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Self-assembling filament networks are of great relevance for the development of novel materials. They

show interesting mechanical properties and have exceptionally large internal surface areas. We

analyzed the percolation behavior of a self-assembling network of rigid filaments and crosslinkers with

the help of Monte Carlo simulations. In the system, filaments are represented by long spherocylinders,

while crosslinkers are mimicked by short spherocylinders with adhesive sites at both ends with which

the crosslinkers can bind to the filaments. We had analyzed the dependence of the network structure on

the filament volume fraction, the crosslinker–filament ratio, and the adhesion strength in a former

article (Soft Matter, 2009, 5, 1504). In this work, we study the influence of the filament length on the

percolation threshold, finding that, for a given filament volume fraction and crosslinker filament ratio,

the percolation transition is rather independent of the filament length. We introduce an analytic

approach, which reproduces the binding probability qualitatively.
1 Introduction

Scaffold-like supramolecular structures are remarkable in many

aspects. Consisting of interconnected stiff or semiflexible filaments

they may form a flexible network. Since the scaffold-like structure

has a very large surface ratio, it is perfectly suited for high effi-

ciency catalysts and molecular sensors.1–9 In nanodevices, they

may also be used as transistors or nanocircuits.7,8,10–14 For these

applications, the percolation behavior is of great relevance.8,10,11

The electrical percolation in a mixture of carbon nanotubes and

spherical latex particles has been studied in detail with the help of

experiments, analytic calculations, and Monte Carlo simulations,

showing that the percolation threshold can be finely controlled by

the latex particle concentration.11 Depending on the rigidity of the

filaments and the strength of the bonds, the filament network may

vary from being very flexible to very stable.15–17 Together with the

solvent the scaffold-like structures may form a bicontinuous

phase, in which fluid and a filament path span the whole volume.

In cell biology, filament networks are found in the cytoskel-

eton. One part of the cytoskeleton that has been studied in much

detail is the actin network, in which F-actin filaments are inter-

connected by crosslinkers like myosin, a-actinin and others.18

This way, molecules may diffuse passively between the filaments

or may be transported by molecular motors along the pathways

of the actin network.19–22 Furthermore, the filaments of the

cytoskeleton stabilize the cell shape.23,24 In the presence of ATP,
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the actin network is a dynamic non-equilibrium system.23,25

Filament growth and shrinking together with active crosslinking

proteins make the cytoskeleton an extremely complex entity that

can actively rearrange and thereby deform the cell and push it in

a specific direction.26–28 The mechanical behavior of the actin

network is already of great interest in the passivated state and has

been studied in vitro by many groups.29–35 Various simulations of

active36–38 and passive networks39,40,43,44 of stiff or semiflexible

networks have been performed. A focus of these simulations is on

rheological properties of the network under shear.38,45–50

While some quantitative results have been obtained for the

mechanical properties, quantitative results of the structure and

its dependence on system parameters are sparse. Recently, we

have presented simulation results for a simple model system,

which includes the essential aspects of crosslinker-mediated

network formation.42 The filaments are represented by long hard

spherocylinders while crosslinkers are represented by short hard

spherocylinders, which have adhesive sites on both ends. These

sites can bind reversibly to the long spherocylinders. This model

includes the essential components for the formation of a flexible

scaffold-like network. The model is restricted to a small number

of parameters. The structure of the system was studied system-

atically as a function of the filament volume fraction F, the

crosslinker–filament ratio nlf, and the strength of the bonds 3

over the temperature T. Depending on these quantities, the

filaments may either form isolated clusters or a room-spanning

network. For a given length of the filament rods lF, we deter-

mined the percolation threshold between the two phases as a

function of the parameters F, nlr, and 3. In this work, we extend

this study by investigating the dependence of the percolation

threshold on the filament rod lengths.
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 (a) Scheme of a model system for the rods and linkers. The rods

are approximated by hard spherocylinders and the crosslinkers by

spherocylinders with a filament-adhering site on each end. Filaments and

crosslinkers are taken to have the same diameter. (b) The schematic

representation of a crosslinker. The crosslinker adheres to filaments

through square well potentials which are located symmetrically on the

cylindrical axis, at a distance of la from the center. The range of the

square well diameter is denoted by a.
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Actin filaments have a diameter of about D z 7–9 nm,

depending on the osmotic conditions.51 In vivo, the filaments have

a length of lF ¼ 0.1–1 mm so that lF/Dx 10–120 (ref. 52). In vitro,

actin filaments can polymerize to lengths up to 50 mm in the

presence of divalent salt and ATP.53 Frequently, capping proteins

like CapZ are added which allows creating filaments with lengths

typically found in cells.54 In experiments, usual filament concen-

trations are in the range of 0.5–20mgml�1, roughly corresponding

to filament packing fractions in the range of 0.0015 < F < 0.06

(ref. 55). There are various types of actin-crosslinking proteins

with various binding strengths 3. For example, at room tempera-

ture one has binding strengths 3¼ 2T for a-actinin and 3¼ 15T for

fascin.56 Here and in the following, the temperature is given in

energy units, i.e. the Boltzmann factor kB is omitted.

