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Zusammenfassung

Diese Arbeit beschä�igt sich mit magnetischen Flüssigkeiten und Gelen. Bei

diesen auch Ferro�uide bzw. Ferrogele genannten Materialen handelt es sich
um synthetisch hergestellte Suspensionen magnetischer Nanoteilchen in einer

Träger�üssigkeit (Rosensweig 1985), die im Fall des Gels zusätzlich noch ge-

liert wird (Zrínyi et al. 1997a). In ihren magnetischen Eigenscha�en ähneln
Ferro�uide und -gele den gewöhnlichen Paramagneten, jedoch übertre�en sie

diese um einen Faktor 103 . . . 105 in der Suszeptibilität und werden daher auch

als superparamagnetisch bezeichnet.
Seit der ersten erfolgreichen Synthese von Ferro�uiden durch Papell (1965)

und der Entdeckung der Normalfeldinstabilität durch Cowley & Rosensweig

(1967) wurden eine Reihe grundlegender Experimente und einige technische

Anwendungen vorgeschlagen, von denen einige bereits kommerziell im Einsatz

sind; ein Überblick dazu �ndet sich in dem von Odenbach (2009) herausge-

gebenen Buch. Die meisten der technischen Anwendungen basieren auf der

Einzelstachel Rosensweigdynamik

Ferrogelkugel Rosensweig mit Ferrogel
Viskoelastisches Gel
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Abbildung Z.1: Graphische Übersicht über die Beziehungen zwischen den Experimenten

in dieser Arbeit. Die Kurznamen undNummern der Kapitel sind in den Ecken angeordnet,

die kursiv gedruckten Eigenscha�en auf den Verbindungslinien zeigen die Beziehungen

zwischen den Kapiteln an.
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Fähigkeit der magnetischen Fluide und Gele, ihre Form und Fließeigenscha�en

unter Ein�uss einesMagnetfeldes zu verändern (Zrínyi et al. 1997b), beziehungs-
weise im inhomogenen Magnetfeld eine Kra� in Richtung des Gradienten zu

erfahren (Lange 2002b). Eine Verformung kann jedoch auch im homogenen
Feld hervorgerufen werden. Hierzu werden in dieser Arbeit vier Experimente

vorgestellt, die die Formänderungen beim Anlegen eines homogenen Magnet-

feldes untersuchen.

Dafür werden zwei grundlegende Geometrien herangezogen: Eine Kugel

aus magnetischem Material und eine ausgedehnte �ache Schicht. Im ersten

Fall führt das Anlegen eines Feldes zur Deformation der Kugel in ein prolates

Ellipsoid, wobei die längere Achse parallel zu den Feldlinien ist. Dieser E�ekt

wird von Raikher & Stolbov (2003) als »Magnetodeformation« bezeichnet und

in dieser Arbeit erstmalig mit Ferrogel experimentell realisiert. Im Fall der

ausgedehnten Schicht werden durch ein Magnetfeld, welches senkrecht zu der

Schicht verläu�, regelmäßig angeordnete Stacheln an der Ober�äche hervor-

gerufen, die sogenannte Rosensweig- oder Normalfeldinstabilität (Cowley &

Rosensweig 1967). Im Unterschied zu der Kugelgeometrie handelt es sich bei

diesem Phänomen um eine symmetriebrechende Instabilität der Ober�äche,

welche erst oberhalb einer Schwelle Bc der magnetischen Induktion au�ritt,

während die Kugel bereits bei beliebig kleinem externenMagnetfeld deformiert

wird.

Die Beziehungen zwischen den einzelnen Experimenten in dieser Arbeit stellt

Abbildung Z.1 in graphischer Formdar. Jedes Kapitel beleuchtet die Verformung

dermagnetischenKontinua imhomogenen Feld aus einem anderenBlickwinkel,

wir� aber auch neue Fragen auf, die insbesondere als Au�orderung an die

Modellbildung gerichtet sind. Im Folgenden sollen die einzelnen Experimente

kurz zusammengefasst werden.

Teil I beschreibt Experimente mit Ferro�uiden. Kapitel 2 behandelt die Nor-

malfeldinstabilität, wobei die Größe des Gefäßes bewusst reduziert wird, bis nur

noch ein einzelner Ferro�uidstachel im Zentrum des zylinderförmigen Gefäßes

entsteht. Die möglichen Ober�ächenformen sind also zylindersymmetrisch

und damit leicht zugänglich für numerische Simulationen und experimentelle

Messmethoden. Zwei unterschiedlicheMessverfahren zur Bestimmung der Am-

plitude des zentralen Stachels werden verwendet und miteinander verglichen:

Die Röntgenabsorptionsmethode nach Richter & Bläsing (2001), bei der die

Schichtdicke des Fluids aus radioskopischen Bildern bestimmt wird, und die
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Lasermethode nach Megalios et al. (2005), bei der ein Laserstrahl auf die freie
Ober�äche fokussiert wird. Es ergibt sich eine sehr gute Übereinstimmung bis

auf wenige Prozent zwischen den Experimenten und den Rechnungen, die in

enger Zusammenarbeit von einer Gruppe um A. Boudouvis an der technischen

Universität in Athen (NTUA) durchgeführt wurden. Es bleibt die Frage o�en,

ob sich ein analytischer Ausdruck für die Ober�ächendeformation in dieser

symmetrischen Geometrie �nden lässt.

In Kapitel 3 wird ein hochviskoses Ferro�uid verwendet, um die nichtlinea-

re Dynamik der Musterbildung der Rosensweiginstabilität zu untersuchen.

Aus den Messdaten wird die lineare Wachstumsrate für kleine Amplituden

extrahiert, welche mit einer �eorie von Knieling et al. (2007) verglichen wird.
Das Messverfahren erlaubt darüber hinaus die Bestimmung einer vollständig

nichtlinearen Amplitudengleichung, die mit theoretischen Modellen qualitativ

verglichen wird. Die Modelle können bislang allerdings nur in einem engen

Bereich um den kritischen Punkt Aussagen tre�en und daher nicht quantitativ

mit den Messdaten verglichen werden. Die Aufgabe, die an die Modellbildung

gestellt wird, besteht also darin, Modelle mit einem größeren Gültigkeitsbe-

reich aufzustellen. Außerdem wird die spontane Entstehung von lokalisierten

Mustern beobachtet, die in der Nähe der instabilen Lösung au�reten. Ähnliche

Muster wurden von Richter & Barashenkov (2005) durch eine externe Störung

erzeugt. In nachfolgenden Experimenten kann die spontante Entstehung dieser

Zustände näher untersucht werden.

Teil II der Arbeit beschreibt Experimente mit thermoreversiblen Ferroge-

len (Lattermann&Krekhova 2006), die imRahmen der Forschergruppe 608 der

DPG von einer Arbeitsgruppe aus der Chemie zur Verfügung gestellt wurden.

Kapitel 4 widmet sich der Magnetodeformation. Eine Kugel aus Ferrogel wird

einem homogenenMagnetfeld ausgesetzt. Das plötzliche Einschalten des Feldes

führt neben der Streckung in Feldrichtung zu einer Schwingung der Kugel um

den neuen Gleichgewichtspunkt. Die Deformation der Kugel nimmt zusätzlich

auf einer längeren Zeitskala kontinuerlich zu aufgrund der viskoelastischen

Eigenscha�en des verwendeten Ferrogels. Beide Phänomene können durch

einen modi�zierten harmonischen Oszillator beschrieben werden, dessen Fe-

derkonstante sich mit der Zeit verändert. Aus der Deformation in Feldrichtung

und senkrecht dazu lässt sich die Poissonzahl des sehr weichen Gels ermitteln,

welche anderweitig schwierig zu messen ist. Es zeigt sich, dass das Gel nahezu

inkompressibel ist. Die absoluten Werte für die Deformation werden mit zwei



6

�eorien von Landau & Lifschitz (1960) und Raikher & Stolbov (2005a) vergli-
chen, die allerdings nur den statischen Fall ohne viskosen Fluss berücksichtigen.

Die gemessenen Deformationen übersteigen die berechneten Werte um 70%.

Es bleibt zu klären, ob eine Erweiterung der �eorie auf den dynamischen Fall

mit einem viskoelastischen Gel diese Diskrepanz au�ösen kann.

Kapitel 5 realisiert erstmalig die Normalfeldinstabilität mit einem Ferrogel,

die von Bohlius et al. (2006a) vorhergesagt wurde. Eine �ache Schicht eines
thermoreversiblen Ferrogels wird bei unterschiedlichen Temperaturen dem

Magnetfeld ausgesetzt. Damit das Gel weich genug ist und die elastischen Krä�e

die Ober�ächeninstabilität nicht vollständig unterdrücken, muss bislang eine

Temperatur im viskoelastischen Übergangsbereich verwendet werden. Das Ma-

gnetfeldwird periodischmoduliert und dieAmplitude der Instabilität gemessen,

die mit derselben Frequenz moduliert ist. Der Vergleich mit mechanischen

Messungen zeigt, dass die Antwort linear mit der komplexen Viskosität skaliert.

Für einen quantitativen Vergleich mit der�eorie von Bohlius et al. (2006a)
wäre ähnlich zu Kapitel 4 eine Erweiterung der �eorie auf den dynamisch

getriebenen Fall für ein viskoelastisches Gel nötig.

Insgesamt lässt sich feststellen, dass die Experimente zur Normalfeldinstabili-

tät in dieser Arbeit verschiedene Grenzfälle untersuchen, nämlich eine seitlich

begrenzte Geometrie und den Ein�uss großer Viskositäten und elastischer Kräf-

te. Das Kapitel zur Magnetodeformation einer Ferrogelkugel liefert die ersten

Messdaten zu diesem E�ekt. Jedes der Experimente gibt außerdem weiterfüh-

rende Anregungen für die Modellbildung.



Abstract

In this thesis, experiments with magnetic liquids and gels are presented. �ese

ferro�uids and ferrogels are synthetically created suspensions of magnetic na-
noparticles in a carrier liquid (Rosensweig 1985). By adding a gelator, such

a ferro�uid can be turned into a ferrogel (Zrínyi et al. 1997a). �e magnetic
properties of these substances are similar to a usual paramagnet with the im-

portant di�erence, that the susceptibility of the former is higher by a factor of

103 . . . 105.

�e �rst successful synthesis of ferro�uids by (Papell 1965) and the discovery

of the normal �eld instability by Cowley & Rosensweig (1967) triggered a wealth

of scienti�c research. Several technical applications have been proposed, some

of which are commercially available in the meantime. For a review of these

experiments and applications see e.g. the book by Odenbach (2009). Most of

the technical applications are based on the Kelvin force, which pushes a para-

magnetic substance in the direction of a magnetic �eld gradient Papell (1965),

and the change of the mechanical properties and the shape in inhomogeneous

�elds Zrínyi et al. (1997b). A transformation of the shape can also be induced
by the application of a homogeneous �eld. In this thesis, four experiments on

the surface deformation in homogeneous magnetic �elds are presented.

Two geometric con�gurations are considered: a horizontally extended �at

layer with a free surface as well as a spherical sample. In both cases, the appli-

cation of a homogeneous magnetic �eld leads to changes of the shape of the

free boundary. In the case of the spherical geometry, the sample is deformed

into a prolate ellipsoid under the action of the �eld, a phenomenon named

“magnetodeformational e�ect” by Raikher & Stolbov (2003). �e magnetic �eld

presumably remains homogeneous inside the ellipsoidal sample (Jackson 1998),

and the transition of the shape is smooth. In case of the extended �at layer, an

abrupt shape transition into a patterned state takes place, the normal �eld or

Rosensweig instability (Cowley & Rosensweig 1967). �e magnetic �eld inside

the sample is distorted by the transition with the same wavelength as the pattern
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Figure A.1: Relations between the experiments. �e numbers and the terms in boldface

represent the four main chapters of this thesis. �e common properties between them are

marked in italics along the connecting lines (solid and dashed).

on the surface. In contrast to the smooth deformation of the sphere, this is an

instability, which breaks the translational symmetry, and the transition occurs

at a certain threshold value of the magnetic induction Bc .

A graphical overview of the experiments in this thesis and the relations be-

tween them is given in �gure A.1. Each chapter sheds light on the surface

deformations of magnetic continua from a di�erent point of view and even-

tually raises new questions, which are formulated as a speci�c challenge to

the theoretical analysis. Each of the experiments is brie�y summarized in the

following paragraphs.

Part I of the thesis considers ferro�uids. In chapter 2, the ideal geometry

of an in�nitely extended �at layer is intentionally reduced to a cylinder such

that only a single spike in the centre exists, and the solution space becomes

rotationally symmetric. �is makes the problem very feasible for experimental

methods and numerical simulations. Two measurement techniques are applied

and compared to each other, namely an X-ray technique by Richter & Bläsing

(2001), where the surface deformation is extracted from radioscopic images,

and a laser technique by Megalios et al. (2005), which focuses a laser spot onto
the surface. �e experiments and the simulations, the latter performed in close

cooperation with a group in Athens, show a convincing agreement within a

few percent. It remains an open question, whether the result can be deduced in

analytic form, however.

In chapter 3, a highly viscous ferro�uid is utilized to study the nonlinear

dynamics of the normal �eld instability at very low Reynolds numbers. �e

linear growth rate for the growth and decay of the pattern at small amplitudes
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is extracted from the measurements and compared with a theoretical model by

Knieling et al. (2007). In addition, the measurement technique provides the
reconstruction of a fully nonlinear amplitude equation, which is qualitatively

compared to model equations. �ese nonlinear amplitude equations can only

describe the dynamics of the growth in the immediate vicinity of the critical

point so far. For a quantitative comparison, there is a need for a model with an

extended range of validity. Additionally, localized patterns are observed which

arise spontaneously in the neighbourhood of the unstable solution branch.

Similar patterns have previously been observed by Richter & Barashenkov

(2005) with the help of an external disturbance. An in-depth experimental

study and theoretical analysis of the spontaneous formation of these patterns

can be performed in future work.

Part II of the thesis deals with thermoreversible ferrogels (Lattermann &

Krekhova 2006), which have been made available by a chemistry group in a

common project of the German Science Foundation (Forschergruppe 608).

Chapter 4 studies the magnetodeformational e�ect. An experimental realiza-

tion of this phenomenon was completely missing, even though theoretical

predictions exist since 1960. Chapter 4 �lls this gap and demonstrates that the

magnetodeformational e�ect indeed exists. A ferrogel sphere is exposed to

homogeneous magnetic �eld. When the �eld is applied suddenly, the sphere

not only elongates in the direction of the �eld, but also vibrates about the new

equilibrium. On a longer time scale, the deformation continuously increases

due to the viscoelastic properties of the gel. Both phenomena can well be de-

scribed by a harmonic oscillator model, where the spring constant changes

with time. From the deformation parallel and perpendicular to the applied

�eld, Poisson’s ratio can be calculated, which turns out to be close to the limit of

incompressibility. �e absolute values of the deformation are compared to the

models by Landau & Lifschitz (1960) and Raikher & Stolbov (2005a). �ere is a
deviation of about 70%, that is due to the viscoelastic properties of the ferrogel,

which are not taken into account in the static models. �erefore the experiment

challenges the theoretical analysis to provide a dynamic theory, which can

incorporate viscoelastic material properties, especially time dependent elastic

moduli.

In chapter 5, the normal �eld instability is realized for the �rst time with a

ferrogel. �is experiment has been proposed by Bohlius et al. (2006a). A �at
layer of a thermoreversible ferrogel is exposed to a homogeneous magnetic �eld
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at di�erent temperatures, where the gel is viscoelastic. �is is a consequence

of the need for a very so� material, such that the growth of the pattern is not

completely suppressed by the elastic forces. �e magnetic �eld is periodically

modulated in time, and the amplitude of the instability is measured, which is

modulated with the same frequency. �e comparison with rheological measure-

ments reveals a scaling of the modulated amplitude with the complex viscosity

of the ferrogel. �e theory by Bohlius et al. (2006b), on the other hand, does
not account for viscoelastic e�ects and a modulated �eld. An extension of the

theory, which incorporates viscoelasticity and an external driving, is therefore

needed to quantitatively compare the experimental results with, similar to the

case of the ferrogel sphere.

To conclude, the surface deformation of magnetic continua in homogeneous

�elds has been examined on the basis of four phenomena. While the experi-

ments on the normal �eld instability examine di�erent limiting cases, namely a

con�ned geometry and the in�uence of high viscosity and viscoelasticity, the

chapter about the magnetodeformational e�ect with a ferrogel sphere provides

the �rst experimental data. Each experiment shows aspects which are not yet

completely understood and poses a challenge to the theoretical analysis. Further

experimental work can be directed towards unexplored phenomena such as

the spontaneous formation of localized patterns.
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1 Introduction

Magnetism is one of the oldest physical phenomena observed by mankind.

From the �rst observation, that lodestone has the mysterious power to attract

iron, magnetism has kept on fascinating people until today (Hickey & Schibeci

1999). �e Greek word ὁ µαγνήτης λίϑος , from which magnet is derived, lit-
erally translates into “the stone fromMagnesia”, a place in Asia Minor where

lodestone has beenmined (Merriam-Webster 1999). It was not until the 19th cen-

tury, that Ørsted (1821) discovered the connection between magnetism and

an electric current. He observed, by accident, that a magnetic needle is in�u-

enced by an electric current �owing in a nearby wire. He also coined the term

electromagnetism upon his discovery and paved the way to a uni�ed theory of

electricity and magnetism, eventually completed by Maxwell (1861).

Before the important contributions of the 19th century, physicists believed

that magnetism of matter is restricted to a few solid materials, like lodestone

and iron. �e very weak e�ects of dia- and paramagnetism in virtually all

matter, previously overlooked because of their small impact in macroscopic

experiments, have been observed and described in detail by Faraday (1846). He

also examined the magnetic properties of several �uids like water, alcohol, ether,

Figure 1.1: A lodestone attract-

ing some paper clips. Taken from

Wikipedia (2009).
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Figure 1.2: A magnetic nanoparticle. It

consists of a ferromagnetic single-domain

core, which is covered by a surfactant.

blood, and air, and found them to be diamagnetic. However the magnetism

of these substances is considerably smaller than that of ferromagnetic bodies.

Faraday (1846) himself stresses the fact, that “the e�ects [of diamagnetism]

require magnetic apparatus of great power and under perfect command.” Until

today, no pure �uid is known that exhibits magnetism with a strength compara-

ble to a ferromagnetic solid. �e strongest known paramagnetic �uid, liquid

oxygen, has a susceptibility of χ = 4.1 ⋅ 10−3 (Fleming & Dewar 1898), six orders
of magnitude smaller than the typical susceptibility of iron.

