
sensors

Article

Novel Operation Strategy to Obtain a Fast Gas Sensor
for Continuous ppb-Level NO2 Detection at Room
Temperature Using ZnO—A Concept Study with
Experimental Proof

Ricarda Wagner, Daniela Schönauer-Kamin and Ralf Moos *

Department of Functional Materials, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
* Correspondence: functional.materials@uni-bayreuth.de

Received: 9 August 2019; Accepted: 19 September 2019; Published: 23 September 2019
����������
�������

Abstract: A novel sensor operation concept for detecting ppb-level NO2 concentrations at room
temperature is introduced. Today’s research efforts are directed to make the sensors as fast
as possible (low response and recovery times). Nevertheless, hourly mean values can hardly
be precisely calculated, as the sensors are still too slow and show baseline drifts. Therefore,
the integration error becomes too large. The suggested concept follows exactly the opposite
path. The sensors should be made as slow as possible and operated as resistive gas dosimeters.
The adsorption/desorption equilibrium should be completely shifted to the adsorption side during a
sorption phase. The gas-sensitive material adsorbs each NO2 molecule (dose) impinging and the
sensor signal increases linearly with the NO2 dose. The actual concentration value results from the
time derivative, which makes the response very fast. When the NO2 adsorption capacity of the sensor
material is exhausted, it is regenerated with ultraviolet (UV) light and the baseline is reached again.
Since the baseline is newly redefined after each regeneration step, no baseline drift occurs. Because
each NO2 molecule that reaches the sensor material contributes to the sensor signal, a high sensitivity
results. The sensor behavior of ZnO known so far indicates that ZnO may be suitable to be applied as
a room-temperature chemiresistive NO2 dosimeter. Because UV enhances desorption of sorbed gas
species from the ZnO surface, regeneration by UV light should be feasible. An experimental proof
demonstrating that the sensor concept works at room temperature for ppb-level NO2 concentrations
and low doses is given.

Keywords: resistive gas dosimeter; room-temperature gas sensing; ZnO; UV-supported NO2 sensing;
air quality monitoring

1. Introduction

Since NO2 is a harmful toxic gas, legal limits must not be exceeded and the NO2 concentrations
must be monitored—for example by gas sensors [1]. Typically, emission limits are given as hourly mean
values SM,NO2 to which a dose is directly proportional, see Equations (1) and (2). For NO2, for instance,
the hourly mean value SM,NO2 is 200 µg/m3 (corresponding to an average NO2 concentration of
cNO2 = 104.6 ppb) and the annual mean value is 30 µg/cm3 (cNO2 = 15.7 ppb) according to the EU
immission legislation Directive 2008 and according to the German air quality standards [2,3]. To obtain
the dose DNO2 (in ppb·s), one must integrate the concentration over time in accordance with Equation (1).
For instance, if the hourly mean value shall be calculated, tges is 1 h. The relationship between dose
DNO2 and the hourly mean value SM,NO2 is given in Equation (2). For the conversion, the molar mass M
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of NO2 (M = 46.0055 g/mol) and the molar volume VM are needed. For standard conditions, (pressure
1013 mbar and temperature 298 K) VM amounts to VM = 24.47·10−3 m3/mol.

DNO2 =

∫ tges

0
cNO2(t) dt (1)

SM,NO2 =
M

VM

1
tges
·DNO2 (2)

Metal oxides are well-known materials for sensing the concentration of different gas species using
the chemiresistive effect. They are also denoted as semiconducting gas-sensing devices [4]. NO2 is
one of the gases that are frequently suggested to be detected by metal oxides, such as ZnO [5–8],
SnO2 [9,10] or TiO2 [11]. Typically, operation temperatures above 300 ◦C are required [12,13]. A high
power consumption and the prohibitive application in explosive ambience follow [13]. Since it is not
possible to use inexpensive and flexible polymer sensor substrates, the sensors cannot be used on
wearables. Except for exhaust applications, no high operating temperatures are necessary, as for indoor
or outdoor air quality monitoring, for instance. Hence, room-temperature NO2 detection would be
highly beneficial. Especially for mobile applications, e.g., for mapping air quality in cities [14], lowest
energy consumption combined with high accuracy (to make the integration error so small that hourly
mean values can be derived) is the most demanding challenge.