For actin filament networks, experimental and simulation

studies have shown that the length of the filament has a rather

small effect on the system properties. The mesh size of the network

increases with the filament length, but otherwise the structure does

not seem to vary strongly.34,39–41This is a very remarkable fact and,

so far, there has been no detailed explanation for this length

independence. Studying the dependence (or independence) of a

crosslinked network on the system parameters is highly relevant,

not only for a better insight into the physics of cells, but also for

the development of new materials based on self-assembling

networks. In this article, we study the percolation transition in a

system of filaments and crosslinkers for various filament lengths.

We use the model system with the spherocylindrical filaments and

the short spherocylindrical crosslinkers, which has already been

investigated systematically for a filament length of lF¼ 15D, where

D is the diameter of the spherocylinders.42 The crosslinkers have a

binding site at each end. Each site can bind to a filament that is

mostly perpendicular to the crosslinker. Thus, the model mimics

real crosslinkers in the cytoskeleton that are elongated and can

bind to one filament at each end, while being preferentially

perpendicular to the filament. Indeed, we observe that for a given

volume fraction, the percolation threshold is rather independent of

the length of the filaments. However, the percolation transition

depends sensitively on the filament volume fraction.

We introduce an analytic approach that motivates why the

filament volume fraction has a strong influence on the network

formation, while the influence of the filament length at fixed

volume fraction is low. This result and the corresponding

analytic studies provide new important insights into the struc-

tural properties of the crosslinker-mediated formation of fila-

ment networks.

The article is structured as follows: in Section 2, we present

details of the chosen model system. Results are shown in Section

3, while results and conclusions are summarized in Section 4. In

the appendix, Section A, the effective adhesion volume is

calculated, which is needed for the analytic considerations.
2 Model and simulation method

The filaments (f) and the crosslinking proteins (l) are approxi-

mated by spherocylinders of diameter D and length L ¼ lF and

L ¼ lL, respectively. A scheme of the model system and the

notation of the relevant lengths and vectors are given in Fig. 1.

Following a convention frequently used for spherocylinder

systems, lF and lL denote the length of the cylinder axes so that
This journal is ª The Royal Society of Chemistry 2012
the maximum extensions are lF + D and lL + D, respectively.

Each spherocylinder j is determined by the position of its center

of mass rj and the unit vector uj parallel to the cylindrical axis,

which points from rj � L

2
uj to rj þ L

2
uj . A pair of rods belonging

to the same class, that is, a pair of filaments or a pair of cross-

linkers, interact through a purely repulsive hard-core potential

Uhc

�
lij
�
h

�
0 if lij $D

N if lij\D
; (1)

where lij is the shortest distance between the axes of a pair of

spherocylinders, which is

lijh min
�1# si # 1
�1# sj # 1

�����
�����
�
rj þ sjLð jÞ

2
uj

�
�
�
ri þ siLðiÞ

2
ui

������
�����: (2)

In addition, the crosslinkers have an adhesive site at each end,

which interacts with neighboring filaments via the attractive

potential Ufl
ij. To define Ufl

ij, the quantities s+ij and s�ij are intro-

duced, which are the shortest distances between the adhesive sites

of the crosslinker and the axis of the filament

s�
ijh min

�1# si # 1

�����
�����ðq�j Þ �

�
ri þ silF

2
ui

������
����� (3)

with q�j h rj � lauj. The adhesive segments, which are located

symmetrically on both ends of the axis of the crosslinker, are a

distance la away from the center of mass of the crosslinker. A

crosslinker interacts with a filament through a single square-well

attractive potential, which is defined as a function of the distance

s�ij between the filament axis and the nearest adhesive site of the

crosslinker, via

Usw

�
s�
ij

	
h

��3 if s �
ij\a

0 if s �
ij $ a

: (4)

The total interaction potential between a filament and a

crosslinker is given by

Ufl
ij ¼ Uhc(lij) + Usw(s

�
ij ). (5)
Soft Matter, 2012, 8, 11746–11754 | 11747
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Fig. 2 The average fraction of rods hsmaxi that are part of the largest

cluster as a function of adhesion strength 3 for filament volume fraction

F x (a) 0.02, (b) 0.03, and (c) 0.05. Different symbols correspond to

different rod lengths: lF ¼ 10D(C), lF ¼ 15D(-), lF ¼ 20D(A), and lF ¼
25D(:).
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In our model, the preferred alignment of a crosslinker rod

adhering to a filament rod is determined by the location, q�, of the
adhesive site and the range of the square-well potential a. If a is set

to be reasonably small and the position of the adhesive site is

located at a point within the spherical cap of the spherocylinder, the

alignment of the adhering crosslinker rod to the filament rod is

limited to angles close to p/2. Furthermore, with such a construc-

tion it can be assured that one adhesive site of a crosslinker does not

simultaneously interact with more than one filament.

