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Disentangling the environmental 
impact of different human 
disturbances: a case study on 
islands
Sebastian Steibl    & Christian Laforsch

Coastal ecosystems suffer substantially from the worldwide population growth and its increasing 
land demands. A common approach to investigate anthropogenic disturbance in coastal ecosystems 
is to compare urbanized areas with unaffected control sites. However, the question remains whether 
different types of anthropogenic disturbance that are elements of an urbanized area have the same 
impact on beach ecosystems. By investigating small islands that are utilized for tourism, inhabited by 
the local population, or remained completely uninhabited, we disentangled different anthropogenic 
disturbances and analysed their impacts on hermit crabs as indicator species. We observed a negative 
impact on abundance on tourist islands and a negative impact on body size on local islands. In 
comparison to the uninhabited reference, both disturbances had an overall negative impact. As both 
forms of disturbance also impacted the underlying food resource and habitat availability differently, 
we propose that the findings from our study approach are valid for most obligate beach species in the 
same system. This demonstrates that in urbanized areas, the coastal ecosystem is not always impacted 
identically, which emphasizes the importance of considering the particular type of anthropogenic 
disturbance when planning conservation action in urbanized areas.

Our planet faces an ever increasing number of environmental problems caused by the growth of the human 
population and its land demands1. One ecosystem that suffers substantially from population growth are coasts. 
Between 50% and 75% of the world’s population live close to coasts2, thereby intensifying the anthropogenic 
impacts on this fragile environment. Globally, sand-dominated beaches comprise 75% of the ice-free coastline3 
– and in addition to their inherent ecological value, they form a crucial component of the travel and tourism 
industries worldwide4.

Many ecological studies try to identify factors that impact sandy beach ecosystems for the development of 
conservation measures5. Disruption of sand transport by coastal protection structures, sewage pollution, beach 
nourishment, tourism, beach cleaning, bait collecting and fishing have previously been characterized as anthro-
pogenic disturbances with negative consequences for the beach ecosystem3. Under the assumption that these 
human activities lead to similar ecological consequences and due to the difficulty of a distinct spatial separation 
of single elements, a common approach to evaluate human disturbances for beach ecosystems is the comparison 
between urbanized areas and remote, unaffected control sites6–8. However, it remains unclear whether various 
types of anthropogenic disturbances within urbanized areas (e.g. permanent settlements, infrastructure, tourist 
facilities, etc.) actually have similar impacts on the environment9. If not, then current conservation efforts might 
be improvable by developing strategies that are more specifically tailored to counteract the environmental degra-
dation of the distinct human disturbance.

To investigate this question, the present study was conducted on small coral islands which were either (I) 
inhabited by the local population, (II) accommodating a tourist facility, or (III) completely uninhabited. This 
approach guaranteed a distinct spatial separation of two different anthropogenic disturbances and enabled a 
comparison to ecosystems with no permanent and direct human impact.
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A terrestrial hermit crab community comprising two species (Coenobita rugosus and C. perlatus) was 
chosen as an indicator to investigate human disturbances10. Terrestrial hermit crabs are a crucial component 
in beach ecosystems that link the marine and the terrestrial food web11. As adult terrestrial hermit crabs are 
restricted to the beaches, populations on small coral islands – like most beach-associated macrofauna – cannot 
avoid human stressors by migration10. Consequently, they can be considered representative of a large number of 
beach-associated taxa for the purpose of examining anthropogenic disturbances.

