
Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

No. 47

December 2009

Tina Balke, Serena Villata, Daniel Villatoro (Eds.)

Proceedings of the 11th European Agent Systems
Summer School Student Session

ISSN 1864-9300

Proceedings of the

11th European Agent Systems Summer School

Student Session

Preface

This volume contains the papers presented at the Student Session of the 11th
European Agent Systems Summer School (EASSS) held on 2nd of September
2009 at Educatorio della Provvidenza, Turin, Italy.

The Student Session, organised by students, is designed to encourage stu-
dent interaction and feedback from the tutors. By providing the students with
a conference-like setup, both in the presentation and in the review process, stu-
dents have the opportunity to prepare their own submission, go through the
selection process and present their work to each other and their interests to
their fellow students as well as internationally leading experts in the agent field,
both from the theoretical and the practical sector.

As the goal of the Student Session is to provide the speakers with construc-
tive feedback and a means to be introduced to the community, the competitive
elements often found in conferences (best paper award, best presentation award)
are intentionally omitted. Preparing a good scientific paper is a difficult task,
practising it is the benefit of this session.

All submissions were peer-reviewed and accepted paper submissions were
assigned a 25 minute slot for presentation at the Summer School. Typically
a presentation either detailed the intended approach to a problem or asked a
specific question, directed at the audience.

The review process itself was extremely selective and many good papers could
not be accepted for the final presentation. Each submission was reviewed by 4
programme committee members on the average, which decided to accept the 4
full and 4 short papers that are presented in these proceedings.

Overall, the EASSS’09 Student Session as well as the Summer School in
general were a great success that could not have been achieved without the
support of the numerous reviewers as well as the local EASSS organizers. We
want to thank all of these people and are looking forward to seeing you again
next year.

October 2009 Tina Balke
Serena Villata

Daniel Villatoro

Student Session Organization

Programme Chairs

Tina Balke
Serena Villata
Daniel Villatoro

Local Organization

Serena Villata

Programme Committee

Stephane Airiau
Giulia Andrighetto
Luis Antunes
Manuel Atencia
Patrizio Barbini
Guido Boella
Marco Campenni
Jordi Campos Miralles
Dan Cartwright
António Castro
George Christelis
Marina De Vos
Irina Diana Coman
Massimo Cossentino
Petar Curkovic
Sylvain Dekoker
Maria del Carmen Delgado
Juergen Dix
Ulle Endriss
Marc Esteva
Torsten Eymann
Berndt Farwer
Maria Fasli
Francesco Figari
José M. Gascueña
Nicola Gatti
Carlos Grilo
Davide Grossi
Hanno Hildmann
Benjamin Hirsch
Sebastian Hudert
Joris Hulstijn
Manoela Ilic
Wojciech Jamroga
Fredrik Johansson
Jean Christoph Jung
Rosine Kitio
Franziska Klügl
Lena Kurzen
Tobias Küster
João Leite
Shuangyan Liu

Brian Logan
Marin Lujak
Alessandro Maccagnan
Mircea Moca
Sanjay Modgil
Ambra Molesini
Pablo Noriega
Ingrid Nunes
Heather S. Packer
Julian Padget
Mario Paolucci
Damien Pellier
Antonio Pereira
Adrian Perreau de Pinninck
Gabriella Pigozzi
Isaac Pinyol
Michele Piunti
Eric Platon
Evangelos Pournaras
Abdur Rakib
Alessandro Ricci
Mikheil Rukhaia
Jordi Sabater-Mir
Norman Salazar
Ahmad Sardouk
Julien Siebert
Marija Slavkovik
Jackeline Spinola de Freitas
Eugen Staab
Tomislav Stipancic
Gaia Trecarichi
Leon van der Torre
Wamberto Vasconcelos
Laurent Vercouter
Meritxell Vinyals
Cees Witteveen
Yining Wu
İlker Yıldırım

Table of Contents

Towards an inductive algorithm for learning trust alignment 5
Andrew Koster, Jordi Sabater Mir and Marco Schorlemmer

A Preliminary Proposal for Model Checking Command Dialogues 12
Angel Rolando Medellin, Katie Atkinson and Peter McBurney

Norm Convergence in Populations of Dynamically Interacting Agents 19
Declan Mungovan, Enda Howley and Jim Duggan

Argumentation on Bayesian Networks for Distributed Decision Making . . 25
Akın Günay

Towards Toolipse 2: Tool Support for the JIAC V Agent Framework 30
Michael Burkhardt, Marco Luetzenberger and Nils Masuch

The Tenacity of Social Actors . 33
Joseph El Gemayel

The Impact of Routing on Traffic Congestion . 36
Cristian Gratie

A Rule-Based Psychologist Agent for Improving the Performances of a
Sportsman . 39

Andrei-Horia Mogos and Monica Cristina Voinescu

Towards an Inductive Algorithm for Learning Trust
Alignment

Andrew Koster
Artificial Intelligence Research

Institute, CSIC
Bellaterra, Spain

andrew@iiia.csic.es

Jordi Sabater-Mir
Artificial Intelligence Research

Institute, CSIC
Bellaterra, Spain

jsabater@iiia.csic.es

Marco Schorlemmer
Artificial Intelligence Research

Institute, CSIC
Bellaterra, Spain

marco@iiia.csic.es

ABSTRACT
Knowing which agents to trust is an important problem in
open multi-agent systems. A way to help solve this prob-
lem is by allowing agents to relay information about trust
to each other. We argue trust is a subjective phenomenon
and therefore needs aligning. We present a mathematical
framework for communicating about trust in terms of inter-
actions. Based on this framework we present an algorithm
based on clustering and inductive logic programming tech-
niques to align agents’ trust models.

Keywords
inductive logic programming, trust, alignment, learning

1. INTRODUCTION
In complex, distributed systems, such as multi-agent sys-

tems, the artificial entities have to cooperate, negotiate,
compete, etc. amongst themselves. Thus the social aspect of
these systems plays a crucial role in their functioning. One
of the issues in such a social system is the question of whom
to trust and how to find this out. There are several systems
already in development that model trust and reputation [16],
ranging from a straightforward listing of evaluations (such as
eBay’s [13] reputation system), to complex cognitive models
(such as Repage [18]). We anticipate that in an open multi-
agent system, there will be a large diversity of models in
concurrent use by different agents, depending on the wishes
of the programmer and the user. However, even if there is
consensus on some model, this is still only a consensus on the
computational representation. In a heterogeneous environ-
ment it is inevitable that, if the trust model an agent uses is
based on cognitive principles, the way different agents inter-
pret their environment will still lead to differences in trust.
We will show how, despite agreeing on the ontological un-
derpinnings of the concepts, there is the need to align trust
so as to enable reliable gossip. With gossip we refer to all
communication about trust.
We will emphasize the need to align trust further by con-

sidering a simple example of a multi-agent system with three
agents.

Alice wants to know if Dave would be a good keynote speaker

Cite as: Towards an Inductive Algorithm for Learning Trust Alignment,
Andrew Koster, Jordi Sabater-Mir and Marco Schorlemmer, European
Agents System Summer School 2009)
Copyright c© 2009,

for the conference she is organizing. However, she does not
know enough about him. She asks Bob. Bob has never collab-
orated with Dave directly, but they work at the same institute
and play squash together. Through these interactions, Bob
has trust in Dave and tells this to Alice.
Lets analyse Bob’s model. He does not know Dave profes-

sionally and bases his trust in Dave on personal interactions.
This is a perfectly valid model, but lets assume Alice’s model
works differently: she only takes academic accomplishments
into account. She should therefore disregard Bob’s gossip,
because it is based on, what she considers, unreliable in-
formation. We emphasize that we differentiate between the
trust she has in Bob and the reliability of the information
he sends her. Her trust in Bob is grounded in her trust and
reputation model. However, what we want to find out is
whether the gossip Bob sends can be interpreted reliably in
Alice’s model.
This short example shows that even in simple situations

the concepts related to trust are highly personal and com-
munication about them is no straightforward matter. In the
case that two agents wish to exchange information about
trust it is therefore important to clarify what trust means
to each of them. This can be done in an alignment process,
based on similar protocols in ontology alignment, concept
formation and other related fields. Some work has been
done in defining common ontologies for trust [14, 7], how-
ever in practice these ontologies do not have the support of
many of the different trust methodologies in development.
Even if support were added for all systems and a common
ontology emerged, we could still not use it to communicate
effectively. Trust is an inherently personal phenomenon and
has subjective components which cannot be captured in a
shared ontology. An adaptable approach that takes the dif-
ferent agents’ points of view into account is needed.
Abdul-Rahman and Hailes’ reputation model [1] approa-

ches the problem from another direction, by defining the
trust evaluations based on the actual communications. The
interpretation of gossip is based on previous interactions
with the same sender. The problem with this, however, is
that it is incomplete: firstly it assumes all other agents in
the system use the same model, which in a heterogeneous
environment will hardly ever be the case. Secondly, it uses
a heuristic based on prior experiences, called the semantic
distance, to“bias” received messages. The semantic distance
is an average of all previous experiences. They do not dif-
ferentiate between recommendations about different agents,
which are based on different types of interactions.
We propose to enrich the model of communication by con-

sidering it separate from the actual trust model. By do-
ing this, we can allow for different trust models. We note,
however, that while trust is modeled in disparate ways, all
definitions do agree on the fact that trust is a social phe-
nomenon. Just as any social phenomenon, it arises from the
complex relationships between the agents in the environ-
ment and, without losing generality, we say these relation-
ships are based on any number of interactions between the
agents. These interactions can have many different forms,
such as playing squash with someone, buying a bicycle on
eBay or telling Alice that Dave is a trustworthy keynote
speaker. Note that not all interactions are perceived equally
by all participants. Due to having different goals, agents
may observe different things, or even more obviously: by
having a different vantage point. Simply by having more (or
different) information available, agents may perceive the in-
teraction itself differently. In addition, interactions may be
accompanied by some kind of social evaluation of the inter-
action. These can range from an emotional response, such
as outrage at being cheated in a trade, to a rational analysis.
Thus, we see that how an agent experiences an interaction
is unique and personal. This only adds to the problem we
are considering. To be able to align, there needs to be some
common ground from which to start the alignment, but any
agent’s experience of an interaction is subjective, and thus
not shared. We call this personal interpretation of the inter-
action an observation. We say an agent’s observations allow
it to evaluate trust.
Now that we have discussed what interactions mean to

a single agent, we will return to the focus of communi-
cating about trust. One interaction may be observed by
any number of agents, each making different observations,
which support different trust evaluations of different targets
performing different roles. However, to communicate about
trust evaluations, the agents need to have a starting point:
some basic building blocks they implicitly agree they share.
We note that the interactions provide precisely such a start-
ing point. While all the agents’ observations are different,
they do share one specific thing: the interaction itself. We
therefore argue that to find a reliable alignment between two
agents they can align based on these interactions.
Our approach uses these shared interactions as building

blocks to align the agents’ trust models, based on the gossip
they send each other. The gossip specifies certain interac-
tions, which each agent observes differently. These obser-
vations form the support for an agent’s trust evaluation. If
another agent communicates this trust evaluation, the in-
terpretation should be based on the underlying interactions.
An alignment of the trust models gives a way of doing this
by gossiping about the agents’ trust evaluations and the ob-
servations (and thus interactions) they base these on.
Semantic alignment based on interactions has been stud-

ied in [2]. This approach to semantic alignment is based on
the general framework of Channel Theory [3, 19]. We use
this same mathematical theory as a framework for aligning
trust and introduce it in the next section before discussing
the technical details of the algorithm.

2. THE ALGORITHM
Before we consider possible solutions we need a clear defi-

nition of the problem we are considering. We follow the for-
malization we described in [10] and will summarize it briefly
in the following sections. Firstly we consider agents with

Figure 1: Schematic diagram of the steps in the
alignment process

heterogeneous trust models, but we have no clear descrip-
tion of what a trust model is in the first place. We explain
this in Section 2.1. Furthermore, to align, the agents need
to communicate. For this we will need to define a language
in Section 2.1.1. And finally, the agents need to have some
method of forming an alignment based on the statements in
this language. This we describe in Section 2.1.2. In Section
2.2 we describe the computational approach we take. The
whole process is summarized in Figure 1.

2.1 A Formal Representation
As argued in Section 1, interactions form the building

blocks for talking about trust. An interaction is observed by
different agents and represented internally by them. These
observations then lead to trust evaluations of the various
agents involved. Any trust model can therefore be described
as a binary relation between an agent’s observations and its
trust evaluations. In addition, trust always has a target:
any form of representing trust will have a trusting agent
and a target agent, which is the agent the trust evaluation
is about. It is assumed that any agent’s trust evaluations
can be represented in some formal language LTrust. Note
that because trust is a subjective phenomenon, the seman-
tics of this language aren’t shared, but by sharing the syn-
tax the agents can communicate about it. A trust model
is therefore a binary relation |=, such that X |= ϕ means
that there is a set of observations X which support trust
evaluation ϕ ∈ LTrust. The observations X are unknown as
they are an internal representation of the agent. However,
we know these are based on some set of interactions. If O
is the set of an agent’s possible observations and I is the

set of all interactions in the environment, then each agent
A has a function observeA : I→ OA which associates inter-
actions with observations. The observations X in the trust
model are therefore generated (with the observe-function)
from some set of interactions I ⊆ I. These interactions are
facts in the environment all agents may know about and can
be used as the basis of an alignment.

2.1.1 Formalizing gossip
In addition to LTrust a second language is needed for effec-

tive trust alignment: a language in which to talk about the
interactions. Knowing which information about the interac-
tions is relevant depends on the domain. Thus a language
for discussing interactions comes from the domain the agents
operate in. Usually such a language already exists or is de-
fined together with the MAS. We call this language LDomain

and note that it is a shared language: both the syntax and
the semantics are known by all agents in the system, as op-
posed to the semantics of LTrust, which is interpreted differ-
ently by the agents. With this shared language it is possible
to define exactly what it means for two agents to share an
interaction. A set of interactions I is shared by agents A
and B if there is some ϕ ∈ LDomain such that ϕ is in both
A and B’s sets of observations of interaction I, or, in other
words, ϕ is the information shared between the agents about
I. Formally neither agent can know that ϕ is observed by
the other agent, however if we limit LDomain to objective
and easily observable properties of the domain, we assume
such ϕ exist.
Messages, containing a trust evaluation of a specific tar-

get in LTrust and pinpointing the specific shared interac-
tions this evaluation is based on in LDomain, form the ba-
sis of the trust alignment. We call such messages “gossip”.
Formally we say gossip from agent B to agent A is a mes-
sage gossip(T, β, ψ), with T the target of the trust evalu-
ation β ∈ LTrust and ψ ∈ LDomain describing the set of
interactions I which support trust evaluation β for agent
B. We cannot simply enumerate the interactions in I be-
cause agents may not be willing to do so. LDomain serves
a double purpose: firstly it may be more descriptive, giving
more information than simply an enumeration of interac-
tions. Secondly it may allow agents to describe interactions
without pinpointing them exactly. This allows agents to
align without divulging sensitive information. Sending gos-
sip messages is point 1 in Figure 1.
The receiving agent A can now use its own trust model to

find an α ∈ LTrust, such that α is supported by I and the
resulting rule α← β, ψ will form the basis of our alignment.
What this rule means is: the interactions which support ψ,
support trust evaluation α for agent A and β for agent B.
These rules are at point 2 in Figure 1. The goal is now to
find a way of generalizing from such rules to a more gen-
eral, predictive model, such that, for example, agent A can
know what trust evaluation α′ it should associate with a
certain β′ ∈ LTrust, given ψ, despite neither knowing the
interactions which support ψ nor being able to conclude an
own trust evaluation from the observation of those interac-
tions. This would be the outcome of the algorithm, applied
at point 5 in Figure 1.

2.1.2 Generalizations and coverage
Now that we have a way of describing the relationship

(alignment) of two agents’ trust models with regards to a

specific target, we wish to expand this idea to a more pre-
dictive model: we wish to find the more general alignment
between the trust models. This problem is considered as
an inductive learning problem [8]. Given a number of tar-
geted alignments with regards to different agents, is there
an alignment that describes all (or most) of them?
To use inductive learning, it is necessary to define what

the solution should look like. This should be a generalization
of the above mentioned rules α ← β, ψ. We note that both
LTrust and LDomain are represented in a standard first-order
logic. Thus it is possible to use θ-subsumption to generalize
these rules. The way to do this is by structuring the search
space. The solution should be the least general alignment,
which covers all the rules given in the messages. A hypo-
thetical alignment T is said to cover a rule α← β, ψ if there
is a rule Γ ← Δ,Ψ ∈ T such that all sets of interactions I
which support α← β, ψ also support Γ← Δ,Ψ. One hypo-
thetical alignment T is more general than another T′ if its
coverage is greater: c(T) ⊃ c(T′). We write this T � T′.
The overall trust alignment between two agents can now be
found by finding a minimally general generalization, which
covers all the communicated rules.

2.2 An Inductive Algorithm
As described in the preceding section, our algorithm must

generalize the specific targeted alignments to a predictive
ruleset. This is very similar to the problem in concept forma-
tion. The approach taken in these problems is by clustering
the data together and finding a description of each cluster.
However, the fact that we have descriptions in first-order
logics invalidates the use of propositional clustering algo-
rithms for this purpose [9]. Some more modern approaches
combine clustering and ILP methods [12, 5] to allow for clus-
tering of first-order formulas. This is exactly the problem we
are trying to solve and we therefore propose a modification
of these algorithms, using the distance function from [17]
and a conventional agglomerative clustering algorithm. The
found clusters can then be used as the input for an ILP algo-
rithm to learn the generalizations. Furthermore, we have an
additional wish: our partitioning may be too strict, which
will not allow for enough positive examples and too many
negative examples to learn anything useful. In these cases
we will want to relax our partitioning criteria to amplify the
base of positive examples, in the hope that this will allow
for a better generalization. This obviously comes at the cost
of accuracy of the predictive ruleset found, but this can be
taken into account.

2.2.1 A short overview
The input of the algorithm will be any number of rules R

generated from gossip statements. These rules, the same
as described in Section 2.1.1, will serve as the initial input
and have the form shown below, where T1, . . . , Tm are tar-
get agents, α1, . . . , αn, β1, . . . , βn ∈ LTrust and ψ1, . . . , ψn ∈
LDomain describe the interactions.

α1[T1]← β1[T1], ψ1

...

αi[Tj]← βi[Tj], ψi

...

αn[Tm]← βn[Tm], ψn

Algorithm 1 Generalize rules R
1: INPUT: set of SRAs to be generalized R
2: INPUT: distance measure on LTrust D(x, y).
3: INPUT: set of increasing distances for clustering S
4: General rules := ∅
5: Clusters := {{r}|r ∈ R}
6: Covered := ∅
7: for all Stopcriteria s in S do
8: Clusters := agglomerative clustering(Clusters, s, D)
9: if |Clusters| = 1 then
10: break
11: end if
12: for all C ∈ Clusters do
13: H := generalize head(C, R\C)
14: if H
= null then
15: G := generalize body(C, R\C)
16: if G
= null then
17: General rules := General rules ∪ {〈H← G, s〉}
18: Covered := Covered ∪ C
19: end if
20: end if
21: end for
22: if Covered = R then
23: break
24: end if
25: end forGeneral rules

This says there are n different rules about m different
agents. To learn the underlying structure we will use Algo-
rithm 1.
We use three important procedures, which we will explain

in more detail: the distance metric D on targeted alignment
rules, the clustering algorithm in line 1 and the generaliza-
tion algorithm we use on the clusters in lines 1 and 1. This
last one takes as input the rules in the cluster as positive ex-
amples and the rules outside clusters as negative examples
and uses an ILP algorithm to learn a generalization. Fur-
thermore we use the flag “terminate” to end the algorithm
if at a certain clustering resolution we have rules covering
all targeted alignments. In this case there is no reason to
continue, because we have a maximum coverage of the ex-
amples.
We are interested in finding generalizations which allow

us to predict what the receiving agent’s trust evaluation α
would be, given that the sending agent’s trust evaluation
is β, based on interactions which support ψ. We therefore
need to be able to cluster the rules above according to the
relative distance between the receiving agent’s trust evalu-
ations. The rest of the information in the rules is used to
learn the generalization.

