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Charge transfer through biological macromolecules is essential for many

biological processes such as for instance photosynthesis and respiration. In these

processes, protons or electrons are transferred between titratable residues or

redox-active cofactors, respectively. Often their transfer is tightly coupled.

Computational methods based on continuum electrostatics are widely used in

theoretical biochemistry to analyze the function of even very complex biochemical

systems. These methods allow one to consider the pH and the redox potential of the

solution as well as explicitly considering membrane potentials in the calculations.

Combining continuum electrostatic calculations with a statistical thermodynamic

analysis, it is possible to calculate equilibrium parameters such as protonation or

oxidation probabilities. Moreover, it is also possible to simulate reaction kinetics

by using parameters calculated from continuum electrostatics. One needs to

consider that the transfer rate between two sites depends on the current charge

configuration of neighboring sites. We formulate the kinetics of charge transfer

systems in a microstate formalism. A unique transfer rate constant can be assigned

to the interconversion of microstates. Mutual interactions between sites

participating in the transfer reactions are naturally taken into account. This

formalism is applied to the kinetics of electron transfer in the tetraheme-subunit

and the special pair of the reaction center of Blastochloris viridis. It is shown that

continuum electrostatic calculations can be used in combination with an existing

rate law to obtain electron transfer rate constants. The relaxation electron transfer

kinetics after photo-oxidation of the special pair of photosynthetic reaction center

is simulated by a microstate formalism and it is shown to be in good agreement with

experimental data. A flux analysis is used to follow the individual electron transfer

steps. This method of simulating the complex kinetics of biomolecules based on

structural data is a first step on the way from structural biology to systems biology.
Introduction

Electron transfer in biomolecules often occurs over large distances. Individual elec-
tron transfer reactions occur normally only over distances between 5 and 20 �A. Elec-
tron transfer over larger distances involves several redox centers. Examples for such
multi-redox-center systems are complex I, hydrogenase, nitrate reductase, or the
photosynthetic reaction center. The charge transfer dynamics in these systems
depends strongly on the mutual interaction between the redox active groups.
Because electrons are charged particles, this interaction is mainly electrostatic and
thus of long range. A similar situation can be found in the case of proton transfer
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reactions which occur also over large distances in hydrogen bonded networks of
proteins. Individual proton transfer steps occur normally over distances from 3 to
5 �A. However, proton transfer can occur over a much larger distance when the trans-
fer takes place in several steps.

The charge transfer dynamics in tightly interacting systems is well described by
a microstate model that takes the interaction between the charge transfer sites
into account. This model makes it evident that it is not correct to assign single fixed
redox potentials or pKa values to individual sites of the protein. In fact, because of
the charge–charge interaction, the free energy associated with the charge transfer
between two sites depends also on the charge state of the surrounding groups.
Thus, microscopic free energy differences need to be considered. A consequence
of this behavior is that pKa values of individual sites in proteins depend on pH1

and redox potentials of individual sites in proteins depend on the solution redox
potential.

A well-characterized example of an electron transfer system is the photosynthetic
reaction center (RC) from Blastochloris viridis. Its structure has been solved
Fig. 1 Cofactors of the RC from B. viridis. The cofactors involved in the electron transfer
reaction investigated in this paper (relaxation kinetics after photooxidation of SP) are shown
in space-filled mode, the other cofactors as balls-and-sticks. The special pair is shown in green,
the hemes are shown in magenta. The hemes are named according to their wavelength of
maximal absorbance.
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crystallographically2–4 and its equilibrium energetics, as well as its charge transfer
kinetics, have been accessed by numerous studies.5–9 The RC from B. viridis consists
of four subunits labeled H, M, L and C. The three subunits H, L and M facilitate the
reduction of a quinone to a quinol. Following the photo-induced excitation of a chlo-
rophyll dimer, the so-called special pair (SP), an electron is transferred via several
cofactors to a quinone bound to the so-called QB-site. Subunit C is a tetraheme cyto-
chrome which reduces the oxidized SP (see Fig. 1). Midpoint potentials have been
assigned to all four hemes.5,6 The heme closest to SP has been identified as the site
that primarily re-reduces SP. The kinetics of re-reduction of SP does, however,
depend on the charge state of the other heme sites. If prior to the photo-oxidation
of SP, the three hemes with the highest midpoint potential are reduced, the re-reduc-
tion kinetics of SP is two times faster compared to re-reduction if only one heme is
reduced.7

In the context of titration experiments, a significant non-Nernst behavior of the
titration curve of SP has been reported.8 This finding was attributed to the electro-
static interaction between SP and heme c559. The distinction between mid-point
potentials and operational redox potentials was discussed in this context.8 Mid-point
potentials are redox potentials read as mid-point from titration curves measured in
an equilibrium titration experiment, while the operational redox potentials are ob-
tained by inferring the redox potentials from kinetic measurements of electron trans-
fer reactions.

In this article, we present a coherent scheme to simulate electron transport in bio-
logical systems. We apply this method to investigate the electron transfer between
the SP and the C-subunit after photo-oxidation of the SP of the RC from B. viridis.
We call this process relaxation after photo-oxidation. Based on Poisson–Boltzmann
electrostatics, electron transfer rates are estimated in the framework of Marcus
theory. The rates are calculated for transitions between microstates, i. e., the charge
state of the entire system is considered to access the kinetics of electron transfer. This
approach allows to use equilibrium electrostatic calculations to access the energetics
and mutual interactions between sites and thus provides the kinetically relevant
operational redox potentials. The calculations are shown to reproduce well the
experimentally determined equilibrium redox potentials of the RC. Furthermore,
the changes in re-reduction kinetics of SP upon reduction of additional hemes is re-
produced and shown to be due to the electrostatic interaction between heme c559 and
heme c552. In addition, the simulation results obtained with a model including inter-
actions between redox actives sites are compared with a model in which this interac-
tion is neglected. Only the model in which the interactions between the redox sites is
explicitly included is able to reproduce all experimental data.

