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Erforschung von riesigen SPARQL Anfragesammlungen:
Erkennung von Struktur und Regularität zur
Optimierung von Datenbanksystemen

Deutsche Kurzfassung

Nachdem das Word Wide Web erfolgreich in das Leben von Menschen überall
Einzug gehalten hatte, bereitete es den Weg für das Semantic Web. Während
das Word Wide Web zur menschlichen Nutzung konzipiert worden inst, soll
das Semantic Web Maschinen die Verarbeitung von Daten erleichtern. Zu
diesem Zweck werden Daten als Ontologie statt mit klassischen relationalen
Datenbanken modelliert.

Die vorliegende Arbeit befasst sich mit der Erforschung von riesigen
Sammlungen von Anfragen für semantische Datenbanken. Konkret wurden
über eine halbe Milliarde Anfragen untersucht. Die vom World Wide Web
Consortium (W3C) entwickelte Spezifikation Resource Description Frame-
work (RDF) hat sich als Standard zur Abbildung von semantischen Daten
etabliert. Als zugehörige Sprache für Anfragen ist das SPARQL Protocol and
RDF Query Language (SPARQL, ein rekursives Akronym) vom W3C ent-
wickelt worden.

Es gibt mehrere große öffentliche Datenbanken die semantische Daten
zur Verfügung stellen. Die Nutzung dieser Endpunkte ergibt sich aus deren
Protokollierung. Diese Aufzeichnungen liefern Anfragesammlungen, die Auf-
schluss über die tatsächliche Nutzung der Daten und der Funktionen von
SPARQL geben können. Untersucht wurden zwei primäre Quellen für An-
fragen: Eine gemischte Sammlung, die hauptsächlich von USEWOD stammt,
und öffentlich verfügbare Anfragesammlungen von Wikidata. Die gemischte
Sammlung besteht hauptsächlich aus Anfragen von DBpedia, aber sie enthält
auch Quellen wie LinkedGeoData, OpenBioMed und BioPortal.

Das Ziel der Untersuchungen in dieser Arbeit ist die Daten der Anfrage-
sammlungen zu ordnen und deren Inhalt zu verstehen, so dass Trends erkannt
und Einsichten aus den Anfragesammlungen gewonnen werden können, wel-
che Verwendung haben, um auch zukünftige Richtungen zur Erforschung und
Optimierung von Datenbanken und verwandten Technologien aufzuzeigen.
Leitende Fragen bei der Forschung kommen aus dem Gebiet der Evaluie-
rung, Optimierung und Leistungsmessung von Anfragen.

Es stellt sich heraus, dass mehrere Beobachtungen getroffen werden
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können und daraus verschiedene interessante Schlüsse gezogen werden
können. So ist etwa eine sehr große Anzahl von Anfragen sehr einfach.
Ferner ist es möglich, die Form der meisten auch komplexeren Anfragen
durch Formen zu beschreiben, die günstige Eigenschaften hinsichtlich der
Evaluierung haben. Ferner ist es möglich, Unterschiede bei Anfragen zu
sehen, je nachdem ob sie von Menschen oder Maschinen stammen.

Es gab in der Vergangenheit bereits einige Studien von SPARQL Samm-
lungen [Ari+11]; [Han+16]; [Möl+10]; [Sal+15], aber der Fokus lag dabei le-
diglich auf statistischen Eigenschaften. Wikidata Anfragen wurden kürzlich
als erstes von Malyshev et al. [Mal+18] und Bielefeld et al. [BGK18] unter-
sucht. Allerdings gibt es mehrere Unterschiede bei diesen Untersuchungen.
Sie führen keine tiefe strukturelle Untersuchung wie in dieser Arbeit durch.

In dieser Arbeit werden mehrere neuartige Ansätze und Techniken vor-
gestellt, wie die Analyse der Formen von Anfragen, der Studie von temporalen
Aspekten in Anfragesammlungen oder die Untersuchung der Ähnlichkeit in
Strukturen von Anfragen. Die Ergebnisse dieser Arbeit sind vollständig re-
produzierbar, die entsprechende Software ist unter einer Open-Source Lizenz
veröffentlicht und bietet weitere Funktionen zur Erkundung und Erforschung
von Anfragesammlungen.

Wir werden nun eine Übersicht zu den Kapiteln geben.

Kapitel 2 gibt eine Übersicht über die vorhandenen Daten und deren Ei-
genschaften durch Analysen unter einfacheren Gesichtspunkten. Dazu führt
es zunächst die verschiedenen Endpunkte, d.h. die Quellen, für die Daten
ein. Danach werden Grundlagen für die späteren formalen Schritte erklärt.
Damit ausgestattet werden Analysen zu Größen und Zusammensetzung der
Bestandteile und Funktionen der Anfragen ausgeführt.

Die prominentesten Quellen für Anfragen in dieser Arbeit sind Wikidata
und von USEWOD zur Verfügung gestellte Datensätze, darunter besonders
von DBpedia, aber auch andere Quellen wie LinkedGeoData, OpenBioMed
und BioPortal (Abschnitt 2.1). Bei den Analysen werden dabei als Eintei-
lung zwei große Datensätze unterschieden: Zum einen die Anfragen von he-
terogenen Quellen von vornehmlich USEWOD, zum anderen die homogenen
Anfragen von Wikidata.

Bevor eine komplexere strukturelle Analyse vorgenommen wird, beschäftigt
sich Kapitel 3 gesondert mit den Prädikaten in den Anfragen, ein Aspekt, der
für die spätere strukturelle Analyse wichtig ist, besonders für Anfragen von
Wikidata. Prädikate in SPARQL können nicht nur aus einfachen Atomen
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bestehen, sie können eine Form von regulären Ausdrücken annehmen, was
Auswirkungen auf die Auswertung von Anfragen haben kann, so dass diese
Frage von Bedeutung ist.

Nach der Betrachtung von allgemeinen Eigenschaften von Anfragen wird
in Kapitel 4 schließlich auf die inneren Strukturen und die damit verbun-
denen Komplexität eingegangen. Dabei werden zunächst die Ergebnisse aus
der Vorarbeit bei der allgemeinen Betrachtung relevant, es wird erläutert wie
die Zusammensetzung der Anfragen eine differenzierte Einteilung erfordert.
Jeder Operator in SPARQL muss berücksichtigt werden, da eine bestimmte
Verwendung dazu führen kann, dass sich die Komplexität der Anfrage ändert.
So wurde insbesondere zuvor erforscht, wie die Operatoren für optionale Ele-
mente und zur Filterung Auswirkungen haben können.

Nach der Formulierung eines Plans zur Einteilung der Anfragen wird die
Struktur von Anfragen schließlich untersucht. Dabei soll die Struktur Auf-
schluss über die Komplexität der Anfragen liefern. Viele Anfragen lassen sich
dafür als Graph betrachten, es gibt allerdings Ausnahmen, die eine erweiterte
Betrachtung als Hypergraph erfordern. Es stellt sich heraus, dass eine große
Anzahl von Anfragen sehr einfach ist. Sie bestehen oft aus nur einem Tri-
pel, sie lassen sich sehr oft mit einer Baumstruktur beschreiben. Wenn sie
zyklisch sind, dann oft nur sehr eingeschränkt.

Ferner stellt sich heraus, dass die meisten Anfragen sich mit einer Struk-
tur beschreiben lassen, die aufgrund ihres Aussehens als ”Blume“ bezeichnet
wird. Als Maß für die Komplexität von zyklischen Anfragen wird die soge-
nannte Baumweite für Graphen und Hypergraphen (Abschnitt 4.2.2) heran-
gezogen, was die Aussagen genauer quantifiziert. Für andere Strukturen wer-
den ebenfalls andere Maße wie Tiefen und Verzweigungen (Abschnitt 4.2.3)
zur genaueren Quantifizierung untersucht.

In Kapitel 5 wird eine Reihe gänzlich neuer Ansätze vorgestellt. Dabei
wechselt die Sicht der Analyse. Anstatt einzelne Anfragen zu untersuchen
wird versucht, die Anfragen in der Gesamtheit zu analysieren. Die Fragestel-
lung ist, ob es in den Anfragesammlungen einen temporalen Zusammenhang
von Anfragen gibt. Dabei werden Erkenntnisse über die Entwicklung von
Anfragen gewonnen, es werden Aspekte wie Fehler und Veränderungen der
Form und Größe betrachtet.

Für diese Untersuchung ist ein Maß für die Ähnlichkeit von Anfragen
wichtig. Dabei wird zunächst ein Zeichenketten-basierter Ansatz genommen,
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danach wird ein Ansatz auf Basis des Syntaxbaums einer Anfrage vorgestellt,
welcher effizient für die Suche von Anfragen ist.

Kapitel 6 befasst sich mit der Software, die für die Erforschung aller
vorangegangen Fragen entwickelt wurde. Die Software ist unter einer Open-
Source Lizenz veröffentlicht und kann somit kontrolliert, verwendet und wei-
terentwickelt werden. Unter Verwendung von öffentlichen Datensätzen wie
von Wikidata lassen sich sämtliche Ergebnisse reproduzieren. Das Kapitel
gibt einen Überblick über die Architektur und die Reproduzierbarkeit der
Ergebnisse dieser Arbeit. Für die Erforschung der Anfragen war es zunächst
wichtig, überhaupt Regelmäßigkeiten zu erkennen, so dass die Software Werk-
zeuge zum Auffinden von Erkenntnissen entwickelt wurde. Dieser interaktive
Software-Aspekt wird ebenfalls vorgestellt.

Zusammenfassend wird in Kapitel 7 noch einmal auf die Ergebnisse und
Erkenntnisse zurück geblickt und zukünftige Forschungsaspekte angespro-
chen.

Die meisten Ergebnisse, die auf dem heterogenen Datensatz basieren, sind
in [BMT17a] veröffentlicht worden. Darauf aufbauend wurde eine signifikan-
te Erweiterung dieser Untersuchungen in [BMT19a] veröffentlicht. Die mei-
sten Ergebnisse zu Wikidata Datensätzen wurden in [BMT19b] veröffentlicht.
Der verwendete Code und zusätzliche Erweiterungen wurden mit [BMT18]
veröffentlicht. Die Veröffentlichungen sind aus einer Zusammenarbeit mit An-
gela Bonifati und Wim Martens entstanden. Die gesamten technischen Um-
setzungen sind dabei ausschließlich vom Autor dieser Arbeit durchgeführt
worden.

Da in den Publikationen nicht nur andere Datensätze betrachtet wurden,
sondern auch unterschiedliche Aspekte untersucht wurden, sind in dieser Ar-
beit die Aspekte ergänzt worden, die in anderen Publikationen nicht vorhan-
den waren, oder die aus Platzgründen in den Veröffentlichungen ausgelassen
wurden. Zusätzlich wurden weitere Aspekte zu dem Aufbau der Software
ergänzt.
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1
Introduction

After the World Wide Web successfully penetrated the lives of people ev-
erywhere, it gave rise to the Semantic Web. Whereas the World Wide Web
started to be used by humans, the Semantic Web is meant to facilitate ma-
chines to process data. To this end, data is modelled as ontology as opposed
to storing it in classical relational databases.

The work presented here deals with the research of large-scale collec-
tions of queries for semantic databases. Specifically, more than half a billion
queries are investigated. The World Wide Web Consortium (W3C) specifi-
cation Resource Description Framework (RDF) became the prominent stan-
dard for modelling semantic data. As corresponding language for query-
ing, the SPARQL Protocol and RDF Query Language (SPARQL, a recursive
acronym) was developed by the W3C.

There are various large-scale public databases that offer semantic data for
querying. These public endpoints log their usage for various purposes. These
logs can offer insight into the actual usage of data and features in SPARQL.
We investigate two primary sources for queries: A diverse collections mostly
obtained from USEWOD, and publicly available query logs from Wikidata.
The diverse collections consists mostly of logs from DBpedia, but it also
includes sources such as LinkedGeoData, OpenBioMed, and BioPortal.

The goal of the study in this work is to organize the data in the logs to
make sense of it, so trends and insights on the nature of queries in the logs
can be identified, which can be used to derive future directions for optimizing
database systems that handle linked data and technology surrounding this
topic. Therefore, questions guiding the research are from topics such as query
evaluation, query optimization, tuning, and benchmarking.

It turns out that quite a few observations can be made and it allows to
draw several interesting conclusion. For instance, a very large number of
queries is extremely simple. It is possible to describe the shapes of most
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1. INTRODUCTION

queries, even more complex ones, with a shape that has favorable properties
regarding the efficiency of evaluation. Furthermore, there are differences
in queries originating from humans when compared to machine-generated
queries.

There have been studies of SPARQL query logs in the past, such as
[Ari+11]; [Han+16]; [Möl+10]; [PV11]; [Sal+15], but the focus was mainly
focused on statistical features. Wikidata logs have been studied first rather
recently by Malyshev et al. [Mal+18] and Bielefeld et al. [BGK18]. However,
there are several differences in their study. They do not perform a deep
structural study that is performed in this work.

In this work, several novel, new approaches are taken such as the analysis
of shapes of queries, the study of logs with a temporal analysis, and the
investigation of query similarity based on structure. Results are entirely
reproducible, the accompanying software is made available under an open-
source license, and it can be used to explore logs in addition to analyzing
them.

