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Summary 
 
Understanding how biodiversity is organized across space and time has long been a central 

focus of ecologists and biogeographers. Altitudinal patterns of richness gradients are one of 

such striking patterns in the landscape. Despite its historical and ecological importance as a 

heuristic natural experimental site for development of ecological theories, the emergent 

patterns and mechanisms that structure them are poorly understood. This is partly because of 

the complex relationships of species to the environment and the choice of the response 

variable itself, i.e. using taxonomic richness as a metrics of diversity. This thesis, therefore, 

applies plant functional types (hereafter PFTs) approach to study the response of vegetation to 

environmental factors in the southwest Ethiopian highlands. It focuses on the classification of 

the vegetation into a few main plant functional response categories and relate them to 

environmental variables. For pattern identification and mechanistic explanations, a 

deconstructive approach of the taxonomic richness into its constituent components was used. 

Furthermore, the potential effects of land use/land cover change and global warming on the 

biodiversity of the study area was investigated.  

 

The results reveal that the application of plant functional types is a promising tool to 

understand vegetation-environment relationships. Local topographic attributes (altitude and 

slope) and soil properties found to structure the variance in the relative abundance of PFTs 

along environmental gradients. Moreover, specific response to drought favours the abundance 

of species with thorns/spines and tussocks in the lowlands as opposed to chilling which 

favours rosettes and rhizomes PFTs in the highlands. Concerning patterns of richness along 

altitudinal gradients, various structures of richness appear for total vascular plant species and 

growth forms. Woody plants, graminoids and climbers showed a uni-modal structure while 

ferns and herbs revealed an increasing pattern of richness along the altitudinal gradient. By 

contrast, total vascular plants species richness did not show any strong response to altitudinal 

gradients. Climate related water-energy dynamics, species area relationships due to the 

physical shape of the mountain, local topographic and soil conditions were found to be 

predominant factors structuring the observed richness in the study area. 

 

The threats to biodiversity loss due to land use/land cover change and global warming is 

eminent in the study area. Land conversion for agricultural purposes was a pervasive process 

that had a deleterious effect on the biodiversity of the study area. Population growth, socio-
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economic challenges (poverty) and government policy regimes drive land cover change 

processes. In addition, recent climate change poses a serious challenge to the biodiversity of 

the study area. The results of model predictions indicated that biodiversity of the study area 

will suffer severe consequences of lowland biotic attrition (i.e. the net loss of species richness 

in the tropical lowlands caused by altitudinal range shifts in the absence of new species 

arriving), range gap shifts and contraction, and extinction due to expected warming at the end 

of this century. The model also predicted that endangered and endemic species with restricted 

elevational ranges will disproportionately suffer from range contraction and extinction due to 

warming.  

 

In conclusion, the plant functional types approach was found to be an essential tool to reduce 

complexity of the vegetation of the study system and to elucidate vegetation-environment 

relationships. Moreover, the identification of emergent patterns and attributing them to 

mechanistic explanations are pre-requisites for conservation planning to save biodiversity of 

the study area. The study also evidenced that land use/land cover change and global warming 

will present strong threats to the loss of biodiversity in the study area. Salvaging biodiversity 

in the future requires the consideration of the effect of land use and climate change on 

vegetation responses. Consequently, nature conservation strategies and future reserve designs 

should take into account options of human assisted migration across fragmented landscapes 

and creating dispersal routes for species to track to new thermal niches.  
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Zusammenfassung 
 
Seit längerem streben Biogeographen und Ökologen nach dem Verständnis, wie Biodiversität   

in Zeit und Raum organisiert ist. Die höhenbedingte Abnahme der Vielfalt ist hierbei eines 

der prägenden Landschaftsbilder. Trotz der historisch gewachsenen ökologischen Bedeutung 

als heuristisches, natürliches Studiengebiet sind die zugrundeliegenden Muster und 

Mechanismen noch weitgehend unklar. Dies liegt nicht zuletzt an der komplexen Beziehung 

zwischen Arten zu ihrer Umwelt und auch in der Wahl der Untersuchungsmethodik an sich. 

Als Beispiel sei der häufige Gebrauch der taxonomischen Vielfalt als ausschließliches 

Biodiversitätsmaß genannt. 

 

Diese Arbeit wendet insofern den erweiterten Ansatz der Pflanzenfunktionstypen an (im 

Folgenden: PFTs) um die Reaktion der Vegetation auf diverse Umweltfaktoren im Südwesten 

des äthiopischen Hochlandes zu erforschen. Ziel der Studie ist es, die Vegetation in einige 

wenige Hauptkategorien von Pflanzenfunktionstypen zu klassifizieren und diese in Bezug zu 

ihrer Reaktion auf Umweltvariablen zu setzen. Der Ansatz der taxonomischen Vielfalt wurde 

somit und ergänzt, um sowohl räumliche Muster zu identifizieren, als auch die dahinter 

befindlichen Mechanismen erklären zu können. Darüber hinaus wurden sowohl potentielle 

Einflüsse von Landnutzungs- und Landbedeckungswandel, als auch die Auswirkungen der 

globalen Erwärmung auf die Biodiversität des Untersuchungsgebietes analysiert. 

 

Die Ergebnisse verdeutlichen, dass der Ansatz von Pflanzenfunktionstypen vielversprechend 

ist, um Vegetation-Umwelt-Beziehungen zu verstehen. Lokale topographische Parameter 

(z.B. Höhe und Hangneigung) scheinen die Varianz in der relativen Häufigkeit der PFTs 

entlang eines Umweltgradienten zu beeinflussen. Des Weiteren erklärt die spezifische 

Adaption an Hitzeereignisse die hohe Abundanz von Arten mit Dornen/Stacheln und 

Tussock-Gras in den niederen Lagen. 

 

Hinsichtlich der Vielzahl von Arten entlang des Höhengradientens, scheinen verschiedene 

Strukturmuster für die Gesamtheit der Gefäßpflanzen und Wuchsformen zu existieren. 

Holzgewächse, Schlingpflanzen und Graminoide kennzeichnet eine Verteilung entlang der 

Höhe, wohingegen Farne und Krautartige entlang des Höhengradientens in ihrer Häufigkeit 

zunehmen. Demgegenüber besteht nur ein schwacher Zusammenhang zwischen der 

Gesamtzahl an Gefäßpflanzen und der Höhe. Im Untersuchungsgebiet wurde die 
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klimabedingte Wasser-Energiedynamik, das Arten-Flächenverhältnis in Bezug zum 

Gebirgsprofil, lokale topographische Einflüsse sowie Bodencharakteristika als entscheidende 

Einflussgrößen hinsichtlich der beobachteten Vielfalt erkannt.  
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Introduction 
 

Drivers of Diversity Patterns 
 
Diversity is unevenly distributed over the surface of the earth. The most conspicuous spatial 

pattern of species diversity is a latitudinal gradient of decreasing richness of species from 

equator to poles (Gaston 2000; Willig et al. 2003). This pattern is consistent for several 

organismal groups such as terrestrial plants (Mutke & Barthlott 2005; Barthlott et al. 2007), 

coral reefs, mammals, fish and birds (Willig et al. 2003). However, notable exceptions to this 

classical pattern are quite common for different taxonomic groups (Heywood 1995). Some 

taxonomic groups such as vascular plants richness in Africa increases towards temperate 

latitudes (Heywood 1995), hotspots of gymnosperm diversity are located in Southeast Asia 

especially in China while tropical Africa is considered as a cold spot of Gymnosperm species 

diversity (Mutke & Barthlott 2005).  

 

Another striking pattern of species diversity is an altitudinal diversity gradient (Lomolino 

2001). The elevational clines on species diversity were one of the central themes to explain 

the origin and diversification of biota (von Linnaeus 1743) and identified as one of the most 

important biogeographic patterns by early naturalists (von Humboldt 1849), and an important 

experimental site for the development of contemporary ecological theories (Whittaker 1960; 

Brown 1971; Whittaker 1972). Generally, species diversity tends to decrease with altitude 

(Rahbek 1995; Brown & Lomolino 1998). As such, species richness pattern along altitudinal 

gradients was simply compared to the latitudinal gradients (Brown & Lomolino 1998; 

Lomolino 2001). Nevertheless, several studies have documented a non-monotonic pattern of 

species richness (Rahbek 1995; Bhattarai & Vetaas 2003). The most commonly observed 

pattern of diversity is a mid-altitudinal bulge (Rahbek 2005). There is also evidence of a mid-

altitudinal trough in species richness gradients along altitude (Peet 1978).  

 

Obviously these observed patterns at different spatial scales required mechanistic 

explanations. The attempts to account for such explanations have taken mainly in two 

directions: the deterministic aspect of the physical environment and historical-evolutionary 

processes (Brown & Lomolino 1998; Gaston 2000; Ricklefs 2006). The former considers 

variations in the physical environment as the primary determinants of species diversity across 

spatial scales (Willig et al. 2003). The general notion here is that variations in the number of 



                                                                                                                                                Introduction 

 6

species is an outcome of species interactions at particular environmental settings (Ricklefs 

2006). Thus, the biological processes (e.g competition, predation) are inherently thought to be 

guided by particular environmental settings and play a role to determine the species diversity 

of a community in a region of interest.  

 

The latter refers to the importance of history and evolutionary mechanisms such as speciation 

and extinction as stochastic processes to create and maintain diversity. Historical and 

evolutionary process is believed to play an important role in large scale patterns of diversity 

(Whittaker 2004) but also controls external drivers for local diversity (e.g. regional pool of 

species from which the environment can filter) (Keddy 1992). However, recently there is a 

consensus that both processes work in tandem to structure diversity at different spatial scales, 

albeit, the relative importance of one over the other is still dependent on the scale of 

observation (Whittaker 2004).        

 

Processes driving global scale diversity patterns could be a result of evolutionary processes, 

interacting with large scale and long term climatic conditions (Willis & Whittaker 2002; 

Whittaker 2004). In regard to latitudinal variation in species diversity, a number of 

hypotheses were forwarded such as energy availability, water-energy dynamics, 

environmental stability, habitat heterogeneity, species-area relationship, Rapoport´s rule 

(species range size), and time (Gaston 2000). Nonetheless each of these could lend only a part 

when explaining the gradient in diversity from tropics to temperate latitudes. Yet, the general 

consensus is that the tropics had a constantly high environmental temperature compared to 

temperate regions and a long evolutionary time was available for species to accumulate 

(Willig et al. 2003; Kreft & Jetz 2007). These two factors together or independently may have 

led to the accumulation of species, niche specialization and other biological processes to 

generate higher species diversity in the tropics compared to temperate latitudes, which had 

observed different cycles of climatic oscillations and shorter time for accumulation of species 

(Brown & Lomolino 1998). 

 

Apparently, high diversity of species in the tropics is sustained by relatively infertile and 

nutrient poor soils. The tropical soils are characterized by nutrient depletion since the soils are 

formed from old continental shields (e.g. in Africa) and has not been rejuvenated by oceanic 

sediment deposition since the late Mesozoic era (Breckle 2002). In addition, because of high 

rainfall (and temperature) in the tropics soils were exposed to heavy leaching (Walter 1985). 
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Thus, most of the soils are nutrient deficient in the essential soluble minerals required by 

plants such as phosphorous. The fact that Ethiopia is located in the tropics has a constant 

environmental temperature and a long time of ecosystem development, which favoured 

ecological and evolutionary processes to generate high species diversity and endemism (Umer 

et al. 2007).  

  

Unlike the general picture of the tropics, however, Ethiopia is characterized by a complex 

geological history. The tertiary build-up of trappean series volcanic mountains and subsequent 

rifting created complex heterogeneous landscapes in the country. Thus, the Ethiopian 

highlands and Rift Valley systems alike have been, and continue to be, rejuvenated by 

essential plant nutrients through weathering processes. In addition, the formation of the 

highland systems provided wide ranges of environmental templates along altitudinal gradients 

for species to shift up and down during past climate changes (Bobe 2006).  

 

Other peculiar characteristics of the study area are that it is the only part in the world where 

semi-arid ecosystems are developed without the direct influence of rain-shadow effect (e.g. 

South American semiarid environments) (Roig-Junent et al. 2006), continental interior (e.g. 

Mongolia, South Central North America) and cool ocean currents in the parts of Namibia and 

South Africa, Western Australia (Martin 2006). However the emergence of semiarid 

ecosystem in East Africa is related to interaction of multiple environmental and biogenic 

factors (Bobe & Behrensmeyer 2004; Bobe 2006). Generally in Africa in the early Mesozoic 

(65 Ma) large scale extinction of mega-herbivores occurred. The extinction of these mega-

herbivores promoted the development of woody and closed vegetation as the grazing, 

browsing and devouring effects of animals declined (Bobe 2006).  

 

During the Eocene declining global temperature and concomitant decline in precipitation, 

however, resulted in the emergence of open habitats and arid adapted vegetation (Bobe & 

Behrensmeyer 2004). Evidence from carbon isotope indicated that expansion of C4 grass 

vegetation at about 1.8 Ma in east Africa (Cerling 1992) and hence most parts of east Africa 

was dominated by C4 grasses in the Pleistocene period (Bobe & Behrensmeyer 2004).  Thus, 

these shifts in ecosystem from C3 dominated vegetation, mostly trees and shrubs, to C4 

vegetation, mainly dominated by grasses, have added complexity in environmental 

heterogeneity. Consequently, the environmental history of Africa was characterized by 

multiple changes, and a complex interactions of climatic, tectonic (e.g. rift valley formations), 
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and biotic factors (browsing and grazing dynamics), and often fire and land use history since 

the late stone age (Potts 1994; Bobe 2006).  

 

Concerning the mechanisms explaining altitudinal gradients of diversity, there were a number 

of factors considered to be important for elevational clines of diversity (Lomolino 2001). 

Some of these may include climatic factors mainly rainfall and temperature, area effect, and 

increased isolation with elevation (Brown & Lomolino 1998). In regard to climatic factors, 

mainly temperature and rainfall, temperature decreases with increasing altitude while rainfall 

increases non-linearly with altitude in the tropics and hence produce a double complex 

gradient and affect the abundance and diversity of species along the mid altitudinal  gradient 

(Brown & Lomolino 1998).  

 

The other factor, which was thought to affect the pattern of species diversity along altitudinal 

gradient, is the effect of area. As altitude increases the total area decreases towards the top of 

a mountain (Körner 2000). This small area effect with increasing isolation of habitats at 

higher altitudes would result in lower number of species at the upper end of the gradient 

(Lomolino 2001). As tops of mountains tend to be isolated, it is highly probable that species 

dispersal and exchange events will be lower there (Brown & Lomolino 1998; Lomolino 

2001).  

 

Topographic and other environmental heterogeneity gains more importance in explaining the 

variation in species diversity at landscape scales (O'Brien et al. 2000). Heterogeneity is an 

indicator of the resource availability variation in spatiotemporal contexts, there by generating 

the possibility of niche partitioning among organisms. Environmental heterogeneity of a site 

in the landscape is generally related to the variation in relief, bedrock and edaphic conditions, 

and disturbance at different spatial and temporal scales (Huston 1994). Topographic 

heterogeneity owing to the effect of slope, aspect and altitude affects the distribution of 

individual plants and communities by indirectly regulating the distribution of moisture, 

nutrients and through the influence of micro-climatic and hydrological processes in the site 

(Parker & Bendix 1996).  

 

Similarly, substrate heterogeneity as a result of the variation in the soil texture and nutrient 

availability, which are mainly the result of geological processes, influences patterns of species 

diversity distributions (Huston 1994). This thesis focuses on the predominant environmental 
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determinants of species diversity at the landscape level such as variations in altitude, soils and 

topography (see also Whittaker 2004). However, the historical and evolutionary context (e.g. 

climate history, tertiary orogenic episoides, evolutionary time), which is believed to affect the 

diversity pattern at broader regional scales (Willig et al. 2003; Whittaker 2004; Kreft & Jetz 

2007), sets a background condition to the subsequent lower level diversity patterns (Ricklefs 

2006).      

Deconstruction of Diversity Patterns 
 
The concept of biological diversity incorporates “the variability among living organisms from 

all sources ranging from genetic to ecological complexes in which they are part” (Houston 

1994; Heywood 1995; Roy et al. 2004). The taxonomic (species) richness, based on Linnaeus 

binomial classification, is generally used as a common currency to measure the overall 

variability of life on earth. Moreover, species richness has invariably been used to investigate 

the response and effects of biodiversity on ecosystems. However, some authors (e.g. Hooper 

et al. 2002) argued that species richness lacks the explicit power to explain ecosystem level 

processes,  stressing that the functional attributes of species may constitute a better approach 

to relating global environmental change and inherent ecosystem processes than taxonomic 

richness. Therefore, other aspects of diversity (e.g. morphological or functional) have started 

to gain importance in the last few decades (Cody 1991; Marquet et al. 2004; Roy et al. 2004).  

 

Patterns of diversity vary when species richness is disaggregated into different components 

(Bhattarai & Vetaas 2003; Marquet et al. 2004). Hence, plant functional classification has 

been used as an essential tool to reduce the floristic complexity of vegetation (e.g. Lavorel et 

al. 2007). This classification attempts help to investigate mechanisms that structure the 

patterns of diversity (Marquet et al. 2004; Roy et al. 2004), to investigate response of 

vegetation to environmental gradients and disturbance (Diaz et al. 1999), and to relate 

attributes of species to ecosystem properties (Diaz & Cabido 1997). The fact that vascular 

plants adapt morphologically to various environmental factors such as water supply, 

temperature, and light environments, a deconstruction of the richness components of diversity 

into different functional/morphological categories will decipher a better picture of diversity 

patterns in the landscape (see Manuscript 1).   

 

Plant functional types are defined as sets of species that demonstrate either a similar response 

to the environment or have similar effects on major ecosystem processes (Gitay & Noble 
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1997). PFTs are grouped according to their morphological, physiological, regenerative or 

phenological features (Lavorel & Garnier 2002), rather than their phylogenetic relationships. 

This provides the opportunity to directly link functional response traits with environmental 

variables such as climate, disturbance regimes, and resource availability (Hooper et al. 2002). 

The term functional diversity refers to the kind, range and relative abundance of functional 

traits, and hence PFTs, present in a given community (de Bello et al. 2006; Lavorel et al. 

2007).  

 

The variation in the relative abundance of certain plant functional types in a given landscape 

informs us about the strength of the dominant environmental constraint (e.g. climate, resource 

availability or disturbance) in that system (Keddy 1992). Consequently, plant traits which will 

provide competitive advantages over the others to survive under such limiting conditions will 

be selected. For instance, Diaz et al. (1999)  reported the strongest climatic filtering effects of 

vegetative traits such as plant height, life history, carbon allocation for support or storage in 

central-western Argentina. The distinction between evergreen and deciduous woody species 

constitutes how vegetation responds to climatic rhythms (Bonan 2008) and responses to 

herbivory (Ganqa & Scogings 2007). Concerning climatic rhythms deciduous species shed 

leaves in periods of water stress or cold temperature while evergreen species grow more or 

less constantly and develop resistance to climatic fluctuations. Leaf phenology by woody 

species can also be used as a strategy to resist or avoid herbivory (see Manuscript 2 for 

classification of PFTs and discussions related to the study system). Generally, evergreen 

species contains low leaf nitrogen (Ganqa & Scogings 2007) and invest more carbon on 

physical or chemical protective mechanism against herbivory  than deciduous species (Bonan 

2008).  

  

Threats of Biodiversity Loss in the Tropics 
 
In the preceding sections brief accounts were provided to discuss on the components of 

diversity, diversity patterns and mechanisms that generate diversity. In the following 

paragraphs I briefly discuss on the two major factors which contribute to the loss of 

biodiversity in the tropics: land use/cover change and climate change.   

 

Land use/land cover change: Land use change has been identified as one of the most 

important drivers of biodiversity loss for tropical ecosystems (Sala et al. 2000). Land use 

changes are modifying and fragmenting habitats, increasing the vulnerability of ecosystems to 
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invasive species and have persistent legacies in shaping and maintaining ecosystem structures 

and functions (Foster et al., 2003). Habitat loss and fragmentation are decreasing suitable 

habitats of species and thereby forcing species extinctions (Thomas et al. 2004). 

 

Regional difference in the rate of land use/land cover changes are pervasive and tropical 

ecosystems are particularly facing extreme levels of land cover conversions and hence an over 

average loss of biodiversity (Chapin III et al. 2001; Bradshaw et al. 2009). The mountain 

regions in the tropics are store houses of biodiversity because of their wide range of 

environmental templates along gradients and historical-biogeograpic importance as refugia 

during Pleistocene environmental changes (Messerli & Ives 1997; Bobe 2006). As such they 

host significant proportions of biodiversity and endemism (Burgess et al. 2007a; Burgess et 

al. 2007b; Umer et al. 2007) but at the same time were favoured by human habitation (Meyers 

et al. 2000) due to high thermal stress and tropical diseases in the low-lying areas in the 

tropics.  

 

The Ethiopian highlands contain a rich floral and high level of endemism (Hedberg & 

Edwards 1989; Vivero et al. 2006). However, deforestation and land conversion for 

agriculture, grazing, and demand for household energy have decimated the vegetation cover 

of the country (Eckholm 1975; Getahun 1984; Ezra 2001). Growth in human population 

density and rural poverty further reinforced the process of biodiversity loss via land 

conversion and increased demand for household energy (McCann 1995; Gessesse & 

Christiansson 2008). Nevertheless, recent studies have indicated that the lowlands and the Rift 

Valley, which were previously less populated, are facing increasing level of land cover 

change (Manuscript 3) and consequently facing biodiversity loss due to in-migration of 

population from the adjacent highlands, climate change and socio-political dynamics (Reid et 

al. 2000; Spottiswoode et al. 2009).      

 

Global warming and vegetation response: The earth has evidenced during the last three 

decades a considerable warming (Thomas et al. 2004; Aerts et al. 2006). It has been reported 

that global temperature has increased during this time approximately by about 0.5 °C (IPCC 

2007). Global average temperature increase will inform little about the response of vegetation 

to global warming, rather vegetation response to specific regional temperature increase is 

important (Peters 1991; Aerts et al. 2006). Moreover, the extreme weather episodes such as 

drought, cold spells, flooding, etc., may have more effects on species distribution and 
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performance of species (Peters 1991; Jentsch et al. 2007). Regional models predict that 

temperature increase will be relatively higher for northern latitudes and mountain regions 

(IPCC 2007). The regional models also predicted high variability of precipitation for East 

Africa but a trend of increasing precipitation at the end of 21st Century (IPCC 2007). Thus, 

the effects of increased temperature and precipitation variability will negatively affect the 

biodiversity of mountain regions of East Africa because of the limited possibilities of isolated 

populations to move upwards (Case 2006)    

 

Species respond to global warming by a number of ways such as in situ persistence and 

adaptations, migration and extinction (Peters 1991; Midgley et al. 2007). In situ persistence is 

performed through species tolerance of the vegetative stages, and longevity and dormancy of 

the propagules while in situ adaptation requires genetic variation and plasticity to adapt to a 

wide range of climatic stresses (Midgley et al. 2007). However, there is a general consensus 

that the earth is warming much faster than many species could adjust by in situ persistence 

and adaptations, leaving the obvious options for species to confront climate change via either 

migration and hence eventually tracking suitable environments for colonization or may be 

subjected to unprecedented level of extinction (Thomas et al. 2004; Midgley et al. 2007).     

 

Tropical mountain ecosystems are expected to suffer disproportionately to the effects of 

climate change (Raxworthy et al. 2008; Bradshaw et al. 2009). Species extinction will be 

higher in mountain regions because of the concentration of habitat specific endemic species at 

the top of high mountains with restricted climate ranges and forced to shift up-wards (IPCC 

2007; Raxworthy et al. 2008). Apart from the threat of extinctions, Colwell et al. (2008) have 

identified another three major potential ecological consequences which tropical mountain 

ecosystem will be expected to suffer. According to their model lowland biotic attrition, range 

shift gaps, and range contraction are pervasive challenges. This model has been applied to 

predict species and plant functional groups potential response to changes in isotherms along 

an altitudinal gradient (Manuscript 4).  

 

Objectives, Research Questions and Hypotheses 
 
 
The over all motivation of this thesis can be clustered into two main issues: (1) identifying the 

emergent patterns of diversity and mechanisms generating diversity in the landscape scale and 

(2) investigating major threats of biodiversity in the study area. Regarding the former, total 
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vascular plants and growth forms were modelled to predict patterns of richness and plant 

functional types approach was employed as a response variable to evaluate the relative 

abundance of plant functional types along altitudinal gradients. The latter focuses on two 

major factors such as land use/land cover change and climate change as drivers of biodiversity 

loss in the study area. 

 

The diversity in growth forms in a given ecosystem is linked to the structural complexity and 

resource partitioning in the system (Cody 1991). The simple distinction of growth forms such 

as woody (trees and shrubs), herbs, climbers, graminoids, etc informs us about the specific 

adaptations to environmental conditions such climate and wind (Rowe & Speck 2005), solar 

energy partitioning (e.g sensible vs. latent heat) (Baldocchi et al. 2004) and water use 

efficiency in the ecosystem (Breshears & Barnes 1999). However, studies regarding patterns 

of growth form diversity along environmental gradients were relatively a recent phenomenon 

(Roy et al. 2004). Patterns of diversity may vary when species diversity is disaggregated into 

respective growth forms (Marquet et al. 2004) and mechanisms that generate diversity vary 

accordingly. This is clearly important when we consider the effect of altitude on the pattern of 

species diversity. We posed certain questions in this regard: Do various growth forms and 

total vascular plant richness follow similar patterns along the altitudinal gradient? What are 

the driving mechanisms that structure patterns of richness along the altitudinal gradient in the 

investigation area (Manuscript 1)? 

 

I was also interested to classify the vegetation of the study area into a few plant functional 

types based on certain morphological and functional features of species (Manuscript 2). In 

the last two decades PFTs approach was applied to model the effect of global environmental 

change on the vegetation dynamics (Condit et al. 1996; Leemans 1997) and to relate plant 

functional traits to ecosytme functions (Diaz & Cabido 1997; Lavorel et al. 2007).  

 

Most of the traits that were used for the classification of functional types were “soft traits”, 

which are relatively easy and quick to quantify (Cornelissen et al. 2003). These soft traits 

such as  plant growth forms, spinescence (thorns/spines), specific leaf area, leaf phenology, 

etc., can be directly linked to certain ecological responses and processes (e.g. light 

interceptions, defence against herbivory, photosynthetic efficiency, nutrient resident time)  

(Lavorel & Garnier 2002; Cornelissen et al. 2003). Though there is a growing consensus 

among ecologists and environmental scientists to integrate plant functional types approach to 
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study the vegetation-environment relationships and ecosystem functions, very few research 

have been conducted in the African vegetation (Skarpe 1996). Most of the studies were 

conducted in temperate ecosystems (Diaz & Cabido 1997; de Bello et al. 2006; Diaz et al. 

2007) and in the neo-tropics (Condit et al. 1996; Kraft et al. 2008). I have not come across 

with any literature which explicitly addressed the use of plant functional types response and 

effects on ecosystem processes in the Ethiopian vegetation. Nevertheless the existing studies, 

mainly based on floristic composition, indicate that pattern of vegetation and floristic 

diversity are generally governed by elevation, moisture availability, nutrient and topographic 

variables (Zerihun et al. 1989; Friis 1992; Tamrat 1994; Teshome et al. 2004).  

 

The purpose of Manuscript 2 was to find out which environmental factors set constraints to 

control the relative abundance of plant functional types along altitudinal gradients. 

Specifically, the following hypotheses were proposed: 1) Altitude and slope have a significant 

effect on the variation of the relative abundance of plant functional types in the study area; 2) 

Soil texture and fertility have a strong explanatory power to the variation in the relative 

abundance of plant functional types along altitudinal gradients; 3) PFTs response to stress 

(drought and chilling) and thus grazing would favour the abundance of distinct plant 

functional types such as thorny plants and tussocks in the lowlands vs. rosettes and rhizomes 

at higher altitudes.  

 

The challenge of biodiversity loss is one of the big problems of modern society. A number of 

factors have been identified as the drivers of biodiversity loss (Ehrlich & Pringle 2008). The 

two prominent factors for tropical biodiversity loss are land use/land cover change and 

climate change (Sala et al. 2000). The purpose of Manuscript 3 was to address the dynamics 

of land use/land cover change and its potential consequence on biodiversity. The main 

questions were: What are the rates and magnitudes of land use/land cover change in the study 

area? Do highland and Rift Valley sections of the study area show differential trajectories of 

land use/land cover change? What are the main driving forces for land use/land cover change 

in the study area?  

 

Concerning climate change, particularly global warming, as drivers of biodiversity loss 

Manuscript 4 modelled the potential ecological consequences of species in the study area. 

The model developed by Colwell et al. (2008) was applied on a dataset of altitudinal 

vegetation surveys in our study area. The purpose of the study was to test the following 
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hypotheses: 1) Consequences of global warming result in strong potential lowland attrition, 

range-gaps, range contractions, and finally extinction risks of plant species of southern 

Ethiopia. 2) There are growth forms and plant families which face a higher than average risk 

due to their current altitudinal distribution. 3) Endangered and endemic species are especially 

vulnerable to warming. 

Synopsis 
 

Thesis Outline 
 
The thesis contains four manuscripts. It is organized along with two main issues addressed in 

the thesis. The first issue is on the emergent patterns of diversity and mechanisms generating 

diversity at the landscape scale (Manuscripts 1 & 2) while the second issue focuses on 

drivers of biodiversity loss (Manuscripts 3 & 4). A brief outline of each of the manuscripts is 

provided in the subsequent paragraphs. 

 

Manuscript 1 deals with the issue of deconstructing richness components to its constituent 

parts and evaluates the pattern of richness distribution along environmental gradients. It gives 

special attention to growth form plant functional types because this defines the physiognomy 

and structure of the vegetation in the landscape. Boosted regression tree analysis was applied 

to predict the pattern of species and growth form richness along altitudinal gradients. The 

results revealed that patterns of diversity distribution would vary along altitude when the total 

vascular plants are disaggregated into several growth form categories. However, a hump-

shaped uni-modal richness pattern was observed for woody, graminoids and climbers plant 

functional types. A mid-altitudinal richness peak was the result of the combination of climate 

related water energy-dynamics, species area-relationships and local environmental factors, 

which have direct effects on plants physiological performance. However, altitude represents 

the composite gradient of several environmental variables that are interrelated. Thus, 

considering multiple gradients would help to reveal a better picture of richness and the 

potential mechanisms that structure the distributions of biodiversity in high mountain regions 

of the tropics. 