In our simulations, we studied rod lengths lF/D ¼ 10, 15, 20,

and 25, while the length of crosslinkers is lL ¼ 2D. The square-

well diameter a, which defines the range of the filament-adhering

potential of the crosslinker, is set to a ¼ 0.7D. The square well

potentials were placed symmetrically along the cylindrical axes,

at a distance of la ¼ 1.35D from the center of mass of the

crosslinkers.

Filaments and crosslinkers have volumes

Vf ¼ p
D2

4

�
lF þ 2

3
D

�
and Vl ¼ p

D2

4

�
lL þ 2

3
D

�
, respectively.

For a system ofNf filaments andNl¼ nlfNf crosslinkers of length

lL ¼ 2D, the ratio of the crosslinker volume fraction Fl and the

filament volume fraction F is given by
Fl

F
¼ 8

3
nlf

�
lF

D
þ 2

3

��1

. If

we keep Fl/F fixed, the crosslinker–filament ratio nlf is approxi-

mately proportional to the filament length nlfx
3

8

Fl

F

lF

D
for lF $

10D.

In order to create an initial configuration, the filaments and

crosslinkers were first arranged on a simple tetragonal lattice.

The values of Nf, Nl and the volume V were chosen in order to

generate initial configurations for values of F varying between

0.02 and 0.05 while keeping nlf ¼ 2.0. If not mentioned differ-

ently, we use Nf ¼ 500. The length of the filaments sets a lower

limit to the simulation box size, whose side length V1/3 is always

set to be greater than 2lF. The cubic lattice arrangements were

equilibrated to an isotropic fluid of filaments and crosslinkers, in

the absence of attractive interactions, i.e. 3 ¼ 0, using a constant

volume (NVT) Monte Carlo simulation. The equilibrium

configurations were reached by translational and rotational

moves of the filaments and crosslinkers. For a system of Nf

filaments and Nl crosslinkers, 2(Nf + Nl) attempts of an orien-

tational or translational move are made for every sweep.

After 2 � 105 sweeps, the adhesive square-well potential is

switched on and for various values of F, simulations are per-

formed with a set of different adhesion strengths 3. All simula-

tions were started individually with the described method. In

most cases, we chose a fixed filament–crosslinker ratio nlf¼ 2.0 as

F and 3 were varied, but we also studied the system behavior

while keeping Fl/F fixed.

Additionally, simulations were performed with different system

sizes in order to examine finite size effects. The number of sweeps

required to equilibrate ranges from 5 � 106 to 2 � 107, depending

on the filament volume fraction and the crosslinker concentration.

The systems were equilibrated before averages were taken.

3 Simulation results

Using Monte Carlo simulations, the system is analyzed for

various parameter values. In the absence of the adhesive square-
11748 | Soft Matter, 2012, 8, 11746–11754
well potential, i.e. for 3 ¼ 0, the filaments and crosslinkers form

an isotropic fluid. With adhesive potentials, the average number

of crosslinkers adhering to the filaments increases with 3. Each

crosslinker can bind up to two filaments, one at each adhesive

site. In the following, a pair of filaments is called connected if they

bind to the same crosslinker.

A filament can be connected to several other filaments through

an attractive interaction mediated by one or more crosslinkers. A

group of filaments form a cluster if each pair of filaments is

associated by a chain of connected filaments. The size of a cluster

is taken to be the number of filaments in the cluster.
3.1 Percolation

The connectivity of the filament system is analyzed with the help

of percolation theory,57–59 where the formation of a long range

network is treated as a percolation transition. In an infinite

system, a percolation transition is marked by the formation of an

infinitely large cluster which spans the entire system. For finite

system sizes, the fraction of monomers in the largest cluster

hsmaxi can be taken as an order parameter.60,61A value of hsmaxi ¼
1 corresponds to a system in which all filaments are connected to

the same cluster.

hsmaxi is plotted as a function of adhesion strengths 3, for

various rod lengths between lF ¼ 10D and lF ¼ 25D in Fig. 2. At

low 3 the rods do not form a cluster and hsmaxi is zero. As 3 is

increased, small clusters form and grow; hence hsmaxi increases.
For hsmaxi ¼ 0.5, the largest cluster contains half of the total

number of rods in the system. Simulation studies of the perco-

lation transition have shown that the percolation threshold ~3 of

the infinite system is well approximated by the value of 3 for

which hsmaxi ¼ 0.5.

