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A novel reaction, the potassium hydride mediated synthesis of

fulvenes, is described. The synthesis utilizes N-aryl imines as an

inexpensive starting material affording novel substituted amino-

fulvenes. It is proposed that the presence of the metalated

enamine as well as the imine (ratio 2 : 1) leads to the formation

of an initial dimerization and a transient trimerization product,

which cyclizes, giving rise to the aminofulvene.

Pentafulvenes, first described by Thiele at the beginning of this

century,1 attracted much interest due to their color,2 reactivity

(especially cycloadditions),3 dipole moment4 and questions

regarding their aromatic or anti-aromatic5 character. Further-

more they represent a class of very interesting organic ligands.

Various organometallic compounds, being applied for instance

as polymerization catalysts6 or anticancer agents,7 have been

synthesized via fulvene routes.8 Fulvenes can be obtained by

condensation reaction9 of aldehydes or ketones with cyclo-

pentadienyl. Additionally, a few other methods can be utilized.10

Herein we report a novel potassium hydride mediated approach

towards 1,3,6-substituted 6-aminofulvenes. The imine trimeri-

zation reaction is based on tautomerization into metalated

enamines and proceeds via C–H activation and multiple C–C

bond formation steps.

Within experiments regarding the asymmetric hydrogenation11

of 1a (Fig. 1), the formation of a by-product was observed if

KH was utilized as a base. A dark red material crystallized in one

of the catalysis samples. It was identified as [(2,4-diphenyl-cyclo-

penta-2,4-dienylidene)-phenyl-methyl]-phenyl-amine 2a (Fig. 1).

Upon this discovery, we were interested in understanding

and using the side reaction. A precise reaction stoichiometry

(imine : KH ratio) is crucial to yield fulvenes as the main

product. Addition of a large excess of potassium hydride (3 eq.)

led to amine formation, whilst using one equivalent mainly

yielded the imine starting material (after workup). Upon

utilization of 0.7 equivalents of potassium hydride, complete

conversion of the imine to the corresponding 6-aminofulvene

as the main product was observed (Fig. 2). The addition of

several metal bases was investigated. Only the utilization of

potassium hydride gave rise to fulvene 2a with complete

conversion of the starting material.

Upon the addition of potassium hydride to imines 1a–i the

color of the reaction solution changed quickly to green and

then dark red, accompanied by hydrogen evolution. The

corresponding fulvenes 2a–i were obtained as dark red materials

in moderate yields (Fig. 3).

A time-conversion plot was generated to gain additional

insight into mechanistic details of this novel reaction (Fig. 4).

The isolated yield of the fulvene is consistent with the

GC-yield, which was obtained in the kinetic experiment.

Additionally, the formation of an intermediate (3a) and a

by-product (4a) could be observed as well as the formation of

aniline. The key intermediate (1,3-diphenyl-but-3-enylidene)-

phenyl-amine (3a) was independently synthesized. Reduction

of 3a gives rise (after aqueous workup) to the by-product

(1,3-diphenyl-butylidene)-phenyl-amine (4a), which could be

isolated from the reaction mixture and was characterized by

NMR spectroscopy and EA.

The potassium cyclopentadienylimine complex 5a was

crystallized from the reaction mixture and was analyzed via

X-ray crystal structure analysis to determine the molecular

structure (Fig. 5).

In the dimeric complex 5a, the potassium is coordinated by

the N-atom and further stabilized by p-coordination of the

electron rich phenyl substituents of 5a and the cyclopentadienyl

moiety of a second ligand molecule. The bond lengths of 5a

Fig. 1 Retrosynthetic approach towards novel fulvenes.

Fig. 2 Synthesis of fulvenes from N-aryl imines.
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Universitätsstraße 30, 95440 Bayreuth, Germany.
E-mail: kempe@uni-bayreuth.de; Fax: +49 (0)921 552157;
Tel: +49 (0)921 552540
w Electronic supplementary information (ESI) available: Crystallographic
data, characterization data, and detailed experimental procedures. CCDC
782978–782980. For crystallographic data in CIF or other electronic
format see DOI: 10.1039/c0cc04565a

ChemComm Dynamic Article Links

www.rsc.org/chemcomm COMMUNICATION

Pu
bl

is
he

d 
on

 2
5 

Fe
br

ua
ry

 2
01

1.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
9/

1/
20

20
 1

2:
13

:2
6 

PM
. 

View Article Online / Journal Homepage / Table of Contents for this issue

http://dx.doi.org/10.1039/c0cc04565a
http://dx.doi.org/10.1039/c0cc04565a
https://doi.org/10.1039/c0cc04565a
https://pubs.rsc.org/en/journals/journal/CC
https://pubs.rsc.org/en/journals/journal/CC?issueid=CC047014


4184 Chem. Commun., 2011, 47, 4183–4185 This journal is c The Royal Society of Chemistry 2011

differ significantly from the bond lengths of the isolated fulvene

2a. Whereas in 2a the three double bonds (1.36–1.38 Å) are

notably shorter than the sigma-bonds (1.45–1.47 Å), in 5a only

the C3–C4 bond length (1.39 Å) is in the supposed range. The

other C–C bond lengths vary between 1.40 and 1.46 Å. The

C–N bond length of only 1.30 Å indicates a C–N double bond.