 

Manuscript 2 focuses on the response of the relative abundance of plant functional types to 

environmental gradients. Plant functional types were categorized into four major groups based 

on their expected response and adaptation to environmental variables and competition, 
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stress/grazing and temporal attributes. After such a classification, it evaluates the distribution 

of relative abundance of plant functional types along environmental gradients using 

constrained linear ordination techniques (RDA). The results of linear ordination analysis 

showed that topographic attributes such as altitude and slope, and soil organic carbon were 

found to be the most important factors explaining the variance in the distribution of the 

relative abundance of plant functional types along environmental gradients. Moreover, 

vegetation response to drought and grazing tends to favour the abundance of thorns/spine and 

tussocks plant functional types in low lands. The response to chilling and grazing favours the 

abundance of rosettes and rhizomatous PFTs in the highlands. This preliminary classification 

of the vegetation into different PFTs response categories proves to be important to understand 

the pattern of abundance distributions and the response to various environmental factors.         

 

Manuscript 3 deals with the dynamics of land use/land cover changes and its anticipated 

consequences on the biodiversity of the study area. Time series land use/land cover 

classification was carried out based on ERDAS Imagine 8.5 using maximum likelihood 

classification techniques for the years 1976, 1986 and 2000. This provides the rate and 

magnitude of land use/land cover change, and discusses the main driving socio-economic 

processes during the specified time. The findings suggest that land use/land cover change took 

differential trajectories across space and time. The highlands of Gughe-Amaro Mountains 

were predominantly affected by land conversion to agricultural purposes. Whereas the Rift 

Valley section showed a combination of land use changes to cropland and class-to-class shifts 

(transitions) of land cover types. Temporally, after mid-1980s land cover change to cropland 

was predominant both in the highlands and the Rift Valley sections of the study area. The 

observed change in the land use/land cover was driven due to increasing population pressure, 

socio-economic problems (poverty) and government policy regimes. The spatial and temporal 

changes of the land use/land cover in the study area will have potential consequences on local 

human livelihoods, biodiversity loss and regional environmental change.     

 

Manuscript 4 evaluates the potential impact of global warming on the biodiversity of the 

study area. We have applied a simple model developed by Colwell et al. (2008) regarding the 

potential response of tropical species to projected global warming scenarios. The 

Intergovernmental Panel of Climate Change (IPCC 2007) projects 4.2 ° C warming of 

temperature for East Africa at the end of 2100. For the prediction of potential species 

response to global warming we considered a range of 0 - 5° C warming scenarios (based on 
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A2 emission scenario) and the current atmospheric lapse rate of 0.6° C/100 m (Peyron et al. 

2000). The results showed that lowland biotic attrition occurred with mild level of projected 

temperature change. However, range contraction and mountain top extinctions become 

apparent when temperature increases above 3.5 °C. Moreover, various growth forms have 

shown differential responses to warming scenarios. The model also predicted high level of 

vulnerability of threatened and endemic species to extinctions and range contractions due to 

global warming. Finally, the manuscript suggests biodiversity conservation efforts and future 

reserve designs should consiser the potential effect of global warming on biodiversity.      

 

Synthesis and Conclusions 
 
Deconstruction of diversity components: Much of the discussions on the pattern of richness 

along altitudinal gradients rely on the total number of species present in a given sampling 

effort. In this case all vascular plants are assumed to be equal or ecological equivalent and 

then related to the external environmental factor (Marquet et al. 2004). The resultant response 

(pattern of richness) is therefore considered as an outcome of interaction of species to the 

external environmental factors. This has constrained the progress to understand the underlying 

mechanisms that structure richness pattern. Thus part of the solution would lie on the 

handling of the response variable itself.  

 

The basic rational behind disaggregating richness is that all species are not equal in their 

response to external environmental factors (Roy et al. 2004). Species can be grouped into 

more homogenous groups based on their morphological or functional attributes. This 

“reductionist approach” will reduce the floristic complexity and help to test hypothesis 

regarding pattern of richness along altitudinal gradients. The results of Manuscript 1 support 

this notion where the pattern of richness varied with growth forms where as no strong 

response to total vascular plant richness. A uni-modal pattern of richness was observed for 

woody, graminoids and climbers while ferns and herbaceous species showed an increase with 

altitude. There was also variation among growth forms which showed uni-modal structure: 

the richness of graminoids peaked at 1400 m a.s.l., climbers at 1700 m a.s.l., and woody 

species in the ranges of 2000-2500 m a.s.l. This provides insights on the difference of their 

relative response to environmental factors and at the same time a sort of consistency in their 

group response as opposed to the total number of species. Regarding mechanisms that 

structure richness at the landscape level water-energy dynamics, species area-relationships 
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due to physical shape of the mountain, local topographic and soil conditions play an important 

role. To fully realize the potential of deconstructive approach on the investigation of richness 

pattern, further deconstruction of growth forms and covering full range of the mountain 

summits is recommended. Woody species can further be dissected into trees and shrubs while 

graminoids are still heterogeneous and can be boiled down to a number of possible classes 

(e.g. grasses, sedges, annuals, perennials, etc.).  

 

Plant functional types response along environmental gradients: The categorization of Plant 

functional types proves to be crucial to identify important environmental filters that structure 

diversity at the landscape scale. The results of Manuscript 2 show that local topography 

(altitude and slope), soil texture and organic carbon play an important role in differentiating 

the relative abundance of PFTs in the landscape. These natural gradients of topography and 

soil properties combine the variation in climatic parameters (e.g. temperature, rainfall), 

disturbance effects, and resource availability. The classification we employ in our study 

system into four major categories (growth forms, stress/grazing, temporal attributes and 

water/nutrient) conceives a number of vegetation strategies to ecosystem responses. The 

growth forms are generally related to adaptation to climatic constraints and hence affect the 

structure and diversity of ecosystems. Thus, they provide information about the predominant 

role of climate as a factor in structuring the distribution and abundance of plant functional 

types. Concerning response to physical and biotic stressors along gradients, possession of 

armature and tussocks were selectively favoured in drought stressed lowland environments 

while rosettes and rhizomes were abundant in high altitudes where adaptation to chilling was 

a selective factor.  

 

Plant functional types related to temporal attributes of vegetation such as leaf phenology 

(shedding of leaves) and life longevity (annual vs. perennial) address the effect of seasonal 

rhythm of climatic events and nutrient conservation (e.g. leaf nitrogen concentration), 

differential allocation of carbon on growth or reproduction. For instance, a relatively higher 

abundance of deciduous woody species in the lowlands in our study area demonstrates that 

vegetation show adaptations to seasonal changes in climate conditions. During the dry 

seasons woody species shed leaves to reduce moisture loss and absorb leaf nitrogen before the 

loss of foliage (Bonan 2008). Finally, mode of access to resources and water storage were 

found to be important vegetation strategies in our study system. Succulent species were more 

abundant in lowlands where water shortage should be an adaptive obligation. Diaz & Cabido 



                                                                                                                                                Introduction 

 19

(1997) reported similar results in the semi-arid lowlands of south-west Argentina where 

succulence as a strategy to store water and buffer the effect of drought in lowland areas. 

Symbiotically nitrogen fixing plant functional types were abundant in lowlands where soil 

organic carbon was low (Manuscript 2).       

 

Though we were interested to classify the whole vegetation into simple and sizeable PFTs, 

our approach was not able to capture some strategies which could probably be very important 

in our study area as well. This is particularly true for categories, stress/grazing and 

nutrient/water related traits, for the two groups we have simply assigned a “no adaptation” for 

those species which might use some other strategies to capture resources or responses to 

specific physical and biotic stressors. The rooting depth, degree of ramification and other 

drought avoidance or tolerance strategies could help to capture the whole system. Some 

studies (Skarpe 1996) indicated that rooting depth is important trait which affects the 

performance of plants in the semi-arid and arid environments. In addition, the role of 

disturbance in structuring the abundance of plant functional types should be incorporated to 

elucidate clear picture of PFTs response along environmental gradients. Nevertheless, our 

results can be used as a data base for future attempts of understanding PFTs response to 

environmental gradients in areas of similar settings.  

 

Drivers of biodiversity loss: The results of Manuscripts 3 and 4 reveal the major threats of 

biodiversity loss (land use and climate change) and potential ecological consequences on the 

vegetation of the study area. The effect of land use change is clearly evident in the Ethiopian 

highlands and the nearby Rift Valley where the natural vegetation has suffered habitat 

destruction due to increasing human population in the last few decades (Manuscript 3). In a 

recent study Vivero et al. (2006) reported that 137 (13% of the total estimated woody taxa of 

the country), 376 herbs, 57 succulents, 12 climbers and 8 epiphytes from the flora of Ethiopia 

and Eritrea have been included in the red list category of the IUCN.   

 

The potential ecological consequences such as lowland biotic attrition, range shifts and 

contractions, and extinction are likely phenomena due to climate change in the study area 

(Manuscript 4). The potential shifts in species ranges (and hence PFTs) could possibly result 

in the restriction of ecological functions (e.g. nitrogen fixation). Climate change may also 

impact the disturbance regimes (e.g fire cycles in semi-arid ecosystems) and influence biotic 

interactions in the landscape. These processes would eventually drive species extinctions and 
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loss of their ecological functions and services, particularly endangered and endemic species 

will be severely affected. Thus, the projected rapid rise in temperature combined with habitat 

loss and fragmentation, will have a potential negative consequences on the biodiversity of the 

study area.  

 

In conclusion, this study capitalizes on the application of plant functional types to the study of 

vegetation response to environmental factors in tropical high mountains. It is in fact the 

functional attribute of a species which interacts with the environment and determines the 

response of vegetation to external environmental conditions than the species per se. Hence, 

PFTs provide hints as to how and why certain species co-occurred in ecological communities 

and would help to explain patterns of species diversity. Moreover, deconstruction of species 

richness into relatively homogenous plant functional types (growth forms) deciphers the 

emergent pattern of diversity and mechanisms structuring them along altitudinal gradients. 

The identification of emergent patterns and attributing them to mechanistic explanations are 

pre-requisites for conservation planning to save biodiversity of the study area. The study also 

clearly showed that land use/land cover change and global warming will pose threats to 

biodiversity of the region. Conservation of biodiversity in the future warmed climate requires 

consideration of the effect of land use and climate change on species responses. 

Consequently, nature conservation strategies and future reserve designs should consider 

options for human assisted migration across fragmented landscapes and creating dispersal 

routes for species to track to new thermal niches.  

 

The following two issues were identified for further research to fill future research gaps:  

1. Disturbance is one of the ubiquitous elements in the landscapes and attempts of 

identifying biodiversity pattern should properly consider the extent and properties of 

disturbance as the driver of biodiversity. There is a clear deficit of information on the 

role of disturbance as driver of diversity pattern at landscape level, particularly in the 

semi-arid Rift Valley regions of Ethiopia.  

 

2. The dispersal abilities of species and the roles of dispersal agents are critically needed 

to understand the pattern of diversity distributions in the face of land use change and 

global warming. The high share of species at risk of range shift gaps demands, 

therefore, detailed exploration of potential natural dispersal abilities of species. 
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Abstract 
 
Questions: Do growth forms and vascular plants richness follow similar patterns along the 

altitudinal gradient? What are the driving mechanisms that structure richness patterns at the 

landscape scale?  

 

Location: South-western Ethiopian highlands 

 

Methods: Floristic and environmental data were collected from seventy four plots with 400 

m2, which were distributed along altitudinal gradients. Boosted regression trees were used to 

derive the patterns of richness distributions along altitudinal gradients.  

 

Results: Total vascular plant richness did not show any strong response to altitude. 

Contrasting patterns of richness was observed for several growth forms. Woody, graminoids 

and climber species richness showed a uni-modal structure. However, each of these groups 

had a peak of richness at different altitudes: graminoid species partitioning at a lower 

elevation, then climbers and finally woody species at a higher elevation. Fern species richness 

increased monotonically towards a higher altitude, but herbaceous richness had a dented 

structure at mid-altitude. Soil sand fraction, silt, slope and organic matter were found to 
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contribute a considerable amount of the predicted variance of richness for total vascular plants 

and growth forms.  

 

Main Conclusions: Hump-shaped species richness patterns were observed for several growth 

forms. A mid-altitudinal richness peak was the result of the combination of climate related 

water energy-dynamics, species area-relationships and local environmental factors which 

have direct effects on plants physiological performance. However, altitude represents the 

composite gradients of several environmental variables that are interrelated. Thus, considering 

multiple gradients would help to reveal a better picture of richness and the potential 

mechanisms that structure the distributions of biodiversity in high mountain regions of the 

tropics. 

          

Key words: Boosted regression trees, ß-diversity, Geodiversity, Tropical mountains 

 

Introduction 

 

Understanding how biodiversity is organized across space and time has long been a central 

concern of ecologists and biogeographers. There exists a gradient of diversity distributions 

across multiple spatial scales (Brown & Lomolino 1998; Field et al. 2009). Latitudinal 

gradients and the island pattern of diversity (the species-area relationship) are the most 

conspicuous patterns and hence attempts have been made to document and account for the 

underlying mechanisms of such observed gradients (Gaston 2000; Whittaker et al. 2001).  

 

Altitudinal patterns of diversity are poorly understood (Sanchez-Gonzalez & Lopez-Mata 

2005). As a consequence of expected climate changes, ecologists and biogeographers are 

motivated to investigate these patterns and analyse their underlying mechanisms (Grytnes 

2003; Jentsch & Beierkuhnlein 2003; Sanchez-Gonzalez & Lopez-Mata 2005; Zhao et al. 

2005). Generally, species richness tends to decrease with altitude (Bruun et al. 2006). 
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Nevertheless, several studies have also documented a non-monotonic pattern of species 

richness (Rahbek 1995; Bhattarai & Vetaas 2003). The most commonly observed pattern of 

diversity is a mid-altitudinal bulge (Rahbek 2005; Zhao et al. 2005).  There is evidence of a 

mid-altitudinal trough in species richness gradients along altitude (Peet 1978) in the semiarid 

eastern slope of the Front Range, USA.  

 

Altitude is a proxy variable for water-energy dynamics in mountain ecosystems (O'Brien 

1998; O'Brien et al. 2000). In addition to this, mountain environments are characterized by 

heterogeneous site conditions or relief effects with their impacts on soil, microclimate, and 

aspect (Jentsch & Beierkuhnlein 2003). Altitudinal ranges also provide compressed ecological 

zones (Körner 2000), which serve as ‘rescue effects’ (Lomolino 2001) for species along the 

transition zones.    

 

Marquet et al. (2004) argued that any attempt to explain mechanisms that structure the pattern 

along spatial gradients (e.g. altitude) needs to break down the different components of 

diversity. They pointed out that functional attributes of species (e.g. physiological, life history 

and ecological attributes) are directly related to the aspect of the physical environment. Thus a 

proper understanding of the mechanisms that generate and maintain diversity at different 

spatial scales requires diversity measures to be divided into different components.   

 

A study by Bhattarai & Vetaas (2003) in the Himalayan range indicate that woody species 

display a uni-modal pattern of diversity. Fern diversity declines with altitude (as a function of 

Potential Evapotranspiration) while herbaceous species (herbs, forbs, grasses) do not show 

any relationship to altitude. Bruun et al. (2006) report a uni-modal pattern of diversity for 

vascular plant richness and yet a marked difference in pattern for different functional groups 

(dwarf shrubs, trees, forbs and herbs). However, Sanchez-Gonzalez & Lopez-Mata (2005), in 
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the Sierra Nevada, Mexico, report a uni-modal pattern of diversity distribution for both life-

form categories (trees, shrubs and herbs) and total vascular plant species richness.  

 

The literature cited above indicates that there is no such consistent form and structure in the 

pattern of richness distribution along altitudinal gradients. It is possible however that different 

mechanisms may support different components of diversity distributions (Stevens et al. 2003; 

de Bello et al. 2006). This study aims to answer the following questions: 1) what kind of 

responses in richness patterns (unimodal or monotonic) are observed along the altitudinal 

gradient? 2) Do various growth forms and total vascular plant richness follow similar patterns 

along the altitudinal gradient? And, finally 2) what are the driving mechanisms that structure 

patterns of richness along the altitudinal gradient in the investigation area?  

   
 Methods 
 
 
 Study area 
 
 
The study area is located at 5ο42’N-6ο20’N and 37ο 17’E-37ο 59’E (Fig 1) in the southwest 

Ethiopian highlands. The landscape includes different physiographic features such as 

plateaus, escarpments, a block mountain, undulating plains, and a graben where Lake Abaya 

and Lake Chamo are located. The topography of the Rift Valley consists of hills, as well as 

flat and faulted structures (Mohr 1971; Zanettin et al. 1978). The eastern boarder is marked by 

the Amaro horst, a block mountain that emerged during the formation of the Rift Valley 

(Levitte et al. 1974).  
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 Figure 1: Location map of the study area 
 
 

Rainfall in the study area shows a pronouncedly bimodal seasonal distribution (Fig. 2). The 

mean annual rainfall recorded over the last two decades, though not continuous, for the two 

stations, Arbaminch (1200 m) and Chencha (2700 m), was 888 mm and 1235 mm, 

respectively. The main rainy season, which accounts for about 40 % of the mean annual 

rainfall, occurs in April and May, while the lesser rainy season is in September and October. 

Arbaminch experiences a more pronounced dry season and receives less rainfall because of its 

low altitude and its rain-shadow position with regard to the moisture-bearing south-east trade 

winds that prevail in the spring and autumn seasons of the northern hemisphere. While a 

water deficit is prevalent in Arbaminch, that is except for in the months of April and May 

(Fig. 2a), the Chencha Highlands receive excess rainfall and a surplus is expected 

continuously for several months from April to October (Fig. 2b). The vegetation of the study 

area lies within the Somali-Masai regional centre of endemism (White 1983) comprising 

savannah grassland, bushland, dense thickets, riverine and groundwater forests, and in the 

Gughe and Amaro mountains broad-leaved afromontane rainforests (Friis 1992).             
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Figure 2: Climate diagram of Arbaminch (a) and Chencha (b) after Thornthwaite (vertical hatching indicate 
surplus while dot pattern indicate deficit). Arbaminch lies at 1200 m, mean annual temperature = 23°C, total 
Annual rainfall= 888 mm recorded. Chencha station is located at 2700 m, mean annual temperature = 14°C, total 
annual rainfall = 1235 mm, PET stands for potential evapo-transpiration. Arbaminch station had a temperature 
record from 1976 to 2005 and rainfall record from 1987 to 2005. Chencha had a temperature record from 1972 to 
1981 while rainfall recorded from 1972 to 2004. However, rainfall records were not continuous and data were 
missing for Chencha from 1981-1989. All climate records were obtained from the Ethiopian National 
Meteorological Services Agency (NMSA). 
 

 

Sampling scheme 

 

The sampling design was based on the relative distribution of elevation along altitudinal 

gradients. SRTM digital elevation data sources were consulted to establish a digital elevation 

model (DEM) for the study area (Jarvis et al. 2008). The spatial classification of elevation at 

an interval of 200 m was extracted from the DEM. The number of plots was then selected 

depending on the relative distribution of elevation for representative sampling following a 

similar pattern of elevation distribution along the Gughe-Amaro Mountains. A roughly 

equivalent percentage of plots were allocated to the corresponding elevation ranges (Table 1). 

However, for the elevation band between 1000 and 1200 m a.s.l. where a lot of the area (~700 

km ²) is covered by the two lakes, only 10. 8 % of the plots were sampled from 22. 8 % of the 

total area (Table 1). When the lakes area is excluded, which does not have any terrestrial 

vegetation, the total area in this range will be reduced by more than a half (9.8 %) and hence 

the percentage distribution of plots is roughly in a comparable range (Table 1). No sampling 
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was carried out above 3000 m a.s.l. due to problems with access and logistics. For each of the 

200-meter ranges (10 altitudinal ranges between 1000 and 3000 m a.s.l.), sampling was 

conducted randomly depending on the presence of forest, woodland or any category of 

vegetation in the landscape. Agricultural fields and plantations were not sampled. In total 74 

plots each with a size of 20 m x 20 m were set up following altitudinal gradients (see Fig. 1), 

from which plant species and environmental data were collected.         

 

 

Table 1: The proportional distribution of area, plots and number of species observed along respective  

 altitudinal ranges (475 species were encountered during sampling). 
 

Ellevation 
ranges (m) Area (km2) % Area 

Number of 
plots % Plots 

Number of 
species 

Average no. of 
species/plot 

1000--1200 403.9* 9.8 8 10.8 125 16 
1201--1400 1029.1 24.8 16 21.6 188 12 
1401--1600 602 14.5 11 14.9 139 13 
1601--1800 399.7 9.7 7 9.5 95 14 
1801--2000 335 8.1 6 8.1 106 18
2001--2200 244.7 5.9 5 6.8 122 24 
2201--2400 196.8 4.8 5 6.8 92 18
2401--2600 235.4 5.7 7 9.5 122 17 
2601--2800 270.3 6.5 5 6.8 54 11 
2801--3000 239.4 5.8 4 5.4 98 25 
3001--3200 129.2 3.1 - - - - 
3201--3400 52.6 1.3 - - - - 
3401--3546 3.6 0.1 - - - - 
Total 4141.7 100.0 74 100 475  

 
* The total area in this range was 1103.9 km2 including lake surface (700 km2) we deducted the lakes 
area from the analysis as it does not contain any terrestrial vegetation.                              
                         

 

Vegetation and environmental data 

 

Fieldwork was carried out in two phases, from November 2006 to January 2007, and in 

December 2007, respectively. Both fieldwork phases were conducted after the small rainy 

season in the study area. Nevertheless, delays and early termination of the rains proved to be 

obstacles in the climatological timing. During the first fieldwork period, the rainy season 



                                                                                                                                               Manuscript 1 

 39

extended until mid-December while in the second period there was an early onset of the dry 

season in November 2007.  However, such variations are to be expected and we do not expect 

this to have any significant impacts on the results of our study.                                 

 

During the fieldwork 475 plant species were encountered. For those species that could not be 

identified precisely in the field, pressed specimens were taken back to the National Herbarium 

at Addis Ababa University for identification or confirmation. The nomenclature follows the 

published flora volumes of Ethiopia and Eritrea (Hedberg & Edwards 1989; Edwards et al. 

1995; 1997; 2000; Hedberg & Edwards 1995; Hedberg et al. 2003; 2004).        

  

Altitude and aspect were recorded using a Garmin GPS 3.1, and the slope was recorded using 

a clinometer. Aspects were coded prior to analysis following (Zerihun et al. 1989). In order to 

estimate stone cover, plots were divided into four and stone cover for each sub-quadrate was 

visually estimated and averaged to yield the percentage stone cover for a given plot. Five soil 

samples (0-30 cm depth) were collected from each corner and centre of the plot and mixed to 

produce a composite soil sample. These soil samples were analyzed for soil organic matter, 

texture, total nitrogen and available phosphorous in the analytical service laboratory of the 

International Livestock Research Institute (ILRI) in Addis Ababa, while the second batch of 

soil samples were analyzed in the Debre Zeit Plant and Soil Laboratory of the Ethiopian 

Agricultural Research Organization. Nitrogen was analyzed using the Kjeldhal method, 

phosphorous by applying the Bray method, texture by implementing the hydrometer method, 

and organic matter by following the Walkey and Black wet-oxidation method.  

  

We have made a separate analysis of linear ordination techniques (RDA) using CANOCO 4.5  

(ter Braak & Smilauer 2002) and checked for a multicolinearity effect of the environmental 

variables via their variance inflation factor and only clay had a variance inflation factor of 0. 
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The interest correlation result from ordination analysis has also shown that total nitrogen was 

highly correlated with organic matter (~0.7) (results not shown). Therefore, these two 

variables were excluded from the analysis. Information for bedrock was derived from a 

geological map of the Ethiopian Rift by Kazmin & Berhe (1981) at a scale of 1:500,000. Plots 

were then distributed over the map and bedrock information such as alkaline/sub-alkaline 

basalts, lacustrine, alluvium deposits, and gneisses was extracted.  

 

Data Analysis  

  

Data analyses were carried out using boosted regression trees, which have recently been 

considered to have a superior predictive performance compared to most traditional regression 

models (Elith et al. 2008). Boosted regression trees combine tree based models from 

classification and regression trees and boosting techniques. Classification and regression trees 

have been used to model complex ecological data, which are generally characterized by non-

linear relationships, complex interactions and missing values (De'ath & Fabricius 2000). The 

decision tress partition the predictor space into rectangles using a serious of rules having 

homogeneous responses to predictors (Elith et al. 2008). This homogenously partitioned 

rectangular space will then be fitted by a mean response value by a regression tree for 

observations in that region (De'ath & Fabricius 2000; Elith et al. 2008). In addition, 

classification and regression tree approach do not require data transformations, handles the 

effect of missing values in both the response and explanatory variables (De'ath & Fabricius 

2000).  

 

Boosting is an optimization procedure by which the loss of predictive performance or 

deviance of the model is minimized through sequential stage wise fitting of the regression 

tree. The first tree is the one which captures the largest variance in the response and all other 
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successive trees fit on the residuals without affecting the previously fitted regression trees 

(Elith et al. 2008). Moreover, boosted regression trees are able to combine the following 

advantages for modelling the distribution of species richness and relative abundance: 

stochasticity (bag fraction), learning rate and tree complexity. Boosted regression employs a 

stochastic process by which a random subset of data to fit each successive regression trees and 

hence reduce the variance of the final model (Elith et al. 2008). For instance, if the bag 

fraction (probability) of 0.5 is set to run the model, it takes a random subset of 50 % of the 

predictors to model each successive regression trees.  

 

The learning rate which is known as the shrinkage parameter controls the contribution of each 

tree in the model and generally the slower the learning rate the better the model fit will be. 

Nevertheless decision on the amount of the learning rate depends on the availability of 

computation time and the size of the data. The tree complexity (the number of nodes in a tree) 

controls the interaction terms of the variables in the model (Thuiller et al. 2006; Elith et al. 

2008).  

 

We have employed boosted regression tree analysis by using the free statistical software R 

version 2.7.1 (R Development Core Team 2008). We have used a default bag fraction of 0.5, a 

Poisson error distribution and a very slow learning rate (0.0005) and a tree complexity of 3 to 

model species richness distribution along environmental gradients. Elith et al. (2008) 

recommended a tree complexity of 2-3 and a slower learning rate for small data set.  Species 

richness here is defined as the number of species encountered in a plot. Shared species were 

estimated based on EstimateS (Colwell 2005). Jaccard’s beta diversity was computed using 

the formula: ß = 1-[a (a + b + c) -1] (Magurran 2004) while Weiher and Boylen (1994) beta 

diversity was computed using the equation: ß =  b + c, where ‘a’ refers to the number of 
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species shared between two altitudinal ranges (sampling efforts) and ‘b’ and ‘c’ refer to 

species that only occur in the respective altitudinal ranges.   

   
 Results and Discussion 
 
 
Altitudinal patterns of vascular plants and growth form richness 
 
 

Our results showed that total vascular plant richness did not show any strong response to 

altitude effects in the regression model, despite its slightest increase with altitude (Fig. 3). 

However, the total number of species in each altitudinal range decreased with altitude (Table 

1) and had a strong positive correlation with elevation zone area (Table 2). The average 

number of species per plot showed a weak positive correlation with altitude while it had a 

negative correlation with elevtion zone area (Table 2). Woody species richness tended to 

show a pattern with an increase that peaks at around 2000 m a.s.l. but then starts to decline 

and level off at higher altitudes above 2500 m (Fig. 3).  

 

Table 2: The correlation coefficients of the relationships between altitude, elevation zone areas,  
 average number of species and total number of species in a zone.  
 
 Elevation zone areas Average  number 

 of species in a plot 

Total number  

of species in a zone 

altitude -0.72 0.53 -0.7 

Elevation zone area    1 -0.63 0.89 

 

Herbaceous species showed a dented structure at mid-altitude between 1500 and 2000 m a.s.l., 

i.e. they showed an increasing trend from 1100 to 1500 m, formed a depression at mid-

altitude (1500-2000 m), and then continuously increased towards higher altitudes. By 

contrast, graminoid species richness showed a continuously declining pattern with altitude, 

albeit, showing maximum richness between 1100 and1400 m a.s.l. The climbers’ richness 
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pattern was higher in the elevation ranges between 1100 and 1500 m and showed a decline at 

about 2100 m a.s.l. (Fig. 3). Unlike other growth forms described above, fern species richness 

increased consistently with altitude.  

 

Fig. 3. Pattern of total species richness and growth forms along altitudinal gradients based on boosted  
regression tree with tree complexity 3, learning rate 0.0005, bag fraction 0.5 with Poisson error 
distribution, rug plots at inside top of plots show distribution of sites across specific variable in deciles 
(as in Elith et al. 2008). Percentage values in brackets indicate the relative amount of predictive 
variance explained by altitude from respective total variance for each group (see Table 3). 
  

 

The combination of climate related water energy-dynamics, species area-relationships and 

local environmental factors which have direct effects on plants physiological performance 

(discussed in the next section) were important variables to explain the variations in richness 

distributions. Several theoretical (Huston 1994; O'Brien 1998; O'Brien et al. 2000; Rahbek 

2005) and empirical researches (Bhattarai & Vetaas 2003; Grytnes 2003; Zhao et al. 2005) 

discussed the pattern of uni-modal structure of species richness along environmental 

gradients. The uni-modal structure of richness along altitude is primarily related to water-
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energy dynamics or productivity (O'Brien 1998; Rahbek 2005). Here, the interaction of 

temperature and water (e.g. evapotanspiration) affects the biological processes and 

competitive interaction among species and thereby affects species richness along the gradient 

(O'Brien et al. 2000).  

 

The fact that ferns and herbaceous species did not display a humped structure in our study 

area could possibly be the effect of an incomplete gradient length. Some studies (Rahbek 

1995; Bruun et al. 2006) pointed out that different patterns would be observed if an 

incomplete gradient length was studied compared to the whole gradient which covers the full 

length of species responses.  

 

Lomolino (2001) argued that total number of species should be higher in the lower elevation 

zones because of species-area relationships. Along mountain slopes area tends to decrease 

with altitude. Hence, larger area in the lower elevation zones would be expected to support 

more heterogeneous environments, provide wider geographical ranges for species, and a 

lesser degree of isolation for potential immigrants (Lomolino 2001).  By contrast the elevation 

zones in the higher altitude were smaller in area and characterized by a high degree of 

isolation and dispersal limitations. Romdal & Grytnes (2007) discussed the potential influence 

of surrounding elevation zone area as a regional pool of species on the local level richness. 