The data shown in Fig. 2 provide the main result of this article.

Remarkably, for nlf ¼ 2 and fixed F, the dependence of the

transition threshold on the filament length is very small. For rod
This journal is ª The Royal Society of Chemistry 2012
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Fig. 3 The average fraction of rods hsmaxi that are part of the largest

cluster as a function of adhesion strength 3 for various system sizes, for

filament length lF ¼ 10D, filament volume fraction Ff ¼ 0.03 and

crosslinker–filament ratio nlf x 2.

Fig. 5 The average fraction of rods hsmaxi that are part of the largest

cluster as a function of adhesion strength 3 for various rod lengths. The

ratio of volume fractions of filaments and crosslinkers,Fl/Fx 2.0, for all

rod lengths. Since the filament volume fractionFx 0.03, the crosslinker–

filament ratio nlf is larger for longer rods.
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lengths between lF ¼ 10D and lF ¼ 25D the data points of hsmaxi
can approximately be fitted by the same curve. This is especially

true for larger filament volume fractions F ¼ 0.03 (b) and F ¼
0.05 (c) while deviations are stronger for F ¼ 0.02. We have

studied the influence of finite size effects (see Fig. 3) by varying

the system size with fixed lF ¼ 10D, F ¼ 0.03, and nlf ¼ 2. Below

the percolation threshold the values of hsmaxi are a bit smaller for

larger system sizes, i.e. larger Nf. However, the effects are too

small to extract a scaling law from the accessible range of system

sizes.

While in the studied range ~3 depends only weakly on the fila-

ment length (see Fig. 2), it decreases significantly with increasing

filament volume fraction F. This is shown clearly in Fig. 4, where

hsmaxi vs. 3 has been plotted for various F. Results are shown for

lF ¼ 10D and lF ¼ 25D in Fig. 4(a) and (b), respectively.

It is interesting to study the influence of the filament length if

the ratio of crosslinker and filament volume fractionsFl/F is kept

fixed, rather than nlf. In this case, the ratio of nlf/lF is approxi-

mately fixed, which means that the ratio of actin and crosslinker

monomers is fixed as the filament length is varied. Fig. 5 shows

hsmaxi as a function of 3/T for different filament lengths with fixed

Fl/F ¼ 2.0. If Fl/F is kept fixed, percolation is clearly supported

by larger filament lengths. In contrast, the percolation behavior

is independent of the filament length if the number of crosslinkers

per filament nlf is fixed. For a simplified model system this will be

analyzed in Section 3.3.
Fig. 4 The average fraction of rods hsmaxi that are part of the largest

cluster as a function of adhesion strength 3, for rod lengths (a) lF x 10D

and (b) lF ¼ 25D. Results are shown for F � 0.02(B), F � 0.03(,), and

F �0.05(>).

This journal is ª The Royal Society of Chemistry 2012
3.2 Cluster size distribution and cluster structure

Right at the percolation threshold, the cluster size distribution ns
of an infinite system shows a power-law decay58,59 ns f s�s, with

the Fisher exponent s, which corresponds to the negative slope

of the straight line found in a log–log plot. For a finite system

size, the power law behavior is restricted to small cluster sizes,

while for lengths s of the order of the system size it naturally

breaks down. Fig. 6 shows ns at Fx 0.05 for various rod lengths

at ~3 ¼ 8T close to the percolation threshold. The hump in the

cluster size distribution caused by the finite system size is

excluded from the power-law fit, which then gives a Fisher

exponent, s x 2.5, for all values of lF.

It is instructive to compare our system with networks of flex-

ible, randomly crosslinked polymers. If the polymers consist of

short multifunctional monomers, the system has a Fisher expo-

nent of s x 2.2.62 However, long linear polymers that are

interconnected by short agents, as found in polymer systems after

a vulcanization process,63 are described well by the Flory–

Stockmayer theory.64–66 This theory holds up well in very close

distance to the percolation threshold and predicts a Fisher

exponent of sx 2.5.67 For all studied rod lengths, from lF ¼ 10D

to lF ¼ 25D, the Fisher exponent is s x 2.5, just as for the
Fig. 6 Cluster size distribution close to percolation transition for

various filament lengths, at filament volume fractionF�0.05 and 3¼ 8T.