Theory

It is common to describe charge transfer in proteins as a series of transfer events
between the groups involved in the transfer reaction.10,11 Accordingly, the electron
transfer between the C-subunit and the SP of the RC could be described by esti-
mating rate constants for the transfer between pairs of specific cofactors, like for
instance heme c559 and SP. This approach, however, bears some problems since
the interaction between the sites can not be considered easily. In an alternative
approach, the system with many interacting redox-active sites is described by an
N-dimensional state vector, where N is the number of redox active sites. The
elements of this vector are respectively 1 or 0, indicating whether an electron is
bound to the sites (reduced site) or not (oxidized site). Each particular representation
of such a vector, for instance (0,1,1,0,1) or (1,0,1,0,1), can be considered as a micro-
state of the system. The dynamics of the system is described by transition between
these microstates. For instance, the transition between (0,1,1,0,1) and (1,0,1,0,1)
corresponds to an electron transfer between site 2 and site 1, while site 3 and 5
are reduced and site 4 is oxidized. Accordingly, rates are assigned to transitions
This journal is ª The Royal Society of Chemistry 2011 Faraday Discuss., 2011, 148, 173–193 | 175
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between microstates and not to transfer events between sites. A description based on
microstates is already well established in theoretical calculations of redox and
protonation probabilities of proteins at equilibrium12–14 and has recently been sug-
gested for the kinetics of charge transfer systems.15–18 Here, we use the concept of
microstates to describe the kinetics of an electron transfer system. To keep the nota-
tion simple, we formulate the theory for a system of redox-active groups only, i. e.,
an electron transfer system. Treating proton transfer or coupled systems is, however,
straightforward within the same theoretical framework.
System description

We consider a system with N redox-active sites. Each state of the system can be
written as an N-dimensional vector ~x ¼ (x1,/,xN), where xi is 0 or 1 if site i is
oxidized or reduced, respectively. A transfer event is described as a transition
from one state vector to another. In the most general description, transitions are
possible between any two given states. In practice, external constraints on the system
Fig. 2 Examples of electron transfer processes in the photosynthetic reaction center. Each
rectangle represents a microstate of the photosynthetic reaction center, the rhombi inside the
rectangle represent the hemes and the overlapping rhombi represent the special pair, i.e. it is
a schematic representation of Fig. 1. The reduced state of the cofactors is indicated by a red
sphere. After photooxidation of the special pair (red arrow), several electron transfer reactions
lead to the new equilibrium. The total process is termed relaxation kinetics. Panel (a) shows the
processes that occur at highly reducing condition where all hemes are reduced before photoox-
idation. Panel (b) shows two examples for the relaxation kinetics at less reducing conditions,
where one or more hemes are oxidized before photooxidation. These two examples differ in
the localization of an oxidized heme. Besides the fact that a different number of steps is required
in the two examples to arrive eventually at the same product state, the rates for the transfer
reactions between two states will also be different. For instance, the first reaction after photo-
oxidation of the special pair is in both examples an electron transfer from heme c559 to the
special pair. However, the charge transfer rates are different in the two examples because the
nearby heme c552 is reduce in the first example and thus has a charge of +2, while it is oxidized
(charge +3) in the second example. The different electrostatic interactions lead to different
charge transfer rates.

176 | Faraday Discuss., 2011, 148, 173–193 This journal is ª The Royal Society of Chemistry 2011
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may restrict the number of possible transitions. Such restrictions might concern the
number of electrons in the system; i. e., if no electrons are allowed to enter or leave
the system, only transitions between state vectors with equal number of reduced sites
will be allowed. We assume that concerted transfer reactions do not occur. Therefore
only transitions that represent a single electron transfer are considered. Such transfer
events have the form (x1,/,xi,/,xj,/,xN) / (x1,/,~xi,/,~xj,/,xN) where xi and ~xi

denote the redox state of site i before and after the transfer event, respectively. These
are the processes considered in this paper. Examples for the charge transfer processes
are shown in Fig. 2.

Each state of the system has a well-defined energy which depends on the energetics
of the individual sites and the interaction between sites. States will be numbered by
Greek indices and the roman letters i and j will be used for site indices. The energy of
a state ~xn is given by:14

E
�
~xn

�
¼ En ¼

XN

i¼1

�
xn;i � x+

i

�
F
�

3+
intr;i � 3

�
þ 1

2

XN

i¼1

XN

j¼1

ðxi � x+
i Þ
�
xj � x+

j

�
Wij (1)

where F is the Faraday constant; xn,i denotes the redox form of the site i in state n, x+
i

is the reference form of site i; 3+
intr,i is the redox potential that site i would have if all

other sites are in their reference form (intrinsic redox potential); 3 is the redox poten-
tial of the solution; Wij represents the interaction of site i with site j.

Equilibrium properties

Equilibrium properties of a physical system are completely determined by the ener-
gies of its states. The equilibrium probability of a single state is given by

peq
n ¼

e�bEn

Z
(2)

with b ¼ 1/kT and Z being the partition function of the system.