2.2.2 A distance metric
An agent’s trust evaluation is in the LTrust language,

which in general could be any first-order logic. Distances on
first-order logic objects have received a lot of attention lately
[17]. Such distance measures work on arbitrary clauses, how-
ever, they do require them to be rewritten in clausal nor-
mal form (CNF). We note that for any closed formula in
a first-order logic its CNF can be found in polynomial time
[15]. The distance measure is then split up into two different
parts:

• A context-dependent part, defining the distance be-
tween the disjunctions in the CNF in LTrust

• A generic part, defining the distance between phrases,
based on the distance between the clauses in each phrase.

We stipulate, however, that the distance metric can be
agent-specific and may be as complicated as the programmer
wishes. To further illustrate this description of a distance
metric, we give an example of LTrust and a metric on it. Our
example of LTrust has the following predicates: image(A, V)
and reputation(A, V), where A is an agent and V ∈ [1, 10] ⊂
N. For the context-dependent part of the metric we use the
closure under symmetry of the following recursive definition:

1. d(ϕ1 ∨ ϕ2, ψ1 ∨ ψ2) =

min
ˆ`
d(ϕ1, ψ1) + d(ϕ2, ψ2)

´
,
`
d(ϕ1, ψ2) + d(ϕ2, ψ1)

´˜
2

2. d(ϕ1 ∨ ϕ2, ψ) =
min

ˆ
d(ϕ1, ψ), d(ϕ2, ψ)

˜
+ 1

2

3. d(¬ϕ,¬ψ) = d(ϕ,ψ)

4. d(¬ϕ,ψ) = 1

5. d(image(A1, V1), image(A2, V2)) =
|V1 − V2|

10

6. d(reputation(A1, V1), reputation(A2, V2)) =
|V1 − V2|

10

7. d(ϕ,ψ) = 1 otherwise

As mentioned above, this distance measure is dependent on
the language and the agent. All we require in the continua-
tion is that it is defined for all simple clauses in LTrust and
that it is a metric. For that it must satisfy the following
properties:

1. non-negativeness: ∀ϕ,ψ : d(ϕ,ψ) ≥ 0

2. reflexivity: ∀ϕ : d(ϕ,ϕ) = 0

3. symmetry: ∀ϕ,ψ : d(ϕ,ψ) = d(ψ,ϕ)

4. strictness: ∀ϕ,ψ : d(ϕ,ψ) = 0 iff ϕ ≡ ψ
5. triangle inequality: ∀ϕ,ψ, θ : d(ϕ,ψ)+d(ψ, θ) ≥ d(ϕ, θ)

It is easy to prove that the measure we provided above is a
metric, disregarding inequalities between agents.

A generic metric.
Now we can define a generic metric, which uses the context-

dependent metric described above. A clausal form can be
represented as a set of disjunctions, which allows us to use
distance metrics on sets. There are several such metrics
available in the literature, but one has been developed for
defining distances between first-order logic objects. This
metric, designed by Ramon and Bruynooghe [17] uses a
matching between two clausal forms to calculate the dis-
tance. We use this metric, because it allows a direct syntac-
tic comparison between different formulas. It is once again
free to the designer to choose a different metric. All that is
really required for the algorithm is for there to be a distance
measure on sentences in LTrust. Clustering algorithms work
better with metrics, because the triangle inequality can be
used to prune the choices.

2.2.3 Clustering
Because we wish to learn generalizations which predict the

receiving agent’s trust evaluations, based on the gossip sent,
we want to consider those rules where the receiving agent’s
trust evaluations are “near each other”. That means we wish
to cluster based on the heads of the rules. It is immediately
obvious why an agglomerative hierarchical is the best fit:

• We want to work our way from small precise clusters
to large clusters covering a broad spectrum of trust
evaluations.

• We want to be able to stop the algorithm when we
have found general rules covering all examples.

Bottom-up incremental clustering algorithms fit these cri-
teria best, which leads us to the family of agglomerative
clustering algorithms [21]. In this family, complete-link clus-
tering creates more balanced clusters than single-link algo-
rithms, yet has less overhead than average-link algorithms.
All other clustering algorithms we explored require the com-
putation of some form of centroid or medioid of the cluster,
which speeds up the agglomeration process at the cost of
calculating this centroid. Because it is hard to find a cen-
troid for phrases in a first-order logic and we do not expect
to have more than a few thousand data points, our choice
fell on complete-link clustering. A drawback of complete-
link clustering is that it deals badly with outliers. However,
we are clustering on the agent’s own trust evaluations. If
there are outliers, they will not be in these evaluations, but
rather the alignment rule itself will be an outlier. We will
need to deal with the outliers in the learning of the body,
but we should not encounter them when clustering.

Complete-link clustering algorithm.
To start, the complete-link agglomerative clustering al-

gorithm places each element in a separate cluster. It then
iteratively merges the two clusters that are nearest together,
according to a distance measure between clusters. This dis-
tance measure is the maximum distance between two single
elements in each cluster, using the distance measure as in
Section 2.2.2. This process of agglomeration is continued
until there is either only one cluster left, which contains all
examples, or some stop criterion has been reached. This
stop criterion is defined in line 1 of Algorithm 1. We stop
the agglomeration when the distance between two clusters
is greater than s.
A naive implementation of the complete-link agglomera-

tive algorithm would take O(n3) time, where n is the number
of elements to be clustered. The reason is fairly obvious: we
start with each element in its own cluster. For each clus-
ter we need to find the distance to each other cluster. This
needs to be repeated any time a cluster is merged. Because
we start with n clusters, this naive algorithm takes O(n3)
time. This is fairly prohibitive, even for the relatively small
datasets we expect to cluster. Luckily there are improve-
ments. Because the distance measure is symmetric, it stands
to reason we can skip some calculations. Furthermore, if we
merge two clusters then the distance from that cluster to
any other cluster is the maximum distance of either of those
clusters to the other cluster. This allows us to reduce the
algorithm to O(n2) time in a fairly straightforward manner:
for each cluster we need to calculate the distance to each
other cluster for which this hasn’t been calculated. There
are computational methods, some of which only work for
metrics, for optimizing it even further. This makes the com-
putation of clusters quite doable. Clustering is the process
at point 3 in Figure 1.

2.2.4 Learning rules
For each distance s we will have a set of clusters. For

each of these clusters we shall attempt to generalize the
rules. This is point 4 of Figure 1. Although we clustered on

clausal normal forms of only the heads of the rules, for this
part we revert back to the full rule written in the original
form. Within the cluster are two or more rules of the form:
αi[Tj]← βi[Tj], ψi.

Learning the head.
All the αi within a cluster are within distance s of each

other. We therefore start with finding the “centre” of all αi.
Firstly we note that each αi has a target agent Tj . We will
immediately replace all these agents with a variable, because
we do not wish to be dependent on the agent. In the future
we may not wish to do this, but rather abstract to some sub-
set of all the agents which fulfill a certain role, are within a
subgraph of a social network or use other background infor-
mation about the agents to refine the algorithm. For now,
however, we do not distinguish between individual agents
and assume trust is global and based only on the interac-
tions. The “centre” of the cluster will be the least general
generalization of the αi under θ-subsumption. It is relatively
easy to compute using an algorithm such as Aleph [20]. This
is an inductive learning algorithm which uses the“learn from
example” setting [8]. We wish to learn some phrase α∗ in
LTrust such that if α∗ holds then all αi hold. As parame-
ters for learning we therefore use the definitions of LTrust

and as the set of positive examples the αi. Because we’re
learning the least general generalization (lgg), we can use
only positive examples and assume everything that is not
a positive example is a negative one. In actual fact this is
not quite the case. For example in our example of LTrust

above, if we have the formulas image(X, 5) and image(X, 7)
in the same cluster, we will wish to learn that the cluster
holds for all phrases such that image(X,Y) ∧ Y ∈ [5, 7],
while this will not be the lgg considering only the given
examples as positive: image(X, 6) will necessarily be con-
sidered a negative example, leading to the generalization:
image(X, 6)∨ image(X, 7). Therefore depending on LTrust

we will want to define some background knowledge in the
learner to rectify cases like these.

Learning the body.
The real work comes in when we wish to learn the body.

We rewrite our rules with α∗ in the head, such that we have
a list of rules: α∗[X] ← βi[X], ψi, which count as positive
examples of the concept α∗. All rules that fall outside the
cluster count as negative examples for α∗. Thus giving us
the basis required for applying an inductive learning algo-
rithm. Furthermore we note that we have more information
available than when we learn the generalization of the head,
namely we have a list of situations βi, ψi in which the exam-
ple holds. This coincides with the “learning from interpre-
tation” setting of ILP [8] and we can use Tilde [4] to learn
these generalizations.

3. DISCUSSION AND FUTURE WORK
We are currently in the process of implementing the algo-

rithm as described above. While we do not have any compu-
tational results yet, we will discuss our expectations. In [11]
we discuss a preliminary proof of concept we implemented
using Aleph to learn the rules. This small scenario taught
us that the approach is viable, however using that imple-
mentation, the computational limitations were inhibitive to
scaling the example up. For this reason we have taken great

caution in this approach to keep the computational complex-
ity of each step into account. Firstly we must note that we
are dealing with several NP-complete problems: finding the
θ-subsumption of a set of clauses has been shown to be NP-
complete, as has calculating the coverage of a given clause
[8]. It was therefore very important to search for approaches
which reduce this complexity. Firstly by clustering our ex-
amples and then considering them as positive and negative
examples for some concept allows us to use established algo-
rithms for learning. The clustering and learning of the head
is a typical example of concept formation, which has an es-
tablished body of research and is applied in various data
mining problems. We feel confident that these approaches,
tested in various datamining scenarios will tackle this initial
problem well. The second part of the problem uses “learning
from interpretations”. While this is still a computationally
hard problem, it is easier to learn than the approach us-
ing Aleph. Tilde has been tested on some very large data
sets and performs efficiently. It is implemented with many
optimizations in the ACE package [6].
We are currently implementing the overall system and

testing the various components. This is the work for the
immediate future. In addition it will be important to as-
sess the quality of the aligned trust models, by comparing
the performance of agents using the system to agents using
the simpler model of Abdul-Rahman and Hailes [1] as well
as agents not aligning at all. We will also extend the al-
gorithm to allow for background knowledge, which can give
the system extra information about the agents involved or
background knowledge about the interactions and the envi-
ronment. Furthermore, this model assumes agents always
give truthful information. If this is not the case, the learn-
ing algorithm will need to be able to cope with “lies”. The
mathematical framework we have designed allows for all of
this and the combination of different algorithms we use in
practice looks promising.

Acknowledgements
This work is supported by the Generalitat de Catalunya un-
der the grant 2009-SGR-1434, the Agreement Technologies
Project CONSOLIDER CSD2007-0022, INGENIO 2010 and
the LiquidPub Project CIT5-028575-STP. M. Schorlemmer
is supported by a Ramón y Cajal research fellowship from
Spain’s Ministry of Science and Innovation, which is par-
tially funded by the European Social Fund.

4. REFERENCES
[1] A. Abdul-Rahman and S. Hailes. Supporting trust in

virtual communities. Proceedings of the 33rd Hawaii
International Conference on System Sciences, 6, 2000.

[2] M. Atencia and M. Schorlemmer. A formal model for
situated semantic alignment. In Sixth International
Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2007), volume 6, pages
1270–1277, Honolulu, Hawaii, USA, 2007.

[3] J. Barwise and J. Seligman. Information Flow: The
Logic of Distributed Systems. Cambridge University
Press, 1997.

[4] H. Blockeel and L. De Raedt. Top-down induction of
first-order logical decision trees. Artificial Intelligence,
101(1-2):285–297, 1998.

[5] H. Blockeel, L. De Raedt, and J. Ramon. Top-down
induction of clustering trees. In J. Shavlik, editor,

Proceedings of the 15th International Conference on
Machine Learning, pages 55–63. Morgan Kaufmann,
1998.

[6] H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens,
J. Ramon, and H. Vandecasteele. Improving the
efficiency of inductive logic programming through the
use of query packs. Journal of Artificial Intelligence
Research, 16:135–166, 2002.

[7] S. Casare and J. Sichman. Towards a functional
ontology of reputation. In AAMAS ’05: Proceedings of
the fourth international joint conference on
Autonomous agents and multiagent systems, pages
505–511, New York, NY, USA, 2005. ACM.

[8] L. De Raedt. Logical and Relational Learning.
Springer Verlag, 2008.

[9] D. Fisher. Knowledge acquisition via incremental
conceptual clustering. Machine Learning,
2(2):139–172, 1987.

[10] A. Koster, J. Sabater-Mir, and M. Schorlemmer.
Formalization of the trust and reputation alignment
problem. Technical Report TR-2009-03, CSIC-IIIA,
2009.
http://www2.iiia.csic.es/∼andrew/files/techreport.pdf.

[11] A. Koster, J. Sabater-Mir, and M. Schorlemmer. An
interaction-oriented model of trust alignment.
Technical Report TR-2009-05, CSIC-IIIA, 2009.
http://www2.iiia.csic.es/∼andrew/files/techreport2.pdf.

[12] F. A. Lisi. Building rules on top of ontologies for the
semantic web with inductive logic programming.
Theory and Practice of Logic Programming,
8(3):271–300, 2008.

[13] P. Omidyar. Ebay. http://www.ebay.com, retrieved
September 26, 2008, 1995.

[14] I. Pinyol and J. Sabater-Mir. Arguing about
reputation. the lrep language. In Proceedings of the
8th Annual International Workshop ”Engineering
Societies in the Agents World” (ESAW’07), volume
4995, pages 284–299. Springer LNCS, 2007.

[15] D. A. Plaisted and S. Greenbaum. A
structure-preserving clause form translation. Journal
of Symbolic Computation, 2:293–304, 1986.

[16] S. D. Ramchurn, D. Huynh, and N. R. Jennings. Trust
in multi-agent systems. The Knowledge Engineering
Review, 19(1):1–25, 2004.

[17] J. Ramon and M. Bruynooghe. A polynomial time
computable metric between point sets. Acta
Informatica, 37:765–780, 2001.

[18] J. Sabater-Mir, M. Paolucci, and R. Conte. Repage:
REPutation and imAGE among limited autonomous
partners. JASSS - Journal of Artificial Societies and
Social Simulation, 9(2), 2006.

[19] M. Schorlemmer, Y. Kalfoglou, and M. Atencia. A
formal foundation for ontology-alignment interaction
models. International Journal on Semantic Web and
Information Systems, 3(2):50–68, 2007.

[20] A. Srinivasan. The aleph manual.
http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/, retrieved February 9, 2009.

[21] R. Xu and D. Wunsch II. Survey of clustering
algorithms. IEEE Transactions on Neural Networks,
16(3):645–678, May 2005.

A Preliminary Proposal for Model Checking Command
Dialogues

Rolando Medellin, Katie Atkinson and Peter McBurney
Department of Computer Science

University of Liverpool, UK
{medellin,katie,mcburney}@liverpool.ac.uk

ABSTRACT
Verification that agent communication protocols have desirable prop-
erties or do not have undesirable properties is an important issue in
agent systems where agents intend to communicate using such pro-
tocols. In this paper we explore the use of model checkers to verify
properties of agent communication protocols, with these properties
expressed as formulae in temporal logic. We illustrate our approach
using a recently-proposed protocol for agent dialogues over com-
mands, a protocol that permits the agents to present questions, chal-
lenges and arguments for or against compliance with a command.

Keywords: agent communication, command dialogues, CDP, in-
teraction protocols, model checking, NuSMV.

1. INTRODUCTION
The last two decades have seen considerable research on agent

communication languages and agent interaction protocols. In the
typical formulation, such as the generic agent language FIPA ACL,
developed by FIPA [12], agent utterances are represented as two-
layers: an inner layer of material directly related to the topic of the
discussion, and an outer- (or wrapper-) layer comprising a speech
act. An example of such a wrapper is the FIPA ACL locution,
inform(.), which allows the agent uttering it to tell another agent
some statement which the first agent believes to be true. With such
a structure, the same set of locutions may be used for dialogues
on many different topics, on each occasion wrapping different con-
tent. Such generic languages create state-space explosion problems
for intending agent dialogue participants, however, and so research
attention has also been given to the design of agent interaction pro-
tocols. These may be viewed as agent communication languages
designed for more specific purposes than is a generic language, in
the same way, say, that a standard (human) ascending-price auction
protocol is more specific than is a natural human language, such as
English. For a recent review of research in agent interaction proto-
cols, see [14].

As with any software, verification that agent interaction proto-
cols have desired properties (or do not have undesired properties)
is important. In this paper, we explore the use of model check-
ing technologies for verification of properties of agent interaction
protocols. In order for model checking approaches to be applied,

Cite as: A Preliminary Proposal for Model Checking Command Dia-
logues, Rolando Medellin, Katie Atkinson and Peter McBurney, European
Agents System Summer School 2009)
Copyright c© 2009,

we need to express the properties in a logical formalism, and we
use a branching-time temporal logic for this. We illustrate the
approach on an agent protocol designed for arguments over com-
mands, called CDP [4]. This protocol was selected because it al-
lows for argument between the participants, and because it is suffi-
ciently complex that an automated approach to verification of pro-
tocol properties should prove of value to human software engineers.

The structure of the paper is as follows. The next section sum-
marizes the command dialogue protocol, CDP. This is followed by
a brief discussion of model checking and of NuSMV, the model
checker we have used for this work. After that, we present the re-
sults of model-checking CDP, showing the graphical representation
of the protocol, and the temporal logical representation of the prop-
erties we desire to verify. We finish with some concluding remarks
and indications of areas for future work.

2. COMMAND DIALOGUE PROTOCOL
Commands are instructions issued by one agent to one or more

other agents to execute some action (or not), or to bring about some
state. Not all commands are issued legitimately, and even those
which are legitimate may require subsequent elaboration or expla-
nation before they can be executed. Thus, it is possible for agents
to engage in an argumentative interaction over a command. As ex-
plained in [4], the rise of distributed computer systems and rival
centres of control of the elements of such systems make commands
and agent dialogues over commands increasingly common. Indeed,
Hyper-Text Transfer Protocol (HTTP) [17] may be viewed as a pro-
tocol for two-agent dialogues over commands, although it is rather
impoverished in terms of the commands enabled to be represented
and the arguments permitted over them. In recent work [4], a for-
malism for the representation of commands and a dialogue protocol
for argument over commands was presented, making use of an ar-
gument scheme for action proposals. In this formalism, the agent
issuing the command was called Commander, while the intended
recipient was called Receiver. The Command Dialogue Protocol
(CDP) allowed Commander to issue a command to Receiver, and
allowed Receiver to question, challenge, refuse or accept this com-
mand. If questioned or challenged, Commander could respond with
additional information or arguments in support of the original com-
mand, and/or re-iterate it, modify it, or retract it.

Command dialogues are not explicitly mentioned in the Walton
and Krabbe typology of human dialogues [21]. In a dialogue where
a command has been issued, but not yet refused or accepted, the
participants may enter into interactions which resemble those in the
Walton and Krabbe typology, for example, Information-seeking,
Inquiry, Persuasion Negotiation, Deliberation or Eristic dialogues.
Not all command dialogues will have all such interactions, how-

ever, and accordingly we believe it appropriate to consider Com-
mand dialogues as a type of dialogue distinct from those in the
Walton and Krabbe list.