They found out a high correlation between the area within elevation band and species 

richness. The increase in the average number of species per plot, especially above 2000 m 

a.s.l., coincides with the high richness of woody species (Fig 3). Thus, it suggests that biotic 

interactions (e.g. competition and facilitation) could also play an important role in affecting 

the pattern of richness.  
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The relationship between richness and measured environmental factors 

 

There were relatively higher cross validation correlation coefficients for ferns (0.71) and 

graminoids (0.53) followed by total vascular plant richness (0.46) and woody species richness 

(0.41) (Table 3).  Herbaceous species and climbers had a lower cross validation correlation of 

0.36 and 0.31, respectively. Among the variables considered in our study, altitude had the 

strongest influence on predicting the richness distribution of ferns (73 %), with a relatively 

low contribution to woody species (22 %), and herbs and graminoids (16 %) from the total 

explained variance in the measured environmental variables (Fig. 3).  By contrast, altitude had 

a very weak predictive power in explaining richness patterns for climbers (7 %) and total 

richness (5 %).   

 

Table 3. Summary statistics of boosted regression trees for total species richness and growth form  
categories. For all categories a tree complexity of 3 and learning rate 0.0005 were used, values 
in brackets are standard errors, CV = cross validation, sample size = 74. 

 
Parameter estimators Total Woody Herbs Graminoids Climbers Ferns 

Number of tress 2 800 3 250 3 150 4 550 2 350 7 800 

Mean total deviance 108.62 22.44 3.74 4.329 1.976 1.243 

Mean residual deviance 81.65 15.27 2.51 1.76 1.582 0.43 

Estimated CV deviance 106.7 (20.3) 22.4 (4.1) 3.42 (0.6) 3.1 (0.4) 2.0 (0.4) 0.8 (0.2) 

Training data correlation 0.596 0.662 0.67 0.801 0.59 0.827 

CV correlation 0.46 (0.08) 0.41(0.12) 0.36 (0.1) 0.53 (0.1) 0.31(0.09) 0.71(0.05) 

 

Soil texture (sand and silt fraction), organic matter and slope were found to be important 

parameters contributing to the predicted variance of richness for vascular plants and growth 

form categories in the study area. Species richness was found to peak at an intermediate level 

of soil sand fraction, organic matter and steep slopes (Fig. 4). In semi-arid environments, soil 

texture, especially sand, is important for better water holding capacity (Walter 1985; Breckle 

2002) because of its buffering effect for evaporation as water infiltrates to sub-soil horizons. 

Soil organic matter also has multiple effects on soils such as the soil’s physical structure, the 
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storage of nutrients, aeration and the stimulation of microbial activities (Tate III 1987) and 

may affect two important factors such as nutrients and soil moisture,  which are important 

factors affecting the pattern of richness (Peet 1978; de Lafontaine & Houle 2007). At the 

higher altitude, because of low temperatures, organic matter would gradually decay and 

accumulate humus in the soils which may limit soil productivity and hence result in a low 

diversity of vascular plants (Sanchez-Gonzalez & Lopez-Mata 2005).  

   

Fig. 4. The three environmental variables (excluding altitude which was separately shown in Fig. 3)  
predicting patterns of richness distribution for total richness and various growth form categories based 
on boosted regression tree with tree complexity 3, learning rate 0.0005, bag fraction 0.5 and Poisson 
error distribution, rug plots at inside top of plots show distribution of sites across specific variable in 
deciles (as in Elith et al., 2008, see text in the method sections for details). Percentage values in 
brackets indicate the relative amount of predictive variance explained by each variable from respective 
total variance for each group (see Table 3). (A= alkaline and sub-alkaline basalts, B = Gneisses and 
granites, C = alluvium deposits, D = Pleistocene basalt, E= Ryholites and trachytes, F = lacustrine 
deposits.      
                                                                             

 

The difference in bedrock as a proxy indicator of the nutrient gradient accounts for more than 

a third of the total explained variance for vascular plants richness and about 27 % of the 



                                                                                                                                               Manuscript 1 

 47

variance for herb species richness (Fig. 4).  High vascular plants richness was observed in 

alkaline to sub-alkaline basalts and gneisses while low richness was present in the alluvium 

and lacustrine deposits on the lower slope positions, especially along the Lakes Abaya and 

Chamo. A study in Swedish mountain areas indicated that bedrock heterogeneity (measured 

with Shannon’s index) positively contributes in explaining the pattern of plant species 

richness and several plant functional groups (Bruun et al. 2003). As indicated in the 

description of the study area (Levitte et al. 1974; Zanettin et al. 1978; Kazmin & Berhe 1981), 

substrate heterogeneity is expected to play a significant role in explaining the variation of 

richness distributions across the landscape. The low richness of species observed in the 

lacustrine and alluvium deposits could possibly be due to nutrient-poor bedrocks compared to 

sodium/potassium (alkaline) and calcium-dominated alkaline bedrocks (Plagioclase) in the 

highlands where in-situ weathering releases essential nutrients for plant growth.     

 

It appears that various patterns of richness distribution for vascular plants and growth forms 

can be accounted for by the interaction of multiple environmental gradients in the 

investigation area. Recently, studies conducted elsewhere (Le Brocque & Buckney 2003)  

reported the relationship of richness patterns with multiple environmental gradients. More 

recently, (Thuiller et al. 2006) applied the boosted regression tree analysis to model species 

richness within several biomes and regional scales in South Africa report the pre-eminence of 

topographic heterogeneity to structure richness pattern at the regional scale rather than water-

energy dynamics. 
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Beta diversity along altitudinal gradients 

 

There was high beta diversity along pairs of altitudinal ranges in the study area. It ranged 

from 0.57 to 0.98 (Table 4). The species composition turnover was more than 90 % among the 

four lower zones of altitudinal ranges (100-1600 m a.s.l.) and the upper four zones of 

altitudinal ranges of 2340-3000 m a.s.l. (Table 4). Weiher and Boylen’s number of species 

between two pairs of altitudinal ranges as a measure of beta diversity showed that the total 

number of species between pairs of altitudinal ranges generally decreased towards higher 

elevation (Table 4, rows).  

 

Table 4: Weiher and Boylen’s number of species in two pairs of altitudinal ranges m a.s.l. (below the  
 diagonal) and Jaccard’s beta diversity for the same pairs (above the diagonal). 
 
  Jaccard's beta (1-Jaccard's similarity)         
 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 
1000  0.66 0.71 0.87 0.89 0.90 0.95 0.95 0.98 0.97 
1200 153  0.57 0.78 0.79 0.84 0.90 0.94 0.97 0.96 
1400 146 131  0.68 0.78 0.84 0.92 0.94 0.95 0.96 
1600 168 179 120  0.68 0.76 0.82 0.93 0.94 0.93 
1800 185 192 155 103  0.62 0.71 0.83 0.82 0.85 
2000 203 222 187 133 102  0.66 0.79 0.86 0.84 
2200 197 230 195 129 108 106  0.76 0.77 0.81 
2400 225 276 231 187 162 158 130  0.76 0.75 
2600 173 226 175 131 110 132 92 108  0.75 
>2800 211 264 217 169 150 160 130 132 92  
  Weiher and Boylen's number of species         
 

The high beta diversity in the study area is contingent upon the combination of many 

altitudinal zonations of vegetation, high geo-diversity and human disturbances.  The vertical 

zonation of vegetation is one of the most conspicuous phenomena in the east African 

Mountains (Friis 1992), mainly as a response from temperature and precipitation. This 

vertical zonation of vegetation would tend to support different plant communities and create 

an overall gradient of plant community turnover across the whole mountain ranges.   
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 In regard to the geo-diversity, the structural, tectonic and geomorphic processes of the 

tertiary and quaternary periods resulted in the complex heterogeneity of the landscape.  

Consequently, various bedrocks with different ages and mineralogy were exposed to the 

surface within short distances, providing substrates for plants and hence encouraging a high 

turnover of species across the landscape. In a study conducted on the north-eastern edge of the 

main Ethiopian Rift Valley lithological discontinuity was responsible for plant community 

transitions along altitudinal gradient (Beals 1969). 

 

Landscape fragmentation due to land cover conversion and related human disturbances appear 

to play an important role for the high beta diversity across the landscape. This was 

particularly true for the higher altitudinal zones above 2200 m a.s.l. where there were high 

human population densities and consequent fragmentation of forests for agricultural purposes.  

The decline of Weiher and Boylen’s number of species with increasing altitude could partly 

be due to the effect of decreasing area with altitude and isolation of high mountains from the 

surrounding landmass and hence a higher dispersal limitation resulting in low rescue effects 

(Lomolino 2001). In addition, higher elevation zones (above 2200 m) were characterized by a 

high intensity of human disturbances (Desalegn & Zerihun 2005).                                 

 

In conclusion, the pattern of richness observed in our study varied with several categories of 

growth forms. Generally, however, hump-shaped richness patterns were observed for several 

categories. Several factors such as climate related water energy-dynamics, species area-

relationships, and local environmental factors may work in concert to produce such observed 

patterns. In addition, altitude represents composite gradients of several environmental 

variables which at times are inter-correlated (Rahbek 2005). A number of other environmental 

variables play a dominant role to explain the pattern of diversity at the landscape scale. At the 

landscape scale topographic (particularly slope) and substrate heterogeneity, as well as soil 
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properties capture the patterns of species richness along elevation gradients. Disturbance 

regimes, which were not considered here, may also play a considerable role in structuring the 

pattern of diversity distributions in anthropogenically modified landscapes. Thus, considering 

multiple gradients would help to reveal better pictures of richness patterns and the potential 

mechanisms that structure the distributions of biodiversity in high mountain regions of the 

tropics. 

Acknowledgments 

Fieldwork was carried out with financial support from the Addis Ababa University office of 

graduate studies and research. We would like to thank Axel Bedouin for the financial support 

of soil laboratory analyses through the NUFU project and Volker Audorff and Juergen 

Kreyling for their constructive comments. 

 

   References    

 

Beals, E.W. 1969. Vegetational change along altitudinal gradients. Science 165: 981-985. 

Bhattarai, K.R. & Vetaas, O.R. 2003. Variation in plant species richness of different life 
forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global 
Ecology and Biogeography 12: 327-340. 

Breckle, S.W. 2002. Walter's vegetation of the earth: the ecological systems of the Geo-
Biosphere. 4th ed. Springer-verlag, Berlin. 

Brown, J.H. & Lomolino, M.V. 1998. Biogeography. 2nd ed. Sinauer Associates, Incl. 
publishers, Sunderlands MA. 

Bruun, H.H., Moen, J. & Angerbjorn, A. 2003. Environmental correlates of meso-scale plant 
species richness in the province of Harjedalen, Sweden. Biodiversity and Conservation 
12: 2025-2041. 

Bruun, H.H., Moen, J., Virtanen, R., Grytnes, J.A., Oksanen, L. & Angerbjorn, A. 2006. 
Effects of altitude and topography on species richness of vascular plants, bryophytes 
and lichens in alpine communities. Journal of Vegetation Science 17: 37-46. 

Colwell, R.K. 2005. EstimateS version 8: estimation of species richness and shared species 
from samples. URL: http://viceroy.eeb.uconn.edu/estimates (accessed on June 10, 
2009). 

de Bello, F., Leps, J. & Sebastia, M.-T. 2006. Variations in species and functional plant 
diversity along climatic and grazing gradients. Ecography 29: 801-810. 

de Lafontaine, G. & Houle, G. 2007. Species richness along a production gradient: a 
multivariate approach. American Journal of Botany 94: 79-88. 



                                                                                                                                               Manuscript 1 

 51

De'ath, G. & Fabricius, K. 2000. Classification and regression trees: A powerful yet simple 
technique for ecological data analysis. Ecology 81: 3178-3192. 

Desalegn, W. & Zerihun, W. 2005. The vegetation of Chencha highlands in southern 
Ethiopia. SINET: Ethiopian Journal of Science 28: 109-118. 

Edwards, S., Mesfin T. & Hedberg I. 1995. Flora of Ethiopia and Eritrea, Volume 2, No. 2 
(eds.). The National Herbarium, Addis Ababa and Department of Systematic Botany, 
Uppsala. 

Edwards, S., Mesfin, T. & Sebsebe, D. 2000. Flora of Ethiopia and Eritrea, Volume 2, No. 1 
(eds.). The National Herbarium, Addis Ababa and Department of Systematic Botany, 
Uppsala. 

Edwards, S., Sebsebe, D. & Hedberg, I. 1997. Flora of Ethiopia and Eritrea, Volume 6 (eds.). 
The National Herbarium, Addis Ababa and Department of Systematic Botany, 
Uppsala. 

Elith, J., Leathwick, J.R. & Hastie, T. 2008. A working guide to boosted regression trees. 
Journal of Animal Ecology 77: 802-813. 

Field, R., Hawkins, B.A., Cornell, H.V., Currie, D.J., Diniz-Filho, J.A.F., Guegan, J.F., 
Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M. & Turner, 
J.R.G. 2009. Spatial species-richness gradients across scales: a meta-analysis. Journal 
of Biogeography 36: 132-147. 

Friis, I. 1992. Forests and forest trees of northeast tropical Africa. Kew, London. 

Gaston, K. 2000. Global patterns in biodiversity. Nature 405: 220-227. 

Grytnes, J.A. 2003. Species-richness patterns of vascular plants along seven altitudinal 
transects in Norway. Ecography 26: 291-300. 

Hedberg, I. & Edwards, S. 1989. Flora of Ethiopia: Pittosporaceae to Araliaceae, Volume 3. 
(eds).. The National Herbarium, Addis Ababa and Department of Systematic Botany, 
Uppsala. 

Hedberg, I. & Edwards, S. 1995. Flora of Ethiopia and Eritrea, Volume 7 (eds.). The 
National Herbarium, Addis Ababa and Department of Systematic Botany, Uppsala. 

Hedberg, I., Edwards, S. & Sileshi N. 2003. Flora of Ethiopia and Eritrea, Volume. 4, No. 1 
(eds.). The National Herbarium, Addis Ababa and Department of Systematic Botany, 
Uppsala. 

Hedberg, I., Friis, I. & Edwards, S. 2004. Flora of Ethiopia and Eritrea, Volume 4, No. 2 
(eds.). The National Herbarium, Addis Ababa and Department of Systematic Botany, 
Uppsala. 

Huston, M.A. 1994. Biological Diversity: The coexistence of species in changing landscapes. 
Cambridge University Press, Cambridge. 

Jarvis, A., Reuter, H.J., Nelson, E. & Guevara, E. 2008. Hole-filled seamless SRTM data 
version 4. URL: http://srtm.csi.cgiar.org (accessed on May 12, 2009). 

Jentsch, A. & Beierkuhnlein, C. 2003. Global climate change and local disturbacne regimes as 
interacting drivers for shifting altitudinal vegetation patterns. Erdkunde 57: 216-231. 

Kazmin, V. & Berhe, S. 1981. Geological map of the Ethiopian Rift. Ethiopian government, 
Addis Ababa. 



                                                                                                                                               Manuscript 1 

 52

Körner, C. 2000. Why are there global gradients in species richness? Mountains might hold 
the answer. Trends in Ecology & Evolution 15: 513-514. 

Le Brocque, A. & Buckney, R. 2003. Species richness-environment relationships within 
coastal sclerophyll and mesophyll vegetation in Ku-ring-gai Chase National Park, 
New South Wales, Australia. Austral Ecology 28: 404-412. 

Levitte, D., Collumba, J. & Mohr, P. 1974. Reconnaissance geology of the Amaro Horst, 
Southern Ethiopian Rift. Geological Society of America Bulletin 85: 417-422. 

Lomolino, M.V. 2001. Elevation gradients in species density: historical and prospective 
views. Global Ecology and Biogeography 10: 3-13. 

Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell Publishing, Malden, MA. 

Marquet, P.A., Fernandez, M., Navarrete, S.A. & Valdovinos, C. 2004. Diversity emerging: 
toward a deconstruction of biodiversity paterns. In: Lomolino M & Heany, L.R. (eds.) 
Frontiers of Biogeography: new directions in the geography of nature. Pp. 191-209. 
Sinauer Assoiciates, Sunderland, MA. 

Mohr, P.A. 1971. The Ggeology of Ethiopia. Haileselassie I University Press, Addis Ababa. 

O'Brien, E.M. 1998. Water-energy dynamics, climate, and prediction of woody plant species 
richness: an interim general model. Journal of Biogeography 25: 379-398. 

O'Brien, E.M., Field, R. & Whittaker, R.J. 2000. Climatic gradients in woody plant (tree and 
shrub) diversity: water-energy dynamics, residual variation, and topography. Oikos, 
89: 588-600. 

Peet, R.K. 1978. Forest vegetation of Colorado Front Range - patterns of species diversity. 
Vegetatio 37: 65-78. 

Rahbek, C. 1995. The elevational gradient of species richness - a uniform pattern? Ecography 
18: 200-205. 

Rahbek, C. 2005. The role of spatial scale and the perception of large-scale species richness 
patterns. Ecology Letters 8: 224-239. 

R Development Core Team 2008. R: a language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna. 

Romdal, T.S. & Grytnes, J.A. 2007. An indirect area effect on elevational species richness 
patterns. Ecography 30: 440-448. 

Sanchez-Gonzalez, A. & Lopez-Mata, L. 2005. Plant species richness and diversity along an 
altitudinal gradient in the Sierra Nevada, Mexico. Diversity and Distributions 11: 567-
575. 

Stevens, R.D., Cox, S.B., Strauss, R.E. & Willig, M.R. 2003. Patterns of functional groups 
diversity across an extensive environmental gradient: vertebrate consumers, hidden 
treatments and latitudinal trends. Ecology Letters 6: 1099-1108. 

Tate III, R. 1987. Soil organic matter: biological and ecological effects. John Wiley & Sons, 
New York. 

ter Braak, C.J.F. & Smilauer, P. 2002. CANOCO reference manual and CanoDraw for 
window users' guide: software for canonical community ordination version 4.5. 
Wageningen Uinversity and Research Center, Wageningen. 

Thuiller, W., Midgley, G.F., Rouget, M. & Cowling, R.M. 2006. Predicting patterns of plant 
species richness in megadiverse South Africa. Ecography 29: 733-744. 



                                                                                                                                               Manuscript 1 

 53

Walter, H. 1985. Vegetation of the Earth and Ecological Systems of the Geobiosphere. 3rd 
eds. Springer-Verlag, New York. 

White, F. 1983. The Vegetation of Africa: a Descriptive Memoir to Accompany the 
UNESCO/AETFAT Vegetation of Africa. UNESCO, Paris. 

Whittaker, R.J., Willis, K.J. & Field, R. 2001. Scale and species richness: towards a general, 
hierarchical theory of species diversity. Journal of Biogeography 28: 453-470 

Zanettin, B., Justin-Visentin, E., Nicoletti, M. & Petrucciani, C. 1978. The evolution of 
Chencha escarpment and the Ganjuli grabe (Lake Abaya) in the southern Ethiopian 
Rift. N. Jahrb. Geol. Paläontl. 8: 473-490. 

Zerihun, W., Feoli, E. & Lisanework, N. 1989. Partitioning an elevational gradient of 
vegetation from southeastern Ethiopia by probabilistic methods. Vegetatio 81: 189-
198. 

Zhao, C.-M., Chen, W.-L., Tian, Z.-Q. & Xie, Z.-Q. 2005. Altitudinal pattern of plant species 
diversity in Shennongjia Mountains, Central China. Journal of integrative plant 
biology 47: 143-449. 



                                                                                                                                              Manuscript 2 

 54

Journal of Tropical Ecology, resubmitted (ID-JTE-09-248) 

The relative abundance of plant functional types along environmental 
gradients in the south-west Ethiopian highlands 
 

Running title:  Plant functional types along environmental gradients 

 

Desalegn Wana 1,2* & Carl Beierkuhnlein1 

1. Department of Biogeography, University of Bayreuth, D-95440, Bayreuth, Germany 

2. Department of Geography & Environmental Studies, P. O. Box 150178, Addis Ababa,  

    Ethiopia                                  

   *Corresponding Author: E-mail: desalegn.wana@uni-bayreuth.de 

 

ABSTRACT 
Plant functional types across environmental gradients can be taken as a powerful proxy to 

reveal vegetation-environment relationships and response to global change. The objectives of 

this study were to evaluate the distribution of plant functional types along altitudinal gradient 

and to examine the relationship of plant functional types to environmental variables. The 

study was conducted in the Gughe-Amaro Mountains, in the south-west Ethiopian highlands. 

We established seventy four plots each with an area of 400 m2 (20 m x 20 m). Data on site 

environmental conditions and abundance of plant functional types were analyzed using 

constrained linear ordination technique (RDA) in order to identify the relationships between 

plant functional types and environmental variables.  

 

Altitude, soil organic carbon, soil sand fraction and surface stone cover were significantly 

related to the abundance of plant functional types across the gradient. Tussocks and 

thorns/spines were abundant in lower altitudinal ranges in response to drought while rhizomes 

and rosettes were abundant in the higher altitude in response to chilling. Topographic 

attributes (altitude and slope) and soil organic carbon play an important role in differentiating 

the relative abundance of plant functional types along the gradient. Thus, considering specific 

plant functional types would provide a clear understanding of the patterns of vegetation and 

their response to environmental gradients in the drought sensitive tropical regions of Africa. 

 

Keywords:    Africa, biodiversity gradient, functional traits, montane ecosystems, Rift Valley 
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INTRODUCTION 

 
Across environmental gradients plant functional types (hereafter referred to as PFTs) can be 

taken as a powerful proxy to reveal vegetation-environment relationships. Plant functional 

types are defined as sets of species that demonstrate either a similar response to the 

environment or have similar effects on major ecosystem processes (Gitay & Noble 1997). 

This study focuses on the response of PFTs to environmental gradients. PFTs are grouped 

according to their morphological, physiological, regenerative or phenological features 

(Lavorel & Garnier 2002), rather than to their phylogenetic relationships. The common 

response of PFTs provides the opportunity to directly link functional response traits with 

environmental variables such as climate, disturbance regimes and resource availability 

(Hooper et al. 2002). This is why PFTs are a valuable tool for the monitoring of ongoing 

environmental changes.  

 

Species develop a number of specialized traits as a possible mechanism of adaptation to 

environmental factors (e.g. aridity), disturbance and biotic interactions (Beierkuhnlein & 

Jentsch 2005, Cody 1991). The growth form provides essential information on the vegetation 

strategy regarding e.g. energy interception and water cycle (Baldocchi et al. 2004), carbon 

storage (Diaz & Cabido 1997) and support of static body weight against wind (Rowe & Speck 

2005).  

 

In semi-arid environments, such as in our study area, where water shortage is a limiting 

factor, plants are expected to develop morphological features such as thorns/spines to reduce 

heat loading in the leaves via reflection and absorption of solar radiation (Gates 1980), and 

water storage organs to buffer the effects of drought stress (Diaz & Cabido 1997). More 

importantly, the morphological features, such as thorns and spines (Roininen et al. 2007), 

serve as the defence organs to deter the effect of herbivory. Thus, these morphological 

features would help to reduce heat (Cornelissen et al. 2003) or drought stress in the semi-arid 

areas where moisture and thermal stresses are expected to be higher. Similarly, the life span 

(annual vs. perennial) of herbs and graminoids can be seen to reflect the timing of resource 

availability, resulting in a relatively large investment of annuals into reproductive traits 

compared to vegetative ones (Diaz & Cabido 1997, Silvertown 2004). Thus,  plant functional 

types aggregate a variety of species responses to the environment and are powerful input data 

for global land-cover modelling (Leemans 1997).  
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Though the use of PFTs has been well recognized in ecosystem response and global change 

modelling, few studies have so far investigated the relationship of PFTs to environmental 

gradients in the African tropics (Skarpe 1996). Most available studies are located in temperate 

climates (de Bello et al. 2006, Diaz et al. 1999, Stevens et al. 2003) and the neotropics 

(Condit et al. 1996; Kraft et al. 2008). This study aims to evaluate the distribution of PFTs 

along altitudinal gradient and to examine the linkages between PFTs and measured 

environmental variables. Specifically the paper intends to address the following hypotheses: 

1) Altitude and slope have a significant effect on the variation of the relative abundance of 

plant functional types in the study area; 2) soil texture and fertility have a strong explanatory 

power to the variation in the relative abundance of plant functional types along altitudinal 

gradients; 3) PFTs response to stress (drought and chilling) and grazing would favour the 

abundance of distinct plant functional types such as thorny and tussocks in the lowlands vs. 

rosettes and rhizomes at higher altitudes.  

 

METHODS 

 

Study area 

 
The study area is located at 5° 42’--6° 20’ N and 37° 17’--37° 59’ E (Figure 1), about 500 km 

south of the Ethiopian capital, Addis Ababa. The physiography of the investigation area is 

characterized by a great diversity that is related to the genesis of the Rift Valley. This 

landscape includes plateaux, escarpments and undulating plains where Lake Abaya and Lake 

Chamo are located.  

 

The eastern border is marked by the Amaro horst, a block mountain that emerged during the 

formation of the Rift Valley. The western escarpment of the Rift Valley down from the 

Chencha Highlands is characterized by steep slopes and a topography that is greatly dissected 

by small streams, which flow into Lake Abaya and Lake Chamo. The highlands of Gughe 

consist of Tertiary volcanites (Zanettin et al. 1978), while the Rift Valley is largely filled with 

Quaternary deposits (Mohr 1971). The Amaro Mountains on the eastern border of the study 

area are dominated by uplifted crystalline rocks, composed of gneisses and granites (Levitte et 

al. 1974). 
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     Figure 1: Location map of the study area 

 

Rainfall in the study area shows a pronouncedly bimodal seasonal distribution. The mean 

annual rainfall recorded for Arbaminch (1200 m) in the period from 1987 to 2005 was 888 

mm while for Chencha (2700 m), for the period 1972 to 1980 and 1990 to 2004, 1235 mm 

were recorded (Figure 2). The main rainy season, which accounts for about 40% of the mean 

annual rainfall, occurs from April to June, while the lesser rainy season is in September and 

October. Arbaminch experiences a more pronounced dry season and receives less rainfall 

because of its low altitude and its rain-shadow position with regard to the moisture-bearing 

south-east trade winds that prevail in April/May and September/October months in the region. 

During the aforementioned months Arbaminch experiences water surplus (Figure 2a), while 

the Chencha Highlands receive excess rainfall and a surplus is expected for the months from 

April to October (Figure 2b). Thus, this area combines the long-term climatic constancy of the 

tropics with seasonal variability and the permanent occurrence of tectonic and volcanic 

activity and disturbance.                                
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Figure 2: Climate diagram of Arbaminch (a) and Chencha (b) after Thornthwaite (vertical hatching indicate 

surplus while dot pattern indicate deficit). Arbaminch lies at 1200 m, mean annual temperature = 23°C, total 

Annual rainfall= 888 mm recorded. Chencha station is located at 2700 m, mean annual temperature = 14°C, total 

annual rainfall = 1235 mm, PET stands for potential evapo-transpiration. Arbaminch station had a temperature 

record from 1976 to 2005 and rainfall record from 1987 to 2005. Chencha had a temperature record from 1972 to 

1981 while rainfall recorded from 1972 to 2004. However, rainfall records were not continuous and data were 

missing for Chencha from 1981-1989. All climate records were obtained from the Ethiopian National 

Meteorological Services Agency (NMSA). 
 

The vegetation of the study area is part of the Somali-Masai regional centre of endemism 

(White 1983). It comprises savanna grassland, bushland, dense thickets, riverine and 

groundwater forests, and in the Gughe and Amaro mountains broad-leaved afromontane rain 

forests (Friis 1992). The broad-leaved afromontane vegetation in the study area is highly 

fragmented due to human settlement. The remaining relatively dense vegetation cover is 

found in the escarpment of the Rift Valley and in the Netch Sar National Park. However, the 

recent wave of immigration to the Rift Valley due to high population pressure in the highlands 

and apparent poverty has resulted in the transformation and degradation of woodland 

vegetation in the Rift Valley (Desalegn 2007, Desalegn & Zerihun 2005) 

 

Sampling scheme 

 
The sampling design was based on the relative distribution of elevation along altitudinal 

gradients. Digital elevation model for the study area was constructed from Shattle Radar 

Topography Mission (Jarvis et al. 2008) data. The topographic data were void filled for 

missing information and made available for public use on the web page of International 

Centre for Tropical Agriculture (http://srtm.csi.cgiar.org). The spatial classification of 
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elevation at the interval of 200 m was extracted from the DEM. The number of plots was then 

selected depending on the relative distribution of elevation for representative sampling 

following a similar pattern of elevation distribution along the Gughe-Amaro Mountains 

(Table 1). A roughly proportionate percentage of plots were allocated to the corresponding 

elevation ranges with the exception of the elevation band between 1000 and 1200 m asl, 

where a large surface is covered by the two lakes. No sampling was conducted above 3000 m 

due to logistic problems and difficulties of access during fieldwork. For each of the 200-m 

ranges (10 altitudinal ranges between 1000 and 3000 m asl), sampling was conducted 

depending on the presence of forest, woodland or any category of semi-natural vegetation in 

the landscape. Agricultural fields and plantations were not sampled.  

     
                                  

Vegetation and environmental data 

 
Fieldwork was carried out in two phases, November 2006 - January 2007, and in December 

2007, respectively. Both phases of fieldwork were conducted after the small rainy season. 

Nevertheless, delays and an early termination of the rains proved to be obstacles in the 

seasonal timing. During the first fieldwork period, the rainy season extended until mid-

December while in the second period there was an early onset of the dry season in November 

2007. 

 

In total 74 plots, each with a size of 20 × 20 m, were established (Figure 1), where 

environmental data, plant species and presence-absence information was recorded. During 

field survey 475 plant species were encountered (Appendix). For those species that could not 

be identified precisely in the field, specimens were taken to the National Herbarium at the 

Addis Ababa University for identification or confirmation. Functional traits were recorded for 

every species, whenever possible, in the field for the following traits: thorns/spines, rosettes, 

N-fixing legumes, and succulence. Additionally, plant functional types regarding for example 

life span for herbs and graminoids (annuals vs. perennials), leaf phenology (deciduous vs. 

evergreen) for woody species, the presence of rhizomes/stolons and potential N-fixing 

legumes were checked with the published flora volumes of Ethiopia and Eritrea (Edwards et 

al. 1995, 1997, 2000; Hedberg & Edwards 1989, 1995; Hedberg et al. 2003, 2004).      
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Table 1. The proportional distribution of area, plots and number of species observed along respective altitudinal  

 ranges in the Gughe-Amaro mountains (475 species were encountered during sampling). 