Z ¼
XM
n¼1

e�bEn (3)

The sum runs over all 2N ¼ M possible states. Properties of single sites can be
obtained from eqn (2) by summing up the individual contributions of all states.
For example, the probability of site i being reduced is given by

xih i ¼
XM

n

xn;i peq
n (4)

where xn,i denotes the redox form of site i in the charge state n.
For a system of interacting sites, the probabilities hxii can show a complex shape,

thus rendering the assignment of mid-point potentials difficult or even meaningless.1,19

The energy differences between microstates, however, remain well-defined and thus
form a convenient basis to describe the system. It should be noted that the contribu-
tion of the solution redox potential cancels for energy differences between state ener-
gies (eqn (1)) of two microstates m and n with the same number of electrons.

Redox equilibrium constants in proteins

When a protein contains many redox-active groups, one can differentiate between
macroscopic and microscopic redox constants (see ref. 1, 19 and 20 for a comparable
discussion on protonation constants). The nth macroscopic redox potential defines
the equilibrium between all states that have n and (n � 1) electrons bound. There
are in total as many macroscopic redox constants as there are redox-active sites in
This journal is ª The Royal Society of Chemistry 2011 Faraday Discuss., 2011, 148, 173–193 | 177
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the protein. However, an assignment of a macroscopic redox constant to an indi-
vidual site is in principle not possible.

Microscopic redox constants describe the equilibrium between two microscopic
redox states of the system that differ in the redox-state of one site while the remain-
ing sites do not change their oxidation state. In a protein with N redox-active sites,
there are N 2N�1 microscopic redox constants of which only 2N � 1 are independent
of each other.19 For each site, there are 2N�1 microscopic redox constants which can
differ significantly depending on the interaction between the sites. The microscopic
redox potential 3+

n,i can be calculated from the energy difference of the two respective
microstates. Using eqn (1), one obtains

3+
n; i ¼ 3+

intr; i �
1

F

XN

j¼1

�
xn; j � x+

j

�
Wij (5)

Microscopic 3+
n,i-values can be assigned to individual sites. However, since for each

site there are 2N�1 microscopic constants, a single microscopic 3+
n,i-value does not

describe the redox-equilibrium of a site appropriately over the entire range of the
solution redox potential.

Defining redox constants of individual sites in proteins

In order to characterize the redox behavior of an individual site of a protein, it is
desirable to define a single 3�-value that can be uniquely assigned to that site.
However, such a definition is not straightforward and deserves some reflection.
Two types of such definition seem physically meaningful to us.

Tanford–Roxby 3�-value. A possible definition of the redox potential 3� of an indi-
vidual site can be an average microscopic 3�-value. In analogy to the average reduc-
tion probability of a site (eqn (4)), an average microscopic 3�-value can be defined as

h3+
i i ¼

XM
n

3+
v;i peq

n (6)

peq
v is the probability of state n as defined in eqn (2). Interestingly, using eqn (5) and

(4) it can be shown that eqn (6) is equivalent to eqn (7).

�
3+

i

�
¼ 3+

TR; i ¼ 3+
intr; i �

1

F

XN

j¼1

�
hxji � x+

j

�
Wij (7)

This equation is formally similar to an equation proposed by Tanford & Roxby to
calculate the protonation behavior of a protein in an iterative scheme.21 In ref. 1, we
have proven that the Tanford–Roxby-pKa value defines an average microscopic
pKa-value of site i. Because of the similarities of pKa-values and redox potentials
of a site,14 the average microscopic 3�-value h3+

i i will be called the Tanford–Roxby
(TR) 3�-value (3+

TR,i). The sum in eqn (7) gives the average energy of interaction
with the other sites of the protein, which depends on the average oxidation proba-
bility hxji of the other sites and thus on the solution redox potential. However, it
is not considered that also other sites can change their equilibrium oxidation prob-
ability when site i changes its oxidation state.

Nernst 3�-value. An alternative definition of the 3�-value of an individual site can
be obtained by rearranging the Nernst equation:

3+
N;i ¼ 3þ RT

F
ln
hxii

1� hxii
(8)
178 | Faraday Discuss., 2011, 148, 173–193 This journal is ª The Royal Society of Chemistry 2011
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This redox potential of a site will be called the Nernst 3�-value (3+
N,i). In analogy to

similar definitions of a pKa-value,1 it can be shown that with this definition, the
3+

N,i-values relates to the free energy difference of the redox reaction. This definition,
besides taking into account the solution redox-potential-dependence of the interac-
tions with other residues, also takes into account that the other sites may also change
their average oxidation probabilities.

Meaning of the 3�-values of individual sites. Obviously, the two definitions in
eqn (6) and (8) are not equivalent. For weak interactions, the difference between
the two definitions is almost negligible, but for strong interactions the difference is
significant. However, both definitions are meaningful, since they describe different
limiting scenarios. The physical picture that is connected to the TR-3�value
(eqn (6)) describes a situation in which the redox-state of all sites is in equilibrium
with the solution (hx1i, ., hxii, ., hxNi)eq. As depicted in eqn (9), the oxidation
form of site i is changed from 0 to 1, while all other sites maintain the average oxida-
tion that they have in equilibrium.

(hx1i, ., 0, ., hxNi) / (hx1i, ., 1, ., hxNi) (9)

This picture implies that the reduction of site i is faster than the equilibration of
the reduction of the surrounding residues.

The physical picture that is connected to the Nernst 3�-value (eqn (8)) is related to
the free energy difference of oxidation. The reaction starts from a situation in which
site i is oxidized and all other sites adapt to this average oxidation probability and
ends with site i reduced and again all other sites adapt to the situation (eqn (10)).

