instruments Q1000 differential scanning calorimeter
under a nitrogen flow of 50 ml min−1 at a heating rate of 20 K min−1. Two heating
cycles were conducted between -40 °C and 200 °C. The specific heat capacity was
evaluated from the second heating cycle. The mean value from all polystyrene
particles under investigation has been used for evaluation (Figure 13.6).

Fig. 13.6.: Mean specific heat capacity of the various polystyrene binary assemblies. Error
bars represent the standard deviation of the mean value of the specific heat of
every mixing ratio.

Density determination: The density of the colloidal assemblies was determined by
the volume and mass of the samples. The volume was obtained from a Keyence
V3100 3D digital macroscope.

Laser flash analysis: Laser flash analysis was performed on a Linseis XFA 500
XenonFlash apparatus equipped with an InSb infrared detector to obtain the thermal
diffusivity of the colloidal assemblies. The thickness of the samples were determined
on a Mitotoyo Litematic VL-50. Prior to the measurement, the bottom and top
side of the samples were coated with a thin layer of black air-brush color serving
as a blocking layer. Furthermore, the samples were coated with a thin graphite
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layer (< 15 µm). This enables a good absorbance at the bottom, and high emissivity
at the top side of the monoliths. Measurements were performed on at least three
individual samples. The standard deviation derives from the average of these
individual measurements. Experiments were conducted in vacuum atmosphere at
a pressure of ∼ 5 · 10−2 mbar to exclude any influence of the ambient atmosphere.
The raw data was fitted with the radiation fit model provided by the software
Aprosoft Laser Flash Evaluation v.1.06. Measurements were performed on at least
three samples. A xenon lamp emits a light pulse onto the sample. The thermal
energy of the light pulse is absorbed at the bottom graphite layer and travels
through the specimen. The thermal energy is then emitted from the top side. This
temperature rise is recorded in dependence of the elapsed time since the light pulse
by a fast mid-infrared detector. A numerical fitting procedure provided by the
commercial software package Aprosoft Laser Flash Evaluation v1.06 based on the
one-dimensional temperature diffusion equation was used to determine the thermal
diffusivity α.[3] For this, accurate knowledge of the sample thickness is a prerequisite,
as the thickness strongly influences half-rise time as given by:

α(T ) = 1.38 · d2

π2t1/2
(13.1)

t1/2 represents the time needed for the half maximum temperature rise at the top
surface.[4] The thermal conductivity κ of the sample is calculated by

κ(T ) = α(T ) · cp(T ) · ρ(T ) (13.2)

with the specific heat capacity cp and the density ρ.

Molecular dynamics (MD) simulations: All dense colloidal assemblies used in the
finite element modeling were obtained using LAMMPS.[5] Visualization was done
with Ovito.[6] Every simulation consisted of 10000 arbitrarily placed spheres of the
desired size and number ratio. The simulation box had periodic boundaries and was
elongated in the z-direction at the start. This was done to mimic the evaporation
of solvent for the real-world system. Using the NPT barostat we compressed the
box first along the z-axis up to a pressure where all axes had a comparable length.
After that the box was compressed isometrically to a pressure at which no more
compression without overlap of the spheres was possible. We used the colloidal
Yukawa potential included in the LAMMPS code with a short range repulsive
part. Each simulation was run for 60 million steps with a stepsize 0.0001. We
chose the colloidal Yukawa potential in LAMMPS[7] because it treats the spheres as
impenetrable bodies with a fixed radius which prevents unwanted overlap even at
very high pressures. The Yukawa potential was necessary in order to facilitate the
formation of the fcc phases at the edges of the phase diagram and the real particles
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Tab. 13.1.: MD simulation interaction parameters for the size ratio 0.54.

Pair style Screening length Interaction cutoff (rc) A for 1:1 A for 1:2 A for 2:2
Yukawa/colloid 50 1.5 10000 7500 5000

also carry a negative net charge. The pairwise interaction is calculated using the
formula:

E = A

κ
exp (−κ (r − (ri + rj))) ; r < rc (13.3)

With κ being the screening length (inverse distance units), ri and rj are the radii of
the two interacting spheres. The prefactor A has to be specified for each pair type.
It is determined from the relationship of the surface charge to surface potential in
the presence of an electrolyte. In our case this prefactor is proportional only to the
radius of each particle. All other parameters are the same.

We chose a large screening length of 50 which corresponds to 1/50 of the diameter of
the large particles in order to hinder crystallization at higher interparticle distances
and ensure good mixing of the differently sized particles. As the particles in the
experiments are a few hundred nanometers in size this large screening length also
approximates the charge interaction distance relative to the particle size. An
example of the interaction parameters is given in Table 13.1. The analysis of the
resulting dense colloidal assemblies was done with a self-written software using
C++. The software calculates the radial distribution function (G(r)) for the given
set of coordinates and uses the first three peaks to determine the three possible
next neighbor distances as well as the next neighbor distance cut off. This cut-off
was set to 10% of the particle diameter. In the MD-simulation the type of particle
(small or big) is set and the software choses according to this type the appropriate
condition to test whether a particle constitutes a next neighbor or not. This enabled
us to obtain very detailed information on the local structure around each particle.
This procedure also counts particles as next neighbors that are not touching, which
is why introduced the additional term contact neighbors to distinguish these two
sets of neighbors. It also calculates the density as well as the average number of
neighbors.

We used a self-written Python script to evaluate the contact area between particles.
The script evaluates the number of contacting particles based on the coordinates
of the individual spheres. We defined the contact area as the circle created by the
intersection of two spherical particles. The area was normalized to the number
averaged particle surface of all particles. We increased the size of the original spheres
from the MD simulation by a factor of 1.04 in order to make the spheres touch
(interpenetrating spheres cannot be simulated by MD). The same scaling factor
was used for finite element modeling, and was selected such to give comparable
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interparticle contact areas to our experimental findings. From this we deduced the
contact neighbor histogram. The individual contact areas were further correlated to
number of contact neighbors.

Finite element modeling: We used the finite element method (FEM) software COM-
SOL Multiphysics to simulate the heat transport through colloidal assemblies. For
this, the crystalline (0 and 100% large particles) and amorphous particle structures
(size ratios: 0.54, 0.8, and 0.9) obtained from the MD simulations were used. The
particle sizes were adjusted such that the contact areas between adjacent spheres
are comparable to the experimental values. All particles were fused into one object
and, thus no thermal resistance between the particles was considered. Due to the
limited physical memory (128 GB), the system size has been reduced to a feasible
size. Therefore, three cubes with around 100 particles were cut out of each invested
colloidal assemblies. The mesh size was as chosen to ensure mesh size independent
results (see Figure 13.14c). A temperature difference was imposed to two opposite
surfaces of the cubes. Since all remaining surfaces were kept thermally insulating,
purely one-dimensional thermal transport is obtained. The simulation was con-
ducted along all three directions of the cube (x, y, and z). Using Fourier’s law (see
Equation 13.4), the effective thermal conductivity of the assembly is calculated from
the computed heat flux, normal to the isothermal faces. Figure 13.15 demonstrates
that three cubes are sufficient to calculate a meaningful average value. Furthermore,
heat flux streamlines have been plotted to visualize the heat path length through
the different colloidal assemblies. The length of the streamlines (LSL) has been
normalized by the total length of the cube (LC) to calculate the relative streamline
length (LSL/LCin %). Figure 13.15 demonstrates that three cubes are sufficient to
calculate a meaningful average value. Furthermore, heat flux streamlines have been
plotted to visualize the heat path length through the different colloidal assemblies.
The length of the streamlines (LSL) has been normalized by the total length of the
cube (LC) to calculate the relative streamline length (LSL/LC in %).
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Fig. 13.7.: Side views received from MD simulations and number of next neighbors per
particles. (a, left) typically obtained particle assemblies from MD studies; (a,
right) FFT comparison between experiment and simulation. (b) Average next
neighbors per particle vs. volume fraction of large particles. Color code indicates
ordered (blueish) and disordered (greenish) assemblies.

Fig. 13.8.: FFT comparison between the particle structures received from MD simulations
and SEM side view images. Particularly at low and high mixing ratios a
partial crystallinity can be inferred from the experimental SEM images. It
indicates an easier colloidal glass formation in the MD simulation compared to
the experimental conditions.
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Fig. 13.9.: Histograms of the next neighbors per particle for a size ratio of 0.54. Various
particle volume ratios close to the minimum thermal conductivity (19 vol%-L)
are compared. All assemblies have the same average number of next neighbors
(∼ 10− 11), but only the assembly with 19 vol%-L shows a second fraction with
the highest number of next neighbors (20− 30). Thus, this assembly is expected
to have the lowest thermal conductivity.

Contact neighbor analysis

Fig. 13.10.: a) Evaluation of the number of contacting next neighbors. An almost constant
average number at ∼ 8 is found with a slight tendency towards fewer contact
neighbors for 16 vol%-L. b) Contact neighbor analysis for particle mixture of
∼ 20 vol%-L with different size ratios. c) Total number of interparticle contact
areas and effective density in the entire simulation volume.
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Influence of the interparticle contact area on the thermal conductivity

Fig. 13.11.: a) Ideal face-centered cubic colloidal crystal with increasing interparticle contact
area. b) Heat flux streamlines corresponding to a small (0.5 %) and large (2.0 %)
contact area. The streamlines bend more strongly in case of 0.5 % contact
area. c) Correlation between the interparticle contact area and the streamline
length. The relative contact area is the ratio between the circular connection
between adjacent particles and the surface area of the complete particle. The
total contact area takes the number of next neighbors into account (here 12 for
the fcc structure). d) Correlation between the reduced thermal conductivity
(relative to the corresponding bulk material) and the relative contact area.
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Fig. 13.12.: Dependency of normalized thermal conductivity (bottom) and relative contact
area (top) on the particle mixing ratio.
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Fig. 13.13.: Statistic evaluation of the influence of contacting neighbors on the relative
contact area. The box plots give an impression on the average contact are and
the width and symmetry of relative contact area distributions. The individual
bars at each number of contact neighbors does not include any information on
the number of occurrences. The data of size ratio 0.8, 0.9, and 0.54 are colored
in blue, black, and red, respectively.

Figure 13.11 demonstrates the influence of the particle contact area on the streamline
length and the effective thermal conductivity for an ideal fcc crystal. Figure 13.12
shows the average contact area in dependence of the mixing ratio and relates it to
our experimental findings. Figure 13.11 shows that contact area and streamline
length indeed depend on one another. A strong reduction, however, is only found for
relative small contact areas < 0.5 %, which are rarely found in our experiment and
simulation. The interparticle constriction adds an additional possibility to increase
the thermal path length through the particulate structure. Yet, based on the shown
results, we conclude that the changes of the particle contact area play a secondary
role, compared to the increase in thermal path length caused by the disordered
structure: a) The relative contact area in our FEM simulation boxes changes in
a range from 1.44 % to 1.83 %, which can account for a maximum of about 10 %
thermal conductivity reduction, when comparing to an fcc reference system. This is
much less compared to our findings, when a disordered structure evolves. b) When
looking at the two shallow minima at about 16 vol%-L and 89 vol%-L mixing ratio,

212 Chapter 13 Low Thermal Conductivity through Dense Particle Packings



these turn out to possess rather comparable average contact areas of about 1.5 %.
The analysis of the contact area distribution (box plots in Figure 13.13) shows a
bell-shaped distribution for the 16 vol%-L case and a decrease towards fewer contact
particles for the 89 vol%-L case.

The majority of the other mixing ratios exhibit a flat distribution of relative contact
areas. (One has to bear in mind that this representation does not give any information
on how many particles are present at the respective number of contact neighbors).
We assign the more pronounced drop in relative contact area of the 16 vol%-L sample
to the presence of large particles jammed in a sphere of smaller particles. Hence, the
extension of the thermal path length is not only caused by the disordered structure,
but additionally aided by an increased constriction around these defect sites. c) The
effect of small particle jamming around larger central spheres becomes even more
obvious, when looking at the influence of the size ratio at comparable volume ratios
(16-20 vol%-L). The bell-shape of the histogram becomes more pronounced for a
decreasing size ratio and shows particularly small relative contact areas for very
small and high numbers of contacting neighbors. More similar particle sizes recover
a very flat histogram distribution. This is associated with the lack and presence of
a high amount of next neighbor spheres, respectively. Consequently, the extension
of the thermal path length caused by the introduction of additional next neighbor
particles is supported by a stronger constriction around these structures.

Finite element modeling Fourier’s law is used to calculate the effective thermal
conductivity κeff:

κeff =
Q/A

∆T/h
(13.4)

Q is the heat flow rate normal to the cross-sectional area A of the cube, ∆T the
temperature difference, and h the cube length.

Tab. 13.2.: Specific heat capacity, density, and thermal conductivity of polystyrene used in
the FEM simulations

Specific heat capacity Density Thermal conductivity[
Jg−1K−1

] [
g cm−3] [

mWm−1K−1
]

1.25 1.05 150
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Fig. 13.14.: (a) Comparison of the effective thermal conductivity divided by the bulk
thermal conductivity of polystyrene obtained for an ideal fcc unit cell and the
fcc structure from MD simulation. The average particle contact area of the
fcc structure from MD simulation was used to create the unit cell. The slight
reduction of the MD simulation compared to the ideal unit cell originates from
line and point defects, which are not present in the ideal case. (b, c) The
effective thermal conductivity is independent of the number of DOFs and, thus
of the mesh size. (c) The data are exemplarily plotted for one position in the
fcc structure from MD simulation, respectively.

Fig. 13.15.: Effective thermal conductivity of the particle assembly with 16 vol% large
particles (size ratio 0.8) obtained for six cubes cut out of different positions of
the amorphous particle structure (red circles). The error bars arise from the
three different simulation directions per cube (x, y, and z). The black solid line
represents the mean effective thermal conductivity calculated from the first
three values, the dashed line is the corresponding standard deviation. This
plot shows that three positions are sufficient to calculate a meaningful average
value.
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14.1 Abstract

Controlling thermomechanical anisotropy is important for emerging heat management
applications such as thermal interface and electronic packaging materials. Whereas
many studies report on thermal transport in anisotropic nanocomposite materials,
a fundamental understanding of the interplay between mechanical and thermal
properties is missing, due to the lack of measurements of direction-dependent
mechanical properties. In this work, exceptionally coherent and transparent hybrid
Bragg stacks made of strictly alternating mica-type nanosheets (synthetic hectorite)
and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct
from ordinary nanocomposites, these stacks display long-range periodicity, which
is tunable down to angstrom precision. A large thermal transport anisotropy (up
to 38) is consequently observed, with the high in-plane thermal conductivity (up
to 5.7 W/mK) exhibiting an effective medium behavior. The unique hybrid material
combined with advanced characterization techniques allows correlating the full elastic
tensors to the direction-dependent thermal conductivities. We, therefore, provide a
first analysis on how the direction-dependent Young’s and shear moduli influence
the flow of heat.

14.2 Introduction

Heat management is crucial in many applications important for fueling the growth of
our technology-driven society. It needs to address not only very small length scales
to dissipate the heat produced, for example, by electronic circuits, but also very
large length scales to realize air conditioning, for instance, for commercial buildings.
The ubiquity of heat makes it obvious that heat management is a key-technology
to realize international long-term goals regarding global warming. Controlling
the elusive flow of heat is a complex challenge across multiple materials, length
scales, and ultimately devices. This results in stringent requirements for directional
control over the heat flux based on advanced material design. Whereas heat transport
represents an effective, far-field phenomenon, it is decisively governed by the material
structure[1]–[3] and chemistry[4],[5] on the microscale. Extreme phenomena of both
heat dissipation and thermal insulation have been demonstrated in nanostructured
and hybrid materials. For heat dissipation, surprisingly high thermal conductivities
have been reported for one-dimensional (1D) fibers comprising synthetic[6] and
natural polymers.[7],[8] For thermal insulation, unusually low thermal conductivities
have been shown for (disordered) stacks of two-dimensional (2D) materials.[9],[10]

Extremely efficient anisotropic thermal insulation materials have been demonstrated
with various mixtures of polymers and nanoparticles or 2D materials.[11]–[13]
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The combination of inherently different materials, such as soft and hard matter,
is attractive, as new properties, deviating from those based on the simple linear
interpolation, could emerge. This is often accompanied by improved processability,
which is aided by the complementary properties of the constituent components. For
instance, the soft component can serve as a binder to enable fabrication of large-area,
thin films of an otherwise brittle, hard component. On the contrary, the expected
effective material properties, such as mechanical reinforcement, optical transparency,
and electrical or thermal conductivity, have been often found inferior to the high
expectations. The reason for such shortcomings is that the nanocomposite structure,
particularly the soft-hard interface, is poorly controlled. Furthermore, although
many characterization techniques, such as tensile testing, indentation, and abrasion
tests, are capable of assessing engineering properties, they are unsuitable for directly
identifying and quantifying anisotropies or microscopic contributions to the effective
properties.

Nevertheless, hybrid systems have been reported to drastically alter the materi-
als’ thermal transport properties,[6]–[13] depending on the geometry, dimensionality,
crystallographic symmetry, and confinement. Interestingly, layered structures inher-
ently exhibit structural anisotropy, a feature that can be detrimental or desirable
depending on the application.[14] In particular, when polymer films are filled with
nanosheets of huge aspect ratio, the resulting nanocomposite properties ought to
be exceedingly anisotropic. Yet, only effective material properties such as electri-
cal or thermal conductivity have been reported in a direction-dependent manner.
Direction-dependent mechanical properties, which fundamentally translate into ther-
mal transport properties are still missing. Strong anisotropies in hybrid materials are
preferentially achieved at small stacking periodicities[10] or by combining components
with a large property contrast.[15]

For a thorough characterization of such nanosheet/polymer stacks (also known
as “nacre-mimics”[16]–[19]), macroscopically oriented and homogeneous systems are
paramount. Such ideal model system should also exhibit translational crystallo-
graphic symmetry, tunability, and strong anisotropy. Direction-dependent studies
benefit significantly from the availability of various light scattering methods, ren-
dering a transparent filler such as the synthetic clay hectorite with a mica-type
structure desirable. For fundamental investigations of elastic properties, Brillouin
light spectroscopy (BLS) has established itself as a technique of choice, as it allows for
microscopic observations of high frequency (GHz) dynamics, at which viscoelasticity
effects are usually negligible.[20],[21] On the other hand, lock-in thermography and
photoacoustic techniques have been proven reliable in accessing the in-plane and
cross-plane thermal conductivities of thin films.[22],[23] Here, we show for the first time
the complete mechanical properties of clay/polymer Bragg stacks that are fabricated
using a uniquely defined, scalable spray-coating process meeting all aforementioned
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specifications of a suitable model system. We, therefore, introduce 1D hybrid Bragg
stacks based on nacremimetic clay/polymer with small stacking periods and large
property contrast. These Bragg stacks are scalable in both lateral extension and
thickness, and they are macroscopically oriented. The fully controlled microstruc-
ture allows a detailed orientation dependent characterization of the thermal and
mechanical properties. We couple the thermal and mechanical analyses to achieve
an in-depth understanding of the interplay between the thermal conductivities and
mechanical moduli in a directiondependent manner. The extreme confinement of
polymer between the clay sheets further prompts a question regarding the validity
of continuum mechanics that we also address. The combination of unique hybrid
materials and advanced characterization techniques provides an unprecedented in-
sight into the physics of direction-dependent nanomechanical and thermal transport
properties in strongly anisotropic materials with polymer confinement.

14.3 Results and Discussion

14.3.1 Hybrid Bragg stacks with extreme polymer
confinement

The Bragg stacks comprise synthetic clay sodium fluorohectorite
(Hec, [Na0.5]inter[Mg2.5Li0.5]oct [Si4]tet O10F2) and polyvinylpyrrolidone (PVP, Mw =
40000 g/mol). Like layered titanates[24] and antimony phosphates,[25] Hec belongs to a
handful of compounds showing a rare phenomenon of osmotic swelling.[26] In contrast
to mechanical exfoliation by e.g. sonication in the liquid phase,[27] osmotic swelling
is a thermodynamically favored, repulsive process,[28] allowing for complete and
gentle delamination that preserves the diameter of the parent crystals. In general,
exfoliation describes the process of slicing tactoids into thinner stacks, whereas
by delamination, the layered material is exfoliated to the level of individual single
nanosheets.[29] For Hec, nanosheets with a thickness of 10 Å and a median diameter
of 20 µm (Figure 14.5) are obtained by simply immersing the material into deionized
water.[30] Phase purity and a homogeneous charge density guaranteeing a uniform
intracrystalline reactivity are prerequisite for such a well-controlled delamination.
For Hec this is achieved by long-term annealing, while less uniform natural or other
synthetic clays commonly applied for nacre-mimics comprise mixtures of auxiliary
minerals, mono-, few- and multilayer stacks.[30] Because of the large aspect (diameter
to thickness) ratio, polar rotation of the nanosheets in suspension is hindered, leading
to parallel nanosheets after osmotic swelling. Even dilute (< 1 vol%) suspensions of
Hec represent nematic phases.[31] The parallel pre-orientation of adjacent nanosheets
in the highly swollen dispersion is indispensable for the fabrication of homogenous
and periodic Bragg stacks via spray coating. Similar to titanate nanosheets,[32] Hec
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nanosheets adopt this cofacial arrangement due to strong electrostatic repulsion
with inter-nanosheet distances exceeding 50 nm. Polymers can easily diffuse into
these spacious galleries. By mixing Hec suspensions with varying aliquots of an
aqueous PVP solution, we obtained perfectly homogeneous, nematic dispersions, as
evidenced by small-angle X-ray scattering (SAXS) measurements (Figure 14.6).

Fig. 14.1.: Schematic and microscopic images of ultra-anisotropic and extremely confined
Hec/PVP Bragg stacks. (A) Space-filling model of one single Hec nanosheet
emphasizing the anisotropy of the nanosheet and the corrugation of the clay
nanosheet allowing for interdigitation with PVP. (B) True to scale schematic of
the pronounced structural anisotropy. The ultra-high-aspect-ratio nanosheets
stretch from left to right and have lateral dimensions much larger than the length
of the PVP polymer chains. The gallery height is on the order of magnitude of the
molecular dimensions. (C-D) XRD patterns of Hec31/PVP69 and Hec40/PVP60
(defect-free materials) showing intense 001-reflections and a rational series of
basal reflections up to the ninth order. The cross-sectional TEM images show
exceptionally periodic homogeneity of these hybrid films over large length scales.
(E) XRD patterns and cross-sectional TEM image of Hec51/PVP49 displaying a
random stacking of two gallery heights.

Through spray coating of dilute nematic mixtures of high-aspectratio Hec nanosheets
with PVP (1-2 wt% total solid content, see Section 14.7.1) highly coherent Bragg
stack films with tunable gallery spacings are fabricated.[33] The transverse flexibility
of clay monolayers[34] and their large aspect ratio are essentials assuring the high
degree of precision obtained in the self-assembly.[35] Both, all nanosheets and the
macroscopic film are aligned parallel to a polyethylene terephthalate substrate.
The microscopic orientation of the Hec nanosheets prescribes the macroscopic
film orientation, which is prerequisite for the direction-dependent measurements.
The macroscopic film orientation is, consequently, equivalent to the microscopic
polymer/clay direction and allows using far-field and integrating characterization
techniques to reveal direction-dependent properties. After drying, self supporting
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hybrid films with lateral extensions of several square centimeters are peeled off the
substrate and used in the BLS and thermal conductivity measurements. Only by
generating a nematic phase consisting of a homogeneous mixture of large aspect ratio
and flexible nanosheets allows for fabrication of large area, self-standing 1D single
crystals referred to in literature as Bragg-stacks or smectic films.[35] Furthermore,
appropriate processing like spray coating fostering the thermodynamic equilibration
of the hybrid structure during drying has to be employed.

In total, we prepared six samples: pure polymer, pure Hec, and four hybrid
Bragg stacks, which are denoted as Hec0/PVP100, Hec100/PVP0, Hec23/PVP77,
Hec31/PVP69, Hec40/PVP60, and Hec51/PVP49, respectively. Here, the numbers
indicate the volume fractions (vol%) of Hec and PVP, as confirmed by thermogravi-
metric analysis (Table 14.1 and Figure 14.7).

The Hec surface is corrugated (Figure 14.1A) allowing for interdigitation and an-
choring of PVP chains. Such interdigitation has been documented for intercalated
molecular moieties, where structures based on single crystal data refinement are
available.[36],[37] An in-scale impression of the ultra-high aspect ratio provided by
the Hec nanosheet gallery is shown in Figure 14.1B, where the length of the line
corresponds to the typical lateral size of a clay nanosheet, and the thickness of the
line to the height of a Hec/PVP/Hec layer. The magnifying lens highlights the
extreme polymer confinement in the cross-plane direction. The perfect homogeneous
arrangement of Hec nanosheets and PVP is demonstrated by TEM and SEM images
over different dimensions (Figure 14.1C-E, Figure 14.11). Note that the lateral
dimensions of the Hec nanosheets are much larger than the typical persistence and
even contour lengths of the PVP chains. While for the polymer chains the Hec
nanosheet confinement appears infinite, at the length scale of the Bragg-stack films
extending over tens of centimeters, they are of course finite. At the magnification
where single 1 nm thick nanosheets are observable (Figure 14.1C-E, Figure 14.9), the
occurrence of nanosheet edges is very rare (fewer than one per 2500 nm2. Careful
inspection, however, reveals few (Figure 14.10) of these nanosheet edges. The clay
nanosheets show in-plane crystalline order resembling the structure of mica. While
mica possesses 3D crystalline order, our nanocomposite films belong to the trans-
versely isotropic symmetry class, because the adjacent Hec nanosheets are positioned
randomly in the lateral direction. However, all hybrid films show translational
crystallographic symmetry along 001 (the cross-plane direction), as indicated by
several orders of Bragg reflections (Figure 14.1C-E and Figure 14.9). By varying the
PVP content, the basal spacing was tuned in the range from 19 to 38 Å, leading to
PVP layer thicknesses ranging from 9 to 28 Å. For all samples, the gallery height is,
therefore, significantly smaller than the PVP chains’ radius of gyration (Rg, PVP
≈ 15 nm[38]), implying strong polymer confinement.
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Fig. 14.2.: Direction-dependent thermal conductivities of Hec/PVP hybrid Bragg stacks.
(A) Film density, (B) specific heat, and effective (C) in-plane and (D) cross
plane thermal conductivities, as a function of the Hec volume fraction. The red,
green, and blue dashed lines in (A)-(D) show linear trends based on a simple
mixing model, A(x) = (1 − x)A(0%) + xA(100%), where A represents ρ, Cp,
k‖, or k⊥, and x denotes the Hec volume fraction. (E) Ratio of the in-plane
to cross-plane thermal conductivities vs. the Hec volume fraction. For clarity,
error bars smaller than the symbol size are not shown.

In contrast to known nanocomposite films,[17],[39] Hec and PVP are thermodynami-
cally miscible over a wide range of compositions. This miscibility is a prerequisite
for tuning the basal spacing over a wide range with angstrom precision, which typi-
cally is only observed when vapour-phase deposition techniques are applied.[9] The
miscibility is also reflected in an agreement of the basal spacing observed by X-ray
diffraction (dXRD) with the nominal values calculated based on the Hec and PVP
volume fractions (dnominal, Table14.1). To the best of our knowledge, our Hec/PVP
Bragg stack films are the first of its kind showing such an agreement. Because the
polymer confinement, however, is getting to the point where the gallery height is on
the order of the size of an individual polymer chain, it is not possible to vary the
gallery height continuously but only in incremental steps that relate to the diameter
of the polymer chain. Consequently, only discrete polymer volume fractions lead to
essentially defect-free Bragg stacks, as seen in Hec40/PVP60 and Hec31/PVP69.
XRD patterns reflect this with a rational 001-series, where the average basal spacing
(dXRD) calculated from individual reflections shows a low coefficient of variation
with the reflection peaks being sharp and intense (Table 14.1). The two gallery
heights of the two defect free hybrid materials (1.3 nm for Hec40/PVP60 and 2.0 nm
for Hec31/PVP69) might be attributed to the elliptical nature of PVP chains with
principle axes of 1.0 nm and 1.3 nm (Figure 14.8A). The observed gallery heights
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correspond to a monolayer with the longer principal axis (Figure 14.8B) oriented
perpendicular to the Hec nanosheets and a bilayer with the longer principle axis
(Figure 14.8C) lying in the plan of the Hec nanosheets, respectively.

In the two cases where the volume ratios do not happen to match (Hec23/PVP77
and Hec51/PVP49), the miscibility is nevertheless assured at small length scale
by random interstratification of two gallery heights (Figure 14.1E; transmission
electron microscopy (TEM) close-up), and the coefficient of variation of the 001-series
increases[40] (Table 14.1) with the reflection peaks being less intense (Figure 14.1E
and Figure 14.9).

14.3.2 In-plane and cross-plane thermal conductivities

The in-plane and cross-plane thermal conductivities of the Hec/PVP hybrid Bragg
stacks were characterized by lock-in thermography and photoacoustic measure-
ments,[22],[23],[41]respectively. Since the density, ρ, and specific heat, Cp, are prerequi-
sites for the thermal conductivity analysis, they were also determined experimentally
by using helium pycnometry and differential scanning calorimetry (DSC) (Sec-
tion 14.7.4), respectively. As the Hec volume fraction increases from 0 to 100%, the
density increases from 1190 to 2730 kg/m3 (Figure 14.2A). This is well captured by
a volume fraction-based mixing model (dashed line in Figure 14.2A). Correspond-
ingly, the specific heat decreases from 1140 to 890 J/kgK (Figure 14.2B), which also
follows the prediction by an effective medium model (Figure 14.12B). Both analyses
indicate that despite the extreme polymer confinement the properties of the hybrid
stacks could be described by linearly interpolating the properties of the two bulk
constituents. The polymer confinement, however, leads to a significant increase
in the glass transition temperature (Tg) of PVP, with no discernable Tg below
250 °C even at the lowest Hec composition (Figure 14.12A). Expectedly, the thermal
conductivity of the Bragg stacks strongly depends on the direction. The in-plane
thermal conductivity achieves its maximum, k‖,max = 5.71 W/mK, in Hec100/PVP0,
which is even higher than typical in-plane thermal conductivities of natural micas
(Figure 14.4A).[42] The lower end is given by the isotropic thermal conductivity of
Hec0/PVP100, i.e., k‖,min = 0.17 W/mK (only determined by photoacoustic character-
ization). The four hybrid Bragg stacks have in-plane thermal conductivities between
these limiting values following a parallel mixing model (Figure 14.2 C).[43] This is
again surprising, as it implies that the confinement of PVP has no effect on the
in-plane thermal conductivity of the Hec/PVP hybrid stacks compared to bulk PVP.
The cross-plane thermal conductivity exhibits a broad minimum at k⊥ ≈ 0.09 W/mK,
which is comparable to previously reported data for organoclay laminates.[10] The
deviation of the cross-plane thermal conductivities from an effective medium be-
havior (Figure 14.2D, dashed line) could be attributed to the Hec/PVP interfaces,
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which are the dominating contributors to the cross-plane thermal resistance, as
discussed below. The thermal conductivity anisotropy, k‖/k⊥, depends strongly on
the hybrid composition, attaining a maximum of 38 in Hec51/PVP49 (Figure 14.2E).
We note that this anisotropy is exceptionally high for electrically insulating hybrid
materials[44] and outperforms natural nacre by a factor of ≈ 20.[45] All in all, the
structural perfection of the pure components and hybrid Bragg stacks translate into
a record-high in-plane thermal conductivity and thermal transport anisotropy.

14.3.3 Anisotropic mechanical properties

The unique macroscopic orientation in the hybrid Bragg stacks allows us to track
down the origin of their high thermal conductivity anisotropy by measuring their
full mechanical tensors. The measurements were conducted by using BLS, which
probes the phonon wave vector, q, dependent sound velocity, v, through inelastic
light scattering by thermally excited, high frequency (GHz) phonons.[20],[21] Since
the hybrid Bragg stacks are transversely isotropic, only q vectors in a single plane
containing the symmetry axis have to be considered. For such a q vector, the
direction can be denoted by α, the angle between q and the normal to the sample
film, and because of symmetry α can be restricted in the range from 0° to 90°. The
measurements corresponding to α = 0°, 0° < α < 90° and α = 90° were conducted in
the reflection, backscattering, and transmission scattering geometries, respectively,
while the polarization of the phonon mode was selected using different incident and
scattered light polarization configurations (e.g., VV for quasi-longitudinal (Q-L) and
quasi-transverse (Q-T) modes, and VH for a pure-transverse (P-T) mode).[46] This
flexibility of accessible parameters makes BLS particularly suitable for characterizing
anisotropic or crystalline structures, as demonstrated in previous experiments on
mica crystals.[47] Since this work is the first one to apply the BLS technique to a
hybrid Bragg stack material, we briefly outline the BLS measurement and data
analysis.

Consider Hec31/PVP69 as an example. A typical BLS spectrum from the reflection
geometry (inset to Figure 14.18A) displays a cross-plane longitudinal (L⊥) mode in
the VV polarization configuration (Figure 14.18B). A typical BLS spectrum from
the backscattering geometry (Figure 14.3A, top-right inset) depicts a Q-L and a Q-T
mode in the VV polarization configuration (Figure 14.2A) and a weak P-T mode
in the VH polarization configuration (Figure 14.3A, top-left inset). Comparatively
richer information exists in a typical BLS spectrum from the transmission geometry
(Figure 14.3B, top-right inset). In the VV polarization configuration, the BLS
spectrum features an in-plane longitudinal (L‖) and a Q-L mode at a small laser
incident angle, β, and an additional Q-T mode at a large β (Figure 14.3B). In the
VH polarization configuration, a weak P-T mode at all β (Figure 14.3B, top-left
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inset) is clearly resolved. In the transmission BLS spectra, the intensity ratio of
the Q-L and Q-T peaks yields additional information (Figure 14.19B) and the Q-T
mode intensity increases noticeably at higher Hec contents. By comparing the
backscattering and transmission spectra, it becomes clear that the appearance of
the Q-L and Q-T peaks in the latter (Figure 14.3B) results from the scattering of
the laser beam internally reflected on the sample’s backside.[48]

Based on the frequency shift, f , from the BLS spectrum and the phonon wave vector,
q, from the momentum conservation analysis, we calculated the sound velocity along
a certain q as ν = 2πf/|q|. Whereas the reflection measurements give the ν∗+, at α = 0°
and the transmission measurements result in the ν∗+, and ν−+. at α = 90°, the
backscattering measurements provide sound velocities for all the Q-L, Q-T, and P-T
modes at intermediate α angles, as limited by the sample’s refractive index. These
direction-dependent sound velocities are reported in Figure 14.3C for Hec31/PVP69;
additional data for the other samples are shown in Figure 14.20A-D. Since sound
velocities are intimately related to the elastic stiffness tensor in the framework of the
Christoffel equation,[49],[50] the availability of the former together with the measured
sample densities (Figure 14.2A and Table 14.4) enables unique determination of the
latter. For a transversely isotropic material, the elastic stiffness tensor contains five
independent elastic constants (e.g., C11, C12, C13, C33, and C44).[51],[52] Through χ2

fitting,[53] we obtained the elastic stiffness constants (Figure 14.20E and Table 14.4),
which allow theoretical representation of the direction-dependent sound velocities
(solid lines in Figure 14.3C and Figure 14.20A-D) as well as determination of the
engineering mechanical properties (Figure 14.3D and Table 14.5). In addition, we
analyzed the error bars (standard deviations) of the quantities according to principles
of uncertainty propagation (Section 14.7.11).
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Fig. 14.3.: BLS measurements and strong mechanical anisotropy of Hec/PVP hybrid Bragg
stacks. (A-B) Polarized BLS spectra (anti-Stokes side) of the Hec31/PVP69
hybrid stack film recorded in (A) the backscattering geometry with q forming a
variable angle, α, with the normal to the sample film (top-right inset to (A)) and
(B) the transmission geometry with the phonon wave vector, q, directed in-plane
(α = 90°; top-right inset to (B)). ki and ks are the wave vectors of the incident
and scattered light beams, respectively. β is the incident angle of the laser beam.
The quasi-longitudinal (Q-L), quasi-transverse (Q-T), and in-plane longitudinal
(L‖) phonon modes are indicated in (A) and (B). The much weaker depolarized
VH spectra of the pure transverse modes are shown in the top-left insets. Notice
the correspondence between the Q-L and Q-T modes in (A) and those in (B).
(C) Direction-dependent sound velocities of the observed acoustic phonons in
the BLS spectra of Hec31/PVP69. The three solid lines indicate theoretical
representations (Equations (14.6)-(14.8)) of the experimental sound velocities
of the three modes. (D) Composition dependence of four engineering moduli.
The moduli of the anisotropic hybrid films are extrapolated to those of the pure
PVP and pure Hec films, as shown by the dashed lines. The four schematics
beside (D) visualize the physical meanings of the corresponding moduli.

14.3 Results and Discussion 227



This analysis provides the first direction-dependent insights into the mechanical
properties of hybrid Bragg stacks in general and of clay/polymer nanocomposites
in particular. The Young’s moduli, E‖ and E⊥, and torsional shear modulus, G12,
all increase with increasing Hec volume fraction. The sliding shear modulus, G13,
however, decreases from 2.6 GPa in Hec0/PVP100 to 1.0 GPa in Hec100/PVP0. A
reduction in polymer chain entanglement upon confinement could be the cause of the
decrease in G13.[54] Since the elastic moduli of polymer nanocomposites depend on
the specific filler-polymer and polymer-polymer interactions, a rationalization of the
increase (E‖, E⊥, G12) or decrease (for G13) with Hec content would require computer
simulations.[54] All the mechanical moduli of the Bragg stacks display an effective
medium behavior, assuming values between those of the two bulk components. We
point out that even though the PVP chains are strongly confined between the
adjacent Hec nanosheets (note Rg, PVP > 5(dXRD − dHec)), bulk properties (e.g.,
ρPVP, ρHec) are sufficient to fully capture the BLS measurements. As expected
from the structural anisotropy, the Young’s moduli exhibit large differences between
the in-plane and cross-plane directions (Figure 14.3D). As the Hec volume fraction
increases from 0 to 100 %, the mechanical anisotropy ratio, E‖/E⊥, increases from
1 to 7. Concomitantly, the two characteristic Poisson’s ratios, ν23 and ν24, vary in
ranges of 0.02-0.05 (nearly zero or cork-like values) and 0.34-0.41 (typical polymer
values), respectively (Table 14.5). The reasonable values of the mechanical properties
corroborate the validity of continuum mechanics at length scales of a few nanometers
and in the presence of extreme polymer confinement.

In the last section, we summarize the new insights onto the anisotropic thermoe-
lasticity that can be gained from this wholistic analysis. We firstly exploit the
directly measured direction-dependent sound velocities, and secondly correlate the
derived mechanical moduli to the direction-dependent thermal conductivities. We
first apply a kinetic theory model, k = Cvν̄gΛ̄/3 to estimate the average phonon
mean free path Λ̄; along different directions in the Bragg stacks.[55] We use Cv = Cp

and ν̄g = ν̄s,‖ =
(
νQ-L,‖ + νQ-T,‖ + νP-T,‖

)
/3; a similar analysis is done for k⊥. The

in-plane Λ̄; strongly depends on the hybrid composition, ranging from 14 Å for
Hec100/PVP0 to 2 Å for Hec0/PVP100 (Figure 14.4A). We note that these Λ̄ values
significantly underestimate the presence of longer ranged phonons, which are typi-
cally better described by a phonon mean free path accumulation function.[55],[56] It is
well known that thermal transport involves phonons over a wide range of frequencies
which have different specific heat capacities, group velocities, and mean free paths.
The underestimated Λ̄; in our analysis could be attributed to the overestimated ν̄g

from the BLS measurements, which mainly characterizes the propagation speed of a
small fraction of the low frequency (long wavelength) phonons. These low frequency
phonons carry only a negligible fraction of the overall heat. For the in-plane direction,
the lateral size of the Hec nanosheets by far exceeds the average phonon mean free
path. Hence, the high in-plane thermal conductivities are governed by the intrinsic
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material properties, not by the presence of grain boundaries between the aligned Hec
nanosheets. The complementary analysis for k⊥ demonstrates a strong reduction of
Λ̄; down to less than 1 Å (Figure14.4B) with no discernible composition dependence
along the cross-plane direction. Interfacial effects apparently dominate the thermal
transport in this direction, which is better analyzed using a series resistance model
(SRM, Figure 14.4C and F) as outlined by Losego et al.[10] The fitted value of
the interfacial conductance, GHec/PVP = 89± 8 MW/m2K (see Section 14.7.10), falls
well into the range of reported values for other inorganic/organic interfaces.[4],[57]

The intercalation of PVP between the clay sheets leads to a strong reduction of
the interfacial conductance, which is GHec/Hec = 291 ± 28 MW/m2K for the pure
hectorite.

We next address the correlation between the anisotropic mechanical moduli and
thermal conductivities. Two distinct conclusions can be drawn.

(i) In the direction parallel to the Hec nanosheets, a correlation between the
thermal conductivity and all mechanical moduli is found. Along this direction
the phonon mean free path is considerably shorter than the typical lateral
size of a Hec nanosheet, rendering grain boundary effects insignificant. The
influence of E‖, E⊥, and G12 on the thermal transport dominates over G13 since
the former moduli show a direct relation to the in-plane thermal conductivity.
E‖ and G12 show a power scaling law close to one (0.93) between in-plane
thermal conductivity and modulus (E⊥ scales with 0.38). Whereas we find a
clear correlation between the moduli and the thermalconductivity, we cannot
deduce which change in mechanical modulus causes which effect to the thermal
transport. The applicability of a simple mixing model along the parallel
direction as outlined in Figure 14.2 A-C is certainly surprising in view of the
strong polymer confinement effect on the glass transition (Figure 14.12).

(ii) In the direction perpendicular to the Hec nanosheets, the phonon mean
free path is comparable to the periodicity of the Bragg stacks. Here, the
composition dependence of the mechanical properties does not influence the
reduction of the cross-plane thermal conductivity (vertical spread of the data
points in Figure 14.4E). Thus, changes to the gallery height are insignificant,
which indicates the overwhelming contribution of the interfacial conductance.
Considering changes to the pure components we find that reducing the sliding
shear modulus G13 decreases the cross-plane thermal transport properties of
the polymer component. The reduction in k⊥ of the hybrid stacks relative
to pure hectorite correlates to losses in E‖, E⊥, and G12 that apparently
counteract the increase in G13.
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Overall, the mechanical and thermal properties are uncorrelated along the perpendic-
ular direction, and the thermal transport is governed by the Hec/PVP interfaces.

Fig. 14.4.: Analysis of anisotropic thermomechanical coupling in Hec/PVP hybrid Bragg
stacks. (A) Effective in-plane thermal conductivity, k‖, vs. Cv ν̄s,‖/3. The
yellow, purple, cyan, blue, green, and red colored symbols represent the
Hec0/PVP100, Hec23/PVP77, Hec31/PVP69, Hec40/PVP60, Hec51/PVP49,
and Hec100/PVP0 samples, respectively. The phlogopite data point is from
our additional measurements; muscovite and biotite data points are from refer-
ence.[42] (B) Effective cross-plane thermal conductivity, k⊥, vs. Cv ν̄s,‖/3. In (A)
and (B), the numbers beside the data points indicate the average phonon mean
free paths, Λ̄; (i.e., the slope of the gray lines). (C) Effective cross-plane thermal
conductivity, k⊥, vs. the basal spacing of the Bragg stacks. The red solid line is a
fit to the experimental data based on the series resistance model (SRM) shown in
(F). As a comparison, the blue dashed line considers only the thermal resistances
of the Hec and PVP layers, and the red dotted line considers only the thermal
resistances of the Hec/PVP interfaces. (D) Normalized mechanical moduli vs.
normalized effective inplane thermal conductivity, k‖. The dashed line shows a
direct correlation between the two axes with a power of one. (E) Normalized
mechanical moduli vs.normalized effective cross-plane thermal conductivity, k⊥.
In (D) and (E), the following values of the pure PVP film, E‖ = E⊥ = 7.0 GPa,
G13 = G12 = 2.6 GPa, and k‖ = k⊥ = 0.17 W/mK, are used as references in
the normalization. (F) A schematic of the SRM used to analyze the Hec/PVP
interfacial thermal conductance.
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14.4 Conclusion

In conclusion, fully delaminated hectorite platelets can be processed into hybrid
Bragg stacks with unique properties, with the polymer polyvinylpyrrolidone being
the intercalated second component. Such long-range 1D ordered materials become
accessible by simply spray coating the desired nematic dispersions of adjusted
volume fractions, which at the same time controls the periodicity of the hybrid
stacks down to the angstrom level. The macroscopic lattice alignment enables the
determination of direction-dependent thermoelastic properties, which we assessed
by thermal transport characterization techniques and Brillouin light spectroscopy.
We found a record high anisotropy between the in-plane and cross-plane thermal
conductivities in clay/polymer hybrid materials. This is corroborated by the first
report of direction-dependent Young’s and shear moduli that are also strongly
anisotropic. The effective gallery spacing, density, specific heat, and in-plane
thermal conductivity were found to conform to composition-dependent simple mixing
models. Despite the nanometer-level lattice periodicity and angstrom-level polymer
confinement, the Christoffel-equation-based model, derived in the framework of
continuum mechanics, remains applicable for determining the anisotropic elasticity.
Of general relevance is the direction dependency of the way that the mechanical
moduli and thermal conductivities correlate. In the in-plane direction, where grain
boundaries are negligible relative to the phonon mean free path, E‖, E⊥, and
G12 directly correlate with the in-plane thermal conductivity. In the cross-plane
direction, where the phonon mean free path is comparable to the lattice periodicity,
the thermal transport is governed by the clay/polymer interfaces. We are convinced
that a wholistic understanding of direction-dependent thermoelastic properties will
have a broad impact on important applications such as electronic packaging and
thermoelectrics. This contribution is only a first step towards this goal. More
work needs to be done for the deterministic - maybe even independent - design of
mechanical and thermal properties. Future studies should also address the role of
enthalpic interaction at the clay/polymer interface, interdigitation of the confined
polymer, size effects of the platelets, and other nanosheet materials.
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14.5 Experimental Section

14.5.1 Sample Preparation

The synthetic clay sodium fluorohectorite (Hec, [Na0.5]inter[Mg2.5Li0.5]oct [Si4]tet O10F2)
was delaminated by immersing it into Millipore water (0.5 wt%). The aqueous PVP
solution (1 wt%) was added in the desired weight ratio. The suspension was mixed
for at least one day in an overhead shaker. The homogeneity of the suspension
was crosschecked by SAXS measurements. Self-supporting films were prepared
using a fully automatic spray coating system. Every spraying cycle is followed by a
drying cycle of 90 s at a temperature of 55 °C. We prepared pure PVP, pure Hec,
and four hybrid Hec/PVP films. The self supporting films were characterized by
thermogravimetric analysis, XRD, and TEM. Additional information about the
sample preparation can be found in Section 14.7.1.

14.5.2 In-plane thermal conductivity measurements

Lock-in thermography measures the temperature spreading across the free-standing
samples upon thermal excitation by a focused laser beam with a modulated intensity.
To prevent convective heat losses, the experiments are conducted in a vacuum
chamber. The amplitude and phase data are extracted from the radial temperature
distribution. The thermal diffusivity is then fitted by the slope method for thermally
thin films. With the density, determined by helium pycnometry, and the specific heat,
determined by differential scanning calorimetry (DSC), the thermal conductivity
can be calculated. More details are provided in Section 14.7.4.

14.5.3 Cross-plane thermal conductivity measurements

The photoacoustic method uses a modulated laser beam to periodically heat a
transducer layer in intimate contact with the sample. The heat is converted into an
acoustic wave propagating into a gas tight cell above the sample, which is filled with
helium at 20 psi. A sensitive microphone detects the phase shift between the acoustic
signal and the modulated laser by a lock-in amplifier. The frequency-dependent
phase shift is then compared to a multilayer model, assuming one-dimensional heat
transfer. Therefrom, the total layer resistance is obtained. With the film thickness
determined by AFM, the effective thermal conductivity is calculated. More details
are provided in Section 14.7.4.

232 Chapter 14 Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks



14.5.4 Brillouin light spectroscopy (BLS)

BLS measures the phonon dispersion, ω(q), by detecting the Doppler frequency shift,
ω, of the inelastically scattered light by sound waves (“phonons”) with a wave vector,
q. We recorded BLS spectra utilizing three scattering geometries (transmission,
reflection, and backscattering) and two polarization configurations of the incident
(λ = 532 nm) and scattered light (polarized VV, depolarized VH), which allowed
us to establish the nature of the observed phonons. We varied the incident angle
to obtain the direction dependent sound velocities necessary for the determination
of the anisotropic elasticity. The elastic stiffness tensors were obtained from the
representation of the direction-dependent sound velocities by the Christoffel equation
assuming transverse isotropy. The characteristic Young’s moduli, shear moduli, and
Poisson’s ratios of the Bragg stacks were subsequently calculated. More details can
be found in Section 14.7.9.
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[31] S. Rosenfeldt, M. Stöter, M. Schlenk, et al., ”In-depth insights into the key
steps of delamination of charged 2d nanomaterials,“ Langmuir, vol. 32, no. 41,
pp. 10 582–10 588, 2016.

[32] K. Sano, Y. S. Kim, Y. Ishida, et al., ”Photonic water dynamically responsive
to external stimuli,“ Nature Communications, vol. 7, no. 1, 2016.

[33] H. Kalo, W. Milius, and J. Breu, ”Single crystal structure refinement of one-
and two-layer hydrates of sodium fluorohectorite,“ RSC Advances, vol. 2,
no. 22, p. 8452, 2012.

[34] D. A. Kunz, J. Erath, D. Kluge, et al., ”In-plane modulus of singular 2:1 clay
lamellae applying a simple wrinkling technique,“ ACS Applied Materials &
Interfaces, vol. 5, no. 12, pp. 5851–5855, 2013.

[35] M. Wong, R. Ishige, K. L. White, et al., ”Large-scale self-assembled zirco-
nium phosphate smectic layers via a simple spray-coating process,“ Nature
Communications, vol. 5, no. 1, 2014.

[36] W. Seidl and J. Breu, ”Single crystal structure refinement of tetramethyl
ammonium-hectorite,“ Zeitschrift für Kristallographie - Crystalline Materials,
vol. 220, no. 2/3, 2005.

[37] A. Baumgartner, K. Sattler, J. Thun, and J. Breu, ”A route to microp-
orous materials through oxidative pillaring of micas,“ Angewandte Chemie
International Edition, vol. 47, no. 9, pp. 1640–1644, 2008.

[38] N. L. McFarlane, N. J. Wagner, E. W. Kaler, and M. L. Lynch, ”Poly(ethylene
oxide) (PEO) and poly(vinyl pyrolidone) (PVP) induce different changes in
the colloid stability of nanoparticles,“ Langmuir, vol. 26, no. 17, pp. 13 823–
13 830, 2010.

[39] E. S. Tsurko, P. Feicht, F. Nehm, et al., ”Large scale self-assembly of smectic
nanocomposite films by doctor blading versus spray coating: Impact of crystal
quality on barrier properties,“ Macromolecules, vol. 50, no. 11, pp. 4344–4350,
2017.