We will now give a short overview of the chapters.

Chapter 2 gives and overview of the data sets at hand and their prop-
erties by looking at more general properties. To this end, first the different
endpoints are introduced, i.e. the sources for queries. Next, basic concepts
for further steps are introduced. With this, we run through a series of anal-
yses for insights on size and composition of various parts and features found
in queries.

The two primary sources for queries in this work are Wikidata and data
sets provided by USEWOD, and for it most notably DBpedia, but it also
includes sources such as LinkedGeoData, OpenBioMed, and BioPortal (Sec-
tion 2.1). For the analyses, two collections of data sets are considered as
main division: on one hand the queries from heterogeneous sources mainly
from USEWOD, on the other hand the homogeneous queries from Wikidata.

Before turning to a more complex, structural analysis, Chapter 3 deals
with predicates in SPARQL separately, which will become important in the
structural analysis later, especially for queries in Wikidata. Predicates in
SPARQL can not only consist of simple atoms, they can also use a form of
regular expressions, which can have an impact on the evaluation of queries,
which explains the importance of exploring this topic.
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After examining general properties of queries, Chapter 4 finally turns
to the inner structure of queries and the complexity resulting from it. To
this end, the groundwork from previous results we examined in our more
general results become relevant again, we start looking at the composition
of queries in order to get a sensible partitioning of our data. Operators in
SPARQL must be carefully considered, because certain usages can lead to
changes in complexity for evaluating queries. For instance, previously, the
study of operators for optional elements and filtering were a topic of intensive
research.

After formulating a plan for dividing our queries, the inner structure of
queries is studied. More specifically, the structure should provide insight
into the complexity of queries. Most queries can be interpreted as a regular
graph, but there are exceptions that require an extended study of queries
as hypergraphs. It turns out that an overwhelming majority of queries is
extremely simple. Often they can consist of only a single triple, their shape
can often be captured with trees. If they have any cyclicity, they are often
only mildly cyclic.

Additionally, it turns out that most queries can be captured with a sim-
ple shape that is called “flower”, named after its appearance. A measure for
complexity of cyclic queries is treewidth in the context of graphs and hyper-
graphs (Section 4.2.2), which can be used to quantify this more precisely.
Other measures for queries such as depth and branching (Section 4.2.3) are
studied as well.

Chapter 5 introduces several completely new novel approaches. We
switch from considering only isolated queries with no regard for the order
in logs to investigating query logs as a whole. The goal of this is to find out
if a temporal aspect in queries can be observed. New insights can be gained
from this, we will examine aspects such as errors and changes in form and
sizes of queries. For this research, a measure for query similarity is impor-
tant. We begin with a string-based approach, then we turn to an approach
based on the abstract syntax tree of queries, which is also useful for searching
for queries efficiently.

Chapter 6 focuses on the software that was developed for studying all
previous research questions. The code for the software is made available as
open-source, and as such, results can be confirmed, and it can be used and
extended. By taking public data sets such as Wikidata, the results presented
in this work are fully reproducible. The chapter gives an overview about the
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1. INTRODUCTION

architecture of the software and outlines how to reproduce the results for
validation. When starting out the research of queries, it was important to
find any kind of regularity and trends with the queries, which lead to the
development of several tools to aid in this. This interactive software aspect
is presented as well.

Concluding things, in Chapter 7 the results and insights that are gained
from them are reflected upon, and future work is discussed.

Most results for the heterogeneous data sets are published in [BMT17a].
Building on these results, a significant extension of these studies is published
in [BMT19a]. Most results dealing with Wikidata queries are published in
[BMT19b]. The code for obtaining results, along with additional extensions,
is published with [BMT18]. These publications resulted from a collaboration
with Angela Bonifati and Wim Martens. The entire technical realization is
done solely by the author of this work.

Because the publications not only deal with different data sets, but also
with different aspects, this work contains additional results to complete these
gaps, which are not part of the published results, either because they are new
or were omitted for space reasons. Additionally, more details regarding the
software have been added.

1.1 Motivation, Overview, and Background
Ontological Query Logs As more and more data is exposed in RDF for-
mat, we are witnessing a compelling need from end-users to formulate more
or less sophisticated queries on top of this data. SPARQL endpoints are
increasingly used to harvest query results from available RDF data reposito-
ries. But how do these end-user queries look like? As opposed to RDF data,
which can be easily obtained under the form of dumps (DBpedia and Wiki-
data dumps [DBP17]; [VK14]; [Wik17]), query logs are often inaccessible, yet
hidden treasures to understand the actual usage of these data. In this work,
we investigate a large corpus of query logs from different SPARQL endpoints,
which spans over several years (2009–2017). In comparison to previous stud-
ies on real SPARQL queries [Ari+11]; [Han+16]; [Möl+10]; [PV11]; [Sal+15],
which typically investigated query logs of a single source, in this work, a
multi-source query corpus that is two orders of magnitude larger is consid-
ered. Furthermore, the analysis goes significantly deeper. In particular, it
is the first to do a large-scale analysis on the topology of queries, which has
seen significant theoretical interest in the last decades (e.g., [CR97]; [GLS02];
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1.1. Motivation, Overview, and Background

[Got+16]) and is now being used for state-of-the-art structural decomposi-
tion methods for query optimization [Abe+16a]; [Abe+16b]; [KEK17]. As
a consequence, this is the first analytical study on real (and most recent)
SPARQL queries from a variety of domains reflecting the recent advances in
theoretical and system-oriented studies of query evaluation.

The work makes the following contributions. Apart from classical mea-
sures of syntactic properties of the investigated queries, such as their key-
words, their number of triples, and operator distributions, which is also ap-
plied to the corpus, we also mine the usage of projection in queries and
subqueries in the various data sets. Projection indeed is the cause of in-
creased complexity (from Ptime to NP-Complete) of the following central
decision problem in query evaluation [BPS15]; [CM77]; [Let+13].

We then proceed by considering queries under their graph and hypergraph
structures. Such structural aspects of queries have been investigated in the
database theory community for over two decades [Got+16] since they can in-
dicate when queries can be evaluated efficiently. Recently, several studies on
new join algorithms leverage the hypergraph structure of queries in the con-
texts of relational and RDF query processing [Abe+16a]; [KEK17]. Theoret-
ical research in this area traditionally focused on conjunctive queries (CQs).
For CQs, we know that tree-likeness of their structure leads to polynomial-
time query evaluation [Got+16]. For larger classes of queries, the topology of
the graph of a query is much less informative. For instance, if we additionally
allow SPARQL’s Optional operator, evaluation can be NP-complete even if
the structure is a tree [BPS15]. For this reason, we focus our structural study
on CQ-like queries. We develop a shape classifier for such queries and identify
their most occurring shapes. Interestingly enough, these queries have quite
regular shapes. The overwhelming majority of the queries is acyclic (i.e.,
tree- or forest-shaped). We discovered that the cyclic queries mostly consist
of a central node with simple, small attachments (which we call flower). In
terms of tree- and hypertreewidth, we discovered that the cyclic queries have
width two, up to a few exceptions with width three.

In order to gauge the performances of cyclic and acyclic queries from a
practical viewpoint, we have run a comparative analysis of chain and cycle
queries synthetically generated with an available graph and query workload
generator [Bag+17]. This experiment showed different behaviors of SPARQL
query engines, such as Blazegraph and PostgreSQL with query workloads of
CQs of increasing sizes (intended as number of conjuncts). It also lets us
grasp a tangible difference between chain and cycle queries in either query
engine, this difference being more pronounced for PostgreSQL. We may in-
terpret this result as a lack of maturity of practical query engines for cyclic
queries, thus motivating the need of specific query optimization techniques
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1. INTRODUCTION

for such queries as in [Abe+16a]; [KEK17].
Finally, we deal with the problem of identifying sequences of similar

queries in the query logs. These queries are then classified as gradual modi-
fications of a seed query, possibly by the same user. We measure the length
of such streaks in three log files from DBpedia. We conclude our study with
insights on the impact of our analytical study of large SPARQL query logs
on query evaluation, query optimization, tuning, and benchmarking.

Wikidata Wikidata [VK14] is a free collaborative knowledge base that
has been characterized by a gigantic growth in terms of number of edits,
number of users and developers, and amount of automated software since its
inception in 2012 by the Wikimedia Foundation. The interplay between user
and bot activities on Wikidata is an interesting subject to study in order to
make sense of the quality of the newly added items produced by the massive
numbers of edits in the knowledge base [Pis18]. Contrarily to Wikidata
data dumps, which are readily available and allow a battery of analyses, the
activity of both humans and bots on the Wikidata SPARQL endpoints can
only be investigated since recently, thanks to the release of large anonymized
query logs.These query logs represent a rich set of information about the
robotic and organic query traffic on Wikidata and deserve our attention for
further investigation, in particular to understand the structure of complex
queries.

A preliminary analysis of the Wikidata query logs bootstrapped with a
recent paper by Malyshev et al. [Mal+18], who first introduced the Wiki-
data SPARQL service WDQSand pinpointed its technical characteristics and
current usage. They also provided a classification of the Wikidata queries
into robotic and organic requests that are readily adopted in the present
work. They made several observations on which this work builds, namely
that robotic query traffic dominates organic query traffic in terms of vol-
ume and query load, and that robotic queries are issued by a single source,
whereas organic queries are typically of multi-source origin. They also iden-
tified a massive presence of recursive queries in these logs, with a prominent
fragment that consists of queries only containing joins and property paths,
also known as conjunctive 2-way regular path queries (C2RPQs) in litera-
ture. These massive logs of recursive queries are the first encountered so
far. C2RPQs are the basic building blocks of graph query languages in the
literature of RDF and graph databases. They allow to express navigational
patterns on the graph instances by leveraging regular expressions, also known
as Property Paths in the SPARQL 1.1 specification [HS13]. In Wikidata,
they are particularly important since they emulate ontological reasoning in
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SPARQL and also express complex label-constrained reachability queries.
The analysis in this work focuses on these recursive queries in the Wiki-

data logs and further extend the class of C2RPQs by incorporating the use of
Service, Values, Bind, Filter, and Optional. Indeed, Service, Values, and Bind
occurred only rarely in other massive logs [BMT17a], but are very prominent
in Wikidata query logs. This fragment, which we call C2RPQ+, constitutes
more than 85% of the valid queries in the logs.

Although the distinction between robotic and organic query traffic has
been introduced in [Mal+18], it has never been used in a complex analysis
such the one that is carried out in this work regarding the types of property
paths, the computation of triples when property paths are present, and the
shape analysis of the C2RPQ+ fragment. A view from rather different angles
of these logs is presented by considering them with or without duplicates,
and by separating the analysis of successfully executed and timeout queries,
the latter being analyzed for the first time in our study. Additionally, to
aid work, a query similarity search tool was developed capable of identifying
from an initial query the set of structurally similar queries by using tree edit
distance. This tool allows to further inspect the logs by having a specific
query in mind, and in a sense permits to reproduce and reapply the previous
complex analysis to the obtained sets for future studies, because it allows to
pinpoint and extract queries from huge logs.

This study focuses on the following research questions: What is the dis-
tribution of query sizes? Which qualifiers are popular in queries? How are
property paths used and what is their structure? How prominent are conjunc-
tive queries (and variants thereof)? What is the shape and (hyper)treewidth
of queries? Given a query, can we find in a subset of the logs the queries
that are structurally similar to it? Furthermore, we are also interested in
meta-questions, such as: Are there differences between robotic and organic
queries?

All presented results are entirely reproducible. The code for the analysis
is publicly available [Tim18].

1.2 Related Work
This work is mainly based on results published in a series of articles
[BMT17a]; [BMT18]; [BMT19a]; [BMT19b]. However, there are additions
to the results from the articles.

Studies on Query Logs Several studies of SPARQL queries in the past
have mainly focused statistical features of the queries, such as occurrences

7
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of triple patterns, types of queries, or query fragments [Ari+11]; [Han+16];
[Möl+10]; [Sal+15].

The only early study that investigated the relationship between struc-
tural features of practical queries and query evaluation complexity has been
conducted by Picalausa and Vansummeren [PV11]. However, it focused on
a smaller corpus (3M queries from DBpedia 2010), which make the findings
less suitable to be generalized.

USEWOD and DBpedia data sets have also been considered in [Ari+11].
It takes into account the log files from DBpedia and SWDF reaching a total
size of 3M. The work mainly investigates the number of triples and joins in
the queries. Based on the observation of [NW10] that SPARQL graph pat-
terns are typically chain- or star-shaped, they also look at their occurrences.
They found very scarce chains and high coverage of almost star-shaped graph
patterns, but they do not characterize the latter.

A query analysis and clustering of DBpedia SPARQL queries has been
performed in [Mor+11] in order to build a set of prototypical benchmarking
queries. Query logs have been inspected in a user study in [HP15] to under-
stand whether facts that are queried together provide intra-fact relatedness
in the Linked Open Data graph. The objectives of both papers are different
from the one pursued in this work.

Finally, [Alj+14] investigates on the use of regular expressions in the Filter
clause of USEWOD queries.