(hx1i0, ., 0, ., hxNi0)eq,ox /(hx1i00, ., 1, ., hxNi00)eq,red (10)

In this scenario, the reduction of site i is considered to be slow enough to allow all
other residues to equilibrate before and after reduction. In contrast to microscopic
and macroscopic 3� values which do not depend on the solution redox potential,
both definitions of the individual site 3� value lead to solution redox-potential-
dependent 3�-values. The reason for this dependence is that the interaction between
the sites depends on the redox potential of the solution, since the charge of the sites
depends on it. Moreover, in the case of the Nernst 3�-value, the number of electrons
bound to the protein before and after reduction does not necessarily differ by exactly
one. From the solution redox-potential-dependence of the two definitions of the
individual site 3�-values, one can thus conclude that the reduction energy of a site
inside a protein with multiple redox sites does not depend linearly on solution redox
potential in contrast to the case of a protein with a single redox-active site where the
3�-values are independent of solution redox potential. The Nernst 3�-value and the
TR 3�-value represent effective redox potentials of a site; they vary with varying
solution redox potential. Often they indicate also the operational redox potentials.
In general, however, the operational redox potentials are related to microscopic
redox potentials and thus to the microstates of the system.
Time evolution

The kinetics of the above defined system can be described by a master equation

d

dt
pnðtÞ ¼

XM
m¼1

knm pmðtÞ �
XM
m¼1

kmn pnðtÞ (11)

where pn(t) denotes the probability that the system is in charge state n at time t, knm

denotes the probability per unit time that the system will change its state from m to n.
The summation runs over all possible states m. For these microstates, energies En and
This journal is ª The Royal Society of Chemistry 2011 Faraday Discuss., 2011, 148, 173–193 | 179

https://doi.org/10.1039/c003905e


Pu
bl

is
he

d 
on

 2
4 

Se
pt

em
be

r 
20

10
. D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
8/

24
/2

02
0 

6:
49

:2
9 

A
M

. 
View Article Online
transition probabilities knm can be assigned unambiguously. The correct time-depen-
dent probability of finding a single site in the reduced form can be obtained by
summing up individual contributions from the time-dependent probabilities pn(t).

xih iðtÞ ¼
XM

n

xn;i pnðtÞ (12)

Eqn (11) is a system of coupled linear differential equations with constant coeffi-
cients. It can be written in the form

d pðtÞ
dt
¼ A pðtÞ (13)

The diagonal element Ann of the matrix A is the negative of the sum over all the
rate constants kmn destroying the state n. The off-diagonal element Anm is the rate
constant knm for the conversion of state m to state n.16 The analytical solution for
such equations can be written as

pnðtÞ ¼
XM

m

cmvm;n e�amt (14)

where am is the mth eigenvalue of the matrix A, and vm, n is the nth element of the mth
eigenvector of matrix A; cm are integration constants determined from the initial
probabilities p at t ¼ 0 (i. e. all the terms e�amt ¼ 1).

c ¼ V�1p(0) (15)

where V�1 is the inverse of the matrix containing the eigen vectors of A.
As can be seen from eqn (14), the time dependence of the system is determined by

the eigenvalues am of the matrix A. Thus, the initial probabilities of the states do not
contribute to the time constants am with which the reaction occur but only to the
magnitude cm with which these sites contribute to the overall kinetics. In other
words, once the eigenvalues and eigenvectors of matrix A are determined, they are
valid for all initial conditions. In the case of an electron transfer system, the initial
conditions p(0) are determined by the solution redox potential. Eqn (15) can then
be used to determine the coefficients c at different redox potentials.

Another interesting feature of this system of equations is that the eigenvalue
problem can be solved separately for unconnected reaction subsystems. For
instance, if electron uptake is not allowed for the system, the eigenvalue problem
can be solved separately for the system with 1, 2, 3,

€
. or N electrons present. The

eigenvalues of these subsystems are independent of each other and the total kinetics
is just a linear combination of the kinetics of these subsystems.

To analyze a complex charge transfer system, it is of particular interest to follow
the flow of charges through the system, i. e., the charge flux. The flux from state n to
state m is given by the probability of state n times the probability per unit time that
state n will change into state m, i. e., by kmnpn(t). The net flux Jm/n between states m

and n is thus given as the sum of the flux of the forward and the backward reaction.

Jm/n(t) ¼ knmpm(t) � kmnpn(t) (16)
Calculation of the rate constants knm

The outlined theory is directly applicable to a large class of reaction systems such as
for example proton and electron transfer in proteins. The method to determine the
rate constants knm will, however, be specific for the particular reactions that should
180 | Faraday Discuss., 2011, 148, 173–193 This journal is ª The Royal Society of Chemistry 2011
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be simulated. For electron transfer systems, continuum electrostatic calculations in
combination with existing rate laws22,23 can be used to obtain electron transfer rates
in good agreement with experimental data. Three factors mainly govern the rate
constants of biological electron transfer reactions: the energy difference between
the donor and acceptor state, the environmental polarization (reorganization
energy), and the electronic coupling between the redox sites. The energy barrier
for the transfer process is given in the framework of Marcus theory as