These data provide a consistent picture of the coordinated

ligand as a cyclopentadienylimine rather than an amidofulvene.

The deviation of the cyclopentadienyl plane is 0.005 Å. The

nitrogen atom is out of this plane (distance 0.41 Å), because it

coordinates the potassium atom.

Since Knorr et al.12 reported the formation of metastable

secondary enamines via lithiation of imines with lithium

diisopropylamide, we assumed that enamine-formation upon

potassium hydride addition is a crucial reaction step in fulvene

formation. The two olefinic hydrogen-atoms of the enamine 6a

were detected as doublets (J = 1.4 Hz) at 4.29 and 4.12 ppm

(solvent C6D6 : THF-d8 10 : 1). The presence of the imine as

well as the enamine is necessary for the reaction to take place,

which is supported by the results of the KH : imine ratio

screening. As indicated in Fig. 6, the enamine species 6a

Fig. 3 6-Aminofulvenes 2a–i.

Fig. 4 Time-conversion plot; determined viaGC with dodecane as an

internal standard.

Fig. 5 Molecular structure of 5a; selected bond lengths [Å] and angles [1]:

C1–C2, 1.404(5); C1–C24, 1.416(6); C2–C3, 1.409(6); C3–C4, 1.386(6);

C4–C24, 1.425(6); C17–K1, 3.208(4); C22–K1, 3.229; C23–N1, 1.304(5);

C23–C24, 1.458(6); N1–K1, 2.814(4); N1–C22–K1, 60.4(2); N1–C23–C24,

120.1(4); N1–C23–C25, 122.5(4); C23–N1–C22, 121.4(4).

Fig. 6 Proposed reaction mechanism.
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attacks the C-atom of the CQN bond13 of 1a to yield

(1,3-diphenyl-but-3-enylidene)-phenyl-amine 3a, thereby potassium

anilide is eliminated. A second attack of 6a at the imino-group

of 3a occurs and subsequently the trimerization product 7a

cyclizes to 5a. The proposed mechanism is summarized in

Fig. 6.

The reaction of N-alkyl imines, N-phenyl-(1-phenyl-propyl-

idene)-amines, or N-phenyl-(1-alkyl-ethylidene)-amines with

potassium hydride did not yield the corresponding fulvenes.

NMR-experiments upon KH addition suggested that the

tautomerization to aldimines or isomerization of the double

bond into the alkyl-chain prevents the initial attack.

Heterocyclic substituted imines, which can form 5-membered

chelates with potassium, for instance N-phenyl-(2-pyridylethyl-

idene)-amine or N-phenyl-(thiophen-2-yl-ethylidene)-amine,

do neither convert to fulvenes under the general conditions

nor under harsh conditions (110 1C, diglyme or 1,4-dioxane).

If higher temperatures are applied, an additional by-product

was observed. This N-substituted 2,4-aryl-pyrrole is formed

due to cyclization of the intermediate 3.

The reaction of 3- or 4-substituted heterocyclic imines with

potassium hydride under harsh conditions (110 1C, diglyme) was

rather unselective leading to a mixture of various compounds.

In conclusion, a novel reaction was discovered. A series of

novel 1,3,6-substituted 6-aminofulvenes was synthesized

by a facile approach, which utilizes inexpensive and readily

available imines as starting material. Furthermore, the mecha-

nism of the reaction was investigated. We propose that the

potassium-mediated trimerization reaction of N-aryl imines

proceeds via an observed dimerization and a transient trimeriza-

tion product, which subsequently cyclizes, thereby giving rise

to novel fulvenes. In terms of organic synthesis a variety of

fulvenes suited to stabilize constrained geometry type olefin

polymerization catalysts is described.14
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G. Kehr and R. Fröhlich, Organometallics, 2002, 21, 1031;
R. Beckhaus, A. Lützen, D. Haase, W. Saak, J. Stroot, S. Becke
and J. Heinrichs, Angew. Chem., Int. Ed., 2001, 40, 2056; T. Koch,
S. Blaurock, F. B. Somoza, A. Voigt, R. Kirmse and E. Hey-
Hawkins, Organometallics, 2000, 19, 2556; H. G. Alt and M. Jung,
J. Organomet. Chem., 1998, 568, 87; J. J. Eisch, X. Shi and
F. A. Owuor, Organometallics, 1998, 17, 5219; K. M. Kane,
P. J. Shapiro, A. Vij and R. Cubbon, Organometallics, 1997, 16,
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