 

Ellevation (m) Area (km2) % area No. of plots % plots No. of species 
1000--1200 403.9* 22.8 8 10.8 125 

1201--1400 1029 21.3 16 21.6 188 
1401--1600 602 12.4 11 14.9 139 
1601--1800 399.7 8.3 7 9.5 95 
1801--2000 335 6.9 6 8.1 106 
2001--2200 244.7 5.1 5 6.8 122 
2201--2400 196.8 4.1 5 6.8 92 
2401--2600 235.4 4.9 7 9.5 122 
2601--2800 270.3 5.6 5 6.8 54 
2801--3000 239.4 4.9 4 5.4 98 
3001--3200 129.2 2.7 - - - 
3201--3400 52.6 1.1 - - - 
3401--3546 3.6 0.1 - - - 
Total 4841.7 100 74 100 475 
 * total area including parts of the two lakes is 1103.9  

 

Altitude and aspect were recorded using a Garmin GPS 3.1, and the slope was recorded using 

a clinometer. Aspects were coded prior to analysis following Zerihun et al. (1989). For stone 

cover, plots were divided into four subquadrats. Then it was visually estimated and averaged 

to yield the percentage of stone cover in a plot. Five soil samples were collected at 0-30 cm 

depth from each corner and from the centre of the plot and mixed to produce a composite soil 

sample.  

 

Classification of plant functional types 

 

Plant functional types were classified according to four categories. (1) The first category is 

based on the whole plant traits which is mainly adaptation to climatic constraints and 

competition (Cody 1991), resistance to strong winds and support of static weight such as self 

supporting or climbing (Rowe & Speck 2005). We differentiate the growth forms woody 

plants, herbs, graminoids, climbers and ferns. Epiphytes were excluded from analysis because 

they were few in number. Additionally, some of the ferns have also epiphytic habits. Ferns are 

a phylogenetic category. Yet, we considered them as distinct type because of their specific 

response to regulate water and differential response to water availability compared to other 

groups along altitude gradients (Bhattarai & Vetaas 2003). (2) The second category is based 

mainly on the particular response to physical and biotic stresses. The physical stress which we 

expect in our system would include chilling (low temperature in high-altitude areas) and 

drought in the semi-arid zones along the lower elevation zones while the biotic stresses 
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include herbivory, grazing and “reproductive success”. (3) The third category is related to the 

fluxes of resources and how species respond to temporal changes in environmental conditions 

(e.g. seasonality). In this category woody species were subdivided into deciduous vs. 

evergreens while herbs and graminoids were subdivided into annuals vs. perennials. (4) 

Finally, traits which were related to access and storage of resources such as water and 

nutrients were applied and species were attributed to the groups of hemi-parasites, succulents 

and nitrogen fixers (Table 2). 

 

Table 2. Plant functional types (PFTs) categories and number of species in each group. 

 

Growth forms Stress/grazing Temporal attributes Water and nutrients 
    

PFTs 
No. of 
species PFTs 

No. of 
species      PFTs 

No. of 
species   PFT 

No. of 
species 

Woody 176 Rosettes 11 
 
Deciduous 37 

Nitrogen 
fixers 56 

 
Graminoids 42 Rhizomes/stolons 59 Evergreen 153 Succulents 37 
 
Climbers 48 Tussocks 12 Annual 74 Parasites 7 
 
Herbs 191 Thorns/spines 56 Perennial 211 

‘No 
adaptation’ 375 

 
Ferns 18 ‘No adaptation’     340     
        
Total 475  4781  475  475 

 

1 Three species were double counted (one for thorns/spines and two species for rosette and rhizomes) thus the 

total number of species for this category yields 478 (The total number of species encountered in the field were 

475). 

 

Data analysis 

 
Before data analysis the presence-absence data of species for each PFT were pooled to 

generate the total number of species for the corresponding PFT within each plot and then the 

proportion (%) of each PFT was calculated out of the total number of species in a plot. Thus, 

abundance is defined here as the proportion (percentage) of a given plant functional type from 

the total number of species belonging to all PFTs in a plot.  

  

 

 

 Soil data analysis 
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The soil samples were analyzed for soil organic matter and then converted to soil organic 

carbon by dividing the percentage soil organic matter by 1.72 (SOC) (Schumacher 2002). 

Texture, total nitrogen (TN), and available phosphorus (AP) were analysed in the analytical 

service laboratory of the International Livestock Research Institute (ILRI) in Addis Ababa, 

and the second batch of soil samples were analyzed in the Debre Zeit Plant and Soil 

Laboratory of the Ethiopian Agricultural Research Organization. Nitrogen was analyzed using 

the Kjeldahl method, Phosphorus by the Bray method, texture using the hydrometer method, 

and organic matter by following the Walkey and Black wet-oxidation method.  

   

Statistical analysis 

 
The PFTs and most environmental data were transformed into logarithmic (log(x+1)) scale for 

normality. However, soil sand and silt fraction had a normal distribution and thus were not 

transformed. A constrained linear ordination technique (RDA) was used to investigate the 

relationship of PFTs with environmental factors using the software CANOCO 4.5 (ter Braak 

& Smilauer 2002). Forward automatic selection and partial Monte Carlo permutation was 

used to test the significance of the relation between PFTs and environmental variables. 

 

RESULTS  

 

PFT-environment linkages 
 

The measured environmental variables explained relatively large proportions of variance for 

temporal attributes (44.7%) and growth forms (37.4%) from the total inertia in the PFT data 

(Table 3). However, the total variance explained for PFTs related to stress/grazing and 

water/nutrient was relatively small (Table 3). The amounts of explained variance shared by 

the first two axes for stress/grazing and water/nutrients were 24% and 26%, respectively 

(Table 3).    

 

The first axes for all categories of PFT data were strongly correlated with altitude and soil 

organic carbon. These two environmental variables were intercorrelated (r = 0.58, results not 

shown). On the other hand, soil sand fraction was strongly correlated with the second axes for 
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all categories of PFTs excepting growth forms. Slope inclination was strongly correlated with 

the second axis for the growth form based classification.   

 
Table 3. Constrained linear ordination analysis (RDA) of plant functional types and amount of variance     

explained (species data were log (x+1)-transformed, scaling with inter-species correlations and 
standardized by species centring), PFTs refers to plant functional types. 

 

 Plant functional types Axes 
      
Eigen values Cummulative % variance  Variance explained 

   
 
    PFTs data    

PFTs_environment 
relation      

  Growth forms 1 0.269 26.9 71.8

 2 0.085 35.3 94.4 0.374 

  3 0.014 36.7 98.1  

  4 0.007 37.4 99.9  

 Stress/grazing 
 
1 0.19 19 71.2  

 2 0.049 24 89.6 0.267 

  3 0.025 26.4 98.9  

  4 0.002 26.7 99.8  

 Water/nutrients 
 
1 0.215 21.5 76  

  2 0.047 26.3 92.7 0.283 

 3 0.02 28.3 100  

  4 0 28.3 100

 Temporal attributes 
 
1 0.275 27.5 61.5  

 2 0.159 43.3 97 0.447 

  3 0.013 44.6 99.8

  4 0.001 44.7 100   
 

Forward selection of environmental variables showed that altitude was found to have a 

significant effect (P = 0.002) on the relative abundance of plant functional types for all 

categories (Table 4). Slope inclination was significantly related to growth form (P = 0.016) 

and temporal attributes (P = 0.01). Similarly, SOC was found to be significantly related to the 

relative abundance of growth forms (P = 0.002) and temporal attributes (P = 0.01) (Table 4). 

However, soil sand fraction had a significant effect only on the temporal attributes (P = 

0.0006) while surface stone cover was significantly (P = 0.012) related to the relative 

abundance of PFTs attributed to stress/grazing (Table 4). 
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Table 4.  The relationships among environmental variables and plant functional types based on Partial Monte  

Carlo permutation tests (** = significant at P ≤ 0.01, * = significant at P < 0.05); SOC stands for soil 

organic carbon, Alt = altitude, Stone = surface stone cover,  C:N = carbon:nitrogen ratio, AP = available 

phosphorus). 

 

  Growth forms Stress/grazing Temporal attributes Water/nutrients 

Variable F P F P F P   F    P 

Alt 20.5 0.002** 10.61 0.002** 23.1 0.002** 12.1 0.002** 

SOC 7.05 0.002** 2.31 0.086 6.39 0.01** 1.92 0.136 

slope 3.46 0.016* 0.84 0.508 3.21 0.034* 0.71 0.472 

C:N 1.83 0.132 1.40 0.254 2.88 0.052 2.10 0.088 

Silt 1.04 0.376 1.47 0.202 1.03 0.338 0.92 0.408 

Sand 0.71 0.582 1.48 0.196 4.81 0.006* 2.16 0.128 

Aspect 0.74 0.526 0.72 0.564 0.28 0.836 1.88 0.132 

AP 0.47 0.724 0.55 0.696 1.21 0.314 0.29 0.808 

Stone 0.30 0.876 3.32 0.012* 2.45 0.074 2.28 0.118 
 

Graminoids (grasses and sedges) were highly negatively correlated with SOC but were 

positively related to available phosphorus (Figure 3a). Herbs were strongly related to slope 

inclination (Figure 3a) than altitude in the study area. Tussock grasses and thorny/spines in 

the study area were highly related to surface stone cover and available phosphorus and 

negatively related to altitude (Figure 3b). Rhizomatous and rosettes PFTs were found to be 

more abundant in areas of relatively higher altitude, higher soil sand content and low amount 

of soil available phosphorus (Figure 3b). However, for the group ‘no adaptation’, which we 

could not place our PFTs related to stress/grazing, appears to be positively correlated with soil 

silt fraction, SOC and aspect.  

 

In regard to the abundance of PFTs related to temporal attributes (leaf seasonality and life 

span), the abundance of woody species was clearly differentiated between higher and lower 

altitudes (Figure 3c). Deciduous woody species were more abundant in lower altitude while 

evergreen woody species were abundant in the higher elevation zones (Figure 3c). Deciduous 

woody species showed a strong negative relationship to soil organic carbon and were 

positively related to surface stone cover, whereas evergreen woody species were positively 

related to soil sand fraction and SOC (Figure 3c). 

 

Annuals and perennials (graminoids and herbs) were strongly correlated to aspect, slope 

inclination, and soil silt fraction. However, the pattern of abundance of annuals and perennials 
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was not clearly differentiated probably due to the aggregation of comparatively large groups 

such as graminoids and herbs.  

 

In regard to PFTs related to nutrients and water acquisitions: nitrogen fixers were strongly 

correlated with higher surface stone cover and C:N-ratio whereas succulents showed a strong 

positive relationship to available phosphorus in the soil (Figure 3d). Hemi-parasites, however, 

did not appear to have any relationship to the measured environmental variables. 
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Figure 3: A redundancy analysis of plant functional types and environmental variables; growth forms (a), 

grazing/stress (b), temporal attributes (c) and nutrient- and water-related plant functional types (d); SOC = soil 

organic carbon, AP = available phosphorus, Alt = Altitude, Stone = surface stone cover. 

 

 

 DISCUSSION 

 
Topographic relief (such as altitude, slope inclination and aspect exposition) and SOC played 

an important role in differentiating the relative abundance of PFTs across the landscape. The 

impact of topographic relief is apparent in water-energy distributions across spatial gradients, 

which in turn control photosynthetic processes (productivity) and thereby the diversity of 

woody species (O'Brien 1998, O'Brien et al. 2000). Altitude can be considered to be a proxy 

variable to the variation in the distribution of water and energy in high-mountain regions. In 
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addition, the range of altitude provides habitats for species across the gradient. The 

topographic heterogeneity of slopes and exposure (aspect) also affect the (re)distribution of 

vital resources such as water and solar energy. This is supported by the strong explanatory 

effect of slope inclination for growth forms and temporal attributes.  

 

In mountain regions and in semi-arid ecosystems slope inclination and slope exposure 

(aspect) commonly play an important role in structuring the relative abundance of PFTs since 

the redistribution of water and nutrients is affected by the relative slope position (Breckle 

2002, Walter 1985). Slope inclination and slope aspect are the most important factors 

affecting patterns of vegetation in the landscape. However, their role in the semi-arid 

environment is very critical in forming patchy vegetation and barren lands which in turn 

affects the run-on/run-off processes, soil depth, water retention and nutrient status of the soil 

(Pueyo & Alados 2007, Wilkinson & Humphreys 2006). It is reported that slope aspect has a 

strong relationship to productivity and to plant species composition (Gong et al. 2008). A 

study conducted by Teshome et al. (2004) in the Gamo Gofa region south of the current study 

area, reported low herbaceous cover in the steep-slope area dominated by a Commiphora 

cyclophylla plant community. Our study, however, showed a strongly positive correlation of 

herb abundance with slope inclination. This could probably be due to the high intensity of 

grazing in the gentle slopes which was not included in this study.  

 

Plant species adopt different strategies to access water and nutrients in the environment. They 

modify rooting depth and resource segregation by timing and other mechanisms (Silvertown 

2004). In our study graminoids (grasses and sedges) show strong negative correlations with 

SOC. This is apparent because the largest source for SOC is litter-fall from forest trees, while 

SOM (and hence SOC) replenishment in grass-dominated ecosystems mainly depends on the 

die-back of grass roots as a source of organic matter (Troeh & Thompson 2005). Graminoids 

showed a strong positive correlation to AP in the soil (Figure 3a) at the lower elevation range, 

probably due to low leaching in the semi-arid environments of the Rift Valley. 

 

PFTs related to grazing/stress are clearly separated along altitudinal gradients. Tussock 

grasses and species with thorns/spines were abundant in the lower elevation zones where 

drought is expected to be a limiting factor while rhizomes and rosettes were found to be 

abundant in the higher elevation zones. The combination of drought stress with 
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grazing/herbivory over time tends to favour tussocks and thorns/spines while that of chilling 

and grazing/herbivory appear to favour rhizomes and rosettes (Figure 3d; Figure 4).  

 

Various forms of tussock developments were favoured as adaptation strategies to 

environmental stress (Nishikawa 1990) and disturbance such as fire and grazing. Tussock 

formations in the semi-arid environments enhance survival by forming organic debris, fine 

soils and retain soil moisture (Pugnaire & Haase 1996). In addition, they buffer soil erosion 

along slopes. Thorns/spines help to reduce heat or drought stress (Cornelissen et al. 2003) by 

dissipating heat loading on the surface of the leaves and steams or absorbing solar radiation, in 

addition to their role as a mechanical deterrence against vertebrate herbivory (Grime 2001).  
 

 

 

Figure 4: The response of PFTs to drought/chilling and grazing along altitudinal gradient. 

 

Rhizomes and stoloniferous traits are features that are presumed to be related to reproductive 

success. They may help organisms to buffer the effect of unexpected occurrence of drought or 

frost (Diaz & Cabido 1997). If not being destroyed, rhizomes deliver the competitive 

advantage to re-occupy space after disturbance events (e.g. grazing or mowing) because of 

their ability to store metabolic products and hence quick re-sprouting (Diaz & Cabido 1997, 

Klimesova et al. 2008).  

 

The abundance of deciduous woody species in the lower altitudes appears to reflect the 

response to drought. Leaf shedding is a strategy to reduce moisture loss in semi-arid 

environments. Herbaceous species, both annuals and perennials, were strongly related to soil 
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nutrients (C:N, AP). The availability of phosphorus and organic sources of nitrogen in the soil 

varies seasonally with soil organic matter turnover, temperature, pH and water availability in 

the soil (Troeh & Thompson 2005). The abundance of PFTs related to nutrient and water 

acquisition was significantly related to altitude which was highly correlated with the first 

RDA axis. Succulents tended to be associated with sand and AP in the soil. They are able to 

buffer the effect of water shortage in the lower elevation zones (Diaz et al. 1999).  

   

Generally, our results show that topographic attributes (altitude and slope) and SOC play an 

important role in differentiating the relative abundance of PFTs in the landscape. The 

categorization of PFTs reveals differential response of plants to environmental gradients 

which structure the vegetation in a landscape. In the future, the inclusion of disturbance 

regimes such as fire and grazing and PFTs related to them would provide an even better 

picture of functional patterns of vegetation. Further attempts to characterize PFTs and their 

response to environmental gradients should include traits related to water harvesting (e.g. 

rooting depth), degree of ramification, and drought avoidance.   
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Electronic Appendix for Manuscript 2:  Species and plant functional types 
 
Nomenclature follows the published Flora volumes of Ethiopian and Eritrea  (Edwards et al. 
1995, 1997, 2000; Hedberg & Edwards 1989, 1995; Hedberg et al. 2003, 2004) 
 
Abrevations:Cl = Climbers           Rh = Rhizomes/stolons    Nf = Nitrogen fixers           An = Annuals 
                     He = Herbs             Ro = Rosettes                   Pa = Parasites                  De = Deciduous 
                     Wo = Woody          Th = Thorns/spines           Su = Succulents                Ev = Evergreens 
                     Fe = Ferns             Tu = Tussocks                                                             Pe = Perennials 
                     Gr = Graminoids    Na = No adaptation/do not fit into the specified strategies 
 

Species Families 
Growth 
forms 

Stress/ 
grazing 

Water/ 
nutrient

Temporal 
attributes

Acanthus eminens C.B.Clarke Acanthaceae Wo Th Na Ev 
Barleria eranthemoides R. Br. ex C.B.Clarke Acanthaceae He Th Na Pe 
Barleria grandicalyx Lindau Acanthaceae He Th Na Pe 
Barleria ventricosa Hochst. ex Nees. Acanthaceae He Th Na Pe 
Blepharis maderaspatensis (L.) Roth Acanthaceae He Th Na Pe 
Crabbea velutina S. Moore Acanthaceae He Na Na Pe 
Dicliptera maculata Nees Acanthaceae He Na Na Pe 
Hypoestes forskaolii (Vahl) R. Br. Acanthaceae He Na Na Pe 
Hypoestes triflora (Forssk.) Roem. & Schult. Acanthaceae He Na Na Pe 
Isoglossa punctata (Vahl) Brumitt & Wood. Acanthaceae He Na Na Pe 
Isoglossa sp.  Acanthaceae He Na Na Pe 
Justicia bizuneshiae Ensermu Acanthaceae He Na Na Pe 
Justicia cordata (Nees) T. Anderson Acanthaceae He Na Na Pe 
Justicia flava (Vahl) Vahl Acanthaceae He Na Na Pe 
Justicia glabra Koenig ex Roxb. Acanthaceae He Na Na Pe 
Monechma debile (Forssk.) Nees Acanthaceae He Na Na An 
Phaulopsis imbricata (Forssk.) Sweet Acanthaceae He Na Na Pe 
Ruellia patula Jacq. Acanthaceae He Na Na Pe 
Ruellia prostrata Poir. Acanthaceae He Na Na Pe 
Thunbergia alata Boj. ex. Sims Acanthaceae Cl Na Na Pe 
Thunbergia annua Hoshst. Acanthaceae Cl Na Na Pe 
Aloe sp.  Aloaceae Wo Th Su Ev 
Achyranthes aspera L. Amaranthaceae He Th Na Pe 
Cyathula cylindrica Moq. Amaranthaceae He Th Na Pe 
Pupalia grandiflora Peter Amaranthaceae He Na Na Pe 
Lannea triphylla (A. Rich.) Engl.  Anacardiaceae Wo Na Na De 
Ozoroa insignis Del. Anacardiaceae Wo Na Na Ev 
Rhus natalensis Krauss Anacardiaceae Wo Na Na Ev 
Rhus ruspolii Engl. Anacardiaceae Wo Na Na De 
Sclerocarya birrea (A. Rich.) Hochst. Anacardiaceae Wo Na Na De 
Agrocharis melanantha Hochst. Apiaceae He Ro Na Pe 
Alepidea peduncularis Stued. ex A. Rich. Apiaceae He Na Na Pe 
Centella asiatica (L.) Urban Apiaceae He Na Na Pe 
Heracleum abyssinicum (Boiss.) Norman Apiaceae He Na Na Pe 
Heteromorpha arborescens (Spreng.) Cham. & Schlecht. Apiaceae Wo Na Na De 
Pimpinella oreophila Hook. f. Apiaceae He Na Na Pe 
Pimpinella schimperi Abebe Apiaceae He Na Na Pe 
Sanicula elata Buch.-Ham.ex D. Don Apiaceae He Na Na An 
Torilis arvensis (Hudson) Link Apiaceae He Na Na An 
Acokanthera schimperi (A.DC.) Schweinf. Apocynaceae Wo Na Na Ev 
Carissa spinarum L. Apocynaceae Wo Th Na Ev 
Ilex mitis (L.) Radlk. Aquifoliaceae Wo Na Na Ev 
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Species Families 
Growth 
forms 

Stress/ 
grazing 

Water/ 
nutrient

Temporal 
attributes

Polyscias fulva (Hiern) Harms Araliaceae Wo Na Na Ev 
Schefflera abyssinica (Hochst. ex A. Rich.) Harms Araliaceae Wo Na Na Ev 
Schefflera myriantha (Bak.) Drake Araliaceae Wo Na Na Ev 
Phoenix reclinata Jacq. Arecaceae Wo Na Na Ev 
Dregea abyssinica (Hochst.) K. Schum. Asclepiadaceae Cl Na Na Pe 
Edithcolea grandis N. E. Br. Asclepiadaceae He Na Su Pe 
Gomphocarpus fruticosus (L.) Ait. f. Asclepiadaceae He Na Na Pe 
Periploca linearifolia Quert.-Dill. & A. Rich. Asclepiadaceae Cl Na Na Pe 
Sarcostemma viminale (L.) R. Br. Asclepiadaceae Cl Na Su Pe 
Secamone parvifolia (Oliv.) Bullock Asclepiadaceae Cl Na Na Pe 
Tacazzea conferta N. E. Br. Asclepiadaceae Cl Na Na Pe 
Asparagus africanus Lam. Asparagaceae Cl Th Na Pe 
Asparagus flagellaries (Kunth) Baker Asparagaceae Cl Th Na Pe 
Kniphofia isoetifolia Steud. ex. Hochst. Asphodelaceae He Rh Na Pe 
Asplenium aethiopicum (Burm. f.) Bech. Aspleniaceae Fe Rh Na Pe 
Asplenium anisophyllum Kze. Aspleniaceae Fe Rh Na Pe 
Asplenium erectum Willd Aspleniaceae Fe Rh Na Pe 
Asplenium monanthes L. Aspleniaceae Fe Rh Na Pe 
Adenostemma mauritianum DC. Asteraceae He Na Na An 
Ageratum conyzoides L. Asteraceae He Na Na An 
Aspilia africana (Pers.) C.D. Adams Asteraceae He Na Na Pe 
Aspilia mossambicensis (Oliv.) Wild Asteraceae He Na Na Pe 
Bidens pachyloma (Oliv. & Hiern) Cufod. Asteraceae He Na Na An 
Bidens pilosa L. Asteraceae He Na Na An 
Bidens ternata (Chiov.) Sherff Asteraceae He Na Na Pe 
Blumea caffra (DC.) O. Hoffm. Asteraceae He Na Na An 
Bothriocline schimperi Oliv. & Hiern ex Benth. Asteraceae He Na Na Pe 
Carduus leptacanthus Fresen. Asteraceae He Th Na Pe 
Conyza newii Oliv. & Hiern Asteraceae Wo Na Na Ev 
Conyza pedunculata (Oliv.) Wild. Asteraceae He Na Na Pe 
Conyza pyrrhopappa Sch.Bip. ex A. Rich. Asteraceae Wo Na Na Ev 
Conyza sumatrensis (Retz.) E.H. Walker Asteraceae He Na Na An 
Crassocephalum macropappum (Sch. Bip. ex A. Rich.) S. Moore Asteraceae He Na Na Pe 
Crepis rueppellii Sch. Bip. Asteraceae He Ro+Rh Su Pe 
Dichrocephala integrifolia (L.f. ) Kuntze Asteraceae He Na Na An 
Eclipta prostrata  (L.) L. Asteraceae He Na Na An 
Emilia herbaceae Mesfin & Beentje Asteraceae He Na Na An 
Emilia serpentines Mesfin & Beentje Asteraceae He Na Na Pe 
Guizotia schimperi Sch. Bip. ex Walp Asteraceae He Na Na Pe 
Helichrysum argyranthum O.Hoffm. Asteraceae He Na Na Pe 
Helichrysum foetidum (L.) Moench. Asteraceae He Na Na An 
Helichrysum formosissimum Sch. Bip. ex A. Rich. Asteraceae He Na Na Pe 
Helichrysum globosum A. Rich. Asteraceae He Na Na Pe 
Helichrysum nudifolium (L.) Less. Asteraceae He Na Na Pe 
Helichrysum schimperi (Sch. Bip ex A.Rich.) Moeser Asteraceae He Na Na Pe 
Helichrysum traversii Chiov. Asteraceae He Na Na Pe 
Inula paniculata (Klatt) Burtt-Dary Asteraceae He Ro Na Pe 
Kleinia squarrosa Cufod. Asteraceae Wo Na Su De 
Laggera crispata (Vahl) Hepper & Wood Asteraceae He Na Na An 
Melanthera scandens (Schumach. & Thonn.) Roberty Asteraceae Cl Na Na Pe 
Microglossa pyrifolia (Lam.) Kuntze Asteraceae Wo Na Na Ev 
Parthenium hysterophorus L. Asteraceae He Na Na Pe 
Plectocephalus varians (A. Rich.) C. Jeffrey ex. Cufod. Asteraceae He Rh Su Pe 
Pluchea dioscoridis (L.) DC. Asteraceae He Na Na Pe 
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Species Families 
Growth 
forms 

Stress/ 
grazing 

Water/ 
nutrient

Temporal 
attributes

Senecio myriocephalus Sch. Bip. ex A. Rich. Asteraceae Wo Na Na Ev 
Senecio subsessilis Oliv. & Hiern Asteraceae He Rh Na Pe 
Sonchus oleraceus L. Asteraceae He Na Na An 
Spilanthes costata Benth. Asteraceae He Na Na An 
Vernonia auriculifera Hiern. Asteraceae Wo Na Na Ev 
Vernonia galamensis (Cass.) Less. Asteraceae He Na Na An 
Vernonia hymenolepis A. Rich. Asteraceae Wo Na Na Ev 
Vernonia myriantha Hook. f. Asteraceae Wo Na Na Ev 
Vernonia popeana C. Jeffrey Asteraceae He Na Na Pe 
Vernonia urticifolia A. Rich. Asteraceae Wo Na Na Ev 
Vernonia wollastonii  S. Moore Asteraceae He Na Na Pe 
Xanthium strumarium L. Asteraceae He Th Na An 
Balanites aegyptiaca (L.) Del. Balanitaceae Wo Th Na Ev 
Balanites rotindifolia (van Tieghem) Blatter Balanitaceae Wo Th Na Ev 
Impatiens hochstetteri Warb. Balsaminaceae He Na Su An 
Impatiens tinctoria A. Rich. Balsaminaceae He Na Su Pe 
Cordia africana Lam. Boraginaceae Wo Na Na De 
Cordia ovalis R.Br. Boraginaceae Wo Na Na Ev 
Cynoglossum amplifolium Hochst. ex A. DC. Boraginaceae He Na Na Pe 
Ehertia cymosa Thonn. Boraginaceae Wo Na Na Ev 
Commiphora habessinica (Berg) Engl. Burseraceae Wo Th Na De 
Lobelia gibberoa Hemsl. Campanulaceae Wo Na Na Ev 
Monopsis stellarioides (Presl.) Urb. Campanulaceae He Na Na An 
Wahlenbergia erectum (Roth. ex Roem.  & Schult.) Tuyn Campanulaceae He Na Na An 
Wahlenbergia hirsuta (Edgew.) Tuyn Campanulaceae He Na Na An 
Boscia salicifolia Oliv. Capparidaceae Wo Na Na Ev 
Cadaba farinosa Forssk. Capparidaceae Wo Na Na Ev 
Capparis fascicularis DC. Capparidaceae Cl Th Na Ev 
Crateva adansonii DC. Capparidaceae Wo Na Na Ev 
Maerua crassifolia Forssk. Capparidaceae Wo Na Na Ev 
Cerastium octandrum A. Rich. Caryophyllaceae He Na Na An 
Polycarpaea eriantha Hochst. Caryophyllaceae He Na Na An 
Maytenus arbutifolia (A. Rich.) Wilczek Celastraceae Wo Th Na De 
Maytenus gracilipes (Welw. ex Oliv.) Exell Celastraceae Wo Th Na Ev 
Maytenus senegalensis (Lam.) Exell Celastraceae Wo Na Na Ev 
Combretum aculeatum Vent. Combretaceae Wo Na Na De 
Combretum collinum Fresen. Combretaceae Wo Na Na De 
Combretum molle R. Br. ex G. Don Combretaceae Wo Na Na De 
Terminalia brownii Fresen. Combretaceae Wo Na Na De 
Terminalia schimperiana Hochst. Combretaceae Wo Na Na De 
Aneilema rendlei  C.B. Clarke Commelinaceae He Na Su Pe 
Commelina africana L. Commelinaceae He Rh Su Pe 
Commelina benghalensis L. Commelinaceae He Na Su An 
Commelina diffusa Burm.f. Commelinaceae He Na Su An 
Commelina reptans Brenan Commelinaceae He Rh Su Pe 
Cyanotis barbata D. Don Commelinaceae He Rh Su Pe 
Cyanotis foecunda Hochst. ex. Hassk. Commelinaceae He Rh Su Pe 
Convolvulus kilimandschari Engl. Convolvulaceae Cl Na Na Pe 
Evolvulus alsinoides (L.) L. Convolvulaceae He Na Na Pe 
Ipomoea cairica (L.) Sweet Convolvulaceae Cl Na Na Pe 
Ipomoea heterotricha F. Didr. Convolvulaceae He Na Na An 
Ipomoea kituiensis Vtake Convolvulaceae Cl Na Na Ev 
Ipomoea obscura (L.) Ker-Gawl. Convolvulaceae Cl Na Na Pe 
Seddera arabica (Forssk.) Choisy Convolvulaceae He Na Na Pe 
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Species Families 
Growth 
forms 

Stress/ 
grazing 

Water/ 
nutrient

Temporal 
attributes

Crassula alsinoides (Hook.f. ) Engl. Crassulaceae He Na Na Pe 
Kalanchoe glaucescens Britten Crassulaceae He Na Su Pe 
Kalanchoe lanceolata (Forssk.) Pers. Crassulaceae He Na Su An 
Kalanchoe petitiana A. Rich. Crassulaceae He Na Su Pe 
Umbilicus botryoides A. Rich. Crassulaceae He Rh Su Pe 
Kedrostis foetidissima (Jacq.) Cogn. Cucurbitaceae Cl Na Na Pe 

Lagenaria abyssinica (Hook.f. ) C. Jeffrey Cucurbitaceae Cl 
irritating 
hairs Na Pe 

