From Bellman to Dijkstra: Set oriented
construction of globally optimal controllers

Lars Griine and Oliver Junge

An optimal policy has the property that
whatever the initial state and initial
decision are, the remaining decisions
must constitute an optimal policy with
regard to the state resulting from the
first decision.

Richard Bellman, 1957

Abstract We review an approach for discretizing Bellman’s optimality principle
based on piecewise constant functions. By applying this ansatz to a suitable dynamic
game, a discrete feedback can be constructed which robustly stabilizes a given
nonlinear control system. Hybrid, event and quantized systems can be naturally
handeld by this construction.

Key words: optimality principle, nonlinear controller, shortest path, dynamic game

1 Introduction

Whenever the state of some dynamical system can be influenced be repeatedly
applying some control (“decision”) to the system, the question might arise how the
sequence of controls — the policy — can be chosen in such a way that some given
objective is met. For example, one might be interested in steering the system to an
equilibrium point, i.e. to stabilize the otherwise unstable point. In many contexts, the
application of some control comes at some cost (fuel, money, time, . . . ) which then
is accumulated over time. Typically, one is interested in meeting the given objective
at minimal accumulated cost. This is the context of Richard Bellman’s famous quote
which already hints at how to solve the problem: One can recursively construct an
optimal sequence of controls backwards in time by starting at the/some final state.
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It just so happens that this is also the idea of Edsger Dijkstra’s celebrated algorithm
for finding shortest paths in weighted directed graphs.

At the core, this procedure requires one to store the minimal accumulated cost at
each state, the value function. According to the recursive construction of the sequence
of optimal controls, the value function satisfies a recursion, i.e. a fixed point equation,
the Bellman equation. From the value function at some state, the optimal control
associated to that state can be recovered by solving a static optimization problem.
This assignment defines a function on (a subset of) the states into the set of all
possible control values and so the state can be fed back into the system, yielding a
dynamical system without any external input. By construction, the accumulated cost
along some trajectory of this closed loop system will be minimal.

In the case of a finite state space (with a reasonable number of states), storing
the value function is easy. In many applications from, e.g., the engineering sciences,
however, the state space is a subset of Euclidean space and thus the value function a
function defined on a continuum of states. In this case, the value function typically
cannot be represented in a closed form. Rather, some approximation scheme has to be
decided upon and the value function (and thus the feedback) has to be approximated
numerically.

In this chapter, we review contributions by the authors developing an approach for
approximating the value function and the associated feedback by piecewise constant
functions. This may seem like a bad idea at first, since in general one would prefer
approximation spaces of higher order. However, it turns out that this ansatz enables
an elegant solution of the discretized problem by standard shortest path algorithms
(i.e. Dijkstra’s algorithm). What is more, it also enables a unified treatment of system
classes which otherwise would require specialized algorithms, like hybrid systems,
event systems or systems with quantized state spaces.

As is common for some discretization, the discrete value function does not inherit
a crucial property of the true one: In general, it does not decrease monotonically
along trajectories of the closed loop system. In other words, it does not constitute
a Lyapunov function of the closed loop system. As a consequence, the associated
feedback may fail to stabilize some initial state. This deficiency can be cured by
considering a more general problem class, namely a system which can be influenced
by two independent controls — a dynamic game. In particular, if the second input is
interpreted as some perturbation induced by the discretization, a discrete feedback
results which retains the Lyapunov function property.

On the other hand, as any construction based on the Bellman equation, or more
generally as any computational scheme which requires to represent a function with
domain in some Euclidean space, our construction is prone to the curse of dimen-
sion': In general, i.e. unless some specialized approximation space is employed, the
computational cost for storing the value function grows exponentially in the dimen-
sion of state space. That is, in practice, our approach is limited to systems with a low
dimensional state space (i.e. of dimension < 4, say).

1 A term which was already coined by Bellman.
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2 Problem formulation

We are given a control system in discrete time

Xir1 = f(Xpup,we), k=0,1,..., (D

where xj € X is the state of the system, uy € U is the control input and wy € W is
some external perturbation. We are further given an instantaneous cost function g
which assigns the cost

g(xx,ux) 20

to any transition x; — f(xg, ug, w), w € W.

Our task is to globally and optimally stabilize a given target set T C X by
constructing a feedback u : S — U, S C X, such that T is an asymptotically stable
set for the closed loop system

Xk+1 =f(xk,u(xk),wk), k =0,1,... (2)

with xo € S for any sequence (wy)x of perturbations and such that the accumulated
cost

> gk, ux) 3)
k=0

is minimal.

System classes. Depending on the choice of the spaces X, U and W and the form
of the map f, a quite large class of systems can be modelled by (1). Most generally,
X, U and W have to be compact metric spaces — in particular, they may be discrete.
Common examples which will also be considered later, include

* sampled-data systems: X, U and W are compact subsets of Euclidean space, f is
the time-7-map of the control flow of some underlying continuous time control
system and g typically integrates terms along the continuous time solution over
one sampling interval;

e hybrid systems: X =Y X D, where Y c R" compact and D is finite, U and W
may be continuous (compact) sets or finite (cf. Section 8);

e discrete event systems: f may be chosen as a (generalized) Poincaré map (cf.
Section 8).

» quantized systems: The feedback may receive only quantized information on the
state x, i.e. x is projected onto a finite subset of X before u is evaluated on this
quantized state.
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3 The optimality principle

The construction of the feedback law u will be based on a discretized version of
the optimality principle. In order to convey the basic idea more clearly, we start by
considering problem (1) without perturbations, i.e.

Xia1 = fxp,uk),  k=0,1,... )

and assume that X ¢ R? and U c R™ are compact, 0 € X and 0 € U. We further
assume that 0 € X is a fixed point of f( -,0),i.e. £(0,0) = 0, constituting our target
set T := {0}, that f : X XU — X and g : X XU — [0, 00) are continuous, that
£(0,0) =0 and inf,, ¢y g(x,u) > 0 for all x # 0.

For a given initial state xo € X and a given sequence u = (ug, u1,...) € U of
controls, there is a unique trajectory x (xg, #) = (xx (xo, #))xen of (4). For x € X, let

U(x) = {u € U" : xx(x,u) — 0as k — oo}
denote the set of stabilizing control sequences and
S={xeX:Ux)+0}

the stabilizable subset of X. The accumulated cost along some trajectory x (xg, #) is
given by

J(xo,u) = Z g (xx (xo, ), ug). )
=0

Note that this series might not converge for some (xg, #). The least possible value
of the accumulated cost over all stabilizing control sequences defines the (optimal)
value functionV : X — [0, o0],

V(x) = inf J(x, 6

(x) wont (x,u) (6)

of the problem. Let Sy := {x € X : V(x) < oo} be the set of states in which the value
function is finite. Clearly, So C S. On Sy, the value function satisfies the optimality

principle [2]
V() = inf {g(x,u)+V(f(xu)}. ™

The right hand side
L[v](x) := inf {g(x,u) +v(f(x,u))}
uelU
of (7) defines the Bellman operator L on real valued functions on X. The value

function V is the unique fixed point of L satisfying the boundary condition V(0) = 0.
Using the value function V, one can construct the feedback u : S — U,

u(x) := argrgin {g(x,u) + V(f(x,u))}, ®)
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whenever this minimum exists. Obviously, V then satisfies

V(x) z g(x,u(x)) +V(f(x,u(x))), &)

for x € Sy, i.e. the optimal value function is a Lyapunov function for the closed
loop system on Sy (provided that V is continuous at 7 = {0}2?) — and this guarantees
asymptotic stability of 7 = {0} for the closed loop system. By construction, this
feedback u is also optimal in the sense that the accumulated cost J is minimized
along any trajectory of the closed loop system.