We now present an outline of the Command Dialogue Protocol
(CDP) of [4], which uses an argument scheme for action propos-
als to specify commands. In an argument scheme, arguments are
presented as general inference rules where, under a given set of
premises, a conclusion can be presumptively drawn [20]. The argu-
ment scheme presented in CDP states that : given the social context
X, on the current circumstances R, action A should be performed
to achieve new circumstances S, which will realise some goal G
and will promote some value V. This scheme allows commands
to be justified through the promotion or demotion of some social
value or interest, where a certain state or circumstance is achieved.
Justification is based on current circumstances and elements of the
social context. The CDP specifies the rules to formally represent
imperatives in a multi-agent dialogue and provides means by which
the participants may question, challenge, justify, accept or reject a
command. Commands are represented as action proposals to the
Receiver similar to the representation in [2]. In contrast with pro-
posals or promises, commands require a set of preconditions in a
regulatory environment to be executed validly. A command repre-
sents a presumptive argument attacked by a set of critical questions
whose answers may defeat the initial argument or command. Crit-
ical questions represent questions the Receiver could pose to the
Commander either to question or to challenge the command such
that more evidence will be needed to justify it. Questions about
the appropriateness, suitability, feasibility and normative rightness
could be posed to the Commander.

Based on elements from the argumentation scheme the critical
questions associated with the scheme can be grouped into four cat-
egories. The first category concerns questions about the selection of
the action similar to the work presented in [3]. These questions are
aimed at finding evidence regarding the current circumstances, the
new circumstances to be achieved, the desired goal and the value
to be promoted. In the second category, the questions posed to the
Commander concern the choice of the agent or agents being tasked
with execution of the command, and the expected consequences
for the Receiver in performing the command. The third category
of questions concerns the social roles of the agents involved, in-
cluding issues such as the authority of the Commander to issue the
command to the Receiver at this time, in this manner. The final
category is questions to clarify the precise details of the task to be
executed or state to be achieved. Questions in this category may
consider issues regarding time, duration and specific instructions
related to the performance and delegation of the action. Whether
or not the Receiver agent questions or challenges the command,
and whether or not the Commander responds to such questions or
challenges with further arguments or evidence, the CDP protocol
allows the Receiver to accept or refuse the command at any time.
Likewise, the Commander may re-state or revise or retract the com-
mand at any time. The protocol allows such responses to be made
by the agent concerned, regardless of the extent of evidence or jus-
tification presented in the dialogue up to that point.

The CDP syntax enables agents to interact using seven locutions:
issue, accept, reject, question, challenge, justify and retract [4]. Lo-
cutions to issue or retract a command are inherent to the Comman-
der and are comprised of options to state propositions defined in
the initial argumentation scheme. As for the Receiver, the protocol
defines locutions to respond to a command by accepting, refusing,

questioning or challenging it. Expanding the ‘question’ locution
CDP grows to 76 locutions1 available to Receiver when question-
ing or challenging a command. Locutions to challenge and provide
information can be used by both agents participating in the dia-
logue.

3. MODEL CHECKING
The verification of multi-agent systems showing that a system is

correct with respect to stated requirements is an increasingly impor-
tant issue [7]. Currently, the most successful approach to the ver-
ification of computer systems against formally expressed require-
ments is that of Model Checking [9]. Model checking is an au-
tomatic technique for verifying finite-state reactive systems, such
as communication protocols. Given a model of a system M and
a formula ϕ (representing a specification), model checking is the
problem of verifying whether or not ϕ is true in M (M |= ϕ).
In model checking, the design to be verified is modeled as a fi-
nite state machine, and the specification is formalized by writing
temporal logic properties. An efficient search procedure is used
to determine whether or not the state-transition graph satisfies the
specifications [9]. The power of model checking is that it is exhaus-
tive, no regions of the operating space are unexplored. Although
model checking techniques have been most widely applied to the
verification of hardware systems, they also have been used in the
verification of software systems, protocols, [19], agent dialogues
[10, 11] and multi-agent-systems [22, 7].

3.1 NuSMV
The possibility of verifying systems with realistic complexity

changed dramatically in the late 1980s with the discovery of how
to represent transition relations using ordered binary decision dia-
grams (BDD) [9]. A BDD is a data structure that is used to repre-
sent a Boolean function. The original model checking algorithm,
with the new representation for transition relations, is called sym-
bolic model checking. The symbolic model verifier (SMV) system
is a tool for checking finite state systems against specifications in
the temporal logic CTL (Computation Tree Logic) [15]. The in-
put language of SMV is designed to allow the description of finite
state systems and allows a rich class of temporal properties, includ-
ing safety, fairness, liveness and deadlock freedom. NuSMV 2 is
a reimplementation and extension of SMV and has been designed
as an open architecture for model checking. This new version is
aimed at reliable verification of industrially sized designs, for use as
a back-end for other verification tools and as a research tool for for-
mal verification techniques [8]. NuSMV2 uses a technique called
Bounded Model Checking (BMC), which uses a propositional SAT
solver rather than BDD manipulation techniques. SAT or proposi-
tional satisfiability is the problem of determining if the variables of
a given Boolean formula can be assigned in such a way as to make
the formula evaluate to TRUE [6].

1In case this number of locutions is thought prolix, note that CDP
is intended for machine-to-machine communications; for compar-
ison, the machine interaction protocol, Hypertext Transfer Proto-
col (HTTP), defines 41 standard status-code responses to a GET
command, and allows for several hundred additional non-standard
codes [17].
2NuSMV is a symbolic model checker developed as a joint project
between the Formal Methods group in the Automated Reason-
ing System division at ITC- IRST, the Model Checking group at
Carnegie Mellon University, the Mechanized Reasoning Group at
University of Genova and the Mechanized Reasoning Group at
University of Trento [8].

4. MODEL CHECKING CDP
Rather than propose a new model checking algorithmic approach

to verify agent-communication protocols as in [5] our aim is to use
existing model checkers to validate properties on a dialogue proto-
col.In [19] a Multi-Agent Dialogue Protocol (MAP) is used to de-
fine the communicative process between agents considering com-
plex, concurrent and asynchronous patterns. To verify the MAP
protocols Walton uses the SPIN Model checker [13] translating
the MAP representation into the PROMELA language that SPIN
uses as input language and then construct LTL formulas to validate
against the PROMELA representation. This is probably the most
similar approach to what we intended here. The main difference is
that the MAP is a generic language to define communicative pro-
cesses and we are focusing on a single protocol.

Agent dialogue protocols exhibit behaviour characterized in terms
of execution traces which can be represented as branching trees.
Trees can be represented in terms of a state-transition system and
then translated into the NuSMV input language. The NuSMV model
checker uses an exhaustive search procedure to determine whether
or not a specification or property satisfies the modeled system. We
aim to take the advantages of the NuSMV model checker to vali-
date properties of the protocol. We focus on the CDP [4] and its
desirable properties. The protocol is represented with the NuSMV
input language, and properties we want to validate in the model
are temporal CTL formulae. CTL formulae can be evaluated in
transition systems [9] where the states are dialogue states and the
transitions are the protocol valid locutions. In case the property is
not valid, a counterexample is generated in the form of a sequence
of states. In general, properties are classified to “safety” and “live-
ness” properties. Safety properties express what should not happen
(equivalently, what should always happen), and liveness properties
declare what should eventually happen.

Among the properties we want to verify for the protocol are:

1. Does any infinite loop or deadlock 3 situation exist in the
protocol? If a deadlock or loop does exist, which dialogue
sequence leads to that loop or deadlock?

2. Can we reach every outcome state? The motivation behind
this property is to ensure the protocol has valid paths in all
the possible combinations of the dialogue.

3. Is it possible to utter a particular locution in a particular state?
This approach suggests a way to validate locutions in a dia-
logue.

4. Given a particular state (either an end-state or not), is there a
valid dialogue sequence to reach that state?

5. Given a particular state, is there a dialogue sequence which
avoids that state? An agent may wish to know if it can enter
into a dialogue while avoiding particular states, e,g. conces-
sions to other participants.

6. If the dialogue has reached a particular state, is a particular
outcome state still reachable?. It could be the case, for ex-
ample, that certain intermediate states in a dialogue preclude
some outcome states.

3A deadlock is a situation wherein two or more competing actions
are waiting for the other to finish, and thus neither ever does.

4.1 State-transition diagrams
The CDP can be modeled as a high level state-transition dia-

gram where states represent dialogue states and transitions repre-
sent valid locutions. The diagrams presented in this section repre-
sent a command dialogue in an abstract way, leaving out explicit
details about the content of messages, concurrency and the envi-
ronment. Dialogue states are represented as circles and locutions
as directed arrows labelled with valid locutions. Diagrams capture
the protocol rules for agents engaged in a command dialogue spec-
ifying the path to reach any outcome state.

The dialogue states for the CDP are: Initial, ReceiverCommanded,
CommanderQuestioned, CommanderChallenged, ReceiverwithEv-
idence1, ReceiverwithEvidence2, CommandRetracted, CommandAc-
cepted and CommandRefused (we number the ReceiverwithEvi-
dence status because we want to distinguish the state where ev-
idence comes from a question from that where it comes from a
challenge). The locutions for the CDP are: command, question,
challenge, provide, refuse, retract and accept. We are excluding
from the model for now the mental states of the agents and the en-
vironment state. We also have not yet considered the critical ques-
tions from [4] within our model.

The diagram in Figure 1 represents dialogue states numbered
from s0 to s8 and the valid transitions for each state. The diagram
shows how locutions are constrained depending upon the dialogue
state, for example, we can only access the state where the command
has been accepted (s7) from the states { s1, s5, s6 }, where the Re-
ceiver has been commanded or has been provided with evidence.
From the moment an Agent C (the Commander) issues a command
a range of valid locutions is available for each agent. Valid Com-
mander locutions are represented with doted arrow-lines and Re-
ceiver locutions are represented with normal arrow-lines.The CDP
assumes a strict-turn-taking only for the Receiver that needs to wait
for the Commander’s locution. Assuming the agent is rational and
because of a change in the environment the commander could re-
tract or reissue the command at any time. If we assume a strict-
turn-taking for the commander arrows, 2a, 2d and 2e would be left
out the diagram.

As we have discussed, the finite state transition diagram can be
expressed as a tree. We do this transforming outcome-states in fi-
nal nodes of a tree repeating states as necessary. The tree-diagram
representation is presented in Figure 2.

With this second diagram we can visualize all the possible com-
putation paths for the protocol. Instead of representing a state just
once, we repeat the state to avoid locutions returning to the same
state. Loops are now represented as infinite paths and the paths to
reach an outcome state are clearer. Since we are using a branch-
ing time temporal logic (CTL) this model is useful to construct
temporal formulae to validate. To represent how the dialogue ad-
vances we associate a propositional value with each state and spec-
ify where the expression is true in each state. For the initial state,
for example, we assign propositional variable ‘a’ and make it true
only in that state. In this way we can construct temporal formulae
with propositional variables representing each state. We also as-
sign a variable related to the ‘turn’ of each agent in the dialogue,
represented by ‘tc’ in the case where the Commander is allowed to
issue a locution, and ‘tr’ in the case of the Receiver. These vari-
ables allow us to construct temporal formulae related to the turn of
an agent to issue a locution.

The properties we want to validate for the protocol could be

Figure 1: State-Transition Diagram for CDP

rephrased as temporal properties related to the tree-model in Figure
2. In Table 1 the properties presented earlier are now rephrased and
a temporal formula is associated for each one. CTL is built from
path quantifiers and temporal operators. There are two path quanti-
fiers, A and E, where A means “for every path” and E means “there
exists a path” in the tree. A path is an infinite sequence of states
such that each state and its successor are related by the transition
relation. CTL has four temporal operators presented as follows:
©φ meaning “φ holds at the next time step” (where φ is a proposi-
tional formula), �φ, “φ holds at some time step in the future”, �φ
, “φ holds at every time step in the future” and φUψ, “φ holds until
ψ holds” [6].

Tree-oriented property Temporal property
1. Do infinite paths exist in the tree-
diagram?

A�(A© h ∨A© g)

1a. Which is the path? Counterexample from 1
2. Is there a valid path to reach ev-
ery outcome state?

E�h
3. Is a transition valid from a spe-
cific node?

A�(c→ E© d)

4. Given a node, is there a path
which leads to that node?

E�g
5. Given a node, is there a path
which avoids that node?

A�(¬c→ E�i)
6. If a command has been is-
sued and questioned can the dia-
logue still reach a state where the
command is accepted?

A�(c→ E�i)

Table 1. Properties and Temporal formulae.

4.2 NUSMV implementation
We use NuSMV for model checking because the input language

allows us to represent the dialogue as a finite-state diagram and
we can verify temporal properties in it. If the property specified
does not satisfy the NuSMV model, the model checker offers a
counterexample specifying the path where the formula fails to be
true. Input to NuSMV is via a file which describes the state transi-

tion system in terms of variables and value assignments. Dialogue
states are represented with a variable state that can obtain the value
of any of the 9 states defined in the CDP, plus an error state to spec-
ify non-valid moves. Transitions are represented using the NuSMV
case expression. For each state we define a set of possible next
states that represent the valid transition relations. Expressions are
evaluated sequentially and the first one that is true determines the
resulting value.

We use the keyword SPEC in NuSMV to specify CTL properties
to be checked. For example, to express if it is true that at some
path there is a case where the command is retracted, we use the
CTL formula E�i. Variable i represents the retracted state. In the
NuSMV input language it is represented as SPEC EF (i). As for
the variables related to the turn-taking we can specify a property to
check if there is an option to issue a locution at every state (except
on final states) A�((tc|tr)|(¬tc&¬tr&h)|(¬tc&¬tr&i)).
4.3 Preliminary Results

All the properties presented were translated to the NuSMV lan-
guage and validated against the model. For the first property we are
trying to check if there exists any infinite path on the model. The
idea is to construct a formula that represents that eventually on all
paths the final nodes could be reached. The property constructed
in the NuSMV input language is SPECAG(AXh | AXi). The
formula is false for the model since the protocol allows the partic-
ipants to engage in an infinite loop in several situations. Another
way to construct this property without making reference to a par-
ticular state is AGEX� which states that there exist a path such
that every node on that path still has some immediate successor.

Property number two (“Is there a valid path to reach every out-
come state?") is True. The protocol allows to reach an outcome
state in all paths. Property number three (“Is a transition valid from
a specific state?") depends on the state we are choosing. In the ex-
ample we are validating if issuing a locution from state “c" (com-
mander questioned) is valid to a state “d" (commander challenged),
in this case is False. This seems obvious if we analyse the dia-
gram, but human visual inspection will not scale to larger and more
complex protocols, nor operate at runtime. Property four (“Given a

Figure 2: Tree diagram for CDP

node is there a path which leads to that node?") tries to confirm if
a valid path exists to reach a specific state. In the example the for-
mula is true for state “g". Property number five (“Given a state is
there a path which avoids that state?") is true for state “i" avoiding
state “c". Finally property six (“If a command has been issued and
questioned can the dialogue still reach a state where the command
is accepted?") is True for the specified states.

Properties are closely related to the CDP protocol and the states
that emerge from it; a more generic set of formulae may be desir-
able to develop. Nevertheless, we need to take into account that for
dynamic verification, on-the-fly models need to be constructed and
validated.

5. CONCLUSIONS
In this paper we have explored the possibility of using model-

checking methods to automatically verify that a complex agent in-
teraction protocol using argumentation has desired properties (or
does not have undesired properties). Our key contribution has been
to show by example that this is possible, using the model checker
NuSMV to verify specific properties of the command dialogue pro-
tocol, CDP. Because this protocol supports multi-agent argumen-
tation, it is reasonably complex and thus the value of automated
verification approaches is likely to be considerable. Such verifi-
cation could take place well prior to implementation, for example,
as part of the human-led protocol design process. Or it could take
place at run-time just prior to invocation of the protocol, if agents
were enabled to select and verify protocols on-the-fly at the mo-
ment before they enter into dialogue, as in [16]. For agents having
dynamic goals, on-the-fly verification of protocols will be impor-
tant to ensure that protocols they use to engage in dialogue are able
to achieve states currently desired or avoid states currently not de-
sired.

In future work we intend to extend our model to account for the
critical questions associated with the argument scheme as given in
CDP since we have not considered them here. Our approach would
be much more complex if we add rules and states considering the
critical questions where more states and variables need to be added

to the model. We also hope to investigate how our model can be
extended to handle different types of dialogue in addition to CDP.
For example, in [2] a protocol is given for persuasion dialogues
based on a similar argument scheme that is used for CDP, so this
would be a good candidate protocol to model next. Additionally,
some recent work [1] has looked at how the argument scheme for
practical reasoning discussed here can be formalised in terms of
action-state semantics [18]. It would be also interesting to see how
our approach to model checking dialogues could be applied to this
representation.

5.1 Acknowledgements
Rolando Medellin is grateful for financial assistance from CONA-

CYT of Mexico. We thank Clare Dixon and the anonymous review-
ers for their comments. A later version of this work was presented
at the AAAI Fall Symposium 2009 in the Workshop “The Uses of
Computational Argumentation”.

6. REFERENCES
[1] K. Atkinson and T. Bench-Capon. Action-state semantics for

practical reasoning. Proceedings of 2009 Fall Symposium on
The Uses of Computational Argumentation. Arlington, VA,
USA, 2009.

[2] K. Atkinson, T. Bench-Capon, and P. McBurney. A dialogue
game protocol for multi-agent argument over proposals for
action. Autonomous Agents and Multi-Agent Systems,
11(2):153–171, 2004.

[3] K. Atkinson, T. Bench-Capon, and P. McBurney.
Computational representation of practical argument.
Synthese, 152(2):157–206, 2006.

[4] K. Atkinson, R. Girle, P. McBurney, and S. Parsons.
Command Dialogues. In I. Rahwan and P. Moraitis, editors,
Argumentation in Multi-Agent Systems, Fifth International
Workshop, pages 93–106, Berlin, Heidelberg, 2009.
Springer-Verlag.

[5] J. Bentahar, B. Moulin, and J.-J. Ch. Meyer. A new model
checking approach for verifying agent communication
protocols. Canadian Conference on Electrical and Computer
Engineering, CCECE ’06, pages 1586–1590, May 2006.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
model checking without bdds. In TACAS ’99: Proceedings of
the 5th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, pages 193–207,
London, UK, 1999. Springer-Verlag.

[7] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.
Verifying multi-agent programs by model checking.
Autonomous Agents and Multi-Agent Systems,
12(2):239–256, 2006.

[8] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new symbolic model checker. International
Journal on Software Tools for Technology Transfer, 2:2000,
2000.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. Springer, 1999.

[10] U. Endriss. Temporal logics for representing agent
communication protocols. Agent Communication II:
International Workshops on Agent Communication,
3859/2006:15–29, 2006.

[11] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based
agent communication protocols. In Advances in Agent
Communication Languages, volume 2922, pages 91–107.
Springer-Verlag, 2004.

[12] FIPA. Communicative Act Library Specification. Standard
SC00037J, Foundation for Intelligent Physical Agents, 3
December 2002.

[13] G. Holzmann. The SPIN Model Checker. Primer and
Reference Manual. Addison-Wesley, 2004.

[14] P. McBurney and S. Parsons. Dialogue games for agent
argumentation. In I. Rahwan and G. Simari, editors,
Argumentation in Artificial Intelligence, chapter 13, pages
261–280. Springer, Berlin, Germany, 2009.

[15] K. L. McMillan. The SMV system. Cadence Berkeley Labs,
1999.

[16] T. Miller and P. McBurney. Annotation and matching of
first-class agent interaction protocols. In L. Padgham,
D. Parkes, J. P. Mueller, and S. Parsons, editors, Seventh
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2008), New York, NY, USA,
2008. ACM Press.

[17] Network Working Group. Hypertext Transfer Protocol —
HTTP/1.1. Technical Report RFC 2616, Internet Engineering
Task Force, June 1999.

[18] C. Reed and T. J. Norman. A formal characterisation of
Hamblin’s action-state semantics. Journal of Philosophical
Logic, 36:415–448, 2007.

[19] C. Walton. Model checking agent dialogues. In Declarative
Agent Languages and Technologies II, Lecture Notes in
Computer Science, pages 132–147. Springer, July 2004.