[40] D. M. Moore and R. C. Reynolds, X-ray Diffraction and the Identification
and Analysis of Clay Minerals, Second. New York: Oxford University Press,
1997.

[41] A. Philipp, N. W. Pech-May, B. A. F. Kopera, et al., ”Direct measurement
of the in-plane thermal diffusivity of semitransparent thin films by lock-in
thermography: An extension of the slopes method,“ Analytical Chemistry,
vol. 91, no. 13, pp. 8476–8483, 2019.

236 Chapter 14 Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks



[42] C. Clauser and E. Huenges, Thermal Conductivity of Rocks and Minerals.
American Geophysical Union, 2013, pp. 105–126.

[43] J. K. Carson, S. J. Lovatt, D. J. Tanner, and A. C. Cleland, ”Thermal
conductivity bounds for isotropic, porous materials,“ International Journal
of Heat and Mass Transfer, vol. 48, no. 11, pp. 2150–2158, 2005.

[44] Y.-F. Huang, Z.-G. Wang, H.-M. Yin, et al., ”Highly anisotropic, thermally
conductive, and mechanically strong polymer composites with nacre-like
structure for thermal management applications,“ ACS Applied Nano Materials,
vol. 1, no. 7, pp. 3312–3320, 2018.

[45] L. P. Tremblay, M. B. Johnson, U. Werner-Zwanziger, and M. A. White,

”Relationship between thermal conductivity and structure of nacre from
haliotis fulgens,“ Journal of Materials Research, vol. 26, no. 10, pp. 1216–
1224, 2011.

[46] R. W. Gammon, ”Brillouin scattering experiments in the ferroelectric crystal
triglycine sulfate,“ Ph.D. dissertation, John Hopkins University, 1967.

[47] L. E. McNeil and M. Grimsditch, ”Elastic moduli of muscovite mica,“ Journal
of Physics: Condensed Matter, vol. 5, no. 11, pp. 1681–1690, 1993.
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14.7 Supporting Information

14.7.1 Sample Preparation

14.7.2 Materials

The synthetic clay sodium fluorohectorite (Hec, [Na0.5]inter[Mg2.5Li0.5]oct [Si4]tet O10F2)
was synthesized via melt synthesis followed by long-term annealing, according to
an established procedure. The material featured a cation exchange capacity of
1.27 mmol/g (References[1],[2]). Polyvinylpyrrolidone (PVP; Mw = 40.000 g/mol) was
provided by Sigma Aldrich.

Fig. 14.5.: Atomic force microscopy image of a single delaminated Hec nanosheet. Reprinted
with permission from Langmuir.[1],[2] Copyright 2019 American Chemical Society.

14.7.3 Film preparation

For the delamination, the synthetic Hec was immersed into Millipore water (0.5 wt%).
The complete delamination was studied by small angle X-ray scattering (SAXS).
The aqueous PVP solution (1 wt%) was added in the desired weight ratio. The
suspension was mixed for at least 1 day in the overhead shaker. Homogeneity of
the suspensions was cross-checked by SAXS measurements. All SAXS data were
measured using the small-angle X-ray system “Double Ganesha AIR” (SAXSLAB,
Denmark). The X-ray source of this laboratory-based system is a rotating anode
(copper, MicroMax 007HF, Rigaku Corporation, Japan) providing a micro-focused
beam. The data were recorded by a position sensitive detector (PILATUS 300 K,
Dectris). To cover the range of scattering vectors between 0.004− 1.0 Å−1, different
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detector positions were used. The measurements of the suspensions were done in
1 mm glass capillaries (Hilgenberg, code 4007610, Germany) at room temperature.
To improve the detection limit of the in-house machine, the suspensions were first
concentrated to ≈ 10 wt% by centrifugation at 10000 rpm for 1 hour. A rational
basal series was found for all suspensions, indicating that all clay nanosheets were
separated to exactly the same distance by water and PVP (Figure 14.6). Within
experimental errors reaggregation to stacks of Hec can be excluded by the absence
of a reflection typical for crystalline hydrated Hec phases at q = 0.65− 0.41 Å−1 .

Fig. 14.6.: 1D SAXS pattern of the concentrated gel sample Hec40/PVP60.

The self-supporting films were prepared by spray coating. The fully automatic
spray coating system was equipped with a SATA 4000 LAB HVLP 1.0 mm spray
gun (SATA GmbH & Co. KG, Germany). Suspensions were sprayed on a corona-
treated polyethylene terephthalate (PET) foil (optimont 501, bleher Folientechnik,
Germany). The spraying and nozzle pressure were set constant at values of 2 and
4 bar, respectively. The round per flat fan control was set to 6 with a flow speed
of 3 mL/s. The distance between the spraying gun and the substrate was 17 cm.
The thickness of the suspension layer applied in one spraying step is ≈ 2 µm which
corresponds to ≈ 20 nm dry nanocomposite film thickness. For drying the suspension
layer, the sample is stopped under infrared lamps until evaporation of the solvent is
complete. After every spraying cycle, a drying cycle of 90 s with a temperature of
55 °C took place. The spraying/drying cycle is repeated until the desired barrier film
thickness of 50 µm is obtained. Afterwards, the film was dried at 100 °C for 3 days
and peeled off from the PET foil to achieve self-supporting films. For characterization
by photoacoustic analysis thinner films on the order of a few µm were spray coated
onto clean 1 mm thick microscopy glass slides. In total, we prepared six samples,
which are denoted as Hec0/PVP100, Hec23/PVP77, Hec31/PVP69, Hec40/PVP60,
Hec51/PVP49, and Hec100/PVP0, respectively (Table 14.1). Throughout the
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manuscript, all samples are referred to by the nominal volume fractions (vol%) of
Hec and PVP, respectively. To rule out compositional changes during spray coating,
these ratios were cross-checked (Table 14.1) by thermogravimetric analysis (TGA),
using a Linseis STA PT 1600 (Linseis Messgeräte GmbH, Germany). Changes in
mass observed upon heating in synthetic air up to 800 °C were attributed to the
combustion of PVP.

Fig. 14.7.: TGA curves of four hybrid Bragg stacks. The weight loss below 200 °C corre-
sponds to the water.

X-ray diffraction (XRD) patterns for the films were recorded in Bragg-Brentano-
geometry on an Empyrean diffractometer (PANalytical B.V.; the Netherlands) using
Cu Kα radiation (λ = 1.54187 Å). The self-supporting films were placed on glass
slides (Menzel-Gläser; Thermo Scientific). Prior to the XRD measurements, the
samples were dried at 100 °C in a vacuum chamber for one week.

Fig. 14.8.: Space filling models. (A) PVP viewed along the polymer backbone chain. (B)
Monolayer of PVP oriented with the longer principal axis perpendicular to the
Hec nanosheet. (C) Bilayer of PVP lying in the plane of the Hec nanosheets.
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Fig. 14.9.: XRD pattern and TEM image of the nanocomposite film Hec23/PVP77. The
red asterisks denote a second series of basal reflections of a minority phase
(d = 2.3 nm).

Fig. 14.10.: Lattice plane termination of a single Hec nanosheet.

As a measure of the quality of the one-dimensional crystallinity of the films, the
coefficient of variation (CV) and the full width at half maximum (FWHM) were
determined (Table 14.1). Large CV-values (≈ 3 %[3]) and large FWHM indicate
non-rationality of the diffraction pattern as caused by a random interstratification
of different interlayer heights. Assuming PVP and Hec densities of 1.2 g/cm and
2.7 g/cm, respectively, nominal d-spacings can be calculated for the various volume
ratios (dnominal in Table 14.1).[4] They agree reasonably with those obtained from
XRD measurements (dXRD in Table 14.1). In analyzing the cross-plane thermal
conductivity using the series resistance model, we used the dXRD values.
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Tab. 14.1.: Overview of the structural and chemical characterization.

nominal
Hec:PVP
ratio
[wt%]

nominal
Hec:PVP
ratio
[vol%]

PVP
content
[a] [wt%]

PVP
content
[b][vol%]

dnominal

[Å]

Hec100/PVP0 100:0 100:0 - - 10
Hec51/PVP49 70:30 51:49 27 45 18
Hec40/PVP60 60:40 40:60 38 58 23
Hec31/PVP69 50:50 31:69 49 68 30
Hec23/PVP77 40:60 23:77 59 76 41
Hec0/PVP100 0:100 0:100 100 100 -

dXRD

[Å]
gallery
height
(PVP)
[c][nm]

CV [%] FWHM
[°2θ]

Hec100/PVP0 10 - - -
Hec51/PVP49 19 0.9 5.9 0.4
Hec40/PVP60 23 1.3 1.3 0.3
Hec31/PVP69 30 2.0 1.0 0.3
Hec23/PVP77 38 2.8 2.8 0.3
Hec0/PVP100 - - - -

a determined by TGA
b calculated with the PVP content determined by TGA
c gallery height corresponds to the d-spacing minus the Hec platelet height of 1 nm

Scanning electron microscopy (SEM) images were taken with a Zeiss LEO 1530 (Carl
Zeiss AG, Germany) at an operating voltage of 3 kV. Cross sections were prepared
by cutting with a razor blade. The samples with Hec were sputtered with 10 nm
carbon.

Transmission electron microscopy (TEM) images were taken on a JEOL JEM-2200FS
(JEOL GmbH, Germany) at an acceleration voltage of 200 kV. Cross-section pictures
of the self-supporting films were prepared with a Cryo Ion Slicer IB-09060CIS (JEOL,
Germany).
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Fig. 14.11.: SEM image and photograph of the hybrid film. A) The SEM image displays
the ordered arrangement of hectorite sheets at the macro-scale. B) As the
hectorite platelets arrange highly ordered, light scattering is prevented and the
films is transparent.

14.7.4 Thermal measurements

For the determination of the in-plane and cross-plane thermal conductivity, the
density and the specific heat are needed. Therefore, Helium pycnometry and
differential scanning calorimetry (DSC) were used. We determined the in-plane
thermal diffusivity by lock-in thermography, and the cross-plane thermal conductivity
by the photoacoustic method. Prior to the measurements, the samples were dried at
100 °C in a vacuum chamber for one week.

14.7.5 Helium pycnometry

The density of the samples was measured by helium pycnometry. Therefore, an
Ultrapyc 1200e (Quantachrome Instruments) was used. Prior to each measurement
the volume of the empty measurement cell was measured. Afterwards, small pieces
of the freestanding films were weighed into the sample cell with a nominal volume
of 1.8 cm3. One hundred runs were performed to determine the volume of the films
at room temperature. By knowing the mass (measured on a fine balance) and the
volume, the density of the samples was calculated.

14.7.6 Differential scanning calorimetry

The specific heat was determined by DSC measurements according to the ASTM
E1269 standard. The samples were freeze ground for better processability and
contact to the DSC pans. The measurements were performed on a TA instruments
Discovery DSC 2500. An isothermal step (1 h, 100 °C) was conducted prior to the
measurement to ensure dry conditions. Then two heating cycles were used and only
the second cycle evaluated. The temperature profile ranged from -40 to 250 °C using
a heating rate of 20 K/min with a nitrogen flow of 50 mL/min.
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Fig. 14.12.: Temperature and composition dependencies of the specific heat. (A) Three
samples per Hec/PVP composition were measured. The average specific heat
at 25 °C was used to calculate the thermal conductivity. (B) The green dashed
line shows the prediction by a simple mixing model, Cp(x) = (1-x)Cp(0%) +
xCp(100%), with x being the hectorite weight fraction

14.7.7 Lock-in thermography

The in-plane thermal diffusivity of free-standing Hec/PVP stack films was obtained
by lock-in thermography (LIT). The self-built LIT set-up is shown in Figure 14.13.

Fig. 14.13.: Scheme of the lock-in thermography set-up. The samples were measured in a
vacuum chamber to avoid convective heat losses to the environment.

The sample is heated by a laser beam (Genesis MX 532-1000 SLM OPS, Coherent,
λ = 532 nm) focused onto the sample surface by a lens of 150 mm focal length. The
intensity of the laser is modulated using a shutter (SH05/M, Thorlabs) controlled
by a shutter controller (SC10, Thorlabs). The emitted infrared (IR) radiation of
the sample surface is detected by an Infratec VarioCAM HD research IR camera
(spectral window: 7.5-14 µm). The camera is equipped with a close-up lense. In
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this configuration, the minimum spatial resolution is 29 µm (working distance:
33 mm). Since heat losses to the environment lead to an overestimation of the
thermal diffusivity[5],[6] all samples were measured under vacuum conditions (≈ 3×
10−3 mbar). Furthermore, all samples were coated with a 20 nm carbon layer
for enhanced laser absorption. The coating of the sample was facing to the IR
camera. LIT measurements were performed using Infratec’s IRBISactiveonline
software. Measurements were conducted at several lock-in frequencies between
0.219 and 1.765 Hz (depending on the Hec/PVP composition). Furthermore, each
measurement was averaged over several (600-2000) lock-in periods to enhance the
signal to noise ratio, with the first 60-100 periods being discarded. The software
calculates automatically the amplitude and phase of the temperature oscillations
(Figure 14.14). The red point marks the midpoint of the laser excitation and thus
the midpoint of the radial distribution.

Fig. 14.14.: Exemplary two-dimensional phase images measured at a frequency of 1.111 Hz.
The penetration depth of the temperature oscillations increases with increasing
thermal diffusivity of the Hec/PVP films. The focal point of the laser is marked
by a red point in the center of the IR image

A self-written Python script is used to extract radial profiles for the phase and
amplitdue images (Figure 14.15). The thermal diffusivity is calculated from the
phase and amplitude slopes according to the slope method of a thermally thin film:[6]

mΨ ·mln(T ·√r) = πflock-in
α‖

(14.1)
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Here, mΨ, is the slope of the linear relation of the phase and the radial distance,
r, mln(T ·√r) is the slope of the linear relation of the natural logarithm of the
amplitude T multiplied by the square root of the radial distance r, flock-in is the
lock-in frequency, and α‖ is the in-plane thermal diffusivity. Three films have been
measured for each Hec/PVP composition. An average in-plane thermal diffusivity
and a standard deviation were calculated for each composition, as summarized in
Table 14.2.

Fig. 14.15.: Exemplary phase Ψ and amplitude profiles. The green line indicates the region,
where the linear fit was evaluated. This is sufficiently far away from the central
excitation spot.

Tab. 14.2.: In-plane thermal diffusivity values of Hec/PVP stack films. Three films per
Hec/PVP composition were measured, based on which an average in-plane
thermal diffusivity and a standard deviation were calculated

Sample In-plane thermal diffusivity (mm2s−1)

Hec23/PVP77 1.02± 0.04
Hec31/PVP69 1.28± 0.02
Hec40/PVP60 1.52± 0.04
Hec51/PVP49 1.69± 0.03
Hec100/PVP0 2.35± 0.03

The in-plane thermal conductivity was calculated from the in-plane thermal diffusivity
(α‖), density (ρ), and specific heat (Cp) as

k‖ = α‖ · ρ · Cp (14.2)

14.7.8 Photoacoustic method

The cross-plane thermal conductivity was determined by the photoacoustic method.
It uses the photoacoustic effect to determine the thermal properties of a sample.
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Therefore, a modulated laser beam (λ = 488 nm) periodically heats the sample.
For good absorption of the laser energy a thin Au transducer layer (≈ 150 nm)
was coated on the sample surface. For photoacoustic characterization, the samples
were spray-coated on a glass substrate. The layout of the measurement cell above
the sample is shown in Figure 14.16A. The gas tight cell is filled with a helium
pressure of 20 psi. The microphone (Bruel&Kjaer, 4398-A-011) connected to the
cell measures an acoustic wave, which is induced by the periodic heat conduction
from the transducer layer surface to the gas phase. As shown in Figure 14.16B, the
microphone is linked to a lock-in amplifier with integrated signal generator (Zurich
instruments, HF2LI). The signal generator controls the electro-optic modulator
(EOM, Conoptics, M25A) and therefore the frequency of the modulated laser beam.
The acoustic signal detected by the microphone is then transferred into a phase and
amplitude shift in relation to the modulation of the incident laser beam.

Fig. 14.16.: Scheme of photoacoustic measurements. (A) The photoacoustic cell. (B) The
whole setup.

The phase shift is detected as a function of the frequency in a range from 110 Hz to
4000 Hz. The signal is then normalized with the phase shift signal of a thermally thick
glass sample (1 mm) with known thermal properties. A representative frequency
sweep is shown in Figure 14.17. The red line indicates the best fit according to the
fitting procedure presented by Singh et al.[7] They used the generalized multilayer
model of Hu et al.[8] assuming one-dimensional heat transfer. The unknown fitting
parameters are the contact resistance between the gold layer and the sample, the
thermal diffusivity of the sample, and the contact resistance between sample and
substrate. For thin films the fit is not very sensitive to the individual parameters,
but to the total layer resistance. Therefore, only the total layer resistance is reported.
From the total layer resistance it is possible to calculate the effective thermal
conductivity by dividing with the thickness. The thickness of the samples was
determined by AFM measurements. The values of the total layer resistance and
sample thickness are summarized in Table 14.3. For each Hec/PVP ratio samples
with three different thicknesses were measured to exclude influences from the sample
thickness.
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Fig. 14.17.: Normalized photoacoustic phase signal. Representative photoacoustic measure-
ment of the Hec31/PVP69 sample with a thickness of 1.979 µm. The red line
shows the best fit.
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Tab. 14.3.: Summary of the photoacoustic measurements. The total layer resistance, the
thickness, and the resulting effective cross-plane thermal conductivity are given
for each sample.

Sample Total layer resistance
[mm2K/W]

Thickness
[µm]

Effective cross-plane
thermal conductivity
[W/mK]

Hec100/PVP0 1.58 0.28 0.177
Hec100/PVP0 2.55 0.595 0.234
Hec100/PVP0 4.34 0.94 0.217
Hec51/PVP49 3.69 0.255 0.069
Hec51/PVP49 7.74 0.722 0.093
Hec51/PVP49 11.53 0.957 0.083
Hec40/PVP60 6.54 0.463 0.071
Hec40/PVP60 14.03 1.139 0.081
Hec40/PVP60 18.96 1.987 0.105
Hec31/PVP69 8.20 0.744 0.091
Hec31/PVP69 17.58 1.382 0.079
Hec31/PVP69 24.06 1.979 0.082
Hec23/PVP77 8.81 0.568 0.064
Hec23/PVP77 17.45 1.677 0.096
Hec23/PVP77 26.37 2.568 0.097
Hec0/PVP100 2.26 0.351 0.155
Hec0/PVP100 4.50 0.792 0.176
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14.7.9 Brillouin light spectroscopy

Brillouin Light Spectroscopy (BLS) measures the phonon dispersion, i.e., the wave
vector, q, dependent sound velocity, νi (q), by detecting the Doppler frequency shift,
f , in laser light inelastically scattered by sound waves (“phonons”). Since the phonon
modes in question are thermally populated, the Bragg condition for light scattering
is satisfied independent of the scattering angle, in contrast to the kindred time-
domain (“picosecond ultrasonic”) techniques that require external phonon injection
via special sample preparation. Since the latter typically involves deposition of non-
transparent metallic transducer films, they also do not readily allow for transmission
and backscattering measurements, further limiting the potential of these techniques
for probing anisotropic materials. Assuming a planar sample, BLS can be conducted
in three scattering geometries: transmission, reflection, and backscattering. For
angle-dependent measurements in the transmission and reflection geometries, the
laser source (λ = 532 nm) was mounted on a goniometer and rotated around the
sample, similar to a wide-angle X-ray (WAXS) setup. For the transmission geometry
(top-right inset to Figure 14.3B), the propagation vector, q, of the sound wave lies
in the plane of the sample and its modulus, |q| , is independent of the refractive
index according to |q|‖ =

(
4π
λ sin (β)

)
, with β being the light incident angle. For

the reflection geometry, the Bragg condition is fulfilled for sound waves with q along
the normal to the sample plane, so that |q|⊥ =

(
4π
λ

√
n2 − sin (β)2

)
with n being

the refractive index of the sample.[9] In order to find n, several points at different
β were acquired, and then fit linearly; n was determined under the constraint that
the fit has to pass through the origin (Figure 14.18A), and the obtained values are
reported in Table 14.4. In contrast to the transmission geometry, the range of the
dispersion relationship that can be scanned by varying |q|⊥ is more restricted due
to refraction of the laser beam at the air-sample boundary. Finally, backscattering
measurements can be conducted, where the incident and scattered light traverse the
same path, and the sample is mounted on a rotating stage with angular gradation
marks. Only a single dispersion point, corresponding to q directed opposite to ki in
the film and of a magnitude, |q| = 4πn

λ is accessible in the backscattering geometry,
but all possible q

|q| directions can be probed.

Because backscattering measurements use the same lens for focusing the incident
and collimating scattered light, the alignment of the setup is generally much easier,
so that all the backscattering spectra were acquired with microscope objectives
(typically 10x) to reduce the spectrum accumulation time. From the given formulas,
it is easy to see that the Brillouin frequency shift does not exceed 2nν/λ, where v is
sound velocity. These frequencies render viscoelasticity effects negligible and are
detected using a high-resolution six-pass Tandem Fabry Perot (TFP) interferometer
(JRS Instruments, Switzerland) optimized for the 1-50 GHz range. Values still further
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out on the dispersion relationship can be accessed using, for example, picosecond
ultrasonic interferometry (PUI), but at the expense of great effort and without any
gain in information for the problem at hand.[10] Finally, BLS also offers direct access
to the shear moduli, simply by analyzing scattered light in different polarizations: VV
(i.e., vertical incident and vertical scattered light) corresponds to quasi-longitudinal
and quasi-transverse phonon modes, and VH (i.e., vertical incident and horizontal
scattered light) to the pure-transverse phonon mode (for transversely isotropic
samples, HV does not show a transverse peak). Before the BLS measurements, the
samples were dried at 100 °C in a vacuum chamber for one week to remove any
residual water content.

Fig. 14.18.: BLS experiments in the reflection geometry. (A) Dispersion (frequency vs.
wave vector) of the longitudinal (L) and transverse (T) phonons in the hybrid
stacks and the two constituent components (see the color code) obtained from
the polarized (VV) and depolarized (VH) BLS spectra recorded in the reflection
geometry (inset). (B) Typical VV spectra of the Hec31/PVP69 hybrid film at
three laser incident angles.
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Fig. 14.19.: BLS spectra and peak intensity. (A) Polarized (VV) BLS spectra recorded in
the backscattering geometry (inset to Figure 14.3A) for two hybrid stacks and
the pure Hec film at an incidence angle of 45°. (B) The intensity ratio of the
Q-L to Q-T peaks in (A) vs. the laser incident angle.

Fig. 14.20.: Direction-dependent sound velocities of hybrid stack films. (A) Hec23/PVP77,
(B) Hec40/PVP60, (C) Hec51/PVP49, and (D) Hec100/PVP0 (the data points
in the dotted circle were not used in the fitting). Q-L, P-T, and Q-T represent
the quasi-longitudinal, pure-transverse, and quasi-transverse phonon modes,
respectively. (E) Variation of the elastic stiffness constants with the Hec volume
fraction.
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Based on the BLS-measured direction-dependent sound velocities, we obtained the
elastic tensor within the framework of the Christoffel equation.[11],[12]


Γ11 − ρν2 Γ12 Γ13

Γ21 Γ22 − ρν2 Γ23

Γ31 Γ32 Γ33 − ρν2



u1

u2

u3

 =


0
0
0

 (14.3)

where ρ is the density of the sample, ν is the sound velocity, u = [u1, u2, u3]T is the
displacement vector, and Γik (i, k = 1, 2, 3) is the Christoffel stress, which is defined
as

Γik =
3∑
j=1

3∑
i=1

Cijklnjnl. (14.4)

Here, Cijkl denotes an element of the 4th rank elastic tensor, and n = [n1, n2, n3]T

represents the phonon propagation direction.For a transversely isotropic material,
the elastic tensor, in the Voigt notation, has the following form.[13]

C =



C11 C12 C13

C12 C11 C13

C13 C13 C33

C44

C44

C44 = C11−C12
2


, (14.5)

and contains five independent stiffness constants. After some algebra, the sound
velocities of the Q-L, Q-T, and P-T modes along a direction defined by α can be
represented as follows,

νQ-L (α) =

√√√√−A1 +
√
A2

1 − 4A2

2ρ (14.6)

νQ-T (α) =

√√√√−A1 −
√
A2

1 − 4A2

2ρ (14.7)

νP-T (α) =
√
A3
ρ

(14.8)

where,
A1 = −

(
sin (αC11)2 + cos (αC33)2 + C44

)
(14.9)

A2 = sin (αC11C44)4 + sin (α)2 cos (α)2
(
C11C33 − C2

13 − 2C13C44
)

+ cos (αC33C44)4

(14.10)
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A3 = sin (αC66)2 + cos (αC44)2 (14.11)

Through nonlinear χ2 fitting of the BLS-measured sound velocities (i.e., ν vs. α)
with Equations (14.6)-(14.8), we obtained the elastic stiffness constants as well as
their uncertainties.[14] The χ2 is defined as

χ2 =
∑
i

[νi,fit (C11, C12, C13, C33, C33, α)− νi,exp (α)]2

(∆νi,exp)2 (14.12)

where νi,fit and νi,exp are the fitted and experimental sound velocities, respectively,
∆νi,exp is the uncertainty of the measured sound velocity, and the summation is
over all experimental sound velocities. By considering the uncertainties of the
measured angles, refractive indices, and phonon frequencies, we estimated νi,exp

to be 0.02 νi,exp. We imposed the following constraints for the elastic stiffness
constants:[15]

1. C11 > |C12|

2. C44 > 0

3. C33 (C11 + C12) > 2C2
13,

which ensure positive Young’s and shear moduli. The availability of experimental
data for all the Q-L, Q-T, and P-T modes allows unique determination of C11, C12,
C13, C33, and C44.

After that, we calculated the engineering mechanical properties,[13] which include
the in-plane Young’s modulus (E‖), cross-plane Young’s modulus (E⊥), sliding shear
modulus (G13), torsional shear modulus (G12), and two characteristic Poisson’s
ratios (ν13 and ν12). Note that only five of the engineering mechanical properties
are independent (typically, E‖, E⊥, G13, G12, and one of ν13 and ν12 are chosen).
Also note that to be consistent with the direction-dependent thermal conductivity
results, we used subscripts, “‖” and “⊥”, to ,represent directions parallel and
perpendicular to the sample film, respectively, rather than directions parallel and
perpendicular to the “3”-axis (i.e., the symmetry axis), as seen in typical analysis of
transversely isotropic materials. The relevant mechanical properties are summarized
in Tables 14.4 and 14.5.
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Tab. 14.4.: Summary of elastic stiffness constants. Composition (Hec vol%, Hec wt%),
density (ρ), refractive index (n), and elastic stiffness constants (C11, C12, C13,
C33, C44, and C66) of the Hec/PVP hybrid Bragg stack films.

Sample ID Hec vol% Hec vw% ρ (g/cm3) n

Hec0/PVP100 0 0 1.2 1.53*
Hec23/PVP77 23 40 1.55 1.54
Hec31/PVP69 31 50 1.62 1.50
Hec40/PVP60 40 60 1.74 1.47
Hec51/PVP49 51 70 1.97 1.45
Hec100/PVP0 100 100 2.70 1.40

Sample ID C11

(GPa)
C12

(GPa)
C13

(GPa)
C44

(GPa)
C44

(GPa)
C66

(GPa)

Hec0/PVP100 10.4 5.2 5.2 10.4 2.6 2.6
Hec23/PVP77 67.6±1.7 28.0±1.9 6.0± 1.2 13.2±0.3 1.5± 0.1 19.8±0.5
Hec31/PVP69 84.3±1.5 34.0±1.8 6.1± 1.5 15.7±0.3 1.2± 0.2 25.1±0.5
Hec40/PVP60 101.6 ±

1.8
35.9±2.2 6.5± 1.8 19.7±0.4 1.4± 0.1 32.9±0.6

Hec51/PVP49 134.1 ±
2.2

55.9±2.9 7.7± 2.3 23.0±0.5 1.1± 0.1 39.1±0.9

Hec100/PVP0 242.5 ±
6.2

103.2 ±
6.7

40.9±5.2 35.0±0.9 1.0± 0.1 69.6±1.2

*Source:
https://refractiveindex.info/?shelf=organic&book=polyvinylpyrrolidone&page=Konig.
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Tab. 14.5.: Summary of engineering mechanical properties. Composition (Hec vol%, Hec
wt%) and engineering mechanical properties of the Hec/PVP hybrid Bragg
stack films. E‖: in-plane Young’s modulus; E⊥: cross-plane Young’s modulus;
G13, G23: sliding shear moduli; G12: torsional shear modulus; ν13, ν23, ν12:
Poisson’s ratios (ν13 represents the strain response in the j-direction due to a
stress in the i-direction).

Sample ID Hec vol% Hec vw% E‖ (GPa) E⊥ (GPa) E‖
E⊥

Hec0/PVP100 0 0 7.0 7.0 1
Hec23/PVP77 23 40 55.0± 2.5 12.5± 0.4 4.4
Hec31/PVP69 31 50 69.7± 2.3 15.1± 0.4 4.6
Hec40/PVP60 40 60 88.1± 2.6 19.1± 0.5 4.6
Hec51/PVP49 51 70 109.9± 3.5 22.4± 0.6 4.9
Hec100/PVP0 100 100 178.9± 9.9 25.4± 2.6 7.0

Sample ID G13 = G23

(GPa)
G12

(GPa)
ν13 = ν23 ν12

Hec0/PVP100 2.6 2.6 0.33 (as-
sumed)

0.33 (as-
sumed)

Hec23/PVP77 1.5± 0.1 19.8±0.5 0.06± 0.01 0.39± 0.03
Hec31/PVP69 1.2± 0.2 25.1±0.5 0.05± 0.01 0.39± 0.2
Hec40/PVP60 1.4± 0.1 32.9±0.9 0.05± 0.01 0.34± 0.02
Hec51/PVP49 1.1± 0.1 39.1±0.9 0.04± 0.01 0.41± 0.02
Hec100/PVP0 1.0± 0.1 69.6±1.2 0.12± 0.02 0.29± 0.06

14.7.10 Evaluation of interfacial thermal conductance

The series resistance model (SRM) shown in Figure 14.4F illustrates a hybrid stack
unit cell consisting of one Hec layer and one PVP layer. We describe the corrugation
of the Hec nanosheet (Figure 14.1B) by a thermal interface conductance, GHec/PVP.
For the unit cell in Figure 14.4F, the total thermal resistance can be calculated as

dXRD
k⊥

= dHec
kHec

+ dPVP
kPVP

+ 2
GHec/PVP

, (14.13)

where dXRD is the basal spacing as determined by XRD (Table 14.1), is the effective
cross-plane thermal conductivity, dHec = 10 Å, and dPVP = dXRD − dHec. For
the thermal conductivity of the two components, we used the following values:
kHec = 5.71 W/mK, and kPVP = 0.17 W/mK. The Hec/PVP interfacial conductance,
GHec/PVP, is determined by least squares fitting of the experimental k⊥ data (red
solid line in Figure 14.4C) to be 89 ± 8 MW/m2K, which falls well into the range
of interfacial conductance reported for inorganic/organic interfaces.[16],[17] We also
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obtained the Hec/Hec interfacial conductance, GHec/Hec = 219 ± 28 MW/m2K, by
considering a unit cell consisting of one Hec layer and one Hec/Hec interface i.e.

dXRD
k⊥

= dHec
kHec

+ 1
GHec/Hec

. (14.14)

14.7.11 Uncertainty analysis

The uncertainties (standard deviations) of the data reported in this work were
analyzed by taking into account the instrument accuracy, repetitive measurements,
and propagation of uncertainties. The sound velocities were estimated to have an
error bar of 2 %. The uncertainties of the elastic stiffness constants were determined
according to Zgonik et al.[14] The uncertainties of the engineering mechanical proper-
ties were calculated according to principles of uncertainty propagation. For instance,

E⊥ = C33 −
2C2

13
C11 + C12

(14.15)

∆E⊥ =

√√√√√ ∑
ij=11,12,13,33

(
∂E⊥
∂Cij

)2

(∆Cij)2 +
ij<kl∑

ij,kl=11,12,13,33
2∂E⊥
∂Cij

∂E⊥
∂Ckl

∆Cij|kl

(14.16)
where

∂E⊥
∂C11

= 2C2
13

(C11 + C12)2 , (14.17)

∂E⊥
∂C12

= 2C2
13

(C11 + C12)2 , (14.18)

∂E⊥
∂C13

= − 4C2
13

C11 + C12
, (14.19)

∂E⊥
∂C33

= 1, (14.20)

Similar expressions can be derived for the other engineering moduli and the Poisson’s
ratios. The uncertainties of the thermal measurement results are analyzed in a
similar way, i.e., by considering uncertainty propagation. For example,

k‖ = α‖ρCP (14.21)

∆k‖ =

√√√√( ∂k‖
∂α‖

)2 (
∆α‖

)2
+
(
∂k‖
∂ρ

)2
(∆ρ)2 +

(
∂k‖
∂CP

)2
(∆CP)2 (14.22)
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where
∂k‖
∂α‖

= ρCP (14.23)

∂k‖
∂ρ

= α‖CP (14.24)

∂k‖
∂CP

= α‖ρ (14.25)

Here we assumed negligible covariance terms. Similar expressions can be derived
for k⊥, k‖/k⊥, Λ̄, etc. The uncertainties of the data are reported as error bars in the
figures shown in the main text and Supporting Information. For clarity, error bars
smaller than the symbol size are not shown.
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15.1 Abstract

Flexible low-resistance membranes play an important role in soft electronics as
sensors for robotics, body movement monitoring, nanogenerators to collect kinetic
energy from body movements, and flexible batteries. Despite great efforts, low-
resistance mechanically stable large-dimensional membranes that tolerate very high
deformability without sacrificing resistance, produce low joule heating, and allow
passage of gases for human comfort are still looked for. Here, we provide one of
the solutions by sandwiching a network of silver nanowires (AgNWs) between two
highly porous electrospun thermoplastic polyurethane (TPU) membranes. The
membranes are mechanically robust (both for bending and stretching) with a strong
interface and large strain before breakage (more than 700 %). The sheet resistance
is as low as < 0.1(±0.01) Ω/sq, and changed to only 1.6(±0.43) Ω/sq upon stretching
to 100 % strain. The combination of polymer elasticity and the AgNW network
structure provides a reversible change in resistance beyond 100 % strain. We employ
a detailed thermographic analysis to in-situ image and characterize the AgNW
network morphology during various stretched conditions. We believe that this
flexible sandwich-like electrically conductive membrane is a good candidate for smart
wearable devices and soft robots.

15.2 Introduction

Traditional electronics are typically composed of intrinsically heavy and rigid materi-
als, like silicon, metals, and glass, that have extremely limited flexibility, stretchabil-
ity, bendability, twistability, and impact resistance. There is great need for flexible
and deformable circuits and electrodes with low electric resistance that maintain
performance even at strained state because of the current rapid development of
lightweight, wearable, and flexible electronic devices.[1]–[3] Efforts to construct flexible
circuits and electrodes with low resistance focused on elastomeric electrically con-
ductive materials. Examples include electrically conductive sponges,[4] hydrogels,[5]

nonwovens,[6] films,[7] and fibers.[8]–[10] These materials are promising for energy
production and storage,[11] actuators,[12] sensors,[13] electronic skin[14]–[16] and soft
robotics.[17] However, obtaining flexible conductors with both high strain properties
and low resistance is a challenge for design and production of flexible electronic
devices.[18] Further, porosity is an important requirement in case electronic devices
are meant for contact with skin. Air permeability is very important for the comfort of
wearable devices. Achieving a combination of flexibility, elasticity, high conductivity,
in porous membranes with good mechanical integrity is a continued search.
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Presently, typical flexible electrodes are composed of an elastic substrate as the elas-
tomer to support bending, stretching and twisting. The most commonly used materi-
als are: polydimethylsiloxane (PDMS),[19],[20] thermoplastic polyurethane (TPU),[21]

electrically conductive polymers,[22] carbon materials,[23],[24] metal nanoparticles[25]

and metal nanowires.[26] Technically, low-resistance electrodes provide the advantages
of less energy loss and joule heating. Silver is an excellent material for electrodes
and is often used for flexible electrodes with low resistance.[27] In our previous
work, we prepared electrospun polymer membranes with a metal-like conductivity
of 7.5× 105 S/m using a very low content of silver nanowires (AgNWs: 3.35 vol%) as
an additive.[6] However, this kind of electrically conductive membrane is bendable
but not sufficiently stretchable.

To prepare flexible membranes, printing fabrication techniques have been developed
by transferring electrically conductive materials from a working substrate to another
target substrate, such as PDMS, TPU and polyethylene terephthalate (PET).[28]

Additionally, printing fabrication techniques provide a simple and versatile way to
design and print patterns on substrate materials using computer control.[21],[29] In
addition, microfluidic processing,[30] microchannel wetting patterning,[31] direct laser
patterning,[32] shadow mask patterning[33] and photolithographic[34] methods have
also been developed to fabricate flexible conductors. Other methods, such as filling
of a AgNW network prepared by spray drying of a AgNW dispersion with PDMS
was also used for making stretchable, conductive electrodes.[20] Nevertheless, the
stretchable conductors prepared with these methods are all airtight due to their
nonporous elastic substrate.

Alternatively, electrospinning is a promising technique for fabricating porous sub-
strates with high conductivity, flexibility and air permeability. The good elec-
tropsinnability of many different polymer types also provides the advantage of tun-
ing the membrane mechanical characteristics. For example, electrospun polyamide
nanofiber nonwovens embedded with AgNW networks showed 50 % stretchability
and a sheet resistance of 8.2 Ω/sq.[35] Electrospun poylurethane nonwoven porous
substrate coated with AgNW provided highly stretchable membrane (more than
300 %) with high conductivity.[36]

Here, we present a flexible and breathable polymer membrane with bending/stretching
stability and very low electrical resistance as a new electrode material. Also, we pro-
vide important fundamental studies regarding analysis on island formation, evolution
of anisotropy and hot-spots, and thermal transport in such structures.
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Our study shows

1. a simple preparation method for making such membranes which is applicable
to large-dimension samples. We use a network of AgNWs as conductive layer
sandwiched between two porous TPU fibrous nonwovens made by electrospin-
ning. We improved the interface stability with polycaprolactone (PCL) hot
glue in the form of short fibers dispersed in between the AgNW network.

2. Our membranes show a sheet resistance as low as< 0.1 Ω/sq. The resistance does
not significantly increase upon deformation (twisting, bending and stretching
to approximately 100 % strain).

3. We also show a reversible change in the resistance upon stretching or bending
with more than 100 % strain for several cycles. The AgNW networks reversibly
breaks and reforms during stretching and releasing, respectively.

4. Our membranes are breathable. This allows the exchange of gases, which is
important for human comfort.

5. Our membranes are thermal insulators comparable to porous polymers, despite
their electrical conductivity.

We think that our membranes are a promising material for electrodes in smart
textiles and other wearable devices.

15.3 Results and Discussion

The concept for the preparation of flexible and breathable electrically conductive
membranes is illustrated in Figure 15.1. First, we prepared TPU nanofiber nonwovens
via electrospinning. We then used the porous TPU membranes as a filter for
the filtration of AgNWs (17 mg/mL, 126 ± 10 nm in diameter and 18 ± 4 µm in
length, Figure 15.6) mixed with a PCL short-fiber dispersion (1 mg/mL, average
aspect ratio ≈ 1000, Figure 15.7). The TPU nonwovens consist of randomly
oriented fibers (the 2D order parameter is around 0.1) with an average diameter
of 1.6± 0.5 µm (Figure 15.2a and b). After filtration, the AgNWs and short PCL
fibers generated a double network-type structure due to percolation (Figure 15.2c
and d). Afterwards, we covered the AgNW/PCL layer with another layer of TPU
nonwoven by electrospinning. Finally, we hot pressed the 3 layer stack at 75 °C
for 30 min to melt the PCL and increase the adhesion of the layers (Figure 15.2e).
The resulting three layer membranes are designated as TPU-AgNW/PCL-TPU. We
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checked the presence of an AgNW layer sandwiched between the two TPU layers
with PCL short fibers by EDX (Figure 15.2f). The cross-sectional SEM images
of TPU-AgNW/PCL-TPU and TPU-AgNW-TPU (without the use of PCL short
fibers for comparison) are shown in Figure 15.2g and h, respectively. The PCL
short-fiber dispersion acts as a glue between the AgNW network and the TPU.
The importance of providing a good adhesion between the fiber support and the
conducting nanowires was also investigated by Jiang et al.[36]

Omitting the PCL left us with a loose interface between the layers. Figure 15.8
shows the morphology of the middle layer composed only of PCL short fibers after
hot pressing at 75 °C for 30 min. Patches of molten fibers can be observed.

Fig. 15.1.: Schematic of preparing the TPU-AgNW/PCL-TPU membrane by sandwiching
a network of AgNWs between TPU layers.

The pore size distribution (Figure 15.9) of the sandwich membrane without AgNWs
is mainly distributed at 2.8 µm with 80 % porosity. Upon formation of the AgNW
network layer, the average pore size was 1.5 µm to 0.9 µm. Additionally, the thickness
of the sandwich membrane increased slightly with increasing volume of the AgNW
solution, from 0.18± 0.4 mm to 0.27± 0.02 mm, as shown in Figure 15.10.
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Fig. 15.2.: Photograph (a) and SEM image (b) of the electrospun TPU nonwoven. Photo-
graph (c) and SEM image (d) of the electrospun TPU nonwoven layered with
AgNWs and PCL after heating. Photograph of as-prepared sandwich membrane
of TPU-AgNW/PCL-TPU (e). Cross-section of EDX overlapped SEM image
of as-prepared sandwich membrane of TPU-AgNW/PCL-TPU with PCL short
fibers (f). Cross-section of TPU-AgNW/PCL-TPU (g) and TPU-AgNW-TPU
(h).

Different amounts of the AgNW dispersion were used to investigate the influence
of the AgNW concentration on the air permeability and electrical properties. The
relevant parameters are illustrated in Table 15.1. The sheet resistance was as high
as 6.1± 0.3× 108 Ω/sq without an AgNW layer. The sheet resistance decreased to as
low as 0.09 Ω/sq upon increasing the amount of AgNWs because of the formation of
a dense network of AgNWs. Even the use of a small amount of AgNWs (1.2 wt.%)
significantly decreased the resistance to ≈ 1 Ω/sq. Further reduction in the amount
of AgNW to ≈ 0.5 wt.% led to a sharp increase in the sheet resistance
(2.4± 3.1× 106 Ω/sq) indicating the amount of AgNW required for making a network
by percolation somewhere between 0.5–1.2 wt.%. In general, the sheet resistance of
TPU-AgNW/PCL-TPU remains almost unchanged at 100 °C in air for more than
60 h (Figure 15.11).
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The TPU-AgNW/PCL-TPU membranes also possess good gas permeability (Fig-
ure 15.12), as demonstrated by the penetration of carbon dioxide (CO2) gas, vi-
sualized by the pink base solution containing phenolphthalein indicator (Video
S1).

Tab. 15.1.: The relevant parameters of flexible sandwich-like electrically conductive mem-
branes with different contents of AgNWs.

Sample TPU
spinning
solution
(16 wt.%) [ml]

PCL
dispersion
(1 g/l) [ml]

AgNW
dispersion
(17 mg/ml) [ml]

TPU-PCL-TPU 1 10 0
TPU-0.1AgNW/PCL-TPU 1 10 0.1
TPU-0.25AgNW/PCL-TPU 1 10 0.25
TPU-0.5AgNW/PCL-TPU 1 10 0.5
TPU-1.0AgNW/PCL-TPU 1 10 1.0
TPU-1.5AgNW/PCL-TPU 1 10 1.5
TPU-2.0AgNW/PCL-TPU 1 10 2.0

Sample Density [g/m2] Content of
AgNWs [wt.%]

Sheet
resistance
of the AgNW
layer [Ω/sq]

TPU-PCL-TPU - - 6.1± 0.3× 108

TPU-0.1AgNW/PCL-TPU 0.51 0.5± 0.6 2.4± 3.1× 106

TPU-0.25AgNW/PCL-TPU 1.28 1.2± 0.5 1.14± 0.15
TPU-0.5AgNW/PCL-TPU 2.56 2.0± 0.6 0.39± 0.07
TPU-1.0AgNW/PCL-TPU 5.12 3.5± 0.4 0.20± 0.02
TPU-1.5AgNW/PCL-TPU 7.68 7.9± 1.2 0.16± 0.04
TPU-2.0AgNW/PCL-TPU 10.24 8.5± 1.7 0.09± 0.002

The sandwich membranes exhibited stress at break of more than 8 MPa. The
TPU without AgNWs had a breaking stress of ≈ 10 MPa. We observed excellent
stretchability for the TPU-AgNW/PCL-TPU membranes. The membranes with
different amounts of AgNWs can be stretched to over 700 % (Figure 15.3a). The
membranes showed 10 % and 30 % creep after stretching for 100 cycles to 50 % and
100 % strain, respectively (Figure 15.13). We measured the resistance as a function
of % strain (Figure 15.3b). TPU-AgNW/PCL-TPU can tolerate considerable strains
with a moderate increase in resistance depending upon the amount of AgNWs. The
sample with the highest content of AgNWs (TPU-2.0AgNW/PCL-TPU; 8.5 wt.%)
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changed its resistance by only two orders of magnitude at a strain of ≈ 150 %. In
contrast, the sample with the fewest AgNWs (TPU-0.25AgNW/PCL-TPU; 1.2 wt.%)
showed a comparable increase in resistance already at a strain of only 60 %. The
network was sparse due to fewer AgNWs in TPU-0.25AgNW/PCL, which led to a
higher initial sheet resistance and stronger increase in resistance during stretching.

Figure 15.3c shows the morphologies of the AgNW layer after 0 %, 100 %, and
150 % stretching and recovering to 0 % again for the TPU-2.0AgNW/PCL sample
(8.5 wt.% AgNWs). When the membrane was stretched up to 100 %, hardly any
cracks could be observed in the AgNW layer. However, upon further stretching
to approximately 150 %, large cracks (bright area) occurred, causing a significant
increase in resistance. The cracks visualize that the AgNW breaks up in an island-like
fashion. The formation of island-like structures is confirmed by EDX measurement.
Ag-rich patches are indicated in purple in Figure 15.3d. The separated islands and
cracks restricted the flow of electricity and in turn created hot spots (Figure 15.14)
by joule heating at the bottle necks. Such hotspots can be imaged by infrared
thermography when applying a DC current (Figure 15.3e). The hotspots shift with
increasing strain and highlight the dynamic changes within the AgNW network
upon stretching (see video in the S2). Depending on the overall resistance of the
composite sample and local bottle necks this can lead to substantial Joule heating
resulting in a fatal failure of the sandwich structure at high strains. For low power
applications and in the light of practical strains for the case of wearable electronics
our sandwich structure will operate in a safe window with low Joule heating.
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Fig. 15.3.: Stress-strain curves of sandwich membranes with different amounts of AgNWs
(a). sheet resistance of sandwich membranes with different amounts of AgNWs
with different strains (b). Optical images of TPU-2.0AgNW/PCL under different
stains (c). Note the appearance of white spots at 150 % strain due to cracks in
the AgNW layer. (scale bar: 500 µm) EDX-SEM images of TPU-2.0AgNW/PCL
at 100 % strain (d). (scale bar: 50 µm) Ag is indicated in purple. Thermography
images of the TPU sandwich sample upon stretching (e). White lines indicate
the film boundary. A constant current of 2 mA passes through the sample. Note
the appearance and shift of hotspots due to local bottlenecks for the electric
current created by the cracks in the AgNW layer. (scale bars: 3 mm)

The morphological changes of the AgNW network upon stretching cannot be directly
assessed, since they are embedded between two layers of TPU fibers. We, therefore,
employ direction dependent lock-in thermography to gain a better insight on the
composite morphology. Using a line laser as a heat source, we are able to probe the
overall thermal diffusivity in such a composite sample along different orientations
relative to the stretching direction. We see in Figure 15.4a–c that the TPU fibers
align expectedly parallel to the stretching direction. Image analysis of these laser
scanning microscopy images reveal that the fiber orientation is already complete at
a strain of ≈ 100 %.
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The 2D order parameter (S2D) measures how well the fibers are aligned. The order
parameter is given by

S2D = 2
N
·
[
N∑
i=1

(cos (αi − ᾱ))2
]
− 1 (15.1)

where N is the number of stretched fiber orientations in the SEM image, αi is the
angle between the fiber and the horizontal axis, and (ᾱ) is the average angle.[37]

The 2D order parameter of pure TPU remains constant at a value close to one after
100 % strain(Figure 15.4d).

For pure TPU the thermal diffusivity increases along the stretching direction and
decreases perpendicular to it (Figure 15.4e and 15.4f). Since TPU is a thermal
insulator the absolute thermal diffusivity remains at a low level. The evolution
of anisotropy can be explained by the geometric changes, where the fibers start
to align, forming an anisotropic fiber network (Figure 15.15). Heat travels along
these oriented fibers faster than perpendicular to it, resulting in a high anisotropy
ratio (Figure 15.4g). The geometric alignment can be accompanied by a molecular
orientation of the polymer chains within the fibers, leading to an additional increase
in the thermal anisotropy.[38]

The thermal diffusivity at 0 % strain is higher for the AgNW-TPU sample (TPU-
2.0AgNW/PCL-TPU) than for the pure TPU support structure. This can be
understood by the additional thermal transport via electronic conduction through the
AgNW network. The angular dispersion is rather shallow demonstrating an isotropic
temperature spreading in the unstretched and disordered fiber network. Stretching
of the fiber network immediately introduces anisotropy to the thermal diffusivity. For
AgNW-TPU also some degree of anisotropy evolves (Figure 15.4h and 15.4i), but the
thermal diffusivity overall decreases compared to the unstretched state (Figure 15.16).
This can be understood by a decrease in electronic thermal conductivity in the
AgNW layer. The overall thermal diffusivity remains, nevertheless, higher compared
to pure TPU. Simultaneously, also for AgNW-TPU samples, we find an evolution of
anisotropic heat spreading (Figure 15.4g). Overall, stretching of the AgNW-TPU
sample leads to a smaller amount of anisotropy compared to the pure TPU network
structure (Figure 15.4g). This corroborates our previous findings that the AgNW
network is torn into isolated island structures upon stretching. Thermal transport
within these island-like structures happens in an isotropic fashion, which shows that
the anisotropic orientation of the TPU fiber network is only partially transferred
to the AgNW network and counteracted by the evolution of gaps between such
islands parallel to the stretching direction. We corroborate this interpretation with
additional orientation analysis of AgNW-TPU samples upon stretching, summarized
in Figures 15.17 and 15.18.
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Fig. 15.4.: Laser scanning microscopy images of TPU fibers on the surface of a TPU
nonwoven. (a-c) (scale bars: 50 µm). The fibers align in the stretching direction
(white arrows) with increasing strain, S. The 2D order parameter for the fiber
orientation, derived from laser scanning microscopy images, increases from 0.1 to
0.9 with increasing strain (d). Temperature amplitude as a function of position
on the surface of a pure TPU (e). Thermal diffusivity as a function of direction
(0°is horizontal) and strain for a pure TPU (f). The TPU nonwovens are stretched
vertically (+/- 90° direction). Anisotropy ratios for the thermal diffusivity. (g)
The pure TPU shows a stronger anisotropy than the TPU-2.0AgNW/PCL-
TPU. Temperature amplitude as a function of position on the surface of TPU-
2.0AgNW/PCL-TPU (h) film with 0 % strain. Thermal diffusivity as a function
of direction (0°is horizontal) and strain for TPU-2.0AgNW/PCL-TPU (i) film.
The films are stretched vertically (+/- 90°direction)

We now focus on the reversibility of the stretching/compression process and its
implications for electromobility measurements. The membranes, even with very high
amounts of AgNWs (TPU-2.0AgNW/PCL-TPU), showed excellent stretchability
and bending stability. The samples were subjected to 100 cycles of stretching
(Figure 15.5a) and bending (Figure 15.5b). The resistance change can be described
by:

RC = R

R0
(15.2)

15.3 Results and Discussion 271



where R is the time dependent resistance and R0 is the initial resistance. Both R

and R0 were measured after stretching and bending tests to prove the stability after
deformation. The RC of TPU-0.25AgNW/PCL-TPU with only 1.2 wt.% of AgNWs
significantly increased after only 60 stretching cycles, the RC was > 20000 under
50 % strain. However, the same sample showed a much better bending stability
(bending curvature from 0° to 150°) without a significant change in resistance. The
RC of TPU-0.25AgNW/PCL-TPU after 100 bending cycles was merely 1.32. The
sample TPU-2.0AgNW/PCL-TPU with a dense network of AgNWs showed both
excellent bending and stretching stability. No significant change in the RC was
observed for bending tests. During strain testing RC increased by only a factor
of ≈ 20 after 100 cycles. It is important to note that our method of fabrication is
particularly suitable to adjust the AgNW concentration in a simple manner. This
can even be achieved locally by filtration through a mask. In Figure 15.19, we
demonstrate, that the local variation of the AgNW concentrations leads to locally
confined heating powers. Hence the AgNW concentration, sheet resistance and
response to stretching or bending can be laterally adjusted and optimized for a given
application.