DGs ¼ ðDG+ � lÞ2

4l
(17)

where DG� is the energy difference between donor and acceptor state and l is the so-
called reorganization energy. The electronic coupling between the redox sites can be
accounted for by a distance-dependent exponential function Aexp(�a(R � R�))
where R is the edge-to-edge distance between cofactors; R� represents a van-der-
Waals contact distance and A represents an optimal rate. These aspects of biological
electron transfer have been successfully combined to formulate a heuristic rate law
applicable to long range electron transfer:22,23

logðkexÞ ¼ 13� 0:6 ðR� 3:6Þ � 3:1
ðDG+ þ lÞ2

l
(18)

logðkenÞ ¼ 13� 0:6 ðR� 3:6Þ � 3:1
ð � DG+ þ lÞ2

l
� 0:06DG+ (19)

where kex and ken are the rate constants for exergonic and endergonic electron trans-
fer reactions, respectively. In these equations suggested by Dutton and coworkers,
the reaction energy and the reorganization energy need to be given in eV and the
distance in �A in order to fit with the numerical coefficients. Note that eqn (19) is
a consequence of the relation

ken ¼ kexe�bG� ¼ kexKeq (20)

where Keq is the equilibrium constant for the equilibrium between the the donor and
the acceptor state. The free energy DG� for a transition between two states m and n

can be calculated within the electrostatic model using eqn (1), i. e., En� Em. The reor-
ganization energy l contains two contributions, l ¼ lo + li, where lo is the solvent
reorganization energy and li accounts for changes of the nuclear degrees of freedom
between the donor and acceptor sites. lo was shown to be accessible to equilibrium
calculations:24,25

lo ¼
1

2

XK

i

�
f

opt
ad

�
~ri

�
� fad

�
~ri

�	
Dqad

i (21)

Dqi
ad is the change in charge of atom i when going from the donor to the acceptor

state. The potentials fad
opt and fad are generated by the charge distribution

Dr ¼ ra � rd in a low (opt) and in a high dielectric environment, respectively.
Here, ra and rd denote the charge distribution of the acceptor and donor state,
respectively. The permittivity constant for the low dielectric environment reflects
the electronic polarizability while the permittivity constant for the high dielectric
environment accounts for the nuclear and electronic polarizability. The solvent reor-
ganization energy is given by the difference in solvation free energy of the charge
distribution Dr between a low and a high dielectric environment. li can be estimated
by DFT calculations but are often found to be significantly smaller than the solvent
reorganization energy.26–29 The inner sphere reorganization energy can be calculated
from density functional theory as
This journal is ª The Royal Society of Chemistry 2011 Faraday Discuss., 2011, 148, 173–193 | 181
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li ¼ Ebond(~rd,ra) � Ebond(~ra,ra) (22)

where Ebond is the total DFT energy of the two sites;~rd and~ra correspond to the opti-
mized geometry of the sites in the donor and acceptor state, respectively. Hence, the
inner sphere reorganization energy is given by the difference in bonding energy
between donor and acceptor geometry while the sites are kept in their acceptor state
charge distribution.28,29

In this formulation, the total reorganization energy depends only on the difference
of the charge distribution between two states. In a single electron transfer reaction,
only the charge of the donor site and the charge of the acceptor site changes, while
the charges of the other sites remain unchanged. Thus, the electron transfer between
sites i and j is always connected to the same reorganization energy irrespective of the
states that are converted into each other.

Methods

Structures and parameters

In the calculations, we used the structures of the RC from Blastochloris viridis (PDB
code 1PRC)30 having a resolution of 2.3 �A. All water molecules were deleted. Hydro-
gens were added with HBUILD31 in CHARMM32 and subsequently minimized
using the CHARMM force field.33 For the measurement of the edge-to-edge distance
between the cofactors, we considered only the atoms that are part of the aromatic
system of the cofactors.

The atomic partial charges for most atoms were taken from the CHARMM force
field.33 The partial charges of the hemes, the special pair, and the linked residues
were obtained from a density functional calculation (functionals VWN34 and
PW9135) using the ADF program package.36 The electrostatic potentials obtained
from the density functional calculation were fitted using the CHELPG-algorithm37

combined with a singular value decomposition.38 The charges of all other cofactors
are the same as in previous calculations.39–41

Continuum electrostatic calculations and equilibrium redox titration

All the electrostatic calculations were done using the program suite MEAD12,42

which uses a finite difference method to determine the electrostatic potential. For
the calculations of the intrinsic redox potentials and the interaction energies, the
dielectric constant of the protein and the dielectric constant of water were set to
4.0 and 80.0, respectively. The ionic strength was set 0.1 M. For the protein, the elec-
trostatic potential was calculated by focusing using three grids of 1413, 1213, and 1213

grid points and grid spacings of 2.0 �A, 1.0 �A and 0.25 �A, respectively. For the model
compounds, the electrostatic potential was calculated by focusing using two grids of
1213 grid points and grid spacings of 1.0 �A and 0.25 �A. The first grid was centered on
the protein or the model compound, the other grids were centered on the titratable
group.

For the calculation of the reorganization energy, we used a dielectric constant of
1.0 for the cofactor, 2.0 for the electronic dielectric constant, 4.0 for the total dielec-
tric constant of the protein, and 80.0 for the dielectric constant of water. In the calcu-
lation of the total reaction field potential, an ionic strength of 0.1 M was considered.
The electrostatic potential was calculated by focusing using three grids of 1813, 1813,
and 3013 grid points and grid spacings of 2.0 �A, 1.0 �A and 0.25 �A, respectively. The
first grid was centered on the geometric center of the protein, the other two grids
were centered on the geometric center of the cofactors between which the electron
transfer takes place.

In order to calculate the energy of the different redox states, we first determined
the protonation of the different protonatable residues in the protein using
continuum electrostatic and Monte Carlo simulations.13 We then fixed the highest
182 | Faraday Discuss., 2011, 148, 173–193 This journal is ª The Royal Society of Chemistry 2011
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populated protonation state in order to calculate the energy of the different redox
states. The redox potentials of the special pair, of the bis-histidinyl heme and the
metioninyl-histidinyl heme were adjusted in order to fit the equilibrium redox
behavior. The equilibrium titration curves and the probability of the different redox
states in dependence on the solution redox potential have been calculated by a statis-
tical mechanics averaging.