In the last few years, it has been shown that UV enhances the gas-sensing properties of metal
oxides at room temperature [7,13,15–19], since it reduces response and recovery times and increases
the sensitivity. By using ZnO as the sensor material, it seems possible to measure ppb-level NO2

concentrations [20,21]. The Prades group, e.g., has already reported on a transducer by which
UV-supported metal oxide sensors can be miniaturized consuming only little energy [21].

In other words, today’s research efforts are directed to make the sensors as fast as possible.
Nevertheless, the sensors are still not fast enough. Therefore, and because baseline drifts often occur,
hourly mean values can hardly be precisely calculated, because the integration error becomes too large.

The new concept follows exactly the opposite path. The main goal is to make the sensors as
slow as possible and to operate them as chemiresistive gas dosimeters. The aim is therefore to shift the
adsorption/desorption equilibrium completely to the adsorption side during the dosimeter sorption
phase. Then, the gas-sensitive material adsorbs each NO2 molecule (dose) impinging on the surface and
thus the sensor signal increases linearly with the NO2 dose. The (additional) concentration information
results from the time derivative. As soon as the NO2 adsorption capacity of the sensor material is
exhausted, regeneration with UV light takes place. The baseline signal is then reached again, but since
this is sensor-inherent, there is no baseline drift, because the zero signal (baseline) is redefined after
each regeneration step. The dosimeter principle (full sorption) ensures that each NO2 molecule that
reaches the sensor material contributes to the sensor signal. This results in a high sensitivity, allowing
for measuring low NO2 concentrations. In addition, energy consumption can be further reduced, since
no constant UV exposure is necessary, but only pulses for a certain time.

This concept study is structured the following. First, the NO2 sensing behavior of ZnO for
chemiresistive gas-sensing is reviewed. The sensor behavior known so far indicates that ZnO may
suitable to be applied for room-temperature chemiresistive NO2 dosimeters. The fact that UV enhances
desorption of sorbed gas species from the ZnO surface is then used for the dosimeter regeneration.
Hence, ZnO-based dosimeter and concentration gas sensors with regeneration by UV light should be
feasible. An experimental proof demonstrating that the sensor concept works at room temperature
for ppb-level NO2 concentrations and low doses is given. For that purpose, alumina doped ZnO was
synthesized and the thereof prepared sensors were applied as room-temperature UV-regenerated NO2

chemiresistive dosimeters. The NO2 concentration was derived from the time derivative.
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2. Pre-Considerations

Metal oxides are well-known materials for detecting different kinds of gases [4,22,23]. In the
past few years, many studies reported on ZnO with respect to its properties to detect various gases,
e.g., NO2 [24,25], ethanol [26], humidity [18,27], or ozone [15]. Its resistive gas-sensing properties are
typical for an n-type metal oxide semiconducting material. At the grain interfaces, oxygen is adsorbed
under electron consumption. The type of adsorbed oxygen depends on temperature. At temperatures
below 150 ◦C, molecular type O−2 dominates, above this temperature, oxygen is adsorbed as an ionic
type O− or O2− [28]. The adsorption of oxygen causes a depletion layer at the grain interfaces that
leads to a higher resistance of the material [29]. With increasing ambient O2 concentration the amount
of adsorbed oxygen increases, as well as the resistance does. If there are gases in the ambience
that react with the sorbed oxygen species, such as reducing gases, the amount of sorbed oxygen
decreases. As a result, the before-bounded electrons are set free (release of electrons), the depletion
layer width is reduced and the resistance decreases. Oxidizing gases, such as NO2, can be adsorbed at
the grain interfaces as well. This goes along with electron consumption, as described above for oxygen
adsorption. Mostly NO2 is adsorbed as NO−2 or NO−3 [5,12,28]. ZnO is therefore basically suitable to
detect NO2 [1]. Normally, metal oxide-based sensors need operation temperatures above 300 ◦C [13].
This is due to a kinetic inhibition of the surface reaction. A minimum temperature is also required
to desorb adsorbates, so that the adsorption-desorption equilibrium is on the desorption side [13,30].
A high desorption rate is important for low recovery times of the gas sensor and a high adsorption rate
is the precondition for low response times. Both are relevant parameters for the proper functionality of
a typical resistive gas sensor.