Soft Matter, 2012, 8, 11746–11754 | 11749
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vulcanization class of crosslinked polymers. This is remarkable,

since the theory by de Gennes that predicts this behavior assumes

that the polymer follows a random path between the crosslinkers.

According to our results, this is not necessary and the length of

the straight connection between the links seems to have no

impact within the studied range of rod lengths.
Fig. 7 Average number of adhering crosslinkers per filament na/Nf (a, c

and e), and average number of connectors per filament nc/Nf (b, d and e),

for various filament volume fractions F. Fx 0.02 (a and b), Fx 0.03 (c

and d), Fx 0.05 (e and f). Different symbols correspond to different rod

lengths. lF ¼ 10D (B), lF ¼ 15D (,), lF ¼ 20D (O), and lF ¼ 25D (>).

Fig. 8 (a) The analytic approach is based on the adhesion volume

vad(w,4). The adhesion volume is a shell around the filament and depends

on the angles w and 4 with respect to the local surface normal and the

symmetry axis of the filament. (b) Average number of adhering cross-

linkers per filament na. (c) Average number of connecting crosslinkers per

filament nc; analytical model (curves) compared with simulation data

(symbols). Plots are shown for filament volume fractions F ¼ 0.05 (blue),

F ¼ 0.03 (green), F ¼ 0.03 (red), each with lF ¼ 10D (----)(B), lF ¼ 15D

(——)(,), lF ¼ 25D (/)(O).
3.3 Average number of adhering linkers and connectors

The simulation results show that, for a given filament volume

fraction F, the percolation threshold depends only weakly on the

filament length. This is not a matter of course. While the Fisher

exponent is universal in its material class, the transition threshold

is not. It is of interest to study the average number of adhering

linkers, i.e. crosslinkers that adhere to at least one filament, and

the average number of connectors, crosslinkers that adhere to two

filaments. According to network theory, we can consider the

filaments as ‘‘nodes’’ forming a network with the help of the

connectors that serve as links. Now the connectivity of

the network depends on the average connectors per node, cor-

responding to the number of connecting crosslinkers per fila-

ment. Fig. 7(a), (c) and (e) show the average number of adhering

crosslinkers per filament hnai for F ¼ 0.02, F ¼ 0.03, and F ¼
0.05. For large adhesion strengths 3 the curves converge to a

value of hnai ¼ 2, corresponding to the chosen crosslinker–fila-

ment ratio of nlf ¼ 2. In Fig. 7(b), (d) and (f), the average number

of connectors hnci is shown. Also these curves converge to a value

of 2 with increasing 3, but, as expected, they converge more

slowly. The curves of hnai show a negligible dependence on lF.

For hnci, a weak dependence on lF is visible, where a slightly

higher connectivity is found for longer rods.

In order to study the adhesion behavior of crosslinkers in more

detail, we introduce a simple analytical model. First, we consider

one filament and a crosslinker in its vicinity. Whether the

crosslinker binds or not depends on the location and the orien-

tation of the crosslinker. Let w be the angle between the axis of

the crosslinker and the surface normal of the filament and 4 the

corresponding azimuthal angle. For given angles w and 4, the

center of mass of an adhering crosslinker must lie within a certain

volume around the filament, which we call the adhesion volume

vad(w,4) of the filament (see Fig. 8(a)). If the crosslinker is

strongly tilted to the filament surface normal, the adhesion

volume vanishes. Otherwise, its shape is similar to a spher-

ocylindrical shell around the filament. For w ¼ 0, the adhesion

volume is bounded by two spherocylinders with axis length lF,

where the inner one has a radius
lL

2
þD and the outer one has a

radius a + la. We define the effective adhesion volume per fila-

ment v*ad as the adhesion volume vad(w,4), averaged over all

angles. An expression for v*ad is derived in the appendix. With the

values lL¼ 2D, la¼ 1.35D, and a¼ 0.7D, used in the simulations,

one has

v*adxk1D
2lF

�
1þ k2

D

lF

�
(6)

with k1h 0.0136 and k2h 2.36. Nowwe consider a dilute system

of Nf filaments and Nl crosslinkers. With the total effective

adhesion volume V*
ad x Nfv

*
ad, the probability that a given

crosslinker is adhering is approximately given by
11750 | Soft Matter, 2012, 8, 11746–11754
Pad x
V*

ade
b3�

Vacc � V*
ad

�þ V*
ade

b3
x

V*
ade

b3

Vacc þ V*
ade

b3
(7)

where Vacc is the part of the total volume V that can be accessed

by the center of mass of the crosslinker.
This journal is ª The Royal Society of Chemistry 2012
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For a dilute system of hard spherocylinders, the accessible

volume, averaged over all orientations, is approximately

Vacc x V � Nfv
x
lf � ½Nlv

x
ll (8)

where vxlf is the average excluded volume between a crosslinker

and filament, while vxll is the average excluded volume between

two crosslinkers. The factor 1/2 corrects the double counting of

crosslinkers. Averaged over all orientations, the excluded volume

of two spherocylinders of lengths L1 and L2 and diameter D is

given by68,69

vx12 ¼
pD

6

�
3ðL1 þ 2DÞðL2 þ 2DÞ � 4D2

�
: (9)