4 A discrete optimality principle

In general, the value function (resp. the associated feedback) cannot be determined
exactly and some numerical approximation has to be sought. Here, we are going
to approximate V by functions which are piecewise constant on some partition of
X. This approach is motivated by the fact that the resulting discrete problem can
be solved efficiently and that, via a generalization of the framework to perturbed
systems in Section 5 the feedback is also piecewise constant and can be computed
offline.

Let P be a finite partition of the state space X, i.e. a finite collection of pairwise
disjoint subsets of X whose union covers X. For x € X, let 7(x) € P denote the par-
tition element that contains x. In what follows, we identify any subset {Py, ..., Px}
of P with the corresponding subset [ J;-; __; P; of X.

Let R” ¢ RX = {v : X — R} be the subspace of real valued functions on X
which are piecewise constant on the elements of P. Using the projection

W) = inf V(). (10)

from RX onto R?, we define the discretized Bellman operator
Lp:=yolL.
Again, this operator has a unique fixed point Vp satisfying the boundary condition

V5 (0) = 0, which will serve as an approximation to the exact value function V.
Explicitely, the discretized operator reads

Ly[v](x) = inf {inf {g(x’,u)+v(f(x',u))}}.
x'en(x) \uel
and Vyp satisfies the optimality principle

Vpx)=  _inf {g(x",u) + Vo (f(x",u))}. (1)

x'en(x),ue

2 This property can be ensured by suitable asymptotic controllability properties and bounds on g.
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Recalling that Vp is constant on each element P of the partition P, we write Vp (P)
in order to denote the value Vi (x) for some x € P. We can rewrite (11) as

Vop(x) = m}in (ipf) {g(x’,u) +Vp(P)} (12)

where the min is taken over all P € P for which PN f(x(x), U) # 0 and the inf over
all pairs x” € m(x), u € U such that f(x’,u) € P. Now define the multivalued map
F: P3P,

FP)={P' €P:P nf(P,U) =0} (13)
and the cost function G : P X P — [0, o0),

S(P,P) = ilellf]{g(x, u) | xeP,f(x,u) e P'}. (14)

Equation (]2) can then be rewritten as
[/33 P) = min 9 P, P/ + ‘/f}’ P/ .

Graph interpretation. It is useful to think of this reformulation of the discrete
optimality principle in terms of a directed weighted graph G = (P, Ep). The nodes
of the graph are given by the elements of the partition P, the edges are defined by the
map JF: there is an edge (P, P’) € Ep whenever P’ € F(P) and the edge e = (P, P’)
is weighted by G(e) := (P, P’), cf. Figure 1. In fact, the value Vp(P) is the length

170

Fig. 1 Partition of phase \/}_
space, image of an element

(left) and corresponding edges

in the induced graph (right).

S(p) = Xi-,; S(ex) of the shortest path p = (ey,...,e,) from P to the element
7(0) containing O in this graph. As such, it can be computed by (e.g.) the following
algorithm with complexity O(|P|log(|P|) + |E|):

Algorithm DUKSTRA [5]
foreach P € P: V(P) := c0; V(n(0)) :=0;Q:=7P

while Q # 0
P :=argminp, .q V(P’)
Q:=Q\{P}

for each Q € P with (Q, P) € Ep
it V(Q) > S(Q, P) + V(P) then
V(Q) :=5(Q,P)+V(P) O
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The time complexity of this algorithm depends on the data structure which is used
in order to store the set Q. In our implementation we use a binary heap which leads to
a complexity of O((|P| + |E|) log |P|). This can be improved to O(|P|log |P| + |E])
by employing a Fibonacci heap.

A similar idea is at the core of fast marching methods [19, 17] and ordered upwind
methods [18].

Implementation. We use the approach from [4, 3] as implemented in GAIO in
order to construct a cubical partition of X, stored in binary tree. For the construction
of the edges and their weights, we use a finite set of sample points U ¢ U and P ¢ P
for each P € P and compute the approximate image

F(P)={P' €P:P' nf(P,U) +0}, (15)

so that the set of edges is approximately given by all pairs (P, P’) for which P’ €
F(P). Correspondingly, the weight of the edge (P, P’) is approximated by

G(P,P)= min {g(x,u)| f(x,u) € P’}
(x,u)ePxU

This construction of the graph via the mapping of sample points indeed constitutes
the main computational effort in computing the discrete value function. It might
be particularly expensive if the control system f is given by the control flow of a
continuous time system. Note, however, that a sampling of the system will be required
in any method that computes the value function. In fact, in standard methods like
value iteration, the same point might be sampled multiple times (in contrast to the
approach described here).

Certainly, this approximation of the box images introduces some error, i.e. one
always has that F(P) c F(P), but typically F(P) & F(P). In experiments, one
often increases the number of sample points until the result of the computation
stabilizes. Alternatively, in the case that one is interested in a rigorous computation,
either techniques based on Lipschitz estimates [14] or interval arithmetic [20] can
be employed.

Example 1 (A simple 1D system) Consider the system
Xial =Xk + (1 —a@)ugxe, k=0,1,..., (16)
where x; € X = [0,1],ux € U=[-1,1] and a € (0, 1) is a fixed parameter. Let
g(ru) = (1-a)x,

such that the optimal control policy is to steer to the origin as fast as possible, i.e.
for every x, the optimal sequence of controls is (=1, —1,...). This yields V(x) = x
as the value function.

For the experiment, we consider a = 0.8 and use partitions of equally sized
subintervals of [0, 1]. The edge weights (14) are approximated by minimizing over
100 equally spaced sample points in each subinterval and 10 equally spaced points in
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U. Figure 2 shows the exact and two discrete value functions, resulting from running
the code in Figure 9 in Matlab (requires the GAIO toolbox?3).

N Q o
IS =) oo

(discrete) value function

S
o

Fig.2 Exact(red) and discrete
value functions for the simple

example on partitions of 0

64 (black) and 1024 (blue)

intervals. T
a=0.8;

f = @(x,u) [x + (1-a).*x.*u, (1l-a)*x]; % control system
X = linspace(-1,1,100)"; % state samples

U = linspace(-1,1,10)"; % control samples

depth = 6; ¢ = 0.5; r = 0.5;

tree = Tree(c, r);

subdivide(tree, depth);

A = dpgraph(tree, f, X, U, depth);
D = tree.search(0, depth);

[V,~] = dijkstra(A’, D);

construct full tree
construct partition
compute graph

find destination box
compute value function

o° o o° o° o°

n = 2”depth; dx = 1/n; x = linspace(dx/2,1-dx/2,n);
clf; plot(0:1,0:1,'r"); hold on; bar(x,V,1);

axis tight; axis square;

xlabel(’$x$"); ylabel(’(discrete) value function’);

Fig. 3 Code: value function for a simple 1d system.

4.1 The discrete value function

Proposition 1 [15] For every partition P of X, Vp(x) < V(x) forall x € X.