We also investigated the changes to the AgNW upon repeated stretching and un-
stretching with thermography. This measurement was conducted using a sample
of intermediate AgNW concentration (TPU-1.0AgNW/PCL-TPU, 3.5 wt.%. Upon
stretching (50 % strain) we measured an increase in electrical resistance, which
translated into hot spot areas. Consistent with our previous analysis such islands of
AgNW network (Figure 15.3d) almost completely disappear upon release of the strain.
In the following stretching cycles these hot-spots reform and increase in number and
evolved heat. With this intermediate AgNW concentration, a disconnection between
the well conducting AgNW islands happens easier and the re-formation of the intact
network becomes less complete, in contrast to the better performing samples with a
higher amount of AgNWs.

An LED was utilized to demonstrate the flexibility of the prepared sandwich mem-
brane under various mechanical loads during working conditions. TPU-0.25AgNW/PCL-
TPU was connected to a circuit, as shown in Figure 15.5e, and was bent and twisted.
The LED maintained almost the same brightness. However, after 50 % strain stretch-
ing, the brightness of the LED could hardly be observed. This behavior corroborates
the formation of a very high RC of TPU-0.25AgNW/PCL-TPU after stretching.
When using a more highly concentrated AgNW network (TPU-2.0AgNW/PCL-TPU)
twisting, bending, and stretching (50 % strain) are tolerated and the brightness of
the LED remained almost unchanged. In addition, detailed information is shown in
Video S3.
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Fig. 15.5.: Resistance change after 100-cycle stretching test (50 % strain) (a). Resistance
change ratio after 100-cycle bending test (bending curvature from 0° to 150°)
(b). Noticing that the bending angle of samples was close to 150° when distance
between two clips decreased to 50 %. Electric resistance (dots) and strain
(triangles) during the cycling for the thermographic imaging. (c) Thermographic
images of a TPU-1.0AgNW/PCL-TPU film during cycling to 50 % strain. (d)
(scale bars: 5 mm); A constant current of 10 mA passes through the film. The
hotspots occur mainly in the stretched state and at different positions from cycle
to cycle. Digital image of LED brightness by different operation of nonwoven
TPU-0.25AgNW/PCL-TPU and TPU-2.0AgNW/PCL-TPU (e).
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The use of TPU-2.0AgNW/PCL-TPU as resistive-type strain sensor in a preliminary
test for monitoring finger and wrist bending and unbending movements for several
times (Figure 15.20) worked very well. The sensitivity and precision would be further
investigated and other application areas will also be explored.

15.4 Conclusion

In conclusion, we proposed a new strategy to fabricate sandwich-like electrically
conductive membranes with very low electric resistance. Our material consists of
an AgNW network sandwiched between two porous electrospun TPU nonwovens.
PCL short fibers act as glue and provide a strong interface between the three layers.
Our membranes show good bending and stretching stability, high stretchability
(breaking elongation more than 700 %) and very low initial electric resistance, as
low as < 0.1 Ω/sq depending upon the amount of AgNWs. This composite structure
shows potential for use as a strain sensor to monitor body movement. Additionally,
the membrane possesses gas permeability and low thermal diffusivity. Furthermore,
our material has the potential to be integrated into smart wearable devices to collect
body movement signals using a connected PC or mobile phone in the future.

15.5 Experimental Section

15.5.1 Materials

In this study, TPU (Desmopann DP 2590, Bayer Materials Science, Mn 88900,
Mw 145000), PCL (Capa 6800, Mw 120000, Perstorp UK Ltd.), poly(vinylpyrrolidone)
(PVP K30, Mw 40000, Sigma-Aldrich), ethylene glycol (p.a. ≥ 99.5%, Fluka), silver
nitrate (AgNO3, p.a. 99.9999%, Sigma-Aldrich), iron chloride (FeCl3, p.a. 98.0 %,
Sigma-Aldrich), sodium chloride (NaCl, p.a. 99.0 %), and dimethylformamide (DMF,
p.a. 99.8 %) were used as obtained. Other solvents were distilled before use. The
AgNWs were synthesized using a previous method.[6]

15.5.2 Analytical instruments and methods

A Zeiss LEO 1530 (Jena, Germany; Schottky field emission cathode) was used
for SEM characterization of the AgNWs and their corresponding networks. EDX
was performed using a Zeiss Ultra Plus (Jena, Germany; acceleration voltage of
10 kV). TEM measurements were performed using an elastic bright-field transmission
electron microscope (TEM, Zeiss 922 Omega EFTEM) at a voltage of 200 kV. ImageJ
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software was used to determine the AgNW diameter. An average of 100 AgNWs
was taken for the diameter calculation.

The AgNW content was determined from thermogravimetric analysis (TGA Libra F1,
Netzsch, Selb, Germany). A heating rate of 20 °C/min was used. The measurements
were performed in synthetic air.

Pore size measurements were performed with a PSM 165/H (Dresden, Germany) to
determine the pore size. Topor was used as the standard test liquid (surface tension
= 16.0 mN/m). The sample holder had a diameter of 11 mm, and a flow rate of up to
70 L/min was applied. At least three measurements were carried out for each sample,
and an average was taken.

The gas permeability test was performed with a homemade unit as described in
our previous work in reference [5]. The membrane was fixed at the bottleneck
with the cap. A rubber tube (airtight) was used to connect to another glass bottle
containing solid carbon dioxide. The glass bottle fixing the nonwovens at the
bottleneck was immersed in a phenolphthalein/limewater mixture. The carbon
dioxide permeated through the membrane and discolored the aqueous basic solution
containing phenolphthalein indicator.

Tensile tests were carried out (sample length 2 cm, width 2 mm) using a tensile
tester (ZwickiLine Z0.5; BT1-FR0.5TN. D14; Zwick/Roell, Germany). The following
parameters were used: clamping length 1 cm, crosshead speed 10 mm/min, temperature
20 °C and pretension 0.01 N/mm. The thickness of the samples was measured with a
screw micrometer. The 100-cycle stretching test with 50 % and 100 % strain was
also measured with the abovementioned measuring conditions.

Sheet resistance measurements (four-point measurements) were performed using a
Keithley 2420 high-current source meter coupled with a Signatone SYS-301. The
sheet resistance was measured ten times for each sample.

A tensile tester (ZwickiLine Z0.5; BT1-FR0.5TN. D14; Zwick/Roell, Germany)
was employed to control the stretching distance and bending degree, and a digital
multimeter (EMOS Multimeter EM391) connected to measure the sample with a
bronze conductor was employed to measure the stretching resistance and bending
resistance. The size of the sample and the measuring parameters used here were the
same as those used in the tensile test.

Thermography imaging was performed with an Infratec VarioCAM HD research
IR camera (7.5 – 14 µm). The spatial resolution is 29 µm at closest proximity. All
measurements were performed in air. The resistance was measured simultaneously
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with a Keithley 2400 Sourcemeter. The Sourcemeter acted as a constant current
source during the four wire resistance measurements. A home built stretching
apparatus was used to elongate the samples. The strain was determined from the
length change.

Thermal diffusivity was measured with our own, self-built Lock-In thermography
setup.[39],[40] Briefly, the films are mounted on a stretchable holder inside a vacuum
chamber. An intensity modulated line laser is focused onto the back side of the
sample. The intensity modulation creates temperature oscillations inside the thin
film. We then detect the surface temperature with a Infratec VarioCAM HD research
IR camera. The samples were coated with 25 nm of carbon on both sides to enhance
laser absorption and IR emission. The IRBIS active online software from the
IR Camera detects amplitude and phase of the temperature fluctuations on the
sample surface. The thermal diffusivity is extracted from the material by fitting the
linearized amplitude and phase signal, which spreads perpendicular to the line laser
excitation.

Optical microscopy was performed on a LEXT Olympus OLS 5000 confocal laser
scanning microscope. A 100x magnification lense with a working distance of 300 µm
was used. Image analysis was conducted with the Matlab code published by Pers-
son et al.[37]

15.5.3 Preparation of TPU nonwoven and PCL short fibers

Electrospinning of 16 wt% TPU in DMF/THF (80/20 wt.%) was carried out to
obtain TPU nonwovens with randomly oriented fibers. A round 325 mesh stain-less
sieve (70 mm in diameter) at an electrode distance of 15 cm was used as the collector.
Other spinning conditions were as follows: positive voltage = 15 kV; temperature =
25 °C; relative humidity = 35 %. For spinning PCL, a 15 wt.% solution in a mixture
of THF/DMF (70/30 wt.%) was used. Other electrospinning conditions were the
same as those used for TPU spinning. The dispersion (1 g/L) of short PCL nanofibers
was obtained as reported previously by us.[5]

15.5.4 Preparation of sandwich TPU-AgNW/PCL-TPU
membranes

The preparation procedure for the sandwich membranes is shown schematically in
Figure 15.1. First, a TPU nonwoven prepared according to the procedure described
above via electrospinning was used as a filter. Then, a dispersion of AgNWs and
PCL short fibers was filtered. The AgNWs and PCL short fibers formed a conductive
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layer on top of the TPU nanofiber nonwoven. The fibers were dried under vacuum
for 10 min at a pressure of 0.1 mbar. Later, another layer of TPU nanofibers
was electrospun on top of the nonwoven with AgNWs and PCL short fibers to
construct a flexible, sandwich-like, electrically conductive nonwoven. To induce
thermal annealing, the achieved sandwich-like, electrically conductive nonwovens
were pressed between two glass plates and heated at a temperature of 75 °C for
30 min to melt the PCL fibers and bond the two layers of TPU nonwovens and
AgNWs together.
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15.7 Supporting Information

Fig. 15.6.: Digital image of the AgNW dispersion (17 mg/mL) (left), SEM (middle) and TEM
(right) images of AgNWs.

Fig. 15.7.: Optical microscopy image of short PCL fibers.

Fig. 15.8.: SEM image of TPU-PCL-TPU
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Fig. 15.9.: Pore size distribution of the sandwich membranes with different amounts of
AgNWs.

Fig. 15.10.: Thickness of sandwich membranes with different amounts of AgNWs.
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Fig. 15.11.: Sheet resistance stability of AgNW in air at 100 °C. The samples composed
by shorter AgNW (here used ≈ 10 µm in length) showed higher resistance
compared to those samples with longer AgNW (17 µm, 0.1 Ω), which was
demonstrated in our previous work.[1]
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Fig. 15.12.: Digital images of the color change of an aqueous basic solution with phenolph-
thalein indicator; sandwich membrane (indicated by a red arrow) and aqueous
basic solution with phenolphthalein indicator (a); the color of the aqueous basic
solution with phenolphthalein indicator before (b), in (c) and after (d) adding
dry ice.

Fig. 15.13.: 100-cycle stress-strain curves of TPU-2.0AgNW/PCL-TPU. TPU-
2.0AgNW/PCL-TPU (black): 50 % strain; TPU (red): 50 % strain;
TPU-2.0AgNW/PCL-TPU (blue): 100 % strain; TPU (pink): 100 % strain.

15.7.1 Mechanism of hotspot formation

After stretching, seen in the below diagram (Fig 15.14 left), island parts composed
by dense AgNWs and bridge parts composed by sparse AgNWs form respectively
(Fig 15.14 right), where presents different resistance of smaller resistance in R1 and
far larger resistance in R2. The total resistance of system is determined by the
resistance of bridge parts, which has been reported by Someya (Adv. Mater. 2019,
1903446). Hence hotspots appear on the bridge parts, according to the joule heating
power, P , is given by

P = R · I2 (15.3)

where R is the electric resistance and I the DC current. TPU is an electric insulator.
Therefore, all the current flows through the AgNW network. We used a current
source and applied a constant current during our measurements. The local heating
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power, and to some extent, the temperature, is then proportional to the local
resistance. The resistance depends on the AgNW cross sectional area perpendicular
to the current. Hotspots are therefore indicative of local constrictions (bottlenecks)
in the AgNW network.

Fig. 15.14.: Schematic diagram of hotspots appearance by stretching. (R1�R2)

Fig. 15.15.: Polar orientation maps for the TPU surface fibers derived from optical mi-
croscopy images in different strain of 0 % (a), 50 % (b) and 100 % (c).

Fig. 15.16.: (a, b) Thermal diffusivity as a function of direction for pure TPU and the
TPU/ AgNW /TPU sandwich membrane. Black arrows indicate the stretching
direction. Dashed lines are ellipses fitted to the data. (c) Thermal diffusivity
parallel and perpendicular to the stretching direction as a function of strain.
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Fig. 15.17.: SEM images (top) of AgNWs mesh without stretching (0 % strain) and orienta-
tion plots from different areas (bottom). The order parameter varies between
0.16 and 0.62. Each polar plot was calculated from a different SEM image.
The average of S2D is < 0.4, presenting merely partial alignment at 0 % strain.
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Fig. 15.18.: SEM images (top) of AgNWs mesh under 100 % strain and orientation plots
from different areas (bottom). The order parameter varies between 0.19 and
0.59. Each plot was calculated from a different AgNW island. The average
of S2D is ≈ 0.4, at 100 % strain, which is close to the order parameter at
0 % strain, demonstrating that stretching has no significant influence on the
alignment of AgNWs.

Fig. 15.19.: a) Dedicated adjustment of the electrical resistance by local filtration of various
concentrations. b) The lateral change in resistance of a thin strip from the
sample in (a) is imaged by thermography. A constant current of 54 mA is
run through the sample from top to bottom. c) Surface temperature change
vs. time. The areas of low AgNW content (wide, bright stripes) become
significantly warmer than the dark areas with high AgNW content.
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Fig. 15.20.: Sandwich membrane utilizing as a strain sensor for monitoring the movement
of potential body parts (a); Sheet resistance change ratio for monitoring the
movement of finger (b) and wrist (c).
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16.1 Abstract

We present an extension of the well-known slopes method for characterization of
the in-plane thermal diffusivity of semitransparent polymer films. We introduce
a theoretical model which considers heat losses due to convection and radiation
mechanisms, as well as semitransparency of the material to the exciting laser heat
source (visible range) and multiple reflections at the film surfaces. Most importantly,
a potential semitransparency of the material in the IR detection range is also
considered. We prove by numerical simulations and by an asymptotic expansion of
the surface temperature that the slopes method is also valid for any semitransparent
film in the thermally thin regime. Measurements of the in-plane thermal diffusivity
performed on semitransparent polymer films covering a wide range of absorption
coefficients (to the exciting wavelength and in the IR detection range of our IR
camera) validate our theoretical findings.

16.2 Introduction

Lock-in thermography is a well-known technique for accurate determination of the in-
plane thermal dffusivity of solids.[1]–[4] In recent decades, it has attracted the attention
of scientists due to its non contact and noninvasive attributes. Moreover, lock-in
thermography has shown versatility for materials characterization, in nondestructive
testing and evaluation as well as in biomedical applications.[5],[6] In particular,
for thermal characterization of isotropic solids, the slopes method[2],[7] has been
widely used. Therefore, a freestanding sample is periodically heated by a focused
optical source. The temperature oscillations as a function of the radial coordinate
are detected, typically using an infrared (IR) camera. The thermographic signal
(amplitude T and phase Ψ) is either derived from the front-face[2] or the rear-
face configuration,[1] i.e., from the non illuminated face. The thermographic signals
(ln(amplitude) and phase) far from the heating spot vary linearly with radial distance
under the precondition of isotropic opaque thin films in the thermally thin regime
(film thickness � thermal diffusion length). Moreover, the product between the
amplitude slope and the phase slope is independent of convective and radiative heat
losses. Consequently, it can be used for the determination of the thermal diffusivity
of a film if heat conduction to the gas is negligible.[1],[8] Thus, the slopes method
is well-suited for measurement of the in-plane thermal diffusivity of high thermal
conductors,[4],[9]–[11] whereas it overestimates, the in-plane thermal diffusivity of
low thermal conductors.[1] This overestimate is produced by the large conductive
heat losses from the low conductor surface to the surrounding gas. However, the
overestimation can be avoided by measuring the sample under vacuum conditions.
Even though the characterization of opaque samples using lock-in thermography
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has been widely explored, there is almost no attempt in the literature considering
the study of semitransparent samples without a coating.[2] Instead, for measuring
the in-plane thermal diffusivity of semitransparent films, it is recommended to coat
the sample with a thin opaque layer to be able to use the opaque lock-in models.
However, there are some cases in which coating the semitransparent material is
not an option. For these applications, such as in situ monitoring of the thermal
properties evolution of a polymer film or fiber under stretching, a complete model is
required which takes into account the effects of the film semitransparency (to the
excitation wavelength and in the infrared range of the IR detector or camera) on
the thermographic signal.

In this work, we extend the use of lock-in thermography to the measurement
of the in-plane thermal diffusivity of semitransparent thin films of isotropic low
thermally conductive materials (such as polymers) without coating. A 2D heat
conduction model is considered, which includes heat losses to the surrounding
atmosphere, semitransparency of the sample to the exciting wavelength, multiple
reflections at the sample surfaces, as well as the effect of its semitransparency through
the IR window of the IR camera used. In addition to our theoretical work, we
performed thermal diffusivity measurements with a home-built lock-in thermography
setup. We used three different polymers covering a wide range of absorption
properties: poly(methyl methacrylate) (PMMA), low-density polyethylene (LDPE),
and polyether ether ketone (PEEK). We chose PMMA as the material because of its
low absorption of visible light and high absorption of IR radiation. Thin LDPE films
show semitransparency in both the visible and relevant IR wavelength range. We
tuned the optical properties of these two materials with the addition of a red dye.
The purchased PEEK films are also low absorbers of the visible light. Since their
absorption of IR radiation depends on the sample thickness, we measured PEEK
films with four different thicknesses.

16.3 Modeling and Experimental Section

Modeling:Heat Conduction through a Semitransparent Film

Consider a semitransparent film of thickness L, heated by a focused Gaussian laser
of wavelength λ and power P0 modulated at frequency f . The focused beam has
the radius a (measured at 1/e2). In addition, this film is thermally isotropic and is
in a vacuum. Under this circumstance, heat conduction to the surrounding air can
be neglected in the model. Figure 16.1 shows the described situation.
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Fig. 16.1.: Semitransparent film heated by a focused, modulated Gaussian laser beam. The
black arrows indicate heat losses to the environment.

The surface temperature at z = 0 (front-face temperature) can be expressed as (a
detailed derivation is provided in the Supporting Information)

S(r, 0, ω) = F
P0

2πK
(1−R)αγ

1−R2 exp(−2αL)

∞∫
0

δJ0(δr)
exp

(
− (δa)2

8

)
(β2 − α2)E0

· (16.1)

[
− A0
β − γ

(1− exp ((β − γ)L)) + B0
β + γ

(1− exp (−(β + γ)L)) +

E0
α+ γ

(1− exp (− (α+ γ)L))−R exp(−2αL) ·
[
− A1
β − γ

(1− exp((β − γ)L)) +

B1
β + γ

(1− exp(−(β + γ)L))− E0
α− γ

(1− exp((α− γ)L))
]]

dδ

where ω = 2πf , r is the radial coordinate, and K is the thermal conductivity of the
film. F includes the effect of the IR emissivity, sensor area, IR detection range, and
the derivative of the Planck distribution at room temperature. R is the reflectance,
and α is the absorption coefficient of the film, both taken at the laser wavelength.
γ is an effective IR absorption coefficient, which averages the IR absorption over
the detection range of our IR camera. δ is the Hankel space variable; J0(·) is the
Bessel function of zero order, and β2 = δ2 + iω

D . D is the thermal diffusivity of
the film. All coefficients A0, A1, B0, B1, and E0 are computed explicitly in the
Supporting Information, in terms of the thermal diffusivity, modulation frequency,
heat convective-radiative losses, and optical absorption.
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The surface temperature at z = L (rear-face temperature) reads

S(r, L, ω) = F
P0

2πK
(1−R)αγ exp(−γL)
1−R2 exp(−2αL)

∞∫
0

δJ0(δr)
exp

(
− (δa)2

8

)
(β2 − α2)E0

· (16.2)

[
− A0
β + γ

(1− exp ((β + γ)L)) + B0
β − γ

(1− exp (−(β − γ)L))−

E0
α− γ

(1− exp ((γ − α)L))−R exp(−2αL) ·
[
− A1
β + γ

(1− exp((β + γ)L)) +

B1
β − γ

(1− exp(−(β − γ)L))− E0
α+ γ

(1− exp((α+ γ)L))
]]

dδ

The integrals in eqs. (16.1) and (16.2) cannot be solved in a closed form, not even
in the thermally thin regime (µ � L), i.e., when the thermal diffusion length
µ =

√
D/(πf) is much larger than the actual thickness of the film (L). Thus, it is

hard to prove the validity of the slopes method for semitransparent films. Up to now,
it has been confirmed for the optically opaque case. However, it is reliable to do
numerical simulations to show the validity of the slopes method for semitransparent
films in the thermally thin regime. In this work, we perform simulations for the rear-
face configuration, which corresponds to our experimental setup. Moreover, in the
thermally thin regime, we have shown the numerical equivalence between the front-
face and rear-face temperatures (see Figure 16.6 of the Supporting Information).

Mendioroz et al.[1] showed that the radial temperature profile for an optically opaque
film in the thermally thin regime far from the punctual heating spot (a = 0) can be
written as

T (r →∞, 0, ω) ≈
√
π

2
exp(−σr)√

σr
(16.3)

where σ2 = 2h
KL + iω

D and combined coefficient due to convection and radiation losses.
From eq. (16.3), it can be shown that the slopes method (product of the amplitude
and phase slopes) gives the thermal diffusivity of the film, overcoming the effect
of the heat losses. In general, for a given complex number σ2 = u+ iω

D , such that
u ∈ R, ω and D are positive real numbers. It is straightforward to show that the
product of its real part <{σ} and its imaginary part ={σ} is independent of u, i.e.,
<{σ} · ={σ} = ω

2D .

On the other hand, the asymptotic behavior of the Hankel integrals involved in
eqs. (16.1) and (16.2) can be explored.[12],[13]

Consider a Hankel integral of zero order

I0(b) =
∞∫
0

φ(x)J0(bx) dx b→∞ (16.4)
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This is an asymptotic expansion that when b→∞ can be expressed as[12]

I0(b→∞) = 1
b

∞∑
s=0

(−1)1+sφ(s)(0)
s!

Γ
[(

1
2

)
(1 + s)

]
Γ
[(

1
2

)
(1− s)

] (2
b

)s
+ ∆0(b) (16.5)

where the first term (infinite summation) is the Poincaré asymptotic expansion
(PAE) of the integral in eq. (16.4) and is a series expansion containing integer
powers of 1/b. φs(0) represents the sth derivative of φ(x) evaluated at x = 0, and
Γ(·) is the gamma function. The second term takes into account the exponentially
small decaying terms of the integral. For odd functions φ(−x) = −φ(x), the PAE
equals zero, and only the exponentially small terms are relevant for the asymptotic
expansion. The ∆0(b) term can be obtained using the McClure-Wong distributional
method.[13] For meromorphic functions, as is our case, it reads

∆0(b) = iπ
m∑
j=0

Res
{
H

(1)
0 (bz)φ(z2)z; z = aj

}
(16.6)

where H(1)
0 (·) is the Hankel function of first class and zero order. Res {f(z); z = aj}

stands for the residues of f(z) evaluated at z = aj , and aj as the jth pole of φ(z2)
located at the upper half of the complex plane.

Consider a semitransparent film, in the thermally thin regime, illuminated by
a punctual laser source (a = 0). The asymptotic expansion of the front-face
thermographic signal S(r →∞, 0, ω) can be obtained by computation of the residues
appearing the integral in eq. (16.1). The terms which contain poles in eq. (16.1) are
linear combinations of

S(r →∞, 0, ω) ∼
∞∫
0

δJ0(δr)(
δ2 − α2 + i ωD

) (
δ2 − γ2 + i ωD

) (
δ2 + 2h

KL + i ωD

) dδ (16.7)

Following eq. (16.6) we obtain

S(r →∞, 0, ω) ∼ exp(−σαr)√
σαr

+ exp(−σγr)√
σγr

+ exp(−σhr)√
σhr

(16.8)

where σ2
α = −α2 + iω

D , σ2
γ = −γ2 + iω

D and σ2
h = 2h

KL + iω
D . Note that if the three real

parts are of the same order of magnitude, then the expression in eq. (16.8) reduces
to a single exponential decaying term

S(r →∞, 0, ω) ≈ exp(−σr)√
σr

(16.9)

where σ2 = u+ iω
D and u is a combination of α, γ, and 2h/(KL). This means that the

slopes method holds for this particular case. On the other hand, if any of the real
parts are larger than the others, the corresponding term in eq. (16.8) can be dropped,
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because its amplitude is exponentially small with respect to the others. Accordingly,
eq. (16.8) always can be reduced to eq. (16.9) for a suitable value of u. As mentioned
before, the value of u does not influence the product of the real and imaginary parts
of σ. Thus, we have shown that the slopes method mln(|T√r|) ·mΨ = πf/D is also
applicable for semitransparent films in the thermally thin regime, using a punctual
excitation source.

Experimental Section.

Materials. Poly(methyl methacrylate) Plexiglas 7N (PMMA; Evonik), low-density
polyethylene Purell PE 1840H (LDPE; LyondellBasell), tetrahydrofuran (THF;
> 99.9%; Sigma-Aldrich), and phenol red (PR; Alfa Aesar) were used as received.
Amorphous polyether ether ketone (PEEK) films with a thickness of 25, 50, 75, and
250 µm were purchased from www.goodfellow.com; potassium bromide (KBr) round
cell windows were ordered from Sigma-Aldrich.

Preparation of Thin, Freestanding Films for Lock-In Thermography. Freestanding
PMMA films were prepared from solution. Therefore, 30 wt% PMMA was dissolved
in THF under magnetic stirring. To obtain red PMMA films 2 and 6 wt% PR
(with regard to the amount of PMMA), respectively, were added to PMMA before
dissolution in THF. Then, the PMMA solution was cast on a glass substrate using
the doctorblade method. After drying for 48 h, the film was removed from the glass
substrate and cut into pieces of appropriate sizes. The thickness of the PMMA films
was around 200 µm. The fabrication of the freestanding LDPE films is composed of
the following steps: compounding, injection molding, and hot pressing. First, LDPE
pellets and PR powder were mixed under N2 flow in a twin-screw compounder with
a stirring speed of 40 rpm and at a temperature of 200 °C. Second, the compounded
material was directly filled into the injection unit. Discs with a diameter of ∼ 27 mm
and a thickness of ∼ 1 mm were fabricated using an injection force of 6 kN and a
tool temperature of 20 °C. Finally, thin, freestanding LDPE films were obtained
by hot pressing of the discs at a temperature of 200 °C and subsequent cooling to
room temperature. In this way, LDPE films with 0, 2, and 6 wt% PR, respectively,
were prepared. The thickness of the LDPE films was around 200 µm. Photographs
of the PMMA and LDPE thin films with various contents of PR are depicted in
Figures 16.8 and 16.9. PEEK films were cleaned and cut into pieces.

Characterization Methods. In-plane thermal diffusivity measurements on thin, free-
standing films (200 µm) were conducted using a home-built lock-in thermography
(LIT) setup (Figure 16.9). The sample was heated by a laser beam (Genesis MX
488-1000 SLM OPS, Coherent, λ = 488.1 nm) focused onto the sample surface by
a lens of 150 mm focal length. The amplitude of the laser was modulated in sine
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waveform using a Rigol waveform generator DG1022A. The emitted infrared (IR)
radiation of the sample surface is detected by an Infratec VarioCAM HD research
IR camera (7.5-14 µm). The camera is equipped with a close-up lens. In this
configuration, the minimum spatial resolution is 29 µm at a working distance of
33 mm. To avoid heat losses due to conduction and convection into the environment,
all samples were measured under vacuum conditions (∼ 3× 10−3 mbar). However,
heat losses due to radiation still remain. LIT measurements were performed using
Infratecs IRBISactiveonline software. Transparent samples (PMMA and LDPE
without phenol red as well as all PEEK films) were coated with a 20 nm carbon layer
for enhanced laser absorption. The coating of the sample was facing the infrared
camera. The influence of the carbon coating on the absorption of light in the IR
and UV-vis range is shown in Figure 16.11.

Fig. 16.2.: (a) Plots of ln (|T
√
w|) (continuous lines) and Ψ (dashed lines) as a function of

the normalized radial profile w = r/µ. A wide range of absorption coefficients
is explored at a fixed IR absorption: γL = 5. (b) Derivatives of amplitudes
(continuous lines) and phases (dashed lines) with respect to w, for different
absorption coefficients, are explored. Note that results overlap. (c) Plots of
ln (|T

√
w|) (continuous lines) and Ψ (dashed lines) as a function of the normalized

radial profilew = r/µ. A wide range of IR absorption coefficients is explored at
a fixed optical absorption: αL = 5. (d) Derivatives of amplitudes (continuous
lines) and phases (dashed lines) with respect to w, for the different IR absorption
coefficients, are explored. Note that the results overlap.

In the case of the fabricated polymeric films (PMMA and LDPE), we measured three
different films per sample; in the case of the purchased PEEK films, we measured
only one film per sample.
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UV-vis measurements were conducted on an Agilent Cary 5000 spectrometer in the
transmission mode. Absorption spectra were recorded from 380 to 800 nm. The data
interval was fixed to 1 nm, with averaging for 100 ms. Each measured sample was
normalized with a suitable reference (control): For the freestanding polymers, the
direct lamp spectrum in air was used. For the measurement of the carbon coating,
an uncoated KBr disc was used. The phenol red powder was measured by applying
a thin layer on transparent adhesive tape with the same tape as reference. The same
polymeric samples as characterized by lock-in thermography were investigated.

A Bruker Vertex 70 FT-IR spectrometer was used for absorption spectra acquisition.
The polymeric samples, as well as a carbon-coated KBr window, were measured in
transmission mode. To get the IR absorbance of the pure carbon layer, an uncoated
KBr window with the same thickness as the uncoated one was used as a reference.
Furthermore, an ATR-IR spectrum of phenol red powder was recorded. All samples
were measured in the wavenumber range of the spectral range of the infrared camera
(data interval, 4 cm−1; averaging, 32 measurements).

16.4 Results and Discussion

Numerical Simulations

Here we present numerical simulations of the radial temperature profiles based on
eq. (16.2). A thin polymeric film (K = 0.15 Wm−1K−1 with thickness L = 25 µm
is considered. The laser power is set to P0 = 50 mW at a modulation frequency
f = 0.10 Hz. This gives a thermal diffusion length µ = 564 µm; i.e., the film is
in the thermally thin regime (µ � L). A typical value is used for the combined
heat transfer coefficient h = 15 Wm−2K−1.[8],[14] Figure 16.2a shows simulations of a
surface temperature radial profile for a semitransparent film, considering a fixed IR
absorption coefficient such that γL = 5. The absorption coefficient to the incident
laser wavelength is varied over a wide range: 0.01 ≤ αL ≤ 100. The laser beam is
focused on the film surface with a radius a = 0.1µ. The temperature profiles for
the “amplitude” ln(|T

√
w|) and phase ψ are presented with a vertical shift and in

ascending order of αL from top to bottom.

The derivatives of the “amplitude” ∂w ln(|T
√
w|) and phase ∂wψ with respect to the

normalized radial profile are antisymmetric around the beam spot position (r = 0),
as depicted in Figure 16.2b. Both derivatives reach a constant value above r = 2µ
(and below r = −2µ), as indicated by the red arrows. Thus, |r| ≥ 2µ corresponds to
the linear part of the temperature profiles shown in Figure 16.2b. Two red arrows
mark these intervals. Within the region 0 ≤ r ≤ 2µ, the amplitude derivative shows
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a concave upward behavior and is discontinuous at r = 0. This discontinuity is due
to the logarithmic function. In contrast, the phase derivative is concave downward
away from the beam spot; it shows an abrupt change to concave upward near r = 0
and is continuous at the beam spot position. Moreover, the values of the derivatives
for the different absorption coefficients to the exciting wavelength are equal, as they
are all superimposed in Figure 16.2b. This means that the difference between the
slopes of the amplitude ln(|T

√
w|) and phase Ψ profiles (for |r| ≥ 2µ) is due to the

heat losses independent of αL.

Fig. 16.3.: (a) Plot of AIR versus AVis of all polymeric thin films. The error bars of AIR arise
from measuring three films per sample (except for PEEK) and from averaging
over the spectral wavelength range of the infrared camera (7.5-14 µm); the error
bars of AVis arise from measuring three films per sample (except for PEEK).
Area I marks the (semi)transparent AVis and AIR range and area II marks
the opaque AVis range and (semi)transparent AIR range. Area III marks the
(semi)transparent AVis range and opaque AIR range, and area IV marks the
opaque AVis and AIR range. Exemplary (b) IR and (c) UV-vis absorbance
spectra of LDPE with 0, 2, and 6 wt% phenol red (PR) as well as the spectra of
pure PR powder are shown. The dashed line at 488 nm marks the wavelength of
the incident laser used in lock-in measurements.

Simulations presented in Figure 16.2c are similar to those in Figure 16.2a, but in this
case, the optical absorption coefficient to the exciting wavelength is fixed (αL = 5),
and a wide range of IR absorption coefficients are explored: 0.01 ≤ γL ≤ 100. The
same radius a = 0.1µ is used for the focused beam. The simulations are vertically
shifted in ascending order of γL from top to bottom.

The corresponding “amplitude” and phase derivatives are shown in Figure 16.2d.
The same characteristics as described in Figure 16.2b are found. In this case, the
values of the derivatives for the different IR absorption coefficients are equal, as
they are all superimposed. This means that the difference between the slopes of the
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Tab. 16.1.: Summary of AVis and AIR values of PMMA and LDPE Films with Various PR
Contents and PEEK Samples with Different Film Thicknesses.a

AcVis AdIR exciting laser light IR radiation

PMMA 0 wt % PRb 0.6± 0.1 > 3.5e semitransparent opaque
2 wt % PR 3.5± 0.5 > 3.5e semitransparent opaque
6 wt % PR 8.2± 0.6 > 3.5e opaque opaque

LDPE 0 wt % PRb 0.8± 0.1 1.6± 2.7 semitransparent semitransparent
2 wt % PR 2.9± 0.3 2.4± 2.5 semitransparent semitransparent
6 wt % PR 5.3± 0.4 3.5± 2.3 opaque semitransparent

PEEK 25µm filmb 0.6 2.4± 2.5 semitransparent semitransparent
50µm filmb 0.7 > 3.5e semitransparent opaque
75µm filmb 0.7 > 3.5e semitransparent opaque
250µm filmb 3.5 > 3.5e semitransparent opaque

aClassification of the optical properties regarding the exciting laser light and IR radiation
in semitransparent or opaque. bWith 20 nm carbon coating. cValue at 488 nm. dAverage
value for 7.5-14 µm; error is the standard deviation of the average value. eAbove the
detection limit. In the case of the PMMA and LDPE samples, three films were measured,
and an average value of AVis and AIR was calculated.

amplitude ln(|T
√
w|) and phase Ψ profiles is also due to the heat losses, independent

of γL. To validate the above results, further simulations for a wide range of both
absorption coefficients were performed (see Supporting Information).

We have found that the product between the amplitude derivative dw ln(|T
√
w|) and

phase derivative dwψ, for |r| ≥ µ,is constant and independent of the optical absorp-
tion to the exciting wavelength and to the optical absorption in the IR detection
range; i.e., this result is also correct in the optically opaque limit. Consequently,
on the basis of the slopes method for optically opaque films in the thermally thin
regime,[1] we conclude that, for any semitransparent or opaque film in the thermally
thin regime and far from the excitation beam spot, |r| ≥ µ:

∂r ln(|T
√
r|) · ∂rΨ = mln(|T

√
r|) ·mΨ = πf

D
(16.10)

This confirms our theoretical expectations as outlined above.
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Fig. 16.4.: Exemplary measurement data of a PMMA film with 0, 2, and 6 wt% phenol
red (PR), respectively. (a) Plots of ln(|T

√
w|) (continuous lines) and Ψ (dashed

lines) as a function of the radial profile r. The vertical dashed lines at 2µ
(∼ 800 µm represent the lower fitting boundary used for evaluation of the phase
and amplitude profiles. (b) Plots of the thermal diffusivity D against the lock-in
frequency f . Error bars are the standard error arising from the fitting of the
radial profiles. The dashed lines represent the respective average value.

Fig. 16.5.: Thermal diffusivity D of PMMA (black bars) and LDPE (blue bars) with 0, 2,
and 6 wt% phenol red (PR), respectively. Error bars are 5 % uncertainty. The
dashed lines represent the lower and upper limits of the reference values for
unmodified PMMA and LDPE.[15] The thermal diffusivities of PEEK films with
a thickness of 25, 50, 75, and 250 µm are plotted as green bars. Error bars are
5 % uncertainty. The corresponding solid line represents the literature value also
measured with lock-in thermography. The dashed lines are the 5 % uncertainty
range given by Mendioro et al.[1]

Lock-In Thermography Measurements.

To validate our theoretical results experimentally, we measured three different
polymers covering a wide range of IR absorption coefficients and optical absorption
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coefficients to the exciting wavelength: poly(methyl methacrylate) (PMMA), low-
density polyethylene (LDPE), and polyether ether ketone (PEEK). To tune the
optical properties of PMMA and LDPE, we added 2 and 6 wt% phenol red (PR),
respectively (Figure 16.8). Furthermore, PEEK films with different thicknesses, i.e.,
25, 50, 75, and 250 µm, were investigated.

In Figure 16.3a, a plot of the IR absorption (AIR = γL/ln(10)) as a function of the
optical absorption (AVis = αL/ln(10))to the exciting wavelength of all samples is
shown. In Table 16.1, the corresponding values are listed. Furthermore, the samples
are classified in “semitransparent” or “opaque” regarding their optical properties to
the exciting laser light and IR radiation.

Figure 16.3a is divided into four areas dependent on the optical properties of the
material:

I (semi)transparent to both IR radiation in the wavelength range of the IR
camera (7.5-14 µm) and the exciting wavelength of the laser (488 nm),

II (semi)transparent to the IR radiation and opaque to the exciting wavelength,

III opaque to the IR radiation and (semi)transparent to the exciting wavelength,
and

IV opaque to both IR radiation and exciting wavelength.

As can be seen from this plot, PMMA is opaque to IR radiation and semitransparent
(III) or opaque (IV) to the exciting laser light depending on the dye concentration.
LDPE, on the other hand, is semitransparent to IR radiation and semitransparent
(I) or opaque, due to a higher PR content, (II) to the exciting laser light. Here, the
addition of PR enhances not only the absorbance of visible light (Figure 16.3b) but
also the absorbance of IR light (Figure 16.3c). All PEEK films are semitransparent
to the exciting laser light, but either semitransparent (I) or opaque (III) to the IR
radiation depending on the sample thickness. IR and UV-vis absorbance spectra of
all samples are summarized in Figure 16.12.

Exemplary lock-in thermography (LIT) measurement data of PMMA with various
PR contents (0, 2, 6 wt% PR) are depicted in Figure 16.4a. Here, temperature
profiles for the “amplitude” ln(|T

√
w|) and phase Ψ are shown for a lock-in frequency

f of 0.219 Hz. To be independent of the optical properties of the thin films, we
extracted the phase and “amplitude” slopes above a radial distance of 2µ (vertical
dashed lines in Figure 16.4a). Subsequently, we calculated the thermal diffusivity D
for each frequency using the equation mln(|T

√
r|) ·mΨ = πf/D. Fits were done on radial
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averaged profiles for each phase and amplitude image. In this way, the whole phase
and amplitude distribution are evaluated rather than single lines. Figure 16.4b shows
the individual thermal diffusivities with dependence on the used lock-in frequency.
The error bars arise from the fitting of the radial profiles.

From this data, an average thermal diffusivity is calculated (dashed line). The data
in Figure 16.4b indicates that the PMMA films have similar thermal diffusivities
independent of the PR content. Therefore, the slopes method is valid independent
of the optical absorption at the exciting wavelength. However, the standard error of
the individual thermal diffusivities is larger for the sample without PR due to the
lower signal-to-noise ratio of the radial profiles. The thermal diffusivities determined
by LIT are shown in Figure 16.5. We measured PMMA and LDPE films with
0, 2, and 6 wt% of PR content. Additionally, four PEEK samples with different
thicknesses were measured. For all samples, we obtained rather small standard
deviations of the thermal diffusivity. In Figure 16.5, we plot an uncertainty of 5 %
as error bars.[1],[15]

From our lock-in measurements, we determined an in-plane thermal diffusivity of
∼ 0.12 mm2s−1 for PMMA independent of the PR content. Thus, the result does
not depend on the optical absorption coefficient to the exciting wavelength that
changes from semitransparent to opaque with an increasing amount of red dye (Table
1). Similarly, for LDPE with 0, 2, and 6 wt % PR, we found a thermal diffusivity
of ∼ 0.19 mm2s−1. Here, too, we observe no dependence on the optical absorption
coefficient for the exciting laser light (Table 16.1).

We obtained an average thermal diffusivity value of ∼ 0.20 mm2s−1 for all PEEK
samples independent of the film thickness. Consequently, the result is not affected
by the IR absorption coefficients that change from semitransparent to opaque with
increasing film thickness (Table 16.1). The PEEK films also serve as reference
material for our LIT setup, since literature values are available that were also
measured with thermographic methods.[1],[16] The literature value of ∼ 0.19 mm2s−1

from Mendioroz et al.[1] is plotted as a solid green line in Figure 16.5; the dashed
green lines represent the 5 % uncertainty range of this value. We found a low
relative deviation of ∼ 5 % between our average value and the literature value. This
good agreement proves that correct thermal diffusivity values are obtained even for
samples with low optical absorption coefficients for the exciting wavelength.

We note the fundamental difficulty in quantitatively comparing the thermal con-
ductivity of polymer samples reported from different groups. This is an inherent
problem owing to the variability of the sample microstructure, which can be strongly
altered on the basis of the fabrication and processing conditions. This is particularly
true for semicrystalline samples because not only the polymer chain orientation but
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also the degree of crystallinity can vary significantly. Furthermore, a quantitative
characterization of the exact polymer microstructure is difficult to achieve and often
not reported along the measured thermal conductivity values. In addition to the
microstructure, the thermal transport characterization technique may also result in
systematically differing thermal conductivity values. Consequently, a broad range of
typical thermal conductivities are generally accepted for many polymer materials,
which lead to the dashed lines for PMMA and LDPE in Figure 16.5.[15] We report
the influence of both issues (sample microstructure and measurement method) on the
thermal conductivity value for our samples to provide a more reasonable classification
of the absolute thermal conductivity values that we offer (see Supporting Information
for further information). We, therefore, compare LIT to xenon flash analysis (XFA)
for polymer samples stemming from various preparation conditions. We found for
the amorphous PMMA samples no signs of polymer crystallinity (Figure 16.13) and
a comparable polymer microstructure. This led to a good agreement between LIT
and XFA (which measure the cross-plane thermal diffusivity) measurements. For the
semicrystalline LDPE samples, we did not observe any influence of the PR dye on
the degree of crystallinity (see Supporting Information). Yet, the orientation of the
crystalline domains is strongly anisotropic and depends on the processing conditions
such as hot-pressing and thermal annealing (Figure 16.15). The XFA measurement
results in lower cross-plane thermal diffusivities compared to LIT, which may be
caused by the in-plane orientation of the LDPE crystallites. Thermal annealing
further alters the LDPE microstructure, as can be seen for the thick XFA samples,
which leads to a concomitant increase in thermal diffusivity. Due to the much lower
degree of anisotropy upon hot pressing, the thin samples for LIT are less sensitive
to the thermal annealing step and, consequently, do not change significantly.

Considering these uncertainties, it becomes clear that we obtained accurate values
of thermal diffusivity for uncoated semitransparent samples using the slopes method.
These experimental results validate our theoretical expectations discussed in the
Numerical Simulations section. Lock-in thermography is, consequently, a powerful
and versatile characterization technique to measure thermal transport in thin,
freestanding films and fibers, independent of their optical properties.

16.5 Conclusion

In this paper, we developed a two-dimensional heat conduction model which includes,
in addition to heat losses to the surrounding atmosphere, also semitransparency of the
sample to the exciting wavelength, multiple reflections at the sample surfaces, and the
effect of its semitransparency through the infrared (IR) sensitivity of the IR camera
used. On the basis of this model, we conducted numerical simulations to investigate
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separately the effect of semitransparency on the exciting laser light and on the IR
wavelength of the IR camera. We found that the well-known slope method, which
does not consider semitransparency, is still valid as long as the phase and amplitude
slopes are extracted far from the heating spot center (u 2µ). We translate our
theoretical findings into the measurement of three different polymers, poly(methyl
methacrylate) (PMMA), low-density polyethylene (LDPE), and polyether ether
ketone (PEEK). The optical properties in the visible and IR wavelength ranges of
these polymers were varied by their film thickness (PEEK) or by the addition of a
red dye (PMMA and LDPE). We obtained thermal diffusivity values which are in
good agreement with literature values and independent of the optical absorption
properties of the samples. We could, therefore, show that, in the thermally thin
regime, the slopes method holds (far from the heating spot center) independent of
semitransparency (to the exciting wavelength and in the IR range of the camera).
Consequently, the in-plane thermal diffusivity can be measured accurately.
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16.7 Supporting Information

Modeling

Consider the geometry shown in Figure 16.1 of the main text. The power distribution
P (z) inside the semitransparent thin film can be calculated using the Beer-Lambert
law taking into account multiple reflections of the laser beam at the film surfaces,[1]

P (z) = I0 (1−R) (exp (−αz) +R exp (−2αL) exp (αz))
1−R2 exp(−2αL) , (16.11)

where R is the reflectance and α is the absorption coefficient of the film, both taken
at the laser wavelength. A fraction of this power is converted into heat Q(z) = χP (z)
and is the heating source of the film. Where χ is the efficiency of the light to heat
conversion. We consider heat conduction by diffusion in the film. Accordingly, the
heat diffusion equation for the presented configuration reads

∇2T − iω

D
T = −χP0

2K
exp(−2r2

a2 )
πa2

(1−R)α (exp (−αz)−R exp (−2αL) exp (αz))
(1−R2 exp(−2αL))

(16.12)
where T = T (~r, ω) is the temperature field inside the sample at the angular frequency
ω = 2πf , D and K is the thermal diffusivity and thermal conductivity of the film,
respectively. Because the film is thermally isotropic, Equation (16.12) has cylindrical
symmetry. Thus, we can express the temperature field as a Hankel transform:

T (r, z, ω) =
∞∫
0

δJ0(δr) [A exp(βz) +B exp(−βz) + C exp(−αz) + E exp(αz)] dδ,

(16.13)
where δ is the Hankel space variable, J0(·) is the Bessel function of zero order,
β2 = δ2 + iω

D and the coefficients C and E are obtained from a particular solution of
Equation (16.12):[1]

C = χP0
2πK

(1−R)α
(β2 − α2)

exp(− (δa)2

8 )
1−R2 exp(−2αL) (16.14)

E = − χP0
2πK

(1−R)αR exp(−2αL)
(β2 − α2)

exp(− (δa)2

8 )
1−R2 exp(−2αL) (16.15)

The solution of the homogeneous part of Equation (16.12) gives the other two
coefficients in Equation (16.13) by considering the following boundary conditions:

K
dT
dz

∣∣∣∣
z=0

= hT (z = 0) (16.16)
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K
dT
dz

∣∣∣∣
z=L

= hT (z = L) (16.17)

where h is the linearized combined coefficient of convective and radiative heat
transfer.[2],[3] Accordingly, the temperature field given in Equation (16.13) can be
written as

T (r, z, ω) = χP0
2πK

(1−R)α
1−R2 exp(−2αL) · (16.18)

∞∫
0

δJ0(δr)
exp(− (δa)2

8 )
(β2 − α2)

[
A0 exp(βz) +B0 exp(−βz)

E0
+ exp(−αz)− (16.19)

R exp(−αL) ·
(
A1 exp(βz) +B1 exp(−βz)

E0
+ exp(αz)

)]
dδ

Where

A0 = exp(−βL)
(
β − h′

) (
α+ h′

)
+ exp(−αL)

(
β + h′

) (
−α+ h′

)
, (16.20)

B0 = exp(βL)
(
β + h′

) (
α+ h′

)
+ exp(−αL)

(
β − h′

) (
−α+ h′

)
, (16.21)

A1 = exp(−βL)
(
β − h′

) (
−α+ h′

)
+ exp(αL)

(
β + h′

) (
α+ h′

)
, (16.22)

B1 = exp(βL)
(
β + h′

) (
−α+ h′

)
+ exp(αL)

(
β − h′

) (
α+ h′

)
, (16.23)

E0 = exp(−βL)
(
β − h′

)2 − exp(βL)
(
β + h′

)2 (16.24)

and h′ = h/k.

The semi-transparency of the film in the infrared (IR) region is also considered. In
particular, for the detection range of our IR camera (7.5 – 14 µm), the signal is
collected not only from the sample surface but also from the inside.