We obtain an expression for the average number hnai of

adhering crosslinkers per filament in a dilute system:

hnaitheoxnlf Pad ¼ nlf

 
1þ Vacc

V*
ad

e�b3

!�1

: (10)

The number of filaments is given by

Nf ¼ FVfV
�1 ¼ FV�1p

D2

4

�
lF þ 2

3
D

�
(11)

with the filament volume Vf. Thus, one has

Vacc

V*
ad

¼
F�1Vf �

�
vxlf �

nlf

2
vxll

	
v*ad

(12)

For a sufficiently diluted system with la, lL, and a as used in our

simulations one has

lim
lF�.N

 
Vacc

V*
ad

!
x

231

4

�
F�1 � 8

�
(13)

in the limit of large filament lengths lF. However, also for finite

filament lengths like those chosen in the simulations, the impact

of lF on the average number of attached crosslinkers per filament

is comparably low. So far we have assumed that nlf is a constant,

independent of lF. If we keep the ratio Fl/F of crosslinker and

filament volume fractions fixed, then nlf increases approximately

linearly with lF. As a consequence, percolation sets in earlier as

shown in Fig. 5.

In Fig. 8(b), hnaitheo(3) is shown for various filament lengths

and filament volume fractions. It turns out that, especially for

low 3, the curves are in fair agreement with the simulation results.

This is remarkable, since eqn (10) does not depend on any fit

parameter. Like the simulation data, hnai(3) depends much less

on the filament length than on the filament volume fraction. At

higher 3, the simulation values of hnai(3) increase faster than

hnaitheo(3). This indicates that correlations between the rods

become relevant that are neglected in the low density approach.

Apparently, the filaments arrange in such a way that adhesion of

crosslinkers is promoted. However, on the whole range of 3, the

simple analytical approach describes the attachment probability

rather well, which indicates that correlations and many-particle

interactions have a minor influence on this quantity.

A rough estimate for the average number of connectors per

filament hncitheo(3) is given by

hncitheo x nlf(Pad)
2. (14)
This journal is ª The Royal Society of Chemistry 2012
This equation reflects that a connector has to adhere to two

filaments, assuming that each event occurs with the probability

found in eqn (7). One would expect that binding to a second

filament is less probable for an attached crosslinker. Thus, eqn

(14) should overestimate the average number of connectors. As

shown in Fig. 8(c), this is indeed the case forF¼ 0.05, the highest

filament volume fraction considered. For lower filament volume

fractions F ¼ 0.02 and F ¼ 0.03, the values of hncitheo fit

surprisingly well to the simulated data. At lower 3, eqn (14)

slightly overestimates the number of connectors, while at higher

3, the simulated values increase more strongly, which again may

reflect the fact that the system adapts to the presence of many

connecting crosslinkers and facilitates the formation of new

connections. In the theoretical as well as in the simulation data,

the influence of the filament length on NC is low. Thus, the

linking probability between the filaments does not depend

strongly on lF at fixed filament volume fraction.

In terms of network theory we can view our model system as a

set of nodes interconnected by (crosslinker) bonds, where the

average number of bonds hnci per node depends only weakly on

lF. This does not imply that ~3 is independent of lF. In general, ~3

may depend on several other system properties. The bond

percolation thresholds have been calculated for various regular

three-dimensional lattices like the simple cubic, the face centered

cubic and the body centered cubic lattices,70 the hexagonal close-

packed lattice71 or the diamond lattice.72 It turns out that the

probability of bond formation Pthresh at the percolation

threshold depends strongly on the given crystal lattice. However,

the average number of bonds per node hncithresh¼ Pthreshm/2 with

coordination number m lies in the range of 0.72 to 0.78 for the

mentioned lattices. We note that the threshold values for

hncithresh are all higher than those found for the regular lattices.