Results
Impact of different human disturbance on the abundance and size of hermit crabs.  The studied 
organisms belonged to the only terrestrial genus of hermit crabs, Coenobita, and comprised C. rugosus and C. 
perlatus. Significant differences in the abundance and size of the investigated hermit crabs were observed between 
uninhabited, local and tourist islands (Fig. 1). Island type had a significant effect on the hermit crab abundance 
within the investigated plots (ANOVA: N = 4, df = 2, F = 28.997, P < 0.001). Significantly fewer hermit crabs 
were present in the plots on tourist islands than on uninhabited (P < 0.001) and local islands (P < 0.001). The 
abundance within the plots did not differ between uninhabited (16.25 ± 7.03 mean ± standard error) and local 
islands (17.87 ± 6.98; P = 0.692), although the availability of suitable habitats was significantly reduced on local 
islands, which might ultimately result in a reduced island population size on the local islands as well (see results 
section (c)). Furthermore, island type had a significant effect on the hermit crab size (ANOVA: N = 4, df = 2, 
F = 5.764, P = 0.028). On local islands, the investigated hermit crabs were significantly smaller compared to tour-
ist islands (P = 0.022). No significant differences were observed between the size of hermit crabs on uninhabited 
(0.68 ± 0.01 cm) and on local islands (0.62 ± 0.02 cm; P = 0.292), nor between uninhabited and tourist islands 
(0.76 ± 0.04 cm; P = 0.201).

To elicit potential reasons for the differences in hermit crab abundance and size between the three island 
types, food availability, beach habitat structure and empty shell resource were investigated using NMDS (Fig. 2). 
The three island types differed significantly in resource and habitat (PERMANOVA: N = 4, df = 2, F = 4.770, 
P = 0.004). For a more detailed analysis, each parameter was further investigated specifically.

Impact of different human disturbances on the food resource of hermit crabs.  Island type had no 
significant effect on the amount of organic material per m² on the beach (Kruskal-Wallis: N = 4, df = 2, χ² = 4.653, 
P = 0.097), but calculated means suggest a non-significant tendency towards fewer organic material on tourist 
islands (1.14 ± 0.28 g), compared to uninhabited islands (4.63 ± 1.09 g) and local islands (2.85 ± 1.19 g).

Impact of different human disturbances on the beach habitat structure.  The composition of the 
beach habitat (for categorization see methods section and Fig. S1) varied significantly between the three island 
types (Fig. 3): the proportion of the fine sand beach habitat on the total island’s circumference was significantly 
different between the three island types (Kruskal-Wallis: N = 4, df = 2, χ² = 7.565, P = 0.022), with a signifi-
cantly higher proportion of fine sand beach on tourist islands than on local islands (P = 0.018). Additionally, 
the proportion of artificial shoreline (Kruskal-Wallis: N = 4, χ² = 8.459, P = 0.014) and vegetation-covered 
beach (Kruskal-Wallis: N = 4, χ² = 7.461, P = 0.024) was significantly altered, with a significantly higher pro-
portion of artificial shoreline on local islands than on uninhabited islands (P = 0.013) and significantly fewer 
vegetation-covered beach on tourist islands than on uninhabited islands (P = 0.026). No significant differences 
were observed in the proportion of “fine sand with small fragments” habitat (Kruskal-Wallis: N = 4, χ² = 0.115, 
P = 0.944), “fine sand with larger rock” habitat (Kruskal-Wallis: N = 4, χ² = 4.832, P = 0.089) and “predominantly 
rock-covered beach” habitat (Kruskal-Wallis: N = 4, χ² = 5.434, P = 0.066). The adjacent shore composition did 
not differ significantly between the three island types (Kruskal-Wallis: Seagrass: N = 4, χ² = 0.927, P = 0.629, 
Seagrass and Sand: N = 4, χ² = 1.457, P = 0.483, Sand: N = 4, χ² = 0.731, P = 0.694, Sand and Rock: N = 4, 
χ² = 2.457, P = 0.293, Rock: N = 4, χ² = 4.352, P = 0.114).

Figure 1.  Anthropogenic impact on the abundance and size of hermit crabs. Hermit crab abundance (left) and 
hermit crab size (right) compared between uninhabited, local and tourist islands (N = 4). Significant differences 
between island types are indicated by different letters.
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The investigated beach habitat types had a significant effect on the hermit crab abundance (crossed fixed-factor 
ANOVA island type x habitat type: N = 4, df = 3, F = 5.969, P = 0.001), but beach type and island type did not 
interact significantly (N = 4, df = 5, F = 0.427, P = 0.827). When considering the abundance of hermit crabs in 
only one of the four investigated beach habitat types, island type still had a significant effect on the hermit crab 
abundance: the abundance of hermit crabs in the “fine sand beach” habitat differed significantly between the three 
island types (Kruskal-Wallis: N = 4, df = 2, χ² = 15.920, P < 0.001), with significantly fewer hermit crabs in the 
fine sand habitat of tourist islands than in that of uninhabited islands (P < 0.001) and of local islands (P = 0.035). 
Island type had also a significant effect on the abundance of hermit crabs in the “fine sand with small fragments 
beach” habitat (Kruskal-Wallis: N = 4, df = 2, χ² = 12.501, P = 0.001) with significantly fewer hermit crabs in this 
habitat type on tourist islands than in uninhabited islands (P = 0.007) and local islands (P = 0.007).