[20] D. N. Walton. Argumentation Schemes for Presumptive
Reasoning. Lawrence Erlbaum Associates, Mahwah, NJ,
USA, 1996.

[21] D. N. Walton and E. C. W. Krabbe. Commitment in
Dialogue: Basic Concepts of Interpersonal Reasoning.
SUNY Series in Logic and Language. State University of
New York Press, Albany, NY, USA, 1995.

[22] M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons.
Model checking multi-agent systems with MABLE. In
AAMAS ’02: Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 952–959, New York, NY, USA, 2002. ACM.

Norm Convergence in Populations of Dynamically
Interacting Agents

Declan Mungovan
Department Of Information

Technology
National University of Ireland,

Galway
Galway, Ireland

declan.mungovan@
nuigalway.ie

Enda Howley
Department Of Information

Technology
National University of Ireland,

Galway
Galway, Ireland

enda.howley@
nuigalway.ie

Jim Duggan
Department Of Information

Technology
National University of Ireland,

Galway
Galway, Ireland

james.duggan@
nuigalway.ie

ABSTRACT
Agent Based Modelling (ABM) is a methodology used to
study the behaviour of norms in complex systems. Agent
based simulations are capable of generating populations of
heterogeneous, self-interested agents that interact with one
another. Emergent norm behaviour in the system may then
be understood as a result of these individual interactions.
Agents observe the behaviour of their group and update
their belief based on those of others. Social networks have
been shown to play an important role in norm convergence.
In this model1 agents interact on a small world network with
members of their own social group plus a second random
network that is composed of a subset of the remaining pop-
ulation. Random interactions are based on a weighted se-
lection algorithm that uses an individual’s path distance on
the network. This means that friends-of-friends are more
likely to randomly interact with one another than agents
with a higher degree of separation. Using this method we
investigate the effect that random interactions have on the
dissemination of social norms when agents are primarily in-
fluenced by their social network. We discover that increasing
the frequency and quality of random interactions results in
an increase in the rate of norm convergence.

1. INTRODUCTION
Normative behaviour, or norms, can be defined as a set

of conventions or behavioural expectations that people in
a population abide by. They help maintain one’s popular-
ity within a group and ensure that individuals can produc-
tively cooperate with one another. Ignoring social norms, or
conventions, can lead to negative repercussions for individ-
uals including being ostracised from a group. Social norms
present a balance between individual freedom on the one
hand and the goals of the society on the other [18]. Con-
ventions play an important role in creating a framework in
which agents can structure their actions to help reduce so-

1The support of Science Foundation Ireland is gratefully ac-
knowledged.

Cite as: Norm Convergence in Populations of Dynamically Interacting
Agents, Declan Mungovan, Enda Howley and Jim Duggan, Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May,
10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

cial friction. There are two types of social norm conventions:
top-down and bottom up. Top-down norms represent laws
that are enforced on the population [7]. Bottom up con-
ventions, such as shaking hands when introducing oneself,
represents emergent behaviour from within the group. In
this scenario agents, acting in their own self interest, choose
which action to take based upon their interactions with oth-
ers in the population. This is the type of social norm con-
version that we investigate in this paper. Agents use locally
available information to determine their selection of social
norms.
ABM specifies a population as a collection of interacting,

self-interested agents, where macroscopic behaviour is ex-
plained by the interaction of different individuals over time.
Using this approach we can explain system-wide character-
istics as emergent behaviour emanating from individual in-
teractions of the agents.
The proposal we present in this paper is that an agent is

unlikely to change its immediate social network of acquain-
tances very much. An individual in the population will, gen-
erally speaking, have the same wife, boss, friend etc. from
one day to the next. They will, however, have a series of ran-
dom ad hoc interactions with members of the general public.
We recognise, however, that not all random interactions are
the same. One is more likely to randomly meet one’s next
door neighbours best friend than a complete stranger. To
account for this we bias random interactions based on the
social distance that separates agents in the network. We
then run a number of experiments that test the importance
of the frequency and quality of these random interactions.
We aim to discover at what point random interactions will
influence the emergence of a global conventions. Specifically,
we we aim to:

1. Design an algorithm that selects a random individual
based on their social distance in the network.

2. Test the random interaction conditions that are most
important in determining the emergence of a global
convention on a population of agents.

The rest of the paper is structured as follows; Section 2
presents an introduction to previous work in the area of
norm convergence and social networks. Section 3 gives a de-
scription of the formal model used to define the agent based
simulator and an explanation of how the simulator was de-
signed and implemented. Section 4 presents the experimen-

tal results. Finally, in Section 5 we outline our conclusions
and possible future work.

2. RELATED RESEARCH

2.1 Norm Emergence
Agent-based Modelling (ABM) has been used in recent

years as a method of studying social norms [13] [4] [2]. Savarimuthu
et al. [14] generated a network of agents whose topology
changes dynamically. Agents initially randomly collide on a
2D grid and then proceed to form social networks. Villatoro
et al. [17] investigate the effect that network topology has on
the emergence of norms. They simulate agents interacting
on a lattice and scale free network. They found that highly
clustered networks resulted in norm convergence in a shorter
time. Conte et al. [2] andWalker et al. [18] describe a frame-
work on integrating concepts of Multi Agent Systems with
normative behaviour and how both disciplines interact. A
considerable amount of the literature has studied the effects
of norm emergence in populations that are fully connected
and interact in a random fashion [15] [18]. The network that
agents interact on, however, has been shown to play a signif-
icant role on the dynamics of diffusion [10][17][14]. Most of
this work has dealt with static networks that are generated
at initialisation time and do not change for the duration of
the simulation. There have, however, been some attempts
to frame research within the bounds of dynamic networks
[14].

2.2 Small World Social Networks
The idea of Small World Networks first gained popular-

ity with Stanley Milgram’s small-world study of large and
sparse networks [12]. Watts et al. later describe these net-
works as being formed by rewiring the edges of regular lat-
tices with probability pw [20] . Small World Networks are
highly clustered, yet have length scaling properties equiva-
lent to the expectations of randomly assembled graphs [19].
Notice in Fig. 1(a) that the link with the dashed line has
been re-wired to another part of the network. This creates
an instant shortcut to distant nodes. Small world graphs
span the gap between ordered lattices and random graphs.
Note that when pw = 1, then all links are randomly assigned
and the network becomes a random network. Lee et al. [11]
investigated the effect that changing the value of pw has on
the emergence of a winner take all outcome in product adop-
tion. They discovered that as pw is increased the chance of
a winner take all outcome becomes more likely. This is be-
cause as the value of pw gets closer to one the network starts
to become more like a random network. This prevents lo-
calized cliques of products from existing. An analysis of a
number of real world human networks [21] [16] [3] [1] have
shown that they form small world networks. The Maximum
Path Length (MPL), Fig. 1(b), is the maximum number
of steps required to get to the furthest node, or nodes, on
the network. Dijkstra’s algorithm [22] uses a breadth first
search to traverse the network and discover the shortest path
to each agent.
Fenner et al. [5] describe a stochastic model for a social

network. Individuals may join the network, existing actors
may become inactive and, at a later stage, reactivate them-
selves. The model captures the dynamic nature of the net-
work as it evolves over time. Actors attain new relations

(a) Small World Network

(b) Path Distance from Node

Figure 1:

according to a preferential attachment rule that weights dif-
ferent agents according to their degree2.

2.3 Randomness in Agent Based Modeling
Agent based modelling (ABM) has a number of advan-

tages over classical game theory approaches. Firstly, ABMs
are capable of implementing Monte Carlo3 type stochastic
iterations of a complex system. Izquierdo et al. [8] highlight
the fact that any computer model is in fact, due to its very
nature, deterministic. However, we can use pseudo-random
number generators to simulate random variables within the
model and generate an artificial Monte Carlo generator. The
pseudo-random number generator is an algorithm that takes
in a random input seed value and generates a result that ap-
proximates a random number. This property allows us to
simulate randomness that is present in real world systems.
In this fashion, an agent based simulation that provides the
same input variables but implements a level of randomness
can produce, sometimes, significantly different outcomes. A
key challenge of analysing an ABM is in identifying an ap-
propriate set of state variables.
We can see from the section that norm emergence is heav-

ily influenced by the individuals that an agent meets in the
network. Real world interactions are dynamic, this is a fea-
ture we aim to capture in this paper.

3. MODEL DESIGN
The following section describes formally the decision mak-

ing rules agents use to choose random interactions and the
actions they take based on their observations. Agents receive
a utility from observing the norms that have been adopted
by the other individuals it encounters. Agents interact with

2The degree of an agent is the number of acquaintances it
has in its social network.
3A Monte Carlo algorithm relies on repeated random sam-
pling to compute their results.

s members of their social network and r randomly selected
agents. Initially nodes are set to having adopted either social
convention j or k. Nodes interact with a period drawn ran-
domly from an exponential distribution with mean duration
εi = 3. This models the fact that all agents don’t update
their norm selection simultaneously. An agent, i, will chose
to adopt norm j if the utility it observes from adopting this
norm is greater than the utility it would receive from adopt-
ing convention k as defined in 1.

uj
i,t > uk

i,t (1)

The utility that agents receive from each norm is defined in
2. This is divided into the utility communicated from its
direct neighbours, Dj

i(t−1), plus the utility it receives from

the random interactions it makes, Rj
i(t−1).

uj
i,t = αDj

i(t−1) + βRj
i(t−1) (2)

Where α is the weighting placed on an agent interacting
with the members of its own social network and β is the
weighting of interactions taking place with random members
of the agents network. The higher the β value the more
importance agents place on random interactions. The direct
network effects are defined in 3 where n is the total number
of nodes on the network and θj

h(t−1) = 1 if agent h has

adopted social convention j.

Dj
i(t−1) =

n∑
h=1

μihθ
j
h(t−1) μih

⎧⎪⎨
⎪⎩

1 if i is an

acquaintance of h

0 otherwise

(3)
Similarly we define the random network effects in 4 where n
is the total number of nodes on the network and ωj

h(t−1) = 1

if agent h has adopted social convention j.

Rj
i(t−1) =

n∑
h=1

φihω
j
h(t−1) φih

⎧⎪⎨
⎪⎩

1 if i has a random

interaction with h

0 otherwise

(4)
Agents interact with random members of the population

using aWeighted Random Interaction (WRI) algorithm based
on their distance from others on the network. We use a
modified version of Zipf’s law 5 to calculate a nodes weight.
The probability of agent i, with Maximum Path Distance
(MPD) of M , randomly interacting with agent h having a
path distance of d from i is equal to:

pih(d) =

1

(d− 1)λ
∑M−1

m=1

(
1

mλ

) d ≥ 2 (5)

Where λ is the exponent that characterises the distribution.
For the experiment carried out in this paper we set λ =
1. Note the condition that d ≥ 2 as a node is assumed to
interact with members of its social network (d = 1). It can
be seen from 5 [6] that the distribution is normalised and
the frequencies sum to 1 as expressed in 6.

M−1∑
d=2

pih(d) = 1 (6)

The graph shown in Fig. 2 shows the distance probability
distribution of three different nodes with Maximum Path
Distance (MPD) ranging from 5 to 10. We can see from the
diagram that agents with a lower path distance are more
likely to interact than ones with a higher path distance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 3 4 5 6 7 8 9 10

 P
ro

ba
bi

lit
y

 Node Distance

 Weighted Random Interactions

Max. Path = 5
Max. Path = 7

Max. Path = 10

Figure 2: Weighted Random Interactions

4. RESULTS
In all the simulations conducted, a population of 1000

agents in a small world configuration with average degree
of 10 was generated. Initially all nodes are randomly given
one of two norms. All the results shown are the average of
1000 different simulations. A new Small World network was
generated for each simulation. Initially each agent on the
network maps its social distance from every other agent. We
used Dijkstra’s algorithm [9] to calculate the MPL for each
node. Every time an agent interacts it generates a new set
of ad hoc random interactions based on the WRI algorithm
described above. We conducted four different experiments
using the model described in Section 3. In Experiment 1
we simply vary the rewiring probability of the network and
investigate the effect of norm convergence. Experiment 2
introduces random interactions taking place over the core
small world network. We study the effect on norm conver-
gence by varying both the value for the strength of random
interactions, β, and the number of random interactions that
an agent has, r. Experiment 3 and Experiment 4 both ex-
plore the level of norm convergence over time.

4.1 Experiment 1: Varying Rewiring Proba-
bility

Fig. 3 shows the effect of norm convergence when the
rewiring probability is changed. We observe that the prob-
ability of all agents converging on a common norm is in-
creased when the value of pw is increased. This is similar
to the finding of Lee et al. [11] in the domain of product
adoption mentioned earlier. While increasing the value of
pw results in an increase in norm convergence, it reduces
the level of clustering in the network. Real world human
networks have high levels of clustering so this means that
increasing pw is unrealistic. In the next three experiments
we maintain a core, highly clustered, small world network
but introduce ad hoc random interactions that the agents
have with others in the population.

4.2 Experiment 2: Adding Random Interac-
tions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1Pr
ob

ab
ili

ty
 o

f N
or

m
 C

on
ve

rg
en

ce

C
lu

st
er

in
g

C
oe

ff
ic

ie
nt

 Rewiring Probability, p

 Weighted Random Interaction

Probability of Norm Convergence
Clustering Coefficient

Figure 3: Probability of Norm Convergence varying
p

In this experiment a small world network is created with
a rewiring probability of pw = 0.05 and α = 1. As we have
seen in Fig. 3 norm convergence will not happen when pw

is at this level. In Fig. 4 we observe the effect of norm con-
vergence when agents are allowed to interact with randomly
selected individuals on the network who are not part of their
social network. We vary both the value agents place on ran-
dom interactions, β, and the number of random interactions
that they have, r. The number of random interactions starts
at 0 and is increased by a value of 2 until it reaches 16. The
strength of random interactions, β, is increased from 0 to
1. When β equals 1 then agents place the same strength on
interactions with random members of the populations as on
their own social network. We can see from Fig. 4 that norm

Figure 4: Probability of Norm Convergence

convergence fails to occur when both the strength and quan-
tity of random interactions is too low. Indeed, when agents
are having up to 8 random interactions but those occurrences
only carry a weight of 0.1 of random interactions then norm
emergence will not occur. Increasing the number of random
interaction or increasing the strength of these interactions
results in norm emergence. From Fig. 4 we can see that if
β > 0.5 and the number of random interactions r > 6 then
norm convergence is guaranteed. If agents have the same
number of random interactions as members of their social
network, or s = r = 10, then β only needs to be 0.2 to al-
most guarantee norm convergence. This experiment shows

that random interactions with members of a nodes social
network plays an important role in norm convergence.

4.3 Experiment 3: Varying Random Interac-
tions

In Fig. 5 we set the level of β = 0.1 and increment the
number of random interactions. We can see that there is no
norm convergence when the time is less than approximately
50 or the number of random interactions is less than 10. We
can see that once the population overcomes this threshold
level of random interactions then there is a steady increase
in the number of simulations resulting in convergence. The
graph appears to be a series of terraces because the random
degree is increased in steps of 2.

Figure 5: Level of Norm Convergence over Time
Varying Random Degree

4.4 Experiment 4: Varying the level of β
In this final experiment we set the level of random inter-

actions to 4, α = 1 and incremented the level of β. We
can see from Fig. 6 that there are several jumps in norm
convergence when we increase the level of β. Specifically,
when β ≤ 0.2 then none of the simulations converge to a
common norm. When β ≥ 0.5 then all the simulations con-
verge to a common norm. We can also see that that when
0.2 ≤ β ≤ 0.3 then some norm emergence does occur but at
a much slower rate.

5. CONCLUSIONS
The aim of this paper was to construct a more realistic

network of agent interactions that might help explain the
emergence of norms in society. We defined an algorithm that
uses a nodes social distance on the network to calculate its
chance of interacting with a random member of the popu-
lation. We have demonstrated the importance that random
agents can have on the emergence of social norms. Particu-
larly our research demonstrates how norms can rapidly take
hold in environments were agents interact heavily with ran-
dom individuals outside their social network. This would
perhaps be analogous to people in a large city interacting
with lots of random individuals versus residents of a rural
area that mostly meet members of their own social network.
Our results from Section 4 highlight that norm convergence
is dependant on both the frequency and quality agents place
on random interactions.

6. REFERENCES

Figure 6: Level of Norm Convergence over Time
Varying Beta

[1] Joel A. C. Baum, Andrew V. Shipilov, and Tim J.
Rowley. Where do small worlds come from? Ind Corp
Change, 12(4):697–725, 2003.

[2] Rosaria Conte, Rino Falcone, and Giovanni Sartor.
Introduction: Agents and norms: How to fill the gap?
Artificial Intelligence and Law, 7(1):1–15, March 1999.

[3] Gerald F. Davis, Mina Yoo, and Wayne E. Baker. The
Small World of the American Corporate Elite,
1982-2001. Strategic Organization, 1(3):301–326, 2003.

[4] Michael Luck Fabiola López y López and Mark
dŠInverno. A normative framework for agent-based
systems. Computational & Mathematical Organization
Theory, 12(2):227–250, 2006.

[5] Trevor Fenner, Mark Levene, George Loizou, and
George Roussos. A stochastic evolutionary growth
model for social networks. Comput. Netw.,
51(16):4586–4595, 2007.

[6] Xavier Gabaix. Zipf’s law for cities: An explanation*.
Quarterly Journal of Economics, 114(3):739–767, 1999.

[7] Brent Goldfarb and Magnus Henrekson. Bottom-up
versus top-down policies towards the
commercialization of university intellectual property.
Research Policy, 32(4):639 – 658, 2003.

[8] Luis R. Izquierdo, Segismundo S. Izquierdo,
José Manuel Galán, and José Ignacio Santos.
Techniques to understand computer simulations:
Markov chain analysis. Journal of Artificial Societies
and Social Simulation, 12(1):6, 2009.

[9] Donald B. Johnson. A note on dijkstra’s shortest path
algorithm. J. ACM, 20(3):385–388, 1973.

[10] James Kittock. Emergent conventions and the
structure of multi–agent systems. In Lectures in
Complex systems: the proceedings of the 1993 Complex
systems summer school, Santa Fe Institute Studies in
the Sciences of Complexity Lecture Volume VI, Santa
Fe Institute, pages 507–521. Addison-Wesley, 1995.

[11] Eocman Lee, Jeho Lee, and Jongseok Lee.
Reconsideration of the Winner-Take-All Hypothesis:

Complex Networks and Local Bias. MANAGEMENT
SCIENCE, 52(12):1838–1848, 2006.

[12] Stanley Milgram. The small world. Psychology Today,

2:60Ű67, 1967.

[13] Partha Mukherjee, Sandip Sen, and Stéphane Airiau.
Norm emergence under constrained interactions in
diverse societies. In AAMAS ’08: Proceedings of the
7th international joint conference on Autonomous
agents and multiagent systems, pages 779–786,
Richland, SC, 2008. International Foundation for
Autonomous Agents and Multiagent Systems.

[14] Bastin Tony Roy Savarimuthu, Stephen Cranefield,
Martin Purvis, and Maryam Purvis. Norm emergence
in agent societies formed by dynamically changing
networks. In IAT ’07: Proceedings of the 2007
IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pages 464–470,
Washington, DC, USA, 2007. IEEE Computer Society.

[15] Yoav Shoham and Moshe Tennenholtz. On social laws
for artificial agent societies: Off-line design. Artificial
Intelligence, 73:231–252, 1995.

[16] Bart Verspagen and Geert Duysters. The small worlds
of strategic technology alliances. Technovation,
24(7):563 – 571, 2004.

[17] D. Villatoro, N. Malone, and Sandip Sen. Effects of
interaction history and network topology on rate of
convention emergence. Proceedings of 3rd
International Workshop on Emergent Intelligence on
Networked Agents, 2009.