Solution of the differential equation

In order to solve the system of differential equations in eqn (11) in the form of eqn
(12), the eigenvalues and the eigenvectors of the matrix in eqn (11) need to be deter-
mined. We used the routine DGEEV of the LAPACK library for this purpose. The
coefficients cm in eqn (12) are determined from the initial conditions at t ¼ 0. The
linear system of equations of eqn (12) at t ¼ 0 is solved using standard numerical
methods (lower and upper triangular decomposition).43

Results and discussions

In previous work,16 we simulated the relaxation kinetics after photooxidation of the
special pair in the photosynthetic reaction center using a microstate description. This
relaxation kinetics is the transfer of electrons from the tetraheme C-subunit to SP
which leads to the re-reduction of SP. In the present work, we complement that
approach with the discussion of the energetics of the electron transfer process. In
this section, we first discuss equilibrium properties underlining the necessity to
take into account the interaction between the sites. Then, after recalling the main
results of our previous study16 on the time evolution of the electron transfer, we
discuss the energy landscapes associated with the electron transfer process. To
show the role of the electrostatic interactions between the sites, we compare the
simulation of the electron transfer kinetics once considering and once neglecting
the interaction between the sites. Finally, we discuss the influence of the solution
redox potential on the relaxation kinetics.

Relevant redox potentials of the sites at different solution redox potentials

The redox-titration curves of all considered redox active groups of the RC seem to
have standard sigmoidal shape as described by the Nernst equation of an isolated
redox-active group (Fig. 3a). Thus, just from these curves, it seems possible to assign
unambiguously a redox potential to each redox active group. However, due to the
interaction between the redox active groups, 16 different microscopic redox poten-
tials are associated with each site. A microscopic redox potential is defined as the
redox equilibrium between two microstates which differ in the oxidation state of
just one site. Since only strong interactions lead to a significant shift of the redox
potential and not all sites interact strongly, some of the microscopic redox potentials
are very similar (see Fig. 3b–f) which reduces the number of distinguishable micro-
scopic redox potentials.

As discussed in the Theory section, the Nernst and the Tanford–Roxby redox
potentials (blue and red curves respectively in Fig. 3b–f) represent an effective site
redox potential of a redox-active group at a given solution redox potential. One
can see that these two types of effective site redox potentials vary between the
most extreme microscopic redox potentials associated with that site. Larger changes
in the effective redox potential of a site occur when sites strongly interacting with the
site of interest change their oxidation state. For instance, heme c559 (Fig. 3c) has
a redox potential of about 285 mV at solution redox potentials of about
�200 mV. At a solution redox potential of about 0 mV, i.e. when heme c552 changes
its oxidation state (green curve in Fig. 3a), the redox potential changes to �350 mV.
At higher solution redox potentials redox (�450 mV), the redox potential of heme
c559 shift again to a higher value of about 400 mV. This change is due to the
This journal is ª The Royal Society of Chemistry 2011 Faraday Discuss., 2011, 148, 173–193 | 183
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Fig. 3 Redox titration behavior of SP and the hemes of the RC from B. viridis. (a) Probability
of the oxidized form of the redox-active sites; (b)–(f) solution redox-potential dependence of the
site redox potential of the special pair (b), heme c559 (c), heme c552 (d), heme c556 (e), heme c554

(f). The dashed lines show the different microscopic redox potentials, the blue line and the red
line show the Nernst redox-potential and the Tanford–Roxby redox-potential, respectively.
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oxidation of SP. Similar observations can be made also for the other sites. This
dependence of the redox potential of one site on the charge state of the other
redox-active sites and thus on the redox potential of the solution causes that the elec-
tron transfer rate between two sites may be different at different solution redox
potentials. Moreover, this dependence indicates how the mutual interaction influ-
ences the redox properties of the proteins.
Importance of the electrostatic interactions for the description of the electron transfer
kinetics

In order to investigate the importance of the electrostatic interaction for the relaxa-
tion kinetics after photo-oxidation, we compare the simulation of the kinetics of two
models. In one model, we consider the interaction between the sites and, thus, the
184 | Faraday Discuss., 2011, 148, 173–193 This journal is ª The Royal Society of Chemistry 2011
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Fig. 4 Re-reduction kinetics of SP. The solid curves show the kinetics of the model in which
the interaction between the sites is included, the dashed curves show the kinetics of the model in
which this interaction is neglected. Only the simulation in which the interaction is taken into
account is able to reproduce the experimentally observed behavior properly, namely that the
re-reduction kinetics is faster by a factor of about two when three or four electrons are distrib-
uted over the hemes compared to when only one or two electrons are distributed.
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electron transfer energetics is calculated using eqn (1). In the other model, we assume
that it is possible to read the redox potentials from the titration curves in Fig. 3a;
thus we implicitly neglect the interaction between the sites. The reorganization ener-
gies were calculated using the Poisson–Boltzmann equation16 and they were assumed
to be the same in both models.

In Fig. 4, we compare explicitly the re-reduction kinetics of SP for the model with
interaction and the model without interaction. Here the differences between the two
models are particularly interesting because a direct comparison to experimental
numbers is possible. It was shown experimentally that the kinetics with one and
two electrons in the system differs very much from the kinetics with three electrons
in the system.7 As can be seen in Fig. 4, this behavior can be well reproduced when
the interaction between the sites is considered (continuous lines). In contrast, the
simulations in which the interaction between the sites is neglected (dashed lines),
the kinetics is more or less the same irrespective of the number of electrons in the
system.