It is, however, possible to synthesize magnetic �uids with a susceptibility

of χ ≈ 1 to 10 by suspending ferromagnetic nanoparticles (cf. �gure 1.2) in a

non-magnetic carrier liquid (Papell 1965). �ese particles typically consist of

a ferromagnetic core made of magnetite (Fe3O4) or cobalt, coated with a sur-

factant. Such a magnetic �uid, also called ferro�uid, forms a stable suspension.

�e core of the particles has a diameter in the range of a few nanometres up

to ≈ 20nm and consists of a single magnetic domain. It is therefore perma-

nently magnetized. �e coating is necessary to inhibit the agglomeration of

the particles due to Van-der-Waals or dipolar interaction, and the size of the

particles must be small enough that their Brownian motion prevents them from

sedimentation. �e paramagnetic transition of the core establishes a lower limit

of the size – beyond a critical size of the particles, the magnetic cores become

paramagnetic and loose their permanent magnetic moment.

From a macroscopic point of view, a ferro�uid can be seen as a magnetizable,

homogeneous dark brown to black liquid (Rosensweig 1985). One caveat: al-

though these magnetic �uids are called ferro�uids, their total magnetization
vanishes in the absence of an external magnetic �eld, even though the particles

itself do have ferromagnetic ordering. �is is due to the thermal �uctuations of

the orientation of the magnetic moments, which lead to an overall zero magne-



15

tization. Consequently, ferro�uids appear as strongly paramagnetic liquids, and

thus are o�en called superparamagnetic. Many of the properties of ferro�uids
seen in macroscopic experiments can be understood satisfactorily from this

viewpoint. Only sometimes, more insight is provided by thinking in terms of

individual particles.

In contrast to a magnetizable solid, a ferro�uid has an additional degree of

freedom, namely its shape. While it is generally possible, that a ferromagnetic

solid changes its shape in response to an appliedmagnetic �eld – a phenomenon

called magnetostriction (Joule 1842) –, a liquid has no preferred con�guration

and thus can change its shape much more easily. �e deformation achieved

by magnetostriction of ferromagnetic crystals is typically less than 1%. Joule

(1842), who �rst described magnetostriction a�er being given a hint “a few

weeks ago [by] an ingenious gentleman of this town”, measures a relative defor-

mation of 1⁄720000for iron and states, somewhat disappointed, “with regard to

the application of this new force to the movement of machinery, I have nothing

favourable to advance.” Nevertheless, using modern magnetostrictive materials,

a deformation of a few percent is possible, which is termed “giant” (Kakeshita

et al. 2000). In contrast, a ferro�uid volume can easily be deformed by several
100% under the in�uence of a magnetic induction of only a few mT (Bacri &

Salin 1982). �is opens up opportunities for new physical phenomena. Lan-

dau & Lifschitz (1960) dedicate a whole volume of their series of textbooks on

theoretical physics to the description of continuous media in conjunction with

electric andmagnetic �elds. But before the invention of magnetic nanoparticles,

experimentalists have been restricted to very small susceptibilities, when a de-

formable material was needed in the magnetic case. �e successful synthesis of

ferro�uids therefore triggered a lot of scienti�c research (Rosensweig 1987), and

also a wide range of technical andmedical applications has been proposed, a few

of which are already in daily use. Among the commercially available products

are ferro�uidic seals, hi-� loudspeakers and material separation (Berkovski &

Bashtovoy 1996; Blums et al. 1997). Upcoming technical and medical applica-
tions are e.g. described in the review articles by Bayat et al. (2009) and Trahms
(2009).

In addition to ferro�uids, we also consider ferrogels. A ferrogel is a polymer
gel with added magnetic nanoparticles, so that the magnetic properties are sim-

ilar to ferro�uids, while the mechanic properties resemble those of a gel (Zrínyi

et al. 1997a). In contrast to the aforementioned ferromagnetic solids, these gels
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Figure 1.3: A photograph of the Rosensweig instability.

are rather so� – the shear modulus is of the order 10 kPa, which is six to seven

orders of magnitude so�er than ferromagnetic metals. �erefore, the response

of a ferrogel to magnetic �elds, i.e. the change of its shape, can be expected to be

comparable in magnitude as for a true ferro�uid, while there exists a preferred

con�guration when no �eld is applied. Many new applications are proposed

for such an elastic, yet so� and responsive material like magnetic so� actuators,

magnetic valves, magnetoelastic automotive robots (Zimmermann et al. 2006,
2007), arti�cial muscles (Babincová et al. 2001), and magnetically controlled
drug delivery (Lao & Ramanujan 2004).

Most of these applications involve the use of inhomogeneous magnetic �elds.

In a gradient magnetic �eld, the Kelvin force µ0(M∇)H) attracts a paramag-

netic material towards the stronger magnetic �eld. In this way Zrínyi et al.
(1996), e.g., achieved very large deformations of a ferrogel sample. In this thesis,

we will focus on the shape transitions of magnetic continua in homogeneous
magnetic �elds.�emost prominent of these phenomena is certainly the nor-
mal �eld, or Rosensweig, instability found by Cowley & Rosensweig (1967).

When a �at layer of magnetic liquid is exposed to a magnetic �eld which is

oriented normal to the surface, i.e. parallel to the gravity, the previously �at



17

Ferro�uid

Air

Air

(a) (b)

Figure 1.4: Magnetic �eld in a ferro�uid layer surrounded by air, when the layer is �at (a)

and distorted by a hump (b). �e direction and strength of the magnetic �eld H (in arbi-
trary units) is shown by the �eld lines and the colour code, respectively.

surface can deform into an array of spikes (cf. �gure 1.3). �e distance of these

spikes is typically around 1 cm and the height varies from a few mm to a few

cm.

A basic intuitive explanation of this striking phenomenon can be given by

simple energy considerations. �e total free energy of a liquid at rest con-

sists of three contributions, namely the gravitational, or hydrostatic energy,

the surface energy and, in case of a magnetizable liquid, the magnetic �eld

energy (Rosensweig 1985)

Etotal = Ehyd + Esurf + Emag.

Figure 1.4 (a) displays a �at layer of magnetic liquid in a homogeneous magnetic

�eld. When the �at surface is disturbed to form a hump (�gure 1.4 b), the

gravitational energy increases, because �uid needs to be raised to the tip of the

spike. Likewise, the increase of the total surface enlarges the surface energy.
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On the other hand, the total magnetic energy decreases. To see this, recall

that the demagnetizing �eld contributes positively to the overall energy – a

paramagnetic needle orients parallel to the �eld lines in the e�ort to decrease

the demagnetizing �eld. In the case of a �at layer with the maximum possible

demagnetization factor 1, the formation of a hump also decreases the magnetic

�eld energy as it reorients the paramagnetic liquid parallel to the �eld lines. �e

energy reduction by this change of the geometry grows with the �eld strength,

while the energy increases due to gravitational and surface terms are constant

with respect to the magnetic �eld. Consequently, the total free energy Etotal
can be decreased by the formation of spikes above a certain threshold value

Bc of the magnetic induction. A more rigorous derivation from this energy

balance leads directly to the complete bifurcation scenario for the Rosensweig

instability and has been �rst performed by Gailitis (1977) and later on re�ned

by Friedrichs & Engel (2001) in the form of a weakly nonlinear approximation.

Bohlius et al. (2006b) �nally extended it to the case of a ferrogel.
�is thesis is divided into two parts. In part I we consider usual ferro�uids.

Chapter 2 describes an experiment with a reduced size of the vessel containing

the ferro�uid, such that only a single spike exists in the middle of the container.

We compare measurements done with two entirely di�erent experimental meth-

ods with the outcome of a numerical simulation (Gollwitzer et al. 2009b).
In chapter 3 we examine the dynamics of the pattern on the surface, when

the magnetic �eld is changed suddenly. To do this, we use a highly viscous

ferro�uid that is additionally cooled to increase its viscosity even further. �is

slows down the dynamics of the system to a time scale that is easily accessible

by the experiment.

Part II deals with thermoreversible magnetic gels (Lattermann & Krekhova

2006). In chapter 4 we examine a ferrogel sphere in a homogeneous magnetic

�eld. According to simple energy considerations, the sphere must elongate

in the direction of the magnetic �eld. �is problem dates back to Landau

& Lifschitz (1960), and has been recomputed recently by Raikher & Stolbov

(2005a). A�er the results from chapter 4 have been published (Gollwitzer et al.
2008), Morozov et al. (2009) o�ered yet another theoretical variation on this
topic.

In chapter 5 we describe the realization of the Rosensweig instability with

magnetic gels. A theoretical model by Bohlius et al. (2006a) modi�es the
description of the Rosensweig instability incorporating elasticity to describe
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surface instabilities in magnetic gels. We use a thermoreversible ferrogel to

examine the normal �eld instability and compare the result to the model by

Bohlius et al. (2006a). �ese results are published in Gollwitzer et al. (2009a).
A more detailed introduction to these topics is given separately in each

chapter.





Part I

Ferrofluids





2 A single ferrofluid peak in a
cylindrical container

A small cylindrical container is �lled with ferro�uid and exposed to a normal

magnetic �eld. �e diameter of the container is chosen such, that no extended

pattern appears on the surface, but only a single spike in the centre. �is

con�ned geometry makes the problem very feasible for both experimental

methods and numerical simulations. �e height of the spike as a function

of the applied magnetic induction and its shape have been determined using

two di�erent experimental methods, namely an X-ray technique by Richter

& Bläsing (2001) and a laser method following Megalios et al. (2005). �e
results compare very well to computer simulations, which have been carried out

in the group of A. Boudouvis at the National Technical University of Athens.

�is chapter poses two questions – how does the con�ned geometry change

the pattern on the surface, and how well do the experimental and numerical

methods match, when there are realistic assumptions about the geometry and

the material parameters. �e results in this chapter have been published as a

regular article in the New Journal of Physics (Gollwitzer et al. 2009b).

2.1 Introduction

Rotational symmetric systems with broken up-down symmetry become �rst un-

stable due to a transcritical bifurcation to hexagons, which is hysteretic (Cross

& Hohenberg 1993). Examples are non-Boussinesq Rayleigh-Bènard convec-

tion (Busse 1967) and chemical reactions (Turing 1952). It also holds for the

Rosensweig, or normal �eld, instability, when a layer of magnetic �uid is ex-

posed to a normal magnetic �eld. �e �rst observation of this instability by

Cowley & Rosensweig (1967) and its explanation with a linear stability analysis

in the same article 40 years ago triggered numerous e�orts to describe also

the nonlinear aspects of the phenomenon theoretically. Gailitis (1977), later
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Friedrichs & Engel (2001) and Friedrichs (2002) andmost recently Bohlius et al.
(2006b) used the principle of free energy minimization to predict the pattern
ordering, wavelength and �nal amplitude of the peaks on an in�nitely extended

surface. �e numerical computations by Boudouvis (1987) and Boudouvis

et al. (1987) predict quantitatively the hysteresis in spike height in unbounded
ferro�uid pools. Matthies & Tobiska (2005) calculate also the dynamics of an

in�nite periodic lattice of peaks.

�e experiments, however, are performed with limited amounts of �uid. A

�nite layer depth in the vertical dimension has been incorporated into the theory

by Friedrichs & Engel (2001). According to Lange et al. (2000), the in�nitely
deep limit is well approximated if the depth exceeds at least the wavelength of

the pattern. However, in the horizontal dimension the �nite container size has

not been considered. �erefore, experimental realizations approximated this

limit of an in�nitely extended layer by several di�erent approaches. Abou et al.
(2001) used a very large aspect ratio, whereas Gollwitzer et al. (2007) employed
an inclined container edge. Richter & Barashenkov (2005) used a magnetic

ramp to minimize the in�uence of the border for the Rosensweig instability,

whereas Embs et al. (2007) independently applied it to the Faraday instability
in ferro�uid.

�equestion arises, what happens if the container size is intentionally reduced

until only a single spike is le�. In this case, all symmetries are kept, nonetheless

the character of the bifurcation may change. Indeed, in experiments before the

seminal work of Bacri & Salin (1984), it was di�cult to uncover a hysteresis due

to the small container size.

Although there have been numerous experiments in small containers merely

because they are simple and cheap, a systematic study of the in�uence of the

constrained geometry on the bifurcation is missing. One reason is, that model

descriptions which deal with the �nite container size are rare. So far, we know

only the work by Friedrichs & Engel (2000) where the free surface is modelled

by a four parameter function to �t themeasurements byMahr &Rehberg (1998).

In this case, a highly susceptible �uid still showed a hysteretic transition.

In the present chapter, we demonstrate, that a transcritical bifurcation to

hexagons, as found by e.g. Gollwitzer et al. (2007), becomes an imperfect super-
critical bifurcation to a single spike, if the container size is reduced su�ciently.

�is is the outcome of a numerical model which is able to calculate the stable

and unstable solutions for given container size and �uid parameters. It also
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Quantity Value Error

Surface tensiona σ 30.57 ±0.1mNm−1

Density ρ 1236 ±1 kgm−3

Contact angle with the container wall αc 10 ±0.3 °

Viscosity η 120 ±5mPa s

Saturation magnetization MS 28.7 ±0.4 kAm−1

Initial susceptibility χ0 1.2023 ±0.005

Exponent of the Γ-distribution α 6.3892 ±0.5

Typical diameter d0 0.962 ±0.03 nm

Volume fraction ϕ 6.43 ±0.1%

Table 2.1: Material properties of the ferro�uid APG 512a

(Lot F083094CX) from Ferrotec Co.

a
�e absolute error of the measurement is unknown. �e error given here

is taken from the analysis by Harkins & Jordan (1930)

takes into account the side-wall e�ects, namely the wetting and the fringing �eld.

We compare the numerical results with our measurements of the surface topog-

raphy. For the �rst time, we apply two di�erent techniques which are capable

of recording the amplitude (Megalios et al. 2005) and also the full topography
of the �uid surface (Richter & Bläsing 2001), to the same experiment.

In the following two sections, we give an overview of the experimental meth-

ods. Subsequently, we describe the numerical computations. Finally, we com-

pare all three results.

2.2 Measurements of the material properties

We used the ferro�uid APG512a (Lot F083094CX) from Ferrotec for all ex-

periments. It is based on an ester with a very low vapour pressure, suitable

for vacuum pumps. It has an excellent long-term stability. Over one year, the

critical induction has not changed by more than 3%. In contrast to less stable

magnetic liquids, the formation of agglomerates in the tips of the Rosensweig

spikes was not observed. A�er applying magnetic �elds for an hour, the �eld

was switched o�. Neither the visual inspection nor the X-ray images unveiled

any agglomerates at the site of the spikes.
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Figure 2.1: �e magne-

tization curve of the fer-

ro�uid. �e circles de-

note the experimental

values, the solid line is

a �t with the model

by Ivanov & Kuznetsova

(2001). �e dashed line

is a �t with the Langevin

function, that is valid

only up toH ⪅ 10 kA/m.

�eRosensweig instability is a counterplay between gravitational and surface

terms on the one hand and magnetic forces on the other hand (Cowley &

Rosensweig 1967). �erefore, a set of basic material properties of the �uid is

necessary for a comparison with the theory, namely the surface tension σ , the
density ρ and themagnetization curveM(H). �ese quantities are summarized

in table 2.1.

�e surface tension has been measured using a commercial ring tensiometer

(LAUDA TE1). �is device wets a ring made from platinum wire, pulls it o� the

�uid surface and determines themaximum force acting on the ring, fromwhich

the surface tension can be computed following du Noüy (1919). According to

an analysis by Harkins & Jordan (1930), the error for this method is smaller

than 0.25%, given that the density of the �uid and the geometry of the ring are

known with su�cient accuracy.

�e density ρ has been measured using a commercial vibrating tube densime-
ter (DMA 4100 by Anton Paar). �is device enables us to determine the density

with an error of 0.01%.

�e contact angle αc was determined with the contact angle system OCA 20

(Dataphysics) by optical means. �ree measurements were performed at the

inner side wall of the container, which was tilted by 90 °. �e di�erence between

advancing and receding angle could not be measured in this way.

�e magnetization curve M(H) of the ferro�uid has the biggest in�uence

on the surface pattern. It has been meticulously measured using a �uxmet-
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ric magnetometer consisting of a Helmholtz pair of sensing coils with 6800

windings and a commercial integrator (Lakeshore Fluxmeter 480). �e sample

has been held in a spherical cavity with a diameter of 12.4mm. �is spherical

shape ensures a homogeneous magnetic �eld inside the sample and an exact

homogeneous demagnetization factor of 1⁄3 , which makes it possible to get

accurate results over the whole range of H. Figure 2.1 shows the magnetization
curve of our ferro�uid. �e solid and the dashed line provide two analytic

approximations toM(H). �e dashed line is a �t with the Langevin approxi-

mation for monodisperse colloidal suspensions and provides the constitutive

equation (Rosensweig 1985)

∣M∣ = MSLL (3χL
∣H∣

MSL
) , (2.1)

where L(x) is the Langevin function

L(x) =
cosh x
sinh x

−
1

x
. (2.2)

Only the data points within a range of H ∈ [0 . . . 10 kA/m] have been taken

into account for the estimation of the adjustable parametersMSL = 14.6 kA/m,
which corresponds to the extrapolated saturation magnetization, and the initial

susceptibility χL = 1.168. A satisfying �t of the whole curve with this equation is
not possible, because real ferro�uids consist of magnetic particles with a broad

size distribution (Popplewell & Sakhnini 1995), which can further interact

magnetically. �is is also the reason for the di�erence between MSL and the
real saturation magnetization of the �uid, which is approximately twice as

large according to the manufacturer information. We therefore make use of an

additional model for dense polydisperse magnetic �uids derived by Ivanov &

Kuznetsova (2001). �is model assumes a gamma distribution of the particle

diameters d with the density function

gd0 ,α(d) =
1

d0Γ(α + 1)
(
d
d0

)

α
exp(−

d
d0

) (2.3)

Here, d0 = 0.962nm and α = 6.39 are parameters of the distribution. �e

model �rst computes the Langevin approximation of the polydisperse ferro�uid
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by a weighted superposition of Langevin functions

ML(H) = ϕMF

∞

∫
0

d3gd0 ,α(d)L (πd3
µ0MFH
6kT

)dd ⋅
⎛
⎜
⎝

∞

∫
0

d3gd0 ,α(d)dd
⎞
⎟
⎠

−1

,

(2.4)

where ϕ is the volume fraction of the magnetically active core of the particles
andMF = 446 kA/m is the bulkmagnetization of themagnetite particles, which

has not been considered an adjustable parameter, but instead assumed to be

constant. �e interaction of the particles is then treated with a mean-�eld

approach. �erefore, a mean �eld He is calculated next

He = H +
1

3
ML(H) +

1

144
ML(H)

∂ML(H)

∂H
(2.5)

and eventually the magnetization

M(H) = ML(He) (2.6)

Many theoretical models also require the tangent susceptibility χt = ∂M
∂H , which

can be found by di�erentiating equation (2.6) with the chain rule

∂M
∂H

=
∂ML

∂H
∣
He

⋅ (1 +
1

3

∂ML

∂H
∣
H
+
1

144
[(
∂ML

∂H
)

2

+ML
∂2ML

∂H2
]
H
) . (2.7)

�e solid line in �gure 2.1 displays the best �t with that model. �e saturation

magnetization given in table 2.1 is extrapolated from there. �is extrapolation

indicates together with the manufacturer informationMS ≈ 26 kA/m ± 10%,

that this model is very well �tted to our dense ferro�uid (c.f. Ivanov et al. 2007).