It is state of the art that NO2 concentrations from 2 ppm and above can be measured at room
temperature [13]. Lower concentrations are detectable with ZnO only when the sensors are operated
above 250 ◦C [31]. Only a few reports describe the detection of NO2 in the ppb range at room
temperature using ZnO, e.g., [21]. In addition, the sensor signal recovers very slowly, especially for
low concentrations at room temperature. From this point of view, higher temperatures are preferred in
the case of typical well-known concentration detecting chemiresistive gas sensors.

In the following, possibilities are shown that can enhance the detection of low NO2 concentrations
at room temperature. For that, various approaches are discussed in the literature. One possibility
is to dope ZnO with noble metals [32,33]. Noble metals catalyze the surface reactions, leading to a
lower detection limit at room temperature and to a faster sensor recovery [13]. Another approach uses
composite metal oxides [8,34–36]. It is assumed that the charge carrier concentration is increased and
the activation energy for surface reactions at the ZnO surface is decreased [13]. Nano-structuring may
also improve the sensor response of ZnO at room temperature, sometimes even greatly [25,26,37–39].
Nanocrystals are synthesized with different morphologies such as rods [7,40–42], nanosheets [43],
or flowers [5,44]. When the grain size is only less than about twice the Debye length, the depletion
layer penetrates the whole grain and the measured resistance is dominated by the grain interfaces and
the effects take place there [23,28]. Nano-structuring of ZnO also leads to a high surface to volume ratio
leading to a higher number of active sites for surface reactions. In addition, those materials show also
high defect densities and a high porosity, which also increases the number of active sites for adsorption
of gas species [13].

The most promising reported method to enhance the room-temperature gas-sensing properties is
UV light activation of ZnO [11,15,18,21,45–48]. UV light with a photon energy greater than the band
gap of the material generates electron-hole pairs leading to a resistance decrease. As a second effect,
the photo-generated holes migrate to the ZnO grain interfaces where they recombine with the electrons
needed for the oxygen adsorption. This causes a desorption of oxygen and reduces the depletion layer
width [49]. As consequence, the base resistance of the material is under UV illumination markedly
lower than in the dark. Adsorption of an analyte gas during UV exposure leads to a higher sensor
signal, because more free adsorption sites are available. Another effect of UV exposure is the higher
desorption rate, as the UV-generated holes may migrate to the grain interfaces and recombine with
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electrons that are needed for the adsorption [47]. Desorption of adsorbed species is therefore greatly
increased under UV exposure. Summing up, UV light strongly reduces the recovery time at room
temperature. By constant UV exposure, it is already possible to detect NO2 in the ppb range with
ZnO [20,21]. All methods, except the continuous UV activation, have in common that the signal
recovery occurs very slow at room temperature for low NO2 gas concentrations with respect to classical
concentration detecting sensors.

The high signal recovery times at room temperature and the high desorption rate at room
temperature achieved by UV illumination can be combined for a novel sensor concept at room
temperature, the resistive gas dosimeter concept.

The resistive gas dosimeter concept has been introduced some years ago [50,51]. How it works
and what the advantages are will be briefly explained in the following.