[18] A. Walker and M. Woolridge. Understanding the
emergence of convensions in multi agent systems.
Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS ’95), (1):384–389, 1995.

[19] D.J. Watts. Small worlds: The dynamics of networks
between order and randomness. In Princeton
University Press, 1999.

[20] D.J. Watts and S. Strogatz. Collective dynamics of
’small-world’ networks. Nature, pages 440–442, 1998.

[21] Duncan J. Watts. Networks, dynamics, and the
small-world phenomenon. American Journal of
Sociology, 105(2):493–527, 1999.

[22] F. Benjamin Zhan and Charles E. Noon. Shortest
Path Algorithms: An Evaluation Using Real Road
Networks. TRANSPORTATION SCIENCE,
32(1):65–73, 1998.

��������	
��
��
�
���������
�������
�����
���������
����
�����
���

�������	
����
�������� ������ �
�	�����
�
�
���

�
����
�
������������	��
���
���
��
�����
������

�
���
� ��
���� ����� � ������ �	
���
����	��
�
�

	��� �	�	����
�� �����	����� �
���	��
�
�
��

�����
����
�
!�
���"������
���� 	����
� ��	��

�����	��� #����
��� 	�
���� � $�������� �
���

���	��
����������
�
�����	���������������
�

��

	
� 	� ��
����
�� ���
�� ��������	�� �����	���
�
�

�%	�&��� ���'� � �����
�
�
����� ���� ���	��
���
��

������ ��
��� 	��� ���	��� ������ ������� �	
���
��

��

��
��
����
 � (
��	�� ���#
�&
� �	��� �����

�
#�� �
� ��	�� 	�� ���
��	��� �
��� ��� �
���

�
��������� �)�� ���
��
����	����
� �����	���
��	�

�	���#
�������#
�&�#����������
�
�� ������
#��

��	����
������
�	�
��
����	��
�����#
�&���	��

�
� �
��

���
�� 	�
��
���
�� ���� ���	������

�
���	��
� �*	��
�������	���
�
�	����	
���
��	�

#��������
������
�� 	��
������ ��	�� �
�
� 	��

��������	�+
� �	��� ��
�	����
�� ���� ���#
�& � ,��
�

��	�
� ��	�� ������
"
�"������
� 	��� �
��� ��&���� �
�

�	��
���� �����	��� #����
��� 	�
����� ��	�� 	����
�

#���� 	� ������� �������
��
��	�	��
� � -
���� ���
�

����
�� #�� 	��� �
� ����
���	��� ���� ������� ��	��

�	��
�� �����	���
�
� �	���
�� ���� ��

����	��
��

��

��	�� �
��
� #���� 	����
� 	��� ����	�����

����������

)���
�����
�

��&�
#���������

��
�� �
�
�����
�� ����
����� ��
���

��
��������
���
�����
������������

����������
����!��"�
��
�#�

*��������

.���	������
�	�!�$��	�/
#����	���0���.���	��
���
��	��
��
���	��1����	�#	� ��

(�
����.��	���
�*�
�	����2�
��!�.��	�������
��)��
��	��
��,����
�
��

�
����.�
���

�#$#�%����#�������"�����&���
������
�������
�"��!��
�
�"

�����
�������������
��#�����������	�
 ������
���

���

�
�����

'�
��(#��)*�

���+��
�
��������#��)*�

���+�$��
�,���
��
-����+�����$��
������
��������#��
���
*�
�����

���
�������������
���
�����
���&�,��!�	����
��
������
�#��	�����
	�
����������
�	������

���
�	����

��������	��
������ �
�!!��

(����
������
+�(
���������
+�����-
�	���
�������#�
���������
��&���
�������������&�.�"�����
�����
����/�
����������
"������#����
���
$�%�
&�����'�(�
)���*

0111#
�#%��!
������,#%����
��
#�2��
������
�����
�
�
��
��
�

������	
��
����
������
���
�������
��#���	������#

	�
�*�
+��
�
"��������	���
,	��������
	�
)����-�#���

��
���

�",)��
.�(��
����/01'/0��
���(�

(�	��� %
���� 3��#
�&
� 	��� ������� ���
�����!� ����

�	����������
�	�������
������
��4���	������
�����

������	��
�
�
�� �	��
���� 	

������� ��	��
�

�%	��
� ����� � � 3
����� ��� 5�� � ��	�� � ��	�� ���� ���&�

#���� ���� �	
���� ����� �	
� ����� ��"#����� �
�

	�
����� �	���
�� ���� ���#
�& � ,��
� ���	��
� 	��

��
�	���
�
������ �
� ��
�	��� �
��
 � (�	��� #
����

��	��
�
�	�������	�����#���

��������	�����
�	����	��
����	��
 �

5�������

(����	�
��.�
���

*�
���
��
��6�

)��	�������
����	��
�
��
�������!�	��
���	��
��
��

�777� 	����
� ���	�
�	���#
�����
������	��
��#����

	���	����������
���7�#	
������	��� �)����	����	���

�
��
�	����	��
����������
���
���#
��
��
 �����

���� ��
���
�
�
#�� 	��� ���� 	���	���
�� �777�

����������
����	��
�
 � �� ��#� (�	��� %
����

���#
�&� #	
� �����	���� �
�� �	���
����	��
� �

)����	���� �	��� 	�����
�� ���� ���#
�&� �	�
� ��
�

��	����
�	������
��������
�����	���� �

5������'

5������8

(�	���%
����3��#
�&

*	��
���

���
�	����	�	����
�� ��������������
�����	��
�

�����
�
��	
���� ����	��
�
�
��	��
������
�
��� �

)94�����
����	� ��)94�����
�:77������������������	���

��	�� 	��� �
������� �
���� �
� ��� �	��!� ���� �
� ��
�

������	����!����������
��� �/
#����!�#���	���
��

�
���
"�	��
�� ������� �����	�
�
� �
�
����	���

�	��
���	��	���
�#�����������
����	��������	���

	��	�������	���
�����	��
������	�
� �,����
���
"

�	��
�� ������� �����	�
�� �
� 	�� 	��
������ ��	��

�	&�
� ��� 	� �	��
�� ������
���� �	���� 	���

�����	��
� 	� ��
���� ��	�� 	���
���	��
� 	� �	��
��

������ � ,��
� ��
������ 	��
#
� �
� �
�
����	���

�	��
���

� ��	�� �
� ���
���� ��� ��	�� #
����

�
���
 �

�����
� �����	��� #���� �	��
�� ������
�
�� ����

�
���	��
���
����	�%��������*	��
��)����	���
��

�%*)�� 	��
������ �	
���
�� ������ ��
�	���� ��
��

����
�
�� ���� ���#
�& � %�� �
�� 	� �
�������

���
�
��
��;���+
��	#��
��	����	���	��
��
�#����� �

,��� ��
�	�������
�� 	����� �!� #���� �	������ <	���

.�
�	���� ��<.��
���!� �	��
���� �����	������ #����

	����� � ��	����� 	� �	��� ��
�	����
�� � ���
�� � ��
�

�4�	���
=

�����
� �������� 	� �������� ��
��
�
������� ����

�
��
� ��	�� �	��� ����� 	�
����� ��� ����
�����

��������	�
� ��� ���
�����
 � ,��
� �������
�

������
�
�� ��
�

��	�� ���#
�&� 	��� �	��
��

������
�
�������
���	��
�

*�
���

5������:

5������>

$�����������

5������?

$����������:

$����������>

$����������?

Argumentation on Bayesian Networks for Distributed
Decision Making∗

Akın Günay
†

Department of Computer Engineering
Boğaziçi University

Bebek, 34342, Istanbul,Turkey
akin.gunay@boun.edu.tr

ABSTRACT
Argumentation is a daily reasoning mechanism used by hu-
man beings and it is studied under many different disci-
plines of science. Computational argumentation concen-
trates on the modeling and analyzing issues of argumenta-
tion processes. Besides, computational argumentation also
provides a powerful basis to develop methodologies for multi-
agent interactions. In this paper we propose an argumen-
tation framework with the aim of distributed decision mak-
ing. In our framework we represent beliefs of agents through
Bayesian networks. Accordingly, we specify what an argu-
ment is, how agents interpret arguments and how agents
update their beliefs according to the exchanged arguments.
Through conducting a case study we also investigate effects
of initial beliefs of agents and parameters of our framework
on the results of distributed decision making process.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Design

Keywords
Argumentation, Bayesian Networks

1. INTRODUCTION
Computational argumentation systems are used by the ar-

tificial intelligence (AI) community to model and analyze the
act of human argumentation [2]. Argumentation is mainly
used as a non-monotonic reasoning mechanism in cases such

∗This research has been partially supported by Graduate
Scholarship Program 2211 of the Scientific and Technological
Research Council of Turkey and by the Turkish State Plan-
ning Organization (DPT) under the TAM Project, number
2007K120610.†PhD Student

Argumentation on Bayesian Networks for Distributed Decision Making,
Akın Günay,

as medicine and law, where classical formal logics are inad-
equate. More recently argumentation is used by the multi-
agent systems (MAS) community to model interaction be-
tween agents as a negotiation mechanism for decision making
[1, 5]. Early argumentation systems use classical logics such
as propositional and predicate logics to model knowledge of
agents. More recent studies use probabilistic models in order
to represent the knowledge of agents better [6, 8]. Especially
in [9] Vreeswijk proposes an argumentation approach using
Bayesian inference. He uses the admissibility semantics of
Dung [4] and proposes an algorithm to generate arguments
on Bayesian networks. The approach that we propose in
this paper uses a similar approach to generate arguments
on Bayesian networks. However, our main concern in this
paper is the use of such arguments in a multi-agent dialogue
in order to achieve mutual decisions.
In this paper we develop an argumentation system for

multi-agent decision making, where agents use Bayesian net-
works for belief representation and inference. We propose an
argumentation framework that specifies the concept of an
argument considering probabilistic structures. This frame-
work also defines the belief update policies of agents on
Bayesian networks based on two thresholds variables, namely,
the acceptability threshold and the confidence threshold. We
also provide an algorithm to guide the realization of the con-
cepts of the framework. We implement our framework in
Java language using NeticaJ API for inference. We conduct
a case study, in which we investigate the effects of the initial
beliefs of the agents and the threshold values proposed in
the argumentation framework
This paper is organized as follows. In Section 2 we pro-

vide the background about argumentation and Bayesian net-
works. In Section 3 we define our framework. In Section 4
we conduct a case study on a sample Bayesian network to
evaluate our argumentation framework and present our ob-
servations. Finally, in Section 5 we conclude our discussion
and point out to some future directions.

2. BACKGROUND

2.1 Argumentation
Argumentation is studied in philosophy since Aristotle.

It is also studied in the AI community since it is a major
mechanism of daily reasoning. Computational aspects of ar-
gumentation can be divided into the following main themes
[2]:

• The structure of an argument and interaction of the

components

• The rules and protocols that define the argumentation
process

• Identifying valid and invalid arguments
• The argumentation strategy(i.e. deciding which argu-
ment to propose and when future discussion is redun-
dant

Argumentation can be used both by individual agents as
an internal reasoning mechanism or by multiple agents as
a medium of dialogue for information exchange, negotiation
and decision making [1, 5].

2.2 Bayesian Networks
A Bayesian network [7] is a directed acyclic graph that

represents a probabilistic model as a set of random variables
and their conditional independence assumptions. Usually,
random variables are used to model discrete states of af-
fairs. However, it is also possible to use continuous variables.
The arcs in the Bayesian network specify the independence
assumptions that must hold between the variables. These
independence assumptions determine the required probabil-
ity information to specify the probability distribution of the
random variables in the Bayesian network.
The independence assumptions have a key role for a Bayesian

network since they significantly reduce the probability in-
formation required to model the underlying situation. Nor-
mally, if there are n binary random variables, without any
independence assumption we need 2n − 1 joint probabilities
to specify the complete distribution. For instance, in the
Bayesian network (presented Figure 1) that we use in our
case study there are five binary random variables. That is
without considering the independence assumptions we need
31 joint probabilities to specify the complete distributions.
On the other hand, by introducing the independence as-
sumptions in the Bayesian network, we reduce this number
to 10.
There are mainly two type of methods to evaluate a Bayesian

network [3]. The first type of these methods are the exact
methods. In general these methods are NP-hard. However,
in the literature there are algorithms that can solve even
large networks in acceptable amount of time. The other
type of methods are approximate methods. These approx-
imate methods are fast but they sacrifice some precision.
However, the loss of precision is negligible in most practical
cases. In general there is no single algorithm that performs
the best in all cases and the performance of the algorithms is
mostly dependent on the topology of the Bayesian network.

3. ARGUMENTATION FRAMEWORK
In this section we describe the details of our argumenta-

tion framework. We first discuss the role of an agent in the
framework. Then we define the argument and its structure.
After that we explain the belief update process. Lastly, we
provide an algorithm that combines these concepts in a for-
mal representation.
Before going into the details of our framework, we express

our assumptions as follows: in our framework, we assume
that agents share a common structure for their Bayesian net-
works, although the probability assignments of variables are
different. We also assume that all variables in the Bayesian

networks are discrete binary variables and are in one of the
two states as true or false. When we call belief of an agent on
some variable we refer to the probability assignment of this
variable and if this is a conditional probability we call each
possible set of state assignments of the conditional variables
as a case.

3.1 Agents

Definition 1. An agent A =< B, p > is a pair, where B
is a Bayesian network that represents the belief base of the
agent and p is a policy that defines the belief update policy
of the agent.

In our framework, an agent is a computational entity that
has a belief base represented as a Bayesian network. Agents
interact through arguments with each other to come up with
a common conclusion on the state of some variable. Through
this argumentation process each agent updates its belief base
according to the information received as arguments from the
other agents and its own belief update policies. The be-
lief update policies specify the belief update behavior of the
agent. Using these policies, agents do not simply change
their beliefs without any question according to the beliefs
of the other agents, but instead they autonomously decide
about belief updates considering their own state and prior-
ities. Therefore, agents have always the option to reject an
argument of another agents without changing their beliefs.
On the other hand agents can generate counter arguments
to influence other agents according to their own beliefs.

3.2 Argument Structures
In classical logics an argument is a set of one or more

propositions as premises along with another proposition as
conclusion, such that the truth of the conclusion is a logical
consequence of the given premises.

Definition 2. An argument Arg =< v, s > is a pair
where v is a variable in B and s is a conditional probability
in B.

Since we deal with probabilistic structures, in our context
interpretation of an argument is different. An argument con-
sists of two parts. The first part of an argument is the query
variable. The query variable is the variable in the Bayesian
network, on which the agents try to achieve a mutual deci-
sion. The second part of the argument is another variable
(in the Bayesian network) with its probability (and the state
of dependent variables if it is a conditional probability). To
explain the idea better consider a Bayesian network that has
three variables Q, W and R, and there is a conditional rela-
tion from R to W such that P (W |R) and from W to Q such
that P (Q|W). We choose Q as our query variable and we
want to create an argument using the conditional relation
between R and W . In such a case, part one of an example
argument contains the query variable Q and part two of the
argument contains P (W |R = true) (a possible state assign-
ment of the conditional variable R). A second argument may
again contain the query variable Q in part one and different
than the first example P (W |R = false) in the second part
(another state assignment of the conditional variable R) .
Note that the arguments does not contain the full condi-
tional probability tables such as P (W |R), but instead each
argument involves only one assignment of the conditional
variable such as P (W |R = true) or P (W |R = false).

3.3 Belief Update
Belief update is the major mechanism that agents use to

achieve common conclusions. If two agents have different
conclusions on the state of a variable in their Bayesian net-
works, they select it as the query variable and start to argue
about this variable by proposing arguments to each other.
With each argument the agent tries to influence the other
agent by changing the beliefs of the other agent in the di-
rection of its own beliefs.
An important issue in belief update in the context of

multi-agent systems is autonomy. While updating its be-
liefs, an agent should consider its own state and priorities
besides the beliefs of the other agents. Hence, in some cases,
if the belief of the agent conflicts with the belief of the other
agents, the agent should be able to reject the belief of the
other agents and keep its belief as it is. Although this may
prevent to achieve a common conclusion in some cases, it
preserves the priorities of the agents.
To achieve autonomy in belief update in our framework

agents use two threshold values represented as a policy of
the agent.

Definition 3. An agent policy is a pair p =< a,C(v) >
where a is the acceptability threshold of the agent and C(v)
is a function that maps each variable v ∈ B to a confidence
threshold.

The first one is acceptability. Acceptability defines the
overall tolerance of the agent to the beliefs of the other
agents. Higher acceptability means the agent is more tol-
erant to accept the other agents beliefs and change its own
beliefs accordingly. On the other hand a low acceptability
reflects the conservativeness of the agent to the beliefs of
the other agents. When a belief of another agent is received
through an argument, the agent compares its own belief with
the received belief of the other agent. If the difference be-
tween the two beliefs is within the acceptability threshold
of the agent then the agent accepts the belief of the other
agent and applies belief update. On the other hand, if the
difference between the beliefs is not within the acceptability
threshold, the agent rejects other agents belief and does not
update its own belief. Equation 1 represents the concept of
acceptability threshold formally, in which accept is a binary
variable that represents whether the belief of the other agent
is acceptable or not, βagent represents the belief of the agent,
βarg represents the belief of the other agent received as an
argument and α is the acceptability limit.

acceptability =

(
1, |βagent − βarg| ≤ α
0, otherwise

(1)

The second threshold value is the confidence. The aim of
the confidence is to represent the self-confidence of the agent
on its beliefs, which effects the degree of change in beliefs
while updating beliefs. A larger confidence value means that
the change of the agents belief will be smaller. Instead of
a general confidence threshold that effects all beliefs of the
agent equally, we associate individual confidence values with
each belief (each probability of a variable in the Bayesian
network). In this way we can represent different confidence
on different beliefs of the agent. This is indeed useful to
reflect real world situations, such as the trustworthiness of
the source of belief. If the belief of the agent about a fact is

developed through information obtained from untrustworthy
external sources, the confidence of the agent on this belief
may be low. On the other hand, if the belief of the agent
about another fact is developed through self observation by
the agent itself, the confidence of the agent on this belief
may be higher than the first case. Equation 2 represents the
concept of confidence formally, in which βagent represents
the belief of the agent, βarg represents the belief of the other
agent received as an argument and ωβagent represents the
confidence of the agent on the certain belief βagent.