2.3 Measurements of the surface pattern

We �ll a cylindrical container, machined from aluminium, with the ferro�uid

and expose it to a magnetic induction ranging from B = 7.6mT to B = 37.7mT.

�e depth of the container amounts to 20mm and the diameter is 29.7mm.

�is diameter is chosen by trial such that only one single spike emerges in

the centre of the vessel for all magnetic inductions we apply. From the weight
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Figure 2.2: Sketch of the experimental setup (not

to scale) for the X-ray method by Richter & Bläsing

(2001)

of the �lled container and the density, we calculate the amount of ferro�uid

�lled into the container to V0 = 6.387ml, which is equivalent to a �lling height
of D = 9.22mm. Two complementary experimental methods were used to

determine the height of the emerging spike in the centre of the vessel: the X-ray

method by Richter & Bläsing (2001) and the laser method by Megalios et al.
(2005), which are described in the following.

2.3.1 X-ray method

�e X-ray apparatus comprises a stable X-ray point source, that emits radiation

vertically from above through the �uid layer. �e container is placed midway

between a water cooled Helmholtz pair of coils, which generate a DC magnetic

�eld of up to 40mT. Directly below the container an X-ray camera with 512×512

pixels is located, which measures the transmitted intensity at every pixel in one

plane underneath the �uid (Richter & Bläsing 2001). �is setup is depicted

in �gure 2.2. �e transmitted intensity of the X-rays is directly related to the

height of the �uid above every corresponding pixel. To calibrate this relation,

we use a wedge of known size, �ll it with ferro�uid and place it in the empty

container. In this calibration image, we therefore know the height of the �uid.

Figure 2.3 shows the calibration data from the wedge. �ese are then �tted with
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Figure 2.3: �e trans-

mitted intensity as a

function of the �uid

depth. �e solid line is

a �t with equation (2.8).

Figure 2.4: �ree-

dimensional reconstruc-

tion of the surface of the

single spike at an induc-

tion of B = 22.69mT.

A related movie can

be accessed at http://
stacks.iop.org/NJP/
11/053016/mmedia.

an overlay of three exponential functions

I(h) = I0 ⋅
3

∑
i=1

αi exp(−βih) (2.8)

as a practical approximation, denoted by the solid line in �gure 2.3. Further

details can be found in Gollwitzer et al. (2007).
A�er applying the inverse of (2.8) to an arbitrary image from the detector,

we �nally end up with a complete three-dimensional surface topography of the

http://stacks.iop.org/NJP/11/053016/mmedia
http://stacks.iop.org/NJP/11/053016/mmedia
http://stacks.iop.org/NJP/11/053016/mmedia
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Figure 2.5: �e experimental

setup of the laser method by

Megalios et al. (2005). �e solid
lines denote the path of the light

re�ected on the surface. �e

path sketched by the dashed lines

is used to verify that the laser

operates properly.

�lled container. A reconstruction for one speci�c �eld is displayed in �gure 2.4.

A survey of the surface topography for di�erent �elds is provided by the related

movie at http://stacks.iop.org/NJP/11/053016/mmedia.

2.3.2 Laser method

�e laser method developed by Megalios et al. (2005) enables precise, relative
measurements of the extrema of the surface topography. Figure 2.5 depicts the

principle of operation. �e container with the ferro�uid is situated in a long

solenoid, which generates a vertical magnetic �eld. �e solenoid is 33 cm long

with an internal diameter of 13 cm and an external diameter of 14 cm. It has

1124 windings and produces up to 21mT at its centre, with a variation of less

than 1% at the experimental region.

A laser beam is directed at the �uid surface through a semitransparent mirror,

which splits the beam into two parts. One part is de�ected sideways onto a

test point and serves as an indicator, whether the laser operates correctly (the

dashed path in �gure 2.5). �e other beam is focused on the �uid surface and

the re�ected light is de�ected by the semitransparent mirror onto a photodiode

detector (the solid path in �gure 2.5).

�e position of the focal spot can be adjusted by means of a micrometre

http://stacks.iop.org/NJP/11/053016/mmedia
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Figure 2.6: A small axisymmetric ferro�uid pool

in the magnetic �eld.

screw. �e maximum of the re�ected intensity is reached, when the direction

of the beam coincides with the normal vector of the surface at the focus spot

and the distance of the lens from the surface is equal to the focal length. In

normal operation, the beam is oriented vertically - thus the intensity of the

signal reaches its maximum when the focus spot hits an extreme point of the

surface, namely the top of a spike or the minimum in the centre of the meniscus.

By tracing the maximum intensity of the re�ected beam and recording the

position of the laser optics, we get the position of the spike with micrometre

resolution relative to some reference point. Also the absolute height of the spike

above the bottom of the container can be determined by setting the reference

point at the top of the container edge.

2.4 Governing equations and computational analysis

A scheme of a small cylindrical ferro�uid pool in a vertical magnetic �eld

is shown in �gure 2.6. �e surrounding air and the embedded ferro�uid are

denoted by (a) and (b), respectively. �e applied �eld is uniform, i.e., of constant

strength and vertical orientation, in a region far away from the pool. �e �eld

uniformity, however, is disturbed in the neighbourhood of the pool, due to

the demagnetizing �eld of the pool itself. �erefore, the applied magnetic �eld
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could be taken uniform only far away from the pool. In the following, the

magnetic �eld distribution and the free surface deformation are taken as axially

symmetric about the r = 0 axis (cf. �gure 2.6).
�e �eld distribution in regions (a) and (b) is governed by the equations of

magnetostatics. �e Gauss law for the magnetization reads

∇ ⋅ B = 0, (2.9)

whereB is themagnetic induction. Since there are no free currents, themagnetic
�eldH is irrotational and can be derived from amagnetostatic potentialH ≡ ∇u
both inside and outside the ferro�uid and, provided that the materials are

isotropic, it is parallel to B and so is the magnetization

B = µH = µ0(H +M). (2.10)

�e magnetic permeability µ is constant in non-magnetic media, namely µa =
µ0 = 4π × 10−7H/m; inside the ferro�uid, it depends on the �eld

µ = 1 +
M
H
. (2.11)

For the functional dependenceM(H), both constitutive equations which are

discussed in section 2.2, are used. �e �rst one comes from Langevin’s theory

for monodisperse colloidal suspensions (equation 2.1). �e second one (equa-

tion 2.6) comes from the polydisperse model by Ivanov & Kuznetsova (2001)

and assumes a gamma distribution of the particle diameters.

Writing equation (2.9) in terms of the magnetostatic potential, u, and taking
into account the equation (2.10) yields

∇
2ua = 0, ∇ ⋅ (µ∇ub) = 0 (2.12 a,b)

inside the non-magnetic phase (a) and inside the magnetic phase (b), respec-

tively.

Equilibrium is governed by force balance along the ferro�uid free surface

which is stated by the magnetically augmented Young-Laplace equation of
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capillarity

−g∆ρζ +
1

2
µ0

Hbs

∫
0

M(H′
)dH′

+ 2ℵσ = K , at z = ζ(r), 0 ≤ r ≤ R0 (2.13)

where g is the gravitational acceleration, ρ is the density, σ is the surface ten-
sion and ζ is the vertical displacement of the free surface parametrized by the
radial coordinate r, i.e., ζ = ζ(r). �e upper limit Hbs of the integral in the
magnetization term is the �eld strength in the ferro�uid, evaluated at the free

surface, i.e. at z = ζ(r).
�e reference pressure K is constant at the free surface. �e unit normal to

the free surface n and the local mean curvature of the free surface 2ℵ are

n =
−ζrer + ez
√
1 + ζ2r

, 2ℵ =
1

r
d

dr
⎛

⎝

rζr
√
1 + ζ2r

⎞

⎠
, (2.14 a,b)

where er and ez are mutually orthogonal unit vectors along the r- and z-axis,
respectively, and ζr ≡ dζ/dr.
�e reference pressure K in equation (2.13) is determined by the constraint,

that the ferro�uid volume is of �xed amount

2π
R0

∫
0

ζrdr = C = const, (2.15)

i.e. we assume an incompressible liquid. �e coordinate system, i.e. the location

of the z = 0 line, is chosen such that C = 0.

�e set of the governing equations (2.12 a,b), (2.13) and (2.15), needs to be

solved for the magnetostatic potential ua(r, z) and ub(r, z), the free surface
shape ζ(r) and the reference pressure K, taking into account the following
boundary conditions (see also �gure 2.6):

∂ua
∂r

=
∂ub
∂r

= 0, ζr = 0 at r = 0 (2.16 a,b)
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ua = ub, µn ⋅ ∇ub = µ0n ⋅ ∇ua at z = ζ(r) and 0 ≤ r ≤ R0 (2.17a)

ua = ub, µ
∂ub
∂r

= µ0
∂ua
∂r

at r = R0 and − D ≤ z ≤ ζ(R0) (2.17b)

ua = ub, µ
∂ub
∂z

= µ0
∂ua
∂z

at z = −D, 0 ≤ r ≤ R0 (2.17c)

ua = 0 at z = −zb (2.18)

∂ua
∂z

=
B0
µ0
at z = zt ,

∂ua
∂r

= 0 at r = R (2.19)

ζr = cot αc at r = R0. (2.20)

�e subscripts r and z denote di�erentiation with respect to r and z, respec-
tively. Equations (2.16 a,b) are the conditions that the shape of the free surface

and the magnetostatic potential are axially symmetric. Equations (2.17) are

statements of the continuity of the potential and of the normal component

of the magnetic induction across interfaces between two media with di�erent

magnetic permeabilities. In particular, it is by the equations (2.17b) that the

fringing �eld is accounted for; this is due to the distortion of the magnetic

�eld across the container walls, in the vicinity of the three-phase contact line,

that is the liquid-air-solid junction. A datum for the potential is �xed by (2.18).

Equations (2.19) are the conditions that the magnetic �eld be uniform far away

from the pool. A contact angle αc is prescribed by equation (2.20) and re�ects

the wetting properties of the magnetic liquid in contact with the solid wall of

the container.

�e governing equations give rise to a nonlinear, free boundary problem,

owing to the presence of the free surface, the location of which enters the

equations nonlinearly and is unknown a priori. An additional nonlinearity

comes from the constitutive equation for the magnetization of the �uid. Such a

problem is only amenable to computer-aided solution methods. �e choice is

the combination of Galerkin’s method of weighted residuals and �nite element

basis functions (Kistler & Scriven 1983). Here we will only outline the appli-



36 2 A single ferro�uid peak in a cylindrical container

Figure 2.7: Sample of the discretized domain

cation of the method. Details can be found in previous works by Boudouvis

et al. (1988) and Papathanasiou & Boudouvis (1998). �e domain is tessellated
into nine-node quadrilateral elements between vertical spines and transverse

curves whose intersections with each spine are located at distances that are

proportional to the displacement of the interface along that spine. �e tessella-

tion creates a mesh of nodes and at each node a �nite element basis function

is assigned that is unity at that node and zero at all other nodes. As the basis

functions, we choose quadratic polynomials of the independent variables r and
z. A sample of the computational mesh is shown in Figure 2.7. �e dependent
variables ua(r, z), ub(r, z) and ζ(r) are approximated in terms of a truncated
set of the �nite element basis functions. �e governing equations are reduced

with Galerkin’s method to a set of nonlinear algebraic equations for the values

of the unknowns ua, ub and ζ at the nodes and for the value of K.
At �xed values of the physical parameters, the nonlinear algebraic equation

set is solved by Newton iteration. �e parameter of interest here is the applied

magnetic induction B0, which appears in the boundary conditions (cf. equa-
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tion 2.19a). Solution families, i.e., solutions at sequences of di�erent values of

B0 are systematically traced with �rst-order continuation. �e computational
results reported are obtained with a mesh of 24000 nodes. �e sensitivity of

the spike height to further mesh re�nement is practically negligible; namely,

less than 0.2% when doubling the mesh density. �ree to �ve Newton steps are

needed for the convergence at each value of the continuation parameter.

2.5 Comparison of experimental and numerical
results

We record the surface pro�le for 200 di�erent magnetic inductions B0 ∈

[7.6mT . . . 37.7mT] with the X-ray method described above. Inevitably, the

magnetic induction in the neighbourhood of the container is distorted and

strengthened in comparison to the induction for empty coils. �e given values

B0 denote the spatially averaged magnetic induction below the container at
a vertical distance of 23.8mm from the bottom of the �uid layer. �is corre-

sponds to the boundary of the computational domain in the calculations. �e

height and position of the extreme point of the surface topography in the centre

has been determined by �tting a paraboloid to a small circular region of the

surface with a diameter of 1.5mm. Figure 2.8 shows the resulting central height

ĥ(B0). �e red solid line marks the data for increasing induction. �emagnetic
�uid �rst rises at the edge of the container, thus the level of �uid in the centre

of the vessel drops. �e central height then corresponds to the minimum level

in the centre. At a magnetic induction of around 16mT, a single spike emerges

in the centre that continues to rise for increasing induction. �e central height

then corresponds to the height of this spike. A small hysteresis is found when

decreasing the �eld again. See the blue line in �gure 2.8.

Using the laser method, we performed measurements of the spike height for

29 di�erent magnetic inductions from 0 to 25.65mT, which are also plotted in

�gure 2.8. By focusing the laser beam on top of the container edge, a reference

point was taken to get absolute values for the central height ĥ above the bottom
of the container, denoted by the open squares. �ey di�er from the X-ray

measurement by a shi� of 0.7mm. However, if the reference point is adjusted

by this shi�, we �nd a nice coincidence of the data points from both methods,

as shown by the open circles in �gure 2.8.
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Figure 2.8: Height of the single spike or the minimum in the centre, respectively. �e

numbers given are the total absolute height of the �uid above the bottom of the container.

For clarity, the individual 200 data points for one sweep are connected by a solid line. �e

red (blue) line denotes the values from the X-ray measurement for increasing (decreasing)

�eld, respectively. �e open squares show the results of the laser measurement. �e open

circles denote the laser data shi�ed on top of the X-ray data. �e dashed line represents

the �lling level of the �uid according to the weight, neglecting the e�ects of the meniscus.

�e inaccuracy of the reference point of the laser method can well be ex-

plained from the fact, that the laser beam cannot be focused precisely onto

the top edge of the container. �e vessel is machined from aluminium with a

quite rough surface and di�uses the incident laser beam, which leads to the

observed shi�. �is has been experimentally veri�ed by comparing the height

measurements of the bare aluminium and a ferro�uid surface at the same level.

�e di�erence in the reading is large enough to explain the shi� between the

laser data and the X-ray data. On the other hand, the accuracy of the reference

point of the X-ray measurement depends on the positioning of the calibration

wedge. �e resolution of this position is limited by the lateral resolution of the

detector, which leads to an estimate of the absolute error of 0.2mm. Due to

the roughness of the aluminium vessel, the X-ray data seem to be more precise

than the laser data concerning the absolute height in the present experiment.

Relatively, both yield practically the same result.

Further deviationsmay stem from the di�erent ambient temperature at which
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Figure 2.9: �e central height ĥ from the computations (lines) and from the X-ray exper-
iment (triangles). Blue upward (red downward) triangles denote the values for increasing

(decreasing) induction, respectively. �e dashed green line is based on Langevin’s law for

the magnetization, while the black solid line employs the model by Ivanov & Kuznetsova

(2001). (a) Full range (b) Zoom

the data were taken. Whereas in Bayreuth, the lab temperature was stabilized

at 21 ± 1 °C, the temperature in Athens was 30 °C. �is leads to a reduced

magnetization and may be the origin of a reduced spike height for higher �elds

(cf. �gure 2.8).

A�er successfully comparing the results of the two measurement techniques,

we now present the numerical predictions. �e results of the computational

analysis are depicted in �gure 2.9 together with the X-ray data. �e value cor-

responding to the central height ĥ of the measurements is the height at the
axis of symmetry h∣r=0 = ζ ∣r=0 + D, where D denotes the �lling level. Two
computational equilibrium paths are shown for two di�erent models for the

magnetization M(H). �e green dashed line displays the numerical result

using Langevin’s equation (2.1), while the black line makes use of the model

by Ivanov & Kuznetsova (2001). For magnetic inductions up to 17mT there is

only a small di�erence between both results. �is is explained by the similarity

of both magnetization laws up to an internal �eld of H ≈ 10 kA/m, as shown

in �gure 2.1. For higher �elds, however, Langevin’s law is no longer a valid

approximation. �is leads to a rather big deviation between both theoretical

curves. Regardless of the underlying magnetization curve, the numerical solu-

tions show a continuous behaviour of ĥ in the full range of B0. In particular,
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no turning points are traced on the curve. �is is mentioned, since a pair of

turning points, if existed, should imply a hysteresis in surface deformation

observed when increasing and then decreasing B0. �us, from the theoretical
calculations we do not expect any hysteresis. We stress this fact, because in

the case of an in�nitely extended container, a hysteresis is both expected theo-

retically (cf. Friedrichs & Engel 2001, e.g.) and found in the experiment and

numerical calculations (cf. Gollwitzer et al. 2007, e.g.). Moreover, we tested the
in�uence of the contact angle. A computation for αc = 20 ° does not deviate

more than 60 µm from the above calculation over the full range of B. �us, the
spike height does only weakly depend on the contact angle.

Next, we compare the measurements with the numerical results. In the

full range, the experimental data agree with the more advanced computations

taking into account the magnetization law by Ivanov & Kuznetsova (2001). �e

di�erence is within only 1% of the absolute height, except near the threshold,

where it amounts to 6%. �is is natural for a sigmoidal function, where close

to the steep increase the error can become arbitrarily large, when there are

uncertainties of the control parameter. �e di�erence between the thresholds in

theory and experiment amounts to atmost 3% as can be seen fromFigure 2.9 (b).

It shows an enlarged view of ĥ in the immediate vicinity of the threshold.
In opposite to the numerical results, we observe in the experiment a small

hysteresis between the data for increasing B0, as marked by upwards triangles,
and the one for decreasing B0, denoted by downward triangles. �e hysteresis
is in the range of ∆B0 = 0.2mT. �e origin for this hysteresis is a priori not
clear.

Note, that Gollwitzer et al. (2007) measure a hysteresis of ∆B∞ = 0.17mT for

the same ferro�uid as in our case in a container with a diameter of ≈ 10 × λc .