Fig. 5 shows the relaxation kinetics after photo-oxidation of SP for the two
models, i.e. in one case (left) with interactions and in the other case (right) without
interactions. Despite the general similarity of kinetics, there are obvious differences
between the two models. One sees that in the model without interaction (right
column in Fig. 5), the transiently populated intermediates have a higher probability.
This stronger population of the intermediates is caused by higher barriers in the
model without interactions, as will be shown later. This higher barrier led to slower
re-reduction kinetics making the model without interaction in disagreement with
experiments. For example in Fig. 5a, the model in which the interaction is taken
into account is equilibrated after about 0.5 ms, while it takes about 8 ms to reach equi-
librium after photo-oxidation in the model in which the interaction is neglected. The
interactions lead to lower barriers and thus faster relaxation kinetics after photore-
duction of the special pair.

In the system with four electrons (Fig. 5a), it seems that the electron transfer occurs
from heme c552 to the SP and from heme c554 to heme c552: when the oxidation level of
SP drops, the oxidation level of heme c552 rises and when the oxidation level of heme
c552 drops, the oxidation level of heme c554 rises. It seems as though heme c559 and
heme c556 are not involved in this first relaxation kinetics. However, the flux analysis
This journal is ª The Royal Society of Chemistry 2011 Faraday Discuss., 2011, 148, 173–193 | 185
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Fig. 5 Time-dependent oxidation probability of the redox active sites of the RC after photo-
oxidation of SP. The left column shows the kinetics of a model in which the interaction between
the sites is taken into account. The right column shows the kinetics of a model in which this
interaction is neglected. The initial setup consists of 4 (a), 3 (b), 2 (c), or 1 (d) electrons distrib-
uted over the four hemes. Initial distributions of the microstates were taken from an equilib-
rium distribution prior to photo-oxidation of the SP.
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Fig. 6 Scheme of the flux through the various states. The red arrows indicate the photo-oxida-
tion, the black arrows show the electron transfer reactions in the subsequent relaxation process.
The schemes are shown for systems with 4 (a), 3 (b), 2 (c), or 1 (d) electrons. The final equilib-
rium states are shown on the bottom of each scheme. For the system with four and two elec-
trons, two microstates are in equilibrium at the end. Consequently, the relaxation process of the
systems with three and one electrons starts from two states.
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reveals that heme c559 and heme c556 are involved.16 Due to their redox properties, the
oxidation probability of heme c559 and heme c556 is, however, much less then 1% even
during the relaxation process and thus not visible in the plots in Fig. 5a. In fact, the
transfer from heme c554 to SP proceeds through heme c559 and heme c556 since a direct
electron transfer from heme c552 to SP or from heme c554 to heme c552 would be much
too slow because the large distance between the redox centers.

Similar observations as described for Fig. 5a, can be made for Fig. 5b–d in which
the relaxation kinetics for systems with three, two, and one electron are described. In
all cases when the interaction is neglected, the relaxation kinetics is slower and inter-
mediates, if existing, have a higher probability of occurrence.

From the kinetic traces in Fig. 5, it is not obvious through which states the reac-
tion occurs. However, the flux analysis using eqn (16) allows us to analyze the
detailed pathway of the mechanism.16 Fig. 6 shows the mechanism of the relaxation
after photo-oxidation of SP as inferred from a flux analysis. The state vectors have
the following order: SP, heme c559, heme c552, heme c556, heme c554. The relaxation
kinetics starts from a single microstate for the system with four and two electrons
and ends with two microstates in equilibrium. Consequently, in the systems with
three and one electrons, the kinetics starts from two different microstates after
photo-oxidation. In the later case, one of the two microstates has a higher proba-
bility (for the system with three electrons, the major species is (01110) and for the
system with one electron, the major species is (01000)). In the case of the system
with three electrons (Fig. 6b), the graph showing the relaxation process displays
some complexity, mainly originating from the minor species (01011).

However, many of the microstates that are important for the mechanism of the
charge transfer have a very low probability of occurrence during the relaxation
process. For instance, for the system with four electrons, the states 10111 and
This journal is ª The Royal Society of Chemistry 2011 Faraday Discuss., 2011, 148, 173–193 | 187

https://doi.org/10.1039/c003905e


Pu
bl

is
he

d 
on

 2
4 

Se
pt

em
be

r 
20

10
. D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
8/

24
/2

02
0 

6:
49

:2
9 

A
M

. 
View Article Online
11101 have a probability that is much smaller than 1% during the whole relaxation
process, even if the two states are nearly unpopulated for different reasons. For
a better understanding, we analyze the energy landscape of the relaxation process
(see Fig. 7). Fig. 7a shows the energy landscape of the relaxation of a system with
four electrons. One sees that the reaction sequence 01111 / 10111 / 11011 is
a steep downhill process. The state 10111 does not get highly populated, because
it is an intermediate in a steep downhill process. Instead the state 11101 does not
get highly populated, because the reaction 11011 / 11101 is an uphill reaction,
that is followed by a downhill reaction 11101 / 11110. Thus, this example shows
that there might be different reasons why intermediate states are not seen in exper-
imental studies.