Zeheneria scabra (Linn. f.) Sond. Cucurbitaceae Cl Rh Na Pe 
Cupressus lusitanica Miller Cupressaceae Wo Na Na Ev 
Juniperus procera Hochst. Ex Endl. Cupressaceae Wo Na Na Ev 
Cyathea sp. Cyatheaceae Fe Rh Na Ev 
Carex chlorosaccus C.B. Clarke Cyperaceae Gr Ro Na Pe 
Carex johnstonii Böckl. Cyperaceae Gr Ro Na Pe 
Cyperus alopecuroides Rottb. Cyperaceae Gr Tus Na Pe 
Cyperus dubius Rottb. Cyperaceae Gr Rh Na Pe 
Cyperus alternifolius L Cyperaceae Gr Rh Na Pe 
Cyperus papyrus L. Cyperaceae Gr Rh Na Pe 
Cyperus sesquiflorus (Torr.) Mattf. & Kük. Cyperaceae Gr Rh Na Pe 
Schoenoplectus corymbosus (Roem. & Schult.) Rayn Cyperaceae Gr Rh Na Pe 
Pteridium aquilinum (L.) Kuhn Dennstaedtiaceae Fe Rh Na Pe 
Dipsacus pinnatifidus Steud. ex A. Rich. Dipsacaceae He Rh Na Pe 
Pterocephalus frutescens Hochst. ex A. Rich. Dipsacaceae He Na Na Pe 
Dracaena afromontana Mildbr. Dracaenaceae Wo Na Na Ev 
Sansevieria ehrenberii Schweinf. ex Baker Dracaenaceae He Rh Su Pe 
Sansevieria forskoaliana (Shult. f.) Heper & Wood. Dracaenaceae He Rh Su Pe 
Drynaria volkensii Hiern. Drynariaceae Fe Rh Na Pe 
Polystichum fuscopaleaceum Alston Dryopteridaceae Fe Rh Na Pe 
Polystichum transvaalense C.N. Anthony Dryopteridaceae Fe Rh Na Pe 
Diospyros abyssinica (Hiern) F. White Ebenaceae Wo Na Na Ev 
Euclea divinorum Hiern Ebenaceae Wo Na Na Ev 
Agarista salicifolia (Comm. ex Lam.) Hook.f. Ericaceae Wo Na Na Ev 
Erica arborea L. Ericaceae Wo Na Na De 
Erica tenuipilosa (Engl. ex Alm & Fries) Cheek Ericaceae Wo Na Na Ev 
Acalyha fruticosa Forssk. Euphorbiaceae He Na Na An 
Acalypha crenata A. Rich. Euphorbiaceae Wo Na Na Ev 
Acalypha villicaulis A. Rich. Euphorbiaceae Wo Na Na Ev 
Acalypha volkensii Pax Euphorbiaceae He Na Na Pe 
Clutia abyssinica Jaub. & Spach. Euphorbiaceae Wo Na Na Ev 
Croton macrostachyus Del. Euphorbiaceae Wo Na Na De 
Euphorbia ampliphylla Pax Euphorbiaceae Wo Th Su Ev 
Euphorbia borenensis A. Gilbert Euphorbiaceae Wo Th Na Ev 
Euphorbia dumalis S.Carter Euphorbiaceae Wo Na Na Ev 
Euphorbia inaequilatera Sond. Euphorbiaceae He Na Na An 
Euphorbia polyacantha Pax Euphorbiaceae Wo Th Na Ev 
Euphorbia schimperiana Scheele Euphorbiaceae He Na Na An 
Euphorbia sp. 1 Euphorbiaceae Wo Th Na Ev 
Euphorbia sp. 2 Euphorbiaceae Wo Th Su Ev 
Euphorbia tirucalli L. Euphorbiaceae Wo Na Na Ev 
Flueggea virosa (Willd.) Voigt. Euphorbiaceae Wo Na Na De 
Phyllanthus maderaspatensis L. Euphorbiaceae Wo Na Na Ev 
Ricinus communis L. Euphorbiaceae He Na Na Pe 
Acacia albida Del. Fabaceae Wo Th Nf De 
Acacia brevispica Harms Fabaceae Wo Th Nf De 
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Acacia mellifera (Vahl) Benth. Fabaceae Wo Th Nf De 
Acacia nilotica (L.) Willd. ex Del. Fabaceae Wo Th Nf De 
Acacia polyacantha Willd. Fabaceae Wo Th Nf De 
Acacia senegal (L.) Willd. Fabaceae Wo Th Nf De 
Acacia seyal Del. Fabaceae Wo Th Nf De 
Acacia tortilis (Forssk.) Hayne Fabaceae Wo Th Nf De 
Aeschynomene abyssinica (A. Rich.) Vatke Fabaceae Wo Na Nf Ev 
Aeschynomene elaphroxylon Jaub. Fabaceae Wo Th Nf Ev 
Albizia gummifera (J.F.Gmel.) C.A.Sm. Fabaceae Wo Na Nf Ev 
Albizia schimperiana Oliv. Fabaceae Wo Na Nf De 
Alysicarpus rugosus (Willd.) DC. Fabaceae He Na Nf An 
Calpurnia aurea (Ait.) Benth. Fabaceae Wo Na Nf Ev 
Chamaecrista mimosoides (L.) Greene Fabaceae He Na Nf An 
Clitoria ternatea L. Fabaceae Cl Na Nf Pe 
Crotalaria agatiflora Schweinf. subsp.enlangeri Bak.f. Fabaceae He Na Nf An 
Crotalaria cephalotes Steud. A. Rich. Fabaceae He Na Nf An 
Crotalaria cylindrica A. Rich. Fabaceae He Na Nf Pe 
Crotalaria gillettii Polhill Fabaceae He Na Nf An 
Crotalaria laburnifolia L. Fabaceae He Na Nf Pe 
Desmodium adscendens (Sw.) DC. Fabaceae He Na Nf Pe 
Desmodium barbatum (L.) Benth. Fabaceae He Na Nf Pe 
Desmodium repandum (Vahl) DC. Fabaceae Cl Na Nf Pe 
Desmodium velutinum (Willd.) DC. Fabaceae Wo Na Nf Ev 
Dichrostachys cinerea (L.) Wight & Arn. Fabaceae Wo Th Nf De 
Dolichos sericeus E. Mey. Fabaceae Cl Na Nf Pe 
Entada abyssinica Steud. ex A. Rich. Fabaceae Wo Na Nf De 
Eriosema robustum Bak. Fabaceae Cl Na Nf Pe 
Erythrina brucei Schweinf. Fabaceae Wo Th Nf De 
Glycine wightii (Wight & Arn.) Verdc. Fabaceae Cl Na Nf Pe 
Indigofera amorphoides Jaub. & Spach Fabaceae He Na Nf Pe 
Indigofera arrecta Hochst ex A. Rich. Fabaceae Wo Na Nf De 
Indigofera atriceps Hook. F. Fabaceae Wo Na Nf De 
Indigofera brevicalyx Bak.f. Fabaceae He Na Nf Pe 
Indigofera colutea (Burm.f.) Merr. Fabaceae He Na Nf An 
Indigofera emarginella Steud. ex A. Rich. Fabaceae Wo Na Nf Ev 
Indigofera garckeana Vatke Fabaceae Wo Na Nf Ev 
Indigofera spicata Forssk. Fabaceae He Na Nf Pe 
Macrotyloma axillare (E. Mey.) Verdc. Fabaceae Cl Na Nf Pe 
Parochaetus communis D. Don Fabaceae He Na Nf Pe 
Piliostigma thonningii (Schumach.) Milne-Redh. Fabaceae Wo Na Nf Ev 
Pterolobium stellatum (Forssk.) Brenan Fabaceae Wo Th Nf Ev 
Rhynchosia densiflora (Roth) DC. Fabaceae Cl Na Nf Pe 
Rhynchosia minima (L.) DC. Fabaceae Cl Na Nf Pe 
Rhynchosia resinosa (Hochst. ex A. Rich.) Bak. Fabaceae Cl Na Nf Ev 
Senna obtusifolia (L.) Irwin & Barneby Fabaceae Wo Na Na Ev 
Sesbania sesban (L.) Merr. Fabaceae Wo Na Nf Ev 
Tephrosia elata Deflers Fabaceae Wo Na Nf Ev 
Tephrosia emeroides A. Rich. Fabaceae Wo Na Nf Ev 
Tephrosia interrupta Hochst. & Steud. ex Engl. Fabaceae Wo Na Nf Ev 
Tephrosia linearis (Willd.) Pers. Fabaceae Wo Na Nf Ev 
Tephrosia pentaphylla (Roxb.) G. Don Fabaceae Wo Na Nf Ev 
Tephrosia villosa (L.) Pers. Fabaceae Wo Na Nf Ev 
Trifolium simense Fresen. Fabaceae He Na Nf Pe 
Vigna membranacea A. Rich. Fabaceae Cl Na Nf Pe 
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Vigna parkeri Bak. Fabaceae Cl Na Nf Pe 
Dovyalis abyssinica (A. Rich) Warb. Flacourtiaceae Wo Th Na Ev 
Flacourtia indica (Burm.f.) Merr. Flacourtiaceae Wo Th Na De 
Sebaea brachyphylla Griseb. Gentianaceae He Na Na An 
Swertia abyssinica Hochst. Gentianaceae He Ro Na An 
Swertia lugardae Bullock Gentianaceae He Ro Na An 
Geranium sp. Geraniaceae He Na Na Pe 
Pelargonium glechomoides Hochst.  Geraniaceae He Na Na Pe 
Apodytes dimidiata E. Mey. ex Arn. Icacinaceae He Na Na An 
Hypericum quartinianum A. Rich. Hypericaceae Wo Na Na Ev 
Hypericum revolutum Vahl Hypericaceae Wo Na Na Ev 
Trichocladus ellipticus Eckl. & Zeyh. Hamamelidaceae Wo Na Na Ev 
Aristea abyssinica Pax Iridaceae Wo Na Na Ev 
Achyrospermum schimperi (Hochst. ex Briq.) Perkins Lamiaceae He Na Na Pe 
Ajuga integrifolia Buch.-Ham. ex D.Don Lamiaceae He Na Na Pe 
Becium filamentosum (Forssk.) Chiov. Lamiaceae He Na Na Pe 
Clerodendron myricoides (Hochst.) R. Br.ex Vatke. Lamiaceae He Na Na Pe 
Hoslundia opposita Vahl Lamiaceae Wo Na Na De 
Leonotis ocymifolia (Burm.f.) Iwarsson Lamiaceae Wo Na Na Ev 
Leucas glabrata (Vahl) R.Br. Lamiaceae He Na Na Pe 
Leucas martinicensis (Jacq.) R. Br. Lamiaceae He Na Na An 
Leucaus abyssinica (Benth.) Briq. Lamiaceae He Na Na An 
Ocimum lamiifolium (Hochst. ex Bent.) DC. Lamiaceae Wo Na Na Ev 
Platostoma rotundifolium (Briq.) A.J. Paton Lamiaceae He Na Na Pe 
Plectranthus barbatus Andr. Lamiaceae He Na Na Pe 
Plectranthus cylindraceus Hochst. ex Benth. Lamiaceae He Rh Su Pe 
Plectranthus lanuginosus (Hochst. ex. Benth.) Agnew Lamiaceae He Rh Su Pe 
Plectranthus minutiflorus Ryding Lamiaceae He Rh Su Pe 
Plectranthus rupestris (Hochst.) Baker Lamiaceae He Rh Su Pe 
Premna schimperi Engl. Lamiaceae Wo Na Na Ev 
Pycnostachys abyssinica Fresen. Lamiaceae He Rh Su Pe 
Pycnostachys eminii Gürke Lamiaceae He Na Na Ev 
Pycnostachys meyeri Gürke Lamiaceae Wo Na Na Ev 
Satureja abyssinica (Benth.) Briq. Lamiaceae Wo Na Na Ev 
Satureja paradoxa (Vatke) Engl. Lamiaceae He Na Na An 
Satureja pseudosimensis Brenan Lamiaceae He Na Na Pe 
Satureja punctata (Benth.) Briq. Lamiaceae He Na Na Pe 
Stachys aculeolata Hook. f. Lamiaceae He Na Na Pe 
Cassytha filiformis L. Lauraceae He Na Na An 
Buddleja polystachya Fresen. Buddlejaceae Wo Na Pa Ev 
Nuxia congesta R.Br. ex Fresen. Buddlejaceae Wo Na Na Ev 
Englerina woodfordioides (Schweinf.) M. Gilbert Loranthaceae Wo Na Na Ev 
Erianthemum dregei (Eckl. & Zeyh.) Tieghem Loranthaceae Fe Rh Na Pe 
Oncocalyx glabratus (Engl.) M. Gilbert Loranthaceae Wo Na Pa Pe 
Tapianthus globiferus (A. Rich.) Tieghem Loranthaceae Wo Na Pa Pe 
Tapianthus heteromorphus (A. Rich.) Loranthaceae Wo Na Pa Ev 
Huperzia dacrydioides (Baker) Pic. Serm. Lycopodiaceae Epiphyte Na Pa Ev 
Abutilon bidentatum (Hochst.) A. Rich. Malvaceae Wo Na Pa Ev 
Abutilon fruticosum Guill. & Perr. Malvaceae Wo Na Na Pe 
Hibiscus machranthus Hochst. ex A. Rich. Malvaceae He Na Na Pe 
Hibiscus micranthus L.f. Malvaceae He Na Na Pe 

Kosteletzkya adoensis (Hochst. ex. A. Rich.) Mast. Malvaceae Wo 
irritating 
hairs Na Ev 

Sida ovata Forssk. Malvaceae Wo Na Na Ev 
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Eckebergia capensis Saprrm Meliaceae He Na Na Pe 
Lepidotrichilia volkensii (Gürke) Leroy Meliaceae He Na Na Pe 
Bersama abyssinica Fresen. Melianthaceae Wo Na Na Ev 
Stephania abyssinica (Dillion ex A. Rich.) Walp. Menispermaceae Wo Na Na Ev 
Corbichonia decumbens (Forssk.) Exell Molluginaceae Wo Na Na Ev 
Mollugo nudicaulis Lam. Molluginaceae Cl Na Na Pe 
Dorestenia soerensenii Friis Moraceae He Na Na An 
Ficus sur Forssk. Moraceae He Ro Na An 
Ficus sycomorus L. Moraceae He Rh Na Pe 
Ficus vasta Forssk. Moraceae Wo Na Na De 
Embelia schimperi Vatke Myrsinaceae Wo Na Na De 
Maesa lanceolata Forssk. Myrsinaceae Wo Na Na De 
Myrsine africana L. Myrsinaceae Wo Na Na Ev 
Myrsine melanophloeos (L.) R. Br. Myrsinaceae Wo Na Na Ev 
Syzygium guineense (Willd.) DC. ssp. afromontanum F. White Myrtaceae Wo Na Na Ev 
Ochna insermis (Forssk.) Schweinf. ex Penzig Ochnaceae Wo Na Na Ev 
Ximenia americana L. Olacaceae Wo Na Na Ev 
Jasminum abyssinicum Hochst. ex DC. Oleaceae Wo Na Na Ev 
Jasminum grandiflorum  L. Oleaceae Wo Th Na Ev 
Olea europea L. ssp. cuspidata (Wall. ex  G. Don) Cif. Oleaceae Cl Na Na Ev 
Schrebera alata (Hochst.) Welw. Oleaceae Cl Na Na Ev 
Arthropteris monocarpa (Cordem.) C. Chr. Oleandraceae Wo Na Na Ev 
Arthropteris orientalis (J.F.Gmel.) Posth. Oleandraceae Wo Na Na Ev 
Olinia rochetiana A. Juss. Oliniaceae Fe Rh Na Pe 
Diaphananthe schimperiana (A. Rich.) Summerh. Orchidaceae Fe Rh Na Pe 
Oxalis corniculata L. Oxalidaceae Wo Na Na Ev 
Phytolacca dodecandra L´Herit. Phytolaccaceae He Rh Su Pe 
Peperomia abyssinica Miq. Piperaceae He Na Na An 
Piper capense L.f. Piperaceae He Na Na Pe 
Pittosporum abyssinica Del. Pittosporaceae He Na Su Pe 
Pittosporum viridiflorum Sims Pittosporaceae He Rh Na Pe 
Plantago palmata Hook. F. Plantaginaceae Wo Na Na Ev 
Andropogon abyssinicus Fresen. Poaceae Wo Na Na Ev 
Aristida adscensionis  L. Poaceae He Ro Na Pe 
Arthraxon micans (Nees) Hochst. Poaceae Gr Na Na An 
Arundinaria alpina K. Schum. Poaceae Gr Na Na An 
Bothriochloa insculpta (Hochst. ex A. Rich.) A. Camus Poaceae Gr Rh Na An 
Brachiaria leersioides (Hochst.) Stapf Poaceae Gr Rh Na Pe 
Brachiaria serrata (Thunb.) Stapf Poaceae Gr Tus Na Pe 
Cenchrus ciliaris  L. Poaceae Gr Na Na An 
Chrysopogon plumulosus Hochst. Poaceae Gr Tus Na Pe 
Cynodon dactylon  (L.) Pers. Poaceae Gr Rh Na Pe 
Digitaria velutina (Forssk.) P. Beauv. Poaceae Gr Tus Na Pe 
Echinochloa pyramidalis (Lam.) Hitchc. & Chase Poaceae Gr Na Na Pe 
Enteropogon machrostachyus Hochst. ex A. Rich. Benth. Poaceae Gr Na Na An 
Eragrostis cilianensis (All.) Vign. ex Janchen Poaceae Gr Rh Na Pe 
Exotheca abyssinica (Hochst ex A. Rich.) Anderss. Poaceae Gr Na Na Pe 
Harpachne schimperi Hochst. ex A. Rich Poaceae Gr Na Na An 
Heteropogon contortus (L.) Roem. & Schult. Poaceae Gr Tus Na Pe 
Hyparrhenia filipendula (Hochst.) Stapf Poaceae Gr Rh Na Pe 
Hyparrhenia hirta (L.) Stapf Poaceae Gr Tus Na Pe 
Leptochloa obtusiflora Hochst. Poaceae Gr Tus Na Pe 
Loudetia arundinacea (Hochst. ex A. Rich) Steud. Poaceae Gr Tus Na Pe 
Melinus repens (Willd.) Zizka Poaceae Gr Na Na Pe 
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Oplismenus undulatifolius (Ard.) Roem. & Schult. Poaceae Gr Tus Na Pe 
Panicum atrosanquineum  A. Rich. Poaceae Gr Tus Na An 
Panicum coloratum L. Poaceae Gr Rh Na Pe 
Panicum hochstetteri Stued. Poaceae Gr Na Na An 
Panicum maximum  Jacq. Poaceae Gr Rh Na Pe 
Panicum subalbidum Kunth Poaceae Gr Rh Na Pe 
Perotis patens Gand. Poaceae Gr Rh Na Pe 
Setaria incrassata (Hochst.) Hack. Poaceae Gr Na Na An 
Setaria pumila (Poir.) Roem. & Schult. Poaceae Gr Rh Na An 
Setaria verticillata (L.) P. Beauv. Poaceae Gr Tus Na Pe 
Sporoboulus piliferus (Trin.) Kunth Poaceae Gr Na Na An 
Themeda triandra Forssk. Poaceae Gr Na Na An 
Polygala albida Schinz Polygalaceae Gr Na Na An 
Polygala arenaria Willd. Polygalaceae Gr Tus Na Pe 
Polygala erioptera DC. Polygalaceae He Na Na An 
Polygala rupicola  A. Rich. Polygalaceae He Na Na An 
Polygala sadebeckiana Gürke Polygalaceae He Na Na An 
Polygala sphenoptera Fresen. Polygalaceae He Na Na Pe 
Polygonum afromontanium Greenway Polygonaceae He Rh Na Pe 
Loxogramme lanceolata (Sw.) S. Presl. Polypodiaceae He Na Na An 
Pleopeltis macrocarpa (Bory ex. Willd) Kaulf Polypodiaceae Cl Na Na Ev 
Portulaca oleraceae L. Portulacaceae Fe Rh Na Pe 
Portulaca quadrifida L. Portulacaceae Fe Rh Na Pe 
Talinum portulacifolium (Forssk.) Achers. ex Schweinf. Portulacaceae He Na Su An 
Faurea speciosa Welw. Proteaceae He Na Na An 
Adiantum sp. Pteridaceae He Na Su Pe 
Pteris catoptera Kze. Pteridaceae Wo Na Na Ev 
Pteris cretica L. Pteridaceae Fe Na Na Pe 
Clematis simensis Fresen. Ranunculaceae Fe Rh Na Pe 
Thalictrum rhynchocarpum Dill. & A. Rich. Ranunculaceae Fe Rh Na Pe 
Helinus mystacinus (Ait.) E. Mey. ex Steud. Rhamnaceae Cl Na Na Ev 
Rhamnus prinoides L`Herit. Rhamnaceae He Na Na Pe 
Rhamnus staddo A. Rich. Rhamnaceae Cl Na Na Ev 
Ziziphus mucronata Willd. Rhamnaceae Wo Na Na Ev 
Alchemilla fischeri Engl. Rosaceae Wo Na Na Ev 
Hagenia abyssinica (Bruce) J.F. Gmel. Rosaceae Wo Th Na Ev 
Prunus africana (Hook.f.) Kalkm. Rosaceae He Ro Na An 
Rubus apetalus Poir. Rosaceae Wo Na Na Ev 
Rubus steudneri Schweinf. Rosaceae Wo Na Na Ev 
Anthospermum herbaceum  L.f. Rubiaceae Cl Th Na Ev 
Canthium oligocarpum Hiern Rubiaceae Cl Th Na Ev 
Canthium pseudosetiflorum  Bridson Rubiaceae He Na Na Pe 
Galiniera saxifrage (Hochst.) Bridson Rubiaceae Wo Th Na Ev 
Galium simense Fresen. Rubiaceae Wo Na Na Ev 
Galium thunbergianum Eckl. & Zeyh. Rubiaceae Wo Na Na Ev 
Gardenia ternifolia Schumach. & Thonn. Rubiaceae He Na Na Pe 
Oldenlandia monanthos (A. Rich.) Hiern Rubiaceae He Rh Na Pe 
Pavetta oliveriana Hiern Rubiaceae Wo Na Na Ev 
Pentanisia ouranogyne S. Moore Rubiaceae He Na Na Pe 
Pentas lanceolata (Forssk.) Deflers Rubiaceae Wo Na Na Ev 
Pentas schimperana (A. Rich.) Vtake Rubiaceae He Na Na Pe 
Psychotria orophila Petit Rubiaceae He Na Na Pe 
Psydrax parviflora (Afz.) Bridson Rubiaceae Wo Na Na Ev 
Psydrax schimperiana (A. Rich.) Bridson Rubiaceae Wo Na Na Ev 
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Clausena anisata (Willd.) Benth. Rutaceae Wo Na Na Ev 
Teclea nobilis Del. Rutaceae Wo Na Na Ev 
Zanthoxylum chalybeum Engl. Rutaceae Wo Na Na Ev 
Dobera glabra (Forssk.) Poir. Salvadoraceae Wo Na Na Ev 
Salvadora persica L. Salvadoraceae Wo Th Na De 
Osyridocarpus schimperanus (A. Rich.) A. DC. Santalaceae Wo Na Na Ev 
Osyris quadripartita Decn. Santalaceae Wo Na Na Ev 
Allophyllus abyssinicus (Hochst.) Radlkofer Sapindaceae Cl Na Na Ev 
Dodonae angustifolia L.f. Sapindaceae Wo Na Na Ev 
Lepisanthes senegalensis (Juss. ex Poir.) Leenh. Sapindaceae Wo Na Na Ev 
Pappea capensis Eckl. & Zeyh. Sapindaceae Wo Na Na Ev 
Anemia schimperiana Presl Schizaeaceae Wo Na Na Ev 
Alectra sessiliflora (Vahl) Kuntze Scrophulariaceae Wo Na Na Ev 
Craterostigma pumilum Hochst. Scrophulariaceae Fe Rh Na Pe 
Cycnium erectum Randle Scrophulariaceae He Na Pa An 
Verbascum benthamianum Hepper scrophulariaceae He Ro+Rh Na Pe 
Veronica abyssinica Fresen. Scrophulariaceae He Na Na Pe 
Selaginella abyssinica Spring Selaginaceae He Na Na Pe 
Brucea antidysenterica J.F. Mill. Simaroubaceae He Na Na Pe 
Harrisonia abyssinica Oliv. Simaroubaceae Fe Na Na An 
Pellaea viridis (Forssk.) Prantl. Sinopteriaceae Wo Na Na Ev 
Discopodium penninervium Hochst. Solanaceae Wo Th Na Ev 
Solanum anguivi  Lam. Solanaceae Fe Rh Na Pe 
Solanum incanum  L. Solanaceae Wo Na Na Ev 
Dombya torrida (J.F. Gmel.) P. Bamps Sterculiaceae Wo Th Na Ev 
Hermannia tigreensis Hochst. ex A. Rich. Sterculiaceae Wo Th Na Ev 
Melhania velutina Forssk. Sterculiaceae Wo Na Na Ev 
Gnidia involucrata Steud. ex A. Rich. Thymelaeaceae He Na Na An 
Gnidia latifolia (Oliv.) Gilg Thymelaeaceae He Na Na Pe 
Corchorus trilocularis L. Tiliaceae Wo Na Na Ev 
Grewia bicolor Juss. Tiliaceae Wo Na Na Ev 
Grewia velutina (Forssk.) Vahl Tiliaceae He Na Na An 
Grewia villosa Willd. Tiliaceae Wo Na Na Ev 
Triumfetta brachyceras K. Schum. Tiliaceae Wo Na Na Ev 
Triumfetta pilosa Roth Tiliaceae Wo Na Na Ev 
Triumfetta tomentosa Boj. Tiliaceae Wo Na Na Ev 
Pilea rivularis Wedd. Urticaceae Cl Na Na Pe 
Pilea tetraphylla (Steudel) Blume Urticaceae Wo Na Na Ev 
Urerea hypselodendron (A. Rich.) Wedd. Urticaceae He Rh Na Pe 
Urtica simensis Steudel Urticaceae He Na Na An 
Lantana viburnoides (Forssk.) Vahl Verbenaceae Cl Na Na Ev 
Lippia adoensis Hochst. ex Walp. Verbenaceae He Rh Na Pe 
Phyla nodiflora (L.) Greene Verbenaceae Wo Th Na Ev 
Hybanthus enneaspermus (L.) F. Muell. Violaceae He Na Na Pe 
Viola abyssinica Oliv. Violaceae Wo Na Na Ev 
Cissus quadrangularis L. Vitaceae He Na Na An 
Cissus rotundifolia (Forssk.) Vahl Vitaceae He Na Na Pe 
Cyphostemma adenocaule (Stued. ex A. Rich.) Desc.oings ex Wild & 
R.B. Drumm.ond. Vitaceae Cl Na Su Pe 
Cyphostemma cyphoetalum (Fresen.) Desc. ex Wild & R.B. 
Drumm.Descoings ex Wild & Drummond Vitaceae Cl Na Su Pe 
Cyphostemma rivae (Gilg) Desc.oings Vitaceae Cl Rh Na Pe 
Rhoicissus revoilii Planch. Vitaceae Cl Na Su Pe 
Rhoicissus tridentata (L. f.) Wild & R.B. Drumm.Willd & Drummond Vitaceae Cl Na Su Pe 
Rhoicissus revoilii Planch. Vitaceae Cl Na Na Ev 



                                                                                                                         Appendix for Manuscript 2 

 83

Species Families 
Growth 
forms 

Stress/ 
grazing 

Water/ 
nutrient

Temporal 
attributes

 
Rhoicissus tridentata (L. f.) Willd & Drummond Vitaceae Cl Na Na Ev 
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Abstract 

 
 Over millennia the Ethiopian highlands have experienced drastic land use/land cover changes 

due to socio-economic and unsustainable resource use.  Yet there have been few studies, 

which attempted to quantify the pattern and magnitude of land use/land cover changes 

(LULCC) in the southern Rift Valley and adjacent Ethiopian highlands. This study attempts to 

answer the following questions: What are the rates and magnitudes of land use/land cover 

change in the study area? Do highland and Rift Valley sections of the study area show 

differential trajectories of land use/land cover change? What are the main driving forces for 

LULCC in the study area? Landsat Multi-Spectral Scanner (MSS), Landsat Thematic Mapper 

and Enhanced Thematic Mapper plus (ETM+) from the years 1976, 1986 and 2000, 

respectively were acquired and processed for maximum likelihood classification to generate 

land use/ land cover maps. Croplands increased from 29 % to 38 % between 1976 and 2000 

while bush/ shrubland increased from ~2 % to 12 % over the same period. Conversely, 

deciduous woodland and sparsely vegetated land cover classes lost an area of about 50 % 

from 1976 to 2000. Grassland cover increased over the period 1976 to 1986 and then 

decreased from 1986 to 2000. However, LULCC took differential trajectories over space and 

time. The highlands were dominantly characterized by land use change to cropland; whereas, 

the Rift Valley was dominated by land use changes and the transformation of land use/land 

cover types. After the mid 1980s, however, most land cover classes lost a significant 

proportion of land to cropland. These changes have potential consequences on local human 

livelihoods, biodiversity loss and regional environmental change.   

 

Keywords:  land cover transitions, land degradation, Rift Valley, Ethiopia 
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Introduction 
 

Land use/land cover change is the main contributor to global environmental change such as 

greenhouse gas emissions, the earth’s reflectivity (temperature) and water cycles including 

local and regional precipitation regimes (Geist 2006). It also has a negative consequence on 

the provision of ecosystem services through watershed degradation, soil erosion and 

sedimentations (Jones et al. 2001). Land use changes are modifying and fragmenting 

habitats, increasing the vulnerability of ecosystems to invasive species (Foley et al. 2005; 

Carpenter et al. 2007), and have persistent legacies in shaping and maintaining ecosystem 

structures and functions (Foster et al. 2003). Moreover,  It was considered as one of the 

most important drivers of  tropical biodiversity loss by the year 2100 (Sala et al. 2000). 

 

LULCC  are global phenomena that pose a great challenge, with the rate of change and 

pattern of transformation varying across spatial and temporal scales (Meyer & Turner 1996). 

In the developed northern hemisphere, forest cover loss is significantly low with croplands 

that shrink over time (Lambin et al. 2003), while in most developing countries of the tropics 

deforestation proceeds at massive scales mainly for the cultivation of crops and pastureland 

(Meyer & Turner 1996).      