Let us consider an effective IR absorption coefficient γ, which averages the IR
absorption over the detection range of our IR camera. This effective coefficient is
a good approximation for materials with smoothly varying IR absorption spectra
in the corresponding detection range.[4] Accordingly, the signal recorded by the IR
camera can be written as,

S(r, z0, ω) = F

L∫
0

γ exp(−γ|z − z0|)T (r, z, ω) dz, (16.25)

where z0 = {0, L} for the IR camera placed in the same side (front-face configuration)
or in the backside (rear-face configuration) of the illuminated surface, respectively.
The proportionality constant F includes the effect of the IR emissivity, sensor
area, IR detection range and the derivative of the Planck distribution at room
temperature.
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Setting z0 = 0 in Equation (16.25) allows us to evaluate the resulting integral and
obtain an expression for the signal recorded by the IR camera, in the front-face
configuration (see Equation (16.1) in main text). Similarly, to the previous case, we
set z0 = L and evaluate the integral in Equation (16.25). We obtain the following
expression for the signal recorded by the IR camera, in the rear-face configuration
(see Equation (16.2) in the main text).

To validate our simulations in Chapter 16.4, for a wide range of both absorption
coefficients, we perform simulations at three different values of the IR absorption
coefficient (γL = 0.10, 5 and 50). For each case, the optical absorption coefficient
to the exciting wavelength was varied over a wide range: 0.01 ≤ αL ≤ 100. The
product between the amplitude derivative and phase derivative is depicted in 16.6a-c.
Note that for |r| ≥ µ, the product of the derivatives is constant, independent of
the optical absorption at the exciting wavelength and for each of the three different
values of γL. This is analogous to the product of the slopes mln(|T

√
(r)|) ·mψ = πf/D

for the optically opaque case.[5] Actually, the optically opaque case is covered in our
simulations, as represented in 16.6c for large values of αL. 16.6d-f show the product
of derivatives for three different values of the optical absorption to the exciting
wavelength (αL = 0.10, 5 and 50), covering a wide range of IR absorption coefficients
0.01 ≤ γL ≤ 100. Once again, for |r| ≥ µ, the product of the derivatives is constant,
independent of the IR optical absorption and for each of the three different values
of αL. The optically opaque case is covered in 16.6f for large values of γL.

Fig. 16.6.: Difference in (a) amplitude and (b) phase between the surface temperature
at z = L (rear-face) and the front surface temperature at z = 0. Note
that differences appear only near to the excitation spot, but for |r| ' µ both
temperatures are equal.
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Fig. 16.7.: Product between amplitude and phase derivatives. Upper row (a)-(c): three
different values of the IR absorption coefficient (γL = 0.10, 5 and 50), covering
a wide range of optical absorption coefficients to the exciting wavelength 0.01 ≤
αL ≤ 100. Lower row (d)-(f): three different values of the optical absorption
to the exciting wavelength (αL = 0.10, 5 and 50), covering a wide range of IR
absorption coefficients 0.01 ≤ γL ≤ 100.

Fig. 16.8.: Photographs of LIT samples. Upper row: PMMA film with 20 nm carbon,
PMMA film with 2 and 6 wt% PR, respectively. Lower row: LDPE film with
20 nm carbon, LDPE film 2 and 6 wt% PR, respectively.
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Fig. 16.9.: Micrographs of LIT samples with PR. Upper row: PMMA and LDPE films with
2 wt% PR. Lower row: PMMA and LDPE films with 6 wt% PR.

Fig. 16.10.: Schematic set-up used for lock-in thermography measurements. PC and EOM
stand for personal computer and electro optic modulator, respectively
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Fig. 16.11.: Influence of carbon coating on the optical properties: (a) IR spectra and
(b) UV-vis spectra of 20 nm, 60 nm, and 100 nm carbon (The spectra are
represented relative to an uncoated KBr disc as control). The dashed line at
488 nm marks the wavelength of the incident laser used in lock-in measurements.
The absorbance of IR and UV-vis light increases with an increasing carbon
layer. The coating leads to a higher absorbance of light in the UV-vis range
compared to IR light.
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Fig. 16.12.: Optical properties of the thin, free-standing polymeric films measured with
lock-in thermography. IR spectra and (b) UV-vis spectra of PMMA films with
0 wt%, 2 wt%, and 6 wt% PR, respectively. (c) IR spectra and (c) UV-vis
spectra of LDPE films with 0 wt%, 2 wt%, and 6 wt% PR, respectively. (d) IR
spectra and (e) UVvis spectra of a 25 µm, 50 µm, 75 µm, and 250 µm PEEK
film, respectively. The dashed line at 488 nm marks the wavelength of the
incident laser used in lock-in measurements. Absorbance values higher than 4
units are difficult to resolve accurately with our detector. Therefore, we set the
opaqueness threshold to AVis > 4 (for the excitation wavelength) and AIR > 4
(in the IR range).
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Experimental section

Reference thermal diffusivity measurements of thick PMMA
and LDPE samples

1) Preparation of thick reference samples for Xenon flash
analysis

1 mm thick PMMA samples were fabricated by compounding and injection molding.
PMMA pellets and PR powder were mixed under N2 flow in a twin-screw compounder
with a stirring speed of 40 rpm and at a temperature of 240 °C. Then, the compounded
material was directly filled into the injection unit. Disks with a diameter of 27 mm
and a thickness of 1 mm were fabricated using an injection force of 6 kN and a tool
temperature of 20 °C. In this way, PMMA disks with 0 wt%, 2 wt%, and 6 wt% PR,
respectively, were prepared. LDPE samples were taken from the remaining LDPE
disks which were already prepared using injection molding (see Experimental section
in the main text).

2) Cross-plane thermal diffusivity measurements using Xenon
flash analysis (XFA)

Xenon flash analysis (XFA) was used to obtain reference thermal diffusivity values
for the fabricated PMMA and LDPE samples. We performed cross-plane thermal
diffusivity measurements on an XFA500 Xenon flash apparatus (Linseis), equipped
with an InSb infrared (IR) detector. The upper and lower sample surfaces were
coated with a thin graphitic layer (each 10 µm). Since the thickness of the coating
is significantly thinner than the sample thickness (20 µm � 1000 µm), it does not
affect the measurement result. The coating ensures a good absorbance of the Xenon
flash and a high IR emissivity. The sample thickness which is needed to obtain
the thermal diffusivity was measured with a Litematic VL-50 (Mitutoyo). All XFA
measurements were performed in air at room temperature (295 K). The LDPE
samples were measured before and after thermal annealing (90 °C, one week).

3) X-ray diffraction (XRD) and small angle X-ray scattering
(SAXS)

To demonstrate the amorphous nature of the PMMA samples and the semi-crystallinity
of the LDPE samples we performed X-ray diffraction (XRD). The measurements
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were conducted in Bragg-Brentano geometry on an Empyrean system with a PIXEL
solid-state detector (PANalytical, Almelo, Netherlands) using Cu-radiation.

Small-angle X-ray scattering (SAXS) was performed on the PMMA and LDPE
samples using the lab-based system Ganesha Air (SAXSLAB, Denmark), equipped
with a rotating anode (copper, MicroMax 007HF, Rigaku Corporation, Japan)
and a position sensitive detector (Pilatus 300K, Dectris). The samples (and air
as background) were measured as obtained in parallel and perpendicular beam
geometry. Different detector positions were used to cover a larger scattering range q
(q = 4π

λ sin
(

2θ
2

)
).

4) Discussion of polymer microstructure

The pure PMMA samples show broad oscillations without prominent Bragg re-
flections in the XRD regime proving their amorphous nature (Figure 16.13, black
curve). The broad oscillations around 13.5°, 30° and 42° result from the packing and
defined backbone sequence of the polymeric chains. These characteristic patterns
are also obtained for the dye-doped PMMA samples (Figure 16.11, red curve, and
Figure 16.13a, b), which additionally show small reflections due to tiny crystallites
of phenol red. The combination of XRD and SAXS of a pure PMMA sample
(Figure 16.13, inset) indicates a rough surface of the films (I(q) ∼ q−2.8). In that
context, one may imagine the texture of the sample area as a dense fractal-like
object.
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Fig. 16.13.: XRD pattern of thick PMMA samples without PR (black line) and with 6 wt%
PR (red line) as well as the expected pattern of phenol red (gray vertical
dashed lines). The inset shows the X-ray intensity of the pure PMMA sample
over a wider q range (triangles, SAXS and XRD) and a theoretical intensity
calculated for a mass fractal (blue line)

As can be seen in Figure 16.14a and b, the XRD patterns reveal no significant
differences in the polymeric structure between the thin and thick PMMA samples
prepared for lock-in thermography and Xenon flash analysis, respectively. In both
cases, the small Bragg reflections base on the incorporated PR dye and increase
slightly with increasing concentration of the dye. This shows that all samples exhibit
a similar polymeric microstructure independent of the PR content, sample thickness,
and preparation method (injection molding vs. doctor-blading).
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Fig. 16.14.: XRD curves of amorphous PMMA and semi-crystalline LDPE: (a) thin PMMA
used for lock-in thermography (LIT) measurements, and (b) thick PMMA for
Xenon flash analysis (XFA), (c) thin LDPE for LIT measurements, and (d)
thick LDPE for XFA. Curves are presented with a vertical shift.

LDPE is a low-density, semi-crystalline polymer. The semi-crystallinity of the LDPE
films is visible by the pronounced Bragg reflexes at 21.2° (100 % peak), 23.3° and
36.0° (Figure 16.14c and d). The reflections correspond to [110], [200], and [020] of
space group Pnam. As expected, the PR doped films show additionally small Bragg
spots due to the dye.

We found comparable degrees of crystallinity (∼ 45%) for all LDPE samples.
Consequently, the addition of phenol red does not affect the degree of crystallinity of
the LDPE samples. Furthermore, also the subsequent hot-pressing of the injection
molded LDPE disks does not change the degree of crystallinity.
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Usually, one expects for a semi-crystalline film that

(i) the amorphous and crystalline regions are randomly distributed over the solid
material (isotropy) and that

(ii) the small crystallites are polydisperse.

Nevertheless, due to external forces like shear stress or elevated temperatures phase
segregation between the amorphous phase and the crystallites cannot be ruled out.

Consequently, we performed SAXS experiments in parallel and perpendicular beam
geometries to study the in-plane and cross-plane polymeric microstructures, respec-
tively. Figure 16.15 shows an example of such a study for the LDPE samples with
6 wt% PR. Astonishing, the SAXS patterns taken perpendicular exhibit a broad
reflection at q ∼ 0.04 Å−1, which corresponds to a correlation length of about 15 nm
and hints to a two-phase LDPE system (segregation of crystallites and amorphous
LDPE). This feature is anisotropic spot-like for the thick sample (Figure 16.15a) and
isotropic for the thin film (Figure 16.15b). As a consequence, the crystallites of the
thick samples have a stronger tendency to align lamellar-like parallel to the sample
surface (i.e., in in-plane direction) compared to the thin samples. In the mesoscopic
scattering signals observed for the thick and thin samples in parallel beam geometry
(Figure 16.15c and 16.15d), the oscillation at q ∼ 0.04 Å−1 is attenuated, and
the patterns appear more isotropic. Thus, the thick samples (prepared for XFA)
and thin films (prepared for LIT) exhibit a different microstructure despite their
comparable degree of crystallinity. Both samples show a preferred orientation of the
crystallites in the in-plane direction and more random orientation in the crossplane
direction. However, the anisotropy is much more pronounced for the thick samples.
This difference in the microstructure may be associated with the different fabrication
processes and the applied temperature gradients (injection molding vs. injection
molding and subsequent hot-pressing).
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Fig. 16.15.: 2D SAXS patterns of LDPE films with 6 wt% PR in perpendicular (a, b) and
parallel (c, d) beam geometry (see sketch: sample with beam direction).

In Figure 16.16 the two-dimensional SAXS data of a thick LDPE sample as used
for XFA and after additional annealing at 90 °C for one week are compared to
illuminate the effect of the temperature/fabrication method on the orientation of
the crystallites. All annealed samples show a significantly more preferred orientation
of the crystallites compared to the non-annealed state. Note, that the spots appear
even triangular for the data of the annealed film in perpendicular geometry and at
the same time, the amorphous halo is less pronounced. We conclude that a direction
dependent crystal growth is introduced by thermal annealing. The same trend is
observed in case of the thin films, but much less pronounced.
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Fig. 16.16.: 2D SAXS patterns of thick LDPE samples (for XFA) with 0 wt% PR in
perpendicular (a, b) and parallel (c, d) beam geometry (see sketch: sample
with beam direction)

Comparison of thermal diffusivity data (LIT vs. XFA)

Figure 16.17 summarizes the thermal diffusivity values obtained for the fabricated
PMMA and LDPE samples with 0, 2, and 6 wt% PR, respectively. The in-plane
thermal diffusivity of the thin, free-standing samples was determined using lock-in
thermography (LIT). The 1 mm thick reference samples were characterized using
Xenon flash analysis (XFA). It is to be noted that this measurement technique gives
the cross-plane thermal diffusivity.
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Fig. 16.17.: Thermal diffusivity D of PMMA and LDPE with 0, 2, and 6 wt% phenol red
(PR), respectively. The thin samples (≈ 200 ţm) were measured with lock-in
thermography ((LIT), bars) that determines the in-plane thermal diffusivity;
the thick samples (≈ 1 mm) were analyzed with Xenon flash analysis ((XFA),
markers) that gives the cross-plane thermal diffusivity. LDPE samples were
measured before and after thermal annealing (90 °C, one week). The error
bars arise from 5 % uncertainty (LIT) and from the standard deviation of the
averaged value (XFA). Two to three samples were measured in each case.

As discussed in the main text, we obtain an in-plane thermal diffusivity of
∼ 0.12 mm2s−1 for all PMMA samples independent of the PR content. The cross-
plane values obtained from XFA are ∼ 0.11 mm2s−1, and thus close to the data
obtained from LIT. This good agreement confirms that the microstructure of the
amorphous polymer is similar (see XRD curves in Figure 16.13, Figure 16.14a and
16.14b) leading to isotropic thermal diffusivity values.

However, in the case of LDPE (before annealing), we extracted significantly lower
cross-plane thermal diffusivities from XFA (∼ 20 %). We relate this discrepancy to
the difference in the underlying microstructure as discussed above. Since the degree
of crystallinity of all samples is the same, the preferred in-plane orientation leads
apparently to a reduced cross-plane thermal diffusivity as measured by XFA. Thermal
annealing at 90 °C for one week led to a more pronounced anisotropy within the thick
films. In comparison to the values before thermal annealing, we obtained similar
in-plane thermal diffusivity values from LIT and slightly higher cross-plane thermal
diffusivity values from XFA after annealing. In summary, we found that comparable
in-plane and cross-plane thermal diffusivity values are obtained for an amorphous
polymer independent of the fabrication method. In case of a semicrystalline polymer,
the fabrication method has a strong influence on the polymer microstructure, and
thus on the in-plane and cross-plane thermal diffusivity, which renders a quantitative
comparison difficult.
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17.1 Abstract

Many modern measurement methods for heat transfer work in the frequency domain.
The sample is excited periodically with a sine wave and the amplitude and phase of
the temperature response is recorded. A certain amount of DC heating is unavoidable
if the sample can only be heated, e.g. by an intensity modulated light source. This
DC temperature offset influences the measured thermal properties because they are
in general temperature dependent. We explore square and multiplexed excitation
signals with the goal of reducing DC heating. We apply these signals to lock-in
thermography and show the feasibility of a simultaneous measurement at multiple
frequencies. In addition, we propose the use of the Goertzel algorithm to efficiently
extract individual spectral components from the measured signal.

17.2 Introduction

Many modern measurement methods for heat transfer work in the frequency domain.
The sample is heated periodically and the amplitude and phase of the temperature
response is recorded. Periodic signals can be measured with high accuracy by
lock-in detection. Frequency domain techniques are therefore advantageous over
impulse[1],[2] or constant perturbation[3]–[5] techniques.

Examples for frequency domain techniques are the photoacoustic technique,[6],[7]

the 3ω technique,[8]–[12] frequency domain thermo reflectance,[13],[14] and lock-in
thermography.[15]–[19] All these techniques have in common that they use a frequency
sweep. The change of amplitude or phase vs. frequency is analyzed to obtain the
thermal properties of the sample. The most common excitation signal is a pure sine
wave. Sine waves need to be offset by their amplitude to generate a purely positive
signal. Half of the heating power is therefore wasted in the DC component.

DC heating is unavoidable if the sample can only be heated and not cooled, e.g. by
an intensity modulated light source. However, we should strive to minimize the DC
heating as much as possible. The thermal properties of most materials are tempera-
ture dependent.[20] Reducing the DC temperature offset is therefore important to
measure thermal properties at the intended temperature.

Our contribution addresses this issue. We present two optimized excitation signals
for frequency domain techniques that contain multiple frequencies. A square wave,
with shorter duty cycle, and a sum of sine waves (multiplexed). The square wave is
simple to generate, whereas the sum of sine waves offers more degrees of freedom.
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These degrees of freedom come at the cost of arbitrary signal generation. Arbitrary
intensity modulated light or heat sources are readily available nowadays. We
modulate the intensity of our diode laser directly with an analog voltage signal.
Electro- and acousto-optic modulators can impose arbitrary intensity modulations
on a laser beam. Electric heating methods, like the 3ω technique, can generate an
arbitrary heating signal with an analog current source. A multi frequency 3ω method
was recently developed by Dames et al.[12]. They measure at multiple frequency to
increase the detection speed and accuracy of the 3ω method.

We focus on lock-in thermography to proof the reduction in DC heating. However,
we think that our signal design can be adapted for different frequency domain
techniques. A necessary condition is that signals at different frequencies do not
influence each other.

Lock-in thermography[21] (LIT) is a well established thermal characterization method
for thin, freestanding films and fibers. The sample is periodically heated with an
intensity modulated light source. Common sources are flash lamps and point or line
shaped laser beams. An IR camera detects the position dependent amplitude and
phase of the resulting temperature oscillations on the sample surface. The thermal
diffusivity is then computed from the slope of the linearized amplitude and phase
vs. distance from the heat source.[15],[16],[22]

LIT is also used for non-destructive testing. An example is pulsed phase ther-
mography[23],[24] (PPT) where a short pulse, instead of a sine wave is used. The
short pulse contains a continuous excitation spectrum. The penetration depth of
thermal oscillations depends on their frequency. Higher frequencies decay faster and
penetrate less into the sample. This effect can be used to sense material defects
at different sample depths by analyzing different spectral components in the pulse
spectrum. A different excitation signal has been proposed by Chatterjee et al.[25]

and Tuli et al.[26] They describe the use of a frequency modulated signal. They use a
chirp pulse to excite the sample. Chirps change their frequency continuously during
the measurement. This creates a continuous spectrum with a limited frequency
range. Chirps are therefore similar to impulse excitations used in PPT.

However, all these signal have two drawbacks:

• they create an unnecessary large DC temperature offset and

• the signal power is not optimally distributed to the spectral components that
are analyzed.
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We want to concentrate the signal power to the specific frequencies that are later
analyzed. This should increase the signal-to-noise ratio and allow us to reduce the
measurement time.

We also measure multiple excitation frequencies simultaneously. This is possible for
lock-in thermography, because heat and temperature spread diffusively through a
solid material over large length scales. The heat equation for isotropic materials,

∂

∂t
T (x, y, z, t) = α · ~∇2T (x, y, z, t), (17.1)

is a linear differential equation. A linear combination of two solutions is again a
solution. In other words, heat fluxes from two different sources do not interfere with
each other, even if they are on the same spot. The overall heat flux is the vector
sum (superposition) of the two heat fluxes. The temperature differences from two
heat sources are added (superimposed) to yield the overall temperature difference.
The superposition principle is preserved in the frequency domain. Two periodic
thermal excitations do not influence each other, especially when they have different
frequencies.

Finally, we propose the use of the Goertzel algorithm[27] to efficiently extract
individual spectral components from the measured signal. Current approaches
use either the definition of the Fourier transform[26] or the fast Fourier transform
algorithm (FFT). Computing the entire spectrum is inefficient, if we are only
interested in a few, well defined spectral components. In addition, the Goertzel
algorithm can be executed in real time, processing each measurement point in
time sequentially. In contrast, the FFT algorithm[28] requires all points in time
simultaneously. This can be a bottleneck for measurements with large amounts of
data like high speed and high resolution thermography.

326 Chapter 17 Reducing DC Heating in Lock-in Thermography



17.3 Methods

17.3.1 Our Lock-in Thermography Setup

PC

IR Camera

Signal Generator

Modulator Laser

Vacuum chamber

Sample

TTL

Fig. 17.1.: Components of our lock-in thermography setup. An intensity modulated, line
shaped laser beam is focused on the, freestanding thin film inside the vacuum
chamber. The laser periodically heats the sample. The intensity of our diode
laser is modulated with an analog signal (e.g. sine or square) from the signal
generator. The IR camera can be phase locked to the signal generator via a
TTL signal. Lock-in detection is handled by the software.

The components of our lock-in thermography setup are shown in Figure 17.1. We
use a VarioCAM HD 875 from Infratec for thermal imaging with a resolution of
1024 × 768 pixels. Our IR camera detects wavelengths ranging from 7.5 to 14 µm.
The pixel size is 29 µm at a working distance of 33 mm. We placed the IR camera
onto a micrometer controlled translation stage. This allows us to manually focus
the camera by adjusting the camera-sample distance instead of changing the focus.
We designed a custom vacuum chamber and sample holder. The vacuum chamber is
mounted on a x-y-z micrometer translation stage for alignment. A rotary vane pump
from Vacuubrand, type RZ 9 ensures a gas pressure of less than 10−3 hPa around
the sample. The low gas pressure significantly reduces heat losses from the sample.
The sample is periodically heated by the laser from the back. We use a diode laser
type 13LR12-m125+55CM-520-56-O08-T15-PS-7 from Schäfter+Kirchhoff. This
laser has a wavelength of 520 nm and creates a 40 µm (1/e2) laser line at a working
distance of 122 mm. We create the analog modulation signal with a RIGOL DG1000
signal generator. In addition, we can generate a square wave TTL signal with the
IR camera. This allows us to phase lock the laser modulation to the IR camera.
We then extract the amplitude and phase images at specific frequencies with the
Goertzel algorithm. The source code for our software is in the SI section 17.8.1.
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17.3.2 Square Signals

Square signals are easy to generate. A simple shutter imposes an on/off intensity
modulation onto almost any light source. The duty cycle, D = ton/T , determines the
on-time per period, T . The average power, and therefore the DC heating (I0 ·D) are
directly proportional to the duty cycle. We reduce the DC component of a square
wave by reducing the duty cycle. Square waves contain higher harmonics.

a) b)

Fig. 17.2.: a) Laser intensity (dashed orange) for a square wave with 20 % duty cycle and a
frequency of 0.25 Hz. The corresponding surface temperature near the laser line
is shown in blue. Note that the temperature does not follow the square wave of
the laser intensity. b) Amplitude spectrum of the surface temperature and laser
power normalized to the 1st harmonic. Higher harmonics in the temperature
are attenuated relative to the laser excitation. The dashed line represents the
theoretical envelope (Eq. (17.3)) for square waves with constant duty cycle.

We can represent a square wave by its Fourier series (see SI section 17.7.2):

I(t) = I0 ·
[
D +

∞∑
n=1

2 · sin (πnD)
πn

· cos
(2πnt

T

)]
(17.2)

The amplitudes of the spectral components are therefore given by:

An = I0 · 2 ·
sin (πnD)

πn
(17.3)

We can analyze the higher harmonics during a lock-in thermography experiment.
Figure 17.2a shows the resulting temperature signal during a lock-in thermography
measurement created by a square wave excitation. Note, that the temperature
does not follow the excitation signal. This distortion is evident in the spectrum
(Fig. 17.2b). Higher harmonics in the temperature signal are attenuated relative
to the excitation signal. The attenuation originates from the heat transfer in the
sample.[25] However, the higher harmonics can still be used for analysis.
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17.3.3 Multiplexed Signal Design

In this section, we design an excitation signal with multiple spectral components.
We combine multiple intensity modulated signals into one. Our goal is to reduce the
DC component. DC heating both wastes energy and creates a temperature offset in
the sample. A signal,

I(t) = A1 +A1 · cos (2πft+ φ) , (17.4)

with only one sine wave requires a DC offset equal to its amplitude, A1, to be fully
positive. We propose a superposition of N sine waves like

I(t) =
N∑
n=1

An · cos (2πfn · t+ φn) + sn. (17.5)

These sine waves have different frequencies, fn, amplitudes, An, phases, φn. The
offsets, sn, are necessary to obtain a purely positive signal. Note that our signal is
defined by a 4N dimensional parameter space. Although we want many degrees of
freedom, these are usually too many. We therefore carefully reduce the number of
free parameters for the frequencies, amplitudes, and offsets.

We begin with the offsets. The individual offsets, sn, can be summed into a global
offset, S. To do so, we split the signal into two sums

I(t) =
N∑
n=1

An · cos (2πfn · t+ φn) +
N∑
n=1

sn. (17.6)

The second sum becomes the global offset and we get

I(t) = S +
N∑
n=1

An · cos (2πfn · t+ φn) . (17.7)

The signal has to be always positive (only heating) or 0. Therefore, we have to set
the global offset to the negative minimum of the signal without offsets:

S = −min
{

N∑
n=1

An · cos (2πfn · t+ φn)
}
. (17.8)

This means that our signal is shifted in the positive y-direction by the amount S.
The DC component is then I0 · S. The offset, S, is now fully determined by the
frequencies, amplitudes, and phases we choose. In addition, the offset given by
equation (17.8) is the optimal offset.
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Optimal means that the DC component is minimal for a given set of frequencies,
amplitudes, and phases. The minimal necessary offset in the worst case is given by
the sum of the individual amplitudes:

Sworst case =
N∑
n=1

An (17.9)

We can interpret this case as summing up individual sine waves that are already
fully positive. There would be no benefit from the interference of partially negative
sine waves.

Next, we describe the limitations around the frequencies. Choose as few frequencies
as possible. Every additional frequency consumes part of the overall signal power.
This in turn, dilutes the power per frequency. However, we can not choose arbitrary
frequencies for two reasons:

1. The ratio of every frequency pair has to be an integer ratio. This ensures that
the resulting signal is again periodic.

2. The discrete Fourier transform only yields amplitude and phase at certain,
discrete frequencies. These frequency bins are defined by the number of samples
(Nframes) and the sampling frequency (fsample) of the IR camera. The available
frequency bins, fk, are

fk = k · fsample
Nframes

for all k in
[
1; Nframes

2

]
. (17.10)

The maximal frequency is limited by the Nyquist-Shannon sampling theorem[29]

to half of the sampling frequency. Signals at frequencies between the bins
leak into adjacent bins. This should be avoided to simplify the amplitude and
phase extraction.

Choosing frequencies according to equation (17.10) automatically ensures rational
frequency pairs. The period, T0, of the resulting signal is then given by

T0 = 1
min {fn}

(17.11)

We now look for rules regarding the amplitudes at these frequencies. All frequencies
are measured for the same duration. Our goal is to keep the signal-to-noise ratio,
S/N, constant for all frequencies. The signal-to-noise ratio is proportional to the
amplitude of the signal and the square root of the number of measured periods.
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The number of periods is given by the ratio of the measurement time and the period
of the spectral component. Overall we get

S/N ∝ An ·
√
tm
Tn

= An ·
√
tm ·

√
fn. (17.12)

The ratio of S/N for the n−th frequency relative to the zeroth frequency,

An ·
√
tm ·
√
fn

A0 ·
√
tm ·
√
f0

= C, (17.13)

is some constant C. We cancel the identical terms and solve for An, yielding

An = C ·A0 ·
√
f0
fn
. (17.14)

The amplitudes in our signal should therefor be proportional to

An ∝
√

1
fn
. (17.15)

We assumed that the excitation signal (laser light) is directly proportional to the
temperature signal. The relative ratio of amplitudes in the temperature signal
should then be identical to the excitation signal. However, this is usually not the
case. Higher frequencies are attenuated more than low frequencies in a lock-in
thermography experiment.[25] The amplitude ratios should therefore be adapted to
each specific measurement technique.

We can now freely choose the N phases of the individual sine waves. Any known
and global phase shift can later be undone. This gives us more flexibility when we
optimize certain properties of the signal. We use this freedom to reduce the offset S,
and therefore the DC temperature rise as much as possible. We were unable to find
an analytic expression that directly yields an optimal set of phase shifts. Therefore,
we numerically explored the phase parameter space.

We found, that the optimal set of phase shifts is close to 0° for relative amplitudes
described by equation (17.15). However, we did find sets of phases that are marginally
better (� 1 %) than signals with all phases set to 0°. (see SI Figure 17.9 and SI
Table 17.3) We also found, that the theoretical reduction in DC component is
highest (50 %) for two sine waves and reduces to around 20 % for seven sine waves.
Different amplitude ratios will most likely yield different results. Overall, numerical
optimization of the phase sets is feasible and yields close to optimal signals.
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17.3.4 Materials

We use Kapton foil (MT200+ from Goodfellow Ltd.) with a thickness of 25 µm as
a reference material for the lock-in thermography measurements. We coated both
sides with 20 nm of carbon by thermal evaporation. This increases the emissivity in
the IR range and the absorption of the laser light.

17.4 Results and Discussion

17.4.1 Measuring the DC Temperature Offset
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Fig. 17.3.: Surface temperature vs. time recorded with our IR camera near the heating
center. I included the baseline (orange) to compute the true DC temperature
offset. The line laser starts to periodically heat the sample at t = 34.8 s. Thermal
equilibrium is then reached after less than 30 s. The DC temperature offset is
the difference between the orange baseline and the average value during the
oscillations (green line).

We measured the DC temperature rise during a lock-in thermography measurement
with the procedure shown in Fig. 17.3. First, we recorded the baseline temperature.
We then switched on the modulated laser and equilibrated the sample. The DC
temperature rise is the difference between the baseline temperature and the average
temperature after equilibration. In addition, we obtained the amplitude of the
thermal oscillations by integrating the corresponding peak in the amplitude spectrum.
Note that we can not use the DC component of the amplitude spectrum to get the
DC temperature rise. The DC component in the amplitude spectrum represents the
average temperature in the equilibrated state.
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17.4.2 Less DC Heating with Square Waves

We now show how square wave excitations can be optimized beyond the performance
of sine waves. The frequency of the excitation is usually determined by either the
samples thermal properties or the measurement technique.

a) b)

Fig. 17.4.: a) Temperature amplitudes of the DC component and 1st harmonic of a square
wave excitation as a function of duty cycle. The dashed lines represent the
corresponding values for a sine wave with equal amplitude and frequency. Note
that a square wave with 50 % duty cycle creates temperature amplitudes similar
to a sine wave. b) Ratio of the temperature amplitudes (dots) and signal power
in the laser beam (lines) as a function of duty cycle. A square wave has a 50 %
better ratio of the temperature amplitudes at lower duty cycles than a sine wave.

The duty cycle, D, of the square wave is the easiest parameter to adjust. Increasing
the duty cycle beyond 50 % is counter productive. This only increases the DC
heating and reduces the power in the first harmonic.

Reducing the duty cycle has two positive (P) and one negative (N) effect:

1. The thermal energy, deposited in the sample is reduced. The signal-to-noise
ratio will therefore decrease. (N)

2. The DC temperature rise is reduced in accordance. (P)

3. The relative amplitudes of higher harmonics increase. (P)

Figure 17.4a shows the DC temperature rise, ∆TDC and amplitude, ∆T1st for a
square signal as a function of duty cycle. A square wave with 50 % duty cycle creates
similar ∆TDC and ∆T1st to a sine wave. A square wave with a duty cycle of less
than 50 % creates less DC heating than a pure sine wave. Square waves with a duty
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cycles of around 20-25 % are therefore superior to a sine wave. The DC temperature
rise in our sample was reduced by ≈ 66 % from 3 to 1 K.

Figure 17.4b compares the ratios of the signal powers in the laser intensity (lines)
and the temperature (dots). Square waves with 50 % duty cycle have power ratios
similar to sine waves. Reducing the duty cycle to around 20-25 % almost doubles
the power ratio for the first harmonic. This again shows that square waves with
shorter duty cycle use the available signal power more efficiently.

17.4.3 Less DC Heating with Two Sine Waves

a) b)

Fig. 17.5.: a) DC temperature rise and amplitudes (dots) of the 1st, and 2nd harmonic
of the sum of two sine waves as a function of relative phase shift. The lines
represent the corresponding values for individual sine waves with equal frequency.
Note the sharp minimum in the DC heating at a phase shift of 0°. b) Ratio of
the temperature amplitudes (dots) and signal power in the laser beam (lines) as
a function of phase shift. The sum of two sine waves has a much better ratio of
the temperature amplitudes at zero phase shift than the individual sine waves.

We now demonstrate the reduction in DC heating with two sine waves. The first
sine wave has a frequency of f1 = 0.4 Hz and a relative amplitude of 1. The second
sine wave has a frequency of f2 = 0.8 Hz and a relative amplitude of 0.5. We can
freely adjust the relative phase shift, ∆φ, and obtain the following signal:

I(t) = cos
(

2π0.4
s · t

)
+ 1

2 · cos
(

2π0.8
s · t+ ∆φ

)
(17.16)

We then shift and rescale this signal to use the laser intensity optimally:

Irescaled(t) = I0 ·
I(t)−min {I(t)}

max {I(t)} −min {I(t)} . (17.17)
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This creates an all positive intensity that fully uses the laser power, I0. Rescaling
only changes the absolute amplitude but not the relative ratios. The resulting
signal for ∆φ = 0, the corresponding temperature signal from the sample, and the
corresponding spectra are shown in the SI, Fig. 17.10.

Figure 17.5a shows the resulting DC temperature rise and the temperature amplitudes
for the two sine waves. The amplitudes in the composite signal (dots) are very
similar to the amplitudes from the individual sine waves (dashed lines). This means,
that the magnitude of the individual amplitudes are preserved. In addition, they
show no phase shift dependence. On the other hand, the DC temperature rise shows
a pronounced minimum around a phase shift of 0°. Choosing the correct phase shift
reduces the DC temperature rise by ≈ 46 %, from 4.69 to 2.57 K. Note, that the DC
temperature rise is even smaller than for each individual sine wave (solid lines in
Figure 17.5a).

Figure 17.5b compares the ratios of the 1st and 2nd harmonic to the DC compo-
nent. The ratios for the laser intensity are lines. The corresponding ratios for the
temperature signal are dots. An increasing proportion of the signal power is in the
amplitudes of the two sine waves instead of the DC component. The overall signal
power is therefore distributed more efficiently to the two spectral components we
want.

17.4.4 Multi Frequency Lock-in Thermography

We now compare results from multi frequency lock-in thermography measurements.
Our goal is to show that simultaneous measurements at multiple frequencies yield
the same results as sequential measurements with pure sine waves. We use a 25 µm
thick Kapton foil as the reference material. We compare three different excitation
signals:

• single, sequentially measured, sine waves,

• a square wave with 20 % duty cycle, and

• the sum of four sine waves with minimal DC component.
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Tab. 17.1.: Optimized parameters for multiplexed excitation signals. The amplitudes of
the sine sum have inverse square root ratios. The amplitudes of the higher
harmonics in the square signal are given by equation (17.3). The four individual
sine waves have the same frequencies as the spectral components in these
signals. All thermal decay lengths are small compared to the sample dimensions
(≈ 15 mm).

Rel. Amplitude
n Frequency [Hz] Sine Sum Square (D = 0.2) Thermal decay length [mm]

1 0.2 1 1 1.7
2 0.4 1/

√
2 ≈ 0.707 0.809 1.2

3 0.6 1/
√

3 ≈ 0.577 0.539 1
4 0.8 1/

√
4 = 0.5 0.250 0.85

The frequencies and relative amplitudes in the square and sine sum signals are given
in Table 17.1. We choose the frequency range such that the thermal oscillations
decay long before they hit the sample boundaries (≈ 15 mm). The thermal decay
length, µ, for a given thermal diffusivity, α, at frequency, f , is given by[18]

µ =
√

α

π · f
. (17.18)

Figure 17.6a shows the optimized signal, containing four sine waves that modulates
the laser intensity with the samples surface temperature. Higher harmonics in the
amplitudes spectrum (Figure 17.6b) are attenuated relative to the first harmonic.
However, they are still well above the noise background.

a) b)

Fig. 17.6.: a) Surface temperature near the laser line and laser intensity as a function
of time. The signal consists of four sine waves with minimal DC component.
Note that the temperature does not follow the laser intensity. b) Amplitude
spectrum of the surface temperature and laser power normalized to the 1st
harmonic. Higher harmonics in the temperature are attenuated relative to the
laser excitation.
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We recorded 9000 frames at 6 frames per second after thermal equilibration for every
signal. We then used the Goertzel algorithm[27] to efficiently extract the amplitude
and phase images of individual spectral components. The frequencies are given in
Table 17.1. Our implementation of the Goertzel algorithm in Python 3 is in the SI,
section 17.8.1.

Fig. 17.7.: a) Thermal diffusivity vs. frequency computed with equation (17.19). All values
lie within a small window of ± 2 %. b) Product of the amplitude and phase
slopes vs. frequency. The linear fit is forced through the origin. All three
excitation signals create similar slope products.

Tab. 17.2.: Thermal diffusivity of Kapton (MT200+) measured with different excitation
signals. The data from multiplexed measurements is almost identical to the
result from a sequential measurement with individual sine waves.

Signal Thermal diffusivity [mm2/s]

Single sine waves 1.76± 0.02
Square wave 1.81± 0.02
Sum of sine waves 1.84± 0.02

We analyzed the amplitude and phase images with the procedure from Wolf et al.[16]

to obtain the thermal diffusivity. In essence, we compute the slopes of the linearized
amplitude (mA) and phase (mφ) vs. distance from the laser line. The thermal
diffusivity, α, at frequency, f is then given by

α = π · f
mA ·mφ

. (17.19)
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Multi frequency measurements offer us two different analysis procedures: we can
analyze each frequency individually (Eq. (17.19)), or we analyze all frequencies
together. To do so, we perform a linear fit of the slope product (mA · mφ) vs.
frequency. Solving equation 17.19 for the slope product yield

mA ·mφ = π · f
α

. (17.20)

We then take the derivative for the frequency:

∂ (mA ·mφ)
∂f

= π

α
. (17.21)

This allows us to analyze measurements at multiple frequencies together.

Figure 17.7a shows the resulting thermal diffusivity for each individual frequency.
All values are well within a ± 2 % error margin. The increased spread at 0.8 Hz
is most likely caused by the short thermal decay length. Figure 17.7b shows the
slope product vs. frequency for the three excitation signals. The resulting thermal
diffusivities, computed with equation (17.21) are given in Table 17.2. Again, all
values fall well within a ± 2 % error margin. We therefore conclude that all three
signal yield essentially the same thermal diffusivity.

17.5 Conclusion

We showed, that a square wave with a duty cycle between 20 to 25 % creates 66 %
less DC heating compared to a sine wave. In addition, the signal power in the first
harmonic is doubled relative to a square wave with 50 % duty cycle. Square waves
are therefore superior to sine waves. We also optimized signals with few spectral
components by adjusting their relative phase shift. The optimal signals showed up
to 46 % less DC heating. We finally compared lock-in thermography measurements
conducted with individual sine waves, a square wave, and an optimized signal with
four spectral components. All three signals produce almost identical values for the
thermal diffusivity of Kapton. Applying multiplexed signals to techniques other than
lock-in thermography requires careful consideration of the linearity of the involved
physical effects. However, we do think that other techniques can benefit from
both the reduction in DC heating and the simultaneous measurement at multiple
frequencies. We therefore encourage others to develop similarly improved signals for
any periodic heating method.
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17.7 Supporting Information

a) b)

c) d)

e) f)

Fig. 17.8.: Interference signal (green) created by the summation of two, phase shifted sine
waves (blue and orange). The DC component of all signals shown here is zero.
However, they are also partially negative. Light intensities can only be modulated
with fully positive signals. Therefore, we have to add a DC component to the
resulting signal by shifting it in the positive y-direction. We want this shift to
be as small as possible. The shift is smallest for a phase difference of ∆φ = 0
and largest for a phase difference of ∆φ = 180°. Note that this difference is
created by the interference of the individual spectral components.
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a) b)

c) d)

e) f)

Fig. 17.9.: Comparison between multiplexed signals with numerically optimized phases
(blue lines) and a phase shift of zero (orange dashed). The number of sine waves
is a) 2, b) 3, c) 4, d) 5, e) 6, and f) 7. Both signals are very similar. Their DC
components differ by less than 2 %.
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Tab. 17.3.: DC reduction with multiple sine waves. We compare the relative reduction
in the DC component (∆S%), with increasing number of sine waves, N to
the worst case DC component. The signal with an numerically optimized
set of phases performs very similar to a signal with zero phase shift. The
≈ 2 % difference for N = 7 is most likely caused by the large, high dimensional
parameter space. Overall, multiplexing with an arbitrary signal works best with
few (≈ 5) spectral components.

N Rel. Difference [%] ∆S% Opt. Phases ∆S% Zero Phase

2 0.0002 51.77 51.77
3 0.1257 37.96 38.09
4 0.0302 29.59 29.62
5 0.0761 25.22 25.29
6 0.0212 21.79 21.77
7 2.3663 21.96 19.59

17.7.1 Temperature signal from two sine waves

a) b)

Fig. 17.10.: a) Surface temperature near the laser line and laser intensity as a function
of time. Note that the temperature does not follow the laser intensity. b)
Amplitude spectrum of the surface temperature and laser power normalized to
the 1st harmonic. Higher harmonics in the temperature are attenuated relative
to the laser excitation.
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17.7.2 Fourier Series of a Square Wave

We now derive the Fourier series representation of a square wave. The square wave
we us is shown in Figure 17.11.

Fig. 17.11.: Square wave centered around the origin with period T and on-time t0.

This square wave has period T and on-time t0. The duty cycle, D, is therefore given
by t0/T . We call the intensity in the on-state I0. Overall, our signal is defined by

I(t) =
{
I0, t ∈ [−t0/2 + k · T ; t0/2 + k · T ] k in Z
0, else

(17.22)

Fourier discovered,[1] that every periodic signal, I(t), can be represented by an
infinite sum of sine and cosine waves like

I(t) = A0 +
∞∑
n=1

An · cos
(2πnt

T

)
+Bn · sin

(2πnt
T

)
(17.23)

Our task is now to find values for the coefficients An and Bn. Note that the square
wave in Figure 17.11 has two special properties:

1. the signal is symmetric around the y-axis, (even function)

2. the signal is always greater or equal to 0. (always positive)

Even functions only have cosine components in their Fourier series because sine
waves are uneven. We conclude that all Bn coefficients are 0. This leaves us with

I(t) = A0 +
∞∑
n=1

An · cos
(2πnt

T

)
(17.24)

as our Fourier series.
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Functions which are always positive have a non-zero DC component (A0). The DC
component represents the average value of the function. We compute the average by

A0 = 1
T

T/2∫
−T/2

I(t) dt. (17.25)

The square wave is zero outside of [−t0/2; t0/2]. This allows us to limit the integration
to this interval like

A0 = 1
T

T/2∫
−T/2

I(t) dt = 1
T

t0/2∫
−t0/2

I(t) dt. (17.26)

The intensity is constant inside this interval, which leaves us with

A0 = 1
T

t0/2∫
−t0/2

I0 dt. (17.27)

Next, we factor out the constant intensity I0 and solve the integral:

A0 = I0
T

t0/2∫
−t0/2

1 dt = I0
T

[t]t0/2
−t0/2 = I0

T

[
t0
2 −

(
− t02

)]
= I0 ·

t0
T

(17.28)

Note that the DC component, A0, is directly related to the duty cycle, D, by

A0 = I0 ·
t0
T

= I0 ·D . (17.29)

Finally, we have to determine the amplitudes An. We showed in section 17.7.3 that
the amplitudes are given by

An = 2
T

T∫
0

I(t) · cos
(2πnt

T

)
dt (17.30)

Again, we limit the integration to the non-zero part of our square wave

An = 2
T

t0/2∫
−t0/2

I0 · cos
(2πnt

T

)
dt (17.31)

and use the anti-derivative:

An = 2
T
· I0 ·

sin
(

2πnt
T

)
2πn
T

t0/2

−t0/2

. (17.32)
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Inserting the upper and lower bounds gives us

An = 2
T
· I0 ·

sin
(

2πnt0/2
T

)
2πn
T

−
sin
(

2πn(−t0/2)
T

)
2πn
T

 . (17.33)

We simplify the fractions by canceling T and the factor 2 in the sine to get

An = I0
πn
·
[
sin
(
πnt0
T

)
− sin

(−πnt0
T

)]
. (17.34)

We note that the sine function is even and apply the identity,

− sin(−x) = sin(x), (17.35)

to get

An = I0
πn
·
[
sin
(
πnt0
T

)
+ sin

(
πnt0
T

)]
= I0
πn
· 2 · sin

(
πnt0
T

)
(17.36)

Finally, we introduce the duty cycle (D = t0/T):

An = 2 · I0 ·
sin (πnD)

πn
. (17.37)

The Fourier series for our square wave is therefore

I(t) = I0 ·D +
∞∑
n=1

2 · I0 ·
sin (πnD)

πn
· cos

(2πnt
T

)
. (17.38)

We simplify by factoring out the intensity I0 and get

I(t) = I0 ·
[
D +

∞∑
n=1

2 · sin (πnD)
πn

· cos
(2πnt

T

)]
. (17.39)
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17.7.3 Fourier Series of Periodic Signals

In this section, we show how the amplitudes in a Fourier series are computed. We
look for the amplitude of the k-th harmonic, Ak. The general procedure works like
this: We start by multiplying both sides of the the Fourier Series (Eq. (17.24))

I(t) = A0 +
∞∑
n=1

An · cos
(2πnt

T

)
(17.40)

with the cosine of the k-th harmonic to get

I(t) · cos
(2πkt

T

)
=
[
A0 +

∞∑
n=1

An · cos
(2πnt

T

)]
· cos

(2πkt
T

)
. (17.41)

We expand the square brackets into

I(t) · cos
(2πkt

T

)
= A0 · cos

(2π2t
T

)
+
∞∑
n=1

An · cos
(2πnt

T

)
· cos

(2πkt
T

)
. (17.42)

We then integrate both sides over one period, T , like

T∫
0

I(t) · cos
(2πkt

T

)
dt =

T∫
0

A0 · cos
(2π2t

T

)
+
∞∑
n=1

An · cos
(2πnt

T

)
· cos

(2πkt
T

)
dt.

(17.43)
We split the integral on the right at the plus sign into two:

T∫
0

I(t)·cos
(2πkt

T

)
dt =

T∫
0

A0·cos
(2π2t

T

)
dt+

T∫
0

∞∑
n=1

An·cos
(2πnt

T

)
·cos

(2πkt
T

)
dt.