βagent = βagent × ωβagent + βarg × (1− ωβagent) (2)

3.4 The Algorithm
In this section we present an algorithm for the agents

that use the concepts of argumentation and belief update
explained in Sections 3.2 and 3.3. Before going into de-
tails of the algorithm, let us remind our assumptions. We
assume that the agents share a Bayesian network with iden-
tical structure, but with different probabilities assigned to
variables, which are always binary (possible states of vari-
ables are always true and false). We also assume that all
agents commonly know on which variable’s state they want
to achieve a mutual decision (i.e. the query variable).
An agent runs this algorithm when it receives an argu-

ment from another agent. The received argument consists
of the belief of the other agent on a variable represented by
βarg and the state of the query variable in the belief base of
the other agent represented by γarg. The agent first checks
the acceptability of the received belief βarg (line 1). If the
received belief βarg is acceptable it applies the update pol-
icy on its own belief base (line 2). Then, using the updated
belief base it performs inference on the underlying Bayesian
network to compute the posterior probability of the query
variable and decides on the state of the query variable and
assign the result to γagent (line 3). After that it compares
the inferred state of the query variable (γagent and the state
of the query variable as told by the other agent (γarg) (line
4). As the result of this comparison, if the agent captures
that it agrees with the other agent on the state of the query
variable, it sends an accept message to the other agent to
conclude the argumentation process. On the other hand, if
the agent captures that it disagrees with the other agent on
the state of the query variable, it sends a reject message to
the other agent to inform that the a mutual decision on the
state of the query variable is not achieved yet (lines 5-7). If
the received belief βarg is not accepted (else part of the if-
condition in line 1) the agent generates a counter argument
and sends it as a reply to the argument of the other agent
(line 10).
To generate a counter argument, the agent uses its belief

base and the underlying Bayesian network as follows: the
agent uses a flag for each variable in the Bayesian network
in order to keep track of whether this variable is used in the
argumentation process or not. If the agent decides to send a
counter argument, it starts to check the flags on the variables
starting from the query variable. If the query variable itself
is not used (probably at the beginning of argumentation
process), the agent creates the counter argument using its
belief on the query variable and flags the query variable to
prevent future use of this variable. Using its belief on the
query variable as the first argument brings an advantage

Require: βarg

Require: γarg

Require: βagent

Require: α
Require: ωβagent

1: if |βagent − βarg| ≤ α then
2: βagent × ωβagent + βarg × (1− ωβagent)
3: γagent = inference()
4: if γagent = γarg then
5: return accept
6: else
7: return reject
8: end if
9: else
10: return generateCounterArgument()
11: end if

Algorithm 1: The agent algorithm

to the agent to influence the other agent directly according
to its own belief on the early stage of the argumentation
process especially if the acceptability of the other agent is
high. If the query variable is already used (flagged), the
agent continues by the immediate parent variables of the
query variable in the Bayesian network to generate a counter
argument. If also the immediate parents were used before,
the immediate child variables of the query variables are used
by the agent to generate the counter argument. The agent
repeats this process recursively until a non-flagged variable
in the Bayesian network is found. If all variables are flagged
the agent sends a stop message to the other agent to indicate
that achieving a mutual decision on the state of the query
variable is not possible, since all variables are already used
for argumentation and stops the argumentation process.
Agents repeat this algorithm in a turn taking manner un-

til either a mutual decision on the state of the query variable
is achieved or both agents propose all of their possible argu-
ments and still no mutual decision is achieved on the state
of the query variable.

4. CASE STUDY

4.1 Setting
In this section we demonstrate the results of our case

study. In our case study the agents use a well known Bayesian
network, namely the family-out network, which we present
in Figure 1 [3]. Although family-out network is simple, it is
useful for observation since it makes possible to keep track
of the progress of our argumentation system. In all cases we
select the variable ”Dog Out” as the query variable. We ob-
serve the behavior of our argumentation system on six differ-
ent cases with different combinations of belief similarity and
acceptability threshold of agents. For belief similarity we de-
fine two qualitative levels as close beliefs and distant beliefs.
In close beliefs level, the difference between the beliefs of the
agents for the same variable is in range [0, 0.25]. In distant
beliefs level, the difference between the beliefs of the agents
for the same variable is in range [0.2, 0.5]. For both levels
we guarantee that the initial state of the query variable is
always different for each agent (i.e. one agent says true and
other says false). For acceptability threshold we choose two
values as 0.25 (low acceptability) and 0.5 (medium accept-
ability). We set the confidence threshold to 0.5 for all cases,

Figure 1: Family-out Bayesian Network

which means its effect is neglected. As the result of each
case study we observe the length of the argumentation pro-
cess (number of arguments exchanged with maximum of 20
arguments due to the structure of the family-out network)
and whether a mutual decision is achieved between agents
at the end of the argumentation process. We summarize all
cases in the following table.

Case Belief Similarity Agent-1 Accept. Agent-2 Accept.
1 Close Beliefs Low Low
2 Close Beliefs Medium Medium
3 Close Beliefs Low Medium
4 Distant Beliefs Low Low
5 Distant Beliefs Medium Medium
6 Distant Beliefs Low Medium

4.2 Observations

• Case 1: In Case 1 the agents have belief bases with
close probability assignments. On the other hand their
acceptability thresholds are low, hence they are not
tolerant to the beliefs of the other agents. In this case
the argumentation process takes 7 turns and 14 argu-
ments are proposed between the agents. The agents
achieve to a mutual decision, in which the state of the
query variable ”Dog Out” is inferred as ”false” by both
agents (initial belief of Agent-2). In this case the argu-
mentation process requires exchange of 14 arguments,
which is considerably long (remember maximum pos-
sible number of argument exchange is 20). The major
reason of this result is the low acceptability tolerance
of both agents, which decreases the effect of close be-
liefs. However, the agents still achieve to a mutual
decision on the state of the query variable.

• Case 2: In Case 2 the agents have belief bases with
close probability assignments. Additionally, their ac-
ceptability thresholds are medium, hence they are more
tolerant to the beliefs of the other agents and we expect
them to achieve a mutual decision in a short amount
of time. In this case the argumentation process takes
4 turns and 8 arguments are proposed between agents.
The agents achieve to a mutual decision, in which the
state of the query variable ”Dog Out” is inferred as
”false”by both agents (initial belief of Agent-2). In this
case the argumentation process requires less time with
respect to the Case 1 as expected, since the medium
acceptability threshold of the agents allows them to ac-
cept each others arguments more easily and speeds up
the belief update process. Hence, the agents achieve
to a mutual decision in a shorter time.

• Case 3: In Case 3 the agents have belief bases with
close probability assignments. However, they have dif-
ferent acceptability thresholds, such that the Agent-1
has low acceptability and Agent-2 has medium accept-
ability. Hence, Agent-2 is more tolerant to Agent-1’s
beliefs but the opposite is not true. In this case the

argumentation process takes 5 turns and 10 arguments
are proposed between the agents. The agents achieve
to a mutual decision, in which the state of the query
variable ”Dog Out” is inferred as ”true” by both agents
(initial belief of Agent-1). Different then Case-1 and
Case-2 the mutual decision of the agents is ”true” in
this case. This is because Agent-1 has more influence
on Agent-2 according to the acceptability thresholds
and Agent-1 convince Agent-2 to its own decision.

• Case 4: In Case 4 the agents have belief bases with
distant probability assignments. Additionally, their
acceptability thresholds are low, which makes hard to
achieve a mutual decision. In this case the argumenta-
tion process takes 10 turns and 20 arguments proposed
by the agents. However, no mutual decision is achieved
by the agents on the state of the query variable, due
to distant beliefs and low acceptability.

• Case 5: In Case 5 the agents have belief bases with
distant probability assignments. On the other hand,
their acceptability thresholds are medium, hence there
is still an expectation to achieve a mutual decision.
However, after 10 turns and 20 argument propositions,
no mutual decision is achieved between the agents on
the state of the query variable. In this case, although
agents are tolerant to each others beliefs, the initial
difference between the beliefs prevent them to achieve
a mutual decision.

• Case 6: In Case 6 the agents have belief bases with
distant probability assignments. As in Case-3, Agent-
2 has a higher acceptability threshold than Agent-1
and hence it is more tolerant to the beliefs of Agent-1.
In this case the argumentation takes 10 turns and 20
arguments are proposed by the agents. No mutual de-
cision is achieved by the agents. Although Agent-1 can
not convince Agent-2 enough to accept its own decision
about the query variable, by checking the probability
assignments of Agent-2’s Bayesian network at the end
of the argumentation process, we still observe signif-
icant changes, such that the probability assignments
are closer to Agent-1’s probability assignments.

5. CONCLUSIONS
In this paper we develop an argumentation system for

multi-agent decision making, where agents use Bayesian net-
works for belief representation and inference. For this pur-
pose, we propose an argumentation framework, in which we
define structure of an argument and belief update policies
of the agents on Bayesian networks. Our belief update pro-
cess is based on the acceptability threshold and confidence
threshold variables. We provide an algorithm to realize the
argumentation framework. We implement our framework in
Java language and conduct a case study on family-out net-
work, in which we investigate the effects of the initial beliefs
of agents and the acceptability threshold on mutual decision
achievement.
The results of the case study show that if the agents have

belief bases with close probability assignments, agents can
achieve to a mutual decision in all cases and the acceptability
threshold effects the length of the argumentation process,
such that higher acceptability shortens the argumentation
process. On the other hand, if the agents have belief bases

with distant probability assignments, agents can not achieve
to a mutual decision. Besides, we observe that if there is
a difference between the acceptability threshold values of
the agents, the agent that has a lower threshold value has
an influence on the beliefs of the agent that has a higher
threshold value. Hence, the agent with lower threshold value
can convince the agent with higher threshold value to its own
decision.
This work can be extended in the following directions:

our framework assumes that the agents share the structure
of the Bayesian network and the variables have only two
states. It will be interesting to extend our framework in
such a way that these two assumptions are eliminated. The
case study provides promising preliminary results. However,
a detailed experimental study that involves various network
structures, probability distributions and evidence informa-
tion is required for validation.

6. REFERENCES
[1] L. Amgoud, Y. Dimopoulos, and P. Moraitis. A Unified

and General Framework for Argumentation-based
Negotiation. In AAMAS ’07: Proceedings of the 6th
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1–8, New York, NY,
USA, 2007. ACM.

[2] T. Bench-Capon and P. E. Dunne. Argumentation in
Artificial Intelligence. Artificial Intelligence,
171(10–15):619–641, 2007.

[3] E. Charniak. Bayesian Networks without Tears. AI
Magazine, 12(4):50–63, 1991.

[4] P. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial
intelligence, 77(2):321–357, 1995.

[5] A. Kakas and P. Moraitis. Argumentation Based
Decision Making for Autonomous Agents. In AAMAS
’03: Proceedings of the 2th International Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 883–890, New York, NY, USA, 2003.
ACM.

[6] J. Kohlas. Probabilistic Argumentation Systems a New
Way to Combine Logic With Probability. Journal of
Applied Logic, 1(3-4):225–253, 2003.

[7] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
1988.

[8] S. Saha and S. Sen. A Bayes Net Approach to
Argumentation. In AAMAS ’04: Proceedings of the 3rd
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1436–1437, Washington,
DC, USA, 2004. IEEE Computer Society.

[9] G. Vreeswijk. Argumentation in Bayesian belief
networks. Argumentation in Multi-Agent Systems,
3366:111–129, 2005.

Towards Toolipse 2: Tool Support for the JIAC V Agent
Framework

Michael Burkhardt
DAI-Labor, TU Berlin

michael.burkhardt@dai-
labor.de

Marco Lützenberger
DAI-Labor, TU Berlin

marco.luetzenberger@dai-
labor.de

Nils Masuch
DAI-Labor, TU Berlin
nils.masuch@dai-

labor.de

ABSTRACT
In this paper we describe our idea of supporting the multi-
agent system development within the JIAC framework by a
unified tool solution. We illustrate an approach of providing
a development platform, which enables comfortable, quick
and comprehensive multi-agent system design and provides
semantic searching for available services. At this we start
with our latest three feature extensions to the JIAC frame-
work, each one developed in the scope of a diploma thesis,
and describe our planned adjustments and ideas to achieve
the desired functionality.

1. INTRODUCTION
Over the last decade, Agent Oriented Software Engineer-

ing (AOSE) has gained attention as a suitable methodology
for providing quality assurance within software development
processes [4].
In order to counter nowadays requirements, the DAI La-

bor has developed JIAC V, the fifth version of its JIAC
(Java Intelligent Agent Componentware) serviceware frame-
work, which allows the implementation of open, distributed
and scalable multi-agent systems in which agents are able
to offer their abilities in a service oriented way. Develop-
ment is supported by a rich library, which provides services
and agents with frequently required abilities. The devel-
oper can reference these agents and extend their behaviour
by custom defined services. JIAC V provides a script lan-
guage for this purpose. In its second incarnation, the JIAC
Agent Description Language (JADL++) [5] has been geared
towards the requirements of agent oriented service specifi-
cation. Regarding JIAC V’s comprehensive capabilities of
transparent distribution, service based interaction, seman-
tic service descriptions, generic security and management
mechanisms and support for flexible and dynamic reconfig-
uration in distributed environments, the framework’s need
for tool solutions becomes apparent.
In this work, we describe our approach in developing a

toolkit for the design of applications and software compo-
nents based on JIAC V. At this, we make use of our latest
three framework extensions — each one a result of a sep-
arate diploma thesis [5, 7, 10]. Due to the area of appli-
cation of these extensions, this work focuses on the multi-

Cite as: Towards Toolipse 2: Tool Support for the JIAC V Agent Frame-
work, Michael Burkhardt, Marco Lützenberger and Nils Masuch, Pro-
ceedings of 11th European Agent Systems Summer School
(EASSS 2009), 31.August– 4.September, 2009, Torino, Italy.

agent system (MAS) design stage with particular emphasis
on JIAC V’s service aspects.

2. JIAC V TOOLS
JADLedit is an Eclipse based editor for JADL++ [5], a

programming language which has been designed with partic-
ular focus on an easy usage in order to assure comfortable
first steps in agent oriented programming. JADL++ has
been developed within the diploma thesis of the first au-
thor [5]. As one of it’s main features, JADL++ uses the
knowledge representation languageOWL [3] as semantic foun-
dation for its complex data types. JADLedit is divided into
two parts, a JADL++ source code editor which provides
helpful features like syntax highlighting, code completion,
error marking and many more. The second part is an on-
tology browser, which displays detailed information on the
included ontologies, such as their classes and their proper-
ties.
The Agent World Editor [7, 8], or AWE, is a tool which

supports framework independent design of multi-agent sys-
tems while a code generation feature for an extensible set of
target frameworks is provided as well. AWE employs a vi-
sual system engineering paradigm and represents even com-
plex multi-agent systems in a single diagram, whose struc-
ture is formally specified by an underlying domain model.
The code generation routine is capable of translating a plat-
form independent design into executable code of a specific
framework runtime. Currently we support JIAC IV, JIAC V
and MicroJIAC, however, AWE’s modular architecture also
holds for frameworks beyond the JIAC world.
The JIAC SEMAntic SErvice MAtcher (SeMa2) [10]

provides a matching algorithm for the comparison between
service enquiries and proposed service descriptions. Since
agents shall find the appropriate services in an autonomous
way, the latter are described by semantic information which
allows for an automatic and detailed categorisation. The
JIAC SeMa2 algorithm is based upon the OWL service de-
scription ontology OWL-S [9], which allows to specify the
purpose of a service by offering different parameters. Besides
the name of the service these are in particular input/output
parameters and preconditions and effects (IOPE). Precon-
ditions and effects themselves are described in the Horn-like
rule language SWRL [6], which extends the expressiveness
of OWL.

3. TOWARDS TOOLIPSE 2
The main concern of our latest feature extensions to

JIAC V was to increase the framework’s overall performance.

We already evaluated SeMa2 within the last year’s edition of
the Semantic Service Selection Contest [1] and received pos-
itive results. An evaluation of AWE and JADLedit has been
done in the context of this year’s Multi Agent Contest [2],
in which we supported the JIAC team developers with our
tools. At the moment, we are working on a combined tool
solution in which the developer can profit from each of the
three presented features from a central point.
While AWE allows for the appending of services to an

agent, an existence of those is still assumed. The overall
MAS development process is consequentially determined by
an alternating usage of JADLedit, which is used to develop
the required services, and the Agent World Editor, which
is used to attach the latter to agents and design the overall
multi-agent system structure.
In order to increase efficiency, we are currently working

on a combination of JADLedit and the Agent World Editor.
Our basic idea at this is to use JADLedit as editor for

services selected in AWE. This provides not only detailed
knowledge of existing services, but also allows for additional
adjustments and developments from scratch, which is more-
over supported by a comprehensive overall MAS representa-
tion. Since both, AWE and JADLedit, have been developed
as plug-ins to the Eclipse IDE, our main task remains in
defining the co-operation between both tools.
Although the combination of AWE und JADLedit makes

the service oriented agent development more comfortable,
the capabilities of the service paradigm — with reusability
aspects in particular — are as yet not fully utilised. The
development support is still limited to the implementation
and the appending of existing services to agents, however,
an effective search mechanism for these specific services in
the framework’s libraries is currently not provided. At this
point we are pursuing an application of SeMa2.
Our approach here is similar to that of the previous combi-

nation of AWE and the JADL editor. Again, we are utilising
Eclipse’s plug-in mechanism and encapsulate the entire ser-
vice lookup feature within a separate plug-in. The plug-in
will contain a visual front-end (including a search mask, a
search result table and features to add the retrieved services
to an agent) and the service matcher itself. In the search
mask, we will provide service retrieval in different granu-
larity. The developer will be able to search for available
services (i.e. library or custom developed) by name or by
an OWL-S service description, which allows for the specifi-
cation of detailed parameters, such as preconditions or the
service’s effects. Matching results will be displayed within
a table and comprise a detailed description, while buttons
allow the developer to append the retrieved results to the
current MAS setup.
The combination of AWE, JADLedit and SeMa2 will sup-

port us as multi functional tool in the design of multi-agent
systems, in the accompanying service selection and in their
development.

4. CONCLUSION
In this paper we described our idea in combining the re-

sults of three separate diploma theses to a MAS development
tool for the JIAC V framework. In doing so, we started with
an introduction of the JIAC V framework with particular fo-
cus on its service feature and motivated the necessity for a
supporting tool solution. Subsequently, we introduced the
results of the mentioned diploma theses, namely SeMa2 as

semantic service matcher, AWE as MAS design tool and
JADLedit as service development tool and described the us-
age of the latter two within the overall JIAC V develop-
ment process. We criticised the alternating usage of both
and proposed our idea and our approach in combining AWE
and JADLedit to one single tool solution. In order to pro-
vide an effective search mechanism for available services, we
described our intention to include SeMa2 in this tool com-
bination as well. As a long-term goal Toolipse 2 shall offer
methodology guided support in every aspect of the JIAC V
development process.

5. REFERENCES
[1] Annual International Contest S3 on Semantic Service

Selection. http://www-ags.dfki.uni-sb.de/
~klusch/s3/s3c-2008.pdf.

[2] Multi Agent Contest.
http://www.multiagentcontest.org/.

[3] Sean Bechhofer, Frank van Harmelen, Jim Hendler,
Ian Horrocks, Deborah L. McGuinness, Peter F.
Patel-Schneider, and Lynn Andrea Stein. OWL Web
Ontology Language Reference. W3C
Recommendation, February 2004.
http://www.w3.org/TR/owl-ref.

[4] Federico Bergenti and Michael N. Huhns.
Methodologies and Software Engineering for Agent
Systems, volume 11 of Multiagent Systems, Artificial
Societies, and Simulated Organizations, chapter On
the use of Agents as Components of Software Systems,
pages 19–32. Kluwer Academic Publishers, 2004.

[5] Michael Burkhardt. Integration von OWL in einem
Interpreter als Konzept für komplexe Datentypen.
Diploma thesis, Technische Universität Berlin, Berlin,
Germany, March 2009.

[6] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley,
Said Tabet, Benjamin Grosof, and Mike Dean. SWRL:
A Semantic Web Rule Language Combining OWL and
RuleML. W3c member submission, World Wide Web
Consortium, 2004.
http://www.w3.org/Submission/SWRL/.

[7] Marco Lützenberger. Development of a Visual
Notation and Editor for Unifying the Application
Engineering within the JIAC Framework Family.
Diploma thesis, Technische Universität Berlin, Berlin,
Germany, March 2009.

[8] Marco Lützenberger, Tobias Küster, Axel Heßler, and
Benjamin Hirsch. Unifying JIAC Agent Development
with AWE. In Proceedings of the Seventh German
Conference on Multiagent System Technologies,
Hamburg, Germany, 2009.

[9] David Martin, Mark Burstein, Erry Hobbs, Ora
Lassila, Drew Mcdermott, Sheila Mcilraith, Srini
Narayanan, Bijan Parsia, Terry Payne, Evren Sirin,
Naveen Srinivasan, and Katia Sycara. OWL-S:
Semantic Markup for Web Services. Technical report,
November 2004. http://www.w3.org/Submission/
2004/SUBM-OWL-S-20041122/.

[10] Nils Masuch. Development of a Standard-Based
Service Matcher Component within an Agent-Oriented
Framework. Diploma thesis, Technische Universität
Berlin, Berlin, Germany, April 2009.