 

Human population growth and density, socio-economic conditions (e.g. poverty) and 

government policies were important causes for the LULCC in Ethiopia (Zeleke 2000; 

Gessesse & Kleman 2007; Gessesse & Christiansson 2008). Population growth can limit the 

capacity of the resource base to supply ecosystem goods such as food (Fairhead et al. 1996) 

and push the rural poor into marginal lands (Reid et al. 2000). With the human population 

increasing, the demand for cropland, fuelwood, timber and other resources increase and 

leads to a process of environmental degradation. Environmental degradation in turn leads to 

poverty and that again reinforces the process of degradation (Zeleke 2000).  A number of 
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studies (Hurni 1988; McCann 1995; Zeleke 2000) reported severe problems from LULCC 

as a result of population growth and density, and resultant poverty in the Ethiopian 

highlands.  

 

The expansion of mechanized agriculture to produce cash crops for export, infrastructure 

development and lack of tenure security had a great influence especially on regions of the 

Ethiopian Rift Valley (Gebre 2001; Gessesse & Kleman 2007; Gessesse & Christiansson 

2008). The Rift Valley was recognized as the corridor of future development since the 

1960s (Gebre 2001) and hence have experienced drastic LULCC. Nevertheless there were 

very few studies (Gessesse & Kleman 2007; Gessesse & Christiansson 2008) which provide 

information on the rate and magnitude of land use/land cover dynamics in the southern half 

of the Rift Valley and the adjacent Ethiopian highlands. This study attempts to answer the 

following questions: What are the rates and magnitudes of land use/land cover change in the 

study area? Do highland and Rift Valley sections of the study area show differential 

trajectories of land use/land cover change? What are the main driving forces for LULCC in 

the study area?   

 

 

Materials and methods 

 

The Study Area 

 

The study area is located at 5ο42’ N to 6ο 20’ N and 37ο 17 ’E to 37ο 59’ E (Figure 1).  The 

highest point is in the Gughe highlands peaking at 3546 m a.s.l. (EMA 1994). It serves as a 

watershed for the inland drainage basin to Lakes Abaya and Chamo  in the South- east and 

the Omo River in the North-west, respectively (Desissa 2007). The physiography of the 

investigated area is characterized by great diversity, including plateaus, escarpments, horsts, 

undulating plains, and a graben where Lakes Abaya and Chamo, are located. The lakes have 

shown fluctuations in the last 50 years and the level of L. Abaya has continuously increased 

since 1987 due to climatic variability and land use changes (Shütt et al. 2005). The eastern 

boarder is marked by the Amaro horst, a block mountain that emerged during the formation 

of the Rift Valley  with a peak of 3380 m.s.l. (EMA 1994).  
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    Figure 1 Location map of the study area 
 

Arbaminch (1200 m a.s.l.) has a mean annual temperature of 23° C over the last three 

decades while Chencha (2700 m.a.s.l.) has a mean annual temperature of 14° C (Figure 2). 

A bimodal rainfall distribution prevails in the two meteorological stations (Figure 2). The 

total mean annual rainfall recorded over the last two decades for the two stations, 

Arbaminch and Chencha, was 888 mm and 1235 mm, respectively. The main rainy season 

occurs in April and May while the small rainy season is in September and October. 

Arbaminch experiences a pronounced dry season and consequently has a water shortage for 

several months of the year (Figure 2a). The Chencha Highlands receive a great deal of 

rainfall and enjoy a water surplus continuously for several months from February to October 

(Figure 2b). 
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Figure 2 Climate diagram of Arbaminch (a) and Chencha (b) after Thornthwaite (vertical hatching 
indicate surplus while dot pattern indicate deficit). Arbaminch lies at 1200 m, mean annual 
temperature = 23°C, total Annual rainfall= 888 mm recorded. Chencha station is located at 2700 m, 
mean annual temperature = 14°C, total annual rainfall = 1235 mm, PET stands for potential evapo-
transpiration. Arbaminch station had a temperature record from 1976 to 2005 and rainfall record from 
1987 to 2005. Chencha had a temperature record from 1972 to 1981 while rainfall recorded from 1972 
to 2004. However, rainfall records were not continuous and data were missing for Chencha from 
1981-1989. All climate records were obtained from the Ethiopian National Meteorological Services 
Agency (NMSA). 
 
 

The vegetation of the study area lies within the Somali-Masai regional centre of endemism 

(White 1983) comprising deciduous woodland, savannah grassland, bush land, and dense 

thickets, while in the Gughe and Amaro mountains broad-leaved afro-montane rainforests 

are the dominant climax vegetation (Friis 1992). The Nech-Sar National Park was 

established in 1972 to conserve the endemic Swayne’s Hartebeest and the scenic landscapes 

of the area and thereby generate economic benefits to the country through the provision of 

tourism.     

  

Methods 

 
Prior to analysis Landsat images were geo-referenced to the Universal Transverse Mercator 

(UTM) geographic projection, using Clarke 1880 spheroid, datum Adindan (Ethiopia) and 

zone 37 N. The Landsat Multi-Spectral Scanner (MSS), the Landsat Thematic Mapper (TM) 

and Enhanced Thematic Mapper plus (ETM+) were used for the periods 1976, 1986 and 

2000, respectively. The Landsat MSS had a coarse resolution of  80 m while the Landsat TM 

and ETM+ have a resolution of 30 m. Landsat TM and ETM+ were then resampled into 80m 

to match the spatial resolution to the Landsat Multi-Specteral Scanner. Satellite data were 

freely obtained from the GLCF website (http://glcf.umiacs.umd.edu/index.shtml). 
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LULCC analyses were performed with ERDAS imagine 8.5. A supervised maximum 

likelihood classification method was used to identify land use/land cover types. We have 

scanned eight topographic-sheet maps (0537A2, B1, B2, 0637C1-C2, C4 and 0636D3, D4), 

which cover the study area, with a resolution of 600 dots per inch. Then the files were saved 

in Tag Image Format (TIFF) and georeferenced to Clark 1880, datum Adindan UTM zone 

37 N and converted to image format. The topographic sheet maps were obtained from 

Ethiopian Mapping Agency. We have identified closed patches of forests in the highlands, 

woodlands and croplands from theses maps as a ground validation for image analysis of the 

1976 MSS image and TM of 1986. Regarding the Enhanced Thematic Mapper plus 

(ETM+), we have made floristic survey of our study area during Novermber-January in 

2006/07 and December 2007. These periods match the image acquisitions dates in dry 

season except for ETM+ (path/row: 1689 -56) in the right bottom corner of the mosaic 

image (Figure 3a), which was acquired during May 5, 2000. Floristic data were collected 

from 74 sample points from several categories of woodland, grassland and forests and were 

used as ground reference points for the classification. However, some classes, which have 

very close spectral signatures, were combined to reduce errors. For instance, it was not 

possible to distinguish mountain pasture from cropland. Similarly, degraded Afro-montane 

forest and bamboo patches were merged into the cover class ‘evergreen forest’. After 

classification, we compared the three time series of land cover/land use maps to generate a 

change matrix.  

 

 

Results 

 
The landscape in the Gughe-Amaro Mountains was largely dominated by cropland, deciduous 

woodland and wooded grassland over the specified periods (Table 2; Figure 3b). These three 

categories, without counting the two lakes, covered above 55 percent of the study area (Table 

2). Changes in land use/land cover types across the entire region from 1976 to 2000 were 

significantly large. Bush/shrub woodland and cropland (including mechanized farming) 

increased in area over the three reference periods (Table 2). Bush/shrub woodland increased 

tremendously from 100 km² (1.8 %) in 1976 to 669 km² (12.0 %) in 2000 (Table 2). Most of 

the other land use/land cover types showed a negative change, however. Deciduous woodland 

and sparsely vegetated land cover classes lost half of their area over two and a half decades 
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while fire-dominated bushland vegetation declined from 4 % of the total area cover in 1976 to 

a mere 1% in the year 2000 (Table 2).   

 

 

 
 
Figure 3 a) Landsat images, paths/rows and data of acquisition; b) Classified land use/land cover maps for the 

three time interval of 1976, 1986 and 2000.  

 

Over the whole period of two and a half decades (1976-2000) most land cover classes 

conceded some of their land to croplands (Table 3). In the first decade barren/sparsely 

vegetated land cover and deciduous forest (woodland) lost the largest area of land to cropland, 

~167 km² and ~90 km², respectively. Many of these land cover changes to cropland are 

because of agricultural expansion in the areas adjacent to cropland in the highlands and 

possibly as a result of migration to the lowlands along the Rift Valley on the western border 
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of Lake Chamo (Figure 2). Although agricultural conversion dominated the landscape during 

the first decade, it was also observed that land cover transformations took place extensively in 

the landscape. For instance, a significant part of the deciduous woodland was transformed 

into bush/shrubland, riparian forest (~76 km² each) and grassland (~60 km²).  Furthermore, 

wooded grassland was largely transformed into bushland and open grassland (Table 3).  
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 Table 1 Land use/land cover (LULC) descriptions 
Ser.no.      LULC types                                                                                       Descriptions 
1 Evergreen forest Evergreen dry and moist afromontane forest with covers more than 70 %. The dominant species include Apodytes dimidiata E. Mey. ex Arn., Ilex mitis L. 

Radlk, Arundinaria alpina K. Schum, Syzygium guineense (Willd.) DC, and dense plantations of Eucalyptus globules and Cupressus lustanica. 
 

2 Deciduous woodland Deciduous forest or woodland with a cover range up to 60 % dominated by Combretum spp., Acacia spp., Terminalia brownii Fresen, and Dichrostachys 
cinerea (L.) Wight & Arn.   
 

3 Ground-water forest Dense forest cover which is dependent on the ground water table. Dominant species are Lepisanthes senegalensis (Poir) Leenh,  Ficus sycomorus L. and Teclea 
nobilis Del. 
 

4 Riparian forest Deciduous and evergreen forest along the banks of streams. Dominant species are Ficus spp. and Acacia spp.
5 Wooded grassland Open evergreen and deciduous woodlands with a cover ranging from 20 to 40 %, shrubs, scattered trees and bushes. The dominant species are Acacia spp., 

Combretum spp., Euclea divinorum Hiern, and Dodonea angustifolia L.f. 
 

6 Grassland Extensive grasslands with almost homogenously dominated by grasses and sparse trees and shrubs in the Nech-sar plains and along low lying areas. The 
dominant grass species include Themeda triandra Forssk., Hyparrhenia spp., Heteropogon contortus and scattered tress of Accacia mellifera,(Vahl) Benth., and  
Dichrostachys cinerea (L) Wight & Arn. 
 

7 Bush/shrub woodland Includes short shrubs, thorny bushes and tufted grasses (e.g. Heteropogon contortus  (L.) Roem. & Schult.) mainly used for grazing and browsing. The 
dominant species include Dodonea angustifolia L.f., Acalypha fruticosa Forssk., Canthium pseudosetiflorum Brid.,  Acacia spp.,  Dichrostachys cinerea (L) 
Wight & Arn.. 
  

8 Fire dominated bushland Burned areas and ‘fire-successional vegetation’, mainly bushlands dominated by Dodonea angustifolia L.f, Accacia spp., Canthium pseudosetiflorum Brid.  
 

9 Barren/sparsely vegetated Barelands due to excessive erosion, and sedimentations and scattered Acacia spp., tufted grasses and other thorny species. 
 

10 Mechanized farms State owned farms mainly cotton and banana plantations using heavy machineries, irrigation and fertilizers 
11 Cropland Areas covered by annual and perennial crops usually by small landholders. It includes cereals such as Teff (Eragrostis tef,), Barley (Hordeum vulgaris), Maize 

(Zea mays L.) and Wheat (Triticum Spp.), root crops such as cassava (Manihot esculata Cranz,), yams (Dioscorea abyssinica Hochst ex Kunth, etc) and Enset 
(Enset ventricosum). It also includes agroforestry such as apple (Malus Sylvestris Miller), mango (Mangifera indica L.), avocado (Persea americana Mill) tress 
in their homesteads and farm yards. 
 

12 Town Arba Mich town & other small towns  
13 Wetlands Swampy and marshy areas mainly around Lakes Abaya and Chamo. The shoreline of Abaya and Chamo are dominated by Typha angustifolia (L.), and 

Aeschynomene elaphroxylon Jaub. 
 

14 Water bodies  Lakes  Abaya, Chamo and small ponds 
 

15 Cloud/shadow Clouds and shadow cover during image acquisitions 
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In the second period (1986-2000) the pattern of landscape change and transformation took a 

more pervasive stage. Croplands, unlike over the previous period, gained quite large areas 

from many classes such as deciduous, bush/shrubland, wooded grassland and sparsely 

vegetated (Table 3). This shows that there was an indiscriminate process of deforestation for 

agricultural purposes especially in the Rift Valley regions. Deciduous woodland 

experienced a transition to wooded grassland and bush/shrubland, whereas bush/shrubland 

gained a lot of area from grassland (132 km²) and wooded grassland (124 km²) over the 

period from 1986 to 2000. 
 

           Table 2 Land use/land cover change between 1976 and 2000.   

 

 Land use/land cover types 1976 % 1986 % 2000 % 
Evergreen forest 190.1 3.4 184.6 3.3 132.0 2.4 
Deciduous woodland 903.4 16.2 695.7 12.5 438.3 7.9
Riparian forest 211.6 3.8 226.7 4.1 246.5 4.4 
Bush/shrubland 100.1 1.8 397.7 7.1 669.6 12.0
Wooded grassland 460.5 8.3 448.8 8.0 446.8 8.0 
Grassland 326.1 5.8 363.0 6.5 229.6 4.1
Fire-dominated bushland  225.7 4.0 152.8 2.7 63.3 1.1 
Cropland 1651.7 29.6 1937.8 34.7 2112.8 37.9
Barren/sparsely vegetated 538.1 9.6 178.0 3.2 268.8 4.8 
Ground water forest 30.0 0.5 22.6 0.4 18.3 0.3 
Wetlands 22.1 0.4 4.7 0.1 14.9 0.3 
Mechanized farms 110.1 2.0 114.9 2.1 157.7 2.8 
Water bodies 773.4 13.9 771.4 13.8 775.7 13.9 
Town/Arba Minch 3.9 0.1 4.3 0.1 4.4 0.1 
Cloud/shadow  31.6 0.6 75.2 1.3 0.0 0.0 
Total 5578.0 100.0 5578.0 100.0 5578.0 100.0

 
The evergreen forest (remnant Afro-montane forest) experienced a decline over the stated 

periods, losing an area of about 16 km² and 24 km² from 1976-1986 and 1986-2000, 

respectively. In general, the area of cropland and bush/shrubland increased considerably 

during the study period. By contrast, deciduous woodland, grassland, fire-dominated 

bushland, wooded grassland and evergreen forest generally showed a decline over the course 

of twenty-four years (Figure 3b). 
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       Table 3 Land cover/land use change matrix showing class to class changes, total gains and  
        Losses of different classes from1976-2000 (bold texts in the diagonal indicate the  

                 amount of cover units which persists in the subsequent reference year).  
 

Change matrix (1976-1986)                      Land use/land cover types                                                  Area (km2) 

 Ev DW RF BS WG GR FB CL BSV 1976 
Total 
loss 

Ev 146.3 10.42 5.08 0.29 10.12 0.29 0.26 15.49 0.34 190.09 43.80 
DW 3.1 487.29 76.19 75.36 25.98 58.80 47.44 89.97 1.85 903.44 416.15 
RF 7.4 46.15 52.12 30.13 12.26 0.48 6.72 53.77 2.07 211.61 159.49 
BS 0.1 5.80 3.85 57.59 6.48 3.92 15.57 4.78 1.45 100.10 42.51 
WG 0.96 37.61 14.39 84.54 218.52 50.51 6.46 45.39 1.65 460.50 241.98 
GR 0.17 16.92 1.84 34.57 52.70 135.65 8.99 14.23 1.48 326.11 190.46 
FB 0.54 12.78 2.10 47.32 85.97 22.54 26.67 10.62 13.32 225.65 198.98 
CL 0.30 0.31 0.73 1.51 6.13 34.18 27.65 1,500.12 9.80 1,651.71 151.59 
BS 4.45 3.54 3.80 0.98 14.99 0.50 1.01 167.16 115.17 538.05 422.88 
1986 184.59 695.70 226.71 397.73 448.80 362.98 152.80 1,937.79 177.98 5,578.32 2,246.86
Total 
gain 38.30 208.41 174.59 340.14 230.28 227.33 126.13 437.67 62.81 2.246.86  
 
Change Matrix (1986-2000)                                                                                                     Area (km2) 

 Ev DW RF BS WG GR FB CL BSV 1986 
Total 
loss

Ev 124.52 1.91 24.96 0.18 0.58 0.04 0.19 24.13 2.18 184.60 60.08
DW 0.00 376.20 62.20 67.96 73.00 4.72 4.46 73.27 0.82 695.69 319.49 
RF 0.00 33.47 54.63 51.48 18.59 1.45 1.83 47.30 0.34 226.71 172.08 
BS 0.00 1.13 30.93 126.22 72.82 30.32 5.62 77.66 14.39 397.73 271.51 
WG 0.00 3.06 4.34 124.74 180.24 41.84 12.90 73.80 3.85 448.80 268.56 
GR 0.00 1.80 0.86 132.21 33.39 126.42 4.74 45.50 3.44 362.99 236.57 
FB 0.42 8.67 0.99 98.76 9.27 6.78 12.56 11.97 0.92 152.80 140.24 
CL 1.00 2.96 1.40 8.38 10.86 8.98 18.23 1,685.58 150.41 1,937.80 252.22 
BS 0.00 0.33 0.14 4.63 20.11 2.44 0.60 65.01 80.94 177.97 97.03 
2000 132.00 438.33 246.50 669.60 446.80 229.56 63.30 2,112.80 268.84 5,578.46 2.010.57
Total 
gain 7.48 62.13 191.87 543.38 266.56 103.14 50.74 427.22 187.90 2.010.57  

 

EV:Tropical evergreen forest; DW: Deciduous woodland; RF: Riverine forest; BS: Bush/shrubland; WG: Wooded   

Grassland;  GR:  Grassland; FB: Fire dominated bushland; CL: Cropland; BSV: Barren/sparsely vegetated). 

 

 

Discussion 

 
Land use/land cover changes the Gughe-Amaro Highlands 

 

In the highland of the Gughe-Amaro Mountains small-scale crop cultivation dominates the 

pattern of land cover change. It covers above 40 % of the study area (excluding Lakes 

Abaya and Chamo). Evergreen forest and deciduous forest/woodland have suffered from 

deforestation and degradation due to the direct conversion of forest to farmland and through 

logging and human settlement. In the mid 1970s the Gughe-Amaro Highlands already lost 
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the climax afro-montane vegetation to farmland. However, there were still some remnant 

patches of evergreen dry afromontane forest (1900-3200 m) and moist afromontane forest 

(2000-3200 m) (Desissa 2007) on higher mountain tops and on inaccessible steep slopes. 

This remnant forest, however, still lost area to cropland in subsequent decades. Similarly, 

riparian forests lost a significant area (~ 100 km2) between 1976 and 2000 (Table 3).  

 

A high population density in the highlands since 1970s resulted in the conversion of forests 

to croplands. Kloos & Adugna (1989) estimated annual population growth rate of 1.9 % for 

Gamo Gofa region between 1967 and 1984. Based on this growth rate and retrospective 

projections for our study area from 1994 census results (CSA 1996), the total population in 

1976 was estimated to be 221,643 and 57,088 in the Gughe highlands (Chencha, Dita, 

Daramalo and Bonke sub-districts) and the Amaro highlands (Amaro special woreda/sub-

district), respectively. This would yield a population density of 116 persons/km2 and 36 

persons/km2. The total rural population density has nearly doubled over the last three 

decades (1976-2007) with the current rural population density at 214 persons/km² and 89 

persons/km² (Population Census Commission 2008) in the Gughe and Amaro highlands, 

respectively.  

 

Based on the Central Statistical Agency 1996 projection, some administrative sub-districts 

like Chencha in the Gughe highland had a density of more than 320 persons/km² (CSA 

1996). It was reported that cropland holding consistently declined from a hectare per 

household in 1970 to 0.25 hectare per household in 2000 in Gamo Gofa (Farina et al. 2001). 

This evidently had a result on the fragmentation and degradation of the mountain forest 

vegetations. The Gughe highland, in particular, faced a significant loss and degradation of 

the evergreen afro-montane forest. The remnants of this forest have already been fragmented 

with the potential consequence of biodiversity loss and regional precipitation change over 

time. Localized plant species extinctions, the vulnerability to invasive species, and decreased 

ecosystem resilience were reported to be severe in East Africa due to climate change and 

variability (Case 2006).   

 

Owing to the declining man-to-land ratio and a consequent decline of local agricultural 

production, farming communities started to heavily depend on foreign food aid, out 

migration to urban centres and to the lowlands such as the nearby Rift Valley. McCann’s 

extensive work on the Central Ethiopian highlands (Ankober) has also revealed the continual 
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out-migration of people from the Ankober highlands to the adjacent Rift Valley to take on 

agricultural lands as a consequence of the declining people-to-land ratio and environmental 

degradation (McCann 1995). In the same context, an out-migration of the population as a 

survival strategy was observed in the northern Ethiopian highlands because of poverty and 

environmental degradation (Ezra 2001).     

 

Land cover dynamics in the Rift Valley  

 

The process of LULCC in the Rift Valley section of the study area was dominated by a 

simultaneous process of deforestation and transformation of land us/land cover types. Much 

of the vegetation cover except for the evergreen afro-montane forest was concentrated in the 

Rift Valley section of the study area (see Figure 3b). The expansion of croplands was a 

pervasive process in the second reference period of the study (1986-2000), gaining quite large 

areas from many land cover types such as deciduous forest/woodland, bush/shrubland, 

wooded grassland and sparsely vegetated areas. This shows that there was an indiscriminate 

process of deforestation for agricultural purposes.   

 

The transition of deciduous forest/woodland to wooded grassland and riparian forest was a 

conspicuous process from 1976 to 2000 (Table 3). However, the transition of deciduous 

forest/woodland to grassland has shown a differential rate of transformation over the two 

reference periods. The first reference period (1976-1986) was signified by a marked transition 

from deciduous forest/woodland to grassland (~59 km²). The period 1976-1986 in Ethiopia 

was characterized by a shift in tenure policy, villagization/resettlement and climate variability 

(drought) (Kloos & Adugna 1989; Ayenew 2004). The transition of deciduous 

forest/woodland was mainly to wooded grassland ~73 km² in the period 1986-2000 compared 

to 26 km² in the first reference period (1976-1986). This, therefore, is a possible indication of 

differential processes taking place over the two specified periods; the first study period was 

likely dominated by the forest clearing for cropland and thinning of the vegetation through 

logging for construction materials and hence encouraged the dominance of grassland.  It has 

been reported that population growth and in-migration to the Rift Valley regions, 

unemployment and government policies (e.g., land tenure, resettlement, mechanized 

agriculture)  were found to be important drivers of LULCC since 1970s in Ethiopian Rift 

Valley regions (Reid et al. 2000; Gessesse & Christiansson 2008). In addition in the mid 

1970s the prevalence of drought, evidenced by a fall in the lake levels of Lake Abaya and 
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Lake Chamo (Ayenew 2004), and population displacement from the highlands (Reid et al. 

2000) have resulted in the extensive transformation of the landscape in the nearby Rift Valley 

and its adjacent lowlands.  

 

In the subsequent period, however, the transition of deciduous woodland to grassland was 

surpassed by wooded grassland. This could possibly be the result of a combination of 

disturbance events such as overgrazing, change in fire and the change in precipitation regimes 

from the late 1980s to 2000 (Ayenew 2004; Shütt et al. 2005). Laks Abaya and Chamo 

exhibited a steady increase in water levels reaching a maximum of about 3.5 meters for Lake 

Chamo in the year 2000 compared to the 1985 water level (Ayenew 2004), a possible 

indication of increased rainfall in the region. In the same context, bush/shrubland gained a 

great deal of area from grassland (132 km²) and wooded grassland (124 km²) over the period 

from 1986 to 2000. In addition to an increase in precipitation since the 1990s, the 

transformation of grassland to bush/shrubland could be the result of bush encroachment due 

to high grazing intensity by domestic and wild animals in and around the Nech Sar National 

Park. Fire-dominated bushland vegetation has also been transformed into bush/shrubland. 

However, it was not clear whether grass-dominated vegetation changed into bush/shrubland 

due to a change in the fire regime or simply due to a lack of fuel load for fire as a result of 

vegetation degradation.  

 

The current operation of the Tsetse eradication project, which was aimed at controlling 

trypanosomiasis, would have its own negative effect on the transformation of the vegetation 

cover in the Rift Valley. The overall goal of such a project was to help enable farmers and 

pastoral communities to ensure food security through an increased number of healthy cattle 

and through the use of animal draught power (ESTC 2008). In the environmental impact 

assessment of the Tsetse control project run by the Ethiopian science and technology 

commission (ESTC 2008), it was stated that the effective control of the killer animal 

disease, Trypanosomiasis, would help to shift the high population pressure from the 

surrounding highlands.  

 

The effect of such a project is yet to be seen but different sources indicated that Tsetse 

control projects in Africa have accelerated the conversion of woodlands and forests at the 

expense of agricultural expansion (Nagel 1993; Wilson et al. 1997).  For instance, a study 

conducted by Wilson and his colleagues indicated that the effective control of Tsetse flies in 
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the Ghibe Valley in south-western Ethiopia resulted in the accelerated conversion of 

wooded grassland into cropland as smallholders penetrated into previously uncultivated 

lands (Wilson et al. 1997).  

 

 

Conclusion 

 
There was a significant change in the land use/land cover over the study periods from 1976-

2000. Land cover change and transformations have taken differential trajectories over space 

and time in the study area. The highlands were dominantly characterized by land cover 

change where most of the cover classes changed to cropland. In contrast, the Rift Valley 

was dominated by a combination of land cover change and transformations with processes 

of forest clearing for agricultural purposes and the degradation of forests and woodlands. 

Temporally, in the first decade cropland expansion was mainly at the expense of deciduous 

woodland, sparsely vegetated and riparian forest. However, in the second study period most 

classes lost a significant proportion of land to agriculture and a concomitant shift from one 

land cover class to another due to a combination of socio-economic factors, climatic 

variability and possibly a shift in tenure regimes.  

 

The consequences of LULCC (e.g., biodiversity loss, regional precipitation change) are very 

critical. The Gughe highland, in particular, faced a significant loss and degradation of 

evergreen afro-montane forest. The remnants of this forest were already fragmented and 

subject to the potential consequences of biodiversity loss and regional precipitation change 

over time. Therefore, the overall pattern and trajectories of LULCC in the study area were 

consequences of different factors spanning from local to regional responses to demographic, 

socio-economic and government policy regimes. Such changes bring about far-reaching 

consequences to local human livelihoods, biodiversity loss and regional environmental 

change.   
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Abstract 

 
Aim Species reportedly respond to global warming by poleward and altitudinal distribution 

shifts. We tested the following hypotheses to predict potential response of species to global 

warming in the tropics: 1) Consequences of global warming result in strong potential lowland 

attrition, range-gaps, range contractions, and finally extinction risks of plants. 2) There are 

growth forms and plant families which face a higher than average risk due to their current 

altitudinal distribution. 3) Endangered and endemic species are especially vulnerable to 

warming. 

  

Location South Ethiopian highlands. 
 
 
Method We applied a simple model developed by Colwell et al., 2008 to evaluate the 

consequences of an upward shift of isotherms on the altitudinal distribution of 475 plant 

species in southern Ethiopia. Temperture increase between 0 and 5°C were modelled. 

Differences between groups of species were evaluated by a permutation procedure and 

GLM’s. 

 

Results Even mild global warming created strong potential risks concerning lowland attrition, 

i.e. the net loss of species richness in the tropical lowlands caused by altitudinal range shifts 

in the absence of new species arriving. Likewise, many species are projected to face range gap 

shifts, i.e. the absence of an overlap between future and current altitudinal ranges already at 
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mild warming scenarios. Altitudinal contractions and mountaintop extinctions became 

important only after warming exceeded 3.5°C. Area per species declined by 55% (A2 

emission scenario) as a consequence of the physical shape of the mountains. Endemic species 

as well as herbs and ferns showed over-proportionally high vulnerability. Several plant 

families with higher or lower risk than average were identified.  

 

Main conclusions Lowland biotic attrition and range shift gaps pose urgent challenges in the 

inner tropics, while range contractions especially threaten endemic and already endangered 

species. We suggest that conservation priorities can be identified with the help of the applied 

model even in the absence of precise regional warming scenarios. 

 

Keywords 

Climate change, tropics, lowland attrition, range-gap shifts, range contractions, extinction 

 

 

Introduction 

 
Alterations of species distributions due to global warming result in poleward and upward 

shifts (Beckage et al., 2008; Lenoir et al., 2008; Parmesan & Yohe, 2003; Pauli et al., 2007) 

across a wide variety of taxa (Hickling et al. 2006). The vast majority of these observations 

stem, however, from the mid- to high latitudes (Felton et al., 2009). This is clearly not 

adequate with regard to climate change scenarios, which predict stronger than average 

warming in the tropics (IPCC, 2007). These scenarios furthermore project both climatic 

conditions without current equivalents and the loss of current climatic conditions mainly in 

the tropics, with a hotspot of turnover in the east African mountains (Williams et al., 2007). 

Estimated global-warming-induced rates of species extinctions in tropical biodiversity 

hotspots is even projected to exceed those due to land use, supporting the suggestion that 

global warming is one of the most serious threats to tropical biodiversity (Malcolm et al. 

2006). 

 

The inner tropics display a special case where the lack of a latitudinal temperature gradient 

makes any latitudinal shift of species distributions highly unrealistic, leaving altitudinal range 

shifts as the only viable solution for species migrations (Colwell et al., 2008). Only a few 

observations support current altitudinal range shifts for the tropics (Bustarnante et al. 2005; 
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Chen et al., 2009; Pounds et al., 1999; Raxworthy et al., 2008). The geological past, mainly 

the Pleistocene, provides further evidence that tropical species react to temperature changes 

by altitudinal range shifts (Bush, 2002; Mayle et al., 2004; Umer et al., 2007). 

 

The potential magnitude for altitudinal range shifts in the tropics can be illustrated by a 

simple model which basically accounts for the expected warming by shifting the altitudinal 

range of species according to the shift of isotherms. By applying this model, Colwell et al., 

(2008) identify four basic ecological challenges in the face of warming: lowland attrition, 

range-gap shifts, range contraction, and extinction. At temperate latitudes, space formerly 

occupied by species now shifting poleward or upslope may be occupied by species already 

adapted to warmer temperatures, i.e. species from lower latitudes or lower elevations. The 

same general pattern applies for tropical mountains, where upslope range shifts may be 

compensated by the influx of species from lower elevations or by expansion from small nuclei 

left over from previous warming episodes (Bush, 2002). But no places warmer than the 

tropical lowlands exist, implying that no species which currently occupy warmer habitats 

within dispersal reach may fill any gaps created by altitudinal shifts of species from the 

tropical lowlands. It can therefore be expected that tropical lowlands may experience biotic 

attrition, i.e. the loss of species without replacement (Colwell et al., 2008). Range gaps are 

not only a tropical concern, as they describe the challenge of reaching suitable climatic 

conditions by migration when current and future suitable habitats do not overlap. Altitudinal 

ranges of a vast number of tropical species is narrow (Ghalambor et al., 2006), a fact that 

implies more numerous range shift gaps in the tropics than at higher latitudes. Range 

contraction and extinction are finally consequences of the physical constraints by the given 

altitude of the summits. This phenomenon is widely discussed as “mountaintop extinction” 

and is a strong concern for endemic species lacking disjunct populations elsewhere on higher 

mountains or at cooler latitudes (Lenoir et al., 2008; Williams et al,. 2007; Williams et al., 

2003).  