(17.44)
The term with the DC component, A0, is zero because we integrate a cosine over a
full period. The positive and negative half waves cancel each other out and we get

T∫
0

A0 · cos
(2πkt

T

)
dt = 0. (17.45)

This simplifies equation (17.44) to

T∫
0

I(t) · cos
(2πkt

T

)
dt =

T∫
0

∞∑
n=1

An · cos
(2πnt

T

)
· cos

(2πkt
T

)
dt. (17.46)

We assume that the infinite sum is convergent. This allows us to exchange the sum
with the definite integral into

T∫
0

I(t) · cos
(2πkt

T

)
dt =

∞∑
n=1

An ·
T∫

0

cos
(2πnt

T

)
· cos

(2πkt
T

)
dt. (17.47)
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The positive and negative parts of the product of two cosines is equal if they have
different frequencies. All integrals on the right side are therefore zero, except in the
case where n = k. We can replace n with k and obtain

T∫
0

I(t) · cos
(2πkt

T

)
dt = Ak ·

T∫
0

cos
(2πkt

T

)
· cos

(2πkt
T

)
dt. (17.48)

We then simplify the integrand,

T∫
0

I(t) · cos
(2πkt

T

)
dt = Ak ·

T∫
0

[
cos

(2πkt
T

)]2
dt, (17.49)

and solve the integral with the anti-derivative of

∫ [
cos

(2πkt
T

)]2
dt = t

2 +
T sin

(
4πkt
T

)
8πk + C (17.50)

to get
T∫

0

I(t) · cos
(2πkt

T

)
dt = Ak ·

 t
2 +

T sin
(

4πkt
T

)
8πk

T
0

. (17.51)

Inserting the upper and lower bounds gives us

T∫
0

I(t) · cos
(2πkt

T

)
dt = Ak ·

T
2 +

T sin
(

4πkT
T

)
8πk − 0

2 −
T sin

(
4πk0
T

)
8πk

 . (17.52)

We simplify the terms in the square bracket,

T∫
0

I(t) · cos
(2πkt

T

)
dt = Ak ·

T

2 , (17.53)

and solve for Ak, leaving us with

Ak = 2
T

T∫
0

I(t) · cos
(2πkt

T

)
dt . (17.54)
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17.8.1 Goertzel Algorithm Implementation

1 from logging import getLogger
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from matplotlib.colors import LogNorm
5 import time
6 from pathlib import Path
7
8 class ImageRTGoertzel():
9 """

10 Defines a 2D Goertzel filter for an image sequence.
11 Each pixel is processed individualy.
12 """
13 def __init__(self, FreqBin, fps, ImageDim, NSamples, FreqID, ProjectName):
14 """
15 Constructor for the 2D Goertzel filter.
16
17 Parameters
18 ----------
19 FreqBin : int
20 The frequency bin for this filter
21 fps : int
22 Frames per second of the IR movie
23 ImageDim : array of int
24 Dimension of the image frames [x, y]
25 NSamples : int
26 Number of frames, determines the frequency
27 resolution
28 FreqID : int
29 ID to separate the data file names
30 """
31 self.FreqBin = FreqBin
32 self.ProjectName = ProjectName
33 self.FPS = fps
34 self.FreqID = FreqID
35 self.NSamples = NSamples
36 self.Freq = FreqBin/NSamples * fps
37 self.ImageDim = ImageDim
38 self.FrameCount = 0
39 self.Omega = 2 * np.pi * FreqBin/NSamples
40 self.AmplImage = np.zeros(ImageDim)
41 self.PhaseImage = np.zeros(ImageDim)
42 self.Sentinel = getLogger("Watchtower")
43 # goertzel algorithm variables
44 self.z0 = np.zeros(ImageDim)
45 self.z1 = np.zeros(ImageDim)
46 self.z2 = np.zeros(ImageDim)
47 self.c = 2*np.cos(self.Omega)
48 self.ResultPath = Path() / "DFTData"
49 self.ResultPath.mkdir(parents = True, exist_ok = True)
50 self.PlotPath = Path() / "Plots" / "Raw Demultiplexed"
51 self.PlotPath.mkdir(parents = True, exist_ok = True)
52 self.Sentinel.info("Goertzel Structure at frequency:"+\
53 " {:f} created!".format(self.Freq))
54
55 def AddFrame(self, NewFrame):
56 """
57 Adds a new frame to the 2D Goertzel filter.
58
59 Parameters
60 ----------
61 NewFrame : 2D numpy array
62 New thermogram for the next time step
63 """
64 self.FrameCount += 1
65 self.z0 = NewFrame + self.c * self.z1 - self.z2
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66 self.z2 = self.z1
67 self.z1 = self.z0
68
69 return True
70
71 def getFrameCount(self):
72 return self.FrameCount
73
74 def getRealPart(self):
75 """
76 Returns the current real part
77 """
78 return (np.cos(self.Omega) * self.z1 - self.z2)/(self.FrameCount/2)
79
80 def getImagPart(self):
81 """
82 Returns the current imaginary part
83 """
84 return (np.sin(self.Omega) * self.z1)/(self.FrameCount/2)
85
86 def getAmplImage(self):
87 """
88 Creates the current amplitude image
89 """
90 XKreal = self.getRealPart()
91 XKimag = self.getImagPart()
92 self.AmplImage = np.abs(XKreal + 1j*XKimag)
93 self.Sentinel.info("Amplitude image at frame {}".format(self.FrameCount)+\
94 " for frequency {} Hz created.".format(self.Freq))
95 return self.AmplImage
96
97 def getPhaseImage(self):
98 """
99 Creates the current phase image

100 """
101 XKreal = self.getRealPart()
102 XKimag = self.getImagPart()
103 self.PhaseImage = np.angle(XKreal + 1j*XKimag, deg = True)
104 self.Sentinel.info("Phase image at frame {}".format(self.FrameCount)+\
105 " for frequency {} Hz created.".format(self.Freq))
106 return self.PhaseImage
107
108 def saveAmplData(self):
109 """
110 Saves the extracted amplitude image to an ASCII file
111 for further processing. The ASCII file is similar to the
112 file created by the IRBIS software.
113 """
114 # get the current Amplitude Image
115 AmplData = self.getAmplImage()
116 AmplPath = self.ResultPath /\
117 "{}_DFTConv_{!s}_Amp.txt".format(self.ProjectName, self.FreqID)
118 ResultFile = open(str(AmplPath.absolute()), "w")
119 ResultFile.write("Amplitude for each Pixel of Project: {}\n".format(self.ProjectName))
120 ResultFile.write("Data processed on :{}\n".format(time.ctime(time.time())))
121 ResultFile.write("LIT.LockInFrequency[Hz]={:f}\n".format(self.Freq))
122 ResultFile.write("[Data] Amplitude in [K]\n")
123 for line in range(len(AmplData)-1, -1, -1): # invert y-axis
124 for row in range(0, len(AmplData[0]), 1):
125 ResultFile.write(str(round(AmplData[line][row], 5)) + ";")
126 ResultFile.write("\n")
127 ResultFile.close()
128 self.Sentinel.info("Amplitude Data for Frequency:"+\
129 " {:f} Hz saved!".format(self.Freq))
130 return True
131
132 def savePhaseData(self):
133 """
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134 Saves the extracted phase image to an ASCII file
135 for further processing. The ASCII file is similar to the
136 file created by the IRBIS software.
137 """
138 # get the current phase image
139 PhaseData = self.getPhaseImage()
140 PhasePath = self.ResultPath /\
141 "{}_DFTConv_{!s}_Phase.txt".format(self.ProjectName, self.FreqID)
142 ResultFile = open(str(PhasePath.absolute()), "w")
143 ResultFile.write("Phase for each Pixel of Project: {}\n".format(self.ProjectName))
144 ResultFile.write("Data processed on :{}\n".format(time.ctime(time.time())))
145 ResultFile.write("LIT.LockInFrequency[Hz]={:f}\n".format(self.Freq))
146 ResultFile.write("[Data] Phase in [Deg]\n")
147 for line in range(len(PhaseData)-1, -1, -1): # invert y-axis
148 for row in range(0, len(PhaseData[0]), 1):
149 ResultFile.write(str(round(PhaseData[line][row], 5)) + ";")
150 ResultFile.write("\n")
151
152 ResultFile.close()
153 self.Sentinel.info("Phase Data for Frequency:"+\
154 " {:f} Hz saved!".format(self.Freq))
155
156 return True
157
158 def plotAmplImage(self):
159 # get the current Amplitude Image
160 AmplData = self.getAmplImage()
161 # plot the amplitude image
162 fig = plt.figure()
163 ax = fig.add_subplot(111, aspect = "equal")
164 ExtLimits = [0, len(AmplData[1]) ,\
165 0, len(AmplData)]
166 img = plt.imshow(AmplData, cmap = 'viridis',\
167 interpolation = 'none',\
168 origin = 'upper',\
169 extent = ExtLimits,\
170 norm = LogNorm())
171 plt.colorbar(label = "Amplitude / K")
172 ax.set_xlabel("Distance x / Pixel")
173 ax.set_ylabel("Distance y / Pixel")
174 ax.set_title("Amplitude, f = {:f} Hz".format(self.Freq))
175 plt.tight_layout()
176 FigPath = self.PlotPath / (self.ProjectName + "_Ampl_" +\
177 str(self.FreqID) + ".png")
178 plt.savefig(str(FigPath.absolute()), dpi = 600)
179 plt.close()
180 self.Sentinel.info("Amplitude Image for Frequency:"+\
181 " {:f} Hz plotted!".format(self.Freq))
182
183 return True
184
185 def plotPhaseImage(self):
186 # get the current Amplitude Image
187 PhaseData = self.getPhaseImage()
188 # plot the amplitude image
189 fig = plt.figure()
190 ax = fig.add_subplot(111, aspect = "equal")
191 ExtLimits = [0, len(PhaseData[1]),\
192 0, len(PhaseData)]
193 img = plt.imshow(PhaseData, cmap = 'inferno', interpolation = 'none',\
194 origin = 'upper', extent = ExtLimits)
195 plt.colorbar(label = "Phase / Degree")
196 ax.set_xlabel("Distance x / Pixel")
197 ax.set_ylabel("Distance y / Pixel")
198 ax.set_title("Phase, f = {:f} Hz".format(self.Freq))
199 plt.tight_layout()
200 FigPath = self.PlotPath / (self.ProjectName + "_Phase_" +\
201 str(self.FreqID) + ".png")
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202 plt.savefig(str(FigPath.absolute()), dpi = 600)
203 plt.close()
204 self.Sentinel.info("Phase Image for Frequency:"+\
205 " {:f} Hz plotted!".format(self.Freq))
206
207 return True
208
209 def __str__(self):
210 RString = "Goertzel Image Filter Object:\n"
211 RString += "DFT Frequency: {:f} Hz\n".format(self.Freq)
212 RString += "Sampling rate (fps): {:f} Hz\n".format(self.fps)
213 RString += "Image Dimensions: {:s} Pixel\n".format(self.ImageDim)
214 RString += "Current State:\n"
215 RString += "Frame Count: {:s}\n".format(self.FrameCount)
216
217 return RString

1 from logging import getLogger
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from matplotlib.colors import LogNorm
5 import time
6 from pathlib import Path
7 from LIT_ImageRTGoertzel import ImageRTGoertzel
8
9 class ImageGoertzelPeak():

10 """
11 Uses a 2D Goertzel filter to extract the amplitude and phase
12 of peaks with finite width.
13 """
14 def __init__(self, FreqBin, fps, ImageDim, NSamples,\
15 FreqID, FreqWidth, ProjectName):
16 """
17 Constructor for the 2D Goertzel filter.
18
19 Parameters
20 ----------
21 FreqBin : int
22 The frequency bin for this filter
23 fps : int
24 Frames per second of the IR movie
25 ImageDim : array of int
26 Dimension of the image frames [x, y]
27 NSamples : int
28 Number of frames, determines the frequency
29 resolution
30 FreqWidth : int (uneven)
31 Number of neighboring frequency bins
32 FreqID : int
33 ID to separate the data file names
34 """
35 self.FreqBin = FreqBin
36 self.ProjectName = ProjectName
37 self.FPS = fps
38 self.FreqID = FreqID
39 self.NSamples = NSamples
40 self.Freq = FreqBin/NSamples * fps
41 self.ImageDim = ImageDim
42 self.FrameCount = 0
43 self.Omega = 2 * np.pi * FreqBin/NSamples
44 self.AmplImage = np.zeros(ImageDim)
45 self.PhaseImage = np.zeros(ImageDim)
46 self.Sentinel = getLogger("Watchtower")
47
48 # create a list with one G-Filter for each frequency bin
49 self.GList = []
50 for k in range(FreqBin - int(FreqWidth/2),\
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51 FreqBin + int(FreqWidth/2)+1, 1):
52 self.GList.append(ImageRTGoertzel(k, fps, ImageDim,\
53 NSamples, k, ProjectName))
54
55 self.ResultPath = Path() / "DFTData"
56 self.ResultPath.mkdir(parents = True, exist_ok = True)
57 self.PlotPath = Path() / "Plots" / "Raw Demultiplexed"
58 self.PlotPath.mkdir(parents = True, exist_ok = True)
59
60 self.Sentinel.info("Finite peak width Goertzel"+\
61 " Structure at frequency:"+\
62 " {:f} created!".format(self.Freq))
63
64 def AddFrame(self, NewFrame):
65 """
66 Adds a new frame to the 2D Goertzel filter.
67
68 Parameters
69 ----------
70 NewFrame : 2D numpy array
71 New thermogram for the next time step
72 """
73 for k in range(0, len(self.GList), 1):
74 self.GList[k].AddFrame(NewFrame)
75
76 return True
77
78 def getFrameCount(self):
79 return self.FrameCount
80
81 def getRealPart(self):
82 """
83 Returns the current real part
84 """
85 RealImage = self.GList[0].getRealPart()
86 for k in range(1, len(self.GList), 1):
87 RealImage += self.GList[k].getRealPart()
88
89 return RealImage
90
91 def getImagPart(self):
92 """
93 Returns the current imaginary part
94 """
95 ImagImage = self.GList[0].getImagPart()
96 for k in range(1, len(self.GList), 1):
97 ImagImage += self.GList[k].getImagPart()
98
99 return ImagImage

100
101 def getAmplImage(self):
102 """
103 Creates the current amplitude image
104 by summing all the amplitudes for
105 every frequency bin.
106 """
107 self.AmplImage = self.GList[0].getAmplImage()
108 for k in range(1, len(self.GList), 1):
109 self.AmplImage += self.GList[k].getAmplImage()
110 self.Sentinel.info("Amplitude image at frame {}".format(self.FrameCount)+\
111 " for frequency {} Hz created.".format(self.Freq))
112 return self.AmplImage
113
114 def getPhaseImage(self):
115 """
116 Creates the current phase image
117 by averaging the phase for
118 every frequency bin.
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119 """
120 self.PhaseImage = self.GList[0].getPhaseImage()
121 for k in range(1, len(self.GList), 1):
122 self.PhaseImage += self.GList[k].getPhaseImage()
123 self.PhaseImage = self.PhaseImage / len(self.GList)
124 self.Sentinel.info("Phase image at frame {}".format(self.FrameCount)+\
125 " for frequency {} Hz created.".format(self.Freq))
126 return self.PhaseImage
127
128 def saveAmplData(self):
129 """
130 Saves the extracted amplitude image to an ASCII file
131 for further processing. The ASCII file is similar to the
132 file created by the IRBIS software.
133 """
134 # get the current Amplitude Image
135 AmplData = self.getAmplImage()
136 AmplPath = self.ResultPath /\
137 "{}_DFTConv_{!s}_Amp.txt".format(self.ProjectName, self.FreqID)
138 ResultFile = open(str(AmplPath.absolute()), "w")
139 ResultFile.write("Amplitude for each Pixel of Project: {}\n".format(self.ProjectName))
140 ResultFile.write("Data processed on :{}\n".format(time.ctime(time.time())))
141 ResultFile.write("LIT.LockInFrequency[Hz]={:f}\n".format(self.Freq))
142 ResultFile.write("[Data] Amplitude in [K]\n")
143 for line in range(len(AmplData)-1, -1, -1): # invert y-axis
144 for row in range(0, len(AmplData[0]), 1):
145 ResultFile.write(str(round(AmplData[line][row], 5)) + ";")
146 ResultFile.write("\n")
147
148 ResultFile.close()
149 self.Sentinel.info("Amplitude Data for Frequency:"+\
150 " {:f} Hz saved!".format(self.Freq))
151 return True
152
153 def savePhaseData(self):
154 """
155 Saves the extracted phase image to an ASCII file
156 for further processing. The ASCII file is similar to the
157 file created by the IRBIS software.
158 """
159 # get the current phase image
160 PhaseData = self.getPhaseImage()
161 PhasePath = self.ResultPath /\
162 "{}_DFTConv_{!s}_Phase.txt".format(self.ProjectName, self.FreqID)
163 ResultFile = open(str(PhasePath.absolute()), "w")
164 ResultFile.write("Phase for each Pixel of Project: {}\n".format(self.ProjectName))
165 ResultFile.write("Data processed on :{}\n".format(time.ctime(time.time())))
166 ResultFile.write("LIT.LockInFrequency[Hz]={:f}\n".format(self.Freq))
167 ResultFile.write("[Data] Phase in [Deg]\n")
168 for line in range(len(PhaseData)-1, -1, -1): # invert y-axis
169 for row in range(0, len(PhaseData[0]), 1):
170 ResultFile.write(str(round(PhaseData[line][row], 5)) + ";")
171 ResultFile.write("\n")
172 ResultFile.close()
173 self.Sentinel.info("Phase Data for Frequency:"+\
174 " {:f} Hz saved!".format(self.Freq))
175
176 return True
177
178 def plotAmplImage(self):
179 # plot all the individual amplitude images
180 for GFilter in self.GList:
181 GFilter.plotAmplImage()
182 # get the current combined Amplitude Image
183 AmplData = self.getAmplImage()
184 # plot the amplitude image
185 fig = plt.figure()
186 ax = fig.add_subplot(111, aspect = "equal")
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187 ExtLimits = [0, len(AmplData[1]) ,\
188 0, len(AmplData)]
189 img = plt.imshow(AmplData, cmap = 'viridis',\
190 interpolation = 'none',\
191 origin = 'upper',\
192 extent = ExtLimits,\
193 norm = LogNorm())
194 plt.colorbar(label = "Amplitude / K")
195 ax.set_xlabel("Distance x / Pixel")
196 ax.set_ylabel("Distance y / Pixel")
197 ax.set_title("Amplitude, f = {:f} Hz".format(self.Freq))
198 plt.tight_layout()
199 FigPath = self.PlotPath / (self.ProjectName + "_Ampl_" +\
200 str(self.FreqID) + "_Comb.png")
201 plt.savefig(str(FigPath.absolute()), dpi = 600)
202 plt.close()
203 self.Sentinel.info("Amplitude Image for Frequency:"+\
204 " {:f} Hz plotted!".format(self.Freq))
205
206 return True
207
208 def plotPhaseImage(self):
209 # plot all the individual phase images
210 for GFilter in self.GList:
211 GFilter.plotPhaseImage()
212 # get the current Amplitude Image
213 PhaseData = self.getPhaseImage()
214 # plot the amplitude image
215 fig = plt.figure()
216 ax = fig.add_subplot(111, aspect = "equal")
217 ExtLimits = [0, len(PhaseData[1]),\
218 0, len(PhaseData)]
219 img = plt.imshow(PhaseData, cmap = 'inferno', interpolation = 'none',\
220 origin = 'upper', extent = ExtLimits)
221 plt.colorbar(label = "Phase / Degree")
222 ax.set_xlabel("Distance x / Pixel")
223 ax.set_ylabel("Distance y / Pixel")
224 ax.set_title("Phase, f = {:f} Hz".format(self.Freq))
225 plt.tight_layout()
226 FigPath = self.PlotPath / (self.ProjectName + "_Phase_" +\
227 str(self.FreqID) + "Comb_.png")
228 plt.savefig(str(FigPath.absolute()), dpi = 600)
229 plt.close()
230 self.Sentinel.info("Phase Image for Frequency:"+\
231 " {:f} Hz plotted!".format(self.Freq))
232
233 return True
234
235 def __str__(self):
236
237 RString = "Goertzel Image Filter Object:\n"
238 RString += "DFT Frequency: {:f} Hz\n".format(self.Freq)
239 RString += "Sampling rate (fps): {:f} Hz\n".format(self.fps)
240 RString += "Image Dimensions: {:s} Pixel\n".format(self.ImageDim)
241 RString += "Current State:\n"
242 RString += "Frame Count: {:s}\n".format(self.FrameCount)
243
244 return RString

1 import matplotlib.pyplot as plt
2 from matplotlib.colors import LogNorm
3 from logging import getLogger
4 import numpy as np
5 import time
6 from os import getcwd, listdir
7 from os.path import join
8 from LIT_ImageGoertzelPeak import ImageGoertzelPeak
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9
10
11 class Demultiplexer:
12 """
13 Demultiplexer to extract multiple spectral components from
14 a sequence of frames.
15 """
16 def __init__(self, FrameFolder, FPS, InitFreqList,\
17 StartFrame, MaxFrameN, FreqWidth, ExpName):
18 """
19 Constructor for the demultiplexer.
20
21 Parameters
22 ----------
23 FrameFolder : Path object
24 Path to the folder with the ASCII frames
25 FPS : int
26 Frames per second of the IR movie
27 InitFreqList : list of float
28 List with frequency bin suggestions
29 StartFrame : int
30 Index for the first frame to be used
31 MaxFrameN : int
32 Maximal number of frames to be used
33 FreqWidth : int
34 Uneven number of bins around a frequency
35 ExpName : str
36 Name of the experiment
37
38 Raises
39 ------
40 ValueError if StartFrame > Total Frame Number
41 """
42 self.fps = FPS
43 self.InitFreqList = InitFreqList
44 self.FrameFolder = FrameFolder
45 self.MaxFrameN = MaxFrameN
46 self.ProjectName = ExpName
47 self.FrameCount = 0
48 self.Sentinel = getLogger("Watchtower")
49 self.FrameFiles = self.getAllFrames(FrameFolder)
50 if FreqWidth % 2 == 0:
51 self.FreqWidth = FreqWidth+1
52 else: self.FreqWidth = FreqWidth
53
54 # load in the first frame to get the image dimensions
55 self.FirstFrame = self.readFrame(self.FrameFiles[0])
56 self.FrameDim = (len(self.FirstFrame), len(self.FirstFrame[0]))
57 del self.FirstFrame
58 self.FrameN = min([self.MaxFrameN, len(self.FrameFiles)])
59
60 if StartFrame >= self.FrameN:
61 ErrorMsg = "The Start Frame: {}".format(self.FrameN)+\
62 " is larger than the total number"+\
63 " of frames: {}".format(self.FrameN)
64 self.Sentinel.error(ErrorMsg)
65 raise ValueError(ErrorMsg)
66
67 self.StartFrame = StartFrame
68 # DFT Bin size / step size
69 self.FreqStep = self.fps/(self.FrameN-StartFrame)
70 # create a list of specific frequencies to extract
71 self.FreqBinList = []
72 self.FreqList = []
73 for FInit in self.InitFreqList:
74 FreqIdx = int(round(FInit/self.FreqStep, 1))
75 self.FreqBinList.append(FreqIdx)
76 self.FreqList.append(FreqIdx * self.FreqStep)
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77
78 # for each frequency create a new GoertzelImage Object
79 self.GoertzelImg = []
80 for FIdx, F in enumerate(self.FreqBinList):
81 self.GoertzelImg.append(ImageGoertzelPeak(F, self.fps,\
82 self.FrameDim,\
83 (self.FrameN-StartFrame),\
84 FIdx, self.FreqWidth,\
85 self.ProjectName))
86 # getter
87 def getFreqList(self):
88 return self.FreqList
89
90 def getFreqBinList(self):
91 return self.FreqBinList
92
93 def getFPS(self):
94 return self.fps
95
96 def getPixelSize(self):
97 return self.PixelSize
98
99 def getFrameN(self):

100 return self.FrameN
101
102 def getFreqStepSize(self):
103 return self.FreqStep
104
105 def getFrameFileList(self):
106 return self.FrameFiles
107
108 def getStartFrame(self):
109 return self.StartFrame
110
111 def getFreqWidth(self):
112 return self.FreqWidth
113
114 def getAllFrames(self, FrameFolder):
115 # extract the idx from the file name
116 def getIndex(FileName):
117 F = FileName.stem
118 idx = 4 # at least the last 4 digits
119 # or more for > 9999 files
120 while F[-idx] in [str(k) for k in range(0, 10, 1)]:
121 idx += 1
122 return int(F[-(idx-1):])
123
124 # grab all .asc files from the folder
125 Files = FrameFolder.glob("*.asc")
126 # sort the frame files by the last numeric index
127 FrameFiles = sorted(Files, key = getIndex)
128
129 return FrameFiles
130
131 def readFrame(self, FilePath):
132 """
133 Reads in a thermogram from the ASCII raw data
134
135 Parameters
136 ----------
137 FilePath : Path object
138 Path to the ASCII (.asc) file
139
140 Returns
141 -------
142 Image : 2D np.array
143 Numpy arra with the 2D thermogram data
144 """
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145 DataFile = open(str(FilePath.absolute()), "r")
146 datalines = DataFile.readlines()
147 DataFile.close()
148 Image = []
149 # look for the [Data] tag
150 n = 0
151 while "[Data]" not in datalines[n]:
152 n += 1
153
154 # read in all lines sequentially
155 for line in range(n+1, len(datalines), 1):
156 S = datalines[line].replace("," , ".")
157 SArray = S.split("\t")
158 NewLine = [float(k) for k in SArray[:-1]]
159 Image.append(NewLine)
160
161 return np.array(Image)
162
163 def processFrames(self):
164 """
165 This method extractes the amplitudes and phases
166 for each pixel from the image sequence
167 """
168 for FrameIdx in range(self.StartFrame, self.FrameN, 1):
169 FramePath = self.FrameFiles[FrameIdx]
170 NewFrame = self.readFrame(FramePath)
171 self.Sentinel.info("Now processing frame: " + str(FramePath.name))
172 self.FrameCount += 1
173 for F in range(0, len(self.FreqList), 1):
174 self.GoertzelImg[F].AddFrame(NewFrame)
175
176 return True
177
178 def saveData(self):
179 for F in range(0, len(self.FreqList), 1):
180 self.GoertzelImg[F].saveAmplData()
181 self.GoertzelImg[F].savePhaseData()
182
183 return True
184
185 def plotData(self):
186 for F in range(0, len(self.FreqList), 1):
187 self.GoertzelImg[F].plotAmplImage()
188 self.GoertzelImg[F].plotPhaseImage()
189
190 return True
191
192 def __str__(self):
193 RString = "LIT Demultiplexer Object:\n"
194 RString += "Project Name: {}".format(self.ProjectName)
195 RString += "Sampling rate (fps): {:f} Hz\n".format(self.fps)
196 RString += "Total number of Frames: {:s}".format(self.FrameN)
197 RString += "Image Pixel Size: {:f} mm\n".format(self.PixelSize)
198 RString += "Image Dimensions: {:s} Pixel\n".format(self.FrameDim)
199 RString += "Frequency step size: {:f} Hz\n".format(self.FreqStep)
200 RString += "Initial Frequency Ranges:\n"
201
202 for FRange in self.InitFreqList:
203 RString += str(FRange) + " Hz\n"
204 RString += "Selected DFT Bins:\n"
205 for F in FreqList:
206 RString += str(F) + " Hz\n"
207 RString += "Current State:\n"
208 RString += "Frame Count: {:s}\n".format(self.FrameCount)
209
210 return RString
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ASource Code

A.1 Bravais Lattice Analysis

A.1.1 Phase Diagram Computation

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 """
5 This skript calculates the (S, alpha) phase diagrams
6 for the unidirectional stretching of an hexagonal lattice.
7 """
8
9 # User Input

10 SMin = 1 # minimal stretching factor
11 SMax = 10 # maximal stretching factor
12 AlphaMin = 0 # minimal angle with y-axis / DEG
13 AlphaMax = 30 # maximal angle with y-axis / DEG
14
15 # Setting Plot Parameters
16 params = {
17 'axes.labelsize': 13,
18 'font.size': 13,
19 'legend.fontsize': 13,
20 'xtick.labelsize': 13,
21 'ytick.labelsize': 13,
22 'text.usetex': False,
23 'figure.figsize': [4 * 1.3, 4]
24 }
25 plt.rcParams.update(params)
26
27 def calcLength(a):
28 return np.sqrt(a[0]**2 + a[1]**2)
29
30 def calcAngle(a, b):
31 DotP = a[0] * b[0] + a[1] * b[1]
32 Angle = np.arccos(DotP/(calcLength(a)*calcLength(b)))
33 return Angle
34
35 def stretchVector(a, AngleA, S):
36 DotP = -a[0] * np.sin(AngleA) + a[1]*np.cos(AngleA)
37 aPrime = [a[0] - (S-1)*DotP*np.sin(AngleA),\
38 a[1] + (S-1)*DotP*np.cos(AngleA)]
39 return aPrime
40
41 def reduceBasisVectors(c, d):
42 # Lagrange Gauss algorithmus
43 B1 = calcLength(c)**2
44 mu = (c[0]*d[0] + c[1]*d[1])/B1
45 d = [d[0] - int(round(mu))*c[0],\
46 d[1] - int(round(mu))*c[1]]
47 B2 = calcLength(d)**2
48
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49 while B2 < B1:
50 [c, d] = [d, c]
51 B1 = B2
52 mu = (c[0]*d[0] + c[1]*d[1])/B1
53 d = [d[0] - int(round(mu))*c[0],\
54 d[1] - int(round(mu))*c[1]]
55 B2 = calcLength(d)**2
56 # map the angle to 60 - 90 degree
57 if calcAngle(c, d) >= np.pi/2:
58 c[0] = -c[0]
59 c[1] = -c[1]
60
61 return [c, d]
62
63 def calcBasisVectors(AngleA, Stretch):
64
65 # initial grid vectors
66 a = [1, 0]
67 b = [1/2, -1/2*np.sqrt(3)]
68 # stretch the vectors
69 c = stretchVector(a, AngleA*np.pi/180, Stretch)
70 d = stretchVector(b, AngleA*np.pi/180, Stretch)
71 # reduce c and d to the smallest, orthogonal, vectors
72 [c, d] = reduceBasisVectors(c, d)
73 return [c, d]
74
75 def calcPhaseDiagram(SMin, SMax, AlphaMin, AlphaMax):
76
77 # create the mesh
78 SPoints = 100
79 AlphaPoints = 100
80 S = np.linspace(SMin, SMax, SPoints)
81 Alpha = np.linspace(AlphaMin, AlphaMax, AlphaPoints)
82 S, Alpha = np.meshgrid(S, Alpha)
83 Phi = np.zeros([SPoints, AlphaPoints])
84 Ratio = np.zeros([SPoints, AlphaPoints])
85
86 # calculate the angles and ratios
87 for SPos in range(0, SPoints, 1):
88 for APos in range(0, AlphaPoints, 1):
89 # calculate the grid vectors:
90 [c, d] = calcBasisVectors(Alpha[SPos][APos], S[SPos][APos])
91 Phi[SPos][APos] = calcAngle(c, d)
92 Length_c = calcLength(c)
93 Length_d = calcLength(d)
94 Ratio[SPos][APos] = min([Length_c/Length_d,\
95 Length_d/Length_c])
96 print("Row calculation Nr. " + str(SPos) + " of " +\
97 str(SPoints) + " Finished!")
98 return [S, Alpha, Phi, Ratio]
99

100 def plotPhaseDiagrams(S, Alpha, Phi, Ratio):
101 # plot the phase
102 plt.figure()
103 plt.pcolormesh(Alpha, S, Phi*180/np.pi,
104 cmap = "viridis", vmin = 60, vmax = 90,
105 shading = 'gouraud')
106 plt.title("Angle between grid vectors")
107 plt.ylabel("Stretch Factor")
108 plt.xlabel("Stretch Direction [°]")
109 plt.colorbar()
110 plt.tight_layout()
111 plt.savefig("PhaseDiagram_Angle.png", dpi = 600)
112 plt.savefig("PhaseDiagram_Angle.pdf")
113 plt.show()
114 plt.close()
115
116 # plot the ratio
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117 plt.figure()
118 plt.pcolormesh(Alpha, S, Ratio, cmap = "jet",
119 vmin = 0, vmax = 1, shading = 'gouraud')
120 plt.title("Ratio of grid vector lengths")
121 plt.ylabel("Stretch Factor")
122 plt.xlabel("Stretch Direction [°]")
123 plt.colorbar()
124 plt.tight_layout()
125 plt.savefig("PhaseDiagram_Ratio.png", dpi = 600)
126 plt.savefig("PhaseDiagram_Ratio.pdf")
127 plt.show()
128 return True
129
130 ### MAIN
131
132 # calcluate the phase diagram
133 [S, Alpha, Phi, Ratio] = calcPhaseDiagram(SMin, SMax,\
134 AlphaMin, AlphaMax)
135 print("PhaseDiagram finished.")
136 # plot the phase diagram
137 plotPhaseDiagrams(S, Alpha, Phi, Ratio)
138 print("Phase Diagrams plotted.")

A.1.2 Plot Stretched Lattices

1 import matplotlib.pyplot as plt
2 from numpy import sqrt, cos, sin, pi, arccos
3 from copy import deepcopy
4
5 ### DASHBOARD
6 ImageSize = 4 # Size of the Image (d_Particle = 1)
7 AngleG = 0 # rotation angle in DEG
8 AngleA = 30 # rotation angle in DEG
9 Stretch = 3 # stretching factor in y-direction

10
11 # Setting Plot Parameters
12 params = {
13 'axes.labelsize': 12,
14 'font.size': 12,
15 'legend.fontsize': 12,
16 'xtick.labelsize': 12,
17 'ytick.labelsize': 12,
18 'text.usetex': False,
19 'figure.figsize': [4 * 1.8, 4]
20 }
21
22 plt.rcParams.update(params)
23
24 def rotateVector(P, angle):
25 P_rot = [0,0]
26 P_rot[0] = P[0]*cos(angle) - P[1]*sin(angle)
27 P_rot[1] = P[0]*sin(angle) + P[1]*cos(angle)
28
29 return P_rot
30
31 def calcAngle(a, b):
32 DotP = a[0] * b[0] + a[1] * b[1]
33 Angle = arccos(DotP / (calcLength(a) * calcLength(b)))
34
35 return Angle
36
37 def calcHexParticles(RadialDist, AngleG, AngleA, Stretch):
38 HexGrid = []
39 # grid vectors
40 a = [1, 0]
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41 b = [1/2, -1/2*sqrt(3)]
42 # rotation angles in radians
43 AngleA = AngleA * pi / 180
44 AngleG = AngleG * pi / 180
45 Bound = int(RadialDist*Stretch)*5
46 for i in range(-Bound, Bound, 1):
47 for j in range(-Bound, Bound, 1):
48 # calc the particles
49 P = [a[0] * i + b[0] * j,\
50 a[1] * i + b[1] * j]
51
52 # cut out a circular region
53 if P[0]**2 + P[1]**2 < RadialDist**2*1.5:
54
55 # rotate it gamma
56 P = rotateVector(P, AngleG)
57 # rotate it alpha
58 P = rotateVector(P, -AngleA)
59 # Stretch it
60 P[1]= P[1] * Stretch
61 # rotate it alpha back
62 P = rotateVector(P, AngleA)
63 HexGrid.append(P)
64
65 return HexGrid
66
67 def calcLength(a):
68 return sqrt(a[0]**2 + a[1]**2)
69
70 def findShortestPair(VecList):
71
72 # find the shortest vector
73 ShortestVec = VecList[0]
74
75 for V in VecList:
76 if calcLength(ShortestVec) > calcLength(V):
77 ShortestVec = V
78 # find the second shortest one
79 SecShortVec = [100, 100]
80 for V in VecList:
81 if calcLength(SecShortVec) > calcLength(V) and\
82 V != ShortestVec:
83 SecShortVec = V
84
85 return [ShortestVec, SecShortVec]
86
87 def reduceBasisVectors(c, d):
88
89 Invariant = abs(c[0]*d[1] - c[1]*d[0])
90 SumLength = sum([calcLength(c), calcLength(d)])
91 NewSumLength = SumLength - 1
92
93 while (SumLength - NewSumLength) > 10**(-5):
94 SumLength = sum([calcLength(c), calcLength(d)])
95 # calculate the two other basis vectors
96 f = [c[0] + d[0], c[1] + d[1]]
97 g = [c[0] - d[0], c[1] - d[1]]
98 [c, d] = findShortestPair([c, d, f, g])
99 NewSumLength = sum([calcLength(c), calcLength(d)])

100
101 if calcAngle(c, d) >= pi/2:
102 c[0] = -c[0]
103 c[1] = -c[1]
104
105 # make sure the invariant stayed constant
106 NewInv = abs(c[0]*d[1] - c[1]*d[0])
107 if abs(Invariant - NewInv) > 10**(-8):
108 print("Invariant has changed!!")
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109 assert False
110
111 return [c, d]
112
113 def calcBasisVectors(AngleG, AngleA, Stretch):
114
115 # grid vectors
116 a = [1, 0]
117 b = [1/2, -1/2*sqrt(3)]
118 # rotation angles in radians
119 AngleA = AngleA * pi / 180
120 AngleG = AngleG * pi / 180
121 # calculate a set of stretched basis vectors
122 # rotate it beta
123 c = rotateVector(a, AngleG)
124 d = rotateVector(b, AngleG)
125 # rotate it alpha
126 c = rotateVector(c, -AngleA)
127 d = rotateVector(d, -AngleA)
128 # Stretch it
129 c[1]= c[1] * Stretch
130 d[1]= d[1] * Stretch
131 # rotate it alpha back
132 c = rotateVector(c, AngleA)
133 d = rotateVector(d, AngleA)
134 # reduce c and d to the smallest vectors
135 [c, d] = reduceBasisVectors(c, d)
136
137 return [a, b, c, d]
138
139 def plotParticles(HexGrid, HexGridStretched, HexCore, HexCoreStretched,\
140 GridVec, ImageSize, AngleG, AngleA, Stretch):
141
142 fig = plt.figure()
143 ax1 = fig.add_subplot(1,2,1, aspect = "equal")
144 ax2 = fig.add_subplot(1,2,2, aspect = "equal")
145 CoreColors = ["r", "y", "b", "m", "r", "b", "c",\
146 "g", "g", "k", "g", "g", "c", "b",\
147 "r", "m", "b", "y", "r"]
148 LSCore = ["dotted", "dotted", "dotted", "dotted", "dashed",\
149 "dashed", "dotted", "dotted", "dashed", "-",\
150 "dashed", "dotted", "dotted", "dashed", "dashed",\
151 "dotted", "dotted", "dotted", "dotted"]
152 for P in HexGrid:
153 if P not in HexCore:
154 circ = plt.Circle((P[0],P[1]), radius = 0.45,\
155 color = "k", fill = False, lw = 1)
156 ax1.add_patch(circ)
157
158 for P in HexGridStretched:
159 if P not in HexCoreStretched:
160 circ = plt.Circle((P[0],P[1]), radius = 0.45,\
161 color = "k", fill = False, lw = 1)
162 ax2.add_patch(circ)
163
164 for P in range(0, len(HexCore), 1):
165 circ = plt.Circle((HexCore[P][0], HexCore[P][1]), radius = 0.45,\
166 color = CoreColors[P], fill = False,\
167 linestyle = LSCore[P], lw = 1)
168 ax1.add_patch(circ)
169
170 for P in range(0, len(HexCoreStretched), 1):
171 circ = plt.Circle((HexCoreStretched[P][0], HexCoreStretched[P][1]),\
172 radius = 0.45, color = CoreColors[P],\
173 fill = False, linestyle = LSCore[P], lw = 1)
174 ax2.add_patch(circ)
175
176 ax1.plot([0], [0], "ro", markersize = 2) # mark the central particle
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177 ax2.plot([0], [0], "ro", markersize = 2) # mark the central particle
178 ax1.set_xlim(-ImageSize/2*Stretch, ImageSize/2*Stretch)
179 ax1.set_ylim(-ImageSize/2*Stretch, ImageSize/2*Stretch)
180 ax2.set_xlim(-ImageSize/2*Stretch, ImageSize/2*Stretch)
181 ax2.set_ylim(-ImageSize/2*Stretch, ImageSize/2*Stretch)
182
183 #plot the stretching vectors
184 Sx = -Stretch * sin(AngleA * pi / 180)
185 Sy = Stretch * cos(AngleA * pi / 180)
186 ax1.arrow(0, 0, Sx, Sy, head_width = 0.1,\
187 head_length = 0.1, fc = 'r', ec = 'k')
188 ax2.arrow(0, 0, Sx, Sy, head_width = 0.1,\
189 head_length = 0.1, fc = 'r', ec = 'k')
190
191 # plot the grid vectors
192 #a
193 ax1.arrow(0, 0, GridVec[0][0], GridVec[0][1], head_width = 0.1,\
194 head_length = 0.1, fc = 'g', ec = 'b')
195 #b
196 ax1.arrow(0, 0, GridVec[1][0], GridVec[1][1], head_width = 0.1,\
197 head_length = 0.1, fc = 'g', ec = 'b')
198 #c
199 ax2.arrow(0, 0, GridVec[2][0], GridVec[2][1], head_width = 0.1,\
200 head_length = 0.1, fc = 'g', ec = 'b')
201 #d
202 ax2.arrow(0, 0, GridVec[3][0], GridVec[3][1], head_width = 0.1,\
203 head_length = 0.1, fc = 'g', ec = 'b')
204 ax1.set_xlabel("x")
205 ax1.set_ylabel("y")
206 ax2.set_xlabel("x")
207 ax2.set_ylabel("y")
208 ax1.set_xticks([-5, 0, 5])
209 ax1.set_yticks([-5, 0, 5])
210 ax2.set_xticks([-5, 0, 5])
211 ax2.set_yticks([-5, 0, 5])
212 ax1.set_title(r"$\beta$ = " + str(AngleG))
213 ax2.set_title(r"$\alpha$ = " + str(AngleA) + "°, S = " + str(round(Stretch, 5)))
214 G = str(AngleG).replace(".", "_")
215 A = str(AngleA).replace(".", "_")
216 S = str(Stretch).replace(".", "_")
217 plt.tight_layout()
218 plt.savefig("HexGrid_Gamma" + G + "Alpha" + A + "S" + S + ".png", dpi = 600)
219 plt.savefig("HexGrid_Gamma" + G + "Alpha" + A + "S" + S + ".pdf")
220 plt.savefig("HexGrid_Gamma" + G + "Alpha" + A + "S" + S + ".eps")
221 plt.show()
222
223 return True
224
225 # MAIN
226 # calcluate a circular region with a dense hex grid rotate by AngleG
227 HexGrid = calcHexParticles(ImageSize*5, AngleG, 0, 1)
228 print("Rotated HexGrid finished.")
229
230 # calculate the 7 core particles of the hex grid rotated by AngleG
231 HexCore = calcHexParticles(2, AngleG, 0, 1)
232 print("Rotated HexCore finished.")
233
234 # calculate the 7 core particles of the hex grid rotated and stretched
235 HexCoreStretched = calcHexParticles(2, AngleG, AngleA, Stretch)
236 print("Rotated HexCoreStretched finished.")
237
238 HexGridStretched = calcHexParticles(ImageSize*5, AngleG, AngleA, Stretch)
239 print("Rotated HexGridStretched finished.")
240
241 # calculate the four grid vectors
242 GridVec = calcBasisVectors(AngleG, AngleA, Stretch)
243
244 # plot the HexGrid and the stretched HexGrid
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245 plotParticles(HexGrid, HexGridStretched, HexCore, HexCoreStretched,\
246 GridVec, ImageSize, AngleG, AngleA, Stretch)
247 print("Plotting finished.")
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A.2 Computing Colloidal Glasses

1 from matplotlib.pyplot import *
2 from datetime import datetime
3 from math import sqrt, pi
4
5 ### DASHBOARD
6 # Boundaries for the Selection Box
7 ExpName = "Test_Input" # Name of the File and Experiment
8 CoorFile = "TestCoor.csv" # Name of the Coor File (mit Endung z.B: .txt)
9 BoxSize = 5.5 #µm

10 # Particle Properties
11 Radius = 0.5 # Normalisierter Radius
12
13 # Setting Plot Parameters
14 params = {
15 'axes.labelsize': 12,
16 'font.size': 12,
17 'legend.fontsize': 12,
18 'xtick.labelsize': 12,
19 'ytick.labelsize': 12,
20 'text.usetex': False,
21 'figure.figsize': [4.5 * 1.618, 4.5]
22 }
23
24 rcParams.update(params)
25
26 def getRawData(FileName):
27 """
28 This function read in the raw particles positions and radii
29 from the .csv file
30
31 Parameters
32 ----------
33 FileName : str
34 Name for the ascii file with the particle coordinates
35
36 Returns
37 -------
38 ParticleList : list of list of float
39 List of [x,y,z,r] particle coordinates
40 """
41
42 DataFile = open(FileName, "r")
43 datalines = DataFile.readlines()
44 DataFile.close()
45 ParticleList = []
46 for line in datalines:
47 temp = line.split(",")
48 Particle = []
49 for k in temp:
50 Particle.append(float(k))
51 ParticleList.append(Particle)
52
53 return ParticleList
54
55 def SelectParticles(ParticleList, BoxSize):
56 """
57 This function selects all particles within a box with of size
58 "BoxSize" and returns them in a new list. The box is placed in
59 the center of the particle cloud
60
61 Parameters
62 ----------
63 ParticleList : list of list of float
64 List of [x,y,z,r] particle coordinates
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65 BoxSize : float
66 edge length of the selection cube
67 Returns
68 -------
69 NewPartList : list of list of float
70 List of [x,y,z,r] particle coordinates with their
71 centers inside the box volume
72 """
73 # empty lists for the selected particles
74 NewPartList = []
75 ZMax = max([ParticleList[Z][2] for Z in range(0, len(ParticleList), 1)])
76 print("zMax/2: " + str(ZMax/2))
77 # go through all particles and find the ones inside the box + radius
78 for Particle in ParticleList:
79 if abs(Particle[0]) <= (BoxSize/2 + Particle[3]):
80 if abs(Particle[1]) <= (BoxSize/2 + Particle[3]):
81 if abs(Particle[2] - ZMax/2) <= (BoxSize/2 + Particle[3]):
82 CenteredPart = Particle
83 CenteredPart[2] -= ZMax/2
84 NewPartList.append(CenteredPart)
85
86 return NewPartList
87
88 def rescaleParticleSet(ParticleList, Radius):
89 """
90 This function rescales all particle positions and diameters
91 such that the new diameter of the particles is the
92 one specified by the used in the variable "Radius".
93
94 Parameters
95 ----------
96 ParticleList : list of list of float
97 List of [x,y,z,r] particle coordinates
98 Radius : float
99 New radius for all particle in the particle list

100
101 """
102 NewPartList = []
103 for Particle in ParticleList:
104 RescalePart = []
105 OldRad = Particle[-1]
106 for k in Particle:
107 RescalePart.append(k*Radius/OldRad)
108 NewPartList.append(RescalePart)
109
110 return NewPartList
111
112 def createAutoCADFile(P_List, BoxSize, ExpName):
113 """
114 This function creates the AutoCAD file with
115 all the particles in it
116 """
117 CADFile = open(ExpName + "_CAD.scr", "a")
118 writeParticles(CADFile, P_List, 0)
119 writeBox(CADFile, 0, 0, 0, BoxSize)
120 CADFile.close()
121
122 return True
123
124 def writeParticles(File, ParticleList, XOffset):
125 """
126 This function writes the list of particles with a specific
127 Offset in the X-direction into the provided File
128
129 Parameters
130 ----------
131 File : io file object
132 ASCII file to write in
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133 ParticleList : list of list of float
134 List of [x,y,z,r] particle coordinates
135 XOffset : float
136 Offset in the X-direction for all particles
137 """
138 # write the AutoCAD code for every particle
139 for Particle in ParticleList:
140 File.write("SPHERE\n")
141 File.write(str(Particle[0] - XOffset) + ",") # X
142 File.write(str(Particle[1]) + ",") # Y
143 File.write(str(Particle[2]) + "\n")# Z
144 # save the diameter for AutoCAD
145 File.write(str(Particle[3]) + "\n")
146
147 return True
148
149 def writeBox(File, XPos, YPos, ZPos, BoxSize):
150 """
151 This function writes a box with the center at
152 [XPos, YPos, ZPos] of size "BoxSize". The box
153 faces are aligned with the axes of the coordinate
154 system.
155
156 Parameters
157 ----------
158 File : io file object
159 ASCII file to write in
160 XPos,YPos,ZPos : floats
161 Coordinates of the box center
162 BoxSize : float
163 Edge length of the box
164 """
165 File.write("BOX\n")
166 File.write("C\n")
167 File.write(str(XPos) + "," + str(YPos) + "," + str(ZPos) + "\n")
168 File.write("C\n")
169 File.write("{}\n".format(BoxSize))
170
171 return True
172
173 ### MAIN
174
175 #read in all particle coordinates
176 ParticleList = getRawData(CoorFile)
177 print("Data read-in Finished.")
178
179 # extract the particles with their centers inside the BOX
180 ParticleList = SelectParticles(ParticleList, BoxSize)
181 print(str(len(ParticleList)) + " Particles Selected.")
182
183 # Rescale them to the overall Diameter
184 ParticleList = rescaleParticleSet(ParticleList, Radius)
185 print("Particles Resized")
186
187 #Write AutoCAD Files
188 createAutoCADFile(ParticleList, BoxSize, ExpName)
189 print("AutoCAD File Finished")
190 print("Program Finished!")
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A.3 Lock-In Thermography Analysis

A.3.1 Main LIT-Analysis Class

1 import logging
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.optimize import curve_fit
5 from LIT_RScale_Analyzer import RScale_Analyzer
6
7 class LIT_Analyzer():
8 """Class to analyze LIT measurements of a single sample"""
9 def __init__(self, ExpName, AutoRun):

10 """
11 Initialize LIT_Analyzer class
12
13 Parameters
14 ----------
15 ExpName : str
16 Name part used for all saved data files
17 """
18 self.Sentinel = logging.getLogger("Watchtower")
19 self.ExpName = ExpName
20 # initialize all variables
21 self.RawDataFolderPath = None
22 self.RScale = None
23 self.SweepData = None
24 self.RScale_Instrument = None
25 self.AutoRun = AutoRun
26 # change plotting parameters
27 plt.rcParams.update({'font.size': 14})
28
29 def processRScaleImage(self, ImgPath, LinePeriod):
30 """
31 Computes the pixel RScale from the reference Image
32
33 Parameters
34 ----------
35 ImgPath : Path
36 Path to the image of the reference wafer
37 LinePeriod : float
38 Periodicity of the lines on the reference wafer
39 """
40 self.RScale_Instrument = RScale_Analyzer(ImgPath, LinePeriod,
41 self.ExpName)
42 self.RScale = self.RScale_Instrument.AnalyzeRScale()
43 self.Sentinel.info("New RScale computed: {}".format(self.RScale)+\
44 " mm/Pixel")
45 return True
46
47 def setRScale(self, NewRScale):
48 """
49 Alternative to processRScaleImage if the same
50 scaleing is used for all samples.
51
52 Parameters
53 ----------
54 NewRScale : float, positive
55 Pixel size of the IR camera in mm /pixel
56
57 Raises
58 ------
59 ValueError : If NewRScale is <= 0
60 """
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61 if NewRScale <= 0:
62 ErrorMsg = "The new RScale: {}".format(NewRScale)+\
63 "is less then 0! Use a positive number."
64 self.Sentinel.error(ErrorMsg)
65 raise ValueError(ErrorMsg)
66
67 self.RScale = NewRScale
68 self.RScale_Instrument.RScale = NewRScale
69 return True
70
71 def setRawDataFolderPath(self, NewRawDataPath):
72 self.RawDataFolderPath = NewRawDataPath
73 return True
74
75 def computeSAlpha(self, LockInFreq, AmplFitList, PhaseFitList):
76 """
77 Computes the standard deviation of the thermal diffusivity
78 by Gaussian error propagation
79
80 Parameters
81 ----------
82 LockInFreq : float, positive
83 Frequency of the lock in measurements
84
85 AmplFitList, PhaseFitList : list
86 contains: [[slope, y-intersect], std_slope, EndPosList]
87 """
88 Std = (np.pi * LockInFreq /(AmplFitList[0][0] *\
89 PhaseFitList[0][0]**2) *\
90 PhaseFitList[1])**2
91 Std += (np.pi * LockInFreq /(AmplFitList[0][0]**2 *\
92 PhaseFitList[0][0]) *\
93 AmplFitList[1])**2
94
95 return Std
96
97 def calcAlphaLinReg(self, Sweep):
98 """
99 Computes the overall thermal diffusivity from a range of different frequencies.