The Tenacity Of Social Actors

EL GEMAYEL Joseph
University of Toulouse - IRIT

2 Place du Doyen G. Marty, F-31042
Toulouse Cedex 09

0033 (0)5 61 63 35 00

joseph.el-gemayel@irit.fr

ABSTRACT
Using a formalization of a sociological theory, the Sociology of
Organized Action, we describe an organization as a mathematical
object that represents its structure and its components, Actors and
Resources. Together with an analytic analysis of this structure,
Actors are granted with a bounded rationality mechanism, that
simulates the way they adapt their behaviors to others, in order to
know what states are the most sociologically likely to appear.
After the presentation of the meta-model of social organization
and the simulation algorithm, a sensitivity analysis reveals the
importance of the tenacity parameter.

Categories and Subject Descriptors

J.4 Social and Behavioral Sciences---Sociology, K.4.3
Organizational Impacts---Computer-supported collaborative work,
I.2.11 Distributed Artificial Intelligence---Multi-agent systems,
F.2.m Miscellaneous.

General Terms
Algorithms, Performance, Experimentation, Theory.

Keywords
Sociology of Organized Actions, Rationality of Social Actors,
Cooperation, Simulations.

1. Meta Model of an Organization
The Sociology of Organized Action[2] defines the structure of an
organization as a set of related Actors and Resources. Each Actor
controls at least one Resource and so determines how well others
(and him-self) can access this Resource. On the other hand, each
Actor depends on some Resources and he has stakes in the
Resources he needs to reach his goals. To analyze how the
organization operates, we have to consider what the aims of an
Actor lead him to do, rather than on the nature of these aims.
The Actor who controls a Resource defines its state inside a space
of choice. This space of choice characterizes the autonomy of the
Actor, and the Resource’s state his degree of cooperation in the
management of this Resource. Hence, the Actor controller
determines the ability of other Actors to exploit the Resource to
achieve their goals, i.e. their capacity of acting. An effect function
is associated with each Resource to set this value:

effectr: A * [-1; 1] � [-10; 10]
where A is the set of Actors, [-1, 1] is the space of choice,
and [-10, 10] is the range of the capacity of acting.
In order to assess the situation of an Actor in a state s of the
organization, we consider his satisfaction, which is the means at
his disposal to achieve his goals, defined as follows:

Satisfaction (a, s) = � r � R stake (a,r) * effectr(a, sr)
Another significant quantity is the ability of an Actor a to
contribute the satisfaction of others thanks of the Resources he
controls. This quantity is essential in the Sociology of the
Organized Action, and is defined as follows:

Power (a, b, s) = � r � R; a controls r stake (b, r) * effectr(b, sr)
For any particular state, satisfaction and power can be computed
for each Actor, allowing the sociologist to interpret the current
state, according to his empirical knowledge of the organization he
modelizes. However, every state may not be reachable, for
cognitive or social acceptability reasons. In order to know which
states are likely to appear from a sociological point of view, we
simulate the behavior selection with a learning algorithm.

Figure 1. Meta-Model of the structure of social organization[4].

2. Simulation
The behavior selection that we compute by simulation respects
the hypothesis of bounded rationality: each Actor has a strategic
behavior, but he only perceives the effects of the states of the
Resources he depends on, due to social Resourceship opaqueness
and cognitive limitations.
That behavior has to be also quite stable, since a constitutive
property of organizations is the regulation of Actors’ behaviors.
Finally, it has to be cooperative. Cooperation is required for the
organization to sustain and to work in a proper way, and every
Actor has an interest in maintaining the organization.
The assumption of rationality of social Actors leads to base this
behavior on the basic cycle in which each player chooses an
action according to its own objectives[3]:

• He collects information about the system state, mainly his
situation.

• He decides what action to take to improve his satisfaction.
• He performs that action

until the game is stationary, i.e. that all players are satisfied.
We use a rule system to implement the learning process of each
Actor. A rule is defined as {situation, action, strength, age},
where:

• situation: is the list of capacities of action provided by the

Resources the Actor depends on at the time of the rule
creation.

• action: is a list of changes on the states of the Resources
controlled by the Actor.

• strength: is a numerical evaluation of the effectiveness of
the rule, initialized at 0, that varies according to its
effect on the satisfaction of the Actor.

• age: is the age of the rules initialized at 0 and incremented
at each step of the simulation.

During a simulation step, each Actor selects an action and updates
the rule base as follows:

• He compares consecutive satisfaction values. The strength
of the previously applied rule will be increased or
decreased in proportion of the improvement.

• He selects rules, whose situation component are close to
his current situation, and chooses the strongest rule.

• If the set of selected rules is empty, a new rule is created,
with the current situation, a random action and a null
strength.

• Once every Actor has chosen a rule, the corresponding
actions are performed.

In addition, we model the ambition of an Actor with a threshold.
This ambition is initialized to the maximum value of satisfaction
he can reach and it will come closer to his current satisfaction
during the simulation. The bigger the gap between his current
satisfaction and his ambition, the more the Actor explores and
undertakes vigorous actions, while he exploits his set of rules
when his current satisfaction and ambition are close. The decrease
of the Actor’s ambition represents his resignation. When each
player has a current satisfaction greater than his ambition, the
simulation ends and then we consider that a regulated
configuration of the organization (i.e. states set of the Resources)
is reached, that is sociologically plausible: each Actor manages
the resources that he controls in a way that is satisfactory for
himself and others.
How quickly the ambition comes closer to the current satisfaction
is defined by the Actor’s tenacity parameter:
ambition + = (currentSatisfaction - ambition) * tenacity

3. Sensitivity Analysis of Tenacity
To study the influence of the tenacity on the number of steps
needed for reaching a stationary state and on the levels of actors’
satisfactions, we analyze the results of the simulation algorithm
on the classical prisoner's dilemma.
Prisoner's dilemma is a simple model consisting of two actors:
"A" which controls the relation "Ra" and "B" which controls the
relation "Rb." Each player places his stakes in a way symmetrical
to the other; the sum of stakes for each actor is normalized to 10.
In this model, each actor put 1 on the relation controlled by
himself and 9 on the relation controlled by the other actor. The
Effect functions of the actors are linear (slope 1 on the relation
controlled by himself and -1 on the other), which represents the
value -1 for cooperation and 1 for non-cooperation. This simple
model requires cooperation between the two actors in order that
each actor reaches his maximum value of satisfaction (80). This
model is symmetric, i.e. the reward, punishment, temptation or
payoff are the same for each actor, and payoffs have only ordinal
significance, i.e. they indicate whether one payoff is better than
another or not.
Both figures 2 and 3 result from a sensitivity analysis, of the
Prisoner’s Dilemma model, with 100 experiences varying the

tenacity of both actors from 900 to 999. Each experiment was
conducted with 50 runs of simulation.

Figure 2. The variation of the average number of steps needed until the
convergence is reached according to the variation of the actors’

tenacity.

Figure 3. The variation of the average satisfaction of actors according to

the variation of their tenacity.
The satisfactions of the two actors are quite similar, due to the
symmetry of the system. The influence of tenacity on satisfaction
and the number of steps required for convergence is due to the
ambition technique used for the resignation of the actors. A high
value clearly increases the satisfaction of the actors (Figure 3), as
they perform a better exploration of the state space that entails a
higher number of steps for convergence (Figure 2). More details
may be found in [1].

4. Conclusion
This algorithm requires very little knowledge about the state and
the structure of the organization, respectively low skills, keeping
this mechanism socially and cognitively likely, and it does not
prejudge how social Actors determine their behavior. The
behavior of the algorithm is constrained by several other
parameters that are also investigated by a sensitivity analysis.

5. REFERENCES
[1] Chapron, P., El-Gemayel, J., Sibertin-Blanc, C., Impact of

Tenacity upon the Behaviors of Social Actors, submitted to
publication.

[2] Crozier, M., The Bureaucratic Phenomenon, University of
Chicago Press, Le phénomène bureaucratique. Edition du
Seuil, Paris, 1963.

[3] Mailliard, M., Roggero, P., Sibertin-Blanc, C., Un modèle

de la rationalité limitée des acteurs sociaux. Dans :
Journées Francophones sur les systèmes Multi-Agents
(JFSMA’06), Annecy, 18/10/2006 – 20/10/2006, V.
Chevrier, M-P Huget (Eds.), p. 95-99, Hermès, 2006.

[4] Sibertin-Blanc, C., Amblard, F., Mailliard, M., A

coordination Framework based on the Sociology of

Organized Action. Dans : Coordination, Organizations,
Institutions and Norms in Multi-Agent Systems. O.
Boissier, J. Padget, V. Dignum, and G. Lindemann (Eds.),
Lecture Notes in Computer Sciences, V. 3913, p. 3-17,
Springer, 2006.

The Tenacity Of Social Actors
EL GEMAYEL Joseph, PhD Student

University of Toulouse - IRIT, 2 Place du Doyen G. Marty, F-31042 Toulouse Cedex 09
joseph.el-gemayel@irit.fr

Abstract

Using a formalization of a sociological theory, the Sociology

of Organized Action, we describe an organization as a mathematical
object that represents its structure and its components, Actors and
Resources. After an analytic analysis of this structure, Actors are
granted with a bounded rationality mechanism, that simulates the way
they adapt their behaviors to others, in order to know what states are
the most sociologically likely to appear. The meta-model and the
algorithm principle are introduced.

Meta Model of an Organization

The Sociology of Organized Action defines the structure of an

organization as a set of related Actors and Resources. Each Actor
controls at least one Resource and so determines how well others (and
him-self) can access this Resource. On the other hand, each Actor
depends on some Resources and he has stakes in the Resources he
needs to reach his goals. To analyze how the organization operates, we
have to consider what the aims of an Actor lead him to do, rather than
on the nature of these aims.

The Actor who controls a Resource defines its state inside a
space of choice. This space of choice characterizes the leeway of the
Actor, and the Resource’s state his degree of cooperation in the
management of this Resource. Hence, the Actor controller determines
the ability of other Actors to exploit the Resource to achieve their
goals, i.e. their capacity of acting. An effect function is associated with
each Resource to set this value:

effectr: A * [-1; 1] � [-10; 10]
where [-1, 1] is the space of choice and [-10, 10] is the range of the
capacity of acting.

In order to assess the situation of an Actor in a state s of the
organization, we consider his satisfaction, that is the means at his
disposal to achieve his goals, defined as follows:

Satisfaction (a, s) = � r � R stake (a,r) * effectr(a, sr)

Another significant quantity is the ability of an Actor a to
contribute the satisfaction of others thanks of the Resources he
controls. This quantity is essential in the Sociology of the Organized
Action, and is defined as follows:

Power (a, b, s) = � r � R; a controls r stake (b, r) * effectr(b, sr)

For any particular state, satisfaction and power can be
computed for each Actor, allowing the sociologist to interpret the
current state, according to his empirical knowledge of the organization
he modelizes. However, every state may not be reachable, for
cognitive or social acceptability reasons. In order to know which states
are likely to appear from a sociological point of view, we simulate the
behavior selection with a learning algorithm.

Figure 1. Meta-Model of the structure of Social Organization.

Simulation

The behavior selection that we compute by simulation respects

the hypothesis of bounded rationality: each Actor has a strategic
behavior, but he only perceives the effects of the states of the
Resources he depends on, due to social Resourceship opaqueness and
cognitive limitations.

That behavior has to be also quite stable, since a constitutive
property of organizations is the regulation of Actors’ behaviors.
Finally, it has to be cooperative. Cooperation is required for the
organization to sustain and to work in a proper way, and every Actor
has an interest in maintaining the organization.

The assumption of rationality of social Actors leads to base

this behavior on the basic cycle in which each player chooses an action
according to its own objectives:

• He collects information about the system state, mainly his
situation.

• He decides what action to take to improve his satisfaction.
• He performs that action

until the game is stationary, i.e. that all players are satisfied.

We use a rule system to implement the learning process of
each Actor. A rule is defined as {situation, action, strength, age},
where:

• situation: is the list of capacities of action provided by the
Resources the Actor depends on at the time of the rule
creation.

• action: is a list of changes on the states of the Resources
controlled by the Actor.

• strength: is a numerical evaluation of the effectiveness of the
rule, initialized at 0, that varies according to its effect on the
satisfaction of the Actor.

• age: is the age of the rules initialized at 0 and incremented at
each step of the simulation.

During a simulation step, each Actor selects an action and

updates the rule base as follows:
• He compares consecutive satisfaction values. The strength of

the previously applied rule will be increased or decreased in
proportion of the improvement.

• He selects rules, whose situation component are close to his
current situation, and chooses the strongest rule.

• If the set of selected rules is empty, a new rule is created, with
the current situation, a random action and a null strength.

• Once every Actor has chosen a rule, the corresponding actions
are performed.

In addition, we model the ambition of an Actor with a

threshold. This ambition is initialized to the maximum value of
satisfaction he can reach and it will come closer to his current
satisfaction during the simulation. The bigger the gap between his
current satisfaction and his ambition, the more the Actor explores and
undertakes vigorous actions, while he exploits his set of rules when his
current satisfaction and ambition are close. The decrease of the Actor’s
ambition represents his resignation. When each player has a current
satisfaction greater than his ambition, the simulation ends and then we
consider that a regulated configuration of the organization (i.e. states
set of the Resources) is reached, that is sociologically plausible: each
Actor manages the resources that he controls in a way that is
satisfactory for himself and others.

How quickly the ambition comes closer to the current

satisfaction is defined by the Actor’s tenacity parameter:
ambition + = (currentSatisfaction - ambition) * tenacity

Sensitivity Analysis of Tenacity

To study the influence of the tenacity on the number of steps

needed for reaching a stationary state or on the levels of satisfaction,
we analyze the results of the simulation algorithm on the classical
prisoner's dilemma.

Prisoner's dilemma is a simple model consisting of two actors:

"A" which controls the relation "Ra" and "B" which controls the
relation "Rb." Each player places his stakes in a way symmetrical to
the other; the sum of stakes for each actor is normalized to 10. In this
model, each actor put 1 on the relation controlled by himself and 9 on
the relation controlled by the other actor. The Effect functions of the
actors are linear (slope 1 on the relation controlled by himself and -1
on the other), which represents the value -1 for cooperation and 1 for
non-cooperation. This simple model requires cooperation between the
two actors in order that each actor reaches its maximum value of
satisfaction (80). It is noticeable that this model is symmetric, i.e. the
reward, punishment, temptation or payoff is the same for each actor,
and payoffs have only ordinal significance, i.e. they indicate whether
one payoff is better than another or not.

Both figures 2 and 3 result from a sensitivity analysis, of the

Prisoner’s Dilemma model, with 100 experiences varying the tenacity
of both actors from 900 to 999. Each experiment was conducted with
50 runs of simulation.

Figure 2. The variation of the average number of steps needed until the
convergence is reached according to the variation of the actors’ tenacity.

Figure 3. The variation of the average satisfaction of actors according to the

variation of their tenacity.

The satisfactions of the two actors are quite similar, due to the
symmetry of the system. The influence of tenacity on satisfaction and
the number of steps required for convergence is due to the ambition
technique used for the resignation of the actors. A high value clearly
increases the satisfaction of the actors (Figure 3), as they perform a
better exploration of the state space that entails a higher number of
steps for convergence (Figure 2).

Conclusion

This algorithm requires very little knowledge about the state
and the structure of the organization, respectively low skills, keeping
this mechanism socially and cognitively likely, and it does not
prejudge how Social Actors determine their behavior. The behavior of
the algorithm is constrained by several other parameters that are also
investigated by a sensitivity analysis.

The Impact of Routing on Traffic Congestion

Cristian Gratie, PhD student
Department of Computer Science

University “Politehnica” of Bucharest
313 Splaiul Independentei

Bucharest, Romania 060042
cgratie@yahoo.com

ABSTRACT
Traffic congestion is an important problem of today’s urban
life. There are various factors that cause it, such as the bad
timing of traffic lights or the low throughput of intersections.
Most solutions proposed for congestion are focused on one
of the factors and are aimed at reducing its impact on the
traffic conditions.
This paper focuses on rush hour congestion and on the

choice of routes as its main cause. Indeed, many drivers
tend to follow the same routes to their destination, choosing
the one that is shortest or in other ways preferable.
The paper aims to analyze the impact of routing upon

traffic and show that even greedy routing can reduce con-
gestion if the routes are adapted to traffic conditions. Fixed
and adaptive routing are compared by means of a traffic
simulator. A multi-agent system is used for collecting traffic
information from the drivers and for providing them with
the best route to their destination.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Experimentation, Performance

Keywords
agent modeling, traffic congestion, adaptive routing

1. INTRODUCTION
This paper aims to investigate the impact of routing on

traffic conditions and the extent to which this impact can
be used for alleviating congestion.
I have developed a traffic simulator for studying the effects

of two routing approaches: static and dynamic (adapted to
traffic conditions). A multi-agent system is used for collect-
ing traffic information and also for assigning routes to each
vehicle, based on its current position and its destination.
Experimental results show that traffic conditions can im-

prove significantly if the routes account for congested streets
and try to avoid them.
The next section will give an overview of the work that has

been done so far in the field of traffic improvement. Section
3 will introduce fixed and adaptive routing, as well as the
multi-agent system. Experimental results are discussed in

section 4. The paper ends with a conclusion and a few ideas
for further research in section 5.

2. RELATED WORK
D. A. Roozemond suggested the use of intelligent agents

for adapting traffic light controllers to changes in the traffic
flow [6]. M. Wiering showed that this approach does indeed
outperform non-adaptive approaches under network satura-
tion conditions [9].
K. Dresner and P. Stone proposed an intersection man-

agement system based on reservations, in order to maximize
intersection throughput [1]. Another approach, based on de-
centralized communication between vehicles, was proposed
by Rolf Naumann and Reiner Rasche [5]. These two ideas
offer a significant improvement in traffic conditions, but they
both rely on autonomous vehicles.
C. Y. Liang and H. Peng have shown that the forming of

platoons (one leader and followers) can increase the average
driving velocity [3]. This idea was extended by J. VanderW-
erf et al. with a system involving continuous communication
between vehicles [8] and by J. Hedrick et al. with an event-
driven system. S. Hallé and B. Chaib-draa have proposed
decentralized platoons as an alternative [2].
D. E. Moriarty and P. Langley focused on highway traffic

and proposed a system for cooperative lane selection [4].
K. Tumer and A. Agogino have addressed rush hour con-

gestion by using a multi-agent system and reinforcement
learning [7]. They focus on two different aspects of traffic
in a commuting environment: the choice of departure times
and the choice of routes. The proposed solution is coop-
erative and ensures congestion avoidance, with the possible
drawback that some drivers will not be using the fastest
routes available.
This paper, on the other hand, is focused on using the

same greedy approach that some drivers are already using
when choosing routes, but adapt these routes to traffic con-
ditions so as to offer the fastest (though possibly not short-
est) route available.

3. THE PROPOSED SYSTEM
The multi-agent system consists of three types of agents.

A Driver agent is associated with each vehicle and is re-
sponsible with guiding it to its destination. An Intersection
agent is associated with each intersection. Its duties are to
collect, aggregate and forward traffic information from the
Driver agents to the City agent. Finally, the City agent
is the that does the actual route computations and sends

Figure 1: Overview of the multi-agent system

routes to Drivers through Intersection agents. The general
architecture of the system is shown in figure 1.
The traffic information consists of the average velocities

on each street, updated at regular intervals. The routing
algorithm operates on the road network graph, using as cost
the time needed for reaching one intersection from another.
Because the velocities are in fact related to a past state, the
system would provide delayed route adjustments. In order
to overcome this, the second best route is computed as an
alternative and are used with a probability that increases to
0.5 as the travel time of the fastest route comes closer to
that of the alternative path.
Note that congestion is associated with low velocities, so

with high travel times, which means that congested streets
will not be part of the chosen routes if faster alternatives
exist.