3 Available at http://www.github.com/gaioguy/gaio
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Proof The statement obviously holds for x € X with V(x) = co. So let x € Sy, i.e.
V(x) < co. For arbitrary &€ > 0, let u = (ug,u;,...) € U(x) be a control sequence
suchthat J(x,u) < V(x)+¢& and (xg (x, u)) the associated trajectory of (4). Consider
the path

(et nem), ex=@Mxpo1),mlxe)), k=1,...,m,

where x = xo and and m is minimal with x,,, € 7(0). The length of this path is

D Ser) = ) inf {grou) |x € mlxr). f(xo0) € )}
k=1 k=1

[

< Z g(xk—1,up—1) < Z g(xi—1,ur—1) = J(x,u),
=l

k=1
yielding the claim. O

This property immediately yields an efficient aposteriori error estimate for Vp: For
x € Sy consider

e(x) = inf {g(x,u) + Vo (f (1))} = Vi (3). a7
Note that e(x) > 0. Since

V(x) = Vi (x) = inf {g(x,u) + V(F(x.u)} = Vi (¥)
inf {g(x, 1) + Vo (£ ()} = V() = e(x),

v

we obtain

Proposition 2 The function e : So — [0, ) is a lower bound on the error between
the true value function V and its approximation Vp:

e(x) <V(x) = Vp(x), xe€S8.

Now consider a sequence (PO)pens of partitions of X which is nested in the sense
that for all £ and every P € P+ thereisa P’ € P©) such that P ¢ P’. For the next
proposition recall that S C X is the set of initial conditions that can be asymptotically
controlled to 0.

Proposition 3 [15] For fixed x € S, the sequence (Vo) (x))ren is monotonically
increasing.

Proof Forx € S, the value Vp (o) (x) is the length of a shortest path p = (ey, ..., em),
ex € Epu, connecting n(x) to n(0) in P Suppose that the claim was not
true, i.e. for some ¢ there are shortest paths p in Gy and p’ in Gy such
that G(p’) < G(p). Using p’, we are going to construct a path p in Gp«) with
G(p) < G(p), contradicting the minimality of p: Let p’ = (e],...,e,,,), with

e, = (P,_,P}) € Epusy. Hence, f(P,_,U) NP, #0,fork =1,...,m'. Since
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the partitions P*) are nested, there are sets P, € P¥) such that P}, c Py for
k=0,...,m" . Thus, f(Pr_1,U)N Py #0,i.e. & = (Py_1, Py) is an edge in Epw

4

and p = (€1,...,€y) is a path in G3><[). Furthermore, for k = 1,...,m’,

G(ex) = inf (g(x,u) | ¥ € Py, fxu) € Pi}
< inf (g u) | x € Py, f(x,u) € P} = 5(e}).

This yields §(p) < 9(p’) < G(p), contradicting the minimality of p. O

So far we have shown that for every x € S we have a monotonically increasing
sequence (Vpe) (x))een, which is bounded by V(x) due to Proposition 1. The fol-
lowing theorem states that for points x € S the limit is indeed V' (x) if the maximal
diameter of the partition elements goes to 0. For some finite partition P of X, let
diam(P) := max; diam(P;) be the diameter of the partition P.

Theorem 1 [15] If diam(P)) — 0 then V) (x) — V(x) as £ — oo forall x € S.

4.2 The discrete feedback

Recall that an optimally stabilizing feedback can be constructed using the (exact)
value function for the problem (cf. (8)). We will use this idea, replacing V by its
approximation Vip: using U from (15)4, for x € S we define

ugp(x) = argmin{g (x,u) + Vo (f(x,u))} (18)
uelU

(the minimum exists because U is a finite set) and consider the closed loop system
X1 = f (X up(xe)), k=0,1,.... (19)

The following theorems state in which sense this feedback is stabilizing and ap-
proximately optimal. Let again (P(©)),cy be a nested sequence of partitions of X
and D € S, 0 € D, an open set with the property that for each £ > 0 there exists
£o(e) > 0 such that

max [V(x) = Vpu) (x)| <&, fort > {y(e).
Xe
Let further ¢ > 0 be the largest value such that

Vg;(ll) ([0,¢]) € D.

Note that by Proposition 3 this implies that V,J‘)(lm [0,c]) c D forall £ € N.

4 The subsequent statements remain true if we replace U by any set U c U withU c U for which
the argmin in (18) exists.
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Theorem 2 [7] Under the assumptions above, there exists €y > 0 and a function
6 : R — R with limy,_06(a) = 0, such that for all € € (0,&], all € > £y(g/2),
alln € (0,1) and all xy € V,J‘J(lf) ([0, c]) the trajectory (xi )i generated by the closed
loop system (19) with feedback up ) satisfies

k-1
V(xe) < max {V(Xo) — (=) Y g (). S(e/n) + } .

Jj=0

This apriori estimate shows in which sense the feedback u+ approximately yields
optimal performance. However, the theorem does not give information about the
partition P which is needed in order to achieve a desired level of accuracy. This can
be achieved by employing the error function e from above.

Consider some partition P of X. Let go(x) := inf,cy g(x,u) and C.(P) :=
{x € V;([O, c]|go(x) < &} and define 6(e) := sup, ¢, V(x). Note that if V' is
continuous at 7 = {0} then 6(&) — 0 as € — 0 because C.(P) shrinks down to 0
since g and thus g are continuous.

Theorem 3 [7] Assume that for some € > 0 and some n € (0, 1), the error function
e satisfies
e(x) < max{ngo(x), e} forallx e VG_)I([O, c]). (20)

Then, for each xq € Vﬂ_,l([O, c], the trajectory (xi)x generated by the closed loop
system (19) satisfies

k—1
Va (i) SmaX{V:P(Xo)—(l—U)Zg(xj',u?(xj')), 6(s/n>+e}. @1)

J=0

Example 2 (An inverted pendulum) We consider a model for an inverted pendulum
on a cart, cf. [15, 7]. We ignore the dynamics of the cart, and so we only have one
degree of freedom, namely the angle ¢ € [0, 2] between the pendulum and the
upright vertical. The origin (¢, ¢) = (0,0) is an unstable equilibrium (with the
pendulum pointing upright) which we would like to stabilize. The model reads

(% — m, cos? go) ¢+ B sin2p — £ sing = —u 2z cos ¢, (22)

where m = 2 is the mass of the pendulum, M = 8 the mass of the cart, m, =
m/(m + M), £ = 0.5 the length of the pendulum and g = 9.8 the gravitational
constant. We consider the discrete time control system (4) with f(x,u) = ® (x, u),
x = (¢, ¢), for t = 0.1, where ®(x,u) denotes the controlled flow of (22) with
constant control input u(7) = u for T € [0, ¢]. For the instantaneous cost function
we choose

(o) = /0 (&7 (x. 1), u) d.

with the quadratic cost g (x, u) = % (0.1(/)2 +0.05¢% + 0.01u2).
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We use the classical Runge-Kutta scheme of order 4 with step size 0.02 in order
to approximate @, choose X = [-8, 8] x [—10, 10] as state space for x = (¢, ¢),
which we partition into 29 % 29 boxes of equal size, and U = [—64, 64] as the control
space. In approximating the graph’s edges and their weights, we map an equidistant
grid of 3 X 3 points on each partition box, choosing from 17 equally spaced values
inU.