Figure 2.  Distinctness of the three investigated island types. NMDS ordination of the investigated islands (blue 
squares and blue cluster area: uninhabited islands, red circles and red cluster area: local islands, green triangles 
and green cluster area: tourist islands) is based on the three resource and habitat parameters that influence 
hermit crab abundance and size (food, shell and habitat availability)). NMDS ordination thereby groups points, 
i.e. islands, with similar values closer together. Spatial proximity of a data point, i.e. an island, to one of the 
investigated parameters shows that the island is described by high values in the respective parameter.

Figure 3.  Beach habitat composition of the three island types. Proportions of each of the six categorized beach 
types on the three investigated island types (N = 4). Significant differences in the pairwise comparisons between 
island types are indicated by different letters.
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Impact of different human disturbances on the shell resource of hermit crabs.  Island type had a 
significant effect on the overall abundance of empty shells (Kruskal-Wallis: N = 4, df = 2, χ² = 7.130, P = 0.028) 
and on the crab-per-utilizable-empty-shell (CUES)-ratio (Kruskal-Wallis: N = 4, df = 2, χ² = 7.730, P = 0.020). 
This CUES-ratio can be understood as a measure for the intensity of competition over the shell resource. Higher 
values of this ratio indicate a more severe competition, while values closer to 1 indicate that for each hermit 
crab a potential utilizable empty shell is readily available. The CUES-ratio was significantly smaller on tourist 
islands than on uninhabited islands (P = 0.024). On uninhabited islands, on average 10 hermit crabs competed 
over one shell, while on local islands only 6 hermit crabs competed over one shell. For each hermit crab on a 
tourist island existed on average one utilizable empty shell. Island type had a significant effect on the abun-
dance of non-utilizable empty shells (Kruskal-Wallis: N = 4, df = 2, χ² = 6.545, P = 0.037): significantly more 
non-utilizable empty shells were found on local islands than on uninhabited islands P = 0.046) and on tourist 
islands (P = 0.046), while the number of non-utilizable empty shells did not differ statistically between unin-
habited and tourist islands (P = 0.922). To investigate the reasons for the hermit crab size differences, the shell 
parameter that most strongly determines hermit crab size, i.e. the aperture area of the shell (Spearman: R² = 0.861, 
P < 0.001), was analysed. The aperture area of utilized shells did not differ significantly between the three island 
types (Kruskal-Wallis: N = 4, df = 2, χ² = 5.303, P = 0.070). The aperture area of utilizable empty shells did not 
differ between the three island types (Kruskal-Wallis: N = 4, df = 2, χ² = 3.803, P = 0.149).

Discussion
Numerous studies have demonstrated that coastal ecosystems are substantially altered or degraded in urbanized 
areas6–8. Due to spatial proximity, different anthropogenic disturbances impact beach ecosystems simultaneously 
in those areas. It is therefore difficult to disentangle the environmental impacts of different disturbances and 
investigate with certainty whether ecosystems respond differently to different disturbances9. We investigated this 
issue by studying small coral islands, where different anthropogenic disturbances are spatially separated. The 
results from our novel study approach show that these disturbances are having clear but distinct impacts on the 
investigated terrestrial hermit crabs. These findings, based on our study approach, should be transferable to a 
large number of beach-dwelling taxa, as food and habitat availability generally limit species distribution and 
population size12,13.