 

Here, we apply the model developed by Colwell et al., (2008) on a dataset of altitudinal 

vegetation surveys in southern Ethiopia to test the following hypotheses:  

1) Consequences of global warming result in strong potential lowland attrition, range-gaps, 

range contractions, and finally extinction risks of plant species of southern Ethiopia. 2) There 

are growth forms and plant families which face a higher than average risk due to their current 
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altitudinal distribution. 3) Endangered and endemic species are especially vulnerable to 

warming. 

 

 

Material & Methods 
 

Study area 

 

The study area is located at 5ο40’N to 6ο37’N and 37ο 12’E to 37ο 59’E (Figure 1) in the 

southwest Ethiopian highlands. The landscape includes different physiographic features such 

as plateaus, escarpments, a block mountain, undulating plains, and a graben where Lake 

Abaya and Lake Chamo are located. The lake level displays the lowest altitudes of the region, 

with significantly lower areas below at least 800 m are located more than 200 km south from 

our study area. The topography of the Rift Valley consists of hills, as well as flat and faulted 

structures. The eastern boarder is marked by the Amaro horst, a block mountain that emerged 

during the formation of the Rift Valley. The western escarpment of the Rift Valley down from 

the Chencha Highlands is characterized by steep slopes and a topography that is greatly 

dissected by small streams, which drain into Lake Abaya and Lake Chamo. 

 

 
      Figure 1 Digital Elevation Model (DEM) of the study area based on SRTM digital elevation data. 
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Rainfall in the study area shows a pronouncedly bimodal seasonal distribution. The mean 

annual rainfall recorded for Arbaminch (at 1200 m altitude) in the period from 1987 to 2005 

was 888 mm while for Chencha (at 2700 m), for the period 1972 to 1980 and 1990 to 2004, 

1235 mm were recorded (meterological data were obtained from Nationail Meterological 

Agency of Ethiopia). The main rainy season, which accounts for about 40 % of the mean 

annual rainfall, occurs from April to June, while the lesser rainy season is in September and 

October. Arbaminch experiences a more pronounced dry season and receives less rainfall 

because of its low altitude and its rain-shadow position with regard to the moisture-bearing 

south-east trade winds that prevail in April/May and September/October months in the region. 

The vegetation of the study area belongs to the Somali-masai regional center of endemism 

and the highlands belong to the Afromontane archipelago according to White (1983). The 

World Conservation International has recently identified the horn of Africa region as one of 

the 34 hotspots of biodiversity (Sodhi et al., 2007). The Rift Valley section of our study area 

belongs to the arid belt of this biodiversity hotspot. The remnants of broad leaved 

afromontane vegetation are highly fragmented due to human settlement. The remaining 

relatively dense vegetation cover is found in the escarpment of the Rift Valley and in the 

Netch Sar National Park.  

 

Sampling design 

 

We aimed at a proportional sampling of the altitudinal gradient by consulting a digital 

elevation model (DEM) of the study area. The DEM was constructed from SRTM digital 

elevation data sources (Jarvis et al., 2008). A roughly proportional percentage of plots were 

allocated to the corresponding elevation ranges with the exception of the elevation band 

between 1000 and 1200 m a.s.l., where the majority of the surface is covered by the two lakes. 

No sampling was conducted above 3000 m due to logistic problems and difficulties of access 

during fieldwork. For each of the 200-meter ranges (10 altitudinal ranges between 1000 and 

3000 m a.s.l.), sampling was conducted depending on the presence of forest, woodland or any 

category of semi-natural vegetation in the landscape. Agricultural fields and plantations were 

not sampled.  

 

A total of 74 plots of 400 m2 each were sampled (see Figure 1) in two phases, from November 

2006 to January 2007, and in December 2007, respectively. Both phases of fieldwork were 

conducted after the small rainy season. Plant species presence and growth form information 
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were recorded. Growth form categories included woody, herbs, graminoids and ferns. A total 

of 475 species belonging to 101 families were encountered during fieldwork (Appendix I). 

For those species that could not be identified precisely in the field, specimens were taken to 

the National Herbarium at the Addis Ababa University for identification or confirmation. The 

family Fabaceae was represented by 58 species (12.2 %), Asteraceae by 48 species (10 %), 

Poaceae 34 species (7.2 %), Lamiaceae and Acanthaceae by 45 species each (9.5%), 

Euphorbiacceae and Rubiaceae by 33 species (7 %). These seven families represented roughly 

46% of the data set in the study area. More than half of the families were represented either by 

one species (32 families) or two species (23 families).  

 

Estimation of current and future altitudinal ranges 

 

Estimations of altitudinal ranges based on sampling data are always minimum estimates, 

especially for diverse tropical communities (Kluge et al., 2006). Our sampling was not 

continuous along the transects, but occurred at discrete plots. Thus, the observed altitudinal 

range of a species detected at only one site would equal zero. All observed ranges were 

therefore interpolated and extrapolated by assuming continuous ranges (interpolation) from 

lowest to highest occurrence in the dataset and by extrapolating each observed range at both 

its lower and upper altitudinal limits by the range estimate downslope or upslope halfway to 

the nearest plot. For plots at the lowest and highest altitudes extrapolation was made halfway 

to Rift Valley bottom or to the summit elevation respectively (Colwell et al., 2008). Both 

extrapolation and interpolation are conservative adjustments with regard to the principal 

conclusions of this study (Colwell et al., 2008). 

 

Due to the uncertainty of climate change scenarios, we analyzed the response over the range 

between 0°C to 5°C warming. Several analyses were based on 4.2 °C warming by 2100 

compared to 2000 according to the A2 emission scenario for east Africa (IPCC, 2007). 

Adiabatic lapse rate in the study area is nowadays about 0.6°C per 100 m altitude (Peyron et 

al., 2000). 

 

We applied a simple model to evaluate the potential effects of climate warming on the 

distribution of species ranges on a bounded altitudinal gradient (Colwell et al., 2008), which 

is explained in Figure 2. Altitudinal ranges were translated into area using the DEM in order 

to evaluate area contraction with species shifts. Differences in area contractions between 
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groups of species were evaluated by a permutation procedure comparing the observed mean 

difference of the groups with 10 000 random permutations using the function “diffmean” in 

the package “simba” (Jurasinski, 2007). 

 

                             

 

Figure 2 Graphical model illustration. The altitudinal range of each species is displayed as a function of its 

altitudinal midpoint, with corresponding range limits indicated by the solid horizontal lines (black: current range, 

red: future range). All range-size/range-midpoint coordinate pairs are within the geometric constraint triangle 

(black lines), as ranges cannot extend beyond the limits of the gradient. δ indicates the upslope shift in isotherms 

with warming climate, which is the exclusive parameter of the model. Five basic scenarios are displayed with 

hypothetical species: (a) An upslope shift by δ of a species with a range and altitudinal midpoint outside the grey 

margin boxes has no influence on the four basic challenges presented in the following four cases. (b) Lowland 

biotic attrition occurs for all species with a current lower range limit within minimum altitude plus δ. (c) Range-

shift gaps occur for all species with a range smaller than δ resulting in no overlap of current and future range. (d) 

Range contractions are inevitable for all species with an upper range limit exceeding maximum altitude minus δ. 

(e) If species exhibit a range smaller than δ combined with an upper range limit exceeding maximum altitude 

minus δ the model expects mountaintop extinction.  

 

The 1997 IUCN red list of threatened plant species (Walter & Gillet, 1998) and a recently 

updated red list plants of Ethiopia and Eritera (Vivero et al., 2006a, b) were consulted to 

determine the endemic status of species. Prunus africana and Hagenia abyssinica are 

considered highly endangered trees in East Africa  since the rate of uses exceeds far beyond 

the natural regenerative capacity of the two species (Feyissa et al., 2005; Negash, 2004). 

Because of the high ecological and economic significance of these two species in Ethiopia 

and elsewhere in Tropical Africa, we pay special attention to them. Binomial GLM were used 

to evaluate if endemic and red list species differed in their potential risks concerning attrition, 
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range gap shifts, contraction, and extinction from all other species. If significant group effects 

occurred, TukeyHSD post-hoc comparisons were applied to evaluate the pairwise differences. 

All analyses were run in R (R Development Core Team, 2008). 

 

 

Results 

 
The 475 plant species sampled in the altitudinal transects showed a clear tendency to rather 

low altitudinal distributions with small ranges (Figure 3 A). This was reflected by a high 

proportion of species potentially contributing to lowland attrition or subject to range gap 

shifts already at mild to medium warming scenarios (Figure 3 B). Range contractions and 

extinction risks started to increase only at warming scenarios of more than 3.5°C. Area per 

altitude decreases with increasing altitude for our study area. Consequently, projected 

altitudinal range changes were expected to lead to strong area contractions (Figure 4) even 

with few species experiencing altitudinal range contractions. Assuming 4.2°C warming, mean 

area per species decreased from 892 km² to 489 km², a contraction by 55%. 

 
Figure 3: A: Current ranges of the 475 species. The model (Figure 2) is displayed with a warming scenario of 

4.2°C, resulting in an altitudinal shift of isotherms (δ) by 700 m (grey boxes). B: Share of species subject to 

attrition, range gap shifts, range contractions, and extinction as a function of warming. 
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Figure 4 Area contraction per species. Current and future area was derived from a Digital Elevation Model of 

the current and future altitudinal range of each of the 475 species. 

 

 
Figure 5 Current ranges and share of species subject to attrition, range gap shifts, range contractions, and 

extinction as a function of warming separated by growth forms. A: herbs, B: graminoids, C: ferns, D: woody 

species. 
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Growth forms differed in their response to warming according to their altitudinal distributions 

(Figure 5). Concerning lowland attrition (GLM: p < 0.001) post hoc comparisons confirmed 

that ferns were generally less often affected than all other groups. No significant difference 

concerning range shift gaps were found between the growth forms (GLM: p = 0.085). 

Altitudinal range contraction affected growth forms differently (GLM: p < 0.001) with less 

effects on graminoids than herbs and ferns (no significant difference between graminoids and 

woody species). Extinction risk also differed between the growth forms (GLM: p < 0.001), in 

the pair-wise comparison, however, only a higher extinction risk for herbs compared to 

graminoids yielded significance.  

 

Plant families generally differed in their altitudinal distributions. Several plant families with 

higher as well as lower risks of area contraction than all other families could therefore be 

identified (Table 1). Detailed information on altitudinal range distributions and the share of 

species subject to attrition, range gap shifts, range contractions, and extinction as a function of 

warming for all 101 families can be found in the Electronic Appendix. 

 
Table 1 Plant families which exhibit significantly (permutation procedure p < 0.05, analysis only run if families 

contained more than one species, 69 families were eligible for analysis) different area contractions per species 

when compared to all other species. Mean contraction per species over all 101 families was 55%. 

 

Family 

Area 

contraction 

(%) 

Mean current area 

per species (km²) 

Mean area per 

species with 4.2°C 

warming (km²) 

Number of 

species 

Thymelaeaceae 2.7 53 52 2 

Pittosporaceae 2.9 425 413 2 

Campanulaceae 36.2 480 306 4 

Oleaceae 40.8 1601 948 4 

Vitaceae 52.4 1327 631 7 

Overall mean 55.0 892 489 475 

Euphorbiaceae 60.2 941 375 18 

Convolvulaceae 64.5 357 127 7 

Polypodiaceae 91.6 56 5 2 

Gentianaceae 99.5 117 1 3 
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24 endemic species occurred in our dataset (Table 2). These species generally showed a lower 

risk of contributing to lowland attrition (20.8% vs. 63.6%; GLM: p < 0.001), a higher 

potential for altitudinal range contractions (41.7% vs. 18.0%; GLM: p < 0.001) and extinction 

(33.3% vs. 10.2%; GLM: p = 0.001) compared to all other species at a warming scenario of 

4.2°C. No significant difference in range gap shifts were found (79.2% vs. 72.7%; GLM: p = 

0.490). Figure 6 implies that strong increases in range contraction and extinction risks started 

with a warming of about 3.5°C, while range gaps virtually occurred at minimum warming 

scenarios.  

 

The two endangered tree species Hagenia abyssinica and Prunus africana differed in their 

potential response to assumed global warming. H. abyssinica shares the potential risk of 

extinction, altitudinal range contraction and range gap shift with most of the endemic species 

(Table 2). P. africana, however, exhibited potential lowland attrition and range gap 

contraction. 

 

Our model predicted a significant area contraction for nine out of the 69 families which were 

candidates for this analysis (Table 1). These families generally exhibited a higher than 

average potential risk of range contraction and extinction (GLM: p < 0.05). The families 

Gentianaceae and Polypodiaceae were predicted to suffer disproportionately stronger from 

extinction with a decline in the potential area of over 90 % at the global warming scenario of 

4.2°C temperature increase. The three most abundant families (Fabaceae, Asteraceae and 

Poaceae), which represented about 30 % of our species data set, did not show any significant 

difference to the average response to the projected global warming. Nevertheless, Fabaceae 

and Poaceae showed low risk of extinction and high rates of lowland attrition while 

Asteraceae tend to be more vulnerable to extinction and range gap shifts at global warming 

scenarios above 3.5°C (for details see Appendix I). 
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Figure 6 A: Current ranges of 24 endemic species (Table 2) and B: Share of endemic species subject to attrition, 

range gap shifts, range contractions, and extinction as a function of warming. All axes directly comparable to 

Figure 3. 
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Table 2 Projected consequences for endemic species at a warming of 4.2°C. 

   current distribution  future distribution (4.2°C warming)  consequence 

species family Status lower range 

limit (m) 

upper range 

limit (m) 

area 

(km²) 

  lower range 

limit (m) 

upper range 

limit (m) 

area 

(km²) 

  attrition extinction contraction range gap 

Bothriocline schimperi Asteraceae LC 1256 2785 2682  1956 3485 1351  1 0 0 0 

Crassocephalum macropappum Asteraceae LC 2368 2590 232  3068 3290 110  0 0 0 1 

Crotalaria agatiflora subsp. 

enlangeri  Fabaceae NT 2893 3266 280  3546 3546 0  0 1 1 1 

Crotalaria gillettii Fabaceae endemic 1479 1499 84  2179 2199 31  1 0 0 1 

Dorestenia soerensenii  Moraceae VU 2510 2534 44  3210 3234 17  0 0 0 1 

Emilia herbaceae  Asteraceae endemic 2000 2047 79  2700 2747 77  0 0 0 1 

Emilia serpentinus  Asteraceae endemic 2368 2555 200  3068 3255 101  0 0 0 1 

Erythrina brucei  Fabaceae LC 2118 2534 421  2818 3234 363  0 0 0 1 

Euphorbia dumalis Euphorbiaceae LC 2893 2960 79  3546 3546 0  0 1 1 1 

Justicia bizuneshiae  Acanthaceae endemic 1940 1965 57  2640 2665 50  0 0 0 1 

Kalanchoe petitiana Crassulaceae LC 1756 2960 1445  2456 3546 822  0 0 1 0 

Kniphofia isoetifolia Asphodilaceae endemic 2833 2893 82  3533 3546 0  0 1 1 1 

Leucus abyssinica  Lamiaceae LC 1301 2118 1764  2001 2818 891  1 0 0 0 

Lippia adoensis  Verbenaceae LC 1675 3266 1794  2375 3546 897  1 0 1 0 

Pimpinella schimperi Apiaceae endemic 2000 2435 464  2700 3135 468  0 0 0 1 

Pittosporum abyssinica Pittosporaceae endemic 1925 2118 257  2625 2818 248  0 0 0 1 

Plectocephalus varians Asteraceae endemic 2893 2960 79  3546 3546 0  0 1 1 1 

Pycnostachys abyssinicus  Lamiaceae endemic 2168 2590 422  2868 3290 321  0 0 0 1 

Satureja paradoxa Lamiaceae NT 2590 2893 387  3290 3546 0  0 1 1 1 

Senecio myriocephalus  Asteraceae LC 2893 2960 79  3546 3546 0  0 1 1 1 

Thunbergia annua Acanthaceae endemic 2000 2047 79  2700 2747 77  0 0 0 1 

Urtica simensis  Urticaceae endemic 2168 2960 866  2868 3546 0  0 1 1 0 

Verbasum benthamianum   Scrophulariaceae endemic 2893 2960 79  3546 3546 0  0 1 1 1 

Hagenia abyssinica  Rosaceae endangered* 2893 2960 79  3546 3546 0  0 1 1 1 

Prunus africana Rosaceae endangered* 1163 2960 3474   1863 3546 1488   1 0 1 0 

*not endemic but of high economic importance, see text for details, LC = Less Concern, NT = Near Threatened, VU = Vulnerable species (IUCN categories). 
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Discussion 

 
Even moderate global warming caused strong potential risks concerning lowland attrition and 

range gap shifts, while altitudinal contractions and mountaintop extinctions became important 

only after warming exceeded 3.5°C in our dataset from southern Ethiopia. Area per species, 

however, was expected to decline by 55% on average even in the absence of strong altitudinal 

range contractions. This pattern was due to the physical shape of the mountains. 

Existing reports of observed upward shifts in the tropics are available only for a small number 

of animal groups (Bustarnante et al., 2005; Chen et al., 2009; Pounds et al., 1999; Raxworthy 

et al., 2008). We are not aware of any such an observation concerning plants, even though 

plants act as ecosystem engineers by providing the micro-habitat for the fauna and are 

therefore of high ecological relevance. 

 

Lowland biotic attrition, i.e. the net loss of species richness in the tropical lowlands caused by 

upslope range shifts in the absence of new species arriving, depends on the assumption that 

tropical lowland species are already living at their thermal optimum. From the geological 

past, Colwell et al. (2008) conclude that “many lowland tropical species may be in for trouble 

if they do not shift to higher elevations or to cooler, wetter microhabitats in coming decades”. 

For our study region, past climate change resulted in fast and strong altitudinal range shifts 

(Umer et al., 2007). The idea of lowland attrition is further supported by experimental studies 

indicating that tropical ectotherms are already living at temperatures near their thermal 

optimum and show declines in fitness with further warming (Deutsch et al., 2008). Likewise, 

growth decline of lowland tropical trees has been related to increasing temperatures (Clark et 

al., 2003; Feeley et al., 2007). Tropical lowlands therefore will likely experience decreased 

species richness, with novel plant communities composed of heat and drought tolerant or 

early successional species (Williams et al., 2007).  

 

Range gaps are no exclusive tropical concern, as they pose the challenge of reaching suitable 

climatic conditions by migration when current and future suitable habitats do not overlap. 

Tropical species, however, may face range shift gaps more often than temperate species 

because of the generally narrow altitudinal ranges of a vast number of tropical species 

(Ghalambor et al., 2006). Climatic factors have always changed in mountainous zones and 

species have responded by range shifts; the extent and degree of alteration by global warming 

is the core of current concern (Young & Lipton, 2006). The main question regarding range 
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gaps in particular and altitudinal migration in general is the potential dispersal distance, which 

is poorly studied, especially for tropical plant species (Weir & Corlett, 2007). Genetic 

diversity patterns of a species restricted to several mountains in east Africa nevertheless imply 

that occasional long-distance dispersal events occur even between mountains (Ehrich et al., 

2007). Species facing range-shift gaps will furthermore have to compete with wide-ranged 

species that continue to occupy upslope portions of their current ranges (Bush et al. 2004), 

even though range retractions at the warm end of species distributions seem to keep pace with 

range extension at the cold end (Franco et al., 2006; Raxworthy et al., 2008; Wilson et al., 

2007). Inertia in the response of the whole system nevertheless limits potential upward shift 

(Adams, 2007; Jentsch & Beierkuhnlein, 2003).  

 

Range contraction and extinction are general consequences of reduced area per altitude 

towards mountain summits. This phenomenon is widely discussed as “mountaintop 

extinction” and is a strong concern for endemic species lacking disjunct populations 

elsewhere on higher mountains or at cooler latitudes (Lenoir et al., 2008; Williams et al., 

2007; Williams et al., 2003). Endangered and endemic species appear especially vulnerable in 

our dataset due to their restricted range and their tendency to occur at mid to high altitudes, 

which seems to be a general pattern for endemic species (Erasmus et al., 2002; Ohlemuller et 

al., 2008; Raxworthy et al., 2008). Extinction of formerly endemic mountaintop species 

accompanied by succeeding, mostly widely distributed, species from lower elevations may 

lead furthermore to the loss of beta-diversity on the landscape level (Jurasinski & Kreyling, 

2007).  

 

Concerning the growth forms, ferns appeared more susceptible than the other groups in our 

study, a pattern that is related to their generally high-altitudinal distribution. This fact differs 

from findings in cloud-forest transects (Kluge et al., 2006), implying that differences in 

vulnerability between growth forms are regionally dissimilar. Unlike observations in the 

temperate zone (Lenoir et al., 2008), graminoids, in our dataset, show the least response in 

terms of contraction and extinction risks due to their low altitudinal distribution. 

Patterns of plant families’ response generally resembled the responses of their growth forms. 

Thus, the most affected families were largely represented by herbs and ferns (e.g 

Gentianaceae and Polypodiaceae). Those families which were found to be abundant in our 

data set showed more resilience to extinction and range contraction compared to others. 

However, the potential response of high lowland attrition and subsequent depauperation of 
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species belonging to the two economically and ecologically important families such as 

Fabaceae and Poaceae may have adverse consequences in the lowlands under global warming. 

Though species are generally expected to be sifted out depending on their ability to migrate or 

in situ persist (Midgley et al., 2007), the loss of constituent species from the aforementioned 

families might result in the loss of vital ecological services such as nitrogen fixation and 

important range resources in the low lying semi-arid ecosystems of the tropics.   

 

The two endangered tree species, Hagenia abyssinica and Prunus africana have shown a 

differential response to global warming scenarios within our study area. The potential 

response of H. abyssinica to global warming showed a high risk of extinction, range 

contraction and range gap shifts while P. africana was found to be potentially subject to 

lowland attrition and affected by range contraction. The response of H. abyssinica is 

particularly due to its tendency to occur at high altitude. It may have once been the dominant 

tree species in the upper montane forest belt, but now is only found as scattered trees in the 

highlands (Feyissa et al., 2005; Hedberg & Edwards, 1989). The response of P. africana to 

lowland attrition was probably due to its occurrence around Arbaminch forest, which is 

sustained by high ground water table along the shores of Lakes Abaya and Chamo. Apart 

from their differential response to potential consequences of global warming, these two 

species share common characteristics of being limited to mountainous regions of tropical 

Africa and hence considered as Afromontane endemic and Afromontane near endemic, 

respectively (Friis, 1992). Both species, and probably several others with similar status (e.g. 

Olea europaea subsp. cuspidata), appear strongly affected by the combined effect of global 

change and their excessive use beyond their regenerative capacities.  

 

Our results describe worst-case scenarios, even if warming occurs as assumed, mainly 

because of the method to determine altitudinal range limits. The estimation based on our 

sampling very likely underestimates regional altitudinal range (Miller et al. 2007). 

Comparably to climate envelope models (Pearson & Dawson, 2003), we assume furthermore 

that the fundamental climatic niche of each species is fully expressed by current distributions; 

that the effects of climate outweigh any idiosyncratic effects of species interactions, dispersal 

limitation, demographic patterns, or historical contingency; and that habitats at the landscape 

scale are homogenous with regard to microclimate. Species that currently occupy warmer 

microhabitats at their lower range limit may for instance also shift to currently cooler refuges 
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at the same elevation during warming (Bush, 2002; Bush et al., 2004). Even fast genetic 

adaptation may be possible (Ozgul et al., 2009). 

 

On the other hand, our simple model solely based on temperature does not take factors into 

account which may exacerbate the projected consequences. In the lowlands, decreased 

precipitation and increased fire frequency may amplify the direct effects of increased 

temperature, as plants depend on future changes in precipitation as well as in temperature 

because temperature and precipitation interact strongly through transpirational water loss 

(Tilahun, 2006). Climate change is furthermore expected to reduce cloud formation at higher 

altitudes and hence increase the rate of evapotranspiration from tropical montane forests 

(Sodhi et al., 2007). The horn of Africa, particularly Ethiopia, has already experienced 

increased incidences of drought and rainfall variability owing to the combined effects of 

regional atmospheric circulation patterns and sea surface temperature anomalies (Bewket & 

Conway, 2007; Segele et al., 2009).  

 

Anthropogenic habitat fragmentation and widespread interruption of altitudinal corridors pose 

strong general concern on the potential of species migrations. The current reserves, which are 

believed to host the majority of biodiversity in Ethiopia, are surrounded by anthropogenically 

transformed and fragmented landscapes (Edwards & Westoby, 1996). Any natural migration 

out of these reserves appears therefore questionable. The Nech Sar National Park, which is 

located along the eastern shores of Lakes Abaya and Chamo, is the only park in Ethiopia with 

a relatively viable status (Jones, 2005). However, population increases in the adjacent 

highlands and in Arbaminch town, permanent settlement within the park and subsequent 

pressure of intense grazing and land use change have already started to fragment the park’s 

ecosystem (Jones, 2005). Our model furthermore projects strong lowland attrition for this 

park, as it is located at the regionally lowest altitude. The general pattern with a high species 

richness at the lowest altitude might partly by caused by the National Park. The relatively low 

human disturbance at the lowest altitudes could generally be due to the fact that the lowlands 

were infested by Malaria and Trypanomiases (cattle disease) and hence were avoided from 

early human settlement.  

 

Adaptation policies in Ethiopia focus on agricultural production with shifting management 

strategies and changing target crops (Bryan et al., 2009), but it seems also likely that the zone 

of agriculture will move upslope faster than the natural species and therefore landscape 
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conversion might contradict the ability of some species to access suitable habitat (Bush, 

2002). Biotic interactions are another cause for concern, as idiosyncratic responses may 

disrupt current interactions (Bush, 2002; Parmesan, 2006). Range-shift projections focus 

furthermore on immediate consequences, ignoring long-term effects of decreased suitable 

habitat and smaller populations, where land area declines with increasing elevation (Jentsch & 

Beierkuhnlein, 2003).  

 

 

Conclusions 
 

Global warming must be expected to pose strong threats on tropical diversity. Biotic lowland 

attrition is emerging as an urgent challenge exclusive to the inner tropics. It basically depends 

on the question if lowland species can physiologically tolerate warmer (and drier) conditions 

than they experience today. This can be answered by experiments. The high share of species 

at risk of range shift gaps demands detailed exploration of potential natural dispersal and, as a 

final step, consideration of assisted colonization especially in highly fragmented landscapes. 