The resistive dosimeter principle is divided in two phases: A sorption phase and a regeneration
phase for cleaning the surface [52,53]. The schematic sensor signal of a gas dosimeter in shown in
Figure 1.
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regeneration phase.

During the sorption phase, the gas component to be detected is sorbed in the gas-sensitive layer,
here ZnO. This increases the electrical signal, e.g., the resistance or the impedance. During exposure to
a constant concentration of the analyte, the sensor signal increases linearly, whereby the increase, i.e.,
the time derivative of the sensor signal (slope), is proportional to the actual analyte concentration. If no
analyte reaches the sensor, the signal remains constant, and no desorption of the sorbed gas takes place.
The sorption-desorption equilibrium is (and must be) on the sorption side. When analyte molecules
are impinging again on the sensor, the sensor signal increases also again. The slope of the sensor signal
depends on the concentration of the target gas in the ambience, as shown in Figure 1. The higher the
concentration, the higher the slope. All target species reaching the surface are sorbed and hence they
all contribute to the sensor signal. This makes the sensor very sensitive and very fast.

If, however, the adsorption sites of the sensitive layer are occupied, the sorption-desorption
equilibrium shifts to desorption and the signal change is no longer proportional to the actual analyte
concentration. The sensor signal becomes non-linear. If no target gas is in the ambience, the signal no
longer remains constant. It decreases since analyte molecules desorb from the surface. In other words,
the sensor material (the adsorber) is so fully loaded that it must be emptied (regenerated, here by UV
light) and a new measuring cycle can begin after a short regeneration step. After regeneration, the new
baseline value is set for the next measuring cycle.

For the regeneration process, i.e., for desorbing sorbed species, it is necessary to apply energy.
Marr et al. used high temperature of about 650 ◦C for a fast thermal regeneration of a dosimeter based
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on lanthanum stabilized γ-Al2O3 impregnated with potassium and manganese oxides [54]. Chemical
regenerations are also possible [55], e.g., net-reducing atmospheres. For a room-temperature dosimeter,
without any additional heating, another regeneration strategy is necessary to desorb the previously
sorbed molecules.

Today’s dosimeters that are in-use do not allow obtaining a continuous signal, but only one value
after the sampling time. They are typically based on activated carbon [56]. They sample an analyte gas
over a defined period. At the end of the sampling phase, the total amount of target gas adsorbed during
the defined period is determined [57,58]. In other words, no timely resolution is possible. In contrast to
that, the resistive gas dosimeter concept allows for obtaining constantly a signal and by differentiating
the sensor signal, the gas concentration can be determined over the entire measurement period. This is
possible if (and because) the dosimeter sensor signal slope and the gas concentration are proportional
to each other. Marr et al. have shown that the dosimeter concept works for ppb NO2 detection at
around 350 ◦C with lanthanum stabilized γ-Al2O3 impregnated with potassium and manganese oxides
as sensitive material and 650 ◦C during regeneration [54]. Another type of dosimeter gas-sensing is
introduced by Maier et al. [59]. They observed an accumulating behavior at room temperature for low
ppm-level NO2 using SnO2 as the sensitive layer. In contrast to the here-presented dosimeter, they
used a periodic reset of a dosimeter-type sensor. The reset was initiated by UV light, by temperature,
and by humidity, which all cause NO2 to desorb. The observed characteristic sensor curve, however,
is not linear. The group of Vasiliev et al. found a dosimeter-type behavior at room temperature when
observing the capacitance change of an Au/n-SnO2/SiO2/p-Si/Al heterostructures. Target gases were
ethanol, ammonia, and humidity, respectively [60]. Despite it shows a strong accumulating behavior,
there is no linear correlation of the sensor signal and the dose. Dosimeter-like sensor behavior towards
NO2 has also been observed with graphene [61]. Concentrations up to 0.2 ppb could be detected at
room temperature. The correlation between concentration and slope of the sensor signal is almost
linear. Here, a sensor regeneration by 120 ◦C is used. From Diodati et al. it was observed that ZnO at
150 ◦C shows dosimeter-like behavior towards H2S [62]. The relationship between concentration and
slope is approximately linear. Concentrations in the low ppm range could thus be measured, here
at 30% relative humidity, which interestingly did not affect the storage ability. Another material that
shows an accumulating sensor signal is hydrogenated diamond [63]. It is thus possible to detect NO2