On tourist islands, hermit crabs were significantly less abundant and significantly larger than on local islands. 
Compared to the uninhabited reference system, the abundance was negatively impacted on tourist islands, but did 
not differ compared to local islands. However, the overall population size on local islands should be considered 
reduced, as the availability of suitable habitats has been reduced by harbours and coastal protection structures. 
Therefore, different elements of urbanized areas, i.e. permanent settling or tourism, can have distinct environ-
mental impacts on beach ecosystems.

Food, habitat availability and empty shell abundance are limiting resources for hermit crabs and might offer 
reasons for the observed differences between the two different land uses12,14. The tendency towards less organic 
material on tourist islands (1.14 ± 0.31 g/m²) compared to local islands (4.26 ± 3.43 g/m²) and the uninhabited 
reference (4.88 ± 1.84 g/m²) could be explained by beach grooming measurements, which were performed on all 
four studied resort islands up to four times per day (personal communication). Beach grooming is a common 
practice around tourist facilities and aims to remove washed-up organic material and debris from the beaches9. 
It causes a reduced food availability for the affected beach fauna, which can result in decreased population den-
sities15. In concordance, on average only three hermit crabs per plot were found on the groomed beaches of the 
tourist islands, compared to 16 hermit crabs on average on uninhabited islands. The beach fauna on the tourist 
islands might also experience a higher mortality from the cleaning process, either when getting accidentally 
removed together with the algal material (personal observation) or when being mechanically crushed in the 
cleaning process, as already demonstrated for ghost crabs16. Hence, we hypothesize that beach cleaning is one 
reason for the significantly decreased abundance on islands with tourist facilities. As beach cleaning was not per-
formed on local islands, hermit crab abundance in suitable habitats remained unaffected (average 18 hermit crabs 
per plot), although beaches are also used by the local population for recreational activities.

Apart from the overall availability of organic material, the beach habitat structure needs to be considered 
when investigating the population structure of the beach fauna17: compared to the structurally more complex 
beach habitat types, the fine sand beaches had a significantly reduced hermit crab abundance on all three island 
types. On tourist islands, this fine sand beach habitat accounted for 75 ± 12% of the total circumference. However, 
the higher proportion of the more sparsely inhabited fine sand beach cannot be held solely responsible for the 
reduced hermit crab abundance on tourist islands. Less than one hermit crab per plot was collected in the fine 
sand beach habitat of tourist islands, while on average eleven hermit crabs were present in the fine sand beach 
habitat on uninhabited islands. Therefore, disturbances associated with tourist facilities are probably responsible 
for the reduced abundance on the fine sand beaches of tourist islands. Beach nourishment, a technique where 
sand gets extracted from the adjacent benthic zone and deposited on the existing shoreline to extend the sandy 
beaches desired by tourists, is often performed to an extent where the whole natural beach shoreline becomes 
artificially altered to unvegetated sandy beaches18. This measurement can reduce the population size of the whole 
beach fauna10,19,20 – especially when the beach-associated vegetation is completely removed, many beach taxa 
can become completely absent10,18. Therefore, we hypothesize that the removal of beach-associated vegetation, 
together with the removal of organic material caused by beach grooming and nourishment, are the main drivers 
for the reduced hermit crab abundance on the islands with tourist facilities.

The shoreline of local islands was differently altered and affected than that of tourist islands: the shoreline 
of local islands was 53 ± 21% artificially obstructed in form of concrete walls, either for harbour sites or to sta-
bilize reclaimed land. Hence, on average only about half of the local islands shoreline formed a soft-bottom 
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beach habitat suitable for beach-associated organisms21. Although the abundance in the investigated plots on 
local islands were similar to those on uninhabited islands, local islands as a whole, with their extensive artificial 
shorelines, must be considered as degraded coastal ecosystems with reduced and fragmented beach habitats22. In 
conclusion, this suggests that the total hermit crab population size of a complete local island is on average 50% 
smaller than the overall population size of uninhabited islands, as the constructions on local islands caused the 
shoreline to become widely uninhabitable for these organisms23. However, the hermit crab abundance within suit-
able beach habitats did not differ between uninhabited and local islands. This demonstrates that beach-dwelling 
organisms can occur in densely populated areas in the same high abundance as they do on uninhabited islands, 
as long as the beach habitat itself remains intact and not altered by human activities.