Figure 4 shows the discrete value function as well as the trajectory generated
by the discrete feedback for the initial value (3.1,0.1), as computed by the GAIO
code in Figure 6. As shown on the right of this figure, the discrete value function
does not decrease monotonically along the feedback trajectory, indicating that the
assumptions of Theorem 3 are not satisfied. And indeed, as shown in Figure 5, this
trajectory repeatedly moves through regions in state space where the error function
e is not smaller than gq. In fact, on a coarser partition (27 x 27 boxes), the discrete
feedback (18) is not even stabilizing this initial condition any more. We will adress
this deficiency in the next sections.

10 7 7
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14 41
9. 0 )
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Fig. 4 Left: Discrete value function and feedback trajectory for the inverted pendulum. Right:
Behaviour of the discrete value function along the feedback trajectory.
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Fig. 5 Inverted pendulum: i
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m=2;M=8; mr=m/(mM); L =0.5; g =29.8;

ql = 0.1; g2 = 0.05; r0 = 0.01;

v = @(x,u) [ x(:,2), % vector field & cost
(g/1*51n(x( ,1)) - 0.5%m r*x(:,2).72.%sin(2*x(:,1)) - ..
m - r/(m¥1)*u. *cos(x( ,1))). /(4 0/3 0 - m_r*cos(x(:,1)). AZ),

0.5%( ql*¥(x(:,1).72) + g2*(x(:,2).72) + ro*u.”2 )1;

h = 0.02; steps = 5; % step size, # of steps

f = @(x,u) rkdu(v,[x zeros(size(x,1),1)],u,h,steps);% control system

n = 2; x1 = linspace(-1,1,n)";

[XX,YY] = meshgrid(x1,x1); X = [ XX(:) YY(:) 1; % sample points

U = linspace(-64,64,17)"; % control samples

depth = 18; ¢ = [0 0]; r = [8 10];
tree = Tree(c, r);

subdivide(trre, depth);

G = dpgraph(tree, f, X, U, depth);
dest = tree.search([0;0], depth);
[V,~] = dijkstra(G’, dest);

construct partition
compute graph

target set

discrete value function

o o° o° o°

V(find(V == Inf)) = NaN; V(find(V > 7)) =

clf; boxplot2(tree, ’'density’, V);

colorbar; colormap jet; shading flat; axis(’'tight’)
xlabel(’$\varphi$’); ylabel(’$\dot\varphi$’);

o°

plot value function

%% discrete feedback, trajectory of the closed loop system
x(1,:) = [3.1, 0.1];
for k 1:200
fxc f(ones(size(U))*x(k,:), U)'";
bn = tree.search(fxc(1:2,:),depth)’;
[v, k min] = min(fxc(3,:) + V(bn));
V_fb(k) = V(bn(k min));
x(k+1,:) = fxc(1:2,k min);

map current point under all controls
determine corresp. boxes

determine minimizing control

value at next point

next iterate

0° o° o o° o°

end

hold on; plot(x(:,1),x(:,2), k.-", linewidth’,1, 'markersize’,22);
axis([-0.1 6 -8 8]1);

figure(2); plot(V fb,’.-’, linewidth’,1, 'markersize’,22)

xlabel('$k$"); ylabel(’'$V \mathcal{P}(x k)$");

Fig. 6 Code: discrete value function for the inverted pendulum

5 The optimality principle for perturbed systems

Let us now return to the full problem from Section 2 of optimally stabilizing the
discrete time perturbed control system

Xir1 = [ ui, we),  k=0,1,.... (23)

subject to an instantaneous cost g(xg,uy). For the convergence statements later,
we assume f 1 X XU XW — Xand g : X XU — [0,) to be continuous
and X ¢ R, U c R™ and W c R’ to be compact. More general spaces will
be discussed in Section 8. For a given initial state xo € X, a control sequence
u = (up)ren € UM and a perturbation sequence w = (wy)ren € WY, we obtain the
trajectory (xi (x,u, w))ren satisfying (23) while the associated accumulated cost is



14 Lars Griine and Oliver Junge
given by

TG u,w) =) g, u, ), ug).
k=0

Recall that our goal is to derive a feedback u : S — U, S C X, that stabilizes the
closed loop system

Xir1 = [ (g u(xe), we), k=0,1,2,... (24)

for any perturbation sequence (wy)y, i.e. for every trajectory (xi(xg, w))x of (24)
with xo € S and w € WX arbitrary, we have x; — T as k — oo, where T C Sis a
given target set, and the accumulated cost 3.3 g (xk, u(xx)) is minimized.

The problem formulation can be interpreted as describing a dynamic game (see
e.g. [6]), where at each step of the iteration (23) two players choose a control u and
a perturbation wy, respectively. The goal of the controlling player is to minimize J,
while the perturbing player wants to maximize it. We assume that the controlling
player chooses uy first and that the perturbing player knows u; when choosing wy.
We further assume that the perturbing player cannot foresee future choices of the
controlling player. This can be formalized by restricting the possible w to

w=p(u),
where B : UN — W' is a nonanticipating strategy, i.e. a strategy satisfying
ukzu;( Vk <K = pr(u)=pr(u’) VYk<K

for any u = (ug ), u’ = (u) )i € U™. We denote by B the set of all nonanticipating
strategies 8 : UM — W,

The control task is finished once we are in T, we therefore assume that 7 is
compact and robustly forward invariant, i.e. for all x € T there is a control u € U
such that f(x,u,w) c T for all w € W, that g(x,u) = O forallx € T, u € U and
glx,u) >0forallx ¢ T,u e U.

Our construction of the feedback u : § — U will be based on the upper value
functionV : X — [0, 0],

V(x) = sup inf J(x,u,B(u)), (25)
peBucUl

of the game (23), which is finite on the set Sy := {x € X | V(x) < co}. The upper
value function satisfies the optimality principle [9]

Vix) = in{, g(x,u) + sup V(f(x,u,w))|, xeSp. (26)
ue wew

Therighthand side L[v](x) = inf,cy [g(x, u) + sup,, e vV(f(x,u, w))] of this fixed
point equation again defines a dynamic programming operator L : RX — RX . The
upper value function is the unique fixed point of L satisying the boundary condition
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V(x) =0,x € T. Like in the unperturbed case, using the upper value function V, one
can construct the feedback u : Sg — U,

u(x) := argmin [g(x,u) + sup V(f(x,u,w))|, 27
uel weWw

whenever this minimum exists.

6 A discrete optimality principle for perturbed systems

Analogously to the discretization in Section 4 we now derive a discrete version of
(26), cf. [9]. Again, to this end, we will approximate the upper value function by a
function which is piecewise constant on the elements of some partition of X. This
approach will lead to a directed weighted hypergraph instead of the ordinary directed
graph in Section 4 and, again, the approximate upper value function can be computed
by an associated shortest path algorithm.

Let P be a finite partition of X. Using the projection (10), the discretized dynamic
game operator Ly : R¥ — R” is defined by

Lp:=yolL.

Again, this operator has a unique fixed point Vp satisfying the boundary condition
Vp(x) =0, x € T, which will serve as an approximation to the exact value function
V.

Explicitely, the discretized operator reads

Lp[v](x) = inf (inf [g(x’,u)+ sup v(f(x’,u,w))])
weWw

x'en(x) \ueU

and Vi satisfies the optimality principle

Vp(x) = inf

x'en(x),uclU

gx’,u)+ su‘[))V Vo(f(x',u,w))|. (28)

Note that since Vp is constant on each partition element, we can rewrite this as

k)

Vo (x) = inf lg(x’,u)+ sup  Vop(P')

x'en(x),uclU PreF(x',u)

where
F(x',u)={P e P| f(x',u,w) € P for some w € W}.