Remarkably, this value is in the same range as the one observed above. If

the hysteresis in our experiment would be of the same nature, it should be

much smaller due to the imperfection caused by the container edge (Cross &

Hohenberg 1993). �erefore we suspect another mechanism. One candidate is a

hysteretic wetting of the cylindrical wall. �e di�erence between the advancing

and the receding contact angle can be as large as 10 ° for a surface that has not

been specially prepared (de Gennes 1985; Dussan 1979). Moving the contact

line always costs energy. �is may explain the small hysteresis of the spike

height for increasing and decreasing induction. In our experiment, this e�ect

is important, because the interfacial area between the �uid and the vertical wall
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Figure 2.10: �e ferro�uid free surface shapes at various magnetic �eld strengths. �e

solid lines show the numerically computed pro�les, while the red (blue) dashed line gives

radial interpolation of the experimental data for increasing (decreasing) magnetic induc-

tion. �e vertical dashed line shows the side wall of the container. (a) B = 7.39mT,

(b) B = 16.17mT, (c) Zoom of (b), (d) B = 29.70mT

is comparable to the free surface of the �uid.

�e availability of the complete surface topography from the X-ray method

allows us not only to compare the central height, but also the shape of the spike

ormeniscus, respectively. Examples for the free surface shapes at selected values

of the magnetic induction are shown in �gure 2.10. �e experimental data have

been averaged angularly around the centre of the observed spike, which is not

exactly in the centre of the container in the experiment. �is o�-centre distance

is rather small (0.05mm), however it must be taken into account, otherwise

the averaging would disturb the shape of the spike.



42 2 A single ferro�uid peak in a cylindrical container

Similarly to the comparison of the height alone, there are only slight di�er-

ences between the computations and the experimentally observed shape. Most

notably, we discern a drop at the edge of the container. �e reason for this

di�erence is two-fold: �rst, the angular average does not work well near the

container border, because the centre of the spike is o�-axis, as explained before.

Second, the X-ray method has problems to accurately detect the height near

the border, where the container wall shadows the X-rays. Further, for magnetic

inductions near the threshold (cf. �gure 2.10 b and c), the height of the tip di�ers

by ≈ 1mm. �e reason is probably a slight shi� of the critical induction (cf.

�gure 2.9), where the height is very sensitive to small changes of the induction

B.
�e hysteresis, already observed from the central height alone, manifests itself

by a di�erence of the surface pro�les for increasing and decreasing induction.

Far away from the threshold, both pro�les match nearly perfectly (�gure 2.10 a

and d), while there is a clear di�erence near the threshold (�gure 2.10 b and c).

�e tip of the spike is considerably smaller for an increasingmagnetic induction,

while the level of the �uid near the container edge is higher. �is corroborates

a hysteretic wetting to be responsible for the hysteresis.

Apart from these di�erences, the deviation between the computed and mea-

sured pro�les is around 1%.

2.6 Discussion and Conclusion

We have reduced the container size for the Rosensweig instability until only a

single spike of ferro�uid remains. Whereas for our �uid, the extended system

exhibits a transcritical bifurcation to hexagons, here an imperfect bifurcation

sets in, and the axisymmetric free surface deformation evolves supercritically

and monotonically. �is is at least the outcome of the monolithic �nite element

approach, which takes into account the side-wall e�ects, namely the wetting and

the fringing �eld, as well as the polydispersity of the �uid. We �nd a convincing

agreement between theory and two independent measurement techniques, the

errors being within 3% without any adjustable parameter. �e nonetheless

observed hysteresis is due to the wetting.

Our �ndings immediately raise the issue of what is “in between”, regarding

the structure of the solution space – that is surface deformation versus applied
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�eld and other key parameters – as the size of the pool grows laterally. �is will

be tackled in a forthcoming publication by Spyropoulos et al. (2010).
A transition froma transcritical backward to an imperfect forward bifurcation

under spatial constraints has also been reported by Peter et al. (2005). �eir
spatial stripe forcing simultaneously breaks the rotational and translational

symmetry. In our case it is su�cient to break the translational symmetry.

To conclude, we have quantitatively compared numerics and experiments of

the Rosensweig instability in a system of �nite size. �is is a speci�c example,

how external constraints may change a perfect transcritical bifurcation to an

imperfect supercritical one.





3 Dynamics of the Rosensweig
instability

In this chapter, we describe a method to reconstruct an amplitude equation for

the Rosensweig instability from experimentally measured data. A �at layer of a

ferro�uid is thermostated at 10 °C. At this temperature, the liquid has a relatively

high viscosity of 4.48Pa s, approximately 60× larger than for the ferro�uid used

in chapter 2. Consequently, the dynamics of the formation of the Rosensweig

pattern becomes very slow.

By sudden switching of the magnetic induction with a specialized measure-

ment protocol, the system is pushed to an arbitrary point in the phase space

spanned by the pattern amplitude and the magnetic induction. A�erwards, it is

allowed to relax to its equilibrium point. From the dynamics of this relaxation,

we �nd the linear growth rate and reconstruct the fully nonlinear amplitude

equation, which describes the system. �e linear growth rate is compared to

theoretical predictions by Knieling et al. (2007) and the nonlinear dynamics is
compared with standard amplitude equations.

When the system is placed into the neighbourhood of an unstable equilibrium

point on the subcritical branch, stable localized patterns develop like the ones

reported previously by Richter & Barashenkov (2005).

3.1 Introduction

When Aristotle (350 B.C.) described the motion of falling bodies, he incorrectly

claimed that the velocity is constant and proportional to the mass of the body,

because he did not know the concept of inertia. He has been later proven wrong

by Galileo and Newton, who linked forces with acceleration. Aristotles’ idea of

motion, however, is a valid approximation inmany cases, when a viscous �uid is

involved and either the typical dimension d and the velocity υ are small, or the
kinematic viscosity ν is high. In this limiting case of small Reynolds numbers
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Re = υd/ν ≪ 1, the viscous forces outweigh inertia, and body and �uid motion
is determined entirely by drag forces. �e velocity is then directly proportional

to the force acting on a �uid volume or the particle inside a viscous �uid (Kohr

& Pop 2004). �eNavier–Stokes equation in this limit reduces to just∇p = η∆υ,
where p is the pressure and η the viscosity. �e reduced equation does not
directly depend on the time t any more. �is leads to a qualitatively di�erent
behaviour, than what we experience in our daily life. For example, the �ow of a

�uid with high viscosity can be completely reversed by reversing the direction of

motion. Heller (1960) demonstrates, that a droplet of ink inside a viscous liquid

between two concentric cylinders can be deformed to several 100% of its initial

size, apparently mixing the ink with the surrounding �uid. A�er reversing

the motion, the droplet is recovered almost perfectly. Consequently, mixing

two jets of di�erent �uids becomes increasingly di�cult, when the Reynolds

number is reduced, as for example in micro�uidics applications (Johnson et al.
2002). Another example for motion at low Reynolds numbers Re ≈ 10−5 is
the self propulsion of biological microorganisms like bacteria or swimming

spermatozoa. Purcell (1977) formulates the conditions for the self propulsion

in this case in his famous “scallop theorem”. At this small scale, the motion of a

swimmer is very di�erent from macroscopic swimmers due to missing inertia.

In the case of the Rosensweig instability with a ferro�uid, the viscosity of

the liquid and therefore the Reynolds number also play a role for the dynamics

of the pattern formation. For an inviscid �uid (η = 0) and an in�nitely deep

container, Cowley&Rosensweig (1967) provide a linear stability analysis already

in the very �rst description of the normal �eld instability to �nd the critical

threshold Bc and the critical wavenumber kc . Such a linear stability analysis
approximates the dynamics of the pattern formation by an equation of motion

for the amplitude A in the vicinity of the threshold induction and for very small
amplitudes

∂A
∂t

= w(B)A, (3.1)

where w(B) is the linear growth rate. �is approach has been later extended
by Salin (1993) to �uids with a �nite viscosity, where the growth rate w(B)
depends on η, and to a �nite depth of the container by Weilepp & Brand (1996).
First experimental investigations on the growth of the pattern are provided

by Lange et al. (2000, 2001), who also derive the growth rate for the case of
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a viscous magnetic �uid and an arbitrary layer thickness D. �is theoretical
analysis has been later extended to the case of a nonlinear magnetization curve

M(H) by Knieling et al. (2007).
�e nonlinear aspects of the dynamics have posed more di�culties to the

theoretical analysis. To derive nonlinear amplitude equations, the adjoint oper-

ator of the system is needed, but very di�cult to obtain (Lange 2002a). Only
recently, Bohlius et al. (2007) successfully formulated the adjoint system and
consequently tackled the issue of systematically deriving nonlinear amplitude

equations (Bohlius et al. 2008). However, in-depth experimental investigations
in this area are still missing. Knieling et al. (2007) focus more on the linear
aspects of the pattern formation. �e experiments and the numerical simula-

tions they provide show also the nonlinear dynamics, but this depends heavily

on the initial conditions and is therefore di�cult to interpret quantitatively.

Qualitatively, they observe the nonlinear growth of the pattern on the surface

of two di�erent magnetic �uids, the viscosities of which di�er by a factor of

ten. �ey �nd an oscillatory relaxation of the amplitude A of the pattern to
its �nal value A�n, when the magnetic induction B is suddenly switched to an
overcritical value. �ese oscillations are prominent for the less viscous �uid,

but decay rapidly for the more viscous liquid, where the Reynolds number is

approximately Re ≈ 3.
�e key idea in this chapter now is to use a �uid with a very high viscosity to

study the pattern formation of the Rosensweig instability. Consequently, the

Reynolds number is very small Re ≈ 10−3, and the relaxation is monotonic and
slow. Due to the long time scales, the growth of the pattern can be measured in

the extended system using a two-dimensional X-ray imaging technique (Richter

& Bläsing 2001; Gollwitzer et al. 2007), which provides the full surface topogra-
phy, as opposed to the one-dimensional line cut, which has been observed by

Knieling et al. (2007).
�e heavily overdamped system not only gives access to the linear growth

rate, but also the nonlinear dynamics can be studied quantitatively. Due to the

strong damping, the dynamics of the pattern amplitude follows a �rst order

equation of motion even in the nonlinear regime

∂A
∂t

= f (B,A). (3.2)
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Figure 3.1: Setup of the apparatus for dynamicmeasurements of theRosensweig instability

(without the X-ray source and detector). (a) Photograph of the assembled container (b)

Exploded view.

Here f is an analytic function, which does not directly depend on the time
t. Up to a friction coe�cient, f can be seen as a force �eld which acts on the
system. From the experimental data, f can be reconstructed and compared
directly to the theoretical amplitude equations.

In the next section, we describe the experimental setup and themagnetic �uid

we use. Next, the measurement protocol and the data analysis are described.

�en the experimental data are compared to theoretical models, and �nally the

results are discussed.

3.2 Experimental setup

�e experimental setup consists of the X-ray apparatus described in section 2.3.1

to measure the surface de�ections of the magnetic �uid. In contrast to the

experiment in chapter 2, we now use another magnet and a di�erent container

for the ferro�uid, which are shown in �gure 3.1.
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Quantity Value Error

Surface tension σ 30.9 ±5mNm−1

Density ρ 1168 ±1 kgm−3

Viscosity at 10 °C η 4.48 ±0.1 Pa s

Saturation magnetization MS 26.6 ±0.8 kAm−1

Initial susceptibility at 10 °C χ0 3.74 ±0.005

Exponent of the Γ-distribution α 3.8 ±1

Typical diameter d0 1.7 ±0.2 nm

Volume fraction ϕ 5.96 ±0.2%

Table 3.1: Material properties of the ferro�uid APGE32 (Lot G090707A) from Ferrotec

Co.

�e container is a regular octagon machined from aluminium with a side

length of 77mm and two concentric inner bores with a diameter of 140mm.

�ese circular holes are carved from above and below, leaving only a thin base

in the middle of the vessel with a thickness of 2mm. On top of the octagon,

a circular lid is placed, which closes the hole from above (see �gure 3.1 b).

Each side of the octagon is equipped with a thermoelectric element QC-127-1.4-

8.5MS from Quick-Ohm. �ese are powered by a 1.2 kW Kepco KLP-20-120

power supply. �e hot side of the Peltier elements is connected to water cooled

heat exchangers. �e temperature is measured at the bottom of the aluminium

container with a Pt100 resistor. A closed loop control, realized using a computer

and programmable interface devices, holds the temperature θ of the vessel
constant with an accuracy of 10mK.

�e container is surrounded by a pair of Helmholtz coils, thermally isolated

from the vessel with a ring made from FR-2. �e size of the coils is adapted

to the size of the vessel in order to introduce a magnetic ramp, a technique

introduced by Richter & Barashenkov (2005). With these coils, the magnetic

�eld strength falls o� towards the border of the vessel, where it reaches 80% of

its value in the centre.

We use the commercial ferro�uid APGE32 from Ferrotec Co, the basic

material parameters of which are listed in table 3.1. �e viscosity η deserves a
special attention for the experiments of this chapter, as it in�uences the time

scale of the pattern formation. It has been measured in a temperature range
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Figure 3.2: �e dynamic viscosity η of the
ferro�uid APGE32 versus the temperature

θ. �e symbols represent measurements,

and the solid line is an approximation by

equation (3.3).
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Figure 3.3: Magnetization curve of the fer-

ro�uid APGE32. �e symbols show the

measured data at θ = 20 °C. �e black

dashed line is a �t with the model by Ivanov

& Kuznetsova (2001). �e blue solid line

shows an evaluation of the model at θ =

10 °C.

of −5 °C ≤ θ ≤ 20 °C using a commercial rheometer (MCR 301, Anton Paar)

in cone and plate geometry (�gure 3.2). At room temperature, the ferro�uid

we use is 2000 times more viscous than water with a viscosity η = 2Pa s. �is

value can be increased by factor of 9 when the liquid is cooled to −5 °C. �e

data from �gure 3.2 can be very well �tted with the well-known Vogel-Fulcher

law (Rault 2000)

η = η0 exp(
ψ

θ − θ0
) , (3.3)

with η0 = 0.48mPa s,ψ = 1074K, and θ0 = −107.5 °C (the dashed line in

�gure 3.2). �is means, that the viscosity can easily be adjusted in a wide range

by controlling the temperature. For the present measurements, we chose a

temperature of θ = 10 °C, where the viscosity amounts to η = 4.48Pa s according

to equation (3.3).

�e magnetization curve has been determined using the �uxmetric magne-

tometer described in section 2.2 (see �gure 3.3) at a temperature θ = 20 °C. For

a comparison with the pattern formation experiments, this curve must be ex-

trapolated to θ = 10 °C, which is done using the model by Ivanov & Kuznetsova

(2001) (equation 2.6).
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Figure 3.4: �e multistep measurement

protocol for the relaxation measurements.

Dotted lines indicate jumps of the mag-
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path of the system during the relaxation

phases.

More problematic is the measurement of the surface tension. We measure

the surface tension using a commercial ring tensiometer (LAUDA TE 1) and

a pendant drop method (Datayphysics OCA 20). Both methods result in a

surface tension of σ = 31 ± 0.5mN/m, but when the liquid is allowed to rest for

one day, σ drops down to 25 ± 0.5mN/m. �is e�ect, which is not observed
in similar magnetic liquids like the one used in chapter 2, gives a hint that

our liquid is chemically less stable in the sense that the surfactants change the

surface tension on a longer time scale, when the surface is changed. Since the

pattern formation experiments do change the surface during the measurements,

the uncertainty of the surface tension is ≈ 5mN/m, as given in table 3.1.

3.3 Measurement protocol

Figure 3.4 displays the measurement protocol on the basis of the bifurcation

diagram. �e static amplitude of the pattern of the Rosensweig instability for

our �uid is indicated by the red line. When the system is set onto an arbitrary

initial point (Bini,Aini) in this diagram, and the magnetic induction B is kept
constant, the amplitudeAmonotonically increases or decreases, until the system
reaches the stable equilibrium (solid red line). �e direction of the change of A
depends on the region, where (Bini,Aini) is situated – in the regions II and III
in �gure 3.4, A increases, and in regions I and IV, the amplitude decreases with
time.

In order to push the system to an arbitrary location (Bini,Aini), a multistep
measurement protocol is employed. �e �rst step (path 1) is always a relaxation
of the pattern at the overcritical induction Bhigh = 11.45mT for 1min, to reach
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the �nal amplitude at that point Ahigh = 2.98mm. To get to an arbitrary point
in the region I in diagram 3.4, a second step is needed. When the system

is settled at (Bhigh,Ahigh), the magnetic induction is quickly changed to the
desired value B0, and the resulting dynamics is observed (path 2a), until the
desired amplitude A0 is reached. To get into the regions III or IV, three steps
are needed in total – coming from (Bhigh,Ahigh), the second step (path 2b) is a
decay of the pattern amplitude at the undercritical induction Blow = 10.74mT,
until the intended amplitude Aini is reached. �e induction is then quickly
raised to the desired Bini. �e system then follows the path 3a or 3b in region
III or IV, respectively.

When the desired initial amplitude Aini is zero, for example when the growth
of the pattern in region II shall be observed, we also apply the three step protocol

with the detour by paths 1 and 2b. At this point, the pattern decays until the
amplitude is very small (Aini = 0.05mm). A�er that, the induction is raised
to B = Bini. We use this procedure instead of directly switching the magnetic
induction from zero to B = Bini in order to establish the exact same pattern in all
regions. Coming from a perfectly �at surface, the pattern has some additional

degrees of freedom manifesting in point defects or di�erent orientations of the

wave vectors. When we take the detour by the paths 1 and 2b, we seed the wave
vectors of the pattern at (Bhigh,Ahigh), and the �nal pattern developed is likely
to be the same.

We explored all regions in �gure 3.4 in several rounds. In the �rst round, we

examined region I by starting from Aini = Ahigh and 65 di�erent inductions
in the range 10.61mT ≤ B ≤ 11.46mT. �e decay of the pattern was observed

until it reaches the stable solution or zero. �e second round was devoted to

region II. We used the three step procedure to observe the growth of the pattern

from a very small amplitude up to the stable solution for 21 di�erent inductions

in the range 11.19mT ≤ B ≤ 11.46mT. �e third to sixth rounds covered the

regions III and IV. Starting from four di�erent amplitudes, we observed the

evolution of the pattern in the range of 10.89mT ≤ B ≤ 11.27mT. At each round,

we recorded the complete evolution of the surface topography of the ferro�uid

during the last step with the fastest possible frame rate (7.5Hz) of the X-ray

method (see chapter 2.3.1), in total taking about 170 000 frames.
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(a) (b)

Figure 3.5: �e �nal pattern at B = 11.45mT. �e black contour lines in the reconstruction

of the surface (a) are 1mm apart. �e amplitude is determined from the corresponding

power spectrum (b) by the total power in the encircled mode.