Besides food availability and habitat structure, shell availability is the most limiting resource for hermit crabs, 
as they are dependent on the input of empty gastropod shells from the adjacent coastal waters24. Therefore, ana-
lysing patterns in the shell resource might offer further explanations for the observed differences between the 
different island types.

The number of non-utilizable empty shells, like cones or cowries, can be considered as a proxy for the overall 
shell input of an island as these shells accumulate on the beaches without getting removed or utilized by her-
mit crabs25. The number of non-utilizable empty shells did not differ between uninhabited and tourist islands, 
suggesting that the overall input of the shell resource was similar on both island types. Taken together with the 
significantly reduced CUES-ratio on tourist islands (on average, one utilizable empty shell per hermit crab was 
available), neither a diminished shell input, nor high competition over the shell resource, are responsible for the 
significantly decreased population densities on tourist islands. A sufficient number of empty shells can result in 
a strong growth of a hermit crab population in a natural system24. This suggests that, based on the availability of 
the shell resource, populations on the tourist islands would have the potential to further grow, but are probably 
limited due to beach grooming or removal of vegetation.

On local islands however, the number of non-utilizable empty shells was on average four times higher than 
on uninhabited islands. Harvesting of gastropods for consumption has been shown to provide a surplus of empty 
gastropod shells for hermit crab populations and might be responsible for the overall increase in shells on local 
islands26. Furthermore, an overall higher gastropod population density in the adjacent coastal waters might be an 
additional reason for the increased empty shell abundance. This might stem from a greater food supply resulting 
from wastewater release27. This effect only occurred on the local islands, as sewage and other municipal waste is 
released mostly untreated into the coastal water, while tourist resorts collect the effluents in septic tanks, thereby 
minimizing nutrient enrichment of the adjacent waters28.

The higher abundance of empty gastropod shells on local island beaches is beneficial for the hermit crab popu-
lations, as the limiting resource becomes largely available29. This is also shown by a decreased CUES-ratio on local 
islands, suggesting a reduced competition over the shell resource compared to the uninhabited reference. This 
could explain at least partially why the hermit crab abundance within the investigated plots remained unaffected 
on the local islands in the present study.

Although the abundance within the investigated plots was not affected negatively, the mean body size on local 
islands was decreased compared to tourist islands. The body size of a hermit crab correlated with the aperture area 
of its utilized shell. Therefore, analysing the aperture area of the utilizable empty shells might provide an explana-
tion for the reduced body size on local islands, as the size of the aperture limits growth30. However, the aperture 
areas of both the utilized shells and the utilizable empty shells did not differ significantly between the three island 
types. This suggests that a lack of larger empty shells is not the main driver for the reduced body size in hermit 
crabs on local islands, as enough large-sized shells were available, potentially allowing the hermit crabs on the 
local islands to further grow. Therefore, we hypothesize that human activities on the local islands are responsible 
for the reduced body size: beach-dwelling decapod crustaceans, like C. perlatus, are widely used as fishing bait by 
the local fishermen31. They may select for bigger specimen, as they are easier to find and more suitable as fishing 
bait32. A size-selective harvesting could result in smaller body sizes on local islands, compared to uninhabited 
and tourist islands, where harvesting is absent33. A comparable human-driven size selection is already known in 
commercial gastropod and fish species, where intensive harvesting and fishing resulted in a shift towards smaller 
body size due to overexploitation of the larger-sized specimen34,35. In comparison, hermit crabs were significantly 
larger on tourist islands. This can be linked to the reduced abundance on these islands, as a smaller population 
size decreases intraspecific competition, which ultimately can enable organisms to grow larger11.

Our study reveals that two elements of urbanized areas have different environmental impacts. Abundance was 
negatively impacted on tourist islands, whereas body size was negatively impacted on local islands. Although the 
abundance within the investigated plots was unaffected on local islands, it is negatively impacted on a larger scale, 
as about half of the shoreline consists of concrete walls for harbour sites and coastal protection and is therefore 
uninhabitable for all beach-dwelling organisms.