Since the partition P is finite, there are only finitely many possible sets F(x’, u) and
we can further rewrite (28) as
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Vp(x) =min inf |g(x’,u)+ sup Vp(P')|,
N (x’,u) P eN

where the min is taken over all collections N € {F(x’,u) | x’ € n(x),u € U} and
the inf over all (x’,u) such that F(x’,u) = N. Now define the multivalued map
F:P32%,

F(P) ={F(x,u): (x,u) e PxU},

and the cost function

S(P,N) = inlf]{g(x, u):x € P,F(x,u) =N}
ue
Equation (28) can then be rewritten as

Vp(P) = mi P,N) + sup Vp(P))|,
»(P) Nmin S(P,N) :lg\r p(P’)

Graph interpretation. Like in the unperturbed case, we can think of this refor-
mulation of the optimality principle in terms of a graph. More precisely, we have a
directed hypergraph (P, Ep) with the set E ¢ P x 27 of directed hyperedges given
by

Ep = {(P,N) | N = F(x,u) for some (x,u) € PxU},

and each edge (P, N) is weighted by G(P, N), c.f. Figure 7. The discrete upper value
function Vip (P) is the length of a shortest path from P to some element P’ which has
a nonempty intersection with the target set 7 (and, thus, by the boundary condition,
Ve (P’) = 0).

flu, W) p(f(a,u,W))

Fig. 7 Tlustration of the con- <
struction of the hypergraph. P

Shortest paths in hypergraphs. Algorithm 1 can be generalized to the hypergraph
case, cf. [9, 21]. To this end, we modify lines 5-7 such that the maximization over
the perturbations is taken into account:

for each (Q,N) € Ep with P e N
if V(Q) > G(Q,N) + maxyen V(N) then
V(Q) := §(Q,N) + maxyex V(N)

Note that during the while-loop of Algorithm 1,
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V(P) > V(P') forall P" € P\Q.

Thus, if N c P\Q, then maxy exn V(N) = V(P), and the value of the node Q will
never be decreased again. On the other hand, if N' ¢ P\Q, then the value of Q will be
further decreased at a later time — and thus we can save on changing it in the current
iteration of the while-loop. We can therefore save on the explicit maximization and
replace lines 5-7 by

for each (Q,N) € Ep with P e N
if N c P\Q then
if V(Q) > 5(Q,N) + V(P) then
V(Q) :=5(Q,N) +V(P)
The overall algorithm for the hypergraph case is as follows. Here, T := {P € P |
P NT # 0} is the set of target nodes.

Algorithm MINMAX-DUKSTRA

foreach P € P: V(P) ;= oo; foreach P e T: V(P) :=0;Q:=P
while Q # 0

P :=argminp, .o V(P’)

Q := Q\{P}

for each (Q,N) € Ep with P e N

if N c P\Q then
IfV(Q) > S(Q,N) + V(P) then
V(Q) :=5(Q,N) +V(P) o

Time complexity. In line 5, each hyperedge is considered at most N times, with
N being a bound on the cardinality of the hypernodes N. Additionally, we need to
perform the check in line 6, which has linear complexity in N. Thus, the overall
complexity of the minmax-Dijkstra algorithm is O(|P|log |P| + |E|N(N +log|P]))
(when using a binary heap for storing Q), cf. [21].

Space complexity. The storage requirement grows linearly with |P|. This number,
however, grows exponentially with the dimension of state space (if the entire state
space is covered and under the assumption of uniformly large elements). The number
of hyperedges is determined by the Lipschitz constant of f, the size of the hypernodes
N will be given by the magnitude of the perturbation.

Implementation. We use the same approach as in the unperturbed case: A cubical
partition is constructed hierarchically and stored in a binary tree. In order to approx-
imate the set Ep C P x 27 of hyperedges, we choose finite sets P ¢ P, U c U and
W c W of sample points, set

Fx,u) ={P e ?P| f(x,u,w) € P for somew € W}

and compute ~ ~
FP) :={F(x,u): (x,u) e Px U} c2”

as an approximation to F(P). Correspondingly, the weight on the hyperedge (P, N)
is approximated by
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S(P,N) = min{g(x,u) : (x,u) € Px U, F(x,u) = N}.

Example: A simple 1D system. We reconsider system (16), adding a small pertur-
bation at each time step:

Xprl =Xk + (1 —@)ugxg +wg, k=0,1,...,

with xg € [0, 1], ugx € [-1, 1], wr € [—¢, g] for some & > 0 and the fixed parameter
a € (0,1). The cost function is still g(x,u) = (1 — a)x so that the optimal control
policy is again ux = —1 for all k, independently of the perturbation sequence. The
optimal strategy for the perturbing player is to slow down the dynamics as much as
possible, corresponding to wi = ¢ for all k. The dynamical system resulting from
inserting the optimal strategies is

Xkl =axp+e, k=0,1,....

This map has a fixed point at x = /(1 — a). In the worst case, i.e. w = & for all &,
it is not possible to get closer than ag := £/(1 — a) to the origin. We therefore define
T = [0, a] with @ > @ as the target set. With

the exact optimal value function is
V(x) = (x — ap) (1 - ak(x)) + ek (x),

as shown in Figure 8 fora = 0.8, & = 0.01 and @ = 1.1ay. In that figure, we also show
the approximate optimal value functions on partitions of 64,256 and 1024 intervals,
respectively. In the construction of the hypergraph, we used an equidistant grid of ten
points in each partition interval, in the control space and in the perturbation space.

6.1 Convergence

It is natural to ask whether the approximate value function converges to the true
one when the element diameter of the underlying partition goes to zero. This has
been proven pointwise on the stabilizable set S in the unperturbed case [15], as
well as in an L'-sense on S and an L™ sense on the domain of continuity in the
perturbed case, assuming continuity of V on the boundary of the target set 7 [9].
The same reference also provides an analysis for state constrained problems. Here
an additional robustness condition is needed, namely that the optimal value function
changes continuously with respect to the LP-norm for some p € {1,..., o0} if the
state constraints are tightened. If this condition holds, then the convergence statement
remains valid under state constraints, with L replaced by L”.
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(discrete) value function

Fig.8 Exact (red) and discrete
upper value functions for the
perturbed simple example on
partitions of 64 (black) and
1024 (blue) intervals. T

a=20.8; ep =0.01;
alpha0® = ep/(1l-a); alpha = 1.1*alpha0;

f = @(x,u,w) [x + (1-a).*x.*u + w, (1l-a)*x]; % control system

X = linspace(-1,1,5)"; % state samples

U = linspace(-1,1,2)"'; % control samples

W = linspace(-ep,ep,3)’; % perturbation samples

depth = 6; c = [0.5]; r = [0.5];
tree = Tree(c, r);
subdivide(tree, depth);

construct full tree
construct partition

o o°

= compute hypergraph(tree, f, X, U, W, depth);

G construct hypergraph
Gt = trnsp_hgraph(G);

T

V_

transpose hypergraph
target boxes
upper value function

tree.search_box([0], [alphal,depth);
= minmax_dijkstra(G, Gt, T);

o® o° o° o

o

2~depth; dx = 1/n; x = linspace(dx/2,1-dx/2,n);
@(x) floor(log((alpha-alpha0)./(x-alpha0))/log(
@(x) (x>alpha).*((x-alpha0).*(1l-a.”k(x))+ep*k(x
bar(x,V_P,1,"k"); hold on; plot(x,V(x), r");

axis tight; axis square; xlabel('$x$’);

<x3
nmnnu

a))+1;
));% exact value function

ylabel(’ (discrete) value function’);

Fig. 9 Code: upper value function for the perturbed simple 1d system.