Wikidata Logs Recently, Malyshev et al. [Mal+18] and Bielefeld et
al. [BGK18] were the first to analyze a massive collection of Wikidata
queries. Malyshev et al. first introduced the Wikidata SPARQL service
WDQS and analyzed basic characteristics of Wikidata queries related to
their usage in this service spanning fromSPARQL feature prevalence and
correlation to annotations and language distributions. They also isolated
the robotic and organic queries, however, this was mostly derived from the
metadata of the queries. This classification considers the queries issued by
a browser as organic and the remaining queries as robotic. Additionally,
some high-volume queries issued from the same source in a very short time-
frame are considered as robotic. The classification that is done by them is
not applicable for most DBpedia logs, because they lack the information
about browser- and machine-generated traffic, or they have been modified
for anonymization purposes.

They also identified the C2RPQs fragment, i.e. the largest fragment en-
countered so far of conjunctive 2-way regular path queries. In [BMT19b],
the first large-scale structural analysis of this gigantic query collection is per-
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formed. A structural classification of real-world property paths is done on the
first large set of property paths relevant for Wikidata, and 57x larger than
the set considered mainly for DBpedia in [BMT17a]. This also investigates
the shape of C2RPQs, which would not be possible with the classification
for only conjunctive queries (CQ) in [BMT17a]. The occurrences of property
paths in the latter corpus is negligible with respect to the size of the C2RPQ
fragment considered.

Theory The most important works for theory and concepts in this work
will be discussed now.

Complexity issues caused by Optional are studied in several works. Es-
pecially important are the following ones. Kaminski and Kostylev [KK18]
continue the investigation of well-designed queries and introduced the notion
of weakly well-designed queries. Barceló et al. [BPS15] introduced the notion
of well-designed pattern trees for queries and bounded interface width.

Gottlob investigated tree- and hypertree decomposition and the impact
of tree- and hypertreewidth on query evaluation in several works [GGS14];
[GLS02].

Bagan and Bonifati [Bag+17]; [BBG13] investigate regular simple path
queries on graphs and created gMark to create benchmarks for database
systems, which is also used in this work to assess impact of query shapes.

1.3 Overview of Publications
This work covers material that has already been published. There is no direct
mapping from publications to chapters, because the presentation is changed
to present material interleaved side by side and new material has also been
added. A listing of the publications, along with some notable contributions
that can be attributed more uniquely to them are listed below:

1. [BMT17] contributes to Section 3.2 (property paths),
and Section 5.1 (streaks).

2. [BMT18] contributes to Section 6.3 (DARQL).

3. [BMT19a] contributes to Section 3.2 (property paths),
Section 5.1 (streaks), Section 4.2.3 (measuring shapes),
and Section 3.4 (tree patterns).

4. [BMT19b] contributes to Section 3.1 (property paths),
Section 5.2 (query search), and Section 3.3 (property paths).
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5. [BMT19c] contributes to Section 6.4 (SHARQL).

6. [Tim18] item contributes to Section 6.3 (DARQL).
It contains the code used for [BMT17] and [BMT18].

7. [Tim19] contributes to Section 6.4 (SHARQL).
It contains the code used for [BMT19a] and [BMT19b]
(12.8k source lines of code, 1.6k lines of comments).

The last two items are the published repositories of the source code,
which has been made available under open-source licenses. All experiments,
benchmarks, and the collection and preparation of analysis results were solely
conducted by the author of this work.

List of Publications
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2
Basic Analysis

We will begin by making ourselves familiar with the data we have, and the
domain surrounding it. The query logs we are dealing with are real-world on-
tological query logs. The following sections are meant to provide an overview
before we dive into the compositions of queries.

2.1 Data Sets
There are two distinctive collections of data sets that were investigated sep-
arately. The first collection of data sets is a diverse collection of query logs
consisting of data from various sources over various years. Most data sets
were obtained from USEWOD and the largest amount of logs in them were
from DBpedia. They also contained query logs from other sources. Some logs
were augmented with more independently obtained logs for purposes such as
additional timespans or spans. Additionally, a few other publicly available
logs were also added to increase the corpus for investigation. This collection
of data sets will be referred to as the Multi-Source Collection.

The second major collection of data sets is from Wikidata and will simply
be called the Wikidata Collection. It makes sense to divide the analysis and
discussion between these two collections, and indeed, we will see that these
sets have some different characteristics. Both collections will be discussed in
more detail in the following.

2.1.1 Multi-Source Collection
The Multi-Source Collection has a total of 350,089,005 queries, which were
obtained as follows. The 2013–2016 USEWOD query logs, some additional
DBpedia query logs for 2013, 2014, 2015, 2016, and 2017 were directly ob-
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Source Total #Q Valid #Q Unique #Q

DBpedia9-12 28,651,075 27,622,233 13,437,966
DBpedia13 5,243,853 4,819,837 2,628,000
DBpedia14 37,219,788 33,996,486 17,217,416
DBpedia15 43,478,986 42,709,781 13,253,798
DBpedia16 15,098,176 14,687,870 4,369,755
DBpedia17 169,110,041 164,297,723 34,440,636

LGD13 1,927,695 1,531,164 357,843
LGD14 1,999,961 1,951,973 628,640

BioP13 4,627,270 4,624,449 687,773
BioP14 26,438,932 26,404,716 2,191,151

BioMed13 883,375 882,847 27,030

SWDF13 13,853,604 13,670,550 1,229,759

BritM14 1,555,940 1,545,643 135,112

Wikidata17 309 308 308

Total 350,089,005 338,745,580 90,605,187

Table 2.1: Sizes of logs in Multi-Source Collection.

tained from Openlink1, the 2014 British Museum query logs from LSQ2, and
user-submitted example queries from Wikidata3 were extracted via crawling
and scripting in February 2017. These log files are associated with 7 differ-
ent data sources from various domains: DBpedia, Semantic Web Dog Food
(SWDF), LinkedGeoData (LGD), BioPortal (BioP), OpenBioMed (BioMed),
British Museum (BritM), and Wikidata.

Table 2.1 gives and overview of the analyzed query logs from the Multi-
Source Collection, along with their main characteristics such as total number
of queries, parsable number of queries, and the number of queries after dedu-
plication. Since the logs for DBpedia were obtained from different sources,
they were grouped as follows. DBpedia9-12 contains the DBpedia logs from
USEWOD’13, which are query logs from 2009–2012. All other DBpedia’X
sets contain the query logs from the year ’X, be it from USEWOD or from

1http://www.openlinksw.com
2http://aksw.github.io/LSQ/
3https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/

examples
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2.1. Data Sets

Openlink.4 Notice that for the data set for DBpedia from 2017 obtained from
Openlink contributes 169,110,041 queries, which is a very significant amount
of queries compared to the rest of the corpus. This number is reflected in
the DBpedia17 data set.

Preparation The logs were prepared for the analysis as follows. First the
logs were cleaned by removing entries that are not queries (e.g., http re-
quests). In the following only the actual SPARQL queries in the logs are
reported. For each of the logs, the table summarizes the total number of
queries (Total) and the number of queries that we could parse using Apache
Jena 3.7.0 (Valid). From the latter set, duplicate queries were removed af-
ter whitespace normalization, resulting in the unique queries that could be
parsed (Unique). The results on both Valid and Unique data sets will be
presented. In summary, the corpus of query logs contains the latest blend of
USEWOD and Openlink DBpedia query logs (the latter providing 51M more
queries in the period 2013–2016 than the USEWOD corpus, and 169M more
for 2017), plus BritM and Wikidata queries. Finally, although the online
Wikidata example queries (Feb 13th, 2017) are a manually curated set, there
was one query that could not be parsed.5

Notation For the Multi-Source Collection, the following notation will be
used to discuss results on the Valid and Unique data sets. When a number
or a percentage is reported in the format X (Y), the number X refers to the
Valid and the number Y to the Unique set of queries. This notation allows
the reader to stay informed about the queries that the endpoint actually
receives (Valid) and about those without duplicates in this set (Unique).

Anonymization The obtained query logs are anonymized in the sense that
they do not contain IP addresses, precise time stamps, or user agents. Time
stamps are typically either completely absent, or rounded to an hour. For
example in some of the logs, all time stamps are set to 3:00 GMT. This
means, in particular, that these logs do not allow a classification into robotic
and organic queries, as was done by Bielefeldt et al. [BGK18] and Malyshev
et al. [Mal+18].

4Three log files were obtained both from USEWOD as well as from Openlink, as it
turned out that only the hash values used for anonymization were different. These dupli-
cate log files were deleted prior to all analysis and are not taken into account in Table 2.1.

5The query was called “Public Art in Paris” and was malformed (closing braces were
missing and it had a bad aggregate). It was still malformed on June 29th, 2017.
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Observations on Multi-Source Collection In the total Multi-Source
Collection, 16,639,701 (2,978,945) queries, or 4.91% (3.29%) of the logs do
not have a body. All these queries are Describe queries, and almost exclusively
occur in DBpedia14–DBpedia17. To be more precise, 99.47% (97.22%) of the
Describe queries do not have a body. Therefore some of the analyses are only
conducted on Select, Ask, and Construct queries.

2.1.2 Wikidata Collection
The corpus of the Wikidata Collection consists of all queries in the Wikidata
query logs that were recently made publicly available [Bie+18]. Precisely,
the queries considered have been downloaded on October 12th, 2018. These
logs are anonymized and represent queries that were submitted to the Wiki-
data SPARQL endpoint from June 12th until September 3rd in 2017. The
same queries have been considered in the work of Malyshev et al. [Mal+18].
For analysis purposes, these log files were partitioned into four disjoint
sets: Queries for which the HTTP request was successful (HTTP code 200)
were split into organic (OrganicOK) and robotic queries (RoboticOK); time-
out queries were, again, split into organic (OrganicTO) and robotic queries
(RoboticTO).

Partitioning Each query in the downloadable log files has an annotation
that indicates if it was classified as a bot or user query by Malyshev et
al. [Mal+18]. This classification is used in the partitioning. The presented
number of queries in Organic is slightly higher than the number of queries
reported on the download page of the query logs. It is likely that that the
Dresden file may be incomplete, since organic queries in the “all queries”
log files can be found that do not show up in the organic subset in [Bie+18].
Sometimes OK, (resp., TO) is used to refer to OrganicOK ∪ RoboticOK (resp.,
OrganicTO ∪ RoboticTO) for brevity. The TO queries have not been
considered in the work of Malyshev et al. [Mal+18].

Table 2.2 for the Wikidata Collection describes, for each of the log types,
its number of queries (Total #Q), number of valid queries, i.e., queries that
can be parsed using Apache Jena 3.7.0 (Valid #Q), and the number of valid
queries after removal of duplicates (Unique #Q). For duplicate removal, two
queries are considered to be the same if they are the same string after whites-
pace normalization and query prefix normalization (i.e. IRIs resolve to the
same entities).

Like with the Multi-Source Collection, the same notation as discussed
before in Section 2.1.1 is used to present Valid and Unique numbers.
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Source Total #Q Valid #Q Unique #Q

RoboticOK 207,505,296 207,464,954 34,523,883
OrganicOK 661,769 651,385 252,015
RoboticTO 33,616 33,465 3,168
OrganicTO 14,528 14,087 8,729

Robotic 207,538,912 207,498,419 34,527,051
Organic 676,297 665,472 260,744

OK 208,167,065 208,116,339 34,775,898
TO 48,144 47,552 11,897

Total 208,215,209 208,163,891 34,787,795

Table 2.2: Sizes of logs in Wikidata Collection.

Observations on Wikidata Collection From Table 2.2 a number of
interesting observations can be made. One simple observation is that the
robotic logs contain many more duplicates than the organic logs. Indeed,
whereas Organic contains 38.69% unique queries, Robotic only contains
38.69% unique queries. A second observation is that, even though queries
do not time out very often, organic queries time out 100 times more often
than robotic queries. The fraction of OrganicTO queries to Organic queries
is 2.12% (3.35%), whereas the fraction of RoboticTO to Robotic queries is
0.02% (0.01%). In the set of unique timeout queries, a staggering 73.37%
are organic.
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2.2 Preliminaries
Some basic definitions on RDF and SPARQL follow.

RDF RDF data consists of a set of triples 〈s, p, o〉 where s is referred to as
subject, p as predicate, and o as object. According to the specification, s, p,
and o can come from pairwise disjoint sets I (IRIs), B (blank nodes), and L
(literals) as follows: s ∈ I ∪ B, p ∈ I, and o ∈ I ∪ B ∪ L.

The precise definitions of IRIs, blank nodes, and literals are not important
for our analysis. The most important thing to know is that blank nodes
similar to variables, which is discussed later, while literals are constants like
strings and numbers, and an IRI (Internationalized Resource Identifiers) is
just an extension of an URI (Uniform Resource Identifier) supporting more
characters (encoded UTF-8 instead of ASCII). So IRIs are just special strings
to identify things.

SPARQL For our purposes, a SPARQL query Q can be seen as a tuple of
the form

(query type, pattern P , solution modifier).

Conceptually such queries work as follows: The central component is the
Pattern P , which contains patterns that are matched onto the RDF data.
The result of this part of the query is a multiset of mappings that match the
pattern to the data.

The solution modifier allows aggregation, grouping, sorting, duplicate
removal, and returning only a specific window (e.g., the first ten) of the
multiset of mappings returned by the pattern. The result is a list L of
mappings.