In addition, current reserve management such as Nech Sar National Park and future reserve 

design should take into account the potential impact of global warming to curb the loss of 

species via creating species migration corridors. Families and species of high concern can be 

identified with the applied model based on their current distribution without the need of 

precise local warming predictions. Special conservation attention is necessary regarding 

endemic and summit species, which generally show a strong vulnerability. Here, exploration 

of the total geographical range and potential maximum elevation limits will be needed, 

although ex-situ conservation may be the only option for many of these species. 
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Electronic Appendix for Manuscript 4  
I. Current ranges and share of species subject to attrition, range gap shifts, range contractions, and extinction as a 

function of warming for all 101 families (see Figure 3 on MS 4 for details). 
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Electronic Apendix for Manuscript 4  

 

II. Species, Families and Growth forms of 475 plant species encountered in the field  

Nomenclature follows the published Flora volumes of Ethiopian and Eritrea  (Edwards et al. 
1995, 1997, 2000; Hedberg & Edwards 1989, 1995; Hedberg et al. 2003, 2004) 
 

 Abrevations: He = Herbs, Wo = Woody, Cl = Climbers, Gr = Graminoids, Fe = Ferns 
 
 
Species Families Growth forms 
Acanthus eminens C.B.Clarke Acanthaceae Wo 
Barleria eranthemoides R. Br. ex C.B.Clarke Acanthaceae He 
Barleria grandicalyx Lindau Acanthaceae He 
Barleria ventricosa Hochst. ex Nees. Acanthaceae He 
Blepharis maderaspatensis (L.) Roth Acanthaceae He 
Crabbea velutina S. Moore Acanthaceae He 
Dicliptera maculata Nees Acanthaceae He 
Hypoestes forskaolii (Vahl) R. Br. Acanthaceae He 
Hypoestes triflora (Forssk.) Roem. & Schult. Acanthaceae He 
Isoglossa punctata (Vahl) Brumitt & Wood. Acanthaceae He 
Isoglossa sp.  Acanthaceae He 
Justicia bizuneshiae Ensermu Acanthaceae He 
Justicia cordata (Nees) T. Anderson Acanthaceae He 
Justicia flava (Vahl) Vahl Acanthaceae He 
Justicia glabra Koenig ex Roxb. Acanthaceae He 
Monechma debile (Forssk.) Nees Acanthaceae He 
Phaulopsis imbricata (Forssk.) Sweet Acanthaceae He 
Ruellia patula Jacq. Acanthaceae He 
Ruellia prostrata Poir. Acanthaceae He 
Thunbergia alata Boj. ex. Sims Acanthaceae Cl 
Thunbergia annua Hoshst. Acanthaceae Cl 
Aloe sp.  Aloaceae Wo 
Achyranthes aspera L. Amaranthaceae He 
Cyathula cylindrica Moq. Amaranthaceae He 
Pupalia grandiflora Peter Amaranthaceae He 
Lannea triphylla (A. Rich.) Engl.  Anacardiaceae Wo 
Ozoroa insignis Del. Anacardiaceae Wo 
Rhus natalensis Krauss Anacardiaceae Wo 
Rhus ruspolii Engl. Anacardiaceae Wo 
Sclerocarya birrea (A. Rich.) Hochst. Anacardiaceae Wo 
Agrocharis melanantha Hochst. Apiaceae He 
Alepidea peduncularis Stued. ex A. Rich. Apiaceae He 
Centella asiatica (L.) Urban Apiaceae He 
Heracleum abyssinicum (Boiss.) Norman Apiaceae He 
Heteromorpha arborescens (Spreng.) Cham. & Schlecht. Apiaceae Wo 
Pimpinella oreophila Hook. f. Apiaceae He 
Pimpinella schimperi Abebe Apiaceae He 
Sanicula elata Buch.-Ham.ex D. Don Apiaceae He 
Torilis arvensis (Hudson) Link Apiaceae He 
Acokanthera schimperi (A.DC.) Schweinf. Apocynaceae Wo 
Carissa spinarum L. Apocynaceae Wo 
Ilex mitis (L.) Radlk. Aquifoliaceae Wo 
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Species Families Growth forms 
Schefflera myriantha (Bak.) Drake Araliaceae Wo 
Phoenix reclinata Jacq. Arecaceae Wo 
Dregea abyssinica (Hochst.) K. Schum. Asclepiadaceae Cl 
Edithcolea grandis N. E. Br. Asclepiadaceae He 
Gomphocarpus fruticosus (L.) Ait. f. Asclepiadaceae He 
Periploca linearifolia Quert.-Dill. & A. Rich. Asclepiadaceae Cl 
Sarcostemma viminale (L.) R. Br. Asclepiadaceae Cl 
Secamone parvifolia (Oliv.) Bullock Asclepiadaceae Cl 
Tacazzea conferta N. E. Br. Asclepiadaceae Cl 
Asparagus africanus Lam. Asparagaceae Cl 
Asparagus flagellaries (Kunth) Baker Asparagaceae Cl 
Kniphofia isoetifolia Steud. ex. Hochst. Asphodelaceae He 
Asplenium aethiopicum (Burm. f.) Bech. Aspleniaceae Fe 
Asplenium anisophyllum Kze. Aspleniaceae Fe 
Asplenium erectum Willd Aspleniaceae Fe 
Asplenium monanthes L. Aspleniaceae Fe 
Adenostemma mauritianum DC. Asteraceae He 
Ageratum conyzoides L. Asteraceae He 
Aspilia africana (Pers.) C.D. Adams Asteraceae He 
Aspilia mossambicensis (Oliv.) Wild Asteraceae He 
Bidens pachyloma (Oliv. & Hiern) Cufod. Asteraceae He 
Bidens pilosa L. Asteraceae He 
Bidens ternata (Chiov.) Sherff Asteraceae He 
Blumea caffra (DC.) O. Hoffm. Asteraceae He 
Bothriocline schimperi Oliv. & Hiern ex Benth. Asteraceae He 
Carduus leptacanthus Fresen. Asteraceae He 
Conyza newii Oliv. & Hiern Asteraceae Wo 
Conyza pedunculata (Oliv.) Wild. Asteraceae He 
Conyza pyrrhopappa Sch.Bip. ex A. Rich. Asteraceae Wo 
Conyza sumatrensis (Retz.) E.H. Walker Asteraceae He 
Crassocephalum macropappum (Sch. Bip. ex A. Rich.) S. Moore Asteraceae He 
Crepis rueppellii Sch. Bip. Asteraceae He 
Dichrocephala integrifolia (L.f.) Kuntze Asteraceae He 
Eclipta prostrata (L.) L. Asteraceae He 
Emilia herbaceae Mesfin & Beentje Asteraceae He 
Emilia serpentines Mesfin & Beentje Asteraceae He 
Guizotia schimperi Sch. Bip. ex Walp Asteraceae He 
Helichrysum argyranthum O.Hoffm. Asteraceae He 
Helichrysum foetidum (L.) Moench. Asteraceae He 
Helichrysum formosissimum Sch. Bip. ex A. Rich. Asteraceae He 
Helichrysum globosum A. Rich. Asteraceae He 
Helichrysum nudifolium (L.) Less. Asteraceae He 
Helichrysum schimperi (Sch. Bip ex A.Rich.) Moeser Asteraceae He 
Helichrysum traversii Chiov. Asteraceae He 
Inula paniculata (Klatt) Burtt-Dary Asteraceae He 
Kleinia squarrosa Cufod. Asteraceae Wo 
Laggera crispata (Vahl) Hepper & Wood Asteraceae He 
Melanthera scandens (Schumach. & Thonn.) Roberty Asteraceae Cl 
Microglossa pyrifolia (Lam.) Kuntze Asteraceae Wo 
Parthenium hysterophorus L. Asteraceae He 
Plectocephalus varians (A. Rich.) C. Jeffrey ex. Cufod. Asteraceae He 
Pluchea dioscoridis (L.) DC. Asteraceae He 
Senecio hadiensis Forssk. Asteraceae He 
Senecio myriocephalus Sch. Bip. ex A. Rich. Asteraceae Wo 
Senecio subsessilis Oliv. & Hiern Asteraceae He 
Sonchus oleraceus L. Asteraceae He 
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Vernonia auriculifera Hiern. Asteraceae Wo 
Vernonia galamensis (Cass.) Less. Asteraceae He 
Vernonia hymenolepis A. Rich. Asteraceae Wo 
Vernonia myriantha Hook. f. Asteraceae Wo 
Vernonia popeana C. Jeffrey Asteraceae He 
Vernonia urticifolia A. Rich. Asteraceae Wo 
Vernonia wollastonii  S. Moore Asteraceae He 
Xanthium strumarium L. Asteraceae He 
Balanites aegyptiaca (L.) Del. Balanitaceae Wo 
Balanites rotindifolia (van Tieghem) Blatter Balanitaceae Wo 
Impatiens hochstetteri Warb. Balsaminaceae He 
Impatiens tinctoria A. Rich. Balsaminaceae He 
Cordia africana Lam. Boraginaceae Wo 
Cordia ovalis R.Br. Boraginaceae Wo 
Cynoglossum amplifolium Hochst. ex A. DC. Boraginaceae He 
Ehertia cymosa Thonn. Boraginaceae Wo 
Commiphora habessinica (Berg) Engl. Burseraceae Wo 
Lobelia gibberoa Hemsl. Campanulaceae Wo 
Monopsis stellarioides (Presl.) Urb. Campanulaceae He 
Wahlenbergia erectum (Roth. ex Roem.  & Schult.) Tuyn Campanulaceae He 
Wahlenbergia hirsuta (Edgew.) Tuyn Campanulaceae He 
Boscia salicifolia Oliv. Capparidaceae Wo 
Cadaba farinosa Forssk. Capparidaceae Wo 
Capparis fascicularis DC. Capparidaceae Cl 
Crateva adansonii DC. Capparidaceae Wo 
Maerua crassifolia Forssk. Capparidaceae Wo 
Cerastium octandrum A. Rich. Caryophyllaceae He 
Polycarpaea eriantha Hochst. Caryophyllaceae He 
Maytenus arbutifolia (A. Rich.) Wilczek Celastraceae Wo 
Maytenus gracilipes (Welw. ex Oliv.) Exell Celastraceae Wo 
Maytenus senegalensis (Lam.) Exell Celastraceae Wo 
Combretum aculeatum Vent. Combretaceae Wo 
Combretum collinum Fresen. Combretaceae Wo 
Combretum molle R. Br. ex G. Don Combretaceae Wo 
Terminalia brownii Fresen. Combretaceae Wo 
Terminalia schimperiana Hochst. Combretaceae Wo 
Aneilema rendlei  C.B. Clarke Commelinaceae He 
Commelina africana L. Commelinaceae He 
Commelina benghalensis L. Commelinaceae He 
Commelina diffusa Burm.f. Commelinaceae He 
Commelina reptans Brenan Commelinaceae He 
Cyanotis barbata D. Don Commelinaceae He 
Cyanotis foecunda Hochst. ex. Hassk. Commelinaceae He 
Convolvulus kilimandschari Engl. Convolvulaceae Cl 
Evolvulus alsinoides (L.) L. Convolvulaceae He 
Ipomoea cairica (L.) Sweet Convolvulaceae Cl 
Ipomoea heterotricha F. Didr. Convolvulaceae He 
Ipomoea kituiensis Vtake Convolvulaceae Cl 
Ipomoea obscura (L.) Ker-Gawl. Convolvulaceae Cl 
Seddera arabica (Forssk.) Choisy Convolvulaceae He 
Crassula alsinoides (Hook.f. ) Engl. Crassulaceae He 
Kalanchoe glaucescens Britten Crassulaceae He 
Kalanchoe lanceolata (Forssk.) Pers. Crassulaceae He 
Kalanchoe petitiana A. Rich. Crassulaceae He 
Umbilicus botryoides A. Rich. Crassulaceae He 
Kedrostis foetidissima (Jacq.) Cogn. Cucurbitaceae Cl 
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Lagenaria abyssinica (Hook.f. ) C. Jeffrey Cucurbitaceae Cl 
Zeheneria scabra (Linn. f.) Sond. Cucurbitaceae Cl 
Cupressus lusitanica Miller Cupressaceae Wo 
Juniperus procera Hochst. Ex Endl. Cupressaceae Wo 
Cyathea sp. Cyatheaceae Fe 
Carex chlorosaccus C.B. Clarke Cyperaceae Gr 
Carex johnstonii Böckl. Cyperaceae Gr 
Cyperus alopecuroides Rottb. Cyperaceae Gr 
Cyperus dubius Rottb. Cyperaceae Gr 
Cyperus alternifolius L Cyperaceae Gr 
Cyperus papyrus L. Cyperaceae Gr 
Cyperus sesquiflorus (Torr.) Mattf. & Kük. Cyperaceae Gr 
Schoenoplectus corymbosus (Roem. & Schult.) Rayn Cyperaceae Gr 
Pteridium aquilinum (L.) Kuhn Dennstaedtiaceae Fe 
Dipsacus pinnatifidus Steud. ex A. Rich. Dipsacaceae He 
Pterocephalus frutescens Hochst. ex A. Rich. Dipsacaceae He 
Dracaena afromontana Mildbr. Dracaenaceae Wo 
Sansevieria ehrenberii Schweinf. ex Baker Dracaenaceae He 
Sansevieria forskoaliana (Shult. f.) Heper & Wood. Dracaenaceae He 
Drynaria volkensii Hiern. Drynariaceae Fe 
Polystichum fuscopaleaceum Alston Dryopteridaceae Fe 
Polystichum transvaalense C.N. Anthony Dryopteridaceae Fe  
Diospyros abyssinica (Hiern) F. White Ebenaceae Wo 
Euclea divinorum Hiern Ebenaceae Wo 
Agarista salicifolia (Comm. ex Lam.) Hook.f. Ericaceae Wo 
Erica arborea L. Ericaceae Wo 
Erica tenuipilosa (Engl. ex Alm & Fries) Cheek Ericaceae Wo 
Acalyha fruticosa Forssk. Euphorbiaceae He 
Acalypha crenata A. Rich. Euphorbiaceae Wo 
Acalypha villicaulis A. Rich. Euphorbiaceae Wo 
Acalypha volkensii Pax Euphorbiaceae He 
Clutia abyssinica Jaub. & Spach. Euphorbiaceae Wo 
Croton macrostachyus Del. Euphorbiaceae Wo 
Euphorbia ampliphylla Pax Euphorbiaceae Wo 
Euphorbia borenensis A. Gilbert Euphorbiaceae Wo 
Euphorbia dumalis S.Carter Euphorbiaceae Wo 
Euphorbia inaequilatera Sond. Euphorbiaceae He 
Euphorbia polyacantha Pax Euphorbiaceae Wo 
Euphorbia schimperiana Scheele Euphorbiaceae He 
Euphorbia sp. 1 Euphorbiaceae Wo 
Euphorbia sp. 2 Euphorbiaceae Wo 
Euphorbia tirucalli L. Euphorbiaceae Wo 
Flueggea virosa (Willd.) Voigt. Euphorbiaceae Wo 
Phyllanthus maderaspatensis L. Euphorbiaceae Wo 
Ricinus communis L. Euphorbiaceae He 
Acacia albida Del. Fabaceae Wo 
Acacia brevispica Harms Fabaceae Wo 
Acacia hockii De Wild. Fabaceae Wo 
Acacia mellifera (Vahl) Benth. Fabaceae Wo 
Acacia nilotica (L.) Willd. ex Del. Fabaceae Wo 
Acacia polyacantha Willd. Fabaceae Wo 
Acacia senegal (L.) Willd. Fabaceae Wo 
Acacia seyal Del. Fabaceae Wo 
Acacia tortilis (Forssk.) Hayne Fabaceae Wo 
Aeschynomene abyssinica (A. Rich.) Vatke Fabaceae Wo 
Aeschynomene elaphroxylon Jaub. Fabaceae Wo 
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Albizia gummifera (J.F.Gmel.) C.A.Sm. Fabaceae Wo 
Albizia schimperiana Oliv. Fabaceae Wo 
Alysicarpus rugosus (Willd.) DC. Fabaceae He 
Calpurnia aurea (Ait.) Benth. Fabaceae Wo 
Chamaecrista mimosoides (L.) Greene Fabaceae He 
Clitoria ternatea L. Fabaceae Cl 
Crotalaria agatiflora Schweinf. subsp.enlangeri Bak.f. Fabaceae He 
Crotalaria cephalotes Steud. A. Rich. Fabaceae He 
Crotalaria cylindrica A. Rich. Fabaceae He 
Crotalaria gillettii Polhill Fabaceae He 
Crotalaria laburnifolia L. Fabaceae He 
Desmodium adscendens (Sw.) DC. Fabaceae He 
Desmodium barbatum (L.) Benth. Fabaceae He 
Desmodium repandum (Vahl) DC. Fabaceae Cl 
Desmodium velutinum (Willd.) DC. Fabaceae Wo 
Dichrostachys cinerea (L.) Wight & Arn. Fabaceae Wo 
Dolichos sericeus E. Mey. Fabaceae Cl 
Entada abyssinica Steud. ex A. Rich. Fabaceae Wo 
Eriosema robustum Bak. Fabaceae Cl 
Erythrina brucei Schweinf. Fabaceae Wo 
Glycine wightii (Wight & Arn.) Verdc. Fabaceae Cl 
Indigofera amorphoides Jaub. & Spach Fabaceae He 
Indigofera arrecta Hochst ex A. Rich. Fabaceae Wo 
Indigofera atriceps Hook. F. Fabaceae Wo 
Indigofera brevicalyx Bak.f. Fabaceae He 
Indigofera colutea (Burm.f.) Merr. Fabaceae He 
Indigofera emarginella Steud. ex A. Rich. Fabaceae Wo 
Indigofera garckeana Vatke Fabaceae Wo 
Indigofera spicata Forssk. Fabaceae He 
Macrotyloma axillare (E. Mey.) Verdc. Fabaceae Cl 
Parochaetus communis D. Don Fabaceae He 
Piliostigma thonningii (Schumach.) Milne-Redh. Fabaceae Wo 
Pterolobium stellatum (Forssk.) Brenan Fabaceae Wo 
Rhynchosia densiflora (Roth) DC. Fabaceae Cl 
Rhynchosia minima (L.) DC. Fabaceae Cl 
Rhynchosia resinosa (Hochst. ex A. Rich.) Bak. Fabaceae Cl 
Senna obtusifolia (L.) Irwin & Barneby Fabaceae Wo 
Sesbania sesban (L.) Merr. Fabaceae Wo 
Tephrosia elata Deflers Fabaceae Wo 
Tephrosia emeroides A. Rich. Fabaceae Wo 
Tephrosia interrupta Hochst. & Steud. ex Engl. Fabaceae Wo 
Tephrosia linearis (Willd.) Pers. Fabaceae Wo 
Tephrosia pentaphylla (Roxb.) G. Don Fabaceae Wo 
Tephrosia villosa (L.) Pers. Fabaceae Wo 
Trifolium simense Fresen. Fabaceae He 
Vigna membranacea A. Rich. Fabaceae Cl 
Vigna parkeri Bak. Fabaceae Cl 
Dovyalis abyssinica (A. Rich) Warb. Flacourtiaceae Wo 
Flacourtia indica (Burm.f.) Merr. Flacourtiaceae Wo 
Sebaea brachyphylla Griseb. Gentianaceae He 
Swertia abyssinica Hochst. Gentianaceae He 
Swertia lugardae Bullock Gentianaceae He 
Geranium sp. Geraniaceae He 
Pelargonium glechomoides Hochst.  Geraniaceae He 
Apodytes dimidiata E. Mey. ex Arn. Icacinaceae Wo 
Hypericum quartinianum A. Rich. Hypericaceae Wo 
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Hypericum revolutum Vahl Hypericaceae Wo 
Trichocladus ellipticus Eckl. & Zeyh. Hamamelidaceae Wo 
Aristea abyssinica Pax Iridaceae He 
Achyrospermum schimperi (Hochst. ex Briq.) Perkins Lamiaceae He 
Ajuga integrifolia Buch.-Ham. ex D.Don Lamiaceae He 
Becium filamentosum (Forssk.) Chiov. Lamiaceae He 
Clerodendron myricoides (Hochst.) R. Br.ex Vatke. Lamiaceae Wo 
Hoslundia opposita Vahl Lamiaceae Wo 
Leonotis ocymifolia (Burm.f.) Iwarsson Lamiaceae He 
Leucas glabrata (Vahl) R.Br. Lamiaceae He 
Leucas martinicensis (Jacq.) R. Br. Lamiaceae He 
Leucaus abyssinica (Benth.) Briq. Lamiaceae Wo 
Ocimum lamiifolium (Hochst. ex Bent.) DC. Lamiaceae He 
Platostoma rotundifolium (Briq.) A.J. Paton Lamiaceae He 
Plectranthus barbatus Andr. Lamiaceae He 
Plectranthus cylindraceus Hochst. ex Benth. Lamiaceae He 
Plectranthus lanuginosus (Hochst. ex. Benth.) Agnew Lamiaceae He 
Plectranthus minutiflorus Ryding Lamiaceae He 
Plectranthus rupestris (Hochst.) Baker Lamiaceae He 
Premna schimperi Engl. Lamiaceae Wo 
Pycnostachys abyssinica Fresen. Lamiaceae He 
Pycnostachys eminii Gürke Lamiaceae Wo 
Pycnostachys meyeri Gürke Lamiaceae Wo 
Satureja abyssinica (Benth.) Briq. Lamiaceae He 
Satureja paradoxa (Vatke) Engl. Lamiaceae He 
Satureja pseudosimensis Brenan Lamiaceae He 
Satureja punctata (Benth.) Briq. Lamiaceae He 
Stachys aculeolata Hook. f. Lamiaceae He 
Cassytha filiformis L. Lauraceae Cl 
Buddleja polystachya Fresen. Buddlejaceae Wo 
Nuxia congesta R.Br. ex Fresen. Buddlejaceae Wo 
Englerina woodfordioides (Schweinf.) M. Gilbert Loranthaceae Wo 
Erianthemum dregei (Eckl. & Zeyh.) Tieghem Loranthaceae Wo 
Oncocalyx glabratus (Engl.) M. Gilbert Loranthaceae Wo 
Tapianthus globiferus (A. Rich.) Tieghem Loranthaceae Wo 
Tapianthus heteromorphus (A. Rich.) Loranthaceae Wo 
Huperzia dacrydioides (Baker) Pic. Serm. Lycopodiaceae Epiphyte 
Abutilon bidentatum (Hochst.) A. Rich. Malvaceae He 
Abutilon fruticosum Guill. & Perr. Malvaceae He 
Hibiscus machranthus Hochst. ex A. Rich. Malvaceae Wo 
Hibiscus micranthus L.f. Malvaceae Wo 
Kosteletzkya adoensis (Hochst. ex. A. Rich.) Mast. Malvaceae He 
Sida ovata Forssk. Malvaceae He 
Dissotis senegambiensis (Guill. & Perr.) Triana Melastomataceae He 
Eckebergia capensis Saprrm. Meliaceae Wo 
Lepidotrichilia volkensii (Gürke) Leroy Meliaceae Wo 
Bersama abyssinica Fresen. Melianthaceae Wo 
Stephania abyssinica (Dillion ex A. Rich.) Walp. Menispermaceae Cl 
Corbichonia decumbens (Forssk.) Exell Molluginaceae He 
Mollugo nudicaulis Lam. Molluginaceae He 
Dorestenia soerensenii Friis Moraceae He 
Ficus sur Forssk. Moraceae Wo 
Ficus sycomorus L. Moraceae Wo 
Ficus vasta Forssk. Moraceae Wo 
Embelia schimperi Vatke Myrsinaceae Wo 
Maesa lanceolata Forssk. Myrsinaceae Wo 
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Myrsine africana L. Myrsinaceae Wo 
Myrsine melanophloeos (L.) R. Br. Myrsinaceae Wo 
Syzygium guineense (Willd.) DC. ssp. afromontanum F. White Myrtaceae Wo 
Ochna insermis (Forssk.) Schweinf. ex Penzig Ochnaceae Wo 
Ximenia americana L. Olacaceae Wo 
Jasminum abyssinicum Hochst. ex DC. Oleaceae Cl 
Jasminum grandiflorum  L. Oleaceae Cl 
Olea europea L. ssp. cuspidata (Wall. ex G. Don) Cif. Oleaceae Wo 
Schrebera alata (Hochst.) Welw. Oleaceae Wo 
Arthropteris monocarpa (Cordem.) C. Chr. Oleandraceae Fe 
Arthropteris orientalis (J.F.Gmel.) Posth. Oleandraceae Fe 
Olinia rochetiana A. Juss. Oliniaceae Wo 
Diaphananthe schimperiana (A. Rich.) Summerh. Orchidaceae He 
Oxalis corniculata L. Oxalidaceae He 
Phytolacca dodecandra L´Herit. Phytolaccaceae He 
Peperomia abyssinica Miq. Piperaceae He 
Piper capense L.f. Piperaceae He 
Pittosporum abyssinica Del. Pittosporaceae Wo 
Pittosporum viridiflorum Sims Pittosporaceae Wo 
Plantago palmata Hook. F. Plantaginaceae He 
Andropogon abyssinicus Fresen. Poaceae Gr 
Aristida adscensionis  L. Poaceae Gr 
Arthraxon micans (Nees) Hochst. Poaceae Gr 
Arundinaria alpina K. Schum. Poaceae Gr 
Bothriochloa insculpta (Hochst. ex A. Rich.) A. Camus Poaceae Gr 
Brachiaria leersioides (Hochst.) Stapf Poaceae Gr 
Brachiaria serrata (Thunb.) Stapf Poaceae Gr 
Cenchrus ciliaris  L. Poaceae Gr 
Chrysopogon plumulosus Hochst. Poaceae Gr 
Cynodon dactylon  (L.) Pers. Poaceae Gr 
Digitaria velutina (Forssk.) P. Beauv. Poaceae Gr 
Echinochloa pyramidalis (Lam.) Hitchc. & Chase Poaceae Gr 
Enteropogon machrostachyus Hochst. ex A. Rich. Benth. Poaceae Gr 
Eragrostis cilianensis (All.) Vign. ex Janchen Poaceae Gr 
Exotheca abyssinica (Hochst ex A. Rich.) Anderss. Poaceae Gr 
Harpachne schimperi Hochst. ex A. Rich Poaceae Gr 
Heteropogon contortus (L.) Roem. & Schult. Poaceae Gr 
Hyparrhenia filipendula (Hochst.) Stapf Poaceae Gr 
Hyparrhenia hirta (L.) Stapf Poaceae Gr 
Leptochloa obtusiflora Hochst. Poaceae Gr 
Loudetia arundinacea (Hochst. ex A. Rich) Steud. Poaceae Gr 
Melinus repens (Willd.) Zizka Poaceae Gr 
Oplismenus undulatifolius (Ard.) Roem. & Schult. Poaceae Gr 
Panicum atrosanquineum  A. Rich. Poaceae Gr 
Panicum coloratum L. Poaceae Gr 
Panicum hochstetteri Stued. Poaceae Gr 
Panicum maximum  Jacq. Poaceae Gr 
Panicum subalbidum Kunth Poaceae Gr 
Perotis patens Gand. Poaceae Gr 
Setaria incrassata (Hochst.) Hack. Poaceae Gr 
Setaria pumila (Poir.) Roem. & Schult. Poaceae Gr 
Setaria verticillata (L.) P. Beauv. Poaceae Gr 
Sporoboulus piliferus (Trin.) Kunth Poaceae Gr 
Themeda triandra Forssk. Poaceae Gr 
Polygala albida Schinz Polygalaceae He 
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Polygala arenaria Willd. Polygalaceae He 
Polygala erioptera DC. Polygalaceae He 
Polygala rupicola  A. Rich. Polygalaceae He 
Polygala sadebeckiana Gürke Polygalaceae He 
Polygala sphenoptera Fresen. Polygalaceae He 
Polygonum afromontanium Greenway Polygonaceae Cl 
Loxogramme lanceolata (Sw.) S. Presl. Polypodiaceae Fe 
Pleopeltis macrocarpa (Bory ex. Willd) Kaulf Polypodiaceae Fe 
Portulaca oleraceae L. Portulacaceae He 
Portulaca quadrifida L. Portulacaceae He 
Talinum portulacifolium (Forssk.) Achers. ex Schweinf. Portulacaceae He 
Faurea speciosa Welw. Proteaceae Wo 
Adiantum sp. Pteridaceae Fe 
Pteris catoptera Kze. Pteridaceae Fe 
Pteris cretica L. Pteridaceae Fe 
Clematis simensis Fresen. Ranunculaceae Cl 
Thalictrum rhynchocarpum Dill. & A. Rich. Ranunculaceae He 
Helinus mystacinus (Ait.) E. Mey. ex Steud. Rhamnaceae Cl 
Rhamnus prinoides L`Herit. Rhamnaceae Wo 
Rhamnus staddo A. Rich. Rhamnaceae Wo 
Ziziphus mucronata Willd. Rhamnaceae Wo 
Alchemilla fischeri Engl. Rosaceae He 
Hagenia abyssinica (Bruce) J.F. Gmel. Rosaceae Wo 
Prunus africana (Hook.f.) Kalkm. Rosaceae Wo 
Rubus apetalus Poir. Rosaceae Cl 
Rubus steudneri Schweinf. Rosaceae Cl 
Anthospermum herbaceum  L.f. Rubiaceae He 
Canthium oligocarpum Hiern Rubiaceae Wo 
Canthium pseudosetiflorum  Bridson Rubiaceae Wo 
Galiniera saxifrage (Hochst.) Bridson Rubiaceae Wo 
Galium simense Fresen. Rubiaceae He 
Galium thunbergianum Eckl. & Zeyh. Rubiaceae He 
Gardenia ternifolia Schumach. & Thonn. Rubiaceae Wo 
Oldenlandia monanthos (A. Rich.) Hiern Rubiaceae He 
Pavetta oliveriana Hiern Rubiaceae Wo 
Pentanisia ouranogyne S. Moore Rubiaceae He 
Pentas lanceolata (Forssk.) Deflers Rubiaceae He 
Pentas schimperana (A. Rich.) Vtake Rubiaceae Wo 
Psychotria orophila Petit Rubiaceae Wo 
Psydrax parviflora (Afz.) Bridson Rubiaceae Wo 
Psydrax schimperiana (A. Rich.) Bridson Rubiaceae Wo 
Clausena anisata (Willd.) Benth. Rutaceae Wo 
Teclea nobilis Del. Rutaceae Wo 
Zanthoxylum chalybeum Engl. Rutaceae Wo 
Dobera glabra (Forssk.) Poir. Salvadoraceae Wo 
Salvadora persica L. Salvadoraceae Wo 
Osyridocarpus schimperanus (A. Rich.) A. DC. Santalaceae Cl 
Osyris quadripartita Decn. Santalaceae Wo 
Allophyllus abyssinicus (Hochst.) Radlkofer Sapindaceae Wo 
Dodonae angustifolia L.f. Sapindaceae Wo 
Lepisanthes senegalensis (Juss. ex Poir.) Leenh. Sapindaceae Wo 
Pappea capensis Eckl. & Zeyh. Sapindaceae Wo 
Anemia schimperiana Presl Schizaeaceae Fe 
Alectra sessiliflora (Vahl) Kuntze Scrophulariaceae He 
Craterostigma pumilum Hochst. Scrophulariaceae He 
Cycnium erectum Randle Scrophulariaceae He 
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Verbascum benthamianum Hepper scrophulariaceae He 
Veronica abyssinica Fresen. Scrophulariaceae He 
Selaginella abyssinica Spring Selaginaceae Fe 
Brucea antidysenterica J.F. Mill. Simaroubaceae Wo 
Harrisonia abyssinica Oliv. Simaroubaceae Wo 
Pellaea viridis (Forssk.) Prantl. Sinopteriaceae Fe 
Discopodium penninervium Hochst. Solanaceae Wo 
Solanum anguivi  Lam. Solanaceae Wo 
Solanum incanum  L. Solanaceae Wo 
Dombya torrida (J.F. Gmel.) P. Bamps Sterculiaceae Wo 
Hermannia tigreensis Hochst. ex A. Rich. Sterculiaceae He 
Melhania velutina Forssk. Sterculiaceae He 
Gnidia involucrata Steud. ex A. Rich. Thymelaeaceae Wo 
Gnidia latifolia (Oliv.) Gilg Thymelaeaceae Wo 
Corchorus trilocularis L. Tiliaceae He 
Grewia bicolor Juss. Tiliaceae Wo 
Grewia velutina (Forssk.) Vahl Tiliaceae Wo 
Grewia villosa Willd. Tiliaceae Wo 
Triumfetta brachyceras K. Schum. Tiliaceae Wo 
Triumfetta pilosa Roth Tiliaceae Cl 
Triumfetta tomentosa Boj. Tiliaceae Wo 
Pilea rivularis Wedd. Urticaceae He 
Pilea tetraphylla (Steudel) Blume Urticaceae He 
Urerea hypselodendron (A. Rich.) Wedd. Urticaceae Cl 
Urtica simensis Steudel Urticaceae He 
Lantana viburnoides (Forssk.) Vahl Verbenaceae Wo 
Lippia adoensis Hochst. ex Walp. Verbenaceae Wo 
Phyla nodiflora (L.) Greene Verbenaceae He 
Hybanthus enneaspermus (L.) F. Muell. Violaceae He 
Viola abyssinica Oliv. Violaceae He 
Cissus quadrangularis L. Vitaceae Cl 
Cissus rotundifolia (Forssk.) Vahl Vitaceae Cl 
Cyphostemma adenocaule (Stued. ex A. Rich.) Desc.oings ex Wild & R.B. 
Drumm.ond. Vitaceae Cl 
Cyphostemma cyphoetalum (Fresen.) Desc. ex Wild & R.B. 
Drumm.Descoings ex Wild & Drummond Vitaceae Cl 
Cyphostemma rivae (Gilg) Desc.oings Vitaceae Cl 
Rhoicissus revoilii Planch. Vitaceae Cl 
Rhoicissus tridentata (L. f.) Wild & R.B. Drumm.Willd & Drummond Vitaceae Cl 
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