Furthermore, they depend strongly on the packing fraction. For

F ¼ 0.02, F ¼ 0.03, and F ¼ 0.05 one has hncithresh ¼ 1.8 � 0.1,

hncithresh¼ 1.4� 0.2, and hncithresh¼ 1.1� 0.2. This phenomenon

can be explained rather easily. As reported in ref. 42 the system

tends to form bundles of parallel rods, which are interconnected by

various crosslinkers. However, for each pair of rods there is only

one connector that contributes to the connectivity of the network,

and every additional connector is redundant. Thus, the more the

bundles are formed in the system the higher is the threshold value

of hnci. As shown in ref. 42 the amount of rods involved in bundles

decreases with increasing filament volume fraction. At low volume

density, the formation of parallel rods in a bundle enables a larger

number of connectors. Every time, two filaments are connected by

more than one crosslinker, and the additional connectors are not

available to support the interconnectivity of the system. Therefore,

in systems with pronounced bundling, more connectors are

required for percolation. Apparently, the percolation threshold

depends on the average number of connectors per filament and on

the typical alignment of neighboring filaments. Since neither

hnci(3) nor ~3 depends strongly on lF we expect that also the

orientation of connected filaments should not depend strongly on

the filament length.

We have measured the probability distribution of mutual

alignment between a pair of connected filaments, averaged over

all pairs of filaments. In Fig. 9 the probability distribution P is

plotted against cos q for F ¼ 0.05 and 3 ¼ 10T, where q # p/2 is

the acute angle between two connected filaments. One can see
Soft Matter, 2012, 8, 11746–11754 | 11751
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Fig. 9 Distribution of cos(q), with q#p/2 being the acute angle made by

a pair of connected filaments. Results are shown for filaments of various

lengths lF, at 3x 10T andFx 0.05. The peak at cos q� 1 indicates that a

majority of adhering filaments are parallel to each other.
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that this distribution is not strongly dependent on the filament

length, as assumed. In Fig. 10, the nematic order parameter S is

shown for different filament lengths as a function of the adhesion

strength. For systems with nlf ¼ 2, the orientational order is low

for 3/T # 9. At the percolation threshold 3/T x 10, the order

parameter reaches slightly larger values up to S x 0.15. Thus,

while connected rods are strongly aligned (see Fig. 9), the overall

orientational order in the system is low. Furthermore, the data in

Fig. 10 show no significant dependence on the rod length.
4 Conclusions

Using Monte Carlo simulations and an analytic approach we

have studied a model system of a self-assembling filament

network. The network consists of spherocylindrical rods and

spherocylindrical crosslinkers that can bind on both ends to the

filaments. We have investigated the length dependence of the

percolation threshold ~3 as a function of the filament length lF and

filament volume fraction F. If we keep the ratio of volume

fractions Fl/F constant, percolation is promoted by bigger rod

lengths.

A very remarkable result is found if the rod length is changed

while the crosslinker–filament ratio nlf and the filament volume

fraction F are kept fixed: In this case, the percolation threshold

is rather independent of lF. A Fisher exponent of s x 2.5 was
Fig. 10 The nematic order parameter S as a function of the adhesive

strength 3 for nlf ¼ 2 and various rod lengths.

11752 | Soft Matter, 2012, 8, 11746–11754
determined for all rod lengths. The same value has been

calculated for the class of vulcanized polymers. We found that

also the average number of adhering crosslinkers and the

average number of connectors do not depend strongly on the

filament length. These trends could be reproduced by a simple

analytical model. At low 3, it reproduces the values found in the

simulation surprisingly well, even though correlations in the

system are mostly neglected by the theoretical approach.

Finally, we find that the angular distribution of filaments is not

strongly dependent on lF in the simulation. Altogether, many

quantities, like hnai, hnci, the angular distribution between

connecting filaments, and finally ~3 vary strongly with the fila-

ment volume fraction but are rather robust against changes of

lF. This robustness is of great help for the study of self-assem-

bling filament networks, since it reduces the number of relevant

parameters. It simplifies the interpretation of experimental

structure data of F-actin filament networks and similar cross-

linked polymer systems.

It is interesting to compare our results with those of Nguyen

et al.39,40 They have studied actin networks experimentally and

with coarse-grained molecular dynamics simulations. Increasing

the crosslinker–filament ratio leads to a more pronounced

bundling, in accordance with our previous simulations.42 The

experimental and the computational studies show that the

lengths of the filaments have a minor influence on the system

properties, which corresponds to the results in this paper.

However, they also found that within the studied range the

filament concentration does not strongly change the structure of

the network. This result differs from our findings. We assume

that the different observations are related to the fact that the

filament packing fraction in our systems is generally larger.

While in the simulations of Nguyen et al. the packing fraction is

always below 0.001, we have studied packing fractions F in the

range between 0.003 and 0.05 (see also ref. 42). Obviously the

influence of the packing fraction is especially low in dilute

systems. From eqn (12) and (14) it follows that for low F the

number of connectors hncitheo is proportional to F2 so that the

dependence of hncitheo on F increases with the filament packing

fraction F.