An interesting feature when comparing the energy landscapes for the model in
which the interaction between the redox sites is considered and the model in which
this interaction is neglected, is that the activation energies are smaller, the uphill
processes are less uphill and the downhill processes are less downhill in the model
in which the interaction is taken into account. Thus the energy landscape in which
the interaction between the sites is considered allows a faster electron transfer in
which less energy is dissipated. The energy landscape of the system with two elec-
trons (Fig. 7c) is particularly interesting in this respect. In the model considering
the interaction, the process 01010 / 10010 / 10100 is an overall downhill process,
while it is instead an overall uphill process in the model without interactions making
this reaction step unfavorable. This difference between the two models emphasizes
the importance to consider the interaction between the redox-active sites.
Relaxation kinetics at different solution redox potentials

In experimental studies, the initial reaction conditions of the relaxation kinetics after
photo-oxidation of SP are adjusted by setting the redox potential of the solution, i.e.
the protein solution adopts a Boltzmann distribution for the redox states before
photooxidation. Then SP gets excited and eventually photooxidized. After photoox-
idation, the system is in a non-equilibrium situation which then relaxes. Fig. 8a
shows the probability of the different redox states before photo-oxidation. The
probability of the macroscopic states are shown by solid lines, the probability of
the microscopic states by dashed lines. For some of the macrostates, only one micro-
states is significantly populated and thus the solid line and the dashed line coincide.
This is the case for instance in the system with three electrons before photooxidation
(blue curve in Fig. 8a). Fig. 8b–f show the relaxation kinetics of SP and the four
hemes. As discussed in the Theory section, the overall kinetics of the relaxation
can be separated into contributions of systems with four, three, two, and one elec-
tron. The overall kinetics shown in Fig. 8 is thus a linear superposition of the kinetics
shown in Fig. 5. The contribution of each initial state to the kinetics is determined by
the Boltzmann distribution before photo-oxidation.

In Fig. 8a, it can be seen that at a solution redox potential of �200 mV, only one
microscopic state, (11111), is populated before the photo-oxidation. Thus the initial
state of the relaxation kinetics after photo-oxidation is (01111). The reaction kinetics
at this solution redox potential can thus be uniquely assigned to the relaxation of this
microstate. At 0 mV, four different microscopic states are populated before photo-
oxidation, namely (11111), (11011), (11110), and (11010). The relaxation kinetics at
this solution redox potential is thus a superposition of the relaxation kinetics of the
states (01111), (01011), (01110), and (01010) in which the electron is ejected from SP.
At 150 mV, one microstate, namely (11010), is clearly dominating the Boltzmann
distribution before photo-oxidation and thus the kinetics at this solution redox
potential can again be assigned to one single reaction channel.

Generally, the kinetics trace of one redox-active site is a combination of the kinetic
trances of several states. Fig. 9 shows which states contribute to the re-reduction-
kinetics of SP and at which solution redox potential they do it. The sum of
188 | Faraday Discuss., 2011, 148, 173–193 This journal is ª The Royal Society of Chemistry 2011
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Fig. 7 Energy landscapes of the relaxation kinetics after photo-oxidation of the SP. The left
column shows landscapes in which the interaction between the sites is included, the right
column shows landscapes in which this interaction is neglected. The landscapes are shown
for systems with 4 (a), 3 (b), 2 (c), or 1 (d) electrons. The activation energies (red bars) are calcu-
lated from Marcus theory (eqn (17)). The energies of the microstates (black bars) are calculated
from eqn (1). The intial state of the reaction sequence was set to zero. At the transition states, it
is indicated between which cofactors the electron transfer occurs in the associated reaction step.
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Fig. 8 Time-dependent oxidation probability of the redox-active sites of the RC after
photo-oxidation of SP. Initial distributions of the microstates were taken from an equilibrium
distribution prior to photo-oxidation of the SP which is shown in (a). The probability of the
macroscopic states are shown by solid lines, the probability of the microsciopic states by dashed
lines. The oxidation probability of the redox-active sites are shown in (b)–(f). Electron uptake
during the equilibration was not considered. The oxidation probabilities of the sites are shown
in color (fully oxidized—blue; fully reduced—red) and by contours in the plots.
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Fig. 9 Re-reduction kinetics of SP in dependence of the redox potential of the solution. The
overall re-reduction kinetics of SP shown in (a) is a sum of the kinetic plots of the microstates in
(b)–(f). The color and the contours indicate the oxidation probability of SP (blue—fully
oxidized; red—fully reduced) or the probabilities of the microstates (blue—populated to
100%; red—unpopulated).
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Fig. 9b and c leads to the kinetic trace of SP in Fig. 9a. It can be seen clearly that
kinetics at solution redox potentials below �100 mV is slower than the kinetics at
solution redox potentials of about 150 mV. The transition between these two kinetics
This journal is ª The Royal Society of Chemistry 2011 Faraday Discuss., 2011, 148, 173–193 | 191
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occurs at about 0 mV. This behavior is due to the mutual interaction between the
hemes. As can be seen, many microstates can contribute to the re-reduction kinetics
of SP. A deconvolution into individual electron transfer steps is difficult in experi-
ments. Therefore the calculations discussed in this paper provide valuable informa-
tion for the understanding of complex charge transfer processes.
Conclusions

In this paper, we show that the interactions between redox cofactors are important
for understanding long range electron transfer in proteins involving multiple redox
centers. With this work, we complement a previous study16 by analyzing the ener-
getics of the electron transfer processes in more detail. The microstate model dis-
cussed in this paper is able to provide an appropriate description of the
equilibrium and kinetic properties of the relaxation kinetics after photo-oxidation
of the special pair in the photosynthetic reaction center. From the energetics of
the electron transfer system discussed in this paper, it becomes obvious that it is
not correct to assign a fixed redox potential to the redox-active sites in a protein
with strongly interacting redox sites. Instead it is possible to describe the energetics
of the system by microscopic redox potentials. In this approach the interaction
between the redox-active sites is taken into account. The effective redox potentials
(3+

N,iand 3+
TR,i) can be assigned to the sites of the system.

The approach discussed here is based on an analytical solution of the master equa-
tion. However, for large systems, such an analytical solution might not be practical.
In such cases, dynamical Monte Carlo simulations can be used to solve the master
equation numerically.18

The described method offers an approach to describe the thermodynamics and
kinetics of complex systems starting from molecular structures. Our approach is
thus a first step towards structural systems biology.
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