4. EXPERIMENTAL RESULTS
Experiments consist in generating cars at regular inter-

vals. Each car has a predetermined destination. The multi-
agent system is used for guiding the car along a route to its
destination. Upon arrival, the car reports the total time it
needed.
The routing approach described in the previous section is

compared with a static approach that uses fixed estimates
of the velocities, based on the length of the street, the speed
limit and the average waiting times of the semaphores.
For a better comparison of the two approaches, experi-

ments were run by using the static approach for half of the
simulation time and the adaptive routing for the other half.
The evolution of the system is described by a chart showing
the total time needed for reaching the destination. Such a
chart is presented in figure 2, where it is easy to see that
the adaptive routing can even help the system recover from
serious congestion.

5. CONCLUSIONS AND FUTURE WORK
The results of the performed experiments show that rout-

ing has a significant impact on traffic congestion and that
an intelligent choice of routes can greatly improve traffic
conditions.
A significant drawback of the current algorithm is that it

is computationally expensive, since it runs in O(n3) time,
which makes it inappropriate for deployment. Therefore,

Figure 2: Evolution of the total travel time.

the most challenging goal for the future is to decentralize the
routing algorithm, while keeping the overall system behavior
similar to that of the current, centralized approach. Another
extension would be to add learning capabilities to the multi-
agent system.

6. REFERENCES
[1] K. Dresner and P. Stone. A Multiagent Approach to

Autonomous Intersection Management. Journal of
Artificial Intelligence Research, 31:591–656, 2008.

[2] S. Hallé and B. Chaib-draa. A collaborative driving
system based on multiagent modelling and simulations.
Transportation Research Part C, 13(4):320–345, 2005.

[3] C. LIANG and H. PENG. String Stability Analysis of
Adaptive Cruise Controlled Vehicles. JSME Int
Journal. Ser C. Mech Systems, Mach Elem Manuf,
43(3):671–677, 2000.

[4] D. Moriarty and P. Langley. Learning cooperative lane
selection strategies for highways. In In Proceedings of
the Fifteenth National Conference on Artificial
Intelligence, 1998.

[5] R. Naumann and R. Rasche. Intersection collision
avoidance by means of decentralized security and
communication management of autonomous vehicles.
1997.

[6] D. Roozemond. Using intelligent agents for urban
traffic control control systems. In Proceedings of the
International Conference on Artificial Intelligence in
Transportation Systems and Science, pages 69–79, 1999.

[7] K. Tumer and A. Agogino. Agent Reward Shaping for
Alleviating Traffic Congestion. 2006.

[8] J. VanderWerf, S. Shladover, N. Kourjanskaia,
M. Miller, and H. Krishnan. Modeling effects of driver
control assistance systems on traffic. Transportation
Research Record: Journal of the Transportation
Research Board, 1748(-1):167–174, 2001.

[9] M. Wiering. Multi-Agent Reinforcement Leraning for
Traffic Light Control. In Proceedings of the Seventeenth
International Conference on Machine Learning table of
contents, pages 1151–1158. Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA, 2000.

A Rule-Based Psychologist Agent for Improving the
Performances of a Sportsman

Andrei-Horia Mogos
University Politehnica of Bucharest

313 Splaiul Independentei
060042, Bucharest, Romania

mogosandrei@yahoo.com

Monica Cristina Voinescu
University Politehnica of Bucharest

313 Splaiul Independentei
060042, Bucharest, Romania

vmc4u@yahoo.com

��������
�����	�
��
���������������
��
��
����������
��
����������������	�

���	�
������	���������������
	���	���
����������������	������
��
����� � ������� ���� � ��
�� � � � ��������	 � �� �
������ � �
� � �����
���
��
���
	��������������
	����������������	�����������	���
���������
��
���������
����������
��
������	��������	�
������������	����	��
����������
��
��
����������������������	��	���������	��������
���
�	� � �� � ��	�
� � ���� � 	����
�� � ���	� � ���
	� � ��� � �����
���
������
�
�	��

��	
��
�
����������
�	��
��
��	�
�
����!�#�������	������������

	����	
��$%�&��
�
	���	����
�	��<
>�?�#������������
�����
������
��
�$%�Q�����
����

!
�"�
��
X��	�Z�������
��
��Z���������	Z���
��������������Z���������	��

#$%&��'�(��%'&
�	���
�������Z�������������	�
	��

��	�������
	�����	��������

�
����������
���������
	�������
������������	����\�����	����
��
�
������
��
��
��������������
��
	����������	���

X
������������ ���� ��
�	������
	���	��� �����
����
 ����
���	�� ��	��
�������
	�����

��������Z �����������������
��
�	�����	�����\��
	���
��	�
�����
�	�����������
�����������������	����������
	������
�	��
^�������������\��
	�����������
���������
	��

�������������������
��� � ���

�	�� � �� � ���
�	
	� � ��������	��
�� � �����
	� � ������� � ���
��
���	
	���
���������

X	��_���
� ����������	���������	��
����������
�� ����X���������
���
�	����������&���&��
�`��Z��	��	��

��	�������
	��|������
��
���
� ������
� � ��������� �����
�	� ��	��~�
	���

�����
��� �
���
�������
��
���������������X������������
���������������
����	��
�	� � ���
�
��
 � ����
	� � �� � ���
�� � ��� � ����
��
�	 � �� � � � �����
���

���	
	����
	�#!$������������������
���������������������	�
�
����
������
�� � ������
	� �
	 �
���	
	� � ��� � ��� � �XQX � ������ � ����
���	
�
�� � ���
	
	� � �
�� � X	
����� � Q������
��
 � X��	�� � #�$ �
	�
��

���	��
���
���	
	���
���

�
��Z ��	������&�|�`^���
���	
	��
�
��������	�������
���������
���������
	�������

�
��Z ���
	
��
�����������
	
	�������
��
�	�
��\

��#�$�

����������
���
����
��������\�
	�����

����������������������
������
�����������
���������������������������
�\������	���
����

�������
�� � ��� �&���&��
� �`���
	 ���
���������
 �~��
��
�	�
� ��\

� �����
���
�	���
	��������������
	�����������	��	�����~`�������
��
	�
��� � ��	��_� � �� � � � ���
��� � �����
���
 � ���	�� � ������� � ����
��
�
���
�
��������
�	�#?$�

��� � ����� �
� � ����	
��� � �� � ��

���� � |���
�	 � � � ��	��
	� � ����
�����
��
�	������������
����|���
�	��������
����������������� ����

�������������	�|���
�	�?�����
�����������������
���
������������
��� � ������ � �	� � ����� � ��� �
��
���	���
�	� � ^
	�

�Z � |���
�	 � ��
��	��
	��������	�
��
�	��������������

)$*�'�+�,������%*�%'&
��	�
��� �����������	���������
�
����� �
	�������
 �������
�
�	���
�������
���� ����������
��
�� ����	� �
� � �����
� � ������������	����
���
�
����
�������
�����
���
	�����������������������������	�����
������������	�� ������
�� ���
�� ��� ��	������	� �
	 � �
�� ���	����
���
�������������	����������
��������
��
��
����������
��
����	��
���� � ����
��
 � ���������
��
��� � �	 � ��
� � ����� � �� � ��	�
��� � �	
��
������
��
��
����������
��
���

��	�
��� � � � ��� � �� � ������
��
��
 � ���������
��
�� � ��	���� � ���
�!Z���Z��������������������
��
������������������
��
��
����������
��� ���������	� ����
����������
�
�	����	�� ����� ����	�����
���
��
	��������������	�����!Z����Z����Z���������������	��
�������
����
	�
����� � �� � ��� � ������
��
��
 � ���������
��
�� �
� � ���
�
���� ^���
�_���
�Z ��	����	� ��� ��	�����������	���������

���% ���� � ���� ���Z�
�����������Z���������Z��	
	�Z���

X���� � ���� � 	����
�� � ���	� � ���� � ��
��� � �� � ���� � ���������
��
���
���������Z � ��� � ������
��
�� � ���	� � �
��� � ��� � ��������	 � �����
���
�	�������������
	�������
�������������������	�������
��
��
�
������ � ���� � ������
��
��
 � ���������
��
� ���Z � ��� � �	 � �����
�����
���
�	 ���� ���� � ��	 �
	������ � ��� � ��
�� � �� � ���� � ����
��
���
���������
��
�����������
�	������	��
���
	�������������
�������������
���������
��
��Z�������������

�������������	������������������
��
��
�����������
�	����	�����������	����
	������������������������	����

-$�/���,����(��(��
����������������������������
�������	����
	�^
�����!���������	���
����
����	������ � �������	�� � ���� �����
� �������
�������
 ����
��
���	�� � �� � ��� � ������
�
�	� � ��
���� � �� � ��� � ��������	� � ����
Q�����
��
��
 � |���� � ����
� � ��	��
	� � ��� � ������
��
��
�
���������
��
�� � �� � ��� � ��������	 � �	� � ���
����� � �
� � �����	��
������
��
��
�������

��� � ���
 � ���
� � &���
� � ���� � �	 � ���	� � �	� � ��\�� � ����
��������	�
	� � ���	��� � ���� � ��� � ������
��
��
 � ����� � �� � ����
��������	� ��������
��� ����������Q�����
��
��
�|���� �����
�� ����
���������
��
��Z���

������	�������	��������������
���������
�
���
���������
��
��Z���

����
�

����Q�����
��
�� ����	� �����
�����������
�
������������
��
�� ��
	
�	�Z �
� � 	��������Z � �
	�� � ���� � ���
�	� � �� �
������ � ����
���������
��
����
����������
�	���
���_���������������_��������	��
��� � ����
�
	� � ���������
��
�� ��

 	��� � ��	� � �� � ��� � Q�����
��
��
�
|���� �����
�� ����	���� ����������
��
�� ��

� ��� ������� � ���	� ����
���������
��
����Z�������������������	����
��������	���������	�����

0���

�#$��
����	
���	
��	�

��������
� ���������������
������

�� �������
�	������ ���	���
������
��������	 � �� � 	�����

�� � ��� � ������� � �� � � � 	����
�� � ���	� � ���
�_���
�	����

6$�+7'�%�8,��&��%,*+�,�&���%'&
��	�
���������������������
��
��
����������
��
��������!Z��Z����Z�

��� � ��� � �� � ���	�� �����!Z � �Z ����Z � �	� � ��� � ��� � �� � ���
�	�Z�
����!Z��Z������^�������������
���!�Z����Z��Z�������	���������!��Z�
����Z��Z������Z��������������
�����

�
�������������Z�!������Z����
������
����	�
����

��_�Z���������	�������
���
����������������������%
�������	
��
���������

����	������������

��������������������������

�����
�������	����������������

�����
 ���!�������"#�"��������
�

�����$%��
�&��
 ���	����

���������	�����
�&��
 ���

�������������������	������������
��
 ����

�����������
 ����'�����������
 ���
 ���
 �((((

������	��
�	���

�������������	���	��	�
�	��������	���	����
�	������

��������������������	�� ����������
��
��� �������	��
�	����������
��

��
	��
����%����������������
�	����������	������	���	�

	��
�	 � ���	�Z � ������ � ��	���
�� ������	 � ��� � ���
�	� � ���� � ���� � 	���
�
�������������	����	����

���
	���������
�����������
����	��
�	��
����	
����	������������
��
����	��
�	Z �������
	����
���
	�����
����������������������\���

^�� � ��� �
��
���	���
�	 � �� � ����� � � � ��
������� � ��������
	��

�	�����Z � �`�Q| � #�$� � ��	�
��� � �� � ���� � � � ������
��
��
�
���������
��
��Z�?����	����	�������
�	�����_�Z���������	����������
�_���
� � ��� � � ����
� � ��� ��� � ������ � ���� � ����� �� � ��� � ����
� �
��
���	���������������
���
�������������%

�� → �?���!����?!�!��

X������������	��?%���� → �?���!����?!�!��

X������������
�	��%���� → �?���!����??�!!�

X������������
�	��%���� → �?���!����?��!!�

9$�'&�+(�%'&
��
�������������	�������
��������������
��
������	���������
�����
��������	����
��������
�������
�����
���
	��������������
	��������
��������	�����X

�����	�����������������������������	�
��
�Z�
����
������
��
��
����������
��
��Z����	��Z��	�����
�	�������������	����
��
	��	�����
�	���������	������������\�������	�
��
������������
�������
���������	���
�	�
���
��������	�Z��	�����������
	��
�������
����
��
��
������������������	��

�����	�����������������������	�������	��������
��������������Z�
�	������������������������
������������������
�����������������	Z�
�������������	�������������
��_�������������

:$��0���&���
#!$ ��&�

�Z�|�Z �>��\��	Z���Z ����
�Z �|�Z �&����	Z ���Z ���
���	Z�

Q�Z���
��Z��Z�Q����	Z���Z�����Z���Z��
���

����Z���Z�Q
�����Z�
���� � �	� � �������Z � X�Z � ������� � ¡X�������� � ������� � �	��
�����	�� � �� � `���	��� � X�����
�� � �	� � ���	
�
�� � |�����Z¡�
���\���� � �	 � ����
�	�
 � �	� � ���	
�
�� � ������ � �� � ����
�	���	��
�	�
 � ��	����	�� � �� � �	��

��	� � �����
	� � |������Z�
&�	����
Z���	����

#�$ &������Z � ��Z � ���
�� � X� � ��
����Z � �� � X�Z � ����Z � |�Z�
�������Z � �� � ����?�� �~���	
�
�� � ���
	
	� � �
�� � X	
������
Q������
��
 � X��	�� � ��XQX� �
	 � ��

���	 � �
�� � `���	
	��
�
���

�
���Z ����&
���	������ ��� ��
� � ������%� ����Q����?Z�
`��| � �!!�Z � ��� � !���!¢�Z � |��
	�������
�� � ���

	�
��
��
�����

#�$ X	�

Z � `�Z � &�	����	
Z � ^�Z � ��
�����Z � &�Z � X�

��
Z � X�Z�
���
��	Z � ��Z � £��
�	
Z � ��Z � &���

���Z � &�Z � �������Z � X�Z�
��	��
�	
��
Z � `�Z� ������� �~��� � Q���	�
�
 � �� � X�����
���
������
	� �
	 � ��`���	
	�% � &�|�`^ � ������� � �_���
�	���Z�
�	���	��
�	�
 � ��	����	�� � �	 � ����	��������� � �	������
�	�
��	������ � �����Z � ���\���� � �	 � �`���	
	� � �	� � ����	�
����������	������
�	%��_�
��
	�����
�	�|�	���
������������
������
���`���	
	���_���
�	���Z������

#?$ �
�\����Z � ��Z � �����Z � X�Z � �	� � Q
����Z � ���� � ��������
¡�����

��
	� � ��� � ���������Q��
�	� � ���\
	� � X

�	�� �
	�
X������������
��������
������	����	�����	�
�	�Z¡�Q��
�	��
������
�	�
����	��

	�Z���
�����¢Z�����!Z������!����

#�$ �`�Q|Z�����%¤¤�

����
���������������	��¤Z����������>�
�����¢

*������������

�	�	

�
���;�
��

,����
 *����������	

��
�	�

��
��	�

� �

� �
 �
 �

�

�

+��	��<���	����

�

�

�
��
��
��
	

�
��
�

��
��
��
��
��
���
��
��
���
���
�
��
��
��
�

��
��

�
��
��
�

�
��
��
��
�

��
��
��
��

�

�
��
��
��	

�
��
�

�

�
��

�
��
��
��
��
��
��
��

�
��
��
�

�
��
��
��
��
��
�

���
��
��
��

�
��
��
��
��
��
���

�

��
��

��
��
��
��
���
�

�
�
��
��
�
��
��
�
��
��
��

�
��
��
�
��
�!
��

��
�!

�
��
�
��

�

���

!�

�
��
��
��
�!

�
��
��
��
��
��

��
�

��
��
��

�

 �
��
��
 �
��
��
�!
��
�

��

��
��
�

�
�!
��
��

�

�
��
��
��
��
�
��
��
��
��
��
"�
��
��
��

��
��
��
��
��
��
��
!�
��
�

�

��
��
���
��
��
�

��
��
��

�!

�
��
�
��

��
��

��
�

�
�
��
��
�

�

�
��

��
��

�

�
�

��
��
��
��
�

�
��
��
��
��
��
��
��
��
�

��
��
��
���

��
�!

�
��
��
��

�

!�
��
��

�
�

�
��
��
�
��
��
��
��
���
�

��
��
�

�

��
��
��
��
��
��
��
��
��
��

#�
��
$
��
�%
&�

�

��

���
��
!�
��
�

�

��
��
���
��
��

'�
��
��

#�
(�
$
��

�
%&
�

��
��
�
��
��
��

��
�

��
��
��
 �
��
��
��
��
�
��

�
��
��
�!
��
��

�

�
��
��
�

��
��
��
��
��
��
��
��
��
��

�

���
��

')
&��

)*
�#
� �
*�
� �
�+
�,
���

	
*�
� 	
-
.%
��

*�
�

��

��
���
	

�
��
�

��
��
#�

(�
///
��

�%
&��
��
��
���
��
�
��
��
���
��

��
�

��
��
��
��

�
��
��
��
��
���

!�

�
��
��
��
��
��
�

��
��
��
��
��
��
��
��

�
��
��
���
�
�

��
��
��
��
��

�
��

�
��
��

0�
��'
���

1�#
2
��
��
�0�
��
�1
�#
���
�

��
*�
3
��
�4

�
�
�'
��
��
0'
1��
���

��
*�
��
��
�

�

��
��
�5
��
��
�01

�6
*�
��
��
3

�
��

�

��
��
0�
���
1��
��

7�
��0
��
8*
��
61�
��
��
�#

2
��
��
�0�
�8
*�
�6
1�#

��
*�
��
��
�

�

��
��
�0�
���
���
6��
�
1

�6
6*
�'
)�
��
�

��
0�
���
61�
��
6*
��
66
%%
%%

��
��
��
�&
��
��8
�9
:�
:(
�,
;�
9(
�(
<;

�
��
��
��
��
��
��
��
�9
&��
6�
8�
9:
�:
(�
==

9(
�(
<;

�
��
��
���

��
��
��

�

�>
&��
6�
8�
9:
�:
(�
==

99
�(
(<

�
��
��
���

��
��
��

�

�.
&��
6�
8�
9:
�:
(�
,;
�9
:�
((
<

7�
!�
��

��
��
��

�
&��
?7
�5

�
��
��
��
��
�

@
��
��
��
��
�
��
��
�
��
��
��
��
��
��
��
��
���
��
��
�

!�
��
�

�

��
��

��
��
��
��
!�
��
��
!

��
��

��
��

�

��
!�

�
��
��
��
!�
��

�
�
��
��
��

�
��
��
��
��
�

�

��

�
�

�
�

��

��
��

!
��
��
�

�
��
��
��
��
��

"�
��
��

"#
��
��
��

�
�

�
�
�

�
�

�

�
��

�

$�
��
��
���
��
��
��

�

� �

��
��
�

�
-
��
��

�
�

�
-
!�
��
�

�

��
��
���
��
��
��
��
��
��
��

��
-
!�
��
�

�

��
��
���
��
��
��
��
��
��
��
���
�

�

�
���
��
�
��
�

��
�-

!�
��
�

�

��
��
���
��
��
��
��
��
��
��
�

�

�
���
��
�
��
�

A�
��
��
��
��

�
��
��
��
��
��
�
���
���

��
���
��

��
��
��

�

�
��
��
���

��
�!

�
��
�
��
��
��
���

�
�

�

��
��
�&
��

�

�
��
��
��
B
��
�

/
�

�
���
�
�9
�B

��
�

/
�

�

ISSN

This volume contains the papers presented at the
Student Session of the 11th European Agent
Systems Summer School (EASSS) held on 2nd of
September 2009 at Educatorio della Providenza,
Turin, Italy.
The Student Session, organised by students, is
designed to encourage student interaction and
feedback from the tutors. By providing the
students with a conference-like setup, both in the
presentation and in the review process, students
have the opportunity to prepare their own
submission, go through the selection process and
present their work to each other and their
interests to their fellow students as well as
internationally leading experts in the agent field,
both from the theoretical and the practical sector.

1864-9300