in the ppm range at room temperature. Accumulating behavior of the sensor can also be observed
here. It is assumed that NO2 in the form of HNO3 is stored in the BET water. The relationship between
concentration and sensor signal is non-linear. Regeneration is initiated by replacing the contaminated
water with fresh water, which is adsorbed on the surface. Detecting NO2 at room temperature is also
possible with AlGaN/GaN heterostructures [64]. This even allows concentrations in the ppb range
to be determined. The sensor signal increases linearly with the concentration, but the regeneration
requires 150 ◦C. At least in this study, it is done after each NO2 step.

All those dosimeters have in common that either they do not show a linear relationship between
concentration and slope and/or that it is necessary to regenerate the sensor at higher temperatures.

The aim of this work is to show that there is a concept for room-temperature dosimeter-type
NO2 detection in the ppb range. The correlation between concentration and signal slope should be
linear. To be able to operate the sensor completely at room temperature, regeneration with UV light
is implemented.

The idea of the novel concept is to use ZnO as a sensitive material for a dosimeter-type sensor
at room temperature due to its very slow recovery behavior (when non-illuminated) that indicates
strong adsorption and a low desorption, and use the UV-supported desorption at room temperature
for regeneration of the sensitive material.

3. Experimental

3% alumina doped ZnO was synthesized as described in Vogel et al. [65] by sol-gel synthesis.
The as-prepared powders were processed to a paste and applied onto an alumina substrate (96% Al2O3),



Sensors 2019, 19, 4104 6 of 13

on which interdigitated gold electrodes (electrode width 75 µm, spacing 75 µm) had been screen-printed
before. Afterwards, the ZnO paste was fired at 450 ◦C for 4 h. A scheme of the sensor setup is shown
in Figure 2.Sensors 2019, 19, x 6 of 13 
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For characterizing the gas-sensing properties of Al-doped ZnO, the sensor was operated in a gas
purgeable test chamber (volume: 116 cm3) with a quartz glass lid to allow UV exposure by 3 UV LEDs
(365 nm, 0.09 mW/cm2) that are operated with constant current. In Figure 3, the measurement setup is
illustrated. Dry synthetic air (20% O2 in N2) served as the base gas. 15 ppb, 30 ppb, 50 ppb, or 70 ppb
NO2 were added stepwise by the mass flow controllers (MFCs). The total flow was 250 mL/min.
The NO2 concentrations were determined for verification by a chemiluminescence detector (CLD 855 Y,
ecophysics) downstream of the test chamber. By integrating the NO2 output data of the CLD, the NO2

dose was calculated. The complex impedance of the sensor was measured at room temperature at an
effective voltage of 100 mV and a frequency of 1 Hz with an impedance analyzer (αHigh-Resolution
Analyzer, Novocontrol).
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The resistance R was calculated by Equation (3), where |Z| is the absolute value of the complex
impedance and ϕ is the phase of the impedance.

R =
|Z|

cosϕ
(3)

The sensor signal is defined as the relative resistance change (R − R0)/R0, where R0 is the resistance
without target gas loading. For regeneration, the UV LEDs were turned on. In the preferred operation
strategy, NO2 sorption takes place without UV illumination in dark for strong adsorption and low
desorption. Only to regenerate the sensor, UV light was turned on for fast desorption of the previously
sorbed NO2 molecules.
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4. Results and Discussion