100 The product of the slopes is fitted with a line that passes through the origin.
101
102 Parameters
103 ----------
104 FreqList : list of float
105 List with the used Lock-In frequencies
106 m_Phase : list of float
107 List with the slopes of the linear phase fits
108 SPFitList : list of float
109 List with the standard deviation of the phase slopes
110 m_Ampl : list of float
111 List with the slopes of the linear amplitude fits
112 SAFitList : list of float
113 List with the standard deviation of the slopes
114 Returns
115 -------
116 [[AlphaLinReg, SAlphaLinReg,\
117 SlopeProd, SProdError, LinearSlope] : floats
118 Thermal diffusivity and standard deviation in mmˆ2/s
119 Product of the amplitude and phase slopes with error
120 Slope of the linear fit
121 """
122 FreqList = Sweep.getFreqList()
123 [m_Phase, SPFitList] = Sweep.getPhaseSlopeList()
124 [m_Ampl, SAFitList] = Sweep.getAmplSlopeList()
125 # multiply the slopes of amplitude and phase
126 SlopeProd = np.array(m_Phase) * np.array(m_Ampl)
127 SProdError = np.sqrt((np.array(m_Phase) * np.array(SAFitList))**2 +\
128 (np.array(m_Ampl) * np.array(SPFitList))**2)

374 Chapter A Source Code



129 # initial quess for the slope of the slope product
130 LinearSlopeInit = sum(abs(SlopeProd) * np.array(FreqList)) /\
131 sum(np.array(FreqList)**2)
132 def fitFunc(f, m):
133 return f * m
134 Fit = curve_fit(fitFunc, FreqList, SlopeProd,\
135 p0 = LinearSlopeInit)
136 LinearSlope = abs(Fit[0][0])
137 SLinSlope = np.sqrt(Fit[1][0][0])
138 # linear fit of the product versus frequency
139 AlphaLinReg = abs(np.pi / LinearSlope)
140 SAlphaLinReg = abs(np.pi/LinearSlope**2*SLinSlope)
141
142 return [AlphaLinReg, SAlphaLinReg, SlopeProd, SProdError, LinearSlope]
143
144 def LinearFit(self, X, Y):
145 """
146 Computes a linear fit on the input (X/Y) data
147 """
148 Lin_Fit = np.polyfit(X, Y, deg = 1, cov = True)
149 S_Lin_Fit = np.sqrt(Lin_Fit[1][0][0]) # sqrt(Var(m))
150 return [Lin_Fit[0], S_Lin_Fit]
151
152 def LinFitRegion(self, LinDist, LinY, Type, MinDist,\
153 MaxDist, Frequency):
154 """
155 Performs a linear fit on the linearized (Dist / Y) data.
156 The the predefined distance boundaries are used by default.
157 The user can also select the boundaries by clicking on the plot.
158
159 Parameters
160 ----------
161 LinDist : numpy array
162 Array with the linearized distance from the laser heating
163 LinY : numpy array
164 Array with the linearized amplitude data
165 Type : data type, either "Amplitude" or "Phase"
166 MinDist : float, positive
167 Minimal distance from the heating origin to use
168 MaxDist : float, positive
169 Maximal distance from the heating origint to use
170 Frequency : float, positive
171 Lock In Frequency of the measurement
172
173 Raises
174 ------
175 ValueError if Type is not recognized
176
177 Returns
178 -------
179 Y_Fit : list
180 slope and y intersection of the linear fit
181 S_Y_Fit : list
182 standard deviations for the slope and y intersection
183 EndPosList : list of lists
184 Index and value of the minimal and maximal distance used
185 """
186 LinDist = np.array(LinDist)
187 LinY = np.array(LinY)
188
189 def onMouseClick(event):
190 if event.xdata == None:
191 return True
192 # save the position of the mouse when the button was pressed
193 # find the locations of the end Positions
194 BoundIdx = np.argmin(abs(LinDist - event.xdata))
195 Position = [event.xdata, BoundIdx]
196 # display the recieved data to the user
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197 self.Sentinel.info("You pressed Key: " + ascii(event.key) +\
198 " at position in Data Koordinates: " + str([event.xdata, event.ydata]))
199 # find the closer boundary
200 if Position[0] <= EndPosList[0][0] or \
201 abs(Position[0] - EndPosList[0][0]) <\
202 abs(Position[0] - EndPosList[1][0]):
203 # move the left boundary
204 EndPosList[0] = Position
205 # replot the left boundary
206 LeftBound.set_xdata([Position[0]]*2)
207
208 elif abs(Position[0] - EndPosList[0][0]) >\
209 abs(Position[0] - EndPosList[1][0]) or\
210 Position[0] >= EndPosList[1][0]:
211 # move the right boundary
212 EndPosList[1] = Position
213 # replot the right boundary
214 RightBound.set_xdata([Position[0]]*2)
215
216 # redo the linear fit
217 Left = EndPosList[0][1]
218 Right = EndPosList[1][1]
219 [Y_Fit, S_Y_Fit] = self.LinearFit(LinDist[Left:Right],\
220 LinY[Left:Right])
221 # plot the linear fit
222 X_Line = [LinDist[Left], LinDist[Right]]
223 Y_Line = Y_Fit[0] * np.array(X_Line) + Y_Fit[1]
224 FitGraph.set_data(X_Line, Y_Line)
225 plt.draw() # redraw everything
226 return True
227
228 StartIdx = np.argmin(abs(MinDist - LinDist))
229 EndIdx = np.argmin(abs(MaxDist - LinDist))
230 # list for the boundaries [left, right]
231 EndPosList = [[MinDist, StartIdx], [MaxDist, EndIdx]]
232 fig = plt.figure()
233 # connect the MouseClickEvent with the Canvas
234 fig.canvas.mpl_connect('button_press_event', onMouseClick)
235 ax = plt.subplot()
236 # plot the measured amplitude data
237 ax.plot(LinDist, LinY, ".", markersize = 1)
238 # do the linear fit
239 Left = EndPosList[0][1]
240 Right = EndPosList[1][1]
241 [Y_Fit, S_Y_Fit] = self.LinearFit(LinDist[Left:Right],\
242 LinY[Left:Right])
243
244 if self.AutoRun == False:
245 # plot the linear fit
246 X_Line = [LinDist[Left], LinDist[Right]]
247 Y_Line = Y_Fit[0] * np.array(X_Line) + Y_Fit[1]
248 # create two boundary dummy plots where the data is updated later on
249 YExtent = ax.get_ylim()
250 LeftBound, = ax.plot([MinDist, MinDist], YExtent, "k--")
251 RightBound, = ax.plot([MaxDist, MaxDist], YExtent, "k--")
252 # create a plot for the linear fit
253 FitGraph, = ax.plot(X_Line, Y_Line, "r-", lw = 2, label = "Linear Fit")
254 ax.set_xlabel("Distance / mm")
255
256 if Type == "Amplitude":
257 ax.set_ylabel("Linearized Amplitude")
258 YLimits = ax.get_ylim()
259 ax.set_ylim(max([-2, YLimits[0]]))
260
261 elif Type == "Phase":
262 ax.set_ylabel("Phase / rad")
263 NewYMin = min([P for P in LinY if P < 2*np.pi and P > -2*np.pi])
264 NewYMax = max([P for P in LinY if P < 2*np.pi and P > -2*np.pi])
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265 ax.set_ylim(NewYMin, NewYMax)
266
267 else:
268 ErrorMsg = "The Type {} for the linearized plot".format(Type)+\
269 " is not recognized. Use either Amplitude or Phase"
270 self.Sentine.error(ErrorMsg)
271 raise ValueError(ErrorMsg)
272
273 ax.set_title("Frequency: " + str(Frequency) + " Hz")
274 fig.tight_layout()
275 plt.show()
276 self.Sentinel.info("Linear amplitude fit completed.")
277 return [Y_Fit, S_Y_Fit, EndPosList]

A.3.2 Inherited Point Excitation LIT-Analysis Class

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from mpl_toolkits.axes_grid1 import make_axes_locatable
4 from matplotlib.colors import LogNorm
5 from matplotlib.ticker import MaxNLocator
6 from LIT_SweepData import LIT_SweepData
7 from LIT_Analyzer import LIT_Analyzer
8
9 class LIT_PointAnalyzer(LIT_Analyzer):

10 """Class to analyze LIT measurements with a point excitation"""
11
12 def __init__(self, ExpName, AutoRun):
13 """
14 Initialize LIT_PointAnalyzer class
15
16 Parameters
17 ----------
18 ExpName : str
19 Name part used for all saved data files
20 """
21 LIT_Analyzer.__init__(self, ExpName, AutoRun)
22
23 def FindCenterFromAmp(self, AmplData):
24 """
25 Determines the center point for a point laser excitation.
26 The center is the pixel with the largest amplitude.
27
28 Parameters
29 ----------
30 AmplData : numpy array
31 Contains the 2D amplitude image
32
33 Returns
34 -------
35 MaxRow : int
36 Row index for the pixel with maximal ampltiude
37 MaxLine : int
38 Line index for the pixel with maximal amplitude
39 MaxAmpl : float
40 Value of the maximal amplitude
41 """
42 # initialize the search parameters
43 MaxLine = 0
44 MaxRow = 0
45 MaxAmpl = AmplData[2][0][0]
46 # go throug every Pixel
47 for Line in range(0,len(AmplData[2]),1):
48 for Row in range(0,len(AmplData[2][Line]),1):
49
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50 # check if the current pixel value is
51 # higher than the previous maximum
52 if AmplData[2][Line][Row] > MaxAmpl:
53 MaxLine = Line
54 MaxRow = Row
55 MaxAmpl = AmplData[2][Line][Row]
56 self.Sentinel.info("Center detected at: " +\
57 str([MaxRow, MaxLine, MaxAmpl]))
58 return [MaxRow, MaxLine, MaxAmpl]
59
60 def CalcRadialData(self, Data, Center, MaxR):
61 """
62 Computes the radial distance from each pixel
63 to the center pixel within a predefined range.
64
65 Parameters
66 ----------
67 Data : numpy array
68 Contains the 2D image data
69 Center : list of float
70 Contains the X,Y,A center pixel data
71 MaxR : float
72 Maximal radius for the conversion in pixel
73
74 Returns
75 -------
76 Radius : list of float
77 List of all the radial distances
78 Y : list of float
79 List with the corresponding y-values
80 """
81 # initialize empty arrays for the calculated data
82 Y = []
83 Radius = []
84 Lmin = int(max([0, Center[1] - MaxR]))
85 Lmax = int(min([len(Data[2]), Center[1] + MaxR]))
86 Rmin = int(max([0, Center[0] - MaxR]))
87 Rmax = int(min([len(Data[2][0]), Center[0] + MaxR]))
88 # convert to Radial Data
89 for Line in range(Lmin, Lmax,1):
90 for Row in range(Rmin, Rmax, 1):
91 RadDist = np.sqrt((Data[0][Line][Row]-Center[0])**2+\
92 (Data[1][Line][Row]-Center[1])**2)
93 if RadDist < MaxR:
94 Y.append(Data[2][Line][Row]) # Intensity stays the same
95 Radius.append(RadDist)
96 # Sort by increasing Radius and bring order to the Universe
97 Radius, Y = (list(t) for t in zip(*sorted(zip(Radius, Y))))
98 self.Sentinel.info("2D to radial conversion finished!")
99 return [Radius, Y]

100
101 def SelectMaxR(self, Measurement):
102 """
103 Shows the amplitude image with the center.
104 The user can then select an appropriate maximal radius
105 for the radial average.
106
107 Parameters
108 ----------
109 Measurement : LIT_SinglePointMeas object
110 contains all data from a single measurement
111 Returns
112 -------
113 MaxR : float
114 Maximal radius for the radial average in pixel
115 """
116 # default maximal radius in pixel:
117 MaxR = min(Measurement.RawAmplData[2].shape)/3
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118
119 def onMouseClick(event):
120 if event.xdata != None:
121 # compute the radial distance to the center
122 MaxR = np.sqrt((Measurement.Center[0]-event.xdata/self.RScale)**2+\
123 (Measurement.Center[1]-event.ydata/self.RScale)**2)
124 self.Sentinel.info("New MaxR selected: {}".format(MaxR*self.RScale))
125 else:
126 return True
127 # display the recieved data to the user
128 self.Sentinel.info("You pressed Key: " + ascii(event.key) +\
129 " at position in Data Koordinates: " + str([event.xdata,\
130 event.ydata]))
131 # plot the new cricle around the center
132 circle1.set_radius(MaxR*self.RScale)
133 plt.draw() # redraw everything
134 return True
135
136 fig = Measurement.getRawAmplCanvas()
137 # connect the MouseClickEvent with the Canvas
138 fig.canvas.mpl_connect('button_press_event', onMouseClick)
139 ax1 = fig.gca()
140 ax1.plot([Measurement.Center[0]*self.RScale],\
141 [Measurement.Center[1]*self.RScale], "ro")
142 # plot the circle around the center
143 circle1 = plt.Circle(np.array(Measurement.Center[0:2])*self.RScale,\
144 MaxR*self.RScale,\
145 color = 'r', fill = False)
146 ax1.add_artist(circle1)
147 self.Sentinel.info("Click on the image to change the radial distance")
148 plt.show()
149 return MaxR
150
151 def convertToRadial(self, Measurement):
152 """
153 Converts the raw data from a single point measurement
154 into radial data. The use selects the maximal radial distance.
155
156 Parameters
157 ----------
158 Measurement : SinglePointMeas object
159 Contains all raw and result data from a single point
160 excitation measurement
161 """
162 # compute the measurement ID
163 Measurement.ID = str(Measurement.LockInFreq).replace(".","_") + "_Hz"
164 # find the center pixel
165 Measurement.Center = self.FindCenterFromAmp(Measurement.RawAmplData)
166 # let the user select the maximal radius
167 if AutoRun == True:
168 Measurement.MaxR = Measurement.MaxDist * 2
169 else:
170 Measurement.MaxR = self.SelectMaxR(Measurement)
171 # convert the amplitude
172 [AmplRadii, RadialAmpl] = self.CalcRadialData(Measurement.RawAmplData,\
173 Measurement.Center,\
174 Measurement.MaxR)
175 Measurement.AmplRadii = AmplRadii
176 Measurement.RadialAmpl = RadialAmpl
177 # convert the phase
178 [PhaseRadii, RadialPhase] = self.CalcRadialData(Measurement.RawPhaseData,\
179 Measurement.Center,\
180 Measurement.MaxR)
181 [PhaseRadii, RadialPhase] = np.unwrap([PhaseRadii, RadialPhase])
182 Measurement.PhaseRadii = PhaseRadii
183 Measurement.RadialPhase = RadialPhase
184 # plot the 2D zoomed Amplitude
185 Measurement.PlotRadialAmplZoom(self.SweepData.PlotPathZoom2D)
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186 # plot the 2D zoomed Phase
187 Measurement.PlotRadialPhaseZoom(self.SweepData.PlotPathZoom2D)
188 return True
189
190 def AnalyzeIsotropicMeas(self, RawDataFolder, MinDist, MaxDist):
191 """
192 Analyzes the LIT measurement of an isotropic
193 sample excited with a point source (laser)
194 at one or multiple frequencies.
195
196 Parameters
197 ----------
198 RawDataFolder : Path object
199 path to the folder containing all the ASCII raw data files
200 MinDist : float, >0 in [mm]
201 default minimal distance used for the linear fit
202 MaxDist : float, >0 in [mm]
203 default maximal distance used for the linear fit
204 """
205 # read in all the files from a sweep
206 self.RawDataFolderPath = RawDataFolder
207 self.SweepData = LIT_SweepData(self.RawDataFolderPath,\
208 self.RScale_Instrument,\
209 self.ExpName, "Point")
210 # compute the radial average for all files
211 for Measurement in self.SweepData.SMeasList:
212
213 # save some data in the singe frequency objects
214 Measurement.MinDist = MinDist
215 Measurement.MaxDist = MaxDist
216 # convert the 2D Data to 1D radial data
217 self.convertToRadial(Measurement)
218 # fit the linearized amplitude
219 LinAmplDist = np.array(Measurement.AmplRadii)*self.RScale
220 LinAmpl = np.log(np.array(Measurement.RadialAmpl) * np.sqrt(LinAmplDist))
221 Measurement.LinAmplData = [LinAmplDist, LinAmpl]
222 Measurement.AmplFitData = self.LinFitRegion(LinAmplDist, LinAmpl,\
223 "Amplitude", MinDist, MaxDist,\
224 Measurement.LockInFreq)
225 # plot the linear amplitude fit
226 Measurement.plotAmplFit(self.SweepData.PlotPath1D)
227 # fit the linearized phase
228 LinPhaseDist = np.array(Measurement.PhaseRadii)*self.RScale
229 LinPhase = np.array(Measurement.RadialPhase)
230 Measurement.LinPhaseData = [LinPhaseDist, LinPhase]
231 Measurement.PhaseFitData = self.LinFitRegion(LinPhaseDist, LinPhase,\
232 "Phase", MinDist, MaxDist,\
233 Measurement.LockInFreq)
234 # plot the linear phase fit
235 Measurement.plotPhaseFit(self.SweepData.PlotPath1D)
236 # compute the thermal diffusivity
237 Measurement.ThermalDiff = abs((np.pi*Measurement.LockInFreq)/\
238 (Measurement.AmplFitData[0][0] *\
239 Measurement.PhaseFitData[0][0]))
240 Measurement.StdThermalDiff = self.computeSAlpha(Measurement.LockInFreq,\
241 Measurement.AmplFitData,\
242 Measurement.PhaseFitData)
243 self.Sentinel.info("Thermal diffusivity:"+\
244 " {} mmˆ2/s".format(Measurement.ThermalDiff)+\
245 " for Lock-in Frequency:"+\
246 " {} Hz".format(Measurement.LockInFreq))
247 # analyze multifrequency measurements (single frequency are also analyzed)
248 self.SweepData.MultiFreq = True
249 # compute the thermal diffusivity with the linear interpolation
250 self.SweepData.AlphaSlope = self.calcAlphaLinReg(self.SweepData)
251 self.SweepData.plotAlphaLinReg()
252 self.Sentinel.info("Thermal diffusivity from the linear regression: "+\
253 " {} +/- {} mmˆ2/s".format(self.SweepData.AlphaSlope[0],\

380 Chapter A Source Code



254 self.SweepData.AlphaSlope[1]))
255 self.SweepData.plotTDiffvsFreq()
256 # save the data
257 self.SweepData.saveData()
258 # create the report
259 self.SweepData.createReport()
260 return True

A.3.3 Inherited Line Excitation LIT-Analysis Class

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from mpl_toolkits.axes_grid1 import make_axes_locatable
4 from matplotlib.colors import LogNorm
5 from matplotlib.ticker import MaxNLocator
6 from scipy.optimize import curve_fit
7 from LIT_SweepData import LIT_SweepData
8 from LIT_Analyzer import LIT_Analyzer
9

10
11 class LIT_LineAnalyzer(LIT_Analyzer):
12 """Class to analyze LIT measurements with a line excitation"""
13
14 def __init__(self, ExpName, AutoRun):
15 """
16 Initialize LIT_Analyzer class
17
18 Parameters
19 ----------
20 ExpName : str
21 Name part used for all saved data files
22 """
23 LIT_Analyzer.__init__(self, ExpName, AutoRun)
24
25 def plotTDiffDirection(self, Data):
26 """
27 Plots the thermal diffusivity vs. the direction
28
29 Parameters
30 ----------
31 Data : list of SingleMeasData
32 """
33 # extract the thermal diffusivity vs. direction
34 TDiffList = []
35 StdTDiffList = []
36 AngleList = []
37 for D in Data:
38 #forward
39 TDiffList.append(D.ThermalDiff)
40 StdTDiffList.append(D.StdThermalDiff)
41 AngleList.append(D.CenterLine[2])
42 #backward
43 TDiffList.append(D.ThermalDiff)
44 StdTDiffList.append(D.StdThermalDiff)
45 AngleList.append(D.CenterLine[2] + np.pi)
46 # plot in both directions (Angle, Angle + 180Deg)
47 ax = plt.subplot(111, projection='polar')
48 ax.errorbar(AngleList, TDiffList, yerr = StdTDiffList,\
49 fmt = ".", capsize=0)
50 #ax.set_rlabel_position(-22.5)
51 ax.grid(True)
52 ax.set_title(self.ExpName + "\n TDiff / $mmˆ2/s$")
53 plt.legend(loc = "upper left", numpoints = 1, frameon = False)
54 plt.tight_layout()
55 plt.savefig(self.ExpName + "_TDiff_Angle.png", dpi = 600)
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56 plt.close()
57
58 def CalcLineData(self, Data, CenterLine, MaxDist, CenterOffset):
59 """
60 Computes the distance to the center line for each
61 pixel in a predefined area
62
63 Parameters
64 ----------
65 Data : numpy array
66 Contains the 2D image data
67 CenterLine : LaserLine object
68 Contains the location and direction of the line laser
69 CenterOffset : float,
70 Valid range on both sides from the center in millimeters
71 MaxDist : float
72 Valid range parallel to the center line in millimeters
73
74 Returns
75 -------
76 LinDist : list of float
77 List of all the linear distances
78 Y : list of float
79 List with the corresponding y-values
80 """
81 # find appropriate boundaries for perfomance
82 LinDist = []
83 Y = []
84 # convert to linear data, go through all pixels
85 for Line in range(0, len(Data[0]), 1):
86 for Row in range(0, len(Data[0][Line]), 1):
87 Point = [Data[0][Line][Row], Data[1][Line][Row]]
88 [LinearDist, OnLineDist] = CenterLine.getDistFromLine(Point)
89 # if the point is inside the average box
90 if abs(LinearDist * self.RScale) <= MaxDist and\
91 abs(OnLineDist * self.RScale) <= CenterOffset:
92 LinDist.append(LinearDist * self.RScale)
93 Y.append(Data[2][Line][Row])
94 # Sort by increasing distance and bring order to the Universe
95 LinDist, Y = (list(t) for t in zip(*sorted(zip(LinDist, Y))))
96
97 return [LinDist, Y]
98
99 def SelectBoundaries(self, Measurement, MaxDist = 5, CenterOffset = 5):

100 """
101 Lets the user select appropriate boundaries for the linear
102 conversion
103
104 Parameters
105 ----------
106 Measurement : SinglePointMeas object
107 Contains all raw and result data from a single point
108 excitation measurement
109 MaxDist : float, default = 5 mm
110 Valid range parallel to the center line in millimeters
111 CenterOffset : float, default = 5 mm
112 Valid range on both sides from the center in millimeters
113 """
114 Measurement.CenterOffset = CenterOffset
115 Measurement.MaxDist = MaxDist
116 CenterLine = Measurement.CenterLine
117
118 def onMouseClick(event):
119 if event.xdata == None:
120 return True
121 # compute the distance from the line
122 Point = [event.xdata/self.RScale, event.ydata/self.RScale]
123 [NewDist, NewCDist]= Measurement.CenterLine.getDistFromLine(Point)
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124 print("The New Distance from the line is: {}".format(NewDist/self.RScale))
125 # check if the CenterOffset or MaxDist changes
126 if NewDist < (Measurement.MaxDist/3/self.RScale):
127 # close to the central line, change the CenterOffset
128 Measurement.CenterOffset = NewCDist*self.RScale
129 self.Sentinel.info("The New Center Offset is:"+\
130 " {}".format(Measurement.CenterOffset))
131 else:
132 Measurement.MaxDist = NewDist*self.RScale
133 self.Sentinel.info("The New Max Distance is:"+\
134 " {}".format(Measurement.MaxDist))
135
136 # display the recieved data to the user
137 self.Sentinel.info("You pressed Key: " + ascii(event.key) +\
138 " at position in Data Koordinates: " + str([event.xdata, event.ydata]))
139 # change the rectangle around the center
140 Rect1.set_width(Measurement.CenterOffset*2)
141 Rect1.set_height(Measurement.MaxDist*2)
142 [CornerX, CornerY] = Measurement.getBoundaryCorners()
143 Rect1.set_xy([CornerX*self.RScale, CornerY*self.RScale])
144 plt.draw() # redraw everything
145 return True
146
147 fig = Measurement.getRawAmplCanvas()
148 # connect the MouseClickEvent with the Canvas
149 fig.canvas.mpl_connect('button_press_event', onMouseClick)
150 ax1 = fig.gca()
151 # necessary for limiting the line range to the image
152 [A, B] = CenterLine.getLineLimits()
153 ax1.plot([A[0]*self.RScale, B[0]*self.RScale],\
154 [A[1]*self.RScale, B[1]*self.RScale], "w-", label = "Center Line")
155 ax1.plot([CenterLine.CenterPoint[0]*self.RScale],\
156 [CenterLine.CenterPoint[1]*self.RScale],\
157 "ro", label = "Center")
158 # plot the rectangle around the center
159 [CornerX, CornerY] = Measurement.getBoundaryCorners()
160 Rect1 = plt.Rectangle([CornerX*self.RScale, CornerY*self.RScale],\
161 Measurement.CenterOffset*2,\
162 Measurement.MaxDist*2,\
163 angle = CenterLine.RotAngle*180/np.pi, color = 'r', fill = False)
164 ax1.add_artist(Rect1)
165 ax1.set_xlim(0, CenterLine.XMax*self.RScale)
166 ax1.set_ylim(0, CenterLine.YMax*self.RScale)
167 plt.show()
168 return True
169
170 def FitAngleTDiff(self, SData):
171 """
172 Fits an Ellipse to the angle dependent thermal diffusivity data.
173
174 Parameters
175 ----------
176 SData : Sweep Data object
177
178 Returns
179 -------
180 EllipseData : list of float
181 Contains the ellipse parameters (a, b, theta)
182 """
183 CList = SData.getCenterLineList()
184 [TDiff, StdTDiff] = SData.getTDiffList()
185 ForwardDir = [CL.HeatFlowAngles[0] for CL in CList]
186 BackwardDir = [CL.HeatFlowAngles[1] for CL in CList]
187 TDiff = np.array(TDiff + TDiff)
188 Direction = np.concatenate((np.array(ForwardDir),\
189 np.array(BackwardDir)))
190 if len(TDiff) == 1:
191 return [TDiff[0], TDiff[0], 0]
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192
193 def f(theta, a, b, phi):
194 return a*b/(np.sqrt((a*np.cos(theta - phi))**2 +\
195 (b*np.sin(theta - phi))**2))
196 FitData = curve_fit(f, xdata = Direction, ydata = TDiff,\
197 p0 = [np.mean(TDiff), np.mean(TDiff), 0],\
198 bounds = ([0, 0, -np.pi],[100, 100, np.pi]))
199 # if b > a
200 if FitData[0][1] > FitData[0][0]:
201 temp = FitData[0][1]
202 FitData[0][1] = FitData[0][0]
203 FitData[0][0] = temp
204 FitData[0][2] = FitData[0][2] - np.pi/2
205 # mirror orientation into [-90, 90] Deg
206 if FitData[0][2] < -np.pi/2:
207 FitData[0][2] = FitData[0][2] + np.pi
208 elif FitData[0][2] > np.pi/2:
209 FitData[0][2] = FitData[0][2] - np.pi
210 self.Sentinel.info("Ellipse fitted to multi angle line measurement."+\
211 "Parameters (a, b, phi): {}".format(FitData[0]))
212
213 return FitData[0]
214
215 def convertToLinear(self, Measurement, nPixel = 5000):
216 """
217 Converts a 2D image into linear data by finding the line
218 where the line laser hit the sample. The user then selects
219 appropriate boundaries for the 2D to linear conversion.
220 Each pixel is then asigned the shortest distence to the
221 laser line.
222
223 Parameters
224 ----------
225 Measurement : SinglePointMeas object
226 Contains all raw and result data from a single point
227 excitation measurement
228 nPixel : int, default is 5000
229 Number of pixels with the highest intensity
230 used for the line detection
231 """
232 # Find center line
233 Measurement.CenterLine.detectLine(Measurement.RawAmplData, nPixel)
234 # compute the measurement ID for plots file names
235 Measurement.ID = str(Measurement.LockInFreq).replace(".", "_")+\
236 "_Hz_"+\
237 str(int(Measurement.CenterLine.RotAngle*180/np.pi))+\
238 "_DEG"
239 # plot the line detection data
240 Measurement.CenterLine.plotLaserLineDetection(self.SweepData.PlotPath1D,\
241 self.ExpName, Measurement.ID,
242 Measurement.LockInFreq)
243 # Select the boundaries
244 if self.AutoRun == True:
245 Measurement.CenterOffset = 5
246 Measurement.MaxDist = Measurement.MaxDist*2
247 else:
248 self.SelectBoundaries(Measurement, Measurement.MaxDist*2)
249 # convert the amplitude to distance from center line
250 Measurement.LinAmplData = self.CalcLineData(Measurement.RawAmplData,\
251 Measurement.CenterLine,\
252 Measurement.MaxDist,\
253 Measurement.CenterOffset)
254 # convert the phase to distance from center line
255 [PhaseDist, LinearPhase] = self.CalcLineData(Measurement.RawPhaseData,\
256 Measurement.CenterLine,\
257 Measurement.MaxDist,\
258 Measurement.CenterOffset)
259 Measurement.LinPhaseData = np.unwrap([PhaseDist, LinearPhase])
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260 # plot the zoomed amplitude
261 Measurement.plotLineAmplZoom(self.SweepData.PlotPathZoom2D)
262 # plot the zoomed phase
263 Measurement.plotLinePhaseZoom(self.SweepData.PlotPathZoom2D)
264
265 def AnalyzeLineLITMeas(self, RawDataFolder, MinDist, MaxDist):
266 """
267 Analyzes the LIT measurement of a thin film
268 excited with a line source (laser, 3w line heater)
269 at one or multiple frequencies.
270
271 Parameters
272 ----------
273 RawDataFolder : Path object
274 path to the folder containing all the ASCII raw data files
275 MinDist : float, >0 in [mm]
276 default minimal distance used for the linear fit
277 MaxDist : float, >0 in [mm]
278 default maximal distance used for the linear fit
279 """
280 # read in all the files from a sweep
281 self.RawDataFolderPath = RawDataFolder
282 self.SweepData = LIT_SweepData(self.RawDataFolderPath,\
283 self.RScale_Instrument,\
284 self.ExpName, "Line")
285 for Measurement in self.SweepData.SMeasList:
286 # save the default fit distances
287 Measurement.MinDist = MinDist
288 Measurement.MaxDist = MaxDist
289 # convert the 2D Data to 1D radial data
290 self.convertToLinear(Measurement)
291 # fit the linearized amplitude
292 Measurement.LinAmplData[1] = np.log(Measurement.LinAmplData[1])
293 Measurement.AmplFitData = self.LinFitRegion(Measurement.LinAmplData[0],\
294 Measurement.LinAmplData[1],\
295 "Amplitude", MinDist, MaxDist,\
296 Measurement.LockInFreq)
297 # plot the linear amplitude fit
298 Measurement.plotAmplFit(self.SweepData.PlotPath1D)
299 # fit the linearized phase
300 Measurement.PhaseFitData = self.LinFitRegion(Measurement.LinPhaseData[0],\
301 Measurement.LinPhaseData[1],\
302 "Phase", MinDist, MaxDist,\
303 Measurement.LockInFreq)
304 #plot the linear phase fit
305 Measurement.plotPhaseFit(self.SweepData.PlotPath1D)
306 # compute the thermal diffusivity
307 Measurement.ThermalDiff = abs((np.pi*Measurement.LockInFreq)/\
308 (Measurement.AmplFitData[0][0] *\
309 Measurement.PhaseFitData[0][0]))
310 Measurement.StdThermalDiff = self.computeSAlpha(Measurement.LockInFreq,\
311 Measurement.AmplFitData,\
312 Measurement.PhaseFitData)
313 self.Sentinel.info("Thermal diffusivity: {} mmˆ2/s".format(Measurement.ThermalDiff)+\
314 " for Lock-in Frequency: {} Hz".format(Measurement.LockInFreq))
315 # multiangle measurement
316 if len(self.SweepData.SMeasList) > 1:
317 self.SweepData.MultiAngle = True
318 # plot the thermal diffusivit vs. direction
319 self.SweepData.FitEllipse = self.FitAngleTDiff(self.SweepData)
320 # save the data
321 self.SweepData.saveData()
322 # plot the sweep results
323 self.SweepData.plotPolarTDiff()
324 self.SweepData.plotCenterLines()
325 self.SweepData.plotAngleTDiff()
326 # create the report
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327 self.SweepData.createReport()
328 return True

A.3.4 Inherited Fiber LIT-Analysis Class

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from mpl_toolkits.axes_grid1 import make_axes_locatable
4 from matplotlib.colors import LogNorm
5 from matplotlib.ticker import MaxNLocator
6 from scipy.optimize import curve_fit
7 from LIT_SweepData import LIT_SweepData
8 from LIT_Analyzer import LIT_Analyzer
9

10
11 class LIT_FiberAnalyzer(LIT_Analyzer):
12 """Class to analyze LIT measurements of a single fiber"""
13 def __init__(self, ExpName, AutoRun):
14 """
15 Initialize LIT_FiberAnalyzer class
16
17 Parameters
18 ----------
19 ExpName : str
20 Name used for all saved data files
21 """
22 LIT_Analyzer.__init__(self, ExpName, AutoRun)
23
24 def SelectBoundaries(self, Measurement):
25 """
26 Shows the amplitude image with the center.
27 The user can then select an appropriate maximal distance
28 along the fiber.
29
30 Parameters
31 ----------
32 Measurement : LIT_SinglePointMeas object
33 contains all data from a single measurement
34 """
35 def onMouseClick(event):
36
37 if event.xdata != None:
38 # compute the radial distance to the center
39 Measurement.MaxConvDist = int(abs(Measurement.Center[1]-\
40 event.ydata/self.RScale))
41 self.Sentinel.info("New Max Dist selected:"+\
42 " {}".format(Measurement.MaxDist))
43 else:
44 return True
45
46 # display the recieved data to the user
47 self.Sentinel.info("You pressed Key: " + ascii(event.key) +\
48 " at position in Data Koordinates: " + str([event.xdata,\
49 event.ydata]))
50 # change the position of the two horizontal boundary lines
51 TopLine.set_ydata([(Measurement.Center[1] +\
52 Measurement.MaxConvDist)*self.RScale]*2)
53 BottomLine.set_ydata([(Measurement.Center[1] -\
54 Measurement.MaxConvDist)*self.RScale]*2)
55 plt.draw() # redraw everything
56 return True
57
58 # default maximal distance:
59 Measurement.MaxConvDist = int(min(Measurement.RawAmplData[2].shape)/4)
60 fig = Measurement.getRawAmplCanvas()
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61 # connect the MouseClickEvent with the Canvas
62 fig.canvas.mpl_connect('button_press_event', onMouseClick)
63 ax1 = fig.gca()
64 XLimits = ax1.get_xlim()
65 ax1.plot([Measurement.Center[0]*self.RScale],\
66 [Measurement.Center[1]*self.RScale], "ro")
67 ax1.plot(XLimits, [Measurement.Center[1]*self.RScale]*2, "w-")
68
69 # plot the boundary lines
70 TopLine, = ax1.plot(XLimits, [(Measurement.Center[1] +\
71 Measurement.MaxConvDist)*self.RScale]*2, "w--")
72 BottomLine, = ax1.plot(XLimits, [(Measurement.Center[1] -\
73 Measurement.MaxConvDist)*self.RScale]*2, "w--")
74 self.Sentinel.info("Click on the image to"+\
75 " change the vertical distance")
76 plt.show()
77 return True
78
79 def FindCenterFromAmp(self, AmplData, nPoints = 100):
80 """
81 Determines the center of the fiber excitation.
82 The center is the average of the first nPoints
83 pixel with the largest amplitude.
84
85 Parameters
86 ----------
87 AmplData : numpy array
88 Contains the 2D amplitude image
89 nPoints : int
90 Number of points with the largest amplitude to use
91
92 Returns
93 -------
94 XCenter : int
95 Row index for the pixel with maximal ampltiude
96 YCenter : int
97 Line index for the pixel with maximal amplitude
98 """
99 FlatImage = [] # list with (Ampl, x, y)

100 for a in range(0, len(AmplData[0]), 1):
101 for b in range(0, len(AmplData[0][0]), 1):
102 FlatImage.append([AmplData[2][a][b],\
103 AmplData[0][a][b],\
104 AmplData[1][a][b]])
105 FlatImage.sort() # sort by amplitude
106 XCenter = int(round(np.mean([k[1] for k in FlatImage[-nPoints:]]), 0))
107 YCenter = int(round(np.mean([k[2] for k in FlatImage[-nPoints:]]), 0))
108 self.Sentinel.info("Center detected at: " +\
109 str([XCenter, YCenter]))
110 return [XCenter, YCenter]
111
112 def getVerticalLines(self, Img, Xmin, Xmax, YCenter, MaxDist):
113 """
114 Extracts the x and y coordinates of the vertical lines
115 between Xmin and Xmax around YCenter +/- MaxDist from the
116 image.
117
118 Parameters
119 ----------
120 Img : Image Data 2D Numpy meshgrid arrays
121 Xmin : int
122 Horizontal pixel index of the most left line
123 Xmax : int
124 Horizontal pixel index of the most right line
125 YCenter : int
126 Y position of the center pixel
127 Raises
128 ------
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129 ValueError if XPos is out of image bounds
130
131 Returns
132 -------
133 YPosValues : list of float
134 Pixel indices for the vertical line
135 IntesityValues : list of float
136 Values of the corresponding pixels
137 """
138 PointList = []
139 for XIdx in range(Xmin, Xmax + 1, 1):
140 for k in range(int(YCenter - MaxDist),\
141 int(YCenter + MaxDist)+1, 1):
142 PointList.append([abs(k-YCenter)*self.RScale,\
143 Img[2][k][XIdx]])
144 # sort by distance
145 PointList.sort()
146 YPosValues = [P[0] for P in PointList]
147 IntensityValues = [P[1] for P in PointList]
148 return [YPosValues, IntensityValues]
149
150 def extractFiberPixels(self, Meas, Width):
151 """
152 Identifies the vertical pixel line with the highest
153 amplitude.
154
155 Parameters
156 ----------
157 Meas : Single Fiber Measurement Object
158 Contains all raw and processed data from a
159 single fiber measurement
160 Width : int
161 Number of vertical pixel lines to extract
162 on both sides of the center
163 """
164 # compute the measurement ID
165 Meas.ID = str(Meas.LockInFreq).replace(".","_") + "_Hz"
166 # find the maximum amplitude value
167 Meas.Center = self.FindCenterFromAmp(Meas.RawAmplData)
168 # let the user select the vertical bounadries
169 if self.AutoRun == False:
170 self.SelectBoundaries(Meas)
171 else:
172 Measurement.MaxConvDist = Measurement.MaxDist*2
173
174 Xmin = Meas.Center[0] - Width
175 Xmax = Meas.Center[0] + Width
176 #extract the amplitude lines
177 Meas.LinAmplData = self.getVerticalLines(Meas.RawAmplData,\
178 Xmin, Xmax,\
179 Meas.Center[1],\
180 Meas.MaxDist)
181 # extract the phase lines
182 [PhaseDist, LinearPhase] = self.getVerticalLines(Meas.RawPhaseData,\
183 Xmin, Xmax,\
184 Meas.Center[1],\
185 Meas.MaxDist)
186 Meas.LinPhaseData = np.unwrap([PhaseDist, LinearPhase])
187 # plot the zoomed amplitude
188 Meas.plotFiberAmplZoom(self.SweepData.PlotPathZoom2D)
189 # plot the zoomed phase
190 Meas.plotFiberPhaseZoom(self.SweepData.PlotPathZoom2D)
191 return True
192
193 def AnalyzeFiberLITMeas(self, RawDataFolder, MinDist,\
194 MaxDist, Width = 0):
195 """
196 Analyzes the LIT measurement of a thin fiber
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197 excited with a point source (line or point laser)
198 at one or multiple frequencies.
199
200 Parameters
201 ----------
202 RawDataFolder : Path object
203 path to the folder containing all the ASCII raw data files
204 MinDist : float, >0 in [mm]
205 default minimal distance used for the linear fit
206 MaxDist : float, >0 in [mm]
207 default maximal distance used for the linear fit
208 Width : int
209 Number of vertical pixel lines to extract
210 left and right off center
211 default is 0 (only central line)
212 """
213 self.RawDataFolderPath = RawDataFolder
214 self.SweepData = LIT_SweepData(self.RawDataFolderPath,\
215 self.RScale_Instrument,\
216 self.ExpName, "Fiber")
217 for Measurement in self.SweepData.SMeasList:
218 # save the default fit distances
219 Measurement.MinDist = MinDist
220 Measurement.MaxDist = MaxDist
221 # extract the pixel lines with the fiber
222 self.extractFiberPixels(Measurement, Width)
223 ## fit the linearized amplitude
224 Measurement.LinAmplData[1] = np.log(Measurement.LinAmplData[1])
225 Measurement.AmplFitData = self.LinFitRegion(Measurement.LinAmplData[0],\
226 Measurement.LinAmplData[1],\
227 "Amplitude", MinDist, MaxDist,\
228 Measurement.LockInFreq)
229 # plot the linear amplitude fit
230 Measurement.plotAmplFit(self.SweepData.PlotPath1D)
231 ## fit the linearized phase
232 Measurement.PhaseFitData = self.LinFitRegion(Measurement.LinPhaseData[0],\
233 Measurement.LinPhaseData[1],\
234 "Phase", MinDist, MaxDist,\
235 Measurement.LockInFreq)
236 #plot the linear phase fit
237 Measurement.plotPhaseFit(self.SweepData.PlotPath1D)
238 # compute the thermal diffusivity
239 Measurement.ThermalDiff = abs((np.pi*Measurement.LockInFreq)/\
240 (Measurement.AmplFitData[0][0] *\
241 Measurement.PhaseFitData[0][0]))
242 Measurement.StdThermalDiff = self.computeSAlpha(Measurement.LockInFreq,\
243 Measurement.AmplFitData,\
244 Measurement.PhaseFitData)
245 self.Sentinel.info("Thermal diffusivity:"+\
246 " {} mmˆ2/s".format(Measurement.ThermalDiff)+\
247 " for Lock-in Frequency:"+\
248 " {} Hz".format(Measurement.LockInFreq))
249 self.SweepData.AlphaSlope = self.calcAlphaLinReg(self.SweepData)
250 self.SweepData.plotAlphaLinReg()
251 self.Sentinel.info("Thermal diffusivity from the linear regression: "+\
252 " {} +/- {} mmˆ2/s".format(self.SweepData.AlphaSlope[0],\
253 self.SweepData.AlphaSlope[1]))
254 self.SweepData.plotTDiffvsFreq()
255 # save the data
256 self.SweepData.saveData()
257 # create the report
258 self.SweepData.createReport()
259 return True
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A.3.5 Pixel Scale LIT-Analysis Class

1 import logging
2 import matplotlib.pyplot as plt
3 from time import time
4 import pylatex
5 from datetime import datetime
6 import matplotlib.image as mpimg
7 from matplotlib.widgets import RectangleSelector
8 import numpy as np
9

10
11 class RScale_Analyzer():
12 """ Class to analyze the RScale Image"""
13
14 def __init__(self, ImgPath, LinePeriod, ExpName):
15 """
16 Create RScale_Analyzer object
17
18 Parameters
19 ----------
20 ImgPath : Path object
21 Path to the image with the reference wafer
22 LinePeriod : float
23 Periodicity of the lines on the reference wafer in [meters]
24 ExpName : str
25 Name used for all file saveings
26 """
27 self.Sentinel = logging.getLogger("Watchtower")
28 self.ImgPath = ImgPath
29 self.LinePeriod = LinePeriod
30 self.ExpName = ExpName
31 self.RScale = None
32 self.DistList = None
33 self.MeanDist = None
34 # read in the RScale image
35 self.Img = mpimg.imread(ImgPath.absolute())
36 # processed data
37 self.xAvg = []
38 self.IAvg = []
39 self.YCrossings = None
40 self.ICrossings = None
41 self.Middle = None
42 self.AvgSelection = None
43 # path to the plots
44 self.IRImageProcessedPath = None
45 self.AvgCrossPlotPath = None
46
47 def AnalyzeRScale(self):
48 """
49 Determines the pixel size from the reference image.
50 The lines on the reference are averaged. The pixel
51 size is determined from the known line width and
52 pixel number per line.
53 """
54 # let the user select a profile in the image
55 self.SelectAvgRegion()
56 # plot the profile and the RScale image with the selected region
57 self.plotIRImage()
58 self.plotAvgCrossection()
59 # save the profile data
60 self.saveRScaleResults()
61
62 return self.RScale
63
64 def line_select_callback(self, eclick, erelease):
65 """eclick and erelease are the press and release events"""
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66 x1, y1 = eclick.xdata, eclick.ydata
67 x2, y2 = erelease.xdata, erelease.ydata
68 self.AvgSelection = [[int(x1), int(y1)], [int(x2), int(y2)]]
69 # update the profile data
70 self.computeProfile()
71 self.AnalyzeProfile()
72 self.avg_Gray.set_xdata(self.yAvg)
73 self.avg_Gray.set_ydata(self.IAvg)
74 self.avg_line.set_xdata(self.yAvg)
75 self.avg_line.set_ydata(np.ones(len(self.yAvg))*self.Middle)
76 self.avg_crosspt.set_xdata(self.YCrossings)
77 self.avg_crosspt.set_ydata(self.ICrossings)
78 self.avg_ax.set_title("Pixelsize = " + str(round(self.RScale, 4)) +\
79 " mm")
80 self.avg_ax.relim()
81 # update ax.viewLim using the new dataLim
82 self.avg_ax.autoscale_view()
83 asp = np.diff(self.avg_ax.get_xlim())[0] /\
84 np.diff(self.avg_ax.get_ylim())[0]
85 asp /= np.abs(np.diff(self.image_ax.get_xlim())[0] /\
86 np.diff(self.image_ax.get_ylim())[0])
87 self.avg_ax.set_aspect(asp)
88 self.Sentinel.info("({}, {})".format(x1, y1)+\
89 "--> ({}, {})".format(x2, y2))
90 self.Sentinel.info("The button you used was:"+\
91 " {} {}".format(eclick.button, erelease.button))
92 return True
93
94 def SelectAvgRegion(self):
95 """
96 Plots the RScale Image in a matplotlib figure.
97 The use can select the area to average over by
98 click & release of a rectangle.
99 """

100 # initial selected area
101 XStart = int(self.Img.shape[1]/4)
102 XEnd = int(3*self.Img.shape[1]/4)
103 YStart = int(self.Img.shape[0]/4)
104 YEnd = int(3*self.Img.shape[0]/4)
105 self.AvgSelection = [[XStart, YStart],[XEnd, YEnd]]
106 self.computeProfile()
107 self.Sentinel.info("Computed the horizontaly averaged profile.")
108 self.AnalyzeProfile()
109 self.Sentinel.info("Analyzed the profile to detect the midpoints.")
110 # start the interactive plot
111 fig, (self.image_ax, self.avg_ax) = plt.subplots(1, 2, figsize=(16,9))
112 self.image_ax.imshow(self.Img, aspect="equal")
113 self.avg_Gray, = self.avg_ax.plot(self.yAvg, self.IAvg, "k.-", alpha = 0.5)
114 self.avg_line, = self.avg_ax.plot(self.yAvg,\
115 np.ones(len(self.yAvg))*self.Middle, "g-")
116 self.avg_crosspt, = self.avg_ax.plot(self.YCrossings, self.ICrossings, "ro")
117 self.avg_ax.set_xlabel("y-position / pixel")
118 self.avg_ax.set_ylabel("avg. Grayscale Value")
119 self.avg_ax.set_title("Pixelsize = " + str(round(self.RScale, 4)) + " mm")
120 self.image_ax.set_xlabel("x-position / pixel")
121 self.image_ax.set_ylabel("y-position / pixel")
122 self.image_ax.set_title(self.ImgPath)
123 # drawtype is 'box' or 'line' or 'none'
124 RS = RectangleSelector(self.image_ax, self.line_select_callback,
125 drawtype = 'box', useblit=False,
126 button=[1, 3],
127 minspanx=5, minspany=5,
128 spancoords='pixels',
129 interactive=True)
130 RS.to_draw.set_visible(True)
131 fig.canvas.draw()
132 asp = np.diff(self.avg_ax.get_xlim())[0] /\
133 np.diff(self.avg_ax.get_ylim())[0]
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134 asp /= np.abs(np.diff(self.image_ax.get_xlim())[0] /\
135 np.diff(self.image_ax.get_ylim())[0])
136 self.avg_ax.set_aspect(asp)
137 # modify the initial position here
138 RS.extents = (XStart, XEnd, YStart, YEnd)
139 plt.connect('key_press_event', RS)
140 plt.tight_layout()
141 self.Sentinel.info("Click and relese to select averaging area")
142 plt.show()
143 return True
144
145 def computeProfile(self):
146 """
147 Computes a vertical average of the selected region
148 """
149 self.yAvg = []
150 self.IAvg = []
151 for yPos in range(self.AvgSelection[0][1], self.AvgSelection[1][1], 1):
152 self.yAvg.append(yPos)
153 NewAvg = 0
154 for xPos in range(self.AvgSelection[0][0], self.AvgSelection[1][0], 1):
155 NewAvg += self.Img[yPos][xPos][0] # last index for grayscale value
156 PointN = abs(self.AvgSelection[1][1] - self.AvgSelection[0][1])
157 self.IAvg.append(NewAvg / PointN)
158 return True
159
160 def AnalyzeProfile(self):
161 """
162 Computes the pixel size from the 1D profile
163 """
164 # calculate the middle
165 self.Middle = np.mean(self.IAvg)
166 # find all crossings of the middle line
167 [self.YCrossings, self.ICrossings] =\
168 self.FindCrossings(self.yAvg, self.IAvg, self.Middle)
169 # calculate the distances between the crossings
170 self.DistList = self.calcCrossDist(self.YCrossings)
171 # calculate the average distance
172 self.MeanDist = np.mean(self.DistList)
173 self.Sentinel.info("The Average distance is: " +\
174 str(round(self.MeanDist, 4)) + " Pixel")
175 # calculate the pixel size
176 self.RScale = self.LinePeriod / self.MeanDist * 1e3 # mm
177 self.Sentinel.info("The Pixel Size is: " +\
178 str(round(self.RScale, 4)) + " mm / Pixel.")
179 return True
180
181 def plotIRImage(self):
182 """
183 Plots the 2D IR Image
184 """
185 fig, image_ax = plt.subplots(1, 1)
186 image_ax.imshow(self.Img, aspect="equal")
187 plt.xlabel("x-position / Pixel")
188 plt.ylabel("y-position / Pixel")
189 plt.title(self.ImgPath)
190 # drawtype is 'box' or 'line' or 'none'
191 RS = RectangleSelector(image_ax, self.line_select_callback,
192 drawtype = 'box', useblit=False,
193 button=[1, 3],
194 minspanx=5, minspany=5,
195 spancoords='pixels',
196 interactive=False)
197 RS.to_draw.set_visible(True)
198 fig.canvas.draw()
199 RS.extents = (self.AvgSelection[0][0],\
200 self.AvgSelection[1][0],\
201 self.AvgSelection[0][1],\
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202 self.AvgSelection[1][1])
203 plt.tight_layout()
204 self.IRImageProcessedPath = self.ImgPath.parent /\
205 (self.ExpName + "_IRCalibImg.png")
206 plt.savefig(str(self.IRImageProcessedPath.absolute()), dpi = 600)
207 plt.close()
208 self.Sentinel.info("IR calibration image plotted and saved")
209 return True
210
211 def plotAvgCrossection(self):
212 """
213 Plots the 1D averaged crossection
214 """
215 fig = plt.figure()
216 plt.plot(self.yAvg, self.IAvg, "k.-", alpha = 0.5)
217 plt.plot(self.yAvg, np.ones(len(self.yAvg))*self.Middle, "g-")
218 plt.plot(self.YCrossings, self.ICrossings, "ro")
219 plt.xlabel("y-position / pixel")
220 plt.ylabel("avg. Grayscale Value")
221 plt.title("Pixel size = " + str(round(self.RScale, 4)) + " mm")
222 plt.tight_layout()
223 self.AvgCrossPlotPath = self.ImgPath.parent /\
224 (self.ExpName + "_CalibAvgCross.png")
225 plt.savefig(str(self.AvgCrossPlotPath.absolute()), dpi = 600)
226 plt.close()
227 self.Sentinel.info("RScale data plotted and saved")
228 return True
229
230 def calcCrossDist(self, Cross):
231 """
232 Computes the length of a line
233
234 Parameters
235 ----------
236 Cross : list
237 List of all the crossing x-positions
238
239 Returns
240 -------
241 DistList : list
242 List with all the next neighbour distances
243 """
244 DistList = []
245 for Pos in range(1, len(Cross), 1):
246 DistList.append(Cross[Pos] - Cross[Pos-1])
247 return DistList
248
249 def FindCrossings(self, x, y, Middle):
250 """
251 Detects the closest pixels to the center line
252
253 Parameters
254 ----------
255 x,y : list of float
256 Averaged horizontal profile of the line image
257 Middle : float
258 y-value of the central line
259
260 Returns
261 -------
262 [CrossListX, CrossListY] : list of list of floats
263 X and Y coordinates of the pixels at the crossings
264 """
265 CrossListX = []
266 CrossListY = []
267 for Pos in range(1, len(x), 1):
268 # positive crossing
269 if y[Pos-1] < Middle and y[Pos] >= Middle:

A.3 Lock-In Thermography Analysis 393



270 CrossListX.append((x[Pos-1] + x[Pos])/2)
271 CrossListY.append((y[Pos-1] + y[Pos])/2)
272 continue
273 # negative crossing
274 if y[Pos-1] > Middle and y[Pos] <= Middle:
275 CrossListX.append((x[Pos-1] + x[Pos])/2)
276 CrossListY.append((y[Pos-1] + y[Pos])/2)
277 continue
278
279 return [CrossListX, CrossListY]
280
281 def saveRScaleResults(self):
282 """
283 Saves the results from the RScale measurement to .txt
284 """
285 ResultFile = open(self.ExpName + "_RScaleResults.txt", "w")
286 ResultFile.write("Pixel size for experiment: {}\n".format(self.ExpName))
287 TStamp = datetime.fromtimestamp(time()).strftime('%Y-%m-%d %H:%M:%S')
288 ResultFile.write("Processed on: {}\n".format(TStamp))
289 ResultFile.write("Pixel size analysis from image: " +\
290 str(self.ImgPath.absolute()) + "\n")
291 ResultFile.write("Average Pixel Size: " +\
292 str(round(self.RScale, 4)) + " mm / Pixel\n")
293 ResultFile.write("Line Width: " + str(round(self.LinePeriod*1e3, 4)) +\
294 " mm\n")
295 ResultFile.write("Average Distance: " +\
296 str(round(self.MeanDist, 4)) + " Pixel\n")
297 ResultFile.write("# Distances found [Pixel]\n")
298 for D in self.DistList:
299 ResultFile.write(str(D) + "\n")
300 ResultFile.close()
301 self.Sentinel.info("RScale Result data saved.")
302 return True
303
304 def addLatexReport(self, doc):
305 """
306 Adds a one page report.
307
308 The report contains the RScale image,
309 averaged crossection and processed data
310
311 Paramerets
312 ----------
313 doc : pylatex document
314 Contains all the latex data
315
316 Returns
317 -------
318 doc : pylatex document
319 Contains all the latex data
320 """
321 # add Heading
322 with doc.create(pylatex.MiniPage(align='c')):
323 doc.append(pylatex.LargeText(pylatex.utils.bold(self.ExpName)))
324 doc.append(pylatex.LineBreak())
325 doc.append(pylatex.MediumText(pylatex.utils.bold("Pixel Scale Analysis")))
326 # add the 2D IR Calibration Image
327 with doc.create(pylatex.Figure(position = 'h!')) as IRImage:
328 IRImage.add_image("\"" +\
329 str(self.IRImageProcessedPath.absolute())[:-4] + "\"")
330 # add the average IR image crossection
331 with doc.create(pylatex.Figure(position = 'h!')) as AvgImage:
332 AvgImage.add_image("\"" +\
333 str(self.AvgCrossPlotPath.absolute())[:-4] + "\"")
334 # add important fit parameters and results
335 with doc.create(pylatex.Center()):
336 with doc.create(pylatex.Section('Results', numbering = False)):
337 with doc.create(pylatex.Tabular('lcl')) as table:
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338 table.add_hline()
339 table.add_row(("Parameter", "Value", "Unit"))
340 table.add_hline()
341 table.add_row(("Original line period",\
342 str(self.LinePeriod*1e6), "µm"))
343 table.add_row(("Pixel size",\
344 str(round(self.RScale, 7)), " mm/Pixel"))
345 table.add_hline()
346 doc.append(pylatex.utils.NoEscape(r'\pagebreak'))
347 return do

A.3.6 Sweep LIT Data Class

1 import logging
2 from os import listdir
3 import datetime
4 import numpy as np
5 import pylatex
6 import matplotlib.pyplot as plt
7 from LIT_SinglePointMeas import LIT_SinglePointMeas
8 from LIT_SingleLineMeas import LIT_SingleLineMeas
9 from LIT_SingleFiberMeas import LIT_SingleFiberMeas

10
11
12 class LIT_SweepData():
13 """ Class to handle all the data from a LIT sweep"""
14
15 def __init__(self, RawDataFolder, RScaleInstr, ExpName, Type):
16 """
17 Initialize the LIT sweep data class
18
19 Parameters
20 ----------
21 RawDataFolder : Path object
22 Path to the folder with the amplitude and phase images
23 RScaleInstr : RScaleAnalyzer object
24 Contains all information about the RScale
25 ExpName : str
26 Name of the experiment, not the single measurement
27 Type : str
28 Type of single measurement used: "Point", "Line", "Fiber"
29 """
30 self.Sentinel = logging.getLogger("Watchtower")
31 self.RawDataFolder = RawDataFolder
32 self.ExpName = ExpName
33 self.Type = Type
34 self.RScaleInstrument = RScaleInstr
35 self.RScale = RScaleInstr.RScale
36 self.MultiFreq = False
37 self.MultiAngle = False
38 # lists for the sweep data
39 self.FreqList = []
40 self.AmplSlopeList = []
41 self.PhaseSlopeList = []
42 self.SMeasList = []
43 self.AlphaSlope = None
44 self.FitEllipse = None
45 # find all amplitude and phase file pairs in the raw data folder
46 self.FilePairs = self.getAmplPhaseFilePairs(self.RawDataFolder)
47 # read in all the raw data files
48 self.readRawData()
49 # paths for all the plots
50 self.MainFolder = RawDataFolder.resolve().parents[0]
51 self.MainPlotFolder = self.MainFolder/"Plots"
52 self.MainPlotFolder.mkdir(parents = True, exist_ok = True)
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53 # create a folder for the 1D plots
54 self.PlotPath1D = self.MainPlotFolder/"1DPlots"
55 self.PlotPath1D.mkdir(parents = True, exist_ok = True)
56 # path for the zoomed in 2D amplitude and phase
57 self.PlotPathZoom2D = self.MainPlotFolder/"Zoom2DPlots"
58 self.PlotPathZoom2D.mkdir(parents = True, exist_ok = True)
59 # path for the raw 2D data
60 self.PlotPathRaw2D = self.MainPlotFolder/"Raw2DPlots"
61 self.PlotPathRaw2D.mkdir(parents = True, exist_ok = True)
62 # path for the LaTeX report files
63 self.LatexReportPath = self.MainFolder/"Latex Report"
64 self.LatexReportPath.mkdir(parents = True, exist_ok = True)
65 # sweep plot paths
66 self.AlphaLinRegPath = None
67 self.AlphaFreqPath = None
68 self.PolarPlotPath = None
69 self.CLinePlotPath = None
70 self.AngleTDiffPlotPath = None
71 # plot all the raw data files
72 self.plotRawData()
73
74 def getFreqList(self):
75 """
76 Returns a list of the frequencies for each measurement
77 """
78 self.FreqList = []
79 for M in self.SMeasList:
80 self.FreqList.append(M.LockInFreq)
81 return self.FreqList
82
83 def getCenterLineList(self):
84 """
85 Returns a list with all the center lines
86 """
87 self.CLineList = []
88 for M in self.SMeasList:
89 self.CLineList.append(M.CenterLine)
90 return self.CLineList
91
92 def getPhaseSlopeList(self):
93 """
94 Returns two lists (Value, STD) with the phase slope data
95 """
96 Slopes = []
97 Stds = []
98 for M in self.SMeasList:
99 Slopes.append(M.PhaseFitData[0][0])

100 Stds.append(M.PhaseFitData[1])
101 return [Slopes, Stds]
102
103 def getAmplSlopeList(self):
104 """
105 Returns two lists (Value, STD) with the amplitude slope data
106 """
107 Slopes = []
108 Stds = []
109 for M in self.SMeasList:
110 Slopes.append(M.AmplFitData[0][0])
111 Stds.append(M.AmplFitData[1])
112 return [Slopes, Stds]
113
114 def getTDiffList(self):
115 """
116 Returns two lists with the thermal diffusivity and its error
117 """
118 TDiff = []
119 StdTDiff = []
120 for M in self.SMeasList:
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121 TDiff.append(M.ThermalDiff)
122 StdTDiff.append(M.StdThermalDiff)
123 return [TDiff, StdTDiff]
124
125 def plotAlphaLinReg(self):
126 """
127 Plots the linear fit for a multi frequency measurement
128 """
129 [AlphaLinReg, SAlphaLinReg, SlopeProd, SProdError, LinearSlope] = self.AlphaSlope
130 fig = plt.figure()
131 plt.errorbar(self.FreqList, abs(SlopeProd), fmt = "bo",\
132 yerr = SProdError, markersize = 5, label = "Measured")
133 plt.plot([0, max(self.FreqList)], [0, max(self.FreqList) * LinearSlope],\
134 "k-", label = "Linear Fit")
135 plt.xlabel("Frequency / Hz")
136 plt.ylabel("Slope Product / $1/mmˆ2$")
137 plt.title(r"$\alpha$ = " + str(round(AlphaLinReg, 3)) +\
138 "+/-" + str(round(SAlphaLinReg, 3)) + " $mmˆ2/s$ (" +\
139 str(round(SAlphaLinReg/AlphaLinReg*100, 2)) + "% rel. std)")
140 plt.legend(loc = "upper left", numpoints = 1, frameon = False)
141 plt.tight_layout()
142 self.AlphaLinRegPath = self.MainFolder / (self.ExpName + "_AlphaSlopeFit.png")
143 plt.savefig(str(self.AlphaLinRegPath.absolute()), dpi = 600)
144 plt.close()
145 return True
146
147 def plotTDiffvsFreq(self):
148 FreqList = self.getFreqList()
149 [TDiff, StdTDiff] = self.getTDiffList()
150 # plot the data and the fit
151 fig = plt.figure()
152 plt.errorbar(FreqList, TDiff, fmt = "bo",\
153 yerr = StdTDiff, markersize = 5, label = "Measured")
154 plt.plot([0, max(FreqList)], [np.mean(TDiff)]*2, "k-", label = "Mean")
155 plt.plot([0, max(FreqList)], [np.mean(TDiff) + np.std(TDiff)]*2,\
156 "k--", label = "+/- Sigma")
157 plt.plot([0, max(FreqList)], [np.mean(TDiff) - np.std(TDiff)]*2,\
158 "k--")
159 plt.ylim(np.mean(TDiff) - 3*np.std(TDiff),\
160 np.mean(TDiff) + 3*np.std(TDiff))
161 plt.xlabel("Frequency / Hz")
162 plt.ylabel("Thermal Diffusivity / mmˆ2/s")
163 plt.title(r"$\alpha$ = " + str(round(np.mean(TDiff), 3)) +\
164 "+/-" + str(round(np.std(TDiff), 3)) + " $mmˆ2/s$ (" +\
165 str(round(np.std(TDiff)/np.mean(TDiff)*100, 2)) + "% rel. std)")
166 plt.legend(loc = "upper left", numpoints = 1, frameon = False)
167 plt.tight_layout()
168 self.AlphaFreqPath = self.MainFolder / (self.ExpName + "_AlphavsFreq.png")
169 plt.savefig(str(self.AlphaFreqPath.absolute()), dpi = 600)
170 plt.close()
171 return True
172
173 def plotPolarTDiff(self):
174 """
175 Plots the thermal diffusivity with error bars direction dependent
176 in a polar coordinate system.
177 """
178 [TDiff, StdTDiff] = self.getTDiffList()
179 CLineList = self.getCenterLineList()
180 ForwardDir = [CL.HeatFlowAngles[0] for CL in CLineList]
181 BackwardDir = [CL.HeatFlowAngles[1] for CL in CLineList]
182 theta = np.linspace(-np.pi, np.pi, 1000)
183 EllipsePlot = self.FitEllipse[0] * self.FitEllipse[1]/\
184 (np.sqrt((self.FitEllipse[0]*\
185 np.cos(theta - self.FitEllipse[2]))**2 +\
186 (self.FitEllipse[1]*\
187 np.sin(theta - self.FitEllipse[2]))**2))
188 # plot in both directions (Angle, Angle + 180Deg)
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189 fig = plt.figure()
190 ax = plt.subplot(111, projection='polar')
191 ax.plot(theta, EllipsePlot, "k--")
192 ax.errorbar(ForwardDir, TDiff, yerr = StdTDiff,\
193 fmt = "o", c = "C0", capsize=0, markersize = 10)
194 ax.errorbar(BackwardDir, TDiff, yerr = StdTDiff,\
195 fmt = "o", c = "C1", capsize=0, markersize = 10)
196 #ax.set_rlabel_position(-22.5)
197 ax.set_rmax(max(TDiff)*1.2)
198 ax.set_rmin(0)
199 ax.set_xticks(np.array([-135, -90, -45, 0, 45, 90, 135, 180])/180*np.pi)
200 ax.set_thetalim(-np.pi, np.pi)
201 ax.grid(True)
202 ax.set_title(self.ExpName + " TDiff / $mmˆ2/s$", pad = 20)
203 #plt.legend(loc = "upper left", numpoints = 1, frameon = False)
204 plt.tight_layout()
205 self.PolarPlotPath = self.MainFolder / (self.ExpName + "_PolarPlot.png")
206 plt.savefig(str(self.PolarPlotPath.absolute()), dpi = 600)
207 plt.close()
208 return True
209
210 def plotCenterLines(self):
211 """
212 Plots all center points and lines together to visualize the rotation offset.
213 """
214 CLineList = self.getCenterLineList()
215 Directions = [CL.RotAngle for CL in CLineList]
216 CP_X = [CL.CenterPoint[0]*self.RScale for CL in CLineList]
217 CP_Y = [CL.CenterPoint[1]*self.RScale for CL in CLineList]
218 ArrowLength = 10
219 fig = plt.figure()
220 plt.plot(CP_X, CP_Y, "ro", label = "Centers")
221 plt.plot([np.mean(CP_X)], [np.mean(CP_Y)], "bo", label = "Rotation Center")
222 ax = plt.gca()
223 ax.set_aspect("equal")
224
225 # plot all the laser lines with 60 pixel length
226 for CL in CLineList:
227 LMin = np.array(CL.CenterPoint) + 30 * np.array(CL.Direction)
228 LMax = np.array(CL.CenterPoint) - 30 * np.array(CL.Direction)
229 plt.plot([LMin[0]*self.RScale, LMax[0]*self.RScale],\
230 [LMin[1]*self.RScale, LMax[1]*self.RScale], "k-", lw = 1)
231 EndX = ArrowLength*np.cos(CL.HeatFlowAngles[0])
232 EndY = ArrowLength*np.sin(CL.HeatFlowAngles[0])
233 ax.arrow(CL.CenterPoint[0]*self.RScale, CL.CenterPoint[1]*self.RScale,\
234 EndX*self.RScale, EndY*self.RScale, head_width=2*self.RScale,\
235 head_length=4*self.RScale, fc='k', ec='k')
236 EndX = ArrowLength*np.cos(CL.HeatFlowAngles[1])
237 EndY = ArrowLength*np.sin(CL.HeatFlowAngles[1])
238 ax.arrow(CL.CenterPoint[0]*self.RScale, CL.CenterPoint[1]*self.RScale,\
239 EndX*self.RScale, EndY*self.RScale, head_width=2*self.RScale,\
240 head_length=4*self.RScale, fc='k', ec='k')
241 ax.set_xlabel("x-position / mm")
242 ax.set_ylabel("y-position / mm")
243 # create a square image around the center point
244 YLimits = ax.get_ylim()
245 XLimits = ax.get_xlim()
246 Extent = max([abs(XLimits[0] - np.mean(CP_X)),\
247 abs(XLimits[1] - np.mean(CP_X)),\
248 abs(YLimits[0] - np.mean(CP_Y)),\
249 abs(YLimits[1] - np.mean(CP_Y))])*1.1
250 ax.set_xlim([np.mean(CP_X) - Extent,\
251 np.mean(CP_X) + Extent])
252 ax.set_ylim([np.mean(CP_Y) - Extent,\
253 np.mean(CP_Y) + Extent])
254 #plt.legend(loc = "upper right")
255 plt.tight_layout()
256 self.CLinePlotPath = self.MainFolder / (self.ExpName + "_CenterLines.png")
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257 plt.savefig(str(self.CLinePlotPath.absolute()), dpi = 600)
258 plt.close()
259 return True
260
261 def plotAngleTDiff(self):
262 """
263 Plots the thermal diffusiviy vs. the angle in a cartesian coordinate system
264 """
265 [TDiff, StdTDiff] = self.getTDiffList()
266 CLineList = self.getCenterLineList()
267 ForwardDir = [CL.HeatFlowAngles[0]*180/np.pi for CL in CLineList]
268 BackwardDir = [CL.HeatFlowAngles[1]*180/np.pi for CL in CLineList]
269 theta = np.linspace(-np.pi, np.pi, 1000)
270 EllipsePlot = self.FitEllipse[0] * self.FitEllipse[1]/\
271 (np.sqrt((self.FitEllipse[0]*\
272 np.cos(theta - self.FitEllipse[2]))**2 +\
273 (self.FitEllipse[1]*\
274 np.sin(theta - self.FitEllipse[2]))**2))
275 fig = plt.figure()
276 plt.plot(theta*180/np.pi, EllipsePlot, "k--", label = "Ellipse Fit")
277 plt.errorbar(ForwardDir, TDiff, yerr = StdTDiff,\
278 fmt = "o", c = "C0", capsize = 0,\
279 markersize = 10, label = "Forward")
280 plt.errorbar(BackwardDir, TDiff, yerr = StdTDiff,\
281 fmt = "o", c = "C1", capsize = 0,\
282 markersize = 10, label = "Backward")
283 plt.xlabel("Direction / Deg")
284 plt.ylabel("Thermal Diffusivity / $mmˆ2/s$")
285 plt.ylim(0, max(TDiff) * 1.1)
286 plt.xlim(-180, 180)
287 plt.legend(loc = "lower right")
288 plt.tight_layout()
289 self.AngleTDiffPlotPath = self.MainFolder / (self.ExpName + "_AngleTDiff.png")
290 plt.savefig(str(self.AngleTDiffPlotPath.absolute()), dpi = 600)
291 plt.close()
292 return True
293
294 def plotRawData(self):
295 """
296 Plots all the single measurements into the
297 PlotPathRaw2D folder
298 """
299 for RawData in self.SMeasList:
300 RawData.plotRawAmplitude(self.PlotPathRaw2D)
301 RawData.plotRawPhase(self.PlotPathRaw2D)
302 return True
303
304 def getAmplPhaseFilePairs(self, Folder):
305 """
306 Extracts all amplitude and phase file pairs
307 from the specified folder. Amplitude files have _Amp.txt at
308 the end. Phase files have _Phase.txt at the end. Pairs share
309 an identical file name bevore the _Amp.txt or _Phase.txt part.
310
311 Parameters
312 ----------
313 Folder : Path
314 Path to the folder with all raw data files (.txt)
315
316 Raises
317 ------
318 ValueError if Folder is not a directory
319
320 Returns
321 -------
322 FilePairs : list
323 List of all amplitude and phase file pairs
324 """
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325 if Folder.is_dir() == False:
326 ErrorMsg = "The path: {}".format(Folder.absolute())+\
327 " is not a directory."
328 self.Sentinel.error(ErrorMsg)
329 assert ValueError(ErrorMsg)
330 FilePairs = []
331 # go through all the files
332 for File in Folder.iterdir():
333 # if there is an amplitude file
334 if File.is_file() and File.stem[-4:] == "_Amp":
335 PhaseFile = Folder/(File.stem[:-4] + "_Phase.txt")
336 # check if the corresponding phase file exists
337 if PhaseFile.is_file() == True:
338 FilePairs.append([File, PhaseFile])
339 self.Sentinel.info("Found {} Amplitude".format(len(FilePairs))+\
340 " & Phase file pairs.")
341 return FilePairs
342
343 def readRawData(self):
344 """
345 Reads in all the amplitude and phase file pairs
346 Differentiates between the different measurement types:
347 "Point", "Line", "Fiber"
348
349 Raises
350 ------
351 ValueError if Type is not in ["Point", "Line", "Fiber"]
352 """
353 # determine the right type of single measurement class
354 if self.Type == "Point":
355 DataClass = LIT_SinglePointMeas
356 elif self.Type == "Line":
357 DataClass = LIT_SingleLineMeas
358 elif self.Type == "Fiber":
359 DataClass = LIT_SingleFiberMeas
360 else:
361 ErrorMsg = "The Type : {}".format(self.Type)+ " is not recognized."+\
362 "Use one of: [Point, Line, Fiber]"
363 self.Sentinel.Error(ErrorMsg)
364 raise ValueError(ErrorMsg)
365 # read in all file pairs with this measurement class
366 self.SMeasList = [] # empty the single measurement list
367 for FPair in self.FilePairs:
368 self.SMeasList.append(DataClass(FPair[0], FPair[1],\
369 self.RScale, self.ExpName))
370 self.Sentinel.info("All raw data files of type: {} are loaded.".format(self.Type))
371 return True
372
373 def saveData(self):
374 """
375 Saves all the results from the analysis into one .txt file.
376 """
377 FilePath = self.MainFolder / (self.ExpName + "_Results.txt")
378 DataFile = open(str(FilePath.absolute()), "w")
379 # write the header
380 DataFile.write("Experiment Name: " + self.ExpName + "\n")
381 DataFile.write("Processed on: {:%d-%m-%Y %H:%M:%S}".format(datetime.datetime.now()) + "\n")
382 DataFile.write("Measurement type: {}\n".format(self.Type))
383 # save the ellipse fit data too
384 if self.Type == "Line":
385 DataFile.write("Major Axis thermal diffusivity (mmˆ2/s):"+\
386 " {}\n".format(round(self.FitEllipse[0], 5)))
387 DataFile.write("Minor Axis thermal diffusivity (mmˆ2/s):"+\
388 " {}\n".format(round(self.FitEllipse[1], 5)))
389 DataFile.write("Direction of the major axis (degree):"+\
390 " {}\n".format(round(self.FitEllipse[2]*180/np.pi, 5)))
391 DataFile.write("#Result Data:")
392 DataFile.write("FileName \t LockInFrequency / Hz \t Direction 1 / DEG \t"
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393 "Direction 2 / DEG \t TDiff / mmˆ2/s \t Sigma TDiff /"
394 " mmˆ2/s \t LeftPhaseBound / mm \t RightPhaseBound / mm \t "
395 "Phase Slope / rad/mm\t Sigma Phase Slope rad/mm \t Phase y-axis /"
396 " rad \t LeftAmplBound / mm \t RightAmplBound \t "+\
397 "Ampl Slope \t Sigma Ampl Slope \t Ampl y-axis\n")
398 for M in self.SMeasList:
399 RString = M.AmplPath.stem[:-4] + "\t"
400 RString += str(M.LockInFreq) + "\t"
401 if self.Type == "Line":
402 RString += str(M.CenterLine.RotAngle*180/np.pi-90) + "\t"
403 RString += str(M.CenterLine.RotAngle*180/np.pi+90) + "\t"
404 else:
405 RString += "NA" + "\t"
406 RString += str(M.ThermalDiff) + "\t"
407 RString += str(M.StdThermalDiff) + "\t"
408 RString += str(M.PhaseFitData[2][0][0]) + "\t"
409 RString += str(M.PhaseFitData[2][1][0]) + "\t"
410 RString += str(M.PhaseFitData[0][0]) + "\t"
411 RString += str(M.PhaseFitData[1]) + "\t"
412 RString += str(M.PhaseFitData[0][1]) + "\t"
413 RString += str(M.AmplFitData[2][0][0]) + "\t"
414 RString += str(M.AmplFitData[2][1][0]) + "\t"
415 RString += str(M.AmplFitData[0][0]) + "\t"
416 RString += str(M.AmplFitData[1]) + "\t"
417 RString += str(M.AmplFitData[0][1]) + "\n"
418 DataFile.write(RString)
419 DataFile.close()
420 self.Sentinel.info("Saved all results to: " + str(FilePath))
421 return True
422
423 def createReport(self):
424 """
425 Creates a LaTeX report of all the result and the raw data.
426 """
427 # define the document
428 DocPath = self.LatexReportPath / (self.ExpName + "_Report")
429 doc = pylatex.Document(str(DocPath.absolute()),
430 documentclass = "article",
431 document_options = ["a4paper", "pdftex", "12pt"],
432 geometry_options = {"left" : "3cm",
433 "right" : "3cm",
434 "top" : "3cm",
435 "bottom" : "3cm"})
436 header = pylatex.PageStyle("header")
437 # Create left header
438 with header.create(pylatex.Head("L")):
439 header.append("University of Bayreuth")
440 # Create center header
441 with header.create(pylatex.Head("C")):
442 header.append("LIT Report")
443 # Create right header
444 with header.create(pylatex.Head("R")):
445 header.append(str(datetime.date.today()))
446 # Create center footer
447 with header.create(pylatex.Foot("C")):
448 header.append(pylatex.simple_page_number())
449 doc.preamble.append(header)
450 doc.change_document_style("header")
451 #create the first page with the main results
452 # add Heading
453 with doc.create(pylatex.MiniPage(align='c')):
454 doc.append(pylatex.LargeText(pylatex.utils.bold("Report for: " + self.ExpName)))
455 doc.append(pylatex.LineBreak())
456 doc.append(pylatex.LargeText(pylatex.utils.bold("Measurment Type: " + self.Type)))
457 if self.Type == "Line":
458 with doc.create(pylatex.Figure(position='h!')) as FitPlots:
459 with doc.create(pylatex.SubFigure(position='c',
460 width=pylatex.utils.NoEscape(r'0.5\linewidth'))) as FitAmplPlot:
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461 FitAmplPlot.add_image("\"" + str(self.PolarPlotPath.absolute())[:-4] + "\"",
462 width = pylatex.utils.NoEscape(r'\linewidth'))
463 with doc.create(pylatex.SubFigure(position='c',
464 width=pylatex.utils.NoEscape(r'0.5\linewidth'))) as FitPhasePlot:
465 FitPhasePlot.add_image("\"" + str(self.CLinePlotPath.absolute())[:-4] + "\"",
466 width = pylatex.utils.NoEscape(r'\linewidth'))
467 with doc.create(pylatex.Figure(position = 'h!')) as LinRegImage:
468 LinRegImage.add_image("\"" + str(self.AngleTDiffPlotPath.absolute())[:-4] + "\"",\
469 width = pylatex.utils.NoEscape(r'0.6\linewidth'))
470 # add important fit parameters and results
471 with doc.create(pylatex.Center()):
472 with doc.create(pylatex.Section('Results', numbering = False)):
473 with doc.create(pylatex.Tabular('ccl')) as table:
474 table.add_hline()
475 table.add_row(("Frequency / Hz", "Direction / Deg",\
476 "Thermal Diffusivity / mmˆ2/s"))
477 table.add_hline()
478 for M in self.SMeasList:
479 FirstAngle = int(M.CenterLine.HeatFlowAngles[0]*180/np.pi)
480 OppositeAngle = int(M.CenterLine.HeatFlowAngles[1]*180/np.pi)
481 Angles = str(FirstAngle) + "°; "+ str(OppositeAngle) + "°"
482 DataTuple = (str(M.LockInFreq), Angles,\
483 str(round(M.ThermalDiff, 5)) + " +/- " +\
484 str(round(M.StdThermalDiff, 8)) + " (" +\
485 str(round(M.StdThermalDiff/M.ThermalDiff*100,4))+\
486 " % rel.)")
487 table.add_row(DataTuple)
488 table.add_hline()
489 table.add_row(("Major Axis / mmˆ2/s",\
490 "Minor Axis / mmˆ2/s",\
491 "Orientation / Deg"))
492 table.add_hline()
493 print(self.FitEllipse)
494 table.add_row((str(round(self.FitEllipse[0], 5)),\
495 str(round(self.FitEllipse[1], 5)),\
496 str(int(self.FitEllipse[2]*180/np.pi))))
497 table.add_hline()
498 table.add_row(("Anisotropy Ratio", "", ""))
499 table.add_hline()
500 table.add_row((str(round(self.FitEllipse[0]/\
501 self.FitEllipse[1], 5)), "", ""))
502 table.add_hline()
503 elif self.Type == "Point":
504 # include the alpha lin fit plot
505 with doc.create(pylatex.Figure(position = 'h!')) as LinRegImage:
506 LinRegImage.add_image("\"" + str(self.AlphaLinRegPath.absolute())[:-4] + "\"",\
507 width = pylatex.utils.NoEscape(r"0.6\textwidth"))
508 with doc.create(pylatex.Figure(position = 'h!')) as AlphaVSFreqImage:
509 AlphaVSFreqImage.add_image("\"" + str(self.AlphaFreqPath.absolute())[:-4] + "\"",\
510 width = pylatex.utils.NoEscape(r"0.6\textwidth"))
511 # add important fit parameters and results
512 with doc.create(pylatex.Center()):
513 with doc.create(pylatex.Section('Results', numbering = False)):
514 with doc.create(pylatex.Tabular('cc')) as table:
515 table.add_hline()
516 table.add_row(("Frequency / Hz", "Thermal Diffusivity /"+\
517 " mmˆ2/s"))
518 table.add_hline()
519 for M in self.SMeasList:
520 DataTuple = (str(M.LockInFreq),\
521 str(round(M.ThermalDiff, 5)) + " +/- " +\
522 str(round(M.StdThermalDiff, 8)) + " (" +\
523 str(round(M.StdThermalDiff/M.ThermalDiff*100,2))+\
524 " % rel.)")
525 table.add_row(DataTuple)
526 table.add_hline()
527 elif self.Type == "Fiber":
528 # include the alpha lin fit plot
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529 with doc.create(pylatex.Figure(position = 'h!')) as LinRegImage:
530 LinRegImage.add_image("\"" + str(self.AlphaLinRegPath.absolute())[:-4] + "\"",\
531 width = pylatex.utils.NoEscape(r"0.6\textwidth"))
532 with doc.create(pylatex.Figure(position = 'h!')) as AlphaVSFreqImage:
533 AlphaVSFreqImage.add_image("\"" + str(self.AlphaFreqPath.absolute())[:-4] + "\"",\
534 width = pylatex.utils.NoEscape(r"0.6\textwidth"))
535 # add important fit parameters and results
536 with doc.create(pylatex.Center()):
537 with doc.create(pylatex.Section('Results', numbering = False)):
538 with doc.create(pylatex.Tabular('cc')) as table:
539 table.add_hline()
540 table.add_row(("Frequency / Hz", "Thermal Diffusivity /"+\
541 " mmˆ2/s"))
542 table.add_hline()
543 for M in self.SMeasList:
544 DataTuple = (str(M.LockInFreq),\
545 str(round(M.ThermalDiff, 5)) + " +/- " +\
546 str(round(M.StdThermalDiff, 8)) + " (" +\
547 str(round(M.StdThermalDiff/M.ThermalDiff*100,2))+\
548 " % rel.)")
549 table.add_row(DataTuple)
550 table.add_hline()
551 doc.append(pylatex.utils.NoEscape(r"\pagebreak"))
552 # add the pixel calibration procedure
553 doc = self.RScaleInstrument.addLatexReport(doc)
554 # include the analyzed data from all measurements
555 for M in self.SMeasList:
556 doc = M.addLatexReport(doc)
557 doc.generate_tex()
558 return True

A.3.7 Single LIT Measurement Data Class

1 import logging
2 import numpy as np
3 import pylatex
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.axes_grid1 import make_axes_locatable
6 from matplotlib.colors import LogNorm
7 from matplotlib.ticker import MaxNLocator
8
9 class LIT_SingleMeas():

10 """ Class to handle all the data from a single measurement"""
11
12 def __init__(self, AmplPath, PhasePath, RScale, ExpName):
13 """
14 Initialize the SingleFreqData class
15
16 Parameters
17 ----------
18 AmplPath : Path
19 Path to the file containing the 2D amplitude data for the sample
20 PhasePath : Path
21 Path to the file containing the 2D phase data for the sample
22 RScale : float
23 Conversion factor from pixel to m in units of [m / Pixel]
24 ExpName : str
25 Name of the experiment, not the single measurement
26 """
27 self.Sentinel = logging.getLogger("Watchtower")
28 self.AmplPath = AmplPath
29 self.PhasePath = PhasePath
30 self.ExpName = ExpName
31 self.RScale = RScale
32 self.MinDist = None # minimal
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33 self.MaxDist = None # and maximal distance for lin fits
34 self.ID = None
35 # read in the raw 2Ddata and remove negative amplitudes
36 self.RawAmplData = self.getRawDataLIT(self.AmplPath, "Amplitude")
37 self.RawPhaseData = self.getRawDataLIT(self.PhasePath, "Phase")
38 self.RawAmplData[2] = np.abs(self.RawAmplData[2])
39 self.LockInFreq = self.RawAmplData[3]
40 # data for the single frequency linear fits
41 self.AmplFitData = None
42 self.PhaseFitData = None
43 self.LinAmplData = None
44 self.LinPhaseData = None
45 self.ThermalDiff = None
46 self.StdThermalDiff = None
47 # paths to the different plots
48 self.AmplFitPlotPath = None
49 self.PhaseFitPlotPath = None
50 self.AmplZoomPlotPath = None
51 self.PhaseZoomPlotPath = None
52
53 def getRawAmplCanvas(self):
54 """
55 Creates the figure and axis with the default amplitude
56 plot. Can be extended by different other functions later.
57
58 Returns
59 -------
60 fig : matplotlib.figure object
61 Contains the figure with the plot
62 """
63 fig = plt.figure(tight_layout = True)
64 ax1 = plt.subplot(aspect = "equal")
65 plot1 = ax1.pcolormesh(self.RawAmplData[0]*self.RScale,\
66 self.RawAmplData[1]*self.RScale,\
67 self.RawAmplData[2],
68 norm=LogNorm(vmin=self.RawAmplData[2].min(),\
69 vmax=self.RawAmplData[2].max()),\
70 cmap = "viridis")
71 ax1.set_title("Amplitude / mK, f = " + str(self.LockInFreq) + " Hz")
72 ax1.set_aspect("equal")
73 ax1.set_xlabel("x-position / mm")
74 ax1.set_ylabel("y-position / mm")
75 ax1.yaxis.set_major_locator(MaxNLocator(integer=True))
76 ax1.xaxis.set_major_locator(MaxNLocator(integer=True))
77 fig.colorbar(plot1, ax = ax1, fraction=0.046, pad=0.04)
78 return fig
79
80 def getRawPhaseCanvas(self):
81 """
82 Creates the figure and axis with the default phase
83 plot. Can be extended by different other functions later.
84
85 Returns
86 -------
87 fig : matplotlib.figure object
88 Contains the figure with the plot
89 """
90 fig = plt.figure(tight_layout = True)
91 ax1 = plt.subplot(aspect = "equal")
92 plot1 = ax1.pcolormesh(self.RawPhaseData[0]*self.RScale,
93 self.RawPhaseData[1]*self.RScale,\
94 self.RawPhaseData[2]*180/np.pi, cmap = "bwr")
95 ax1.set_title("Phase / DEG, f = " + str(self.LockInFreq) + " Hz")
96 ax1.set_aspect("equal")
97 ax1.set_xlabel("x-position / mm")
98 ax1.set_ylabel("y-position / mm")
99 ax1.yaxis.set_major_locator(MaxNLocator(integer=True))

100 ax1.xaxis.set_major_locator(MaxNLocator(integer=True))
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101 fig.colorbar(plot1, ax = ax1, fraction=0.046, pad=0.04,\
102 ticks = [-180, -90, 0, 90, 180])
103 return fig
104
105 def getRawDataLIT(self, Path, Type):
106 """
107 Reads the 2D ASCII images from the files
108
109 Parameters
110 ----------
111 Path : Path
112 Path to the file containing the 2D data
113 Type : str
114 Either "Amplitude" or "Phase"
115 """
116 DataFile = open(str(Path.absolute()), "r")
117 datalines = DataFile.readlines()
118 DataFile.close()
119 PixelData = []
120 XPixel = []
121 YPixel = []
122 LockInFreq = float(datalines[9][20:-1])
123 # for rad <-> deg conversion
124 ConvFactor = 1
125 if Type == "Phase":
126 ConvFactor = np.pi / 180
127 for L in range(50,len(datalines)-1,1):
128 TempLine = datalines[L].split(";")
129 XLine = []
130 YLine = []
131 PixelLine = []
132 for R in range(0,len(TempLine)-1,1):
133 PValue = float(TempLine[R])*ConvFactor+0.001
134 if Type == "Amplitude":
135 PixelLine.append(max([0.001, PValue]))
136 else:
137 PixelLine.append(PValue)
138 XLine.append(R)
139 YLine.append(L-50)
140
141 PixelData.append(PixelLine)
142 XPixel.append(XLine)
143 YPixel.append(YLine)
144
145 return [np.array(XPixel), np.array(YPixel), np.array(PixelData), LockInFreq]
146
147 def plotRawAmplitude(self, PlotPathRaw2D):
148 """
149 Plots the 2D amplitude data into the PlotPathRaw2D folder
150
151 Parameters
152 ----------
153 PlotPathRaw2D : Path object
154 path to the folder for the raw 2D plots
155 """
156 fig = self.getRawAmplCanvas()
157 PlotPath = PlotPathRaw2D / (str(self.AmplPath.stem[:-4])+\
158 "_Raw2DAmpl.png")
159 plt.savefig(str(PlotPath.absolute()), dpi = 600)
160 plt.close()
161 self.Sentinel.info(str(self.AmplPath.stem[:-4])+\
162 " 2D Raw Amplitude plotted")
163 return True
164
165 def plotRawPhase(self, PlotPathRaw2D):
166 """
167 Plots the 2D phase data into the PlotPathRaw2D folder
168
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169 Parameters
170 ----------
171 PlotPathRaw2D : Path object
172 path to the folder for the raw 2D plots
173 """
174 fig = self.getRawPhaseCanvas()
175 PlotPath = PlotPathRaw2D / (str(self.PhasePath.stem[:-6])+\
176 "_Raw2DPhase.png")
177 plt.savefig(str(PlotPath.absolute()), dpi = 600)
178 plt.close()
179 self.Sentinel.info(str(self.PhasePath.stem[:-6])+\
180 " 2D Raw Phase plotted")
181 return True
182
183 def plotAmplFit(self, PlotPath1D):
184 """
185 Plots the linear amplitude fit into the PlotPath1D
186
187 Parameters
188 ----------
189 PlotPath1D : Path object
190 path to the folder for the 1D plots
191 """
192 # unpack the data
193 EndPosList = self.AmplFitData[2]
194 Left = EndPosList[0][1]
195 Right = EndPosList[1][1]
196 LinDist = self.LinAmplData[0]
197 LinAmpl = self.LinAmplData[1]
198 # plot the linear fit
199 fig = plt.figure()
200 ax = plt.subplot()
201 ax.plot(LinDist, LinAmpl, ".", markersize = 1)
202 X_Line = [LinDist[Left], LinDist[Right]]
203 Y_Line = self.AmplFitData[0][0] * np.array(X_Line) +\
204 self.AmplFitData[0][1]
205 # create two boundary dummy plots where the data is updated later on
206 YExtent = ax.get_ylim()
207 LeftBound, = ax.plot([LinDist[Left]]*2, YExtent, "k--")
208 RightBound, = ax.plot([LinDist[Right]]*2, YExtent, "k--")
209 # create a plot for the linear fit
210 FitGraph, = ax.plot(X_Line, Y_Line, "r-", lw = 2, label = "Linear Fit")
211 ax.set_xlabel("Distance / mm")
212 ax.set_ylabel("Linearized Amplitude")
213 ax.set_title("Amplitude, f = " + str(self.LockInFreq) + " Hz")
214 ax.set_ylim(-2)
215 plt.tight_layout()
216 self.AmplFitPlotPath = PlotPath1D /\
217 (self.ExpName + "_" + self.ID + "_AmplFit.png")
218 plt.savefig(str(self.AmplFitPlotPath.absolute()), dpi = 600)
219 plt.close()
220 self.Sentinel.info("Linear amplitude fit for: " + self.ExpName +\
221 "_" + self.ID + " plotted.")
222 return True
223
224 def plotPhaseFit(self, PlotPath1D):
225 """
226 Plots the linear phase fit into the PlotPath1D
227
228 Parameters
229 ----------
230 PlotPath1D : Path object
231 path to the folder for the 1D plots
232 """
233 # unpack the data
234 EndPosList = self.PhaseFitData[2]
235 Left = EndPosList[0][1]
236 Right = EndPosList[1][1]
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237 LinDist = self.LinPhaseData[0]
238 LinPhase = self.LinPhaseData[1]
239 fig = plt.figure()
240 ax = plt.subplot()
241 ax.plot(LinDist, LinPhase, ".", markersize = 1)
242 # find tight y-limits for points between -2pi and 2pi
243 NewYMin = min([P for P in LinPhase if P < 2*np.pi and P > -2*np.pi])
244 NewYMax = max([P for P in LinPhase if P < 2*np.pi and P > -2*np.pi])
245 # plot the linear fit
246 X_Line = [LinDist[Left], LinDist[Right]]
247 Y_Line = self.PhaseFitData[0][0] * np.array(X_Line) +\
248 self.PhaseFitData[0][1]
249 # create two boundary dummy plots where the data is updated later on
250 YExtent = ax.get_ylim()
251 LeftBound, = ax.plot([LinDist[Left]]*2, YExtent, "k--")
252 RightBound, = ax.plot([LinDist[Right]]*2, YExtent, "k--")
253 # create a plot for the linear fit
254 FitGraph, = ax.plot(X_Line, Y_Line, "r-", lw = 2, label = "Linear Fit")
255 ax.set_xlabel("Distance / mm")
256 ax.set_ylabel("Phase / rad")
257 y_label = [r"$-2\pi$", r"$-\pi$", r"$0$", r"$+\pi$", r"$+2\pi$"]
258 ax.set_yticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi])
259 ax.set_yticklabels(y_label, fontsize=20)
260 ax.set_ylim(NewYMin, NewYMax)
261 ax.set_title("Phase, f = " + str(self.LockInFreq) + " Hz")
262 plt.tight_layout()
263 self.PhaseFitPlotPath = PlotPath1D/\
264 (self.ExpName + "_" + self.ID + "_PhaseFit.png")
265 plt.savefig(str(self.PhaseFitPlotPath.absolute()), dpi = 600)
266 plt.close()
267 self.Sentinel.info("Linear phase fit for: " + self.ExpName +\
268 "_" + self.ID + " plotted.")
269 return True
270
271 def addLatexReport(self, doc):
272 """
273 Adds a one page report.
274
275 The report contains the amplitude and phase
276 raw data, the linear fits, and important analysis
277 parameters and results to the provided document doc.
278
279 Paramerets
280 ----------
281 doc : pylatex document
282 Contains all the latex data
283
284 Returns
285 -------
286 doc : pylatex document
287 Contains all the latex data
288 """
289 # add Heading
290 with doc.create(pylatex.MiniPage(align='c')):
291 doc.append(pylatex.LargeText(pylatex.utils.bold(self.ExpName)))
292 doc.append(pylatex.LineBreak())
293 LatexID = "f = " + str(round(self.LockInFreq, 3)) + " Hz"
294 if self.Type == "Line":
295 FirstAngle = int(self.CenterLine.HeatFlowAngles[0]*180/np.pi)
296 OppositeAngle = int(self.CenterLine.HeatFlowAngles[1]*180/np.pi)
297 LatexID += ", d = " + str(FirstAngle) + "° and "+ str(OppositeAngle) + "°"
298 doc.append(pylatex.MediumText(pylatex.utils.bold(LatexID)))
299 # add the amplitude and phase 2D raw selection data
300 with doc.create(pylatex.Figure(position='h!')) as ZoomPlots:
301 with doc.create(pylatex.SubFigure(position='b',
302 width=pylatex.utils.NoEscape(r'0.5\linewidth'))) as ZoomAmplPlot:
303 ZoomAmplPlot.add_image("\"" + str(self.AmplZoomPlotPath.absolute())[:-4] + "\"",
304 width = pylatex.utils.NoEscape(r'\linewidth'))
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305 with doc.create(pylatex.SubFigure(position='b',
306 width=pylatex.utils.NoEscape(r'0.5\linewidth'))) as ZoomPhasePlot:
307 ZoomPhasePlot.add_image("\"" + str(self.PhaseZoomPlotPath.absolute())[:-4] + "\"",
308 width = pylatex.utils.NoEscape(r'\linewidth'))
309 # add the linearized amplitude and phase fits
310 with doc.create(pylatex.Figure(position='h!')) as FitPlots:
311 with doc.create(pylatex.SubFigure(position='c',
312 width=pylatex.utils.NoEscape(r'0.5\linewidth'))) as FitAmplPlot:
313 FitAmplPlot.add_image("\"" + str(self.AmplFitPlotPath.absolute())[:-4] + "\"",
314 width = pylatex.utils.NoEscape(r'0.9\linewidth'))
315 with doc.create(pylatex.SubFigure(position='c',
316 width=pylatex.utils.NoEscape(r'0.5\linewidth'))) as FitPhasePlot:
317 FitPhasePlot.add_image("\"" + str(self.PhaseFitPlotPath.absolute())[:-4] + "\"",
318 width = pylatex.utils.NoEscape(r'0.9\linewidth'))
319 # add important fit parameters and results
320 with doc.create(pylatex.Center()):
321 with doc.create(pylatex.Section('Parameters and Results', numbering = False)):
322 with doc.create(pylatex.Tabular('lcl')) as table:
323 table.add_hline()
324 table.add_row(("Parameter", "Value", "Unit"))
325 table.add_hline()
326 table.add_row(("Frequency", str(self.LockInFreq), "Hz"))
327 FileID = self.AmplPath.stem[:-4].split("Results")[1][1:]
328 table.add_row(("File", FileID, ""))
329 if self.Type == "Line":
330 FirstAngle = int(self.CenterLine.HeatFlowAngles[0]*180/np.pi)
331 OppositeAngle = int(self.CenterLine.HeatFlowAngles[1]*180/np.pi)
332 Angles = str(FirstAngle) + "°; "+ str(OppositeAngle) + "°"
333 table.add_row(("Direction", Angles, "Deg"))
334 table.add_row(("Pixel Size", str(round(self.RScale, 7)), "mm/Pixel"))
335 table.add_row(("Amplitude Slope", str(round(self.AmplFitData[0][0], 4)) +\
336 " +/- " + str(round(self.AmplFitData[1], 5)), "1/mm"))
337 table.add_row(("Phase Slope", str(round(self.PhaseFitData[0][0], 4))+\
338 " +/- " + str(round(self.PhaseFitData[1], 5)), "1/mm"))
339 table.add_row(("Left Fit Boundary Amplitude",\
340 str(round(self.AmplFitData[2][0][0], 2)), "mm"))
341 table.add_row(("Right Fit Boundary Amplitude",\
342 str(round(self.AmplFitData[2][1][0], 2)), "mm"))
343 table.add_row(("Left Fit Boundary Phase",\
344 str(round(self.PhaseFitData[2][0][0], 2)), "mm"))
345 table.add_row(("Right Fit Boundary Phase",\
346 str(round(self.PhaseFitData[2][1][0], 2)), "mm"))
347 table.add_row(("Thermal Diffusivity",\
348 str(round(self.ThermalDiff, 5)) + " +/- " +\
349 str(round(self.StdThermalDiff, 8)),\
350 "mmˆ2/s"))
351 table.add_row(("Thermal Wavelength (TPD)",\
352 str(int(np.sqrt(self.ThermalDiff*1e6/self.LockInFreq/np.pi))),\
353 "µm"))
354 table.add_hline()
355 doc.append(pylatex.utils.NoEscape(r'\pagebreak'))
356 return doc

A.3.8 Inherited LIT Point Measurement Data Class

1 import logging
2 from LIT_SingleMeas import LIT_SingleMeas
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.axes_grid1 import make_axes_locatable
6 from matplotlib.colors import LogNorm
7 from matplotlib.ticker import MaxNLocator
8
9 class LIT_SinglePointMeas(LIT_SingleMeas):

10 """ Class to handle all the data from a single
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11 point excitation measurement"""
12
13 def __init__(self, AmplPath, PhasePath, RScale, ExpName):
14 """
15 Initialize the SinglePointMeas class
16
17 Parameters
18 ----------
19 AmplPath : Path
20 Path to the file containing the 2D amplitude data for the sample
21 PhasePath : Path
22 Path to the file containing the 2D phase data for the sample
23 RScale : float
24 Conversion factor from pixel to m in units of [m / Pixel]
25 ExpName : str
26 Name of the experiment, not the single measurement
27 """
28 self.Sentinel = logging.getLogger("Watchtower")
29 LIT_SingleMeas.__init__(self, AmplPath, PhasePath, RScale, ExpName)
30 self.Center = None # Contains the data of the center pixel
31 self.MaxR = None
32 AmplRadii = None
33 RadialAmpl = None
34 PhaseRadii = None
35 RadialPhase = None
36 self.Type = "Point"
37
38 def PlotRadialAmplZoom(self, PlotPathZoom2D):
39 """
40 Plots the amplitude with the center and the circular area
41 used for averaging. The image is centered and zoomed around
42 the averaging area.
43
44 Parameters
45 ----------
46 PlotPathZoom2D : Path object
47 Path to the folder for the zoomed 2d plots
48 """
49 fig = self.getRawAmplCanvas()
50 ax1 = fig.gca()
51 ax1.plot([self.Center[0]*self.RScale],\
52 [self.Center[1]*self.RScale], "ro")
53 S = self.RawPhaseData[2].shape
54 Left = max([(self.Center[0] - self.MaxR*1.3), 0])
55 Right = min([(self.Center[0] + self.MaxR*1.3), S[1]])
56 Bottom = max([(self.Center[1] - self.MaxR*1.3), 0])
57 Top = min([(self.Center[1] + self.MaxR*1.3), S[0]])
58 ax1.set_xlim(Left*self.RScale, Right*self.RScale)
59 ax1.set_ylim(Bottom*self.RScale, Top*self.RScale)
60 # plot the circle around the center
61 circle1 = plt.Circle(np.array(self.Center[0:2])*self.RScale,
62 self.MaxR*self.RScale,\
63 color = 'r', fill = False)
64 ax1.add_artist(circle1)
65 plt.tight_layout()
66 self.AmplZoomPlotPath = PlotPathZoom2D /\
67 (self.ExpName + "_" + self.ID + "_AmplZoom.png")
68 plt.savefig(str(self.AmplZoomPlotPath.absolute()), dpi = 600)
69 plt.close()
70 self.Sentinel.info("Zoomed 2D Amplitude for {} ".format(self.ExpName) +\
71 " at f = {}".format(round(self.LockInFreq, 3)) + " plotted" )
72 return True
73
74 def PlotRadialPhaseZoom(self, PlotPathZoom2D):
75 """
76 Plots the phase with the center and the circular area
77 used for averaging. The image is centered and zoomed around
78 the averaging area.
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79
80 Parameters
81 ----------
82 PlotPathZoom2D : Path object
83 Path to the folder for the zoomed 2d plots
84 """
85 fig = self.getRawPhaseCanvas()
86 ax1 = fig.gca()
87 ax1.plot([self.Center[0]*self.RScale],\
88 [self.Center[1]*self.RScale], "ro")
89 S = self.RawPhaseData[2].shape
90 Left = max([(self.Center[0] - self.MaxR*1.3), 0])
91 Right = min([(self.Center[0] + self.MaxR*1.3), S[1]])
92 Bottom = max([(self.Center[1] - self.MaxR*1.3), 0])
93 Top = min([(self.Center[1] + self.MaxR*1.3), S[0]])
94 ax1.set_xlim(Left*self.RScale, Right*self.RScale)
95 ax1.set_ylim(Bottom*self.RScale, Top*self.RScale)
96 # plot the circle around the center
97 circle1 = plt.Circle(np.array(self.Center[0:2])*self.RScale,
98 self.MaxR*self.RScale,\
99 color = 'r', fill = False)

100 ax1.add_artist(circle1)
101 plt.tight_layout()
102 self.PhaseZoomPlotPath = PlotPathZoom2D /\
103 (self.ExpName + "_" + self.ID + "_PhaseZoom.png")
104 plt.savefig(str(self.PhaseZoomPlotPath.absolute()), dpi = 600)
105 plt.close()
106 self.Sentinel.info("Zoomed 2D Phase for {} ".format(self.ExpName) +\
107 " at f = {}".format(round(self.LockInFreq, 3)) + " plotted" )
108 return True

A.3.9 Inherited LIT Line Measurement Data Class

1 import logging
2 from LIT_SingleMeas import LIT_SingleMeas
3 from LIT_LaserLine import LIT_LaserLine
4 import numpy as np
5 import matplotlib.pyplot as plt
6 from mpl_toolkits.axes_grid1 import make_axes_locatable
7 from matplotlib.colors import LogNorm
8 from matplotlib.ticker import MaxNLocator
9