The query type determines the output of the query. It is one of four
types: Select, Ask, Construct, and Describe. Select queries return projections
of mappings from L. Ask queries return a Boolean, the answer is true iff
the pattern P could be matched. Construct queries construct a new set of
RDF triples based on the mappings in L. Finally, Describe queries return a
set of RDF triples that describes the IRIs and the blank nodes in L. The
exact output of Describe queries is implementation-dependent. Such queries
are meant to help users explore the data. Compared to [PV11], we wil allow
more solution modifiers and more complex patterns, as explained next.

Patterns Let V = {?x, ?y, ?z, ?x1, . . .} be an infinite set of variables, dis-
joint from I, B, and L. As in SPARQL, variables will always be presented
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prefixed by a question mark. A triple pattern is an element of (I∪B∪V)×(I∪
V)×(I∪B∪L∪V). A property path is a regular expression over the alphabet
I. A property path pattern is an element of (I ∪B∪V)×pp× (I ∪B∪L∪V),
where pp is a property path. A SPARQL pattern is an expression generated
from the following grammar:

P ::= t | pp | Q | P1 And P2 | P Filter R
| P1 Union P2 | P1 Optional P2
| Graph iv P | Values tup T

Here, t is a triple pattern, pp is a property path pattern, Q is again a SPARQL
query, R is a so-called SPARQL filter constraint, and iv ∈ I ∪ V . Property
paths (pp) and subqueries (Q) in the above grammar are new features since
SPARQL 1.1. SPARQL filter constraints R are built-in conditions which
can have unary predicates, (in)equalities between variables, and Boolean
combinations thereof. They are called filter expressions. The keyword Values
binds a tuple tup to values in a given table T . Refer to the SPARQL 1.1
recommendation [HS13] and the literature [PAG09]for the precise syntax of
filter constraints and the semantics of SPARQL queries. vars(P ) will be used
to denote the set of variables occurring in P .

Example query The following example illustrates how these definitions
corresponds to real SPARQL queries. The following query comes from Wiki-
data (“Locations of archaeological sites”, from [Wik17]).

SELECT ?label ?coord ?subj WHERE {
?subj wdt:P31/wdt:P279* wd: Q839954 .
?subj wdt:P625 ?coord .
?subj rdfs:label ?label
FILTER(lang (? label) = "en")

}

Listing 2.1: SPARQL query

The query uses the property path wdt:P31/wdt:P279*, literal wd:Q839954,
and triple pattern ?subj wdt:P625 ?coord. It also uses a filter constraint.
In SPARQL, the And operator is denoted by a dot (and is sometimes implicit
in alternative, even more succinct syntax). This is because in SPARQL, sets
of triple patterns are conjunctive sets and the dot is just a separator.

Property Paths Property paths in SPARQL are very similar to regular
expressions. Instead of symbols, property paths use IRIs as atoms. Like
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regular expressions, they can be combined with concatenation (sequence, via
a1/a2), choice (alternative, via a1|a2), or with repetition (zero/one or more,
via a∗/a+). They also feature atomic negation (via !a). Finally, they have a
reverse navigation operator in the form of ˆa, which means “follow an a-edge
in reverse direction”.

Conjunctive Queries Conjunctive queries are a central class of queries in
database research and on this class will be built on in subsequent sections.
In the context of SPARQL, we define them as follows.

Definition 2.2.1. A conjunctive query (CQ) is a SPARQL pattern that
only uses triple patterns and the operator And.

Another important query class is the following.

Definition 2.2.2. A conjunctive 2-way regular path query (C2RPQ) is a
SPARQL pattern that only uses triple patterns, the operator And, and
property paths.

Graphs A basic and very important structure that will be used in analyses
are graphs.

Definition 2.2.3. A graph G is a pair (V,E) where V is a set of element
called vertices, while E is a set of elements called edges. G is a directed
graph if E is a set of pairs of vertices from V . G is called an undirected
graph if E is set of a multisets of vertices from V with cardinality 2. A
graph that uses multisets instead of sets for edges is called a multigraph,
otherwise it is called a simple graph. An edge that appears more than
once (by identity) in a multigraph is called a parallel edge. An edge with
two identical vertices is called a self-loop.

The concept of graphs can be extended by allowing more than two vertices
for edges.

Definition 2.2.4. A Hypergraph H is a pair (V,E) where V is a set of
element called vertices, while E is a set of elements called hyperedges. A
hyperedge is a non-empty set of vertices from V .

18



2.3. Query Analysis

2.3 Query Analysis
After introducing our data sets, we will now start of our analysis. To start
of, SPARQL queries are examined by looking at their used parts, features
and their overall composition. This high-level analysis precedes a deeper
structural analysis which will follow later.

2.3.1 Keywords and Operators
Multi-Source Collection A simple but effective first analysis to get an
overview of queries is to look at the usage of keywords. The results for the
Multi-Source Collection are shown in Table 2.3.

The table is divided into four blocks: types of queries, solution modifiers,
SPARQL algebra operators, and aggregation operators. Each block is sorted
by the number of occurrences in the Valid data set.

The first block in Table 2.3 describes the type of queries. In total,
91.96% (88.22%) are Select queries, 4.94% (3.38%) are Describe queries,
2.44% (6.56%) are Ask queries, and 2.44% (6.56%) are Construct queries. It is
notable that there are tremendous differences between the data sets concern-
ing the composition of query types. BioMed13 has less than 3.47% (12.83%)
Select queries and almost 94% (85%) Describe queries, whereas LGD13 has
17% (28%) Select queries and almost 81% (71%) Construct queries.

The second block in Table 2.3 contains the usage of solution modifiers.
Solution modifiers that are only used in minuscule numbers are omitted, in
Table 2.3 this is the case for the Reduced solution modifier, it was only found
in 6,126 (1,149) queries. Some notable observations from the data sets follow.

Almost all 89% (97%) of BritM14 queries use Distinct. Similarly, but
to a lesser extent, this is the case in in BioP13 (96% (82%)) and BioP14
(92%(68%)). In DBpedia there are significant differences: From ’12 to ’17,
we have 21% (18%), 7% (8%), 16% (11%), 20% (38%), 6% (8%) and 26%
(52%) of queries with Distinct respectively.

Limit is used most widely in SWDF13 (48% (47%)), in LGD13 (59% (17%)),
and LGD14 (54% (41%)). The most prevalent data sets for queries with Offset
are LGD14 (30% (38%)), LGD13 (52%(13%)), and DBpedia13 (10% (12%)).

Order By is used by far the most in Wikidata (44%), which may be due
to the fact that Wikidata17 is not a query log, but a wiki page that con-
tains cherry-picked and user-submitted queries. These queries are intended
to showcase system’s behavior or highlight features of the Wikidata data set
and should therefore produce a nice output. The other data sets are true
query logs from query endpoints, which may therefore also contain the “de-
velopment process” of queries: Users start by asking a query and gradually
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Element #Valid %Valid #Unique %Unique

Select 311,496,923 91.96% 79,929,422 88.22%
Describe 16,727,191 4.94% 3,061,636 3.38%

Ask 8,265,673 2.44% 5,943,216 6.56%
Construct 2,255,793 0.67% 1,670,913 1.84%

Distinct 96,055,447 28.36% 29,973,911 33.08%
Limit 46,442,970 13.71% 17,043,706 18.81%

Offset 8,651,005 2.55% 4,112,839 4.54%
Order By 3,481,015 1.03% 1,609,921 1.78%

Filter 148,681,968 43.89% 34,609,372 38.20%
And 129,524,653 38.24% 26,737,378 29.51%

Optional 107,447,875 31.72% 13,119,429 14.48%
Union 85,024,759 25.10% 15,761,764 17.40%
Graph 27,556,055 8.13% 1,523,675 1.68%
Values 7,595,583 2.24% 5,086,033 5.61%

Not Exists 2,527,452 0.75% 1,096,099 1.21%
Minus 2,199,152 0.65% 1,664,359 1.84%
Exists 13,965 0.00% 7,832 0.01%

Group By 9,100,381 2.69% 3,887,216 4.29%
Count 924,474 0.27% 653,756 0.72%

Having 197,463 0.06% 40,401 0.04%
Avg 7,714 0.00% 731 0.00%
Min 7,040 0.00% 3,749 0.00%
Max 6,504 0.00% 3,796 0.00%
Sum 2,768 0.00% 785 0.00%

Table 2.3: Keyword count in Multi-Source Collection.

refine it until they have the one they want. This idea will be revisited in
Section 5.1).

The third block has keywords associated to SPARQL algebra operators
that occur in the body of queries. It can be observed Filter, And, Union,
and Optional are quite common. Note that conjunctions in SPARQL can be
denoted by “.” or “;”, or they can be implicit with the usage of groups, but
for clarity they are grouped in And in Table 2.3. The next commonly used
operator is Graph, but looking closer at the data, strikingly 96% (78%) and
85% (40%) of the queries using Graph originate from BioP13 and BioP14.
The use of Filter ranges from 63% (58%) for DBpedia13 to 0.7% (3%) or less
for BioMed13 and BioP13, respectively.
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Element #O V %O V #R V %R V

Select 664,323 99.83% 206,006,783 99.28%
Construct 516 0.08% 188,088 0.09%

Ask 306 0.05% 1,127,396 0.54%
Describe 327 0.05% 176,152 0.08%

Distinct 96,229 14.46% 15,848,797 7.64%
Limit 257,351 38.67% 38,149,526 18.39%
Offset 7,653 1.15% 13,878,747 6.69%

Order By 93,198 14.00% 18,172,260 8.76%

Filter 191,044 28.71% 36,835,864 17.75%
And 404,282 60.75% 73,920,238 35.62%

Optional 324,380 48.74% 31,402,334 15.13%
Union 61,246 9.20% 18,976,088 9.15%
Graph 6 0.00% 14 0.00%
Values 42,555 6.39% 66,432,384 32.02%
Minus 13,440 2.02% 1,781,620 0.86%

Not Exists 19,174 2.88% 412,645 0.20%
Exists 3,339 0.50% 95,218 0.05%

Group By 96,802 14.55% 825,957 0.40%
Having 6,084 0.91% 14,888 0.01%
Count 5,607 0.84% 36,215 0.02%

Avg 195 0.03% 1,505 0.00%
Min 2,101 0.32% 1,323 0.00%
Max 1,003 0.15% 376 0.00%
Sum 979 0.15% 684 0.00%

Table 2.4: Keyword usage in Wikidata Collection
(Robotic (R) and Organic (O), Valid (V)).

The fourth block contains aggregation operators. It is surprising that
these operators are used sparsely, even though aggregates are supported
since SPARQL 1.1 (March 2013) [HS13]. In all data sets, each of these
operators were used in 3% or less of the Unique queries, except for LGD14
(31% with Count), DBpedia17 (11% with Group By), and Wikidata17 (30%
with Group By). There is a higher relative use of aggregation operators in
Wikidata17 than in the other data sets, which is most likely due to the fact
that Wikidata17 is not a standard query log.
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Element #O U %O U #R U %R U

Select 260,114 99.77% 34,261,882 99.23%
Construct 217 0.08% 24,587 0.07%

Ask 132 0.05% 73,019 0.21%
Describe 260 0.10% 167,563 0.49%

Distinct 50,401 19.33% 3,744,933 10.85%
Limit 72,247 27.71% 5,822,263 16.86%
Offset 2,979 1.14% 3,952,517 11.45%

Order By 45,918 17.61% 655,191 1.90%

Filter 93,494 35.86% 5,082,479 14.72%
And 156,911 60.18% 8,063,790 23.35%

Optional 99,855 38.30% 3,430,329 9.94%
Union 22,221 8.52% 852,956 2.47%
Graph 5 0.00% 4 0.00%
Values 11,887 4.56% 1,579,888 4.58%
Minus 6,951 2.67% 594,653 1.72%

Not Exists 8,281 3.18% 45,967 0.13%
Exists 2,068 0.79% 3,075 0.01%

Group By 35,746 13.71% 101,710 0.29%
Having 3,891 1.49% 1,162 0.00%
Count 1,647 0.63% 2,270 0.01%

Avg 133 0.05% 2 0.00%
Min 729 0.28% 60 0.00%
Max 388 0.15% 64 0.00%
Sum 348 0.13% 19 0.00%

Table 2.5: Keyword usage in Wikidata Collection
(Robotic (R) and Organic (O), Unique (U)).
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Wikidata Collection We now turn to Wikidata. Structured similarly to
the table for the Multi-Source Collection, the keyword usage for the Multi-
Source Collection is shown in Table 2.4 (Valid) and Table 2.5 (Unique).

Looking at the query types, over 99% (almost 100%, rounded up with
2 decimals) of queries are Select queries. This is true for robotic, organic,
Valid, or Unique queries.

It is interesting to see that organic queries use the Distinct modifier around
two times more often than robotic queries. Although Offset is almost not used
in organic queries, they make sense for robotic queries to get more results
are use 10 times more there.

As for operators, simple operators like Filter, And, and Optional are used
in larger numbers in organic queries, Union is used almost the same, and
Values is used much more often in robotic queries. Other operators are used
very sparsely, in less than 1% of the cases. It is also interesting to note that
Graph is almost never used.

The SPARQL algebra operators are almost not used, less than 1% of
queries use them, with the notable exception of Group By in organic logs,
which is used around 14%.