Here, it is demonstrated that the environment is not always impacted identically by the different elements 
of an urbanized area, but rather that the type of anthropogenic disturbance is decisive for the ecological con-
sequence. At the same time, organisms can maintain the same population size in densely populated areas as in 
uninhabited ecosystems, as long as certain habitat characteristics remain unaffected. Our novel approach using 
small islands thereby ensured that the observed environmental impacts are attributable to only one element of an 
urbanized area, namely tourism or permanent settlement.

The implications of this study are beneficial for environmental protection measures, as it demonstrates the 
importance of disentangling various types of disturbance that stem from urbanized areas and to consider each 
element specifically when developing management strategies for conservation36. In practical terms this could 
mean that the prime measurement for tourist facilities is to reduce beach grooming and leave seagrass and other 
allochthonous material as a food resource for the beach fauna. The prime measurement for permanently colo-
nized land on the other hand would be to minimize the obstruction of the shoreline by concrete structures and 
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implement some regulations that leave parts of the shoreline as natural sandy beaches. These two proposed man-
agement implications to counteract two different forms of land use underline how important it is to disentangle 
anthropogenic disturbances. A greater understanding of how specific human actions lead to certain environ-
mental responses, will enable us to better curtail these stressors and counteract the global loss of biodiversity and 
ecosystems37.

Methods
The research was conducted under the permission of the Ministry of Fisheries and Agriculture (Male’, Maldives), 
permit number: (OTHR)30-D/INDIV/2017/122 and in accordance with the given guidelines and regulations.

Sampling was carried out on 12 small coral islands, all located within the Lhaviyani (Faadhippolhu) Atoll, 
Republic of Maldives (see Fig. S2). The islands were assigned into three categories: (I) islands that were inhabited 
solely by the local Maldivian population (local islands), (II) islands with a tourist resort (tourist island) and (III) 
islands with no permanent direct human disturbance (uninhabited islands) (see Table S1 and Fig. S3). Note that 
Vavvaru island is strictly speaking not a completely uninhabited island but was a former marine biology field 
station (Korallionlab). However, the station has closed and during its active time only inhabited three to five staff 
members and occasionally guest researchers. Sampling of the island’s beaches was carried out from 03/02/2017 
to 10/03/2017, always within 2 hours before low tide until low tide. The whole island’s beachline and the adjacent 
shore were mapped with GPS (eTrex Vista® Cx, Garmin Ltd., Schaffhausen, Switzerland) by assigning it in the 
following habitat categories: artificial, vegetation-covered (i.e. inaccessible beach, covered fully by shrub vegeta-
tion), predominantly rock-covered beach, fine sand with larger rocks, fine sand with small fragments and fine 
sand beach for the beachline (see Fig. S1) and seagrass, seagrass & sand, sand, sand & rock, rock for the adjacent 
shore. The percentage of each habitat on the total circumference of each island was calculated.

Each beach was sampled in the abovementioned beach habitat types, distributed randomly over the natural 
shoreline of the island. The vegetation-covered beach habitat and artificial shorelines were excluded from the 
sampling due to their inaccessibility. To minimize a biased selection of the sampled part of the beach, the location 
of the plot was chosen from a distance of minimum 15 m, so that the present hermit crabs could not have been 
seen in advance. The sampling plots were chosen to guarantee that each present beach habitat type was sampled 
at least once. Additionally, the two dominant habitat types (i.e. highest percentage of the islands circumference) 
of every island were sampled in a second plot. When one habitat type was not present on an island or covered less 
than 10 m in length (i.e. the plot size), an additional plot within the dominant habitat type was sampled, resulting 
in a total of six plots per island.

Each plot was 10 m long and 2 m wide, measured landwards from the present drift line using a folding rule and 
a measuring tape. The position of every plot was documented using GPS. All hermit crabs and all empty shells 
within the plot were counted, collected and stored in a plastic bucket for further analysis.

To assess the amount of potential food, the organic debris in four 0.5 m × 0.5 m sub-plots (resulting in 1 m² 
per plot in total) within each plot was collected using forceps and stored in a plastic bag. The four sub-plots were 
positioned at equal distances in a diagonal manner within the plot (0 m, 3.3 m, 6.6 m and 10 m along the plot 
length and at distances of 1.5 m, 1.0 m, 0.5 m and 0 m from the drift line; Fig. S4). The wet weight of the organic 
material per plot was measured using a fine scale (TS-300 300 g × 0.01 g, G&G GmbH, Neuss, Germany).