3.4 Image processing

A�er processing the image data, we �nally arrive at the surface topography

map for every frame. Figure 3.5 (a) shows a reconstruction of the surface at

B = Bhigh. A description of the technical details of this process can be found
in the paper by Gollwitzer et al. (2007). �e amplitude of the pattern, A, is
then determined in Fourier space (�gure 3.5 a). We use a circularly symmetric

Hamming window with the weight function

w(x , y) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(0.54 + 0.46 cos(
π
√
x2+y2
b ))

2

x2 + y2 ≤ b2

0 else

(3.4)

for apodization (Gollwitzer et al. 2006) with a radius b = 46mm. �e total

power in one of the modes (marked with a red circle in �gure 3.5 b) is used to

compute the amplitude of the pattern

A = N ⋅

¿
Á
ÁÀ∑

j
∣c j∣
2
, (3.5)

where c j are the Fourier coe�cients inside the circle. In order to get a mean-
ingful estimate, the normalization factor N is chosen such that A is the height
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Figure 3.6: �e evolution of the pattern amplitude at an induction B = 11.06mT, starting

from di�erent amplitudes (a). �e labels of the datasets correspond to the paths in �g-

ure 3.4. �e path 3c ends in a localized state with only one spike (X-ray image shown in b),
and has been removed from the data.

di�erence betweenmaxima andminima, when the input is a perfectly sinusoidal

hexagonal pattern.

Figure 3.6 (a) displays the resulting amplitude versus time for the paths la-

belled 2a, 3a and 3b in �gure 3.4. As expected from the bifurcation diagram, the
amplitudes for paths 2a and 3b decrease monotonically, and the stable solution
is approached in an asymptotic fashion. Similarly, 3a increases monotonically
and asymptotically converges to the patterned state. �ere is, however, a small

glitch. �e bifurcation diagram 3.4 provides only a single solution for the pat-

terned state, but the asymptotic amplitudes of the paths 2a and 3a di�er by
2.6%. A further path, 3c, which starts very close from the initial amplitude
of the path 3b, ends in a �nite intermediate amplitude. �e reason is, that the
�nal pattern is di�erent, in spite of the aforementioned e�orts – path 2a ends
in a pattern with 20 spikes, whereas the �nal pattern of path 3a contains only
11 spikes. �ese additional spikes are situated near the border of the window

function and therefore contribute only little to the overall amplitude. Path

3c �nally ends in a localized solution with only one single spike, depicted in
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Figure 3.7: Artwork about localized patterns. A rendering containing hexagonal patches

of two to six spikes on the faces of a dice. All patterns show the symmetry of the underlying

hexagonal structure of the fully developed pattern.

�gure 3.6 (b).

We are currently unable to control this additional degree of freedom for the

system. In the following, the datasets with a reduced number of spikes have

not been treated in a special way. Only when the �nal pattern does not �ll the

full width at half maximum of the window function, that is for less than 10

spikes, the estimated amplitude would be more than 9% too small for the given

window function. �ese datasets have been sorted out.

Out of 205 datasets, 32 have been rejected, the �nal pattern of which consists

of only a small number of spikes. Any pattern from a single spike up to a cluster

of 9 has been found. An artistic rendering of some of those patterns is shown

in �gure 3.7. �ese patterns occur only in the bistable regime (region III and

IV) and have been previously observed by Richter & Barashenkov (2005). In
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Figure 3.8: Reconstruction of the ampli-

tude equation at an induction B =

11.05mT. �e symbols are central di�er-

ences from equation (3.6). �e red line

serves as a guide to the eye. �e dashed

line is a linear �t to the rangeA < 0.37mm.

their experiment, they have been initiated by a localized disturbance. In the

present experiment, these patterns predominantly emerge from a starting point

(Bini,Aini) near the unstable solution branch. In this study, however, we focus
only on the fully developed pattern.

3.5 Results

3.5.1 Recovery of the amplitude equation

In the following, we will describe a method to derive the amplitude equation

from the data. So far, we have measured the evolution of the amplitude A(t) for
di�erent values of the induction B and a set of initial amplitudes Aini. Suppose,
that the system can indeed be described by an amplitude equation of the form

(3.2). �en A(t) is the solution of this equation for di�erent initial conditions
(Bini,Aini), and we want to get the function f (A, B) on the right hand side
of (3.2). Because this function should not be dependent on time, the time

derivative Ȧ = ∂A/∂t of ourmeasuredA(t)directly gives a value of this function
at the corresponding amplitude. We therefore plot Ȧ as a function of A in
�gure 3.8 for one selected induction in the bistable region. �e time derivative

has been estimated from the measured data by central di�erences (Abramowitz



3.5 Results 57

& Stegun 1965, §25.1.2)

∂A
∂t

∣
n+ 1

2

≈
An+1 − An

∆t

A∣n+ 1
2

≈
An+1 + An

2
, (3.6)

where ∆t = 0.134ms is the time between consecutive frames, and Ai denotes

the pattern amplitude of the ith frame. Because these di�erences su�er heavily
from noise, we also plot the radial basis function approximation explained later

in section 3.5.3 as a guide to the eye (red line in �gure 3.8). In the bistable regime,

the amplitude equation has three roots, corresponding to one unstable and

two stable solutions. In the diagram 3.8, the stable and unstable solutions are

characterized by zero-crossings with a negative or positive slope, respectively.

�ese slopes correspond to the linear growth rate of the pattern amplitude and

will be compared to theoretical predictions in the next section.

3.5.2 The linear growth rate

According to the linear stability analysis by Lange et al. (2001), the pattern
amplitude can be described by an exponential growth, when A is small

A ∼ exp (−iω̃t) (3.7)

ω̃ = ω1 + iω2 (3.8)

�e exponent ω̃ follows from the dispersion relation given by Knieling et al.
(2007) for a layer of ferro�uid with the �nite depth h, a nonlinear magnetization
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curveM(H), the surface tension σ , the density ρ, and the kinematic viscosity ν

0 =
ν2

k̃ coth(k̃h) − k coth(kh)
(k̃ [4k4 + (k2 + k̃2)2]

× coth(k̃h) − k[4k2 k̃2 + (k2 + k̃2)2] tanh(kh)

−
4k2 k̃(k2 + k̃2)

cosh(kh) sinh(k̃h)
) + tanh(kh)(gk +

σ
ρ
k3

−
µ0(1 + χ̄)M2

ρ
Λ(kh) k2), (3.9)

where

Λ(kh) =
ekh(1+ χ̄)/(1+χt)(2 + χ̄) − χ̄e−kh(1+ χ̄)/(1+χt)

ekh(1+ χ̄)/(1+χt)(2 + χ̄)2 − χ̄2e−kh(1+ χ̄)/(1+χt) (3.10)

k̃ =

√

k2 −
iω̃
nu
. (3.11)

�e susceptibility χ̄ is de�ned by a geometric mean 1 + χ̄ =
√

(1 + χt)(1 + χch),
with the tangent susceptibility χt = ∂M/∂H and the chord susceptibility χch =
M/H. It can be evaluated for any �eld H, when the magnetization curve is
known.

Lange (2003) revises the solutions for the dispersion relation in case of a

linear magnetization curve. �e solution space is rather complex, but the

following conclusions can be drawn: for an overcritical magnetic induction

B > Bc and k = kc , ω̃ is purely imaginary and the pattern grows exponentially
with the linear growth rate ω2. For magnetic inductions smaller than Bc , ω2
is negative and any pattern decays. ω1 may be di�erent from zero, resulting in
an oscillatory decay. As opposed to the experiments conducted by Reimann

et al. (2003), oscillations are never observed in our experiments due to the high
viscosity, and therefore the real part ω1 is always small and can be neglected.
�e exponential growth or decay corresponds to a linear amplitude equation

for small amplitudes

∂A
∂t

= ω2(A− A0), (3.12)

where A0 is the amplitude of the (un)stable solution. We therefore �t the
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Figure 3.9: �e linear growth rate ω2 of the pattern amplitude as a function of the mag-
netic induction (a) and the rescaled induction (b). �e symbols with error bars represent

the measured data. �e blue solid line shows the theory for the measured surface tension

σ = 31mN/m. �e dashed black line in (a) displays a linear �t to the experimental data to

�nd the critical induction Bc,exp. �e solid black line in (b) shows a best �t of the theory
to the data with σ = 20mN/m.

measured data with equation (3.12) in a region around the �at state solution

A < 0.37mm, treating A0 and ω2 as adjustable parameters. In this region, the
measured amplitude equations are at least monotonic and the nonlinearity

cannot be seen by visual inspection. In �gure 3.8, this linear �t is represented by

the dashed line. �e resulting growth rate ω2 is shown in �gure 3.9. �e com-
parison of ω2 versus the induction B provides a rather poor match (�gure 3.9 a).
�e feature most distinct between the theory (blue line) and the experimental

data (symbols) is the critical induction Bc , where the growth rate changes its

sign. �e theoretical analysis with the material parameters from table 3.1 yields

Bc,theo = 10.52mT, (3.13)

while a linear �t to the experimental data suggests

Bc,exp = 11.21mT. (3.14)

�is 7%di�erence of the threshold inductionmakes a comparison of the growth

rate as a function of the induction completely unsuitable, because the growth

rate scales with the distance from the critical point. For a meaningful compari-



60 3 Dynamics of the Rosensweig instability

son, the induction is rescaled (�gure 3.9 b) with

B̂ =
B − Bc

Bc
, (3.15)

where Bc is the critical induction of the corresponding dataset. In a restricted

range of B̂ ∈ [−0.025 . . . 0.015], the measured data coincide very well with the

theoretical computations within the the experimental error. Outside this range,

the experimental data has slightly smaller absolute values than the computed

growth rates. By treating the surface tension σ as an adjustable parameter,
the experimental data can be �tted in the whole range with the theoretical

expression (solid black line in �gure 3.9 b) with σ = 20mN/m. �e growth

rates determined by this best �t di�er from the ab initio calculations by 21%.

�is deviation is of the same magnitude as the di�erence found by Knieling

et al. (2007). It can partly be caused by an inaccuracy of the material parameters
in table 3.1. A lower value of the surface tension, as suggested by the �t, is

consistent with the observations from section 3.2, that the surface tension is

smaller, when the liquid is allowed to rest, albeit not as small, as determined

from the �t.

Another reason for the di�erence might be the nonlinearity of the real ampli-

tude equation, which deviates from the linear function (3.12). �e in�uence of

this nonlinearity depends on the curvature of the amplitude equation, which

can hardly be estimated from the very noisy data itself (see �gure 3.8). For this

matter, the fully nonlinear equations are needed, which will be considered in

the next sections.

3.5.3 Approximation with radial basis functions

Figure 3.10 displays the dynamics of the amplitude determined from equation

(3.6) in the full range of A and B. �e color scale indicates sign and strength of
the force f (B,A) and con�rms the bifurcation diagram suggested in �gure 3.4.
However, the data points are not only a�ected by noise, they are also irregularly

distributed. �e density is high at the stable solution branch, and in contrary

there are “holes” in the diagram, where no data is available at all. �ese holes be-

long to datasets which have been removed, because they converge to a localized

solution (cf. section 3.5.1).

In order to further interpret the data, a smooth approximation is helpful. We
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Figure 3.10: �e measured amplitude dynamics for the whole phase space. �e color in-

dicates the force f (B, A). Red (blue) means rising (falling) amplitude, respectively. Green
indicates the zero (root of the amplitude equation).

use a multiquadric radial basis f unction (RBF) network to compute a smooth
sensible approximation to the amplitude equation (Powell 1990). ARBFnetwork

is a linear combination of shi�ed basis functions

s(r) = ∑
j

λ jϕ(∥r − c j∥) + p(r), (3.16)

with the arbitrarily chosen centres c j and the weights λ j. p(r) is a low or-
der multivariate polynomial, typically linear or just constant. We choose the

multiquadric basis function

ϕ(x) =
√
1 + x2 (3.17)

and a linear polynomial p(r). �e vector r is a scaled combination of the
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Figure 3.11: �emultiquadric RBF approximation of the amplitude equation. �e red dots

correspond to the measured data. �e blue crosses show the position of the centres of the

radial basis functions. �e black solid (dashed) line represents the stable (unstable) zero

of the approximant.

coordinates of the phase space

r = (B/δB ,A/δA) (3.18)

δB = 0.2mT
δA = 1mm

RBF networks with the basis function (3.17) are in�nitely di�erentiable and

thus well-suited to the approximation of smooth functions. �is kind of ap-

proximation has been proven useful in many applications. For an overview see

the review by Hardy (1990).

Figure 3.11 displays the result from �tting the measured data (shown in

�gure 3.10) with equation (3.16) �e centres c j can be chosen almost arbitrarily;
we have selected 50 centres equally distributed in the measured region and

additionally placed 68 centres near the stable solution branch. �e location of

these 118 centres is marked in �gure 3.11 by the blue crosses. �e scale variables

δA,B have been chosen according to the empirical rule, that they should be
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approximately equal to the distance between centres in the corresponding

direction.

Only the weights λ j in equation (3.16) are adjusted, while the position of

the centres c j are held constant. �e problem of adjusting equation (3.16) to
our data is therefore reduced to a general linear least squares �tting problem

with 118 free parameters. In order to avoid the problem of over�tting, we

do not �t the data directly with equation 3.16, but instead apply Tikhonov

regularization (Neumaier 1998)

∑
j
∣s(r j) − f (r)∣2 + ξ∑

k
λ2k = min!, (3.19)

where f (r) are the measured data and ξ is the regularization parameter. �is
parameter controls the complexity of the model. A value near zero results in a

standard least squares �t of the model to the data, while a larger value makes the

resulting model more smooth. To �nd the optimal value for the regularization

parameter, we apply standard 2-fold cross validation (Picard & Cook 1984),

which yields an optimal regularization parameter of ξ = 0.4.
�e zero from this �t gives an estimate for the stable and unstable solution

of the amplitude equation and is indicated by the solid and dashed black line

in �gure 3.11, respectively. For comparison, the original data are also shown

with the red dots. �e RBF reconstruction of the solution gives a very plausible

result, which captures the essential features of the raw data, namely the imper-

fection, and provides an estimate for the unstable solution, which can only be

approached to a certain limit by thismethod (see the holes in diagram 3.10). �is

result of the RBF reconstruction has also been used to display the equilibrium

in the diagrams 3.4 and 3.10 above.

�is approximation of the measured data by an RBF network has proven

useful to get an unbiased estimate of the equilibrium and to �ll in missing

data. However, such a non-parametric regression technique cannot provide

physicallymeaningful parameters (Green&Silverman 1994). In the next section,

we compare the data with nonlinear model equations for the bifurcation.
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3.5.4 Model equations

�e standard model equation for a hysteretic bifurcation diagram like 3.4 is a

cubic amplitude equation (Cross & Hohenberg 1993)

τ
∂A
∂t

= εA+ βA2 + γA3 + κ, (3.20)

where τ denotes a time scale and ε = (B2 − B2c)/B2c measures the distance from
the bifurcation point. For the diagram depicted in �gure 3.4, βmust be positive,
and the width of the hysteresis increases with themagnitude of β. In order to get
stable patterns for ε > 0, γ must be negative, and the �nal amplitude decreases
with the magnitude of γ. �e constant term κ represents the imperfection of
the system. For κ ≠ 0, the transcritical bifurcation at ε = 0,A = 0 dissolves

into two saddle-node bifurcations, the distance of which is controlled by the

magnitude of κ.
Equation (3.20) does not incorporate any speci�c knowledge of the mech-

anism of the instability, it can be applied to a wide range of physical pattern

forming systems like non-Boussinesq Rayleigh-Bénard convection (Busse 1967),

Bénard Marangoni convection (Schatz et al. 1995) or chemical reactions (Tur-
ing 1952; Cross & Hohenberg 1993). For the case of the Rosensweig instability,

Bohlius et al. (2008) provide a systematic derivation of this amplitude equation.
Friedrichs & Engel (2001) formulate the free energy density F of a mag-

netic liquid as a function of the pattern amplitude. From this expressions, one

can extract an alternative amplitude equation of the hexagonal pattern of the

Rosensweig instability

τ
∂A
∂t

= εA+ β (1 + ε)A2 + γA3 + κ, (3.21)

with the only di�erence being the additional factor (1 + ε) in the quadratic
term. �e physical reasoning behind this higher order correction is a scaling

of the quadratic coe�cient with B2, which is treated equivalently to B2c in the
classical analysis. By making this dependence explicit, and with 1 + ε = B2/B2c ,
one arrives at equation (3.21). In the limit of ε → 0, both equations coincide.
From a more abstract point of view, one might ask, whether this additional

factor (1 + ε) in the quadratic term could also incorporate another adjustable
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parameter, resulting in the equation

τ
∂A
∂t

= εA+ β (1 + λε)A2 + γA3 + κ. (3.22)

Such a model can reduce to either of the two previous equations in the limits

λ = 0 and λ = 1. �erefore, a comparison of the experimental data with the

latter equation provides some evidence, whether it is empirically advantageous

to incorporate the ε-dependence in the quadratic coe�cient.
�e coe�cients in the equations (3.20) and (3.21) are in principle given by

Bohlius et al. (2008) and Friedrichs & Engel (2001), respectively, as functions
of the material parameters. However, these analyses are carried out for a linear

magnetization curveM(H) = χH and, in the latter case, small values of χ only,
and therefore cannot be directly applied to our �uid. By treating τ, Bc , β, λ, γ,
and κ as adjustable parameters, these equations can nevertheless be �tted to
the measured data.

Figure 3.12 displays the result of �tting the model equations to the experi-

mental data together with the RBF approximation of the previous section for

reference. At a �rst glance, all models give reasonable approximations to the

experimental data and the di�erences are minor. One such di�erence becomes

apparent when looking at the equilibrium line (black solid line). �e experi-

mental data (red dots) evidently contain the �nal static amplitude in almost all

cases, so the equilibrium should pass through, or very nearby the endpoints of

the experimental data lines. �is condition does not hold for the plain cubic

equation in �gure 3.12 (a). �e width of the bistable regime suggested by the ex-

perimental data amounts to ∆Bhyst = 0.29mT, but the cubic equation provides
only ∆Bhyst = 0.18mT. �e equation (3.21), which is augmented with (1 + ε),
gives a much better approximation of the equilibrium line (�gure 3.12 b). Here,

the width of the hysteresis amounts to ∆Bhyst = 0.25mT, which is better but
still smaller than the true value. Finally equation (3.22), which is a blend of the

two former models, scores in between them in this test with ∆Bhyst = 0.20mT
(�gure 3.12 c). �e best �t blend parameter λ = 0.755 tends more to the aug-

mented equation (3.21) than to the plain cubic equation (3.20). So from this test,

the augmented equation (3.21) is the clear winner. Of course, the nonparamet-

ric RBF approximation, which is included only for reference in �gure 3.12 (d),

faithfully reproduces the hysteresis.
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Figure 3.12: Comparison of di�erent models for the amplitude equation. (a) cubic equa-

tion (3.20) (b) equation (3.21) (c) equation (3.22) with λ = 0.755 (d) RBF approximation.