Note that a similar analysis on Wikidata logs was done in [BGK18] and in
[Mal+18]. However, if you look closely at both papers side by side, you will
see that there are small differences in their results. For example, the data
set I1 is the same in both papers, as you can check by comparing Table 1
in [Mal+18] with the dates in Section 3 on Page 3 (under Table 2 and 3)
in [BGK18]. Then, compare Table 6 in [BGK18] with Table 2 in [Mal+18].
You will see minor differences in each column for I1.

It is very easy to have minor differences in results for query logs of this
large size. For instance, in our analyses, we noticed that just upgrading the
SPARQL parser lead to such minor differences, which may very well explain
what happened here. Also note that there are differences in how one can ag-
gregate data. For example, there is a “Path with *” in their tables, whereas
we considered our analyses for fragments. All in all, it makes sense that we
present results that were gathered with identical methods for comparing the
Wikidata Collection with Multi-Source Collection. After the above expla-
nation, minor differences are expected, because they used a different parser
(BlazeGraph as opposed to Jena).

2.3.2 Operator Set Distribution

We just looked at the keywords in keywords, but now we turn to the co-
occurrence of operators inside the query bodies. This is important, because
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Operator Set #Valid %Valid #Unique %Unique

none 107,285,016 33.32% 31,785,844 36.31%
A 15,106,778 4.69% 7,769,170 8.87%
F 30,679,572 9.53% 14,822,993 16.93%

A,F 9,583,490 2.98% 4,176,586 4.77%
CQF subtotal 162,654,856 50.51% 58,554,593 66.89%

O 2,921,810 0.91% 625,663 0.71%
A,O 3,436,987 1.07% 1,807,483 2.06%
F,O 7,115,439 2.21% 2,096,526 2.39%

A,F,O 24,512,799 7.61% 1,773,624 2.03%
CQF+O +37,987,035 +11.80% +6,303,296 +7.20%

U 8,533,645 2.65% 4,627,921 5.29%
A,U 1,627,742 0.51% 1,010,579 1.15%
F,U 627,559 0.19% 254,640 0.29%

A,F,U 1,824,697 0.57% 1,057,080 1.21%
CQF+U +12,613,643 +3.92% +6,950,220 +7.94%

V 151,078 0.05% 63,912 0.07%
A,V 207,180 0.06% 164,175 0.19%
F,V 2,497,572 0.78% 2,204,598 2.52%

A,F,V 142,211 0.04% 98,560 0.11%
CQF+V +2,998,041 +0.93% +2,531,245 +2.89%

G 26,288,960 8.16% 1,380,991 1.58%
A,G 391,433 0.12% 42,315 0.05%
F,G 876 0.00% 269 0.00%

A,F,G 34,418 0.01% 9,495 0.01%
CQF+G +26,715,687 +8.30% +1,433,070 +1.64%

A,F,O,U 67,026,601 20.81% 6,170,843 7.05%

Table 2.6: Sets of operators used in Multi-Source queries: And (A), Filter (F),
Graph (G), Optional (O), Union (U), and Values (V).

this is required to partition queries into different fragments for analysis, which
will be discussed in much more detail in Section 4.1.

Multi-Source Collection In Table 2.6, it can be seen that Filter, And,
Union, Optional, and Graph are used fairly commonly in the bodies of Select,
Ask, and Construct queries.

After looking at the individual operator occurrence in Section 2.3.1, it is
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of interest to investigate how these operators occur together. In particular,
the focus will be on queries for which the body only uses constructs with these
operators. There is one exception: For Wikidata17, the Service subqueries
before the analysis were removed. This was for approximately 200 queries.
Wikidata has a special non-standard Service construct that is used to add
labels to the output for human consumption, and this does not interact with
other parts of the query.

The results are presented in Table 2.6, which has two kinds of rows.
Each non-highlighted row has, in the left-most column, a set S of operators
from O = {Filter,And,Optional,Graph,Union,Values}, and in the rest of the
columns, the amount of queries in the logs for which the body uses exactly
the operators in S (and none from O \S). The value for none is the amount
of queries that do not use any of the operators in O (including queries that
do not have a body). The highlighted rows are special rows, as they contain
the sum of a block, which can be the additional size gained from adding an
operator to the CQF fragment. The columns are for absolute and relative
numbers for the Valid and Unique data sets.

Conjunctive patterns with filters are considered to be an important frag-
ment of SPARQL patterns, because they are believed to appear often in
practice [NW10]; [Vid+10].

Definition 2.3.1. A conjunctive query with filters (CQF) is a SPARQL
pattern that only uses triple patterns and the operators And and Filter.

The Multi-Source Collection contains 50.51% (66.89%) CQF queries.
Adding Optional to the CQF fragment would increase its relative size by
11.80% (7.20%) resulting in 62.31% (74.09%) of the queries. (Similarly for
Union, Graph and Values.) Table 2.6 classifies 95.07% (96.62%) of the Select,
Ask and Construct queries in the corpus. The remaining queries either use
other combinations from O 1.64% (2.79%), or use other features than those
in O in their body 2.10% (3.61%) like Bind, Minus, subqueries, or property
paths. A recurring combination of features from O can be observed in the
latest query logs (DBpedia17), in which Union and Values appear together
in 1.30% (5.08%) of the queries, whereas they are mostly not existing in the
other data sets.

Wikidata Collection Wikidata has a much higher occurrence of property
paths than DBpedia logs, which is why the base fragment for further study
of Wikidata logs will be looking at C2RPQs instead of CQs. This will be
further explained in Section 4.1, for now it is sufficient to know that we are
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now looking at results that include property paths as opposed to excluding
them like before when looking at the Multi-Source Collection.

Like before, we look at the basic operators And, Filter, Optional, and
Union. But we add Values, Bind, and Service. The reason for choosing these
operators will become clearer shortly, when you look at the operators that
are present in the logs. These operators are chosen for subsequent analyses,
but the reason for this is derived from the results here.

Before we turn to the results, consider this: With these seven operators,
this allows for 128 combinations of operators. Interestingly, almost all combi-
nations occurred at least once in the logs, with only 8 combinations missing.
In contrast to the DBpedia logs, the Graph operator is not included as it was
only in 20 queries, so it does not warrant including it; doing so would also
increase the number of possible combinations to 256.

The occurrences of operator combinations in Wikidata Collection can be
seen in Table 2.7 and Table 2.8 (for Valid and Unique, resp.). The table is
structured to show the gains of adding single or small sets of operators to
CQs. Specifically, the designation X was chosen to represent the extended
operators Service, Bind, and Values as operator set. This is done for space
and clarity, showing 26 instead of 256 rows, so it still keeps the presentation
similar to Table 2.6. It is still important to note that the table does not give a
complete picture. This can be surmised when looking at the low percentages
in the table. For Wikidata, operators are much more diversified than in
DBpedia logs, as they use a more operators apart from the basic ones, and
there are more combinations.

The parts omitted from the table are mostly not interesting and only
show rare combinations with less than 1%, but there are some exceptions.
These interesting observations are reported now:

• There are some single operator combinations that stand out. Optional
and Service, and both of them with And amount to 11-12% of organic
Valid queries. The reason for this is most likely that Service is very
vital for Wikidata because of the usage of the special labeling service.
This is explained in Section 4.1.2.

• 31% of robotic Valid queries use only Values without any other oper-
ators. This shrinks to less than 3% when going to Unique queries, so
these are duplicate queries.

• Although it does not have a keyword and may be easily overlooked, the
Subquery operator has a non-negligible occurrence in organic queries, it
must be treated like other operators, therefore removing queries from
the operator combinations under scrutiny.
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Operators #O V %O V #R V %R V

none 53,980 8.12% 54,402,277 26.24%
A 33,076 4.97% 29,092,643 14.03%
F 6,056 0.91% 4,055,489 1.96%

A,F 25,235 3.79% 5,807,108 2.80%
C2RPQ+F 118,347 17.79% 93,357,517 45.03%

O 4,953 0.74% 233,869 0.11%
A,O 4,481 0.67% 801,598 0.39%
F,O 7,876 1.18% 1,022,353 0.49%

A,F,O 11,633 1.75% 5,058,602 2.44%
C2RPQ+F+O +28,943 +4.35% +7,116,422 +3.43%

U 681 0.10% 66,365 0.03%
A,U 1,336 0.20% 86,483 0.04%
F,U 27 0.00% 19,893 0.01%

A,F,U 2,223 0.33% 167,385 0.08%
C2RPQ+F+U +4,267 +0.64% +340,126 +0.16%

S 29,696 4.46% 6,061,738 2.92%
A,S 48,687 7.32% 1,759,288 0.85%
F,S 5,913 0.89% 158,291 0.08%

A,F,S 11,711 1.76% 57,230 0.03%
C2RPQ+F+S +96,007 +14.43% +8,036,547 +3.88%

X 45,225 6.80% 71,794,220 34.63%
A,X 58,082 8.73% 6,476,686 3.12%
F,X 6,790 1.02% 191,940 0.09%

A,F,X 18,235 2.74% 797,879 0.38%
C2RPQ+F+X +128,332 +19.29% +79,260,725 +38.23%

A,F,O,U 685 0.10% 8,454 0.00%

Table 2.7: Sets of operators used in Wikidata queries:
And (A), Filter (F), Optional (O), Union (U), Service (S),
and combinations of Values and Service and Bind (X),

(Robotic (R) and Organic (O), Valid (V)).
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Operators #O U %O U #R U %R U

none 23,132 3.48% 20,540,542 9.91%
A 14,018 0.01% 2,490,457 1.20%
F 3,855 0.00% 2,535,408 1.22%

A,F 13,473 0.01% 197,751 0.10%
C2RPQ+F 54,478 3.49% 25,764,158 12.43%

O 3,139 0.47% 196,369 0.09%
A,O 2,061 0.31% 215,933 0.10%
F,O 5,716 0.86% 106,060 0.05%

A,F,O 5,505 0.83% 891,591 0.43%
C2RPQ+F+O 16,421 2.47% 1,409,953 0.68%

U 219 0.03% 29,431 0.01%
A,U 549 0.08% 12,685 0.01%
F,U 21 0.00% 1,065 0.00%

A,F,U 1,045 0.16% 7,043 0.00%
C2RPQ+F+U 1,834 0.28% 50,224 0.02%

S 17,105 2.57% 1,054,858 0.51%
A,S 25,460 3.83% 481,047 0.23%
F,S 1,255 0.19% 16,474 0.01%

A,F,S 5,800 0.87% 12,399 0.01%
C2RPQ+F+S 49,620 7.46% 1,564,778 0.75%

X 24,924 3.75% 2,187,076 1.05%
A,X 30,049 4.52% 1,187,355 0.57%
F,X 1,606 0.24% 36,565 0.02%

A,F,X 8,987 1.35% 320,375 0.15%
C2RPQ+F+X 65,566 9.86% 3,731,371 1.80%

A,F,O,U 359 0.05% 487 0.00%

Table 2.8: Sets of operators used in Wikidata queries:
And (A), Filter (F), Optional (O), Union (U), Service (S),
and combinations of Values and Service and Bind (X),

(Robotic (R) and Organic (O), Unique (U)).
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Table 2.7 shows that just adding Union has a very small impact. However,
there are some operators that have a larger impact. For one, Service adds
over 14% of organic queries in the Valid logs. This is not true for robotic
logs. However, also including operators Values and Bind in addition to Service
adds 38% of robotic queries in Valid logs. This is mostly due to the huge
occurrence of Values in robotic logs.

So overall, this shows why adding Service for organic queries and Values
for robotic queries is essential. With this, most of the Wikidata query logs
are covered, which would not be the case otherwise.

As already noted at the end of Section 2.3.1 when discussing the key-
words in Wikidata, there is a similar analysis in [BGK18] (Table 7) and
[Mal+18] (Table 3). In contrast to their keyword analysis, the tables for co-
occurrences are not directly comparable, because they lack absolute numbers
and the numbers are aggregated differently (organic and robotic are split into
subsets based on time). However, as we discussed in the keyword analysis, we
noted that their results are not completely identical down to the last digit.
For the same reasons that we discussed, it makes sense to present our results
for the Wikidata Collection to compare them with the Multi-Source Collec-
tion. Additionally, there are many differences in the way the results can be
aggregated to effectively present data, which was discussed before (e.g. using
an operator set for Service, Bind, and Values).

2.3.3 Query Sizes and Other Measures

Triples in Multi-Source Collection In order to measure the size of the
queries in the data sets, the total number of triples of the kind 〈s, p, o〉 con-
tained in Select, Ask and Construct queries were counted. For this, merely
the number of triples contained in each query were counted without further
investigating the possible relationships among them (such as join conditions,
unions etc.), which are studied later. Only Select, Ask and Construct queries
are considered, while Describe statements are discarded, because they have
implementation-dependent semantics. And the Describe statements in the
corpus are vastly different to the remaining query types: 95% (97%) of them
do not have a body and therefore no triples.

Figure 2.1 illustrates how queries containing 0 to 11+ triples are dis-
tributed relatively to their total size over Select, Ask and Construct queries
in each of the data sets.
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Figure 2.1: Percentages of queries exhibiting different number of triples (in
colors) for each data set for Valid (left hand side of each bar) and Unique queries

(right hand side of each bar).