Due to the construction of the discretization, the approximation Vp of the op-
timal value function is always less or equal than the true optimal value function.
This is not necessarily a good property. For instance, for proving stability of the
system controlled by the numerical feedback law it would be convenient if Vp was a
Lyapunov function. Lyapunov functions, however, are supersolutions to the dynamic
programming equation, rather than subsolutions as our V. In order to overcome this
disadvantage, in the next section we present a particular construction of a dynamic
game in which the discretization error is treated as a perturbation.
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7 The discretization as a perturbation

As shown in Theorems 2 and 3, the discrete feedback (18) will practically stabilize
the closed loop system (19) under suitable conditions. Our numerical experiment in
Example 2, however, revealed that a rather fine partition might be needed in order
to achieve stability. More generally, as we have seen in Figure 4 (right), the discrete
value function is not a Lyapunov function of the closed loop system in every case.

Construction of the dynamic game. In order to cope with this problem we are
going to use the ideas on treating perturbed systems in Section 5 and 6. The idea is
to view the discretization error as a perturbation of the original system. Under the
discretization described in Section 4, the original map (x, u) — f(x, u) is perturbed
to

(x,u) — flx,u,w) = f(x+w,u), x+w e n(x).

Note that this constitutes a generalization of the setting in Sections 5 and 6 since the
perturbation space W here depends on the state, W = W (x). Correspondingly, the
associated cost function is

g(x,u) = sup g(x’,u). (29)

x'en(x)

Theorem 4 [8] Let V denote the value function (6) of the control system (f,g),
V the value function (25) of the associated game (f,8) and Vip the discrete value
function (28) of (f,8) on a given partition P with numerical target set Tp C P,
T = {0} C Tp. Then Vp(x) = V(x) and

V(x) — max V(y) < Vo (x), (30)
yelp

€

i.e. Vp is an upper bound for V — max V|r,,. Furthermore, Vp satisfies
Vep(x) 2 min {g (x,u) + Vo (f (x,u))} (D)

forallx € X \ Typ.

Proof We first note that V is constant on the elements of P: On T'p, this is true since
T is a union of partition elements by assumption. Outside of T+, by definition of
the game (f, ) we have

V(x) = inf { sup g(x’,u)+  sup V(x/)},

uel | yen(x) x'ef (m(x),u)

so that inf ¢ () V(x’) = V(x). On the other hand, according to [9, Proposition 7.1]
we have Vo (x) = inf v eq(x) V(x’), so that Vp = V.
Now for x ¢ Tp, equation (26) yields
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V(x) = inf sup {g(x’,u)+V(f(x',u))}

uelU xen(x)

> min {g(x, u) + V(f (x,u))} (32)

which shows (31).

In order to prove (30), we order the elements Py, P;,... € P such thati > j
implies Vp(P;) > Vp(P;). Since inf,cy g(x,u) > 0 for x # 0 by assumption,
Vp(P;) = 0 is equivalent to P; C Tp. By the ordering of the elements this implies
that there exists i* > 1 such that P; C Tp < i € {1,...,i*} and thus (30) holds
for x € Py,...,P;. We now use induction: fix some i € N, assume (30) holds for
x € Py,...,P;_; and consider x € P;. If Vp(P;) = oo there is nothing to show.
Otherwise, since V satisfies the dynamic programming principle, using (32) we
obtain

V() = V(x) < inf {g(e,u) + V(f(x.u)} —min {gx.u) + V(f(x.0))}
SV(f(xu) = V(f(x,u%),

where u* € U realizes the minimum in (32). Now, since g(x,u*) > 0, we have
V(f(x,u*)) < V(x) implying f(x,u") € P for some j < i. Since by the induction
assumption the inequality in (30) holds on P, this implies that it also holds on P;
which finishes the induction step. O

The feedback is the shortest path. Asusual, we construct the discrete feedback by
up(x) := argmin | g(x,u) + sup Ve (x| .
uel x'ef (7(x),u)

By construction, this feedback is constant on each partition element. Moreover,
we can directly extract up from the minmax-Dijkstra algorithm: We associate the
minimizing control value u (P, N) to each hyperedge (P, N),

u(P,N) = argmin [sup g(x,u)} . (33)
uelU,F(P)=N LxeP

The feedback is then immediately given by

up(x) = u(m(x), N(n(x))), (34)
where
N(P) = argmin {S(P, N) + sup V?(N)}
NeF(P) NeN

is defining the hypernode of minimal value adjacent to some node P in the hyper-
graph. The computation of N(P) can be done on the fly within the minmax-Dijkstra
algorithm 2:
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Algorithm MINMAX-DIJKSTRA WITH FEEDBACK

for each P € P: V(P) := 0o, N(P) :=0; foreach P € T: V(P) :=0,Q:=P
while Q # @
P :=argminp,.q V(P’)
Q:=Q\{P}
for each (Q,N) € Ep with P € N
if N c P\Q then
it V(Q) > 9(Q,N) + V(P) then
V(Q) :=5(Q,N) +V(P)
N(Q) =N o

Consequently, the discrete feedback u can be computed oftline. Once u (P, N(P))
has been computed for every partition element P, the only remaining online com-
putation is the determination of 7 (x;) for each state x; on the feedback trajectory.
In our case, this can be done efficiently, since we store the partition in a binary tree.
Note, however, that the fast online evaluation of the feedback law is enabled by a
comparatively large offline computation, namely the construction of the hypergraph.

Behaviour of the closed loop system.

Theorem 5 [8] Under the assumptions of Theorem 4, if (xy )i denotes the trajectory
of the closed loop system (19) with feedback (34) and if Vp(xg) < oo, then there
exists k* € N such that x;« € T and

Vgp(xk) Zg(xk,ug:(xk))+Vg>(xk+1), k=0,....k"-1.

Proof From the construction of up we immediately obtain the inequality

Vo (xi) = g(xi, up(xx)) + Vo (Xps1) (35)

for all k € Ny with x; € X \ Tp. This implies the existence of k* such that the first
two properties hold since g(xg, up(xx)) > 0 for xx ¢ Tp, Vop is piecewise constant
and equals zero only on Tp. O

Theorem 5 implies that the closed-loop solution reaches the target 7+ at time step
k* and that the optimal value function decreases monotonically until the target is
reached, i.e., it behaves like a Lyapunov function. While it is in principle possible
that the closed-loop solution leaves the target after time k*, this Lyapunov function
property implies that after such excursions it will return to 7.

If the system (4) is asymptotically controllable to the origin and V is continuous,
then we can use the same arguments as in [9] in order to show that on increasingly
finer partitions P, and for targets Tp, shrinking down to {0} we obtain Vp, — V.
This can also be used to conclude that the distance of possible excursions from the
target Tp, become smaller and smaller as P, becomes finer.