First measurement results are shown in the following part to proof the operating mode of the novel
sensor concept. Figure 4 indicates the sensor signal (R − R0)/R0, the NO2 concentration measured by
CLD and the calculated NO2 dose, DNO2 , over time for a 3% Al-doped ZnO sensor at room temperature
in dry synthetic air. The results show that the 3% Al-doped ZnO behaves like a resistive gas dosimeter.
First, this means that the sensor signal (R − R0)/R0 increases linearly when the sensor is exposed to a
defined NO2 concentration, cNO2 . Second, the higher the NO2 concentration, the higher the slope of
the sensor signal. Third, after NO2 exposure the signal remains constant. Therefore, there is almost
no desorption of the sorbed gas species and sorption prevails by far desorption. The recovery time
is infinite as can be seen in the pauses when no NO2 is admixed to the base gas. This is the key
parameter for the resistive gas dosimeter working principle as described previously. By integration of
the NO2 concentration (CLD signal), the NO2 dose, DNO2 , was calculated. The sensor signal clearly
follows the dose. Therefore, the dose of NO2 can be determined directly from the sensor signal.
At about 90 min, the UV light was turned on to regenerate the sensor. This causes a fast decrease
of the sensor signal to the start value (R0) because of the UV induced desorption of the sorbed gas
species. Besides the sorbed NO2 gas species, the sorbed oxygen species is also desorbed during the UV
illumination phase. Consequently, the resistance under UV illumination will be lower than the baseline
resistance. This is a result of the oxygen desorption that also leads to a reduced resistance, as described
previously. When UV light is turned off again, after complete desorption of the sorbed NO2 species, O2

is re-adsorbed. This is possible since in the surrounding there is an almost constant content of O2. This
may cause a small baseline shift, since the amount of adsorbed oxygen species changes and influences
the resistance. However, since the baseline value is redefined before each measuring cycle, the baseline
shift is negligible as long as a certain slope of the sensor signal corresponds to a certain concentration,
i.e., the linear sensor characteristic is still valid. This is an advantage of the concept as presented here.
How large the drift is allowed to be, so that the relationship between concentration and slope of the
sensor signal is still valid, and to what extent a shift of the baseline occurs due to re-adsorption of
oxygen must be further clarified in future work. In a further step, the long-term stability needs to be
investigated in detail. Hence, regeneration of the sensor at room temperature by UV is possible and a
new measurement cycle can begin.
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In Figure 5, the time derivative of the sensor signal d/dt((R − R0)/R0) and the NO2 concentration
signal of the CLD are shown. The dosimeter concentration signal is very fast, too. The resulting
response and recovery times of the derivative d/dt are low, meaning that the sensor responds fast. It is
even difficult to distinguish between the response and recovery times that stem from the applied setup
and from the sensor. Even 15 ppb NO2 show a strong and fast signal here. This indicates that even
low concentrations of NO2 can be detected. This feasibility experiment verifies that it is possible to
obtain two signals from one sensor: one directly for the NO2 dose and a fast NO2 concentration signal
by using the time derivative, even for low 15 ppb NO2 concentrations at room temperature. These
results are similar to the above-said device of Marr et al. [54], where 20 ppb was the lowest detectable
concentration; however, their device had to be operated at 350 ◦C. Groß et al. [52] showed that the
dosimeter concept works for an application as total NOx sensor. The measuring temperature was
350 ◦C, too, but the sensing layer was made from a potassium-based automotive exhaust lean NOx