A first observation that can draw be drawn from the figure is that for
the majority of the data sets, the queries with a low number of triples (from
0 to 2) have a noticeable share within the total amount of queries per data
set. Whereas these queries are almost the only queries present in the BioP13
and BioP14 data sets, they have the least concentration in BritM14 and
Wikidata17. The rest of the data sets have unique characteristics, BritM14
being a collection of queries with fixed templates and Wikidata17 being the
most diverse data set of all, gathering queries of rather disparate nature that
are representatives of classes of real queries issued on Wikidata. Finally,
DBpedia9-12 until DBpedia17, along with LGD14 and BioMed13 are the data
sets exhibiting the most complex queries with extremely high numbers of
triples exceeding 10. Note that BioMed13 has almost 94% (87%) Describe
queries. The numbers reported here only depict the remaining 6% (13%).

Overall, it can be observed that 63.62% (58.40%) of the Select, Ask and
Construct queries in the corpus use at most one triple, 77.89% (90.16%) uses
at most six triples, and 99.44% (98.35%) at most twelve triples. The largest
queries we found came from DBpedia15 (209 and 211 triples) and BioMed13
(221 and 229 triples). In the query logs of DBpedia17, the largest queries
contain 207 and 209 triples.

Triples and Symbols in Wikidata Collection Figure 2.2 reports the
distribution of length of the queries in terms of the number of their triples.
Contrarily to the triple count in Figure 2.1 for the Multi-Source Collection,
property paths are included in this metric. The reason is that a property
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Figure 2.2: Percentages of queries with corresponding sizes (number of triples
plus sizes of property paths) for each data set— Valid (left) versus Unique (right).

The sizes are reported on the left-hand side and range from 0 to ≥ 11.

path pattern of the form ?x wdt:P31/wdt:P279 ?y is a shorthand notation
for two triples and we feel that it should be considered as such. We therefore
count property path patterns as follows. Let pp be a property path encoded
as a regular expression. We say that the size of pp is the number of al-
phabet symbols in the regular expression. For example, the property paths
wdt:P279/wdt:P279 and wdt:P279/wdt:P279* have size two. The query il-
lustrated in Listing 2.2 has size four: it contains two triples of size one and
one triple of size two.6 We analyzed the triples and property paths inside the
Select, Ask, and Construct clauses and explicitly exclude the queries with a
Describe clause. The results for the four data sets can be found in Figure 2.2.
Here, each bar is split into two sides, where the left side represents the Valid,
and the right side the Unique version of each data set.

The conclusions of this specific analysis are similar to those made for
the Wikidata Collection, assessing that user queries are more diverse than
robotic ones. Nevertheless, the triple count distributions shown in Figure 2.2
shows the breakdown in terms of the other dimensions considered in our
analysis, encompassing the Valid and Unique queries and the OK and timeout

6Notice that the query size computed as described above even with Kleene-star (‘*’)
and transitive closure operators (‘+’) does not depend on the length of the actual paths
in the graph instance when evaluating the query.
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#const #Organic #Robotic #var #Organic #Robotic

0–9 239,003 33,485,122 0–9 255,383 33,654,282
10–19 21,307 480,936 10–19 3,999 423,415
20–32 153 393,430 20–27 1,081 281,791

Table 2.9: Number of constants and variables in the triples in the Wikidata
Collection.

queries. The timeout queries for instance show a relatively higher complexity
in terms of number of triples than the OK ones, and this observation also
applies to RoboticTO queries, that are thus quite different from RoboticOK
queries. This seems to suggest that timeout queries are queries that failed
because of a higher number of triples, which could be interesting to consider
in graph query evaluation and optimization studies. The information about
the average number of triples confirmed this, since Valid queries have on
average 2.58 (2.65) triples, whereas timeout queries have 5.65 (5.94) triples.
As a side remark, the highest number of triples that we observed is in the
RoboticOK Valid logs and is equal to 67, which was found in 68 queries (in
34 queries in the RoboticOK Valid logs, respectively). The largest size of a
property path triple was 19.

Number of Constants and Variables in Wikidata Collection Count-
ing the number of triples is only one possible measure for the complexity of
a query. We enrich this analysis by considering further characteristics of the
triples, i.e., whether the triples contain variables or constants. This infor-
mation is useful for the shape analysis that we conduct in Section 4.2.1, in
which we show actual differentiations in the obtained shapes by removing
or including the constants. We only count the number of distinct variables
and constants in these experiments. For the Wikidata Collection, Table 2.9
reports the numbers of constants and variables by intervals in the Unique
OrganicOK and RoboticOK logs.

Precisely, we counted the number of different variables (different con-
stants, respectively) of each query in the logs and reported the total number
of queries that have this number. For conciseness, these numbers are ag-
gregated into intervals in Table 2.9. We can observe that for numbers (of
constants and variables) greater than 11, the queries with these numbers of
constants are more abundant than queries with these numbers of variables.
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#const #Valid #Unique #var #Valid #Unique

0-9 254,233,181 81,120,041 0-9 310,909,696 86,331,142
10-19 67,397,924 6,360,502 10-19 10,755,144 1,165,931
20-29 352,827 54,939 20-29 340,157 43,470
30-39 28,383 6,830 30-39 7,842 1,735
40-49 1,098 700 40-49 770 654
50-59 4,595 335 50-59 729 306
60-69 182 121 60-69 3,798 99
70-69 55 37 70-69 158 141
80-89 87 26 80-89 46 39
90-99 30 11 90-99 22 22

100-109 9 3 100-109 25 16
110-130 16 4 110-130 2 1
130-231 2 2

Table 2.10: Number of constants and variables in the triples in the
Multi-Source Collection.

Constants and Variables in Multi-Source Collection Table 2.10
shows the usage of constants and variables in the Multi-Source Collection.
We first examine the constants. Most shapes use less than 10 constants.
For the next incremental step, more than 3 times less queries use less than
20 constants. This is even more drastic if one looks at unique queries, then
more than 10 times use less than 20 constants. This supports the statement
that queries are small in general.

If one looks at variables as opposed to constants, then even more use
only less than 10 variables and more than 30 times less use less than 20. It
seems natural, that more queries use variables, because it stands to reason
that most users want more than yes or no answers from queries, which is also
supported by the number of Select queries compared to the number of Ask
queries. One final staggering observation: Going to Unique logs, more than
74 times less queries use less than 20 variables. This means that queries with
less than 10 variables absolutely dominate, which may have been expected
when looking at earlier results about size.

Even though most queries use less than 10 constants or variables, there
are a few queries that use a large number. For constants, this goes up to 231,
while for variables, this goes up to 130. However, these top counts are only
for 1-2 unique queries.
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2.3.4 Query Features: Subqueries and Projection
We will now look at two features that do not fit in the previous discussed
categories.

Projection plays a crucial role in the complexity of query evaluation.
Many papers [BPS15]; [KK16]; [Let+13]; [PAG09]; [PV11] define evaluation
as the following question: Given an RDF graph G, a SPARQL pattern P ,
and a mapping µ, is µ an answer to P when evaluated on G? In other words,
the question is to verify if a candidate answer µ is indeed an answer to the
query. Projection refers to discarding attributes of a query result. If P is
a CQ, this problem is NP-complete if the queries use projection [BPS15];
[CM77]; [Let+13], but its complexity drops to Ptime if projection is absent
[BPS15]; [Let+13]; [PAG09]. This difference can be understood as follows:
If the query tests the presence of a k-clique, then without projection we are
given a k-tuple of nodes and need to verify if they form a k-clique. With
projection, we need to solve the NP-complete k-clique problem, because we
are not given back the complete k-clique to just verify. Therefore, the use of
projection has a huge influence of the complexity of query evaluation.

Multi-Source Collection Only 1, 309, 040 (575, 666) queries in our corpus
use subqueries. The feature was most used in Wikidata17 (9.74%), about
an order of magnitude more than in any of the other data sets.

Surprisingly, with the Multi-Source Collection it turned out that at least
9.1% (13.13%) of the queries use projection, which is significantly higher
than what Picalausa and Vansummeren discovered in DBpedia logs from
2010 [PV11].

The numbers for projection can be split by query type, either Select or
Ask queries are eligible for projection. The 9.1% (13.13%) consists of 8.33%
(11.88%) Select queries plus 0.76% (1.24%) Ask queries. Notice that the total
number of Ask queries 2.44% (6.56%) is significantly higher, even though they
just return a Boolean value, and one would intuitively expect that almost
all of them would use projection. The reason is that most Ask queries do
not use variables: They ask if a concrete RDF triple is present in the data.
Following the test for projection in Section 18.2.1 of the SPARQL W3C
Recommendation [HS13], these queries were classified as not using projection.

As for the total projection, due to the use of the Bind operator, or to the
presence of subqueries, there was a number of queries (3.08% for Valid and
5.37% for Unique queries) for which no definite determination could be made
if they use projection or not without significantly complicating the notion
and test for projection. Therefore the number of queries with projection lies
between 9.1% (13.13%) and 12.18% (18.5%) for all queries.
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Wikidata Collection Roughly 1% of the queries in the Unique Logs (in-
cluding RoboticOK and OrganicOK queries) use subqueries. This number goes
down to 0.37% for the corresponding subqueries in the Valid logs.

We also ran a test for mining the number of queries that use projection. As
already explained, projection is a cause of complexity increase of query eval-
uation for CQ queries, that goes from NP-complete is projection is present
to Ptime if projection is absent [BPS15]; [Let+13]. As before, we use the
test for projection in accordance to in Section 18.2.1 in the SPARQL 1.1 rec-
ommendation [HS13] Out of the valid queries we found 25,569,947 (12.28%)
queries that use projection.7 Out of the valid Organic queries the amount
of queries with projection even rises to 28.85%. These percentages become
18.01% and 28.05% for the unique valid and Organic queries, respectively. In
particular, they are much higher than the 13.12% Select/Ask queries found
within the Unique query logs of the DBpedia corpus in [BMT17a].

7This is a lower bound, since our test is sound but incomplete.
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3
Properties and Property Paths

The predicate of SPARQL triples has a special status. The predicate is the
verb of a semantic triple, which gives relations in an ontology a special-
ized meaning, as they define properties of objects. In contrast to subjects
and objects, which are only simple variables or constants, predicates can be
property paths, which are essentially a special flavor of regular expressions.
In the following sections, the predicate position is examined in depth.

3.1 Usage of Wikidata Properties
Before turning to property paths, since Wikidata Collection is a data set from
a single source, it was interesting to look at the general usage of properties.
The OrganicOK Unique query logs were chosen, because on the surface, this
set seems the most suitable, since the query endpoints are meant to be use
facing.

Properties are IRIs, but the prefixes are shared, so the final path element
is the main identifier (P856, P31,. . . ). The total number of properties found
in these logs are 881,490. These are divided into two major namespaces at a
top level: www.wikidata.org (805,196), and www.w3.org (70,829).

Figure 3.1 is a sunburst diagram showing the segmentation of
the Wikidata properties inside the largest top-level namespace qualifier
www.wikidata.org. In order to avoid clutter and for ease of presentation,
the sunburst is solely annotated with the properties with occurrences that
are above a given threshold (6,000).

More views about the sunburst including the other top-level properties
and with complete information about all the number of occurrences, is avail-
able via an interactive version of the diagram [Tim19b]. Hovering over the
various segments of the rings provides the information omitted here in order
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31/10/2018 https://sparql.bonxai.org/docs/sunburst.html

https://sparql.bonxai.org/docs/sunburst.html 1/1
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 save with right click

 requires sunburst.css
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P18(size : 31 .489)
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P131(size : 11 .800)
P569(size : 11 .282)
P106(size : 10 .789)
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P21(size : 6 .951)
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P50(size : 6 .672)
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statement(size : 17 .666)

direct(size : 500 .507)

prop(size : 564 .962)

qualifier(size : 21 .417)

Q5(size : 18 .658)

entity(size : 239 .568)

Figure 3.1: Sunburst distribution of the property qualifiers in Wikidata queries
(Unique OrganicOK query logs). Interactive version available at

https://podmr.github.io/darql/property-sunburst/.

ID Title

P17 country
P18 image
P21 sex/gender
P27 country of citizenship
P31 instance of
P50 author
P106 occupation
P131 located in the administrative territorial entity
P279 subclass of
P569 date of birth
P570 date of death
P625 coordinate location
P856 official website

Table 3.1: Most common properties in Wikidata and their labels.

to avoid clutter in Figure 3.1.
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3.2 Property Path Usage in Multi-Source
Collection

In the Multi-Source Collection a total of 1,412,762 (329,984) queries used
property paths. From these queries, 1,528,701 (404,721) property paths were
extracted in total. Although property paths are therefore rare, this is not so
for every data set: 92 queries (29.87%) in Wikidata17 have property paths.

A large fraction of these property paths are extremely simple. For in-
stance, 65,693 (63,428) property paths are !a (“follow an edge not labeled
a”), and 80,421 (58,156) are ˆa (“follow an a-edge in reverse direction”).

In total, 65,751 (63,478) queries use the different-from operator “!”, and
394,726 (144,569) use the reverse navigation operator “ˆ”.

In Table 3.2, an overview of all property paths found in the corpus is pre-
sented. For readability purposes, the concatenation operator “/” of SPARQL
is not explicitly denoted, i.e. it is elided, so a/b is written simply as ab infix.
Furthermore, in the classification, ˆa and !a are treated as the same as a
literal. For instance, ab, (ˆa)b, and (!a)b are all classified as a1 · · · ak with
k = 2. Capital letters are used to to denote subexpressions that can match
a set of different IRIs. For example, (a|b) can match a and b, i.e., a set of
two symbols. The sizes of theses sets is noted in the column Set Sizes.