We note that the Lyapunov function property of Vp outside T holds regardless
of the size of the partition elements. However, if the partition is too coarse then
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Vp = oo will hold on large parts of X, which makes the Lyapunov function property
useless. In case that large partition elements are desired — for instance, because they
correspond to a quantization of the state space representing, e.g., the resolution of
certain sensors — infinite values can be avoided by choosing the control value not
only depending on one partition element but on two (or more) consecutive elements.
The price to pay for this modification is that the construction of the hypergraph
becomes significantly more expensive, but the benefit is that stabilization with much
coarser discretization or quantization is possible. For details we refer to [10, 11].

Example 3 (The inverted pendulum reconsidered.) We reconsider Example 2 and
apply the construction from this section. Figure 10, which results from running
the code shown in Figure 11 as well as lines 25ff. from the code in Figure 6,
shows the discrete upper value function on a partition of 2'¢ boxes with target set
T = [-0.1,0.1]? as well as the trajectory generated by the discrete feedback (33) for
the initial value (3.1, 0.1). As expected, the approximate value function is decreasing
monotonically along this trajectory. Furthermore, this trajectory is clearly closer to
the optimal one because it converges to the origin much faster.

10i ~—

ot

Vp(xx

20 25
15 20
—~ 15
h \ 10
\\ 10
-9 \ 5
5
10 N ] \ 0 0 )
8 0 50 100
P k

Fig. 10 Inverted pendulum: Discrete upper value function and robust feedback trajectory (left);
decrease of the discrete value function along the feedback trajectory.
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m=2;M=8; mr=m/(mM); L =0.5; g =29.8;

ql = 0.1; g2 = 0.05; r0 = 0.01;

v = @(x,u) [ x(:,2), ... % vector field & cost
(g/l*sin(x(:,1)) - 0.5*m_r*x(:,2).72.*sin(2*x(:,1)) - ...
m_r/(m*l)*u.*cos(x(:,1)))./(4.0/3.0 - m_r*cos(x(:,1)).72), ...
0.5%( gql*(x(:,1).72) + g2*(x(:,2).72) + rO*u.”2 )];

h = 0.02; steps = 5; % step size, # of steps

f = @(x,u) rkdu(v,[x zeros(size(x,1),1)],u,h,steps);% control system

n = 3; x1 = linspace(-1,1,n)";

[XX,YY] = meshgrid(x1,x1); X = [ XX(:) YY(:) 1; % sample points

U = linspace(-64,64,17)"; % control samples

depth = 16; ¢ = [0 0]; r [8 10];
tree = Tree(c, r); sd =

subdivide(tree, depth),

8; construct full tree

o°

construct hypergraph
transpose hypergraph
target boxes

value function, feedback

G = dphgraph2(tree, f, X, U, depth);

Gt = trnsp _hgraph(G);

T = tree.search_box([0;0], [0.1;0.1], depth);
[V, u] = minmax_dijkstra(G, Gt, T);

o o° o° o°

V(find(V == Inf)) = NaN;

figure(1l); clf; boxplot2(tree, ’'density’, V);
colorbar; shading flat; axis(’'tight”)
xlabel(’$\varphi$’); ylabel(’$\dot\varphi$’);

unstabilizable set
plot value function

o° o°

Fig. 11 Code: discrete upper value function and robust feedback for the inverted pendulum

8 Hybrid, event and quantized systems

Hybrid systems. The discretization of the optimality principle described in Sec-
tions 4-7 can be used in order to deal with hybrid systems in a natural way. Hybrid
systems can often be modeled by a discrete time control system of the form

Xk+1 =fc(xka)’k,’/lk) k:O 1

. 36
Vieel = fa(Xi, i Uk) (36)

with two maps f. : X XY XU —- X cR"and f; : X XY XU — Y. The set U
of control inputs can be discrete or continuous, the (compact) set X c R" is the
continuous part of state space and the set Y of discrete states (or modes) is a finite
set. The class of hybrid systems described by (36) is quite general: It comprises

* models with purely continuous state space (i.e. Y = {0}, fo(x,y,u) = fo(x,u),
fa = 0), but discrete or finite control space U;

* models in which the continuous part f. is controlled by the mode y and only the
discrete part f; of the map is controlled by the input (f. (x,y,u) = f.(x,y) and
fa(x,y,u) = fu(y,u) may be given by an automaton);

* models with state dependent switching: Here we have a general map f. and

fd(x’ y’u) = fd(x)-

As in the previous chapters, we denote the solutions of (36) for initial values
X0 = x, yo = y and some control sequence u = (ug, uy,...) € U~ by xg (x, y,u) and
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vk (x, y, u), respectively. We assume that for each k, the map xx (-, y, #) is continuous
for each y € Y and each u € U". We prescribe a target set T C X (i.e. a subset of the
continuous part of state space) and our aim is to find a control sequence u = (u k)k eN
such that xi(x,y,u) — T as k — oo for initial values x,y in some stabilizable
set § € X x Y, while minimizing the accumulated cost X} g (Xk, Yk, k), Where
g: XXY XU — [0,00) is a given instantaneous cost with g(x,y,u) > 0 for all
x¢T,yeYandu € U. To this end, we would like to construct an approximately
optimal feedback u : S — U such that a suitable asymptotic stability property for
the resulting closed loop system holds. Again, the construction will be based on a
discrete value function. For an appropriate choice of g this function is continuous in
x at least in a neighborhood of T [12].

Computational approach. Let Q be a partition of the continuous part X of state
space. Then the sets

P={0ix{y}1Qi€Q yeY} (37)

form a partition of the product state space Z = X X Y. On P the approaches from
Sections 4—7 can be applied literally.

Example 4 (Example: A switched voltage controller) Thisisanexample taken from
[16]: . Within a device for DC to DC conversion, a semiconductor is switching the
polarity of a voltage source Vi, in order to keep the ouput voltage x; as constant as
possible close to a prescribed value Vi, cf. Figure 12, while the load is varying and
thus the output current /j,ag changes. The model is

1
Pl (x2 = Thoad)

1 R 1
x2 = —zXI — ZXQ + ZMan (38)

X3 = Vier — X1,

X

where u € {—1, 1} is the control input. The corresponding discrete time system is

=
~
~

\E

nle x

T switch ‘ C J— X, load
T

Fig. 12 A switched DC/DC
converter (cf. [16]).

given by the time-t-map ® (r = 0.1 in our case) of (38), with the control input
held constant during this sampling period. We use the quadratic instantaneous cost
function

g(X, u) =d4qp (q)tl (X) - Vref)2 +49pD ((I); (x) - Iload)2 + QI(Dg (x)3'

The third component in (38) is only used in order to penalize a large L'-error of
the output voltage. We slightly simplify the problem (over its original formulation
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in [16]) by using x3 = 0 as initial value in each evaluation of the discrete map.
Correspondingly, the map reduces to a two-dimensional one on the x1, x2-plane.

In the following numerical experiment we use the same parameter values as given
in [16], i.e. Vip = 1V, Vit = 0.5, R = 1Q, L = 0.1H, C = 4F, Lipaa = 0.3 A,
gp =1, gp = 0.3 and g; = 1. Confining our domain of interest to the rectangle
X = [0,1] x [-1,1], our target set is given by T = {Vier} X [—1, 1]. For the
construction of the finite graph, we employ a partition of X into 64 X 64 equally
sized boxes. We use 4 test points in each box, namely their vertices, in order to
construct the edges of the graph.