10
11 class LIT_SingleLineMeas(LIT_SingleMeas):
12 """ Class to handle all the data from a single
13 line excitation measurement"""
14
15 def __init__(self, AmplPath, PhasePath, RScale, ExpName):
16 """
17 Initialize the SingleLineMeas class
18
19 Parameters
20 ----------
21 AmplPath : Path
22 Path to the file containing the 2D amplitude data for the sample
23 PhasePath : Path
24 Path to the file containing the 2D phase data for the sample
25 RScale : float
26 Conversion factor from pixel to m in units of [m / Pixel]
27 ExpName : str
28 Name of the experiment, not the single measurement
29 """
30 self.Sentinel = logging.getLogger("Watchtower")
31 LIT_SingleMeas.__init__(self, AmplPath, PhasePath, RScale, ExpName)
32 self.CenterLine = LIT_LaserLine()
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33 self.CenterOffset = 1
34 self.MaxDist = 1
35 self.Type = "Line"
36
37 def getBoundaryCorners(self):
38 """
39 Computes the cornes for the boundary rectangle
40
41 Returns
42 -------
43 [CornerX, CornerY] : list of float
44 [(x,y), (x,y)] points for the corners of the rectangle
45 """
46 CornerX = self.CenterLine.CenterPoint[0]-\
47 (np.cos(self.CenterLine.RotAngle)*self.CenterOffset/self.RScale -\
48 np.sin(self.CenterLine.RotAngle)*self.MaxDist/self.RScale)
49 CornerY = self.CenterLine.CenterPoint[1]-\
50 (np.sin(self.CenterLine.RotAngle)*self.CenterOffset/self.RScale +\
51 np.cos(self.CenterLine.RotAngle)*self.MaxDist/self.RScale)
52 self.Sentinel.debug("New boundary corners: {}, {}".format(CornerX, CornerY))
53 return [CornerX, CornerY]
54
55 def plotLineAmplZoom(self, PlotPathZoom2D):
56 """
57 Plots a zoom of the selected linear conversion amplitude region.
58 The location of the line laser is overlayed.
59
60 Parameters
61 ----------
62 PlotPathZoom2D : Path object
63 Path to the folder for the zoomed 2D plots
64 """
65 fig = self.getRawAmplCanvas()
66 ax1 = fig.gca()
67 # plot the center line into the image
68 [A, B] = self.CenterLine.getLineLimits()
69 ax1.plot([A[0]*self.RScale, B[0]*self.RScale],\
70 [A[1]*self.RScale, B[1]*self.RScale], "w-", label = "Center Line")
71 ax1.plot([self.CenterLine.CenterPoint[0]*self.RScale],\
72 [self.CenterLine.CenterPoint[1]*self.RScale],\
73 "ro", label = "Center")
74 # plot the rectangle around the center
75 [CornerX, CornerY] = self.getBoundaryCorners()
76 Rect1 = plt.Rectangle([CornerX*self.RScale, CornerY*self.RScale], self.CenterOffset*2,\
77 self.MaxDist*2,\
78 angle = self.CenterLine.RotAngle*180/np.pi,\
79 color = 'r', fill = False)
80 ax1.add_artist(Rect1)
81 ax1.set_xlim(0, self.CenterLine.XMax*self.RScale)
82 ax1.set_ylim(0, self.CenterLine.YMax*self.RScale)
83 self.AmplZoomPlotPath = PlotPathZoom2D /\
84 (self.ExpName + "_" + self.ID + "_AmplZoom.png")
85 plt.savefig(str(self.AmplZoomPlotPath.absolute()), dpi = 600)
86 plt.close()
87 self.Sentinel.info("Zoomed 2D Amplitude for {} ".format(self.ExpName) +\
88 " at f = {}".format(round(self.LockInFreq, 3)) + " plotted")
89 return True
90
91 def plotLinePhaseZoom(self, PlotPathZoom2D):
92 """
93 Plots a zoom of the selected linear conversion phase region.
94 The location of the line laser is overlayed.
95
96 Parameters
97 ----------
98 PlotPathZoom2D : Path object
99 Path to the folder for the zoomed 2D plots

100 """
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101 fig = self.getRawPhaseCanvas()
102 ax1 = fig.gca()
103 # necessary for limiting the line range to the image
104 [A, B] = self.CenterLine.getLineLimits()
105 ax1.plot([A[0]*self.RScale, B[0]*self.RScale],\
106 [A[1]*self.RScale, B[1]*self.RScale], "w-", label = "Center Line")
107 ax1.plot([self.CenterLine.CenterPoint[0]*self.RScale],\
108 [self.CenterLine.CenterPoint[1]*self.RScale], "ro", label = "Center")
109 # plot the rectangle around the center
110 [CornerX, CornerY] = self.getBoundaryCorners()
111 Rect1 = plt.Rectangle([CornerX*self.RScale, CornerY*self.RScale], self.CenterOffset*2,\
112 self.MaxDist*2,\
113 angle = self.CenterLine.RotAngle*180/np.pi,\
114 color = 'r', fill = False)
115 ax1.add_artist(Rect1)
116 ax1.set_xlim(0, self.CenterLine.XMax*self.RScale)
117 ax1.set_ylim(0, self.CenterLine.YMax*self.RScale)
118 self.PhaseZoomPlotPath = PlotPathZoom2D /\
119 (self.ExpName + "_" + self.ID + "DEG_PhaseZoom.png")
120 plt.savefig(str(self.PhaseZoomPlotPath.absolute()), dpi = 600)
121 plt.close()
122 self.Sentinel.info("Zoomed 2D Phase for {} ".format(self.ExpName) +\
123 " at f = {}".format(round(self.LockInFreq, 3)) + " plotted")
124 return True

A.3.10 Inherited LIT Fiber Measurement Data Class

1 import logging
2 from LIT_SingleMeas import LIT_SingleMeas
3 import matplotlib.pyplot as plt
4 from mpl_toolkits.axes_grid1 import make_axes_locatable
5 from matplotlib.colors import LogNorm
6 from matplotlib.ticker import MaxNLocator
7
8 class LIT_SingleFiberMeas(LIT_SingleMeas):
9 """ Class to handle all the data from a single

10 fiber measurement"""
11
12 def __init__(self, AmplPath, PhasePath, RScale, ExpName):
13 """
14 Initialize the SingleFiberMeas class
15
16 Parameters
17 ----------
18 AmplPath : Path
19 Path to the file containing the 2D amplitude data for the sample
20 PhasePath : Path
21 Path to the file containing the 2D phase data for the sample
22 RScale : float
23 Conversion factor from pixel to m in units of [m / Pixel]
24 ExpName : str
25 Name of the experiment, not the single measurement
26 """
27 self.Sentinel = logging.getLogger("Watchtower")
28 LIT_SingleMeas.__init__(self, AmplPath, PhasePath, RScale, ExpName)
29 self.Type = "Fiber"
30 self.Center = []
31 self.MaxDist = None
32 self.MaxConvDist = None
33
34 def plotFiberAmplZoom(self, PlotPathZoom2D):
35 """
36 Plots a zoom of the selected pixel line amplitude region.
37 The location of the line laser is overlayed.
38
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39 Parameters
40 ----------
41 PlotPathZoom2D : Path object
42 Path to the folder for the zoomed 2D plots
43 """
44 fig = self.getRawAmplCanvas()
45 ax1 = fig.gca()
46 XLimits = ax1.get_xlim()
47 # plot the center
48 ax1.plot([self.Center[0]*self.RScale],\
49 [self.Center[1]*self.RScale], "ro", label = "Center")
50 ax1.plot(XLimits, [self.Center[1]*self.RScale]*2, "w-")
51 # plot the boundary lines
52 ax1.plot(XLimits, [(self.Center[1] + self.MaxDist)*self.RScale]*2, "w--")
53 ax1.plot(XLimits, [(self.Center[1] - self.MaxDist)*self.RScale]*2, "w--")
54 ax1.set_xlim((self.Center[0] - self.MaxDist*1.2)*self.RScale,\
55 (self.Center[0] + self.MaxDist*1.2)*self.RScale)
56 ax1.set_ylim((self.Center[1] - self.MaxDist*1.2)*self.RScale,\
57 (self.Center[1] + self.MaxDist*1.2)*self.RScale)
58 self.AmplZoomPlotPath = PlotPathZoom2D /\
59 (self.ExpName + "_" + self.ID + "_AmplZoom.png")
60 plt.savefig(str(self.AmplZoomPlotPath.absolute()), dpi = 600)
61 plt.close()
62 self.Sentinel.info("Zoomed 2D Amplitude for {} ".format(self.ExpName) +\
63 " at f = {}".format(round(self.LockInFreq, 3)) + " plotted")
64 return True
65
66 def plotFiberPhaseZoom(self, PlotPathZoom2D):
67 """
68 Plots a zoom of the selected pixel line phase region.
69 The location of the line laser is overlayed.
70
71 Parameters
72 ----------
73 PlotPathZoom2D : Path object
74 Path to the folder for the zoomed 2D plots
75 """
76 fig = self.getRawPhaseCanvas()
77 ax1 = fig.gca()
78 XLimits = ax1.get_xlim()
79 # plot the center
80 ax1.plot([self.Center[0]*self.RScale],\
81 [self.Center[1]*self.RScale], "ro", label = "Center")
82 ax1.plot(XLimits, [self.Center[1]*self.RScale]*2, "w-")
83 # plot the boundary lines
84 ax1.plot(XLimits, [(self.Center[1] + self.MaxDist)*self.RScale]*2, "w--")
85 ax1.plot(XLimits, [(self.Center[1] - self.MaxDist)*self.RScale]*2, "w--")
86 ax1.set_xlim((self.Center[0] - self.MaxDist*1.2)*self.RScale,\
87 (self.Center[0] + self.MaxDist*1.2)*self.RScale)
88 ax1.set_ylim((self.Center[1] - self.MaxDist*1.2)*self.RScale,\
89 (self.Center[1] + self.MaxDist*1.2)*self.RScale)
90 self.PhaseZoomPlotPath = PlotPathZoom2D /\
91 (self.ExpName + "_" + self.ID + "DEG_PhaseZoom.png")
92 plt.savefig(str(self.PhaseZoomPlotPath.absolute()), dpi = 600)
93 plt.close()
94 self.Sentinel.info("Zoomed 2D Phase for {} ".format(self.ExpName) +\
95 " at f = {}".format(round(self.LockInFreq, 3)) + " plotted")
96 return True

A.3.11 LIT Laser Line Class

1 import logging
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from mpl_toolkits.axes_grid1 import make_axes_locatable
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5 from matplotlib.colors import LogNorm
6 from matplotlib.ticker import MaxNLocator
7
8
9 class LIT_LaserLine:

10 """ Manages data from the line laser location """
11
12 def __init__(self):
13 self.CenterPoint = [0,0]
14 self.Direction = [1,1]
15 self.RotAngle = 0
16 self.HeatFlowAngles = [0, np.pi]
17 self.PointList = []
18 self.LineFit = []
19 self.nPixel = 0
20 self.Image = []
21 self.Sentinel = logging.getLogger("Watchtower")
22
23 def getLineLimits(self):
24 """
25 Computes the boundary points for the laser line at
26 the edges of the image
27
28 Return
29 ------
30 [A,B] : list of [x,y] points in pixel
31 first and last point on the laser line in the image
32 """
33 LamTop = min([self.CenterPoint[0]/self.Direction[0],\
34 self.CenterPoint[1]/self.Direction[1]])
35 LamBottom = min([(self.XMax - self.CenterPoint[0])/self.Direction[0],\
36 (self.YMax - self.CenterPoint[1])/self.Direction[1]])
37 A = np.array(self.CenterPoint) - LamTop * np.array(self.Direction)
38 B = np.array(self.CenterPoint) + LamBottom * np.array(self.Direction)
39 self.Sentinel.debug("New center line limits computed: {}".format([A, B]))
40 return [A, B]
41
42 def getDistFromLine(self, Point):
43 """
44 Computes the distance of the Point to the Line
45
46 The line is defined in vector form as
47 starting point + normalized direction vector
48 The point is given by its (x,y) coordinates
49
50 Parameters
51 ----------
52 Point : (x,y) float
53 X and Y coordinates of the point
54
55 Returns
56 -------
57 LinDist : float
58 shortest distance between the point and the line
59 CenterDist : float
60 distance from the closest intersection on the line to the center
61 """
62 P1 = self.CenterPoint
63 P2 = [self.CenterPoint[0] + self.Direction[0],\
64 self.CenterPoint[1] + self.Direction[1]]
65 Dist = abs(self.Direction[1]*Point[0]-self.Direction[0]*Point[1] +\
66 P2[0]*P1[1] - P2[1]*P1[0])
67 CenterDist = np.sqrt(abs((self.CenterPoint[0]-Point[0])**2 +\
68 (self.CenterPoint[1]-Point[1])**2 -\
69 Dist**2))
70 return [Dist, CenterDist]
71
72 def getMaxPoints(self, Image, n):
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73 """
74 Extracts the first n pixels with the highest amplitude value
75
76 Parameters
77 ----------
78 Image : list of 2D np.arrays [X, Y, Ampl]
79 n : int
80 Number of points to use for the analysis
81
82 Returns
83 -------
84 [XList, YList] : list of [x] and [y] points
85 """
86 FlatImage = [] # list with (Ampl, x, y)
87 for a in range(0, len(Image[0]), 1):
88 for b in range(0, len(Image[0][0]), 1):
89 FlatImage.append([Image[2][a][b],\
90 Image[0][a][b],\
91 Image[1][a][b]])
92 FlatImage.sort() # sort by amplitude
93 XList = [k[1] for k in FlatImage[-n:]]
94 YList = [k[2] for k in FlatImage[-n:]]
95 return [XList, YList]
96
97 def detectLine(self, Image, n):
98 """
99 Determines the center line for a line excitation measurement

100
101 n points with the highest amplitude are used to determine the
102 line. The center is the average of all points. The line is
103 determined by a linear fit to the (x,y) data.
104
105 Parameters
106 ----------
107 n : int
108 Number of points to use for the analysis
109 Image : list of 2D np.arrays [X, Y, Ampl]
110 """
111 self.nPixel = n
112 self.Image = Image
113 self.XMax = Image[0][0][-1]
114 self.YMax = Image[1][-1][0]
115 # extract the first n points with the highest amplitude
116 self.PointList = self.getMaxPoints(Image, n)
117 # the center is the mean of all pixels
118 self.CenterPoint = [np.mean(self.PointList[0]),\
119 np.mean(self.PointList[1])]
120 # the slope comes from a linear fit
121 self.LineFit = np.polyfit(self.PointList[0], self.PointList[1], 1)
122 Length = np.sqrt(1+self.LineFit[0]*self.LineFit[0]) # sqrt(1+mˆ2)
123 self.Direction = [1/Length, self.LineFit[0]/Length]
124 self.RotAngle = np.arctan2(self.Direction[1], self.Direction[0])
125 self.HeatFlowAngles = [self.RotAngle+np.pi/2, self.RotAngle-np.pi/2]
126 self.Sentinel.info("Center line detected. Center at: {}".format(self.CenterPoint)+\
127 " Rotation angle: {}".format(self.RotAngle*180/np.pi))
128 return True
129
130 def plotLaserLineDetection(self, PlotPath1D, ExpName, ID, LockInFreq):
131 """
132 Plots the linear fit of the pixels with the highest amplitudes.
133 The center and the line are overlayed.
134
135 Parameters
136 ----------
137 PlotPath1D : Path object
138 Path to the folder for the plot
139 ExpName : str
140 Name for the experiment
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141 ID : str
142 ID for the current measurement
143 LockInFreq : float
144 Frequency of the lock in detection
145 """
146 xLine = np.linspace(min(self.PointList[0]),\
147 max(self.PointList[0]), 10)
148 yLine = self.LineFit[0] * xLine + self.LineFit[1]
149 fig = plt.figure()
150 ax = plt.subplot()
151 ax.plot(self.PointList[0], self.PointList[1], "k.",\
152 label = "Threshold Pixel")
153 ax.plot(xLine, yLine, "-", lw = 2, label = "Fit Line")
154 ax.plot([self.CenterPoint[0]], [self.CenterPoint[1]],\
155 "ro", label = "Center")
156 self.Image
157 ax.set_title("Amplitude, f = " + str(LockInFreq) + " Hz")
158 ax.set_xlabel("horizontal position / Pixel")
159 ax.set_ylabel("vertical position / Pixel")
160 ax.set_xlim(0, self.XMax)
161 ax.set_ylim(0, self.YMax)
162 PlotPath = PlotPath1D /\
163 (ExpName + "_" + ID + "_AmplLineFit.png")
164 plt.savefig(str(PlotPath.absolute()), dpi = 600)
165 plt.close()
166 self.Sentinel.info("Laser Line detection plotted for measurement: "+\
167 ExpName + "_" + ID)
168 return True

A.3.12 Rigol Arbitrary Signal Generation

1 from matplotlib import pylab as plt
2 import numpy as np
3
4 """
5 Simple program to generate a RAF file comprised of the sum of a set
6 of sinusoids.
7 """
8 # DAHBORAD
9 ExpName = "BK185"

10 PointN = 2**12 # number of support points
11 FreqList = [0.2, 0.4, 0.6, 0.8, 1] # Hz
12 AmplList = [np.sqrt(FreqList[0]/f) for f in FreqList]
13 PhaseList = [0]*len(FreqList)
14
15 # Setting Plot Parameters
16 params = {'axes.labelsize': 16,
17 'font.size': 16,
18 'font.family': "arial",
19 'legend.fontsize': 16,
20 'xtick.labelsize': 16,
21 'ytick.labelsize': 16,
22 'text.usetex': False,
23 'figure.figsize': [4.5 * 1.4, 4.5]}
24 plt.rcParams.update(params)
25
26 def plotSignal(Signal, ExpName):
27 fig = plt.figure()
28 plt.plot(np.r_[0:len(Signal)], Signal, ".")
29 plt.xlabel("Sample ID")
30 plt.ylabel("Signal")
31 plt.title(ExpName)
32 plt.tight_layout()
33 plt.savefig(ExpName + "_Signal.png", dpi = 600)
34 plt.savefig(ExpName + "_Signal.eps")
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35 plt.show()
36
37 return True
38
39 def to_raf(Signal, FileName):
40 """
41 Convert the signal (already the correct length)
42 to a RAF file.
43 """
44 # Shift and convert the signal to the range (-1, 1)
45 Signal = Signal - Signal.min()
46 Signal = Signal/Signal.max()
47 # plot the signal
48 plotSignal(Signal, FileName)
49 # convert to 16 bit integers
50 Signal = (Signal* int("3fff", 16)).astype('int16')
51 # Write the signal as binary.
52 fp = open(FileName + ".RAF", "w")
53 Signal.tofile(fp)
54
55 return True
56
57 def SumSignal(t, PhaseList, FreqList, AmplList):
58 I = 0
59 for k in range(0, len(FreqList), 1):
60 I += AmplList[k] * np.cos(2*np.pi*FreqList[k]*t + PhaseList[k])
61
62 return I
63
64 #MAIN
65 t = np.r_[0:PointN]
66 Signal = SumSignal(t/PointN/min(FreqList), PhaseList, FreqList, AmplList)
67 Signal = np.array(Signal, dtype=float)
68 to_raf(Signal, ExpName)
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A.4 Particle Sizer

A.4.1 Main GUI

1 function varargout = GUI_ParticleSizer(varargin)
2 % GUI_PARTICLESIZER MATLAB code for GUI_ParticleSizer.fig
3 % GUI_PARTICLESIZER, by itself, creates a new GUI_PARTICLESIZER or raises the existing
4 % singleton*.
5 %
6 % H = GUI_PARTICLESIZER returns the handle to a new GUI_PARTICLESIZER or the handle to
7 % the existing singleton*.
8 %
9 % GUI_PARTICLESIZER('CALLBACK',hObject,eventData,handles,...) calls the local

10 % function named CALLBACK in GUI_PARTICLESIZER.M with the given input arguments.
11 %
12 % GUI_PARTICLESIZER('Property','Value',...) creates a new GUI_PARTICLESIZER or raises the
13 % existing singleton*. Starting from the left, property value pairs are
14 % applied to the GUI before GUI_ParticleSizer_OpeningFcn gets called. An
15 % unrecognized property name or invalid value makes property application
16 % stop. All inputs are passed to GUI_ParticleSizer_OpeningFcn via varargin.
17 %
18 % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
19 % instance to run (singleton)".
20 %
21 % See also: GUIDE, GUIDATA, GUIHANDLES
22
23 % Edit the above text to modify the response to help GUI_ParticleSizer
24
25 % Last Modified by GUIDE v2.5 31-Jan-2017 15:06:36
26
27 % Begin initialization code - DO NOT EDIT
28 gui_Singleton = 1;
29 gui_State = struct('gui_Name', mfilename, ...
30 'gui_Singleton', gui_Singleton, ...
31 'gui_OpeningFcn', @GUI_ParticleSizer_OpeningFcn, ...
32 'gui_OutputFcn', @GUI_ParticleSizer_OutputFcn, ...
33 'gui_LayoutFcn', [] , ...
34 'gui_Callback', []);
35 if nargin && ischar(varargin{1})
36 gui_State.gui_Callback = str2func(varargin{1});
37 end
38 if nargout
39 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
40 else
41 gui_mainfcn(gui_State, varargin{:});
42 end
43 end
44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45 %%CHECKED
46 function GUI_ParticleSizer_OpeningFcn(hObject, ˜, handles, varargin)
47 %clc;
48 format long;
49 movegui('center'); % move the GUI to the center of the Screen upon start
50 % Choose default command line output for GUI_ParticleSizer
51 handles.output = hObject;
52 handles.CurrentSelectedFile = 1; % File last selected in the Table
53 handles.ResultFileName = 'EnterFileName'; % Name of the Result File
54 handles.NewFolderSelected = false; % Is a new batch of files loaded?
55 handles.LastSelectedFolder = ''; % which was the last folder selected?
56 handles.ResultData = {};
57 %%% SaveFile, FileName, ParticlesFound, Avg.Diameter
58 handles.FileTable = {};
59 % Update handles structure
60 guidata(hObject, handles);
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61 end
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 function varargout = GUI_ParticleSizer_OutputFcn(˜, ˜, handles)
64 % Get default command line output from handles structure
65 varargout{1} = handles.output;
66 end
67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
68 %% CHECKED
69 function FolderSelect_Callback(hObject, ˜, handles) %#ok<DEFNU>
70 % if a folder was selected previously, clear all data
71 if isempty(handles.FileTable) == false
72 handles.ResultData = {};
73 handles.FileTable = {};
74 guidata(hObject, handles);
75 end
76 % open the UI for folder Selection and get a folder from the User
77 SelectedFolder = uigetdir(handles.LastSelectedFolder);
78 % get the pixel size from the edit field
79 PixelSizeFieldEntry = get(handles.PixelSizeEntry, 'String');
80 PixelSize = checkPixelSize(str2double(PixelSizeFieldEntry));
81 % check if a folder was retrieved from the UI
82 if SelectedFolder == false
83 set(handles.FolderNameDisp, 'String', 'No Folder Selected');
84 return; % exit, there is nothing more to do
85 else
86 % if a folder was selected, display the path
87 set(handles.FolderNameDisp, 'String', SelectedFolder);
88 % and save the folder
89 handles.LastSelectedFolder = SelectedFolder;
90 end
91 %%% extract all the .tif and .jpeg images from the selected folder
92 % structure for the Images
93 ImageStruct = struct('FileName', 'none',...
94 'PathString', 'none',...
95 'Type', 'none',...
96 'ImageData', 0,...
97 'PixelSize', 1,...
98 'CenterList', [],...
99 'RadiiList', [],...

100 'Polarity', 'dark',...
101 'Sensitivity', 0.9,...
102 'EdgeThreshold', 0.2,...
103 'DetectionMethod', 'phasecode',...
104 'R_min', 10,...
105 'R_max', 30);
106 FoundImage = false; % check later if any Images were found
107 % display a waitbar to indicate the process
108 h = waitbar(0,'Importing Images. Please wait.');
109 % get a list of all the files in the selected folder
110 Files = dir(SelectedFolder);
111 %%% iterate over the files and select the .tiffs and .jpgs
112 for Index = 1:length(Files)
113 % if it is a directory -> skip it
114 if Files(Index).isdir == true
115 continue;
116 end
117 % get the path, name and type (extension of the current file)
118 [pathstr, name, ext] = fileparts(fullfile(SelectedFolder,...
119 Files(Index).name));
120 % if its a .tiff file of a .jpg, add it to the list
121 if or(strcmp(ext,'.tif'), strcmp(ext,'.jpg'))
122 FoundImage = true; % remember that an Image was found
123 NewImageStruct = struct(ImageStruct);
124 % add it to the File table list
125 handles.FileTable = [handles.FileTable; {false, name, 0, 0.0}];
126 % structure for the Images
127 NewImageStruct.FileName = name;
128 NewImageStruct.PathString = fullfile(pathstr,[name ext]);
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129 NewImageStruct.Type = ext;
130 NewImageStruct.ImageData = imread(NewImageStruct.PathString);
131 NewImageStruct.PixelSize = PixelSize;
132 % append the new Image structure to the ResultData
133 handles.ResultData = [handles.ResultData, NewImageStruct];
134 end
135 % update the waitbar
136 waitbar(Index/length(Files));
137 end
138 % close the wait bar
139 close(h);
140 % if no images were found return to initial state
141 if FoundImage == false
142 msgbox('No Images were found in the spezified folder.')
143 handles.NewFolderSelected = false;
144 handles.ResultData = {}; % delete the data
145 handles.FileTable = {};
146 guidata(hObject, handles);
147 set(handles.DataTable, 'Data', handles.FileTable); % update the uitable
148 cla(handles.ImageDisplay); % delete the image
149 return % exit the current callback
150 else
151 % indicate that a new folder was selected for the find circle function
152 handles.NewFolderSelected = true;
153 guidata(hObject, handles);
154 end
155 guidata(hObject, handles);
156 % display the files in the table
157 set(handles.DataTable, 'Data', handles.FileTable);
158 % clear the axis
159 cla(handles.ImageDisplay);
160 % display the current image in the table
161 imshow(handles.ResultData{1}.ImageData);
162 drawnow;
163 end
164 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
165 %%CHECKED
166 function PixelSizeEntry_Callback(hObject, ˜, handles) %#ok<DEFNU>
167 % get the pixel size from the edit field
168 PixelSize = checkPixelSize(str2double(get(hObject,'String')));
169 % set the pixel Size for all Images Present
170 for k = 1:length(handles.ResultData)
171 handles.ResultData{k}.PixelSize = PixelSize;
172 end
173 % use the pixel size to adjust the avg diameters in the DataTable
174 % change the average diameters in all entries
175 for I = 1:length(handles.ResultData)
176 MeanDia = mean((handles.ResultData{I}.RadiiList)*PixelSize*2);
177 if handles.FileTable{I,3} ˜= 0
178 handles.FileTable{I,4} = MeanDia;
179 end
180 end
181 guidata(hObject, handles);
182 % replace the data in the uitable with the updated data
183 set(handles.DataTable, 'Data', handles.FileTable);
184 end
185 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
186 %%CHECKED
187 function PixelSizeEntry_CreateFcn(hObject, ˜, ˜) %#ok<DEFNU>
188 if ispc && isequal(get(hObject,'BackgroundColor'),...
189 get(0,'defaultUicontrolBackgroundColor'))
190 set(hObject,'BackgroundColor','white');
191 end
192 end
193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
194 function FindCircles_Callback(hObject, ˜, handles)
195 % get the new Polarity
196 NewPolarity = lower(get(handles.ObjPol_Group, 'SelectedObject'));
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197 % get the new sensitivity value
198 NewSensitivity = str2double(get(handles.SensEntry,'String'));
199 % get the new edge threshold value
200 NewEdgeThreshold = str2double(get(handles.EdgeThreshEntry,'String'));
201 % get the new detection method
202 Method = get(handles.DetMeth_Group, 'SelectedObject');
203 if strcmp(Method.String, 'Phase Code')
204 NewDetectMethod = 'phasecode';
205 elseif strcmp(Method.String, 'Two Stage')
206 NewDetectMethod = 'twostage';
207 end
208 % get the new R_MIN value
209 NewR_min = str2double(get(handles.D_MinEntry,'String'))/2;
210 % get the new R_MAX value
211 NewR_max = str2double(get(handles.D_MaxEntry,'String'))/2;
212 % apply the current parameters only to the selected file
213 % get the index of the currently selected image
214 CurrImage = handles.CurrentSelectedFile;
215 % Insert the new fit Parameters into the ResultData structure
216 handles.ResultData{CurrImage}.Polarity = NewPolarity.String;
217 handles.ResultData{CurrImage}.Sensitivity = NewSensitivity;
218 handles.ResultData{CurrImage}.EdgeThreshold = NewEdgeThreshold;
219 handles.ResultData{CurrImage}.DetectionMethod = NewDetectMethod;
220 handles.ResultData{CurrImage}.R_min = NewR_min;
221 handles.ResultData{CurrImage}.R_max = NewR_max;
222 % Indicate to the user that the circle search is in progress
223 h = msgbox('Circle Detection in Progress, please wait.',...
224 'Circle Detection');
225 % detect the circles in the current image
226 [centers, radii] = findCircles(handles.ResultData{CurrImage});
227 % remove the progress notification
228 close(h);
229 %if no circles are found, leave the function call
230 if isempty(radii)
231 warndlg('No circles found!', 'Circle Detection');
232 return ;
233 end
234 % save the centers /radii and DefaultParameters in the ResultData
235 handles.ResultData{CurrImage}.CenterList = centers;
236 handles.ResultData{CurrImage}.RadiiList = radii;
237 % update the info on Particle Count and avg radius in the DataTable
238 handles.FileTable{CurrImage,1} = true;
239 handles.FileTable{CurrImage,3} = length(radii);
240 handles.FileTable{CurrImage,4} = round(mean(radii)*...
241 handles.ResultData{CurrImage}.PixelSize) * 2;
242 % put the ResultData into the gui data for global access
243 guidata(hObject, handles);
244 % get the end position of the scroll bar
245 jScrollpane = findjobj(handles.DataTable); % get the handle of the table
246 scrollMax = jScrollpane.getVerticalScrollBar.getValue; % get the end position of the scroll
247 % display the filed data in the table
248 set(handles.DataTable, 'Data', handles.FileTable);
249 % put the ResultData into the gui data for global access
250 guidata(hObject, handles);
251 drawnow;
252 % set scroll bar to the previous entry
253 jScrollpane.getVerticalScrollBar.setValue(scrollMax);
254 drawnow;
255 % clear the axis
256 cla(handles.ImageDisplay);
257 % display the current image in the table
258 imshow(handles.ResultData{CurrImage}.ImageData);
259 % overlay the found circles in green
260 viscircles(handles.ResultData{CurrImage}.CenterList,...
261 handles.ResultData{CurrImage}.RadiiList,...
262 'Color', 'g', 'LineStyle', '-', 'LineWidth', 1);
263 drawnow;
264 end
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265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
266 function FileNameEntry_Callback(hObject, ˜, handles) %#ok<DEFNU>
267 % Get the Filename from the user input
268 handles.ResultFileName = get(hObject,'String');
269 guidata(hObject, handles);
270 end
271 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
272 function FileNameEntry_CreateFcn(hObject, ˜, ˜) %#ok<DEFNU>
273 if ispc && isequal(get(hObject,'BackgroundColor'),...
274 get(0,'defaultUicontrolBackgroundColor'))
275 set(hObject,'BackgroundColor','white');
276 end
277 end
278 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
279 function SaveData_Callback(˜, ˜, handles) %#ok<DEFNU>
280 % save the checkmark selected data to the results file
281 SaveDataToFile(handles);
282 % give a message as a response to the user
283 msgbox('Data export sucessfull!', 'Save');
284 end
285 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
286 function EdgeThreshEntry_Callback(hObject, ˜, handles) %#ok<DEFNU>
287 %%% The Edge Threshold has been changed:
288 % get the new input value
289 NewEdgeThreshold = str2double(get(hObject,'String'));
290 % check if its valid, else return with no action
291 if checkEdgeThreshold(NewEdgeThreshold) == false
292 return;
293 end
294 % set the new edge threshold
295 handles.ResultData{handles.CurrentSelectedFile}.EdgeThreshold =...
296 NewEdgeThreshold;
297 guidata(hObject, handles);
298 end
299 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
300 %%CHECKED
301 function EdgeThreshEntry_CreateFcn(hObject, ˜, ˜) %#ok<DEFNU>
302 if ispc && isequal(get(hObject,'BackgroundColor'),...
303 get(0,'defaultUicontrolBackgroundColor'))
304 set(hObject,'BackgroundColor','white');
305 end
306 end
307 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
308
309 function SensEntry_Callback(hObject, ˜, handles) %#ok<DEFNU>
310 %%% The Sensitivity has been changed:
311 % get the new input value
312 NewSensitivity = str2double(get(hObject,'String'));
313 % check if its valid
314 if checkSensitivity(NewSensitivity) == false
315 % return to previous state with no change
316 return
317 end
318 % set the new sensitivity
319 handles.ResultData{handles.CurrentSelectedFile}.Sensitivity =...
320 NewSensitivity;
321 guidata(hObject, handles);
322 end
323 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
324 function SensEntry_CreateFcn(hObject, ˜, ˜) %#ok<DEFNU>
325 if ispc && isequal(get(hObject,'BackgroundColor'),...
326 get(0,'defaultUicontrolBackgroundColor'))
327 set(hObject,'BackgroundColor','white');
328 end
329 end
330 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
331 function DataTable_CellSelectionCallback(hObject, eventdata, handles) %#ok<DEFNU>
332 % if the Indices are empty, return to main
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333 if isempty(eventdata.Indices)
334 return;
335 end
336 % get the Row Index in the uiTable
337 RowIndex = eventdata.Indices(1);
338 % update the Current Selection in the global variable
339 handles.CurrentSelectedFile = RowIndex;
340 guidata(hObject, handles);
341 % clear the axis
342 cla(handles.ImageDisplay);
343 % display the current image
344 imshow(handles.ResultData{RowIndex}.ImageData);
345 % overlay the found circles in green
346 viscircles(handles.ResultData{RowIndex}.CenterList,...
347 handles.ResultData{RowIndex}.RadiiList,...
348 'Color', 'g', 'LineStyle','-', 'LineWidth', 1);
349 %%% update the displayed circle detection parameters
350 if length(handles.ResultData{RowIndex}.RadiiList) ˜= 0
351 % Object Polarity
352 if strcmp(handles.ResultData{RowIndex}.Polarity, 'bright')
353 set(handles.radiobutton1, 'Value', 1.0);
354 elseif strcmp(handles.ResultData{RowIndex}.Polarity, 'dark')
355 set(handles.radiobutton2, 'Value', 1.0);
356 end
357 % Sensitivity
358 set(handles.SensEntry,'String',...
359 num2str(handles.ResultData{RowIndex}.Sensitivity));
360 % Edge Threshold
361 set(handles.EdgeThreshEntry,'String',...
362 num2str(handles.ResultData{RowIndex}.EdgeThreshold));
363 % Detection Method
364 if strcmp(handles.ResultData{RowIndex}.DetectionMethod, 'phasecode')
365 set(handles.radiobutton3, 'Value', 1.0);
366 elseif strcmp(handles.ResultData{RowIndex}.DetectionMethod, 'twostage')
367 set(handles.radiobutton4, 'Value', 1.0);
368 end
369 % Minimal Diameter
370 set(handles.D_MinEntry,'String',...
371 num2str(handles.ResultData{RowIndex}.R_min*2));
372 % Maximal Diameter
373 set(handles.D_MaxEntry,'String',...
374 num2str(handles.ResultData{RowIndex}.R_max*2));
375 end
376 end
377 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
378 function DataTable_CellEditCallback(hObject, ˜, handles) %#ok<DEFNU>
379 % read in the boolean values from the first row and save them
380 handles.FileTable = get(hObject, 'data');
381 guidata(hObject, handles);
382 end
383 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
384 function D_MinEntry_Callback(hObject, ˜, handles) %#ok<DEFNU>
385 %%% The minimal search radius has been changed:
386 NewR_min = str2double(get(hObject,'String'));
387 % check if its valid
388 if NewR_min <= 0
389 return;
390 end
391 % set the new r_min
392 handles.ResultData{handles.CurrentSelectedFile}.R_min = NewR_min;
393 % update the gui data
394 guidata(hObject, handles);
395 end
396 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
397 function D_MinEntry_CreateFcn(hObject, ˜, ˜)
398 if ispc && isequal(get(hObject,'BackgroundColor'),...
399 get(0,'defaultUicontrolBackgroundColor'))
400 set(hObject,'BackgroundColor','white');

424 Chapter A Source Code



401 end
402 end
403 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
404 function D_MaxEntry_Callback(hObject, ˜, handles)
405 %%% The maximal search radius has been changed:
406 % get the new input value
407 NewR_max = str2double(get(hObject,'String'));
408 % check if its valid
409 if NewR_max <= 0
410 return;
411 end
412 % set the new r_min
413 handles.ResultData{handles.CurrentSelectedFile}.R_max = NewR_max;
414 guidata(hObject, handles);
415 end
416 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
417 function D_MaxEntry_CreateFcn(hObject, ˜, ˜) %#ok<DEFNU>
418 % Hint: edit controls usually have a white background on Windows.
419 % See ISPC and COMPUTER.
420 if ispc && isequal(get(hObject,'BackgroundColor'),...
421 get(0,'defaultUicontrolBackgroundColor'))
422 set(hObject,'BackgroundColor','white');
423 end
424 end
425 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
426 function ObjPol_Group_SelectionChangedFcn(hObject, ˜, handles) %#ok<DEFNU>
427 %%% Object Polarity has been changed:
428 % get the new Polarity
429 NewPolarity = get(handles.ObjPol_Group, 'SelectedObject');
430 % set the new Polarity in the Results data structure
431 handles.ResultData{handles.CurrentSelectedFile}.Polarity =...
432 lower(NewPolarity.String);
433 guidata(hObject, handles);
434 end
435 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
436 function DetMeth_Group_SelectionChangedFcn(hObject, ˜, handles) %#ok<DEFNU>
437 %%% Detection Method has been changed:
438 % get the new detection method
439 NewMethod = get(handles.DetMeth_Group, 'SelectedObject');
440 if strcmp(NewMethod.String, 'Phase Code')
441 handles.ResultData{handles.CurrentSelectedFile}.DetectionMethod =... 'phasecode';
442 elseif strcmp(NewMethod.String, 'Two Stage')
443 handles.ResultData{handles.CurrentSelectedFile}.DetectionMethod =...
444 'twostage';
445 end
446 % update the GUI data
447 guidata(hObject, handles);
448 end
449 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
450 % --- Executes during object creation, after setting all properties.
451 function ImageDisplay_CreateFcn(˜, ˜, ˜) %#ok<DEFNU>
452 end
453 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
454 % --- Executes during object creation, after setting all properties.
455 function DataTable_CreateFcn(˜, ˜, ˜) %#ok<DEFNU>
456 end
457 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
458 % --- Executes during object creation, after setting all properties.
459 function FolderNameDisp_CreateFcn(˜, ˜, ˜) %#ok<DEFNU>
460 end
461 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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A.4.2 Detect Circles

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%% This function performes the circle detection on a single image
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function [ImageCenters, ImageRadii] = findCircles(Image)
5 SPart = 0; % cut off for the bottom info table
6 [height, width, ˜] = size(Image.ImageData);
7 %%% For SEM Images search only in the upper 89% of the image.
8 if strcmp(Image.Type, '.tif')
9 SPart = floor(height*0.89);

10 %%% for TEM Images, look in the upper 90% of the image.
11 elseif strcmp(Image.Type, '.jpg')
12 SPart = floor(height*0.90);
13 end
14 %%% find the circles
15 [centers, radii] = imfindcircles(Image.ImageData(1:SPart,:),...
16 [floor(Image.R_min/Image.PixelSize),...
17 ceil(Image.R_max/Image.PixelSize)],...
18 'ObjectPolarity', Image.Polarity,...
19 'Sensitivity', Image.Sensitivity,...
20 'Method', Image.DetectionMethod,...
21 'EdgeThreshold', Image.EdgeThreshold);
22 %%% remove circles which are outside of the image!?
23 %% also if they are close to the boundary
24 PartBound = ceil((Image.R_max + Image.R_min)/2/Image.PixelSize * 0.7);
25 ImageCenters = [];
26 ImageRadii = [];
27 for k = 1:length(centers)
28 if centers(k, 1) < width &&...
29 centers(k, 1) > PartBound &&...
30 centers(k, 2) < SPart - PartBound &&...
31 centers(k, 2) > PartBound
32 ImageCenters = [ImageCenters; centers(k,:)];
33 ImageRadii = [ImageRadii, radii(k)];
34
35 end
36 end
37 end

A.4.3 Histogram Plot Function

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%% This function creates a histogram plot from the selected data
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function plotHistogram(Diameters, FileNamePath, FileName)
5 MyFontSize = 16;
6 % make a histogram of all the radii
7 tempFig = figure('Visible', 'off');
8 set(gca,'fontsize', MyFontSize);
9 h = histfit(Diameters);

10 disp(h);
11 xlabel('Diameter [nm]', 'FontSize', MyFontSize);
12 ylabel('Probability Density [1/nm]', 'FontSize', MyFontSize);
13 MyTitleString = strcat('D =', {' '}, num2str(round(mean(Diameters))), ' +/-', {' '},...
14 num2str(ceil(std(Diameters))), ' nm (',...
15 num2str(round(std(Diameters)/mean(Diameters)*100, 2)), " %)");
16 title(MyTitleString, 'FontSize', MyFontSize);
17 legend([' NPart = ', num2str(length(Diameters))], 'Gauss Fit');
18 % save the histogram in the folder with the images
19 print(tempFig,fullfile(FileNamePath,[FileName, '_Hist']),'-dpng');
20 % close the temporary figure
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21 close(tempFig);
22 end

A.4.4 Plot Detected Particles

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%% This function overlays the circles found in every Image and saves into
3 %%% the same folder
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 function plotImagesWithCircles(handles)
6 Results = handles.ResultData;
7 [Folder, ˜, ˜] = fileparts(Results{1}.PathString);
8 for R = 1:length(Results)
9 if handles.FileTable{R,1} == true

10 fig = figure(); % create a new figure
11 set(fig, 'visible', 'off'); % make the figure invisible
12 % display the current image in the table
13 imshow(Results{R}.ImageData);
14 % overlay the found circles in red
15 viscircles(Results{R}.CenterList, Results{R}.RadiiList,...
16 'Color', 'g', 'LineStyle', '-', 'LineWidth', 1);
17 [˜, FileName, ˜] = fileparts(Results{R}.PathString);
18 saveas(gca, fullfile(Folder, [FileName, '_CircDet']), 'png');
19 clf;
20 close();
21 end
22 end

A.4.5 Save The Global Results

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%% This function saves all the selected data to a result file
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function SaveDataToFile(handles)
5 Results = handles.ResultData;
6 FileName = handles.ResultFileName;
7 SelectList = handles.FileTable;
8 % check if the Pixel size was entered correctly!
9 if Results{1}.PixelSize == 1

10 % ask the user if the pixel size is correct
11 button = questdlg(['The Pixel Size is set to ',...
12 num2str(PixelSize), ' nm.',...
13 ' Are you sure this is the right pixel size?'], 'PixelSize');
14 % if not or cancel do nothing and return to main GUI
15 if strcmp(button, 'Cancel')
16 return;
17 elseif strcmp(button, 'No')
18 return;
19 end
20 end
21 % check if a FileName was entered by the user
22 if strcmp(FileName, 'EnterFileName')
23 % ask the user if the pixel size is correct
24 button = questdlg(['The file name appears to be unchanged.',...
25 ' Are you sure you want to use the default file name?'],...
26 'Filename');
27 % if not or cancel do nothing and return to main GUI
28 if strcmp(button, 'Cancel')
29 return;
30 elseif strcmp(button, 'No')
31 return;
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32 end
33 end
34 % display a waitbar to indicate the process
35 WaitbarHandle = waitbar(0,'Saveing Data. Please wait.');
36 %% save one file per image with its circle positions
37 for FilePos = 1:length(Results)
38 % update the waitbar
39 waitbar(FilePos/(length(Results)*2));
40 if SelectList{FilePos, 1} == true
41 SaveSingleImgData(handles, FilePos);
42 end
43 end
44 %% Save one file with a list of all radii
45 % extract the Selected Folder path
46 [pathstr, ˜, ˜] = fileparts(Results{1}.PathString);
47 % create and open a new file called FileName.txt
48 DataFile = fopen(fullfile(pathstr,[FileName, '.txt']), 'W');
49 % write the header
50 fprintf(DataFile, 'ParticleSizer Results\r\n');
51 fprintf(DataFile, ['Data Processed on: ',...
52 datestr(datetime('now')), '\r\n']);
53 fprintf(DataFile, ['Global Pixel Size: ',...
54 num2str(Results{1}.PixelSize), ' nm/Pixel\r\n']);
55 fprintf(DataFile, '# List of all Diameters [nm]\r\n');
56 AllDiaList = [];
57 % write every checked file data separately
58 for R = 1:length(Results)
59 % update the waitbar
60 waitbar((R + length(Results))/(length(Results)*2));
61 if SelectList{R}(1) == true
62 for C = 1:length(Results{R}.RadiiList)
63 CurrDia = Results{R}.RadiiList(C)*Results{R}.PixelSize*2;
64 AllDiaList = [CurrDia, AllDiaList];
65 fprintf(DataFile, [num2str(CurrDia),'\r\n']);
66 end
67 end
68 end
69 % write the average and std of all radii
70 MeanDia = mean(AllDiaList);
71 STDDia = std(AllDiaList);
72 fprintf(DataFile, ['The particles have a diameter of: ',...
73 num2str(MeanDia), ' +/- ', num2str(STDDia), ' nm (',...
74 num2str(STDDia/MeanDia*100), ' %)\r\n']);
75 % close the file
76 fclose(DataFile);
77 % plot a histogramm of all radii with a gauss fit
78 plotHistogram(AllDiaList, pathstr, FileName)
79 % plot all images with the detected circles overlayed
80 plotImagesWithCircles(handles);
81 % close the wait bar
82 close(WaitbarHandle);
83 end

A.4.6 Save The Individual Image Particle Coordinates

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%% This function saves the detected cicles for a single image
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function SaveSingleImgData(handles, FilePos)
5 Results = handles.ResultData;
6 % extract the Selected Folder path
7 [pathstr, name, ˜] = fileparts(Results{FilePos}.PathString);
8 % create and open a new file called FileName.txt
9 DataFile = fopen(fullfile(pathstr,[name, '_PosData.txt']), 'W');

10 % write the header
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11 fprintf(DataFile, 'ParticleSizer Results\r\n');
12 fprintf(DataFile, ['Data Processed on: ',...
13 datestr(datetime('now')), '\r\n']);
14 fprintf(DataFile, ['Global Pixel Size: ',...
15 num2str(Results{FilePos}.PixelSize), ' nm/Pixel\r\n']);
16 % write separate header for each image
17 fprintf(DataFile, ['Filename: ', Results{FilePos}.FileName, '\r\n']);
18 fprintf(DataFile, ['Particle Count: ',...
19 num2str(length(Results{FilePos}.RadiiList)), '\r\n']);
20 fprintf(DataFile, ['Average Particle Diameter: ',...
21 num2str(2 * mean(Results{FilePos}.RadiiList) * Results{FilePos}.PixelSize),...
22 ' +/- ', num2str(2 * std(Results{FilePos}.RadiiList) *...
23 Results{FilePos}.PixelSize), ' nm ( ',...
24 num2str(std(Results{FilePos}.RadiiList) / mean(Results{FilePos}.RadiiList) * 100), '%)\r\n']);
25 % search parameters used
26 fprintf(DataFile, ['Polarity: ', Results{FilePos}.Polarity, '\r\n']);
27 fprintf(DataFile, ['Sensitivity: ',...
28 num2str(Results{FilePos}.Sensitivity), '\r\n']);
29 fprintf(DataFile, ['Edge Threshold: ',...
30 num2str(Results{FilePos}.EdgeThreshold), '\r\n']);
31 fprintf(DataFile, ['Method: ',...
32 Results{FilePos}.DetectionMethod, '\r\n']);
33 fprintf(DataFile, ['Search Radius_Min: ',...
34 num2str(Results{FilePos}.R_min),...
35 ' nm\r\n']);
36 fprintf(DataFile, ['Search Radius_Max: ',...
37 num2str(Results{FilePos}.R_max),...
38 ' nm\r\n']);
39 fprintf(DataFile, '#Radius [nm]\tX[nm]\tY[nm]\r\n');
40 % write the circles found in the image
41 % mirror at the x-axis and shift into the first quadrant of
42 % a cartesian coordinate system:
43 % the center is at the bottom left corner
44 [height, ˜, ˜] = size(Results{FilePos}.ImageData);
45 for C = 1:length(Results{FilePos}.RadiiList)
46 CurrRadius = Results{FilePos}.RadiiList(C)*Results{FilePos}.PixelSize;
47 CurrXPos = Results{FilePos}.CenterList(C,1)*Results{FilePos}.PixelSize;
48 CurrYPos = (-Results{FilePos}.CenterList(C,2) +...
49 2*height)*Results{FilePos}.PixelSize;
50 fprintf(DataFile, [num2str(CurrRadius), '\t', num2str(CurrXPos),...
51 '\t', num2str(CurrYPos), '\r\n']);
52 end
53 % close the file
54 fclose(DataFile);
55 end

A.4.7 Check The Edge Threshold

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%% This function checks if the Edge Threshold is between 0 and 1.
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function TestResult = checkEdgeThreshold(EdgeThreshold)
5 if EdgeThreshold <= 0
6 errordlg(['The Edge Threshold: ', num2str(EdgeThreshold),...
7 ' is too low. Please choose a value between 0 and 1.']);
8 TestResult = false;
9 elseif EdgeThreshold > 1

10 errordlg(['The Edge Threshold: ', num2str(EdgeThreshold),...
11 ' is too high. Please choose a value between 0 and 1.']);
12 TestResult = false;
13 else
14 TestResult = true;
15 end
16 end
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A.4.8 Check The Pixel Size

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%% This function checks if the pixel size is valid
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function newSize = checkPixelSize(Size)
5 if Size > 0
6 newSize = Size;
7 else
8 newSize = 1;
9 errordlg(['A Pixel Size of ', num2str(Size), ' is invalid!',...

10 ' Please enter a Pixel Size > 0.'],'Pixel Size');
11 end

A.4.9 Check The Sensitivity

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%% This function checks if the Sensitivity is between 0 and 1
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 function TestResult = checkSensitivity(Sensitivity)
5 if Sensitivity <= 0
6 errordlg(['The Sensitivity: ', num2str(Sensitivity),...
7 ' is too low. Please choose a value between 0 and 1.']);
8 TestResult = false;
9 elseif Sensitivity > 1

10 errordlg(['The Sensitivity: ', num2str(Sensitivity),...
11 ' is too high. Please choose a value between 0 and 1.']);
12 TestResult = false;
13 else
14 TestResult = true;
15 end
16 end
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