With our theoretical approach we could show that the number

of adhering linkers is not strongly dependent on lF, because the

effective adhesion volume depends rather on F than on lF. Other

aspects that lead to the robustness of the percolation threshold

against changes of the filament length and the surprisingly good

matching between simulation data of hnci(3) and the results

found with the simple theoretical approach that neglects all

higher order correlations are not yet understood and remain to

be investigated in the future. There are other aspects that would

be of great interest for future studies. It is important to investi-

gate the influence of the crosslinker length on the network

structure. Another point that should be addressed is the finite

rigidity of the filaments, which may be studied with semiflexible

polymers rather than with hard spherocylinders. The good

agreement between the Fisher exponent found for our model

system and that predicted for crosslinked polymer networks

indicates that many aspects of systems with semiflexible filaments

are already represented in our model with rigid rods, but the

influence of the elasticity of filaments should be analyzed in

detail.
This journal is ª The Royal Society of Chemistry 2012
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A Appendix

A.1 Calculating the effective adhesion volume

We consider orthonormal basis vectors ex, ey, ez and a filament at

the origin, oriented parallel to ex. One crosslinker has the center

of mass at the point mez and its symmetry axis parallel to

u1 ¼ cos(4)sin(w)ex + sin(4)sin(w)ey + cos(w)ez, (15)

as shown in Fig. 11. The lower adhesive site q is localized at

q ¼ mez � lau1 (16)

and the end of the cylinder axis c on that side is given by

c ¼ mez � lL

2
u1: (17)

For an adhering crosslinker the distance between q and the

filament axis must be smaller than a. One obtains the condition

m#mmaxhlacosðwÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ la

2sin2ð4Þð1� cos2ðwÞÞ
q

: (18)

Since cos(w) is close to one,mmax can be linearized with respect

to (cos(w) � 1). Then, averaging over all 4 leads to

mmaxxa� la
2

2a
þ la

�
1þ la

2a

�
cosðwÞ: (19)

Analogously, we can determine a lower limit mmin for m by

considering that, due to steric interactions, the distance between

c and the filament axis has to be larger than D:

mminxD� lL
2

8D
þ lL

2

�
1þ lL

4D

�
cosðwÞ: (20)
Fig. 11 The angles w and 4 are the polar angles of the crosslinker axis in

a basis, determined by the normal of the adjacent filament surface and the

filament axis. Then, the crosslinker binds if its center lies within the

adhesion volume vad(w,4). The width of the adhesion volume is deter-

mined by the fact that the adhesion site qmust be smaller than a, while the

distance of the end of the cylinder axis of the crosslinker cmust be larger

than D.

This journal is ª The Royal Society of Chemistry 2012
Since mmin must not be larger than mmax the angle w has to be

smaller than

wmax ¼ arccos

�
8aDðD� aÞ þ 4Dla

2 � alL
2

4Dlað2aþ laÞ � alLð4Dþ lLÞ
�

(21)

We now define an adhesion volume vcyl around the cylindrical

part of the filament. A crosslinker with a given angle w # wmax

binds if its center of mass lies within a cylindrical shell of width

w(w)¼ mmax(w) � mmin(w) and length lF. In good approximation

the volume of the cylindrical shell is given by

vcyl ¼ wA (22)

with A ¼ 2p

�
Dþ lL

2

�
lF. Now we average vcyl over all angles w

and obtain the cylindrical part of the effective adhesion volume

per filament

v*cyl ¼ w*A (23)

with

w* ¼
2
Ðwmax

0

ðmmax �mminÞsinðwÞdw
Ðp
0

sinðwÞdw
; (24)

where the factor of 2 considers the two adhesive sites of the

crosslinker. Insertion into eqn (23) leads to

v*cyl ¼ lF
C1

C2

(25)

with

C1h2paD

�
Dþ lL

2

��
aþ la �D� lL

2

�2

; (26)

C2haDðD� aÞ þDðaþ laÞ2�a

�
Dþ lL

2

�2

: (27)

The adhesion volume v*caps at the spherical caps of the filament

can be calculated analogously. With the constants C1 and C2

from eqn (26) and (27), one finds

v*caps ¼
C1

�
Dþ lL

2

�

C2 � aD

�
la � lL

2

� : (28)

For the values chosen in the simulations, the effective adhesion

volume

v*ad h v*cyl + v*cap (29)

of one filament is approximately

v*adxk1D
2lF

�
1þ k2

D

lF

�
(30)

with k1 h 0.0136 and k2 h 2.36.
Soft Matter, 2012, 8, 11746–11754 | 11753
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