If the expression uses the !-operator, it can actually be matched by an
infinite number of IRIs and can be seen as a wildcard test. (Some users even
write the expression (!a|!b) to obtain a wildcard that can match any IRI.) If
an expressions uses the !-operator, it is annotated this with (wc) denoting a
wildcard in the Set Sizes column.

Furthermore, each row represents the expression type listed on the left
plus its symmetric form. For instance, a∗b counts expressions of the form a∗b
and ba∗. The variant listed in the table is the one that occurred most often
in the data. That is, a∗b occurred more often than ba∗.

Bagan et al. [BBG13] proved a dichotomy on the data complexity of eval-
uating property paths under simple path semantics, i.e., expressions can only
be matched on paths in the RDF graph in which nodes appear only once.
They showed that, although evaluating property paths under this semantics
is NP-complete in general, it is possible in Ptime if the expressions belong
to a class called Ctract. Remarkably, only eight expressions were found in the
corpus which are not in Ctract, namely (ab)∗ (once) and ab(ab)∗ (seven times).
The complexity of enumerating answers to property paths of the form as in
Table 3.2 is studied in [MT17]. More precisely, the paper investigates enu-
meration problems for simple transitive expressions, which capture 394,726
(144,569) of the expressions in Table 3.2.
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Expression #Valid %Valid #Unique %Unique Set Size k

a+ 618,459 40.46% 5,968 1.47%
A∗ 361,402 23.64% 89,379 22.08% ≤ 4 (wc)
a∗ 160,628 10.51% 68,681 16.97%
a∗b 23,523 1.54% 20,566 5.08%
a∗b∗ 14,674 0.96% 997 0.25%
A∗B? 7,252 0.47% 1,326 0.33% ≤ 5
abc∗ 70 0.00% 54 0.01%

(ab∗)|c 45 0.00% 15 0.00%
a∗b? 45 0.00% 15 0.00%
A+ 19 0.00% 18 0.00% ≤ 7 (wc)

ab(ab)∗ 7 0.00% 7 0.00%
a+|b+ 3 0.00% 3 0.00%
Ab∗ 2 0.00% 1 0.00% ≤ 1 (wc)
aB∗ 2 0.00% 2 0.00% ≤ 2 (wc)
a|b∗ 2 0.00% 2 0.00%
a|b+ 2 0.00% 2 0.00%
A+B? 1 0.00% 1 0.00% ≤ 5
A∗B 1 0.00% 1 0.00% ≤ 5
A∗bc 1 0.00% 1 0.00% = 5
a?b∗ 1 0.00% 1 0.00%
(ab)∗ 1 0.00% 1 0.00%

A 139,662 9.14% 129,515 32.00% ≤ 6 (wc)
a1 · · · ak 109,166 7.14% 25,431 6.28% ≤ 6

â 80,421 5.26% 58,156 14.37%
a? 9,864 0.65% 3,347 0.83%

a1? · · · ak? 2,704 0.18% 971 0.24% ≤ 5
a1? · · · ak−1?ak 664 0.04% 197 0.05% ≤ 3

aB? 40 0.00% 34 0.01% ≤ 2
ab?c?d 12 0.00% 10 0.00%
Ab 8 0.00% 6 0.00% ≤ 2
AB 7 0.00% 4 0.00% ≤ 2

a|ba|c|d 6 0.00% 2 0.00%
A? 4 0.00% 4 0.00% ≤ 2 (wc)

abc?d? 2 0.00% 2 0.00%
AAAAAA 1 0.00% 1 0.00% = 2

Total 1,528,701 100% 404,721 100%

Table 3.2: Structure of property paths in Multi-Source Collection. Capital
letters denote unions of symbols or wildcards (wc). Transitive expressions are on

top, non-transitive on bottom.
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3.3 Property Path Usage in Wikidata Collec-
tion

Property paths are much more common in the Wikidata Collection than in
the Multi-Source Collection. Also, since their origin is known, the analysis
can be split into two parts, which can be quite interesting for comparison.

The main results are summarized in Table 3.3 and Table 3.4 for Robotic
queries and Organic respectively.

Overall, 49,971,258 (13,480,433) queries in these logs use property paths,
which amounts to a total of 24.03% (38.94%) of the entire logs. In these
queries 165,343 (82,764) property paths are in Organic queries, and 55,168,101
(14,106,489) in Robotic ones. Note that a query can contain more than one
property path, the numbers reported just report the presence in queries.

The number of queries in the Wikidata Collection is significantly larger
(57x) than in the Multi-Source Collection.

Both Organic and Robotic property path log sets are interesting for an ana-
lytical study and deserve a deeper inspection in order to classify the occurring
path expressions into distinct types. Indeed, when looking at the structure of
these path expressions, there are 234 different types of Organic expressions,
compared to only 64 types of Robotic expressions. This kind of thorough
classification revealed the different characteristics of the organic property
paths with respect to the robotic ones, as the former exhibit more variety
and heterogeneity than the latter despite their lower occurrences. The type
of a property path is obtained as follows. Each variable or IRI is replaced by
letters from the alphabet in increasing order. (If a variable or IRI is repeated
in the property path, it is replaced by the same alphabet letter.) For example,
wdt:P31∗/wdt:P279∗ is of the type a∗b∗ and wdt:P31/wdt:P31∗/wdt:P279∗

is of the type aa∗b∗.

Robotic Property Paths Table 3.3 contains a summary of the most com-
mon types of property paths in robotic queries. The columns with “V”
represent results for the Valid queries, and the columns with “U” for the
Unique queries. For succinctness, different types are aggregated together.
For example, each type is aggregated with its reverse type. For instance, the
row for ab∗ also contains the expressions of the form a∗b. Furthermore, â
(“follow an a-edge in reverse direction”) is treated the same as a single label.1
Finally, disjunctions are also grouped together, denoted by capital letters. In

1The operator ˆ is used in 0.80% (1.10%) of robotic and 2.03% (3.18%) of organic
queries.
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Expression Type #Valid %Valid #Unique %Unique

a∗ 27,850,487 50.48% 1,392,865 9.87%
ab∗, a+ 9,417,166 17.07% 2,816,134 19.96%
ab∗c∗ 823,153 1.49% 67,502 0.48%
A∗ 328,895 0.60% 51,860 0.37%
ab∗c 122,286 0.22% 1,680 0.01%
a∗b∗ 62,784 0.11% 608 0.00%
abc∗ 27,287 0.05% 4,083 0.03%
a?b∗ 15,893 0.03% 11,999 0.09%
A+ 4,674 0.01% 2,043 0.01%
Ab∗ 1,562 0.00% 674 0.00%

Other transitive 1,643 0.00% 161 0.00%

a1 · · · ak 13,382,005 24.26% 9,368,442 66.41%
A 3,043,725 5.52% 381,434 2.70%
A? 31,150 0.06% 296 0.00%

a1a2? · · · ak? 25,872 0.05% 5,940 0.04%
â 21,202 0.04% 471 0.00%

abc? 7,620 0.01% 8 0.00%
Other non-transitive 697 0.00% 289 0.00%

Total 55,168,101 100% 14,106,489 100%

Table 3.3: Structure of property paths for all robotic Wikidata queries.

Table 3.3, a capital letter A denotes a subexpression that matches a disjunc-
tion of at least two symbols. Empirically, an A either denotes an expression
of the form !a, (a|!a), or a disjunction of the form (a1| · · · |ak) with k > 1.
Table 3.3 is divided into transitive expressions (top) and non-transitive ex-
pressions (bottom). Transitive expressions are those that match arbitrarily
long paths (i.e., they use the operators ∗ or +). The empty cells represent
values that round down to 0.00%.

Interestingly, there are significant differences between the numbers of ex-
pressions in the Valid and in the Unique sets. Whereas the type a∗ accounts
for 50.48% of the expressions in the Valid data set, this drops to 9.87% in the
Unique set. On the other hand, concatenations of symbols (type a1 · · · ak)
represent 24.26% in the valid queries, but over 66% in the unique queries.
To further understand this phenomenon, the following was done. Taking the
RoboticOK and OrganicOK, the most popular 20 queries (based on occur-
rence) containing a property path with Kleene-star were computed.

The top most popular robotic query with property paths (having 281, 096
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Expression Type #Valid %Valid #Unique %Unique

AB∗ 57,913 35.03% 28,034 33.87%
A∗ 41,777 25.27% 22,071 26.67%

ABC∗ 6,497 3.93% 3,044 3.68%
a∗b∗ 3,330 2.01% 849 1.03%
ab∗c∗ 2,704 1.64% 1,172 1.42%

a∗B1?b2? · · · bk? 1,789 1.08% 422 0.51%
ab|c∗d 1,514 0.92% 534 0.65%
a∗|b∗ 347 0.21% 253 0.31%
abCD∗ 283 0.17% 219 0.26%
ab∗c 113 0.07% 90 0.11%
a∗|B 102 0.06% 76 0.09%
∼ (ab)∗ 101 0.06% 82 0.10%
ab∗c∗d 86 0.05% 72 0.09%
ab∗|c 70 0.04% 59 0.07%
a∗b?c 56 0.03% 27 0.03%
a∗b∗c∗ 32 0.02% 28 0.03%
ab∗|b+a∗ 16 0.01% 12 0.01%
ab+c 13 0.01% 12 0.01%
ab∗|cd∗ 13 0.01% 12 0.01%
a∗bc∗ 11 0.01% 11 0.01%

Other transitive 22 0.01% 20 0.02%

A1a2 · · · ak 31,032 18.77% 15,754 19.03%
A 13,248 8.01% 7,592 9.17%

a1? · · · ak? 1,938 1.17% 1,470 1.78%
A? 1,178 0.71% 302 0.36%

ab1? · · · bk? 1,117 0.68% 529 0.64%
ab|c 27 0.02% 5 0.01%

Other non-transitive 14 0.01% 13 0.02%

total 165,343 100.00% 82,764 100.00%

Table 3.4: Structure of property paths for all organic Wikidata queries.

occurrences) belong to the second most occurring type in Table 3.3 since
it contains a single path expression of the kind wdt:P31/wdt:P279∗. The
query is in fact a conjunctive regular path query. By looking at the top most
popular organic query (with 1, 778 occurrences), we can see that it belongs
to the first most occurring type in Table 3.4 and exhibits the same single
path expression. As a side remark, the latter query is fairly more complex
and uses Union, Filter, Bind, and Service clauses.
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Organic Property Paths Table 3.4 contains results on the Organic data
sets. Since there are 234 different types of expressions, the results needed to
be aggregated more aggressively to make the results presentable.

The types are grouped into 41 different categories, from which some in the
table are omitted. The main difference with Table 3.3 is that a capital letter
is allowed to denote a single symbol. So, A can denote expressions equivalent
to a, (a1| · · · |ak), !a, or (!a|a). The other difference is that the types (ab)∗
and a(bc)∗ are grouped together in the type ∼(ab)∗. These expressions stand
out from the rest, since they are the only type of transitive expressions that
put length constraints on arbitrarily long paths. Indeed, all other transitive
expressions allow paths of arbitrary length once the length exceeds a certain
value. This is not the case for (ab)∗, since it only allows paths of even length.

Here, the percentages in the unique sets are quite similar to those in the
valid sets. The Organic queries generally contain more challenging property
paths to valuate. On average, organic property paths are also larger than
robotic ones. They contain 2.07 (2.01) literals on average, whereas robotic
property paths only contain 1.49 (1.89) literals on average. There were even
expression types which occurred more often in the TO (timeout) logs than in
the OK logs, such as ∼(ab)∗. This is interesting, because such expressions are
known to be complex (NP-complete) to evaluate under simple path semantics
[BBG13].

Additional Insights on Wikidata Property Paths In this section, the
differences between Table 3.3 and Table 3.4 and the results of the property
paths analysis of the Multi-Source Collection are discussed. The remarkable
difference between the Wikidata Collection and the former (which was done
on a corpus mainly consisting of DBpedia queries) is that here, a much
larger fraction of the queries use property paths. This is probably due to the
peculiar characteristics of the Wikidata data. Property paths are often used
in queries performing class navigation in Wikidata and emulating ontological
reasoning. Wikidata has relatively long paths in the data that are labeled
with the same label (and that are popular to query, e.g., InstanceOf paths),
whereas DBpedia has comparably shorter paths and is more flat.

The remarkable similarity, however, is in the structure of the property
paths. Martens and Trautner [MT18a] defined the class of simple transitive
expressions, which are syntactically very restricted, but covered over 99% of
the property paths in the Multi-Source Collection. In the Wikidata Collec-
tion, 1.61% (0.48%) of the Robotic and 3.83% (2.72%) of the Organic property
paths are not simple transitive expressions. The most significant reason why
property paths fall out of this fragment is the use of a∗b∗ as a subexpression,
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whereas simple transitive expressions only use one subexpression with Kleene
star.

Furthermore, all property paths except 198 (98) are in Ctract, which is
a broader class introduced by Bagan et al. [BBG13] and which precisely
characterizes the set of regular expressions for which the data complexity
under simple path semantics is tractable if P 6= NP.