Even though the equilibrium curve can be represented reasonably well by at

least the augmented amplitude equation, the �tted models all deviate from the

measured data o� the neutral curve in two ways. At small inductions, the model

equations underestimate the velocity of the pattern decay. Figure 3.13 (a) depicts

the amplitude equations for an undercritical induction of B = 10.80mT. Here,

the model equations all yield approximately the same result, but the di�erence

to the measured data is roughly 30%. At overcritical inductions (�gure 3.13 b),

the model equations result in asymmetric curves, while the experimental data

suggest symmetric amplitude equations. Of course, the model equations are

expansions about the critical point, and are not expected to be accurate far from

the critical induction.

For the overcritical induction, also the RBF approximation shows artefacts.
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Figure 3.13: Comparison of the amplitude equations for a constant induction B =

10.80mT (a) and B = 11.35mT (b). �e symbols display the original measured data, the

dashed line is the RBF approximation, and the solid lines represent the parametric model

equations (3.20,red), (3.21,blue) and (3.22,green).

�emeasured data suggest a smooth shape of the amplitude equation, while the

RBF approximant shows a bump near A = 2mm. �is irregularity is probably

due to an e�ect similar to the one which causes the seemingly double equilib-

rium point in �gures 3.6 and 3.8. �ese double equilibrium points exist also in

the neighbourhood of the data shown in �gure 3.13 (b) and in�uence the RBF

network, because it is a global approximation scheme.

3.6 Conclusion

Using a highly viscous ferro�uid, the dynamics of the formation of the Ro-

sensweig instability can be slowed down to the order of minutes. �erefore,

it is possible to conveniently observe the dynamics using a two-dimensional

imaging technique. �is is in contrast to the work by Knieling et al. (2007),
who could observe only a one-dimensional cut through the two-dimensional

pattern. From the evolution of the amplitude we have estimated the linear

growth rate of the pattern and successfully compared to the theory by Knieling

et al. (2007). Similar to their experimental work, we �nd an agreement within
21% in an 8% range of the magnetic induction around the threshold value of

the instability. In a smaller range of 4% of the critical threshold, the measured

data agree with the theoretical predictions within 9%.
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We have also reconstructed the nonlinear amplitude equations from the

measured data. An approximation of the noisy experimental data with radial

basis functions provides an estimate formissing data and for the static amplitude.

Standard model equations for the instability by Friedrichs & Engel (2001) and

Bohlius et al. (2008) could be �tted to the experimental data. �e estimate
of the static amplitude from the plain cubic amplitude equation derived by

Bohlius et al. (2008) can be signi�cantly improved by augmenting the quadratic
coe�cient with (1 + ε), as suggested by the free energy of Friedrichs & Engel
(2001). However, a comparison of the absolute magnitude of both amplitude

equations with the experimental data at an induction 5% below the critical

induction Bc reveals, that neither amplitude equation can successfully �t all

of the measured experimental data. Even if the static amplitude is represented

quite well by at least the augmented equation, the data outside the equilibrium

line shows deviations both in magnitude (�gure 3.13 a) and shape (�gure 3.13 b)

from the model equations. Future theoretical research would be desirable,

which focuses not only on the immediate vicinity of the critical point, but

represents the data in a wider range.

By the use of the amplitudes in Fourier space, only space �lling homogeneous

patterns have been considered. However, the real system has additional degrees

of freedom, which are manifested in the formation of localized states as shown

in �gure 3.7 and observed previously by Richter & Barashenkov (2005). In this

chapter, they have not been studied in detail. Further experimental investigation

could be dedicated to the spontaneous formation of these localized states in

our system as opposed to the work by Richter & Barashenkov (2005), where an

external disturbance is needed.



Part II

Ferrogel





4 Magnetodeformation of a ferrogel
sphere

A small ferrogel sphere is subjected to a homogeneous magnetic �eld and

consequently stretches along the �eld lines. When themagnetic �eld is suddenly

switched on, the sphere �rst performs vibrations around the new equilibrium

position and then slowly elongates on a longer time scale. Both phenomena can

well be described by a damped harmonic oscillator model, where the spring

constant depends on time. Poisson’s ratio of the gel can be calculated from

the ratio of the relative elongation parallel and perpendicular to the �eld lines.

�e static elongation is compared to theoretical descriptions of the problem

by Raikher & Stolbov (2005a) and Landau & Lifschitz (1960). �is chapter
investigates, how well can a ferrogel sample be modelled as a uniform elastic

magnetizable body in a simple geometry. �ese results have been published as

a regular article in the Journal of Chemical Physics (Gollwitzer et al. 2008).

4.1 Introduction

A sphere is themost perfect, most symmetric geometrical object. �e Pythagore-

ans believed that the sun and the earth are perfect and thus spherical. Today we

know that the shape of the earth, the geoid, deviates from a perfect sphere by the

in�uence of centrifugal and gravitational forces (Meissner 2002), which break

the spherical symmetry. �is symmetry breaking is important in various �elds

of physics. For example, the e�ciency of nuclear �ssion depends on the shape

of the nucleus (Bohr &Wheeler 1939). In the case of a magnetic liquid drop, this

breaking of the symmetry can be achieved by an external homogeneous �eld.

�e droplet then elongates along the direction of the applied magnetic �eld

(Bacri & Salin 1982, 1983), which can be used to measure the interfacial tension

between the ferro�uid a second immiscible liquid (Flament et al. 1996). Very
recently, Lahaye et al. (2007) performed a similar experiment with an amount
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of “quantum ferro�uid”, consisting of dipolar Cr-Atoms, and have found it to

elongate as well in a magnetic �eld.

All examples presented above have in common that they deal with plain �uids,

without any elasticity. �is means, they are kept together only by the surface

tension of the magnetic �uid. A ferrogel, instead, assumes its equilibrium shape

in the absence of external forces as a consequence of elastic volume forces (Varga

et al. 2003). Under the in�uence of an external �eld, though, the equilibrium
size and shape can be changed signi�cantly (Zrínyi et al. 1997b). �ismagnetic
deformation e�ect provides the basis for many of the proposed applications,
where a piece of ferrogel is supposed to produce work. In this way Zimmermann

et al. (2006, 2007) build autonomous robots, Zrínyi (2000) propose arti�cial
muscles and Lao & Ramanujan (2004) describe magnetic drug targeting. All

these applications need the coupling between the mechanic and magnetic

degrees of freedom.

In its simplest form, the magnetic deformation e�ect is reduced to a spherical

piece of gel subjected to a homogeneous magnetic �eld. An approximation

for the resulting deformation has been given by Landau & Lifschitz (1960) for

the case of a dielectric elastic sphere, which can readily be transferred to the

magnetic case, i.e. ferrogels (Raikher & Stolbov 2003). �e relative elongation ε
in this case was calculated as

ε =
κµ0
G

M2
(4.1)

where κ = 1⁄15 , G is the shear modulus and M is the magnetization. Recently,
the elongation has been recomputed by Raikher & Stolbov (2005a, b) without
constraining the shape to an ellipsoid. In this case, the elongation is expected

to be 30% larger. �is e�ect has not yet been observed, a possible reason being

that it is rather small for the large values of G, characteristic for most of the
covalently cross linked polymer gels (Zrínyi et al. 1996, 1997b). In contrast,
the elasticity of the new class of thermoreversible ferrogels (Lattermann &

Krekhova 2006) can reversibly be tuned via their temperature. In this chapter,

we cast thermoreversible ferrogels in spherical samples and expose them to a

uniform magnetic �eld, to test the above predictions.
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Figure 4.1: (a) Schematic drawing of the experimental setup. (b) Image of the symmetri-

cal (le�) and distorted ball (right). �e dotted line displays a �t with a circle (le�) and an

ellipse (right).

4.2 Experiment

4.2.1 Setup

�e experimental setup is sketched in �gure 4.2 (a). A ferrogel ball is immersed

in a rectangular container, positioned on the common axismidway between two

Helmholtz coils. For the empty Helmholtz pair of coils, the spatial homogeneity

is better than ±1%. �is grade is valid within a cylinder of 1 cm in diameter

and 14 cm in height oriented symmetrically around the centre of the coils.

�e coils are powered by a current ampli�er (fug electronic GmbH), which is

controlled by a computer. �emagnetic system cannot follow the control signal

immediately. For a maximal jump height ∆B = 36mT the �eld is reached a�er

tB = 30ms, as recorded by the Hall probe (Group3-LPT-231) connected to a

digital teslameter (DTM 141).

�e temporal evolution of the ball shape is recorded using a high-speed

camera, capable of taking 400 frames per second with a resolution of 768 × 768

pixels. Figure 4.2 (b) shows the original and distorted shape. �e dotted curves

stem from a �t of a circle to the edges in the image. �e circle is located

utilizing a normalized correlation technique (Dickey & Romero 1991), where

the correlation between the gradient of the image and a circle is maximized.
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�e gradient is estimated by the Sobel operator (Wang et al. 2006), and the
circle is rasterized with anti-aliasing provided by a Gaussian �lter (Crow 1977).

�is method is able to extract the radius and the coordinates of the centre with

subpixel resolution.

4.2.2 Material

�e ball was prepared with a magnetic, thermoplastic elastomer gel or in other

words with a thermoreversible ferrogel (Lattermann & Krekhova 2006). �ere-

fore, an ABA-type poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS)

triblock copolymer (Kraton G-1650) was used as a gelator. As measured with

size exclusion chromatography (SEC), Kraton G-1650 exhibits a molar mass of

99 000. �e styrene content is 29% (manufacturer information). �e gelator

concentration is 3.5w% per para�n oil used. �e ferro�uid was prepared in the

way described by Lattermann & Krekhova (2006) with 24.5w% magnetite per

para�n oil Finavestan A 50B (Total). �e shear viscosity at 20 °C of 11mPa s

and the molar mass of 280 (manufacturer information) are lower than that

of the para�n oil Finavestan A 80 B used by Lattermann & Krekhova (2006).

Using A 80 B, the resulting ferrogels are too sti� to be remarkably deformed by

the magnetic �eld. On the other hand, using the gelator Kraton G-1652 instead

of Kraton G-1650 with a lower molar mass of 79 000 (SEC), the prepared ferro-

gels are too so�, i. e. they are not shape-retaining. Furthermore, they sweat out

ferro�uid, slowly on standing, faster in the magnetic �eld.

4.2.3 Sample preparation

Above its so�ening temperature at 45°C the material becomes a magnetic liquid.

We produce the ferrogel sphere by casting the liquid into an aluminium mould

at 55°C. �e mould consists of two parts with a spherical cavity, tightly screwed

together, which is connected by a thin channel to a hoppermounted on top of the

upper part. To avoid any air bubbles in the �nal sphere, the mould is �rst �lled

with the lique�edmaterial under vacuum (≈ 1mPa). �en atmospheric pressure

is applied, which compresses any low-pressure air bubbles. By repeating the

process of varying the ambient pressure and under the in�uence of gravity,

eventually all bubbles leave the mould via the hopper. Next we cool down the

mould and separate the two parts of it.
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Figure 4.2: Magnetization curve of the ball.

�e ball is then immersed into water with added salt. �e salt establishes

a vertical density gradient which keeps the ball �oating in the middle of the

container at half depth. With the help of a syringe, water has been sampled

directly above and below the ball. �e density of both samples is then measured

by means of a vibrating tube density meter (DMA 4100, Anton Paar Co.). From

the mean of both values follows the density of the ball to be ρ = 1085± 3 kg/m3.

�e density of the solution of salt is subsequently reduced by adding pure

water, until the ball touches the bottom of the container. All experiments have

been carried out in this con�guration, where the density of the surrounding

liquid is only slightly smaller than that of the sphere. �is is necessary to reduce

the in�uence of the gravity on the shape of the sample; the ball is so so� that,

without buoyancy, it is deformed into an oblate ellipsoid under gravity.

4.2.4 Magnetization

Next, we measure the magnetization of the sphere for various �elds, utilizing a

�uxmetric magnetometer (Lakeshore, Model 480). �e resulting magnetization

curve is plotted in �gure 4.2. �e solid line displays an approximation with the

model presented by Ivanov & Kuznetsova (2001). �e sample is superparamag-

netic with an initial susceptibility χ0 = 0.81.
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a jump in the deformation. �e

solid line displays a �t to equa-

tion (4.2) with the parameters
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β = 0.218.

4.2.5 Rheology

For the characterization of the elastic properties we measure the shear modulus

G with a rheometer (MCR 301, Anton Paar) in cone and plate geometry. �e
cone has a diameter of 50mm and a base angle of 1°. We perform a stress

relaxation experiment on the sample: from the equilibrium position we shear

the sample by a deformation of γ = 1% and measure the stress τ as a function of
time. Figure 4.3 displays the results. �e restoring force decays by 50% during

one second, which means that the shear modulus G = τ/γ cannot be treated as
constant. �is decay can well be approximated by a stretched exponential (the

solid line in �gure 4.3)

G(t) = Grheo exp(−(
t
t0
)

β
) . (4.2)

�ematerial therefore so�ens under load. To account for that time dependence,

the magnetic experiment cannot be performed in a static manner.

4.3 Results and discussion

We performed time-resolved measurements of the relative elongation ε of the
ball a�er applying amagnetic induction B in a jump-like fashion for ten di�erent
values of B. Figure 4.4 shows ε(t) for the case B = 36mT. �e elongation

ε = (d −d0)/d0 measures the scaled di�erence of the diameters in the direction
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Figure 4.4: Elastic response of

the ball, when a magnetic �eld is

suddenly applied. �e solid line

represents a �t to equation (4.3).

of the �eld (d) and without a �eld (d0). Due to the sudden increase of the
magnetic �eld and the inertia of the ball, the latter performs uniaxial damped

vibrations with a frequency f = 22.4Hz. When the oscillations cease, the

elongation continues to grow due to the so�ening under load. Because the time

scale of the so�ening is much larger than that of the oscillation, the experiment

may be approximated by a harmonic oscillator pulled by a constant force, where

the spring constant relaxes according to equation (4.2)

ε̈ + δε̇ + ω20 exp(−(
t
t0
)

β
) ε = F . (4.3)

Here δ is the damping constant, F the pulling force (i.e. related to the magnetic
induction) and ω0 the natural frequency. A �t with the solution of that equation
is displayed in �gure 4.4 as the solid line. �e ratio F/ω20 corresponds to the
relative elongation in the equilibrium state if the spring constant would not

change. �erefore, this ratio compares to the elongation predicted by the static

theories.

�e dependence of the elongation on the magnetization is shown in �g-

ure 4.5 a. For ten di�erent values of the magnetic induction we have recorded

and evaluated the elongation ε of the ball. Figure 4.5 a presents the outcome for
the elongation parallel (εz) and perpendicular (εx) to the magnetic �eld. �e
data have been plotted versusM2. In agreement with equation (4.1) we �nd a

linear relationship εi = ciM2 with cz = 13.4⋅10−5( mkA)
2 and cx = −6.1⋅10−5( mkA)

2.

Figure 4.5 b shows the oscillation frequency f = ω0/(2π) versusM2.
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Figure 4.5: (a) �e static elongation as a function of M2
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the elongation (contraction) parallel (perpendicular) to the applied �eld, respectively. �e

solid (dashed) line is the best linear �t. (b)�e frequencies of the initial vibrations obtained

from equation (4.3).

Next we compare the ratio of the slopes cz/cx = κz/κx with the theoretical

predictions. For a deformation restricted to an ellipsoidal shape and the as-

sumption of a uniform strain �eld, the expressions given by Landau & Lifschitz

(1960) can be rewritten in terms of Poisson’s ratio σ

κz =
3 − 2σ
20σ + 20

(4.4a)

κx =
1 − 4σ
20σ + 20

. (4.4b)

For an incompressible gel (σ = 1/2) this leads to κz = 1

15
. For arbitrary σ one

obtains for the ratio

κx/κz =
1 − 4σ
3 − 2σ

. (4.5)

We exploit equation (4.5) to determine σ , and by substituting σ in the equa-
tions (4.4b) and (4.1), one �nally arrives at G. �is yields

σ = 0.48 ± 0.01 G = 0.65 kPa. (4.6)

For the more general case of a non-uniform strain �eld and a shape not
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restricted to an ellipsoid considered by Raikher & Stolbov (2005a), one obtains

κz = −
6σ2 + σ − 7

20σ2 + 48σ + 28
(4.7a)

κx = −
σ2 + 2σ

10σ2 + 24σ + 14
(4.7b)

which yields

κx/κz =
2σ2 + 4σ
6σ2 + σ − 7

(4.8)

and �nally gives

σ = 0.47 ± 0.01 G = 0.87 kPa. (4.9)

Both approaches yield a Poisson’s ratio σ very close to the limit of incom-
pressibility σ = 1⁄2 , which is characteristic for rubberlike materials (Rinde 1970).

As Raikher & Stolbov (2005a) already point out, the values derived for the
shear modulus G di�er by ≈ 30%. But the value obtained from the rheometer,
Grheo = 1.48 kPa, exceeds the old and new predictions by a factor of 2.3 and 1.7,
respectively. So none of them is corroborated by the experiment.

�e frequency of the vibrations a�er the sudden increase of the magnetic

�eld o�ers another possibility to measure the shear modulus. For an incom-

pressible elastic sphere that performs spheroidal vibrations, where the sphere

gets alternately deformed into a prolate and oblate ellipsoid of revolution, the

frequency is given by (Love 1944) as

f = 0.848
√

G
4ρr2

. (4.10)

Since the radius of the sphere r and the density ρ are known, we can compute
the shear modulus from the measured vibration frequency f . Figure 4.6 shows
a comparison of the value of the shear modulus obtained from f with the
values from the elongation and the mechanical measurement. �e average

shear modulus determined by this method is Gvib = 0.1 kPa, which di�ers by a
factor of 15 from Grheo. �is large deviation may arise, because the model for
the vibrations does not take into account the surrounding water. �is needs to

oscillate together with the sphere, leading to an increased e�ective mass of the

oscillator, and thus a reduced frequency.
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Now we reconsider the deviation between the shear modulus G as deter-
mined from the elongations and Grheo determined via rheology. �ey di�er by
factor of about two. �is di�erence cannot be explained solely by the inaccuracy

of the measurement of Grheo, which is typically around 10% for a commercial
rheometer. Rather, the deviation is likely to stem from the fact that the idealistic

models by Landau & Lifschitz (1960) and Raikher & Stolbov (2005a) consider
only Hookean elasticity, which is insu�cient for our material. In fact, the defor-

mation of a gel put under load can be made up of three contributions, namely

instantaneous elastic deformation, retarded anelastic deformation and viscous

�ow (Strobl 1997). Our material clearly shows anelasticity, as demonstrated in

�gure 4.3. Moreover, our sample shows the phenomenon of viscous �ow, as

illustrated in �gure 4.7. In this measurement we �rst apply a constant strain for

800 s, and then record the relaxation of the strain for zero stress. �e remaining

deformation at t = 7000 s is about 15% of the strain initially applied. �is value
can be regarded as an upper bound for the plastic contribution to the deforma-

tion (viscous �ow). While the existence of anelasticity and viscous �ow gives

no straight-forward explanation of the 70% deviation between experiment and

theory, it is obvious that the full viscoelastic behaviour of the gel should be

included in the computations from the very beginning.