trap catalyst material. In contrast to the work of Marr et al., the lowest detected concentration was
only 2000 ppb.
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Calibration curves can be derived from Figures 4 and 5. Figure 6a shows the sensor signal
(R − R0)/R0 as it depends on the NO2 dose, DNO2 . The data points and the standard deviations were
determined as follows: In the time range when the sensor is not exposed to NO2 and the sensor signal
remains constant, the mean value and the standard deviation of the dose and the sensor signal were
calculated. The slopes, d((R − R0)/R0)/dDNO2 , of the points in Figure 6a lead to the sensitivity of the
dosimeter, whereas the slope of d(d/dt((R − R0)/R0)))/dcNO2 in Figure 6b is the sensitivity from the
standpoint of a classical gas sensor. The points in Figure 6b correspond to the mean values and the
standard deviation, determined from the concentration, measured by the CLD, and the slope of the
sensor signal (R − R0)/R0 equal to the derivative d/dt((R − R0)/R0) observed during NO2 exposure.
As can be seen in both cases, for low doses, the sensitivity remains constant, as indicated by the drawn
regression lines and its dashed extension. For higher doses, here above approx. 40 ppm, the sensor
begins to become non-linear, i.e., the sensitivity becomes smaller. This is preliminarily attributed to a
shift of the adsorption/desorption equilibrium to the desorption side due to too many occupied sorption
sites. Nevertheless, the concept to measure ppb-level concentrations of NO2 at room temperature
using ZnO as the sensitive material and applying the concept of a resistive gas dosimeter with UV
regeneration has been proven by these experiments.
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However, despite these promising results, much work remains for the future. First, it should be
noted that the dose where the sensor becomes non-linear is not yet fully sufficient. The hourly NO2

mean value SM,NO2 of 200 µg/m3 corresponds to an average NO2 concentration of cNO2 = 104.6 ppb.
This accumulates to a dose of roughly DNO2 ≈ 377 ppm within 1 h, which is higher than the
observed limit in Figure 6. Furthermore, noise effects of temperature and interfering gases need to
be studied. Water in the ambience, for instance, may affect the sensor behavior drastically, especially
for ZnO [7,49]. Humidity may influence the dosimeter-type behavior. It was reported that SnO2

shows a dosimeter-type sensing behavior towards NO2 at room temperature up to 30% humidity [66].
With higher humidity content, desorption of NO2 is favored and there is no accumulating sensor signal
anymore. For example, a hydrophobic zeolite layer can be applied. It rejects water molecules but
allows NO2 to pass through, or a hydrophobic polytetrafluoroethylene (PTFE) membrane can protect
the gas-sensing film from humidity.

To reduce the temperature influence, the sensor temperature can be measured. Temperature effects
can then be corrected using a previously determined sensor characteristic. For this purpose, it needs to
be investigated how around room temperature the sensing behavior is affected by temperature. Besides
technically relevant questions such as miniaturization (e.g., as suggested by [21]) or best suitable
regeneration wavelength and power density to ensure reproducible regeneration, a mathematical
estimation of the maximum dose that can be measured by such a type of sensors before they need to be
regenerated, has to be worked out. In addition, it must be found out how an optimum ZnO morphology
should look like. Many types of nano-ZnO are waiting to be investigated [5,7,18,19,24,25,40–43,67].
Furthermore, one may also have a look at other n-type chemiresistive materials.
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calculation, the mean value of the sensor signal for each NO2 step in the range where the dose remains
constant was determined (a); and the mean value of the constant slope (concentration sensor) in the
range where the signal increases, were used (b).

5. Conclusions

A novel sensor concept for detecting ppb-level NO2 concentrations at room temperature is
introduced here. The aim of the new concept is to make the sensors as slow as possible and to operate
them as resistive gas dosimeters. The adsorption/desorption equilibrium should be shifted fully to the
adsorption side during the dosimeter sorption phase to allow the gas-sensitive material for adsorbing
each NO2 molecule that reaches the surface. Thus, the sensor signal increases linearly with the NO2

dose. The concentration value results from the time derivative. As soon as the NO2 adsorption capacity
of the sensor material is exhausted, the sensors are regenerated by UV light. Measurements showed
that sol-gel synthesized Al-doped ZnO is a suitable material for room-temperature NO2 dosimeters
and that regeneration can be realized by UV illumination. In summary, it appears that it is feasible to
directly detect the dose of NO2 and to derive directly the NO2 concentration even in the ppb range at
room temperature.
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