Using the resulting discrete value function (associated to a nominal ;5,4 = 0.3
A) and the associated feedback, we repeated the stabilization experiment from [16],
where the load current is changed after every 100 iterations. Figure 4 shows the result
of this simulation, proving that our controller stabilizes the system as requested.

I I I
0 50 100 150 200 250 300 350 400

Current
o

o @
L —

A I
0 50 100 150 200 250 300 350 400

Switch sign
°
i

Fig. 13 Simulation of the
controlled switched power -1t i s w w \

0 50 100 150 200 250 300 350 400
converter. Sample

Event systems. In many cases, the discrete-time system (1) is given by time-
sampling an underlying continuous time control system (an ordinary differential
equation with inputs u and w), i.e. by the time-f-map of the flow of the continuous
time system. In some cases, instead of fixing the time step ¢ in each evaluation of f,
it might be more appropriate to chosen ¢ in dependence of the dynamics. Formally,
based on the discrete time model (1) of the plant, we are dealing with the discrete
time system

Xee1 = f(xe ue), €=0,1,..., (39)
where

Flxou) = 759 (x,u), (40)

r: XxU — Ny is a given event function and the iterate f" is defined by f°(x,u) = x
and f"(x,u) = f(f"""(x,u),u), cf. [13]. The associated instantaneous cost g :
X XU — [0, c0) is given by
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r(x,u)-1

g(x,u) = g(fF(x,u), u). (41)
k=0

The time k of the underlying system (1) can be recovered from the event time ¢
through
keer = ke +r(xe,ue).

Note that this model comprises an event-triggered scenario where the event function
is constructed from a comparison of the state of (1) with the state of (39), as well as
the scenario of self-triggered control (cf. [1]) where the event function is computed
from the state of (1) alone.

Quantized systems. The approach for discretizing the optimality principle de-
scribed in Sections 4—6 is based on a discretization of state space in form of a finite
partition. While in general the geometry of the partition elements is arbitrary (except
from reasonable regularity assumptions), in many cases (e.g. in our implementation
in GAIO) cubical partitions are a convenient choice. In this case, the discretization
can be interpreted as a quantization of (1), where the quantized system is given by
the finite state system

Piv1 = F(Pr, uk,yx), k=0,1,..., (42)

with
F(P,u,y) =n(f(y(P),u)), PePuecl,

where y : P — X is a function which chooses a point x from some partition element
P € P, ie. it satisfies 7(y(P)) = P for all P € P [10]. The choice function models
the fact that it is unknown to the controller from which exact state x; the system
transits to the next cell Py.;. It may be viewed as a perturbation which might prevent
us from reaching the target set — in this sense, (42) constitutes a dynamic game in
the sense of Section 6.

9 Lazy feedbacks

In some applications, e.g. when data needs to be transmitted between the system
and the controller over a channel with limited bandwidth, it might be desirable to
minimize the amount of transmitted data. More specifically, the question might be
how to minimize the number of times that a new control value has to be transmitted
from the controller to the system. In this section, we show how this can be achieved
in an optimization based feedback construction by defining a suitable instantaneous
cost function.

In order to detect a change in the control value we need to be able to compare its
current value to the one in the previous time step. Based on the setting from Section
2, we consider the discrete-time control system
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2kt = flau), k=012, (43)
with zx = (xg,wi) € Z:= X X U, uy € U and

Faa = Fwman = | 10|

Given some target set T C X, we define T := T X U as the target set in the extended
state space Z. The instantaneous cost function g : Zx U — [0, o0), which penalizes
control value changes is given by

ga(z,u) = ga((x,w),u) == (1 = )g(x,u) + A6 (u — w) (44)
with .
=2 ="

Here, A € [0, 1) (in particular, A < 1 in order to guarantee that g(z, u) = 0iff z € T).

In order to apply the construction from Section 7, we choose a finite partition
P of X. Let Vp denote the associated discrete upper value function, § = {x € X :
Vp(x) < oo} the stabilizable set, and iip the associated feedback for the original
system (f,g). For simplicity, we assume that U is finite and use P X U as the
partition of the extended state space Z. We denote the discrete upper value function
of (f,21) by Vy : Z — [0, o], the stabilizable subsetby S, := {z € Z : V;(z) < o}
and the associated feedback by i, : S, - U.

For some arbitrary feedback u, : §; — U, consider the closed loop system

Zk+l =f(zkau/l(zk))7 k=O7 1727"" (46)

We will show that for any sufficiently large 4 < 1 the closed loop system with
uy = it is asymptotically stable on S, more precisely that for zo € S, the trajectory
of (46) enters T in finitely many steps and that the number of control value changes
along this trajectory is minimal.

To this end, for some initial state zo € Sy, let (zx)x € ZY, zx = (xx, wi), be the
trajectory of (46). Let x(zo, u;) = min{k > 0 : zx € T} be the minimal number of
time steps until the trajectory reaches the target set T,

K(20,U2)

E(z0,ua) = Z 6 (ua(ze) = we)

k=0

the number of control value changes along the corresponding trajectory as well as

k(20,u2) B K(20,U2)
Jou) = Y glaou(z), resp. J(zo.u) = Y &z u(zi)
k=0 k=0

the associated accumulated costs. Note that
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J(z0,ua) = (1 = )J (20, ua) + AE (20, ).

Theorem 6 For all A € [0,1), S x U C S,. Using the optimal feedback i, in (46)
and for zo € Sy, zx — T as k — oco. Further, there exists 1 < 1 such that for any
feedback uy : S; — U and zo € Sy with k(zg,u,) < K for some arbitrary K € N,
we have E(zg,u,) = E(zo,i,).

Proof By construction, the system (43, 44) fulfills the assumptions of Theorem 5,
so we have asymptotic stability of the closed loop system (46) with u, = i1, for all
Z0 € S_/l.

In order to show that $ x U c §, for all A € [0, 1), choose A € [0, 1) and some
initial value zo = (xo, ug) € S x U. Consider the feedback

u(z) = u((x,u)) = dp(x)

for system (43). This leads to a trajectory (xi,ug)x of the extended system with
()i bemg a trajectory of the the closed loop system for f* with feedback iip. Since
xo € S, Vo (xo) is finite and the accumulated cost J(zo, «) for this trajectory does not
exceed (1 — )V (xo) + Ak (20, ) which is finite. According to the optimality of Vj,

Va(zo) < (1 = )Vp(xo) + Ak(z0,u) < o0

follows, i.e. zg € S,.

To show the optimality of i1, with respect to the functional E, assume there exists
afeedback u, : S; — U with E(zg,u,y) < E(z9,1,) — 1 for some zg € S,. Since i1,
is optimal, the following inequality holds:

(1= )J (z0,u2) + AE(z0,ua) = J (20, u2)
> J(z0,2)
= (1 = )J(zo0, %) + AE (20, 1)
> (1 -)J(20,i82) + AE(z0,u2) + A
and thus
(1 =) J(z0,ua) = (1 = )J(z0,a) +A. 47

Let C(uy) = maxg,{J(z0,ua) | k(z0,ua) < K} which is finite. From (47) we get
(1=2D)C(uy) = (1 =D)C(i1y) + A. (48)

so that A — 1 leads to a contradiction. m|
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