Hermit crabs were removed from their shell by carefully heating the apex of the shell above an open flame. 
This is a standard procedure to remove hermit crabs from their shells and leaves the animal without inju-
ries38,39. Hermit crabs were photographed on millimetre paper (Nikon D5000 mounted with Nikon AF-S Nikkor 
18–105 mm, 1:3.5–5.6, Nikon Corp., Tokyo, Japan).

All shells (utilized and empty) were photographed on millimetre paper and identified using morphological 
identification keys40–43. All empty shells were assigned in two categories: (I) empty shells belonging to a gastropod 
species that was found to be utilized by a hermit crab and therefore considered being in general utilizable, and (II) 
empty shells belonging to a gastropod species, which was never found to be utilized by a hermit crab (mainly cone 
or cowrie shells) and therefore considered to be generally not utilizable by the investigated hermit crab species. 
Non-utilizable empty shells, like cowrie or cone shells, accumulate on the beaches without being ever utilized or 
transferred over longer distances by hermit crabs or any other beach inhabitant25,44 and can therefore be used as a 
proxy for the overall shell input on the beaches.

After this procedure, the hermit crabs were transferred into a plastic bucket together with their removed shell 
and left to recover before being transferred back to their original beach habitat.

The size of the hermit crabs and their corresponding shell was determined using ImageJ 1.49b (Rasband, W.S., 
ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2015) by 
measuring the carapace length of the hermit crab, and the length and width of the aperture area of each shell.

The statistical analysis was carried out using R 3.5.1, extended with the “vegan” package for multivariate eco-
logical analysis45. Prior to statistical analysis, abundance data was Tukey-transformed (lambda = 0.375) to meet 
the assumptions of normality and variance homogeneity. Where assumptions for parametric testing were vio-
lated, non-parametric Kruskal-Wallis tests were conducted. To test for differences in hermit crab abundance 
between the three island types (uninhabited, local, tourist islands) and account for the different habitat types on 
each island, univariate ANOVA with crossed fixed factors (island type x habitat type) was performed and pairwise 
comparisons were calculated using TukeyHSD post-hoc tests (N = 4). The influence of human land use on hermit 
crab size was analysed by calculating the mean body size for each island and statistically compare it between the 
three island types (N = 4) using ANOVA and TukeyHSD post-hoc tests. To investigate how the two different 
forms of human land use influence the underlying resources of hermit crabs, a non-metric multidimensional scal-
ing (NMDS) was performed. First, the parameters “empty shell abundance”, “organic material” and the propor-
tion of the four different beach habitat types were rescaled between 0 and 1 for Bray-Curtis dissimilarity matrix 
calculation. Then, NMDS ordination was calculated using k = 2 dimensions. To test for differences in resource 
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availability between the three island types based on the NMDS, a PERMANOVA was calculated (Bray-Curtis, 
4999 permutations). Additionally, Kruskal-Wallis tests with Dunn post-hoc tests and Bonferroni corrections were 
performed to compare the underlying resources (i.e. organic material [g/m²], empty shell abundance, and propor-
tion of each beach habitat type) separately between the three island types (N = 4). The abundance of hermit crabs 
within the “fine sand with larger rocks”- and the “predominantly rock-covered”-beach habitat were not compared 
individually between the three island types, as the “fine sand with larger rocks”-habitat occurred only on 50% of 
all investigated islands and the predominantly rock-covered beach was overall absent on tourist islands. To fur-
ther investigate reasons for the differences in hermit crab size between the three island types, the shell parameter 
that correlated best with hermit crab size was identified using Spearman rank correlation test. The aperture area 
of the shell showed a high correlation with hermit crab body size (R² = 0.861, P < 0.001) and was subsequently 
compared for utilized and utilizable empty shells between the three island types using Kruskal-Wallis tests.

The datasets generated during this study are available from the corresponding author on reasonable request.
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