4.4 Conclusion

Wehavemeasured the deformation of a ferrogel sphere in response to a uniform

magnetic �eld by direct optical means. We compare the results for the �rst

time with the models by Landau & Lifschitz (1960) and Raikher & Stolbov
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(2005a, b). From the ratio of the elongation parallel and perpendicular to the
�eld, we calculate Poisson’s ratio, which is close to the value σ = 0.5, which is

expected for an incompressible material. More importantly, the absolute value

of the elongation is 70% larger than the one calculated from the models. �is is

presumable caused by the neglection of the anelasticity and viscous �ow of the

ferrogel. Very recently, Morozov et al. (2009) proposed another model which
incorporates magnetostriction. �e elongation predicted by them is four times

smaller than the elongation computed by Raikher & Stolbov (2005a). �erefore
also this enhanced model can not explain our �ndings.

So further theoretical investigation, including the full viscoelastic properties

of the gel, is needed to explain the experiment quantitatively. With such amodel

one would also be able to compute the dynamic response of the gel under a

sudden change of the external magnetic �eld. �is is not only of fundamental

interest, but also important for possible technical applications of these smart

materials.





5 Rosensweig instability with a
ferrogel

A�er experiments on pattern forming surface de�ections with plain ferro�uids

in the static and dynamic case (chapters 2 and 3), and shape changes of ferrogels

in a simpler geometry (chapter 4), we now move on to pattern formation in

ferrogels. Since magnetic gels are a relatively new class of materials, available

for one and a half decade, intensive research is currently under way to �nd new

applications on the one hand and to explain the basic physical properties on

the other hand. Into the second category belongs the question introduced by

Bohlius et al. (2006a), whether the normal �eld instability also exists in ferrogels
and how the pattern formation di�ers from plain ferro�uids. �is chapter

describes an experimental realization of the instability with thermoreversible

ferrogels. �ese results have been published in So� Matter (Gollwitzer et al.
2009a).

5.1 Introduction

�e Rosensweig instability on the surface of a magnetic liquid is a well-

researched topic. A basic explanation for the spontaneous formation of surface

protuberances balances magnetic energy on the one hand and gravity and sur-

face tension on the other hand. From these, only the magnetic energy favours

the formation of spikes, which decreases the demagnetizing �eld and lowers

the overall energy. In case of a ferrogel, additionally elastic energy comes into

play, which also counteracts the patterned surface. Bohlius et al. (2006a) �rst
address this issue and derive the critical induction Bc by means of a linear sta-

bility analysis from the dynamic equations formulated by Jarkova et al. (2003).
According to their analysis, the threshold Bc can be expressed in terms of the

surface tension σ , the mass density ρ, the gravity g, and of the elastic shear
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modulus G of the gel as

B2c = 2
µ0µr(µr + 1)

(µr − 1)
(
√

σρg +G), (5.1)

where µ0 is the vacuum permeability and µr is the relative permeability of the
ferrogel.

In comparison to the formulae given by Cowley & Rosensweig (1967) for

the normal �eld instability in ferro�uids with G = 0, the threshold value is

increased by the elasticity due to an enlarged “sti�ness” of the surface. On the

other hand, the critical wavelength is independent of the elastic modulus of the

gel and is equal to the capillary wavelength

kc =
√ρg

σ
, (5.2)

as with ferro�uids (Cowley & Rosensweig 1967). In both cases, neither the

critical �eld nor the critical wavelength depend on the viscosity. On a side note,

Bashtovoi (1978) predicts, that the critical wavelength increases drastically with

the elasticity for the case of a ferro�uid layer covered with a thin elastic �lm. In

this chapter, however, we are dealing with bulk elasticity, which, according to

Bohlius et al. (2006a), leaves the wavelength unchanged.
More recently, Bohlius et al. (2006b) derived the �nal pattern which forms

in ferrogels. �ese results are limited to patterns of small amplitude and were

obtained via a minimization of the energy density, similarly to the method used

for ferro�uids by Gailitis (1977) and Friedrichs & Engel (2001). �is weakly

nonlinear analysis makes it possible to discuss the stability of di�erent patterns

and the actual bifurcation scenario. In standard ferro�uids, the Rosensweig

instability is associated with a transcritical bifurcation and exhibits a hysteresis

(Gailitis 1977; Bacri & Salin 1984). Bohlius et al. (2006b) now predicts that this
hysteresis shrinks with increasing shear modulus in the case of a ferrogel.

�e Rosensweig instability in ferro�uids has been studied in many experi-

ments; confer to the review by Richter & Lange (2009). However, its counterpart

in ferrogels is still awaiting measurements. �e reason for this void is that up to

now mostly covalent cross linked polymer gels (Zrínyi et al. 1996; Collin et al.
2003; Filipcsei et al. 2007) have been synthesized. �is process results usually in
rather “hard” gels. Due to their high elasticity and the saturation of the magne-



5.2 Material and Methods 85

tization, one can not excite surface instabilities in these gels even for very high

magnetic �eld strength. Only recently Lattermann & Krekhova (2006) have

invented so� ferrogels which take advantage of thermoreversible, i.e. physically
crosslinked gelators. Contrary to chemically crosslinked, irreversible ferrogels,

their elasticity heavily depends on a thermoreversible sol-gel transition and can

be controlled via temperature. In the following we investigate the Rosensweig

instability in such a thermoreversible ferrogel.

5.2 Material and Methods

5.2.1 Synthesis

We prepared a thermoreversible ferrogel by swelling 5wt.% of a gelator in an oil-

based ferro�uid containing 30wt.% of magnetite particles. �e carrier liquid for

the preparation of the ferro�uid was para�n oil (Finavestan A50B from Total

Deutschland GmbH) with a kinematic viscosity ν = 13.6mm2/s at 20 °C and a
molar mass of 280 g/mol (manufacturer information). �e magnetite particles

were prepared by co-precipitation and stabilized with oleic acid (Lattermann &

Krekhova 2006). Transmission electron micrographs show, that the diameter

of the particles is 8± 1 nm (Krekhova & Lattermann 2008). As a gelator we have

utilized Kraton G 1726 from Kraton Polymers, Belgium, which is a mixture of

30wt.% triblock copolymer and 70wt.% of a diblock copolymer. �e triblock

copolymer is poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) with a

molar mass of M̄W = 77 700 and a polydispersity index PDI = 1.01 (Krekhova

& Lattermann 2008). �e diblock copolymer (SEB) is exactly one half of the

triblock. �e size distribution has been established by means of size exclusion

chromatography. For both the di- and triblock copolymer the styrene content

amounts to 30wt.% (manufacturer information). In comparison with the pure

triblock copolymers used by Krekhova & Lattermann (2008), the diblock acts

here as a plasticizer and lowers the so�ening temperature to 25 °C, according to

the falling ball method (Lattermann & Krekhova 2006). Both the ferro�uid and

the ferrogel reveal no structure in optical micrographs, i.e. they are perfectly

homogeneous down to a sub-micrometer scale. �e ferrogel sample remains

stable for 11⁄2 year without any separation of the �uid phase from the gelator, i.e.

without any syneresis. Likewise, we did not observe changes of the magnetic

properties and the microstructure within this time.
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Figure 5.1: Storage modulus G′ (red cir-
cles) and loss modulus G′′ (blue squares)
versus the temperature for the thermore-

versible ferrogel.

5.2.2 Material properties

For the characterization of the elastic properties we utilize a rheometer

(MCR 301, Anton Paar) in cone-and-plate geometry. �e cone has a diam-

eter of 50mm and a base angle of 1°. �e rheometer is equipped with a Peltier

thermostated temperature device (C-PTD 200/E). Figure 5.1 displays the result

of oscillatory measurements of the shear modulus at 1Hz for a deformation

of γ = 0.01 versus the temperature. G′ and G′′, which denote the real and
imaginary part of the shear modulus, respectively, have a crossover around

31 °C. Above ≈ 45 °C, the sample becomes liquid.

To measure the magnetization curve of the ferrogel, we use the method de-

scribed in section 4.2.3 to produce a sphere of the gel enclosed in an aluminium

container. �e magnetization of the spherical sample was then measured by

means of a �uxmetric magnetometer (Lake shore, model 480) at θ = 20 °C.

Figure 5.2 shows this data. �e sample is superparamagnetic with an initial

susceptibility of χ0 = 0.82. �is data has been �tted with the model of Ivanov &
Kuznetsova (2001), assuming a gamma distribution of the particle diameters

(cf. equation 2.6). We use this model as well to extrapolateM(H) for all sample

temperatures, by evaluating the �t with a di�erent θ, while all other parameters
are held constant. As an example, the dashed line gives the extrapolation for

the maximal applied temperature of θ = 38 °C.

�e density ρ of the ferrogel is measured with the same method used in
section 4.2.3, where the sphere is suspended in a solution of salt. �e density

amounts to ρ = 1085 ± 1 kg/m3.

More cumbersome is an estimate for the surface tension σ . As a rough
estimate, we measure the surface tension of the para�n based ferro�uid the
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Figure 5.2: Magnetization as a function

of the applied magnetic induction for the

thermoreversible ferrogel. �e solid line

represents a least squares approximation

with the model by Ivanov & Kuznetsova

(2001). �e best �t parameters for the

gamma distribution are: exponent α =

8.1± 1.3, mean diameter d0 ⋅ (α+ 1) = 8.1±
0.4 nm, volume fraction ϕ = 3.9 ± 0.09%.

�e core magnetization has been held con-

stant at MF = 446 kA/m. �e dashed line

indicates the prediction for θ = 38 °C with

the above parameters.

gel was created from with a ring-tensiometer (LAUDA TE 2). We get σFF =
28.7mN/m for both the ferro�uid and also the underlying para�n oil that was

used as a carrier liquid for the ferro�uid. For obvious reasons, the tensiometer

can not be directly applied to the ferrogel. Because the gelator is not surface

active, it shall not have a signi�cant in�uence on σ . We therefore use σFF in the
subsequent calculations as the surface tension of the gel.

5.2.3 Setup for measurements of the normal field instability

�e experimental setup is shown in �gure 5.3 (a). To measure the surface

deformation, the two-dimensional X-ray imaging technique is employed, which

is described in detail in section 2.3.1. We record the height pro�les with the

fastest possible frame rate of 7.5Hz. At this rate, an individual frame has a

noise �oor with an RMS value of hRMS = 20 µm in the vertical direction. Only
by averaging many frames (≈ 2000), the theoretical resolution of the detector

of 0.4 µm can be achieved. �e calibration of the absolute height is limited to

≈ 0.1mm by the stability of the X-ray source and the mechanical positioning.

For details see section 2.3.1.

As a container for the ferrogel a thermostated aluminium block of size

(x,y,z)=(60,60,50)mm3 is used in this chapter. A cylindrical bore of 50mm

and a depth of 25mm serves as a vessel for the ferrogel. A bore with the same

diameter, but a depth of 23mm penetrates the block from the lower side, in this

way leaving a bottom plate with a thickness of 2mm (cf. �gure 5.3 a). Utilizing

thermal grease, the vessel is thermally connected to two Peltier elements, as
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Figure 5.3: Experimental setup. (a) Scheme of the setup (not to scale) (b) Photograph of

the temperature controlled container, �lled with ferrogel.

shown in �gure 5.3 (b). �ey are equipped with heat exchangers (1A cooling

Co., type 1A-SL2), which are circulated by water from a closed cooling system

(LAUDA RK20 KP). A thermo-resistor Pt100 serves to monitor the tempera-

ture of the vessel. �e Peltier elements are powered by a DC-current source

(EUROTEST Co., type LAB/SL 230/AI/LT) which is controlled via IEEE from

the computer. By a proportional-integral method, the computer regulates the

temperature of the vessel with a precision of 5mK in the range of −35 °C to

110 °C. �e vessel is covered from above by means of an aluminium plate with a

thickness of 0.5mm. �is lid creates an insulating layer of air above the free

surface of the ferrogel. �is small aspect ratio Γ = h/d ≈ 5 of the container has

been chosen, because the amount of ferrogel was limited.

Prior to each series of measurements, a batch of 12ml of ferrogel is positioned

in the empty vessel. �is amount is molten by heating up the vessel to 90 °C, in

this way creating a �at layer of ferrogel. �en the temperature is lowered to the

desired value for the measurement and held constant.
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(a)

(b)

Figure 5.4: A Rosensweig pattern emerging in ferrogel, measured by radioscopy: (a) cross

section for B = 22.9mT; the transparent material illustrates the size of the aluminium

container; (b) full pro�le for B = 28.1mT. �e black contour lines indicate consecutive

levels with a distance of 1mm.

5.3 Results

5.3.1 Quasistatic Experiments

Figure 5.4 presents characteristic topographies of the ferrogel for subcritical (a)

and supercritical inductions (b). Due to the step-like jump of the magnetization

at the container edge, a �eld gradient arises which attracts the ferrogel towards

the container edge. �erefore ameniscus is formed. Chart (b) shows an example

of the Rosensweig pattern. In the following, the height h of the central peak of
the pattern serves as an order parameter and is estimated by �tting a paraboloid

to the tip of the spike.
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Figure 5.5: Height of the central peak for an increase (upward triangles) and decrease

(downward triangles) of themagnetic induction. �e colour encodes the temperature from

30 °C (blue) to 38 °C (red), as in the legend. (a) Full range. For clarity only every 10th data

point is shown. �e lines are splines to the full data set. �e time for the measurement was

2 h. (b) Zoom of the hysteresis. All data points are shown.
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Figure 5.6: Height of the central peak for

increasing induction (upward triangles)

and for decreasing induction (downward

triangles). �e time between subsequent

data points was doubled from 14.4 s (red

dashed line) to 28.8 s (blue solid line). �e

time for a full cycle from 0mT to 37mT
amounts to 2 h and 4h, respectively.

Figure 5.5 gives the variation of the order parameter for a slow increase

(upward triangles) or decrease (downward triangles) of the magnetic induction

for �ve di�erent temperatures. In the interval from B = 19mT to around 24mT

one notices a monotonic decay. In this regime no spikes exist. However, due

to the formation of a meniscus (cf. �gure 5.4 a), the level of the material in the

central part of the vessel, where h is estimated, decreases. For higher inductions,
we observe a steep increase of h for all curves. It is this regimewhere the ferrogel
spikes are emerging.

Whereas in laterally in�nitely extended liquid layers the transcritical bifurca-

tion gives a proper scaling of the order parameter (Friedrichs & Engel 2001), for

small pools of ferro�uid, imperfections induced by the container edges obscure

the analytical scaling law. In this case, only a numerical model is available (Spy-

ropoulos et al. 2010; Gollwitzer et al. 2009b). In lack of an analytical expression,
we can not extrapolate the values for the critical induction Bc from a �t of

h(B). As an approximation for the threshold of the predicted discontinuous
transition we determine the induction Bmax.up where the amplitude h(B) has
its steepest inclination, i.e. ∂h/∂B = max. It is determined from a spline �t

and listed in table 5.1 for all investigated temperatures. A lower bound for the

threshold is given analogously from the data for decreasing magnetic induction.

It is denoted by Bmax.dn. �e hysteresis, de�ned by Bmax.up − Bmax.dn, is in the
range of 2mT at 30 °C and shrinks to a fraction of 1mT at 38 °C, as shown in

the zoom presented in �gure 5.5 (b).

Next we check, whether the time for a measurement cycle in B has an in-
�uence on the evolution of the order parameter. In �gure 5.6 we present the

results for a measurement cycle of 2 h (red dashed line) and of 4h (blue solid
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Figure 5.7: Time dependent shear modu-

lusG(t, θ) a�er a jump in the deformation
of γ = 0.01 for di�erent temperatures of

the ferrogel. �e temperatures have been

varied from −10 °C to 32 °C.

line) for a temperature of θ = 30 °C, which is the lowest temperature, at which

the measurements discussed beforehand have been performed. One clearly

sees that the hysteresis between the upward- and downward branch shrinks for

longer cycle times. �is variation is in the range of 1mT.

For higher temperatures (and lower G) the in�uence of the cycle time be-
comes even less signi�cant. Notwithstanding, the in�uence of the cycle time

indicates, that we have di�erent time scales in the ferrogel. �ese time scales

will be studied next.

5.3.2 Dynamic Experiments

Stress Relaxation Experiment

In order to characterize the shear modulus G, we perform a stress relaxation
experiment for a series of temperatures. We shear the sample by a deformation of

γ = 0.01 and measure the relaxation of the stress τ while the deformation is held
constant. Figure 5.7 displays the data points recorded for various temperatures

of the sample.

For a speci�c temperature, the restoring force decays drastically during one

second, whichmeans that in our experiment, the shearmodulusG = τ/γ cannot
be treated as constant.

Commonly, a stretched exponential function is used to describe the time

dependent moduli of linear viscoelastic media (Kohlrausch 1854, 1863;Williams
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&Watts 1970; Berry & Plazek 1997; Anderssen et al. 2004)

G(t, θ) = G0(θ) exp
⎛

⎝
−(

t
t0(θ)

)

β
⎞

⎠
. (5.3)

Here, the exponent β is restricted to the range [0, 1], with β = 1 for a simple

exponential decay, and an increasingly broader distribution of relaxation times

for smaller values of β. Moreover, this scaling law was recently observed in the
stress relaxation of a triblock copolymer subject to an extensional strain (Hotta

et al. 2002), and consecutively explained in a model, which assumes that the
copolymer reversibly splits into domains of di�erent size (Baeurle et al. 2005).
�ese domains consist of a regular homogeneous network of PS micelles which

are interconnected by bridging chains of the middle block of the polymer. Also

in our ferrogels, we observe glassy PS micelles arranged in clusters, which are

interconnected by bridging chains of the ethylene-butylene middle block of the

triblock copolymer gelator used. �e size of these domains varies in the range

from 60 to 120nm (Lattermann & Krekhova 2006).

Next, we apply (5.3) to our relaxation data. �e solid lines in �gure 5.7 give

approximations of G(t, θ) with equation (5.3) for di�erent temperatures θ
from θ = 32 °C down to −10 °C. �is temperature range was determined by the

resolution of our rheometer. All the �ts use a common exponent β. �e best
value amounts to β = 0.34 ± 0.01.

�e characteristic relaxation time t0(θ) of the ferrogel drops drastically with
increasing temperature. It varies over six orders of magnitude, as shown in the

Arrhenius plot �gure 5.8. However, the dependence does not make up a straight

line – therefore no simple Arrhenius behaviour with an activation energy can

be inferred.

�us we observe for all temperatures a stretched exponential so�ening under

load with a characteristic scaling exponent near 1⁄3 for all temperatures, while

the characteristic relaxation time t0 varies over six decades. �ese experimental
�ndings are in agreement with the observation of domains (Krekhova & Latter-

mann 2008) and the predicted scaling law based upon a reversible splitting of

domains (Baeurle et al. 2005).
For t →∞, the time dependent shear modulus G(t, θ) approaches 0. �is

means, that we have a viscoelastic so� magnetic material, without any long
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Figure 5.8: Arrhenius plot of the charac-

teristic relaxation time. �e data stem

from �ts of (5.3) to the measurements pre-

sented in �gure 5.7.

term elasticity.

Periodic Driving Magnetically

In the e�ort of constraining G to some �nite value, we are next selecting a
speci�c time scale. We periodically drive the imposed magnetic induction

according to

B(t) = B0 + ∆B sin(2π fD t). (5.4)

Here, B0 denotes the bias value, ∆B = 1.6mT the driving amplitude, and fD =

1Hz the driving frequency of the induction imposed by the Helmholtz-pair-of-

coils. For each sample temperature, we measure the surface response for 24

di�erent values of B0. For small B0, the surface oscillates with fD around its
meniscus-like shape, which becomes alternatingly more and less pronounced

concave. Beyond a threshold, spikes appear which oscillate with the amplitude

∆h around a mean height h̄ with the driving frequency. For the whole range of
values, we observe a harmonic response which can be described by

h(t) = h̄ + ∆h sin(2π fD t + ϕ). (5.5)

In order to determine the quantities h̄ and ∆h, we measure the absorption
of X-rays in the oscillating surface pattern by means of an X-ray movie. For

each data point we record n = 2200 frames with a frame rate of 7.5Hz. Each

absorption picture is transformed into a height pro�le hn(x , y). From the series



5.3 Results 95

of height pro�les, we extract the desired quantities via the equations

h̄(x , y) =
1

n

n
∑
1

hn(x , y)

hsin(x , y) =
n
∑
1

sin(2π fDn∆t) hn(x , y)W(n∆t)

hcos(x , y) =
n
∑
1

cos(2π fDn∆t) hn(x , y)W(n∆t)

∆h(x , y) =

√

h2sin(x , y) + h2cos(x , y) sgn(hsin),

with

sgn(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−1 ∶ x < 0
0 ∶ x = 0
+1 ∶ x > 0

(5.6)

�e time delay between two consecutive frames amounts to ∆t = (1/7.5) s,

andW(t) = N exp (−(t − t1/2)2/s2) denotes a normalized Gaussian window
function with s = 0.4 t1/2 and its centre at t1/2, i.e. at the half of the measured
time interval.

Figure 5.9 (a) displays the time averaged height of the central extremum

of the surface estimated in this way from the series of measurements at �ve

di�erent temperatures. In the interval from B0 = 0mT to around 24mT one
notices again a monotonic decrease of the central height, due to the growth

of the meniscus at the container edge. For higher inductions, ferrogel spikes

appear which again lead to a steep increase of h̄ for all curves.
Also here, we use the maximal inclination of h̄(B0), which is determined

from a spline, as an estimate for the threshold. It is denoted by B̃max.up and
is listed in table 5.1 for all temperatures investigated. �is estimate for the

threshold is shi�ed for higher temperatures towards higher �elds. �e shi�

amounts only to ≈ 0.5mT.

Next, we present the oscillation amplitude ∆h of the central spike, as shown
in �gure 5.9 (b). �e amplitude is increasing with increasing temperatures,

i.e. larger for a so�er ferrogel. From the maximal increase, we determine an

additional estimate for the threshold ∆B̄max.up. �e results are listed in table 5.1.
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Figure 5.9: Amplitude of the central peak of the surface pattern (cf. �gure 5.4) versus the

bias of the magnetic induction B0. (a) Time averaged height h̄ (b) Oscillation amplitude
∆h (c) Rescaled oscillation amplitude ∆h ⋅ ∣η∗∣. �e lines stem from a spline �t. �e colour
encodes the temperature the same way as in �gure 5.5.

Once more the shi� for di�erent temperatures is only ≈ 0.5mT.

�e X-ray movies of our oscillating spikes show, that the response is always

harmonic and never sub-harmonic. �is is also true for a driven harmonic

oscillator. For strong damping and a driving frequency not much smaller than

the resonant frequency, the amplitude of an oscillator is inverse proportional

to the damping constant. To uncover such a scaling in our measurements, we

plot the rescaled amplitude ∆h ⋅ ∣η∗∣ in �gure 5.9 (c), where ∣η∗∣ = ∣G∣/ω is the
absolute value of the complex viscosity. Within the experimental resolution,

the graphs collapse onto a master curve. �is indicates that the increase of

∆h(B) under variation of θ stems solely from the so�ening of the ferrogel.
�erefore, one possible simpli�ed explanation for our experiment could be an
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oscillator, where the driving force comes from the magnetic stress at the edge

of the container and the viscosity provides the damping.

5.3.3 Comparison of the thresholds with predictions

Now we want to take a closer look at the experimentally determined thresholds

of the Rosensweig instability and how they compare to the predictions by

Bohlius et al. (2006b). For a ferro�uid, the threshold can be computed from
the nonlinear magnetization curve, the density ρ and the surface tension σ via
the linear stability analysis according to the book by Rosensweig (1985), § 7.1.

�e critical magnetizationMc of the �uid layer is given by

M2
c =

2

µ0
(1 +

1

rc
)
√
gρσ . (5.7)

Here rc =
√µchµt/µ0 denotes the geometrical mean of the chord permeabil-

ity µch = B
H ∣Hc

and the tangent permeability µt = ∂B
∂H ∣Hc

at the critical �eld.

Together withM(H) and the jump condition of the magnetic �eld at the base

of the dish, B = µ0 [H +M(H)], the critical induction can be determined from

these implicit equations.

For a ferrogel with a Hookean shear modulus G and a linear magnetization
curve, Bohlius et al. (2006b) provide the expression (5.1). We combine this
equation with equation (5.7) for a non-linear M(H) to get the more general

form

M2
c =

2

µ0
(1 +

1

rc
) (

√
gρσ +G). (5.8)

If either one of the elasticity (G ≠ 0) or non-linearity (M ≠ χH) is le� out, this
equation reduces to (5.1) or (5.7), respectively.

In table 5.1, we present the calculated critical inductions BcFG according to
equation (5.8). For all calculations, we utilize the storage modulus G′(1Hz) as
determined by the oscillatorymeasurements (cf. �gure 5.1). �e other properties

entering equation (5.8) are taken from section 5.2.2, accordingly. Speci�cally

the surface tension is not well known for our gel. �e value used here was

σFF = 28.7mN/m. Calculations for σ = 35mN/m show that a variation of σ
does not change BcFG by more than 5%.
�e comparison between the experimentally determined thresholds in ta-
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Figure 5.10: Temperature depen-

dence of the thresholds. �e

black upward (downward) trian-

glesmark Bmax.up (Bmax.dn) for an
adiabatic increase (decrease), re-

spectively. �e shaded area in be-

tween denotes the hysteresis. �e

blue circles and red diamonds

show B̃max.up (∆B̃max.up), respec-
tively. �e dashed line is just a

guide for the eye. �e theoretical

value for a ferro�uid is displayed

by the solid line.

ble 5.1 and the predictions by Bohlius et al. (2006b) reveals two prominent
di�erences.

Firstly, we observe a decrease of the hysteresis of the pattern amplitude for a
decrease of G, i.e. higher temperatures, when the magnetic induction is varied
in a quasi-static manner. �is hysteresis is denoted in �gure 5.10 by the shaded

area and the upward and downward oriented full triangles. In contrast, Bohlius

et al. (2006b) predict an increase of the hysteresis under reduction of G for a
ferrogel with Hookean elasticity.
�is can be explained from the temperature dependent relaxation process

of the ferrogel. �e relaxation times are increasing from τ ≈ 0.01 s (at 32 °C)

to τ ≈ 10000 s (at −10 °C). At the same time the measurement protocol for a

full ramping of the magnetic induction was kept at 2 h. �e hysteresis increases

because the material needs more and more time to follow a variation of B. We
have checked that by increasing the cycle time from 2h to 4h. �e hysteresis

was diminished, as shown in �gure 5.6.

Secondly, whereas G′(1Hz) varies in the investigated temperature range over
two decades (cf. �gure 5.1), the threshold of the instability is varying only within

10%. �is is in contrast to the model (Bohlius et al. 2006b) for a ferrogel with
Hookean elasticity. However we found a di�erent mechanical behaviour of our
material. �e shear modulus is strongly time-dependent and even vanishes for

t →∞.

In an attempt to select a speci�c, �nite value forG, wemodulated themagnetic
induction with a �xed amplitude and a frequency of 1Hz and applied this

magnetic driving together with a magnetic bias induction B0. Under increase of
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B0 a threshold is overcome and we observe a steep increase of the time averaged
peak height h̄. �emagnetic induction at which this transition occurs is marked
in �gure 5.10 by the blue �lled circles. Also the oscillation amplitude ∆h shows
a steep increase under variation of B0. �e corresponding thresholds are shown
in �gure 5.10 by red diamonds. Within the experimental scatter both thresholds

coincide. Similar to the static experiment, their values vary only in fractions of

1mT under decrease of the sample temperature θ.
In contrast, the theoretical value, estimated according to (5.8) at G′(1Hz),

increases drastically under decrease of θ, as shown in �gure 5.11. Only for high
temperatures, the experimental and theoretical values are close to each other.

For lower temperatures, the gap between them increases drastically. According

to (5.8) it even diverges at a critical shear modulus of

Gc =
µ0
4
M2
S −

√
ρgσ = 77.8 Pa. (5.9)

For our gel, the saturation magnetizationMS of the ferrogel amounts toMS =
14.7 kA/m and the divergence occurs at θ = 31.7 °C. Obviously, there is a mis-

match of our complex, so� material and the linear model (5.8) when imple-

menting G′(1Hz).
Let us look more closely on the small variation of the experimentally deter-

mined thresholds in �gure 5.10. We see that under an increase of the temperature

all estimates for the onset of the instability are slightly shi�ed to higher induc-

tions. �is shi� can be understood from the fact that for increasing θ the mag-
netization diminishes. Utilizing theM(H, θ)-model by Ivanov & Kuznetsova
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(2001), we have taken into account this e�ect. �e corresponding results for

BcFF are marked in �gure 5.10 by the solid line. �e good agreement between
the experiment and the plain Rosensweig estimate for the threshold computed

in this way indicates that the shear modulus G′(1Hz) has no in�uence on the
threshold at all.

5.4 Conclusion

To conclude, we conducted the �rst measurements of the Rosensweig insta-

bility in thermoreversible ferrogels. �e present material shows a complex

viscoelastic relaxation process with an interesting critical exponent β ≈ 1⁄3 ,

for experiments carried out in the time domain. It is possibly explained by a

reversible splitting of the polymer network into domains of di�erent size (Lat-

termann & Krekhova 2006; Baeurle et al. 2005). Due to this relaxation, the
threshold of the Rosensweig peaks is not much di�erent from the Rosensweig

instability in ferro�uids under an adiabatic increase of a static magnetic �eld.

However, the time scales are much slower. �is is especially pronounced for the

lower part of the investigated temperature range. Experiments with a periodic

modulation of the magnetic �eld show that the complex viscosity can be used
to describe the response of the ferrogel.

Such a complex elastic behaviour, however, is unsuitable to proof or rebut the

model of the Rosensweig instability by Bohlius et al. (2006b), which was derived
for just a Hookean shear modulus. Certainly so�matter with �niteG for t →∞

would come closer to that model. One may think that a ferrogel with a higher

gelator concentration will serve this aim. However, as a consequence for such a

gel, the instability is completely hindered by the strong elastic modulus. Un-

fortunately, the amount of magnetite cannot be increased further to overcome

the critical magnetization (5.8). Here, magnetic gels incorporating particles

with a higher saturation magnetization could solve this problem. Despite some

attempts, with e.g. cobalt particles, such gels are not yet available.
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Table 5.1: Critical inductions for various temperatures: BcFF gives the results of (5.8) for
G = 0Pa, i.e. for a virtual ferro�uid with otherwise the material parameters of the ferrogel.

BcFG (mT) is estimated from G′ at 1Hz and the measured value of σ . Experimentally, the
thresholds were determined from the maximal inclination of h(B), as marked by Bmax.up
for increasing B and Bmax.dn for decreasing B. From the oscillatory measurements we de-
termine the maximal inclination of h̄(B), marked by B̃max.up, and the maximal inclination
of ∆h(B) abbreviated by ∆B̃max.up

θ BcFF BcFG Bmax.up Bmax.dn B̃max.up ∆B̃max.up
(°C) (mT) (mT) (mT) (mT) (mT) (mT)

30 24.76 ∞ 25.36 23.43 24.35 24.40

32 24.90 587.09 24.99 23.73 24.36 24.28

34 25.04 83.17 24.76 24.02 24.44 24.39

36 25.18 32.51 24.81 24.39 24.64 24.63

38 25.32 28.03 24.91 24.62 24.83 24.87





6 Conclusion

In this thesis, four di�erent experiments with magnetic continua in homoge-

neous �elds have been performed. �ese magnetic continua are synthetically

created superparamagnetic liquids and gels, the magnetism of which is based

on a dispersion of nanosized magnetic particles. Table 6.1 gives an overview

of the distinct properties of each experiment (a) along with what has been

achieved in the theoretical analysis so far and what would be the most impor-

tant improvement (b), considering the experimental results.

Two geometric con�gurations are considered: a horizontally extended �at

layer with a free surface as well as a spherical sample. In both cases, the appli-

cation of a homogeneous magnetic �eld leads to changes of the shape of the

free boundary. In the case of the spherical geometry, the sample is deformed

into a prolate ellipsoid under the action of the �eld, a phenomenon named

“magnetodeformational e�ect” by Raikher & Stolbov (2003). �e magnetic �eld

presumably remains homogeneous inside the ellipsoidal sample (Jackson 1998),

and the transition of the shape is smooth. In case of the extended �at layer, an

abrupt shape transition into a patterned state takes place, the normal �eld or

Rosensweig instability. �e magnetic �eld inside the sample is distorted by the

Experiment Ferro�uid Ferrogel Static Dynamic Rosensweig

Single spike (2) ✓ ✓ ✓
Rosensweig dynamics (3) ✓ ✓ ✓
Ferrogel sphere (4) ✓ ✓ ✓
Ferrogel Rosenweig (5) ✓ ✓ ✓

(a)

�eory Analytic Numerics Static Dynamic Challenge

Single spike (2) ✓ ✓ analytic expression

Rosensweig dynamics (3) ✓ ✓ nonlinear dynamics

Ferrogel sphere (4) ✓ ✓ viscoelasticity

Ferrogel Rosenweig (5) ✓ ✓ viscoelasticity

(b)

Table 6.1: Overview of the experiments performed in this thesis (a) and the features of the

existing theoretical work (b).
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transition with the same wavelength as the pattern on the surface. In contrast

to the smooth deformation of the sphere, this is an instability, which breaks the

translational symmetry, and the transition occurs at a certain threshold value

of the magnetic induction Bc .

�ese two shape transitions have already been known. However, in the case

of the ferrogel sphere (chapter 4), an experimental realization was completely

missing, even though theoretical predictions exist since 1960. Chapter 4 �lls

this gap and demonstrates that the magnetodeformational e�ect indeed exists

and can even be exploited to measure Poisson’s ratio of a so� gel, but it raises

new questions. Speci�cally the viscous �ow of a so� gel is not accounted for

in the static theories, which makes the results di�cult to compare. �erefore

the experiment challenges the theoretical analysis to provide a dynamic the-

ory, which can incorporate viscoelastic material properties, especially time

dependent elastic moduli.

In the case of the normal �eld instability, the experiments in this thesis shed

light on di�erent limiting cases. In chapter 2, the ideal geometry of an in�nitely

extended �at layer is intentionally reduced to a cylinder such that only a single

spike in the centre exists, and the solution space becomes rotationally sym-

metric. Two distinct experimental techniques and numerical simulations, the

latter performed in close cooperation by a group in Athens, show a convincing

agreement within a few percent. It remains an open question, whether the result

can be deduced in analytic form, however.

In chapter 3, the nonlinear dynamics of the normal �eld instability is stud-

ied at very low Reynolds numbers. �e linear growth rate for the growth and

decay of the pattern at small amplitudes is extracted from the measurements

and compared with existing theories, which are mainly restricted to the linear

regime. Nonlinear amplitude equations exist, but they can only describe the

dynamics of the growth in the immediate vicinity of the critical point so far.

Utilizing a highly viscous �uid, the experiments in chapter 3 allow a recon-

struction of a fully nonlinear amplitude equation, which can serve as a basis for

the comparison to further theoretical analysis. Additionally, localized patterns

are observed which arise spontaneously in the neighbourhood of the unstable

solution branch. An in-depth experimental study and theoretical analysis of

this phenomenon can be performed in future work.

�e dynamics of the normal �eld instability is also utilized as a tool in chap-

ter 5, which deals with the experimental realization of the instability in a ferrogel.
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Figure 6.1: Relations between the experiments. �e numbers and the terms in boldface

represent the four main chapters of this thesis. �e common properties between them are

marked in italics along the connecting lines (solid and dashed).

In contrast to chapter 3, where a Newtonian �uid is used, now a viscoelastic

ferrogel is employed. �is is a consequence of the need for a very so� material,

such that the growth of the pattern is not completely suppressed by the elastic

forces. �e theory by Bohlius et al. (2006b), on the other hand, does not ac-
count for viscoelastic e�ects. An extension of the theory, which incorporates

viscoelasticity and an external driving, is therefore needed to quantitatively

compare the experimental results with, similar to the case of the ferrogel sphere.

All the experiments in this thesis are interconnected by various features into a

graph, as described in the previous paragraphs, and share the common property

of homogeneous magnetic �elds. �ese relations are visualized in �gure 6.1.

To conclude, the surface deformation of magnetic continua in homogeneous

�elds has been examined on the basis of four phenomena. Each experiment

reveals a �eld which is not yet completely understood and poses a challenge to

the theoretical analysis, as seen in table 6.1 (b). Further experimental work can

be directed towards unexplored phenomena such as the spontaneous formation

of localized patterns.
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