3.4 Tree Pattern Queries
Tree pattern queries (e.g., [Cze+15]; [Cze+18]; [KS08]; [MS04]) are a well-
studied query formalism on trees which is inspired on XPath but which can
just as well be used for querying graph-structured data [Cze+18]; [LMV16a].
We next define a tree-pattern-like fragment of our queries and investigate
how common it appears in the logs.

Property paths have the power to do forward and backward navigation
through edges. For instance, if a is an IRI, then the property path ˆa allows
to follow an a-edge in the graph in backward direction. In the following
definition, we only allow forward navigation. A directed tree is a connected,
directed graph, such that there is a unique node without incoming edges (the
root) and, for all edges (u, v) and (u′, v), we have that u = u′ (every node
has at most one parent).

Definition 3.4.1. A conjunctive regular path query (CRPQ) is a
SPARQL pattern that only uses triple patterns, the operator And,
and property paths.

The directed canonical graph of a CRPQ P is the directed graph obtained
from the edges E ∪ Ep, where E = {(x, y) | (x, `, y) is a triple pattern in P
and ` ∈ I ∪V} and Ep = {(x, y) | (x, pp, y) is a property path pattern in P}.

Definition 3.4.2. A CRPQ P is a tree pattern query if

• its directed canonical graph is a directed tree and

• every property path is a concatenation of IRIs and property paths
of the form a∗ where a is an IRI.

Multi-Source Collection Our analysis shows that 99.77% (99.91%) of
the CRPQs have a canonical graph that is an undirected tree. Out of these,
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87.92% (84.96%) are tree pattern queries. This is a fairly significant number,
considering that we require the shape to be a directed tree. If we addition-
ally allow the Filter operator (in a similar way as in Section 4.2.1), these
percentages remain roughly the same.

Wikidata Collection Results for tree patterns in Wikidata are more com-
plex than the results for the Multi-Source Collection due to the nature of the
split between organic and robotic queries, which is why Table 3.5 is included.

Organic logs are covered a slight bit less by tree pattern than robotic
ones. However, there are more tree patterns for organic queries in Unique
logs. Surprisingly the percentages changes by around 10-20% if we go to
Unique logs. And while there are more tree patterns for organic queries in
Valid logs, in Unique logs robotic queries have more tree patterns. This
was unexpected. As a side note: Some testing suggests that the observation
from the last paragraph could to shift if our definition of tree patterns would
permit the inclusion of the choice operator. Another deeper study in the
future may be interesting.

Log #Organic %Organic #Robotic %Robotic

Valid 63,682 74.48% 58,855,503 70.56%
Unique 30,476 84.33% 20,944,987 90.95%

Table 3.5: Tree patterns in Wikidata logs split by type, showing results for
Valid and Unique.
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Structural Analysis

After looking at general high-level aspects of queries, the analysis now turns
to the inner structure and complexity of queries. To this end, we will now
first focus on defining the structures and properties for structures, as well
as the complexity of these categorizations. These characterizations allows to
divide the data sets into distinct sets with different properties. After these
preparations, the analysis is applied. As it turns out, most queries can be
characterized by simple shapes that build on each other.

4.1 Query Structure
How do you analyze the structure of a query? There are a multitude of
concerns that have to be considered. Queries need to be carefully transformed
to a representation that can be analyzed. We will first start out with simple
queries that have few parts, and we will gradually add parts.

Starting off, we prepare for an analytical approach to analyze all queries
by dividing them into large fragments with a clear understanding of complex-
ity of queries in them, with the goal that these fragments should cover most
queries in collection of logs. The idea is that this allows to understand how
complex large parts of real logs are, how they are different, and why they are
different based on their division. Finally, this allows to isolate a very small
fraction of logs that may contain highly unique and interesting queries for
further research by looking at the remainder.

SPARQL patterns of queries that are restricted to using only triple pat-
terns and the operators And, Optional, and Filter- and, in particular, not using
subqueries or property paths - received considerable attention in the liter-
ature (see, e.g., [BPS15]; [KK16]; [KPS16]; [Let+13]; [PAG09]). Such And,
Optional, or Filter patterns will be referred to as And/Optional/Filter patterns
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or, for succinctness, AOF patterns. For instance, the Multi-Source Collec-
tion has 200,641,891 (64,857,889) AOF patterns, which amounts to 62.31%
(74.09%) of the Select, Ask, and Construct queries.

In Section 4.2 and Section 4.2.3 the graph- and hypergraph structure of
AOF patterns is investigated. The graph structure gives a clear view on how
such queries are structured and can tell how complex such queries are to
evaluate. However, for a significant portion of queries, the graph structure
is not adequate to capture their complexity (cf. Example 4.1.1), thus their
hypergraph structure needs to be examined. Since the graph structure may
be easier to understand and is often sufficient, the graph structure is preferred
in all analyses if it is applicable.

Some background on the relationship between the (hyper)graph struc-
ture of queries and the complexity of their evaluation: Evaluation of CQ
queries is NP-complete in general [CM77], but becomes Ptime if their hy-
pertreewidth (see Section 4.2.2) is bounded by a constant [GLS02]. The
hypertreewidth measures how close the query is to a tree, i.e. the lower the
width, the closer the query is to a tree. Several state-of-the-art join evalu-
ation algorithms (e.g., [Abe+16a]; [KEK17]) effectively use the hypergraph
structure of queries to improve their performance, even in the context of
RDF processing [Abe+16b]. In Section 4.1.4 is used to establish that there
are significant performance differences in today’s query engines, even when
the hypertreewidth of queries just increases from one to two.

4.1.1 Graph and Hypergraph of a Query
Most queries can be accurately represented as a graph, but in some cases
they are better expressed as a hypergraph. We recall: An (undirected) graph
G is a pair (V,E) where V is its (finite) set of nodes and E is its set of edges
where an edge e is a set of one or two nodes, i.e., e ⊆ V and |e| = 1 or |e| = 2.
A hypergraph H consists of a (finite) set of nodes V and a set of hyperedges
E ⊆ 2V , that is, a hyperedge is a set of nodes.

Most SPARQL patterns do not use variables as predicates, that is, they
use triple patterns (s, p, o) where p is an IRI. In particular, consider the case
p ∈ vars if p is not used elsewhere in the query. In this case, p serves as
a wildcard, possibly binding to a value that is returned to the output. We
call such patterns graph patterns. Evaluation of graph patterns is tightly
connected to finding an embedding of the graph representation of the query
into the data. In particular, it consists of finding an embedding of the directed
and edge-labeled variant of the graph, but the directions and labels of edges
can be omitted for simplicity, because they do not influence the structure
and cyclicity of graph patterns.
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The triple graph of graph pattern P is defined to be the following graph:
E = {{x, y} | (x, `, y) is a triple pattern in P and ` ∈ I ∪ V} and V = {x |
{x, y} ∈ E}.

Hypergraph representations can be considered for all AOF patterns. The
triple hypergraph of a SPARQL pattern P is defined as E = {X | there is
a triple pattern t in P , such that X is the set of blank nodes and variables
appearing t} and V = ∪e∈Ee.
Canonical Graphs For several types of queries, the structure of their
triple graph will be analyzed. However, the usage of some keywords in cer-
tain queries (notably, Filter and Values) can put additional constraints on
the query that are not reflected in the triple (hyper)graph and therefore will
need to be augmented with additional (hyper)edges. We will call the re-
sulting graphs the canonical (hyper)graphs of the queries. For CQ queries
however, these keywords are not present, therefore we define their canonical
(hyper)graph to be equal to their triple (hyper)graph.

Example 4.1.1. Consider the following (synthetic) CQ queries:

ASK WHERE {
?x1 :a ?x2 . ?x2 :b ?x3 . ?x3 :c ?x4 }

ASK WHERE {
?x1 ?x2 ?x3 . ?x3 :a ?x4 . ?x4 ?x2 ?x5 }

In Figure 4.1, in the top left the canonical graph of the first query
is depicted, which is a sequence of three edges. (The edges are labeled
with their labels in the query to improve understanding.) The bottom
left graph in Figure 4.1 depicts the second query, and it shows why
variables on the predicate position in triples cause problems, so they are
not considered for canonical graphs. The topological structure of this
graph as depicted is a sequence of three edges, just as for the first query.
But this completely ignores the join condition on ?x2. For this query,
the canonical hypergraph in Figure 4.1 on the right correctly captures
the cyclicity of the query.

x1 x2 x3 x4
:a :b :c

x1 x3 x4 x5
x2 :a x2

x2 x1 x3

x4

x5

Figure 4.1: Canonical graphs and hypergraph for queries.
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4.1.2 Query Fragments
We now discuss the classes of queries for which their canonical graph- and
hypergraph structures will be investigated in Section 4.2. The focus will be on
fragments of AOF patterns, plus a mild extension for Multi-Source Collection,
and another extension for Wikidata Collection. The former only extends to
the Values blocks, while the latter also considers Service and Bind in addition
to Values. The reasoning for extending the Multi-Source Collection and the
Wikidata Collection differently is explained in in Section 2.3.2. In short, the
extensions with these operator compositions are covering most of the query
logs in their respective collections.

Conjunctive Queries The simplest queries that are considered are the CQ
queries, which motivated the classical literature on query evaluation and hy-
pertree structure [CM77]; [GLS02]. For instance, we discovered that 61.00%
(60.99%) of the AOF patterns are CQ queries in the Multi-Source Collection.

Definition 4.1.2. A CQ is suitable for graph analysis if it is a graph
pattern. For a CQ that is suitable for graph analysis, its canonical graph
is defined as its triple graph. For every other CQ, its canonical hypergraph
is defined as its triple hypergraph.

Next, the above terminology is extended for CQ queries with Filter, Op-
tional, and Values. Only canonical (hyper)graphs for queries will be consid-
ered for which the relationship between efficient query evaluation and their
(hyper)graph structure is still similar as for CQ queries. However, this re-
quires some care, especially when considering Optional [BPS15]; [PAG09].

Adding Filter CQF patterns can be evaluated similarly to CQ queries, but
the fragment for the analysis of graph shapes still needs to be discussed. A
filter constraint R is simple if vars(R) contains at most two variables. An
almost identical class of queries was also considered in [PV11].

Definition 4.1.3. A CQF query is suitable for graph analysis if it is a
graph pattern and all filter constraints are simple. For such a CQF query,
the canonical graph is its triple graph, with an additional edge {x, y} for
each filter constraint that uses two variables x and y. For all other CQF
queries, its canonical hypergraph is obtained from its triple graph, with
an additional hyperedge {x1, . . . , xk} for each filter constraint that uses
precisely the k variables x1, . . . , xk.
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In the Multi-Source Collection, 81.07% (90.28%) of the CQF patterns are
suitable for graph analysis.

Adding Optional We now additionally consider Optional. Pérez et
al. [PAG09] showed that unrestricted use of Optional in SPARQL patterns
makes query evaluation Pspace-complete, which is significantly more com-
plex than the NP-completeness of CQ or CQF queries. They discovered that
patterns that satisfy an extra condition called well-designedness [PAG09],
can be evaluated more efficiently. Letelier et al. [Let+13] show that, in the
presence of projection, evaluation of well-designed patterns is ΣP

2 -complete
[Let+13].

Definition 4.1.4. A SPARQL pattern P using only the operators And,
Filter, and Optional is well-designed if for every occurrence i of an Op-
tional-pattern (P1 Optional P2) in P , the variables from vars(P2)\vars(P1)
occur in P only inside i.a

aPerez et al.’s definition also has a safety condition on the filter statements of the
patterns, but the omission of this condition does not affect the results.

Example 4.1.5. Consider the pattern

((?x, b, ?y) OPT (?y, c, ?z)) OPT (?x, d, ?z)

Then ?z from (?y, c, ?z) is not in (?x, b, ?y), but it is outside in (?x, b, ?z).
Therefore, the pattern is not well-designed.

In the Multi-Source Collection 98.74% (98.18%) of the AOF patterns are
well-designed (but do not necessarily have simple filters).

However, in the Wikidata Collection, there are substantial amounts of
queries that go beyond only using the operators And, Optional, and Filter. In
the Wikidata Collection, only 27.72% (44.24%) of the queries are in the pure
CQF fragment. We will see how the Wikidata Collection can be handled to
cover more queries later in this section. For now, we will continue to look at
the AOF patterns.

Unfortunately, it is not yet sufficient for well-designed patterns to have a
hypergraph of constant hypertreewidth for their evaluation to be tractable
[BPS15]. However, Barceló et al. show that this can be mended by an addi-
tional restriction called bounded interface width. This notion will be explained
by an example, for details refer to [BPS15].
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Example 4.1.6. The following patterns come from [Let+13]; [PAG09]:

P1 = ((?A, name, ?N) OPT (?A, email, ?E))
OPT (?A,webPage, ?W )

P2 = (?A, name, ?N) OPT
((?A, email, ?E) OPT (?A,webPage, ?W ))

Figure 4.2 has tree representations T1 and T2 for P1 and P2, re-
spectively, called pattern trees. The pattern trees Ti are obtained from
the parse trees of Pi by applying a standard encoding based on Curry-
ing [MN07, Section 4.1.1]. The encoding only affects the arguments of
the Optional operators in the queries. If the query also uses And, then
it should first be brought in Optional-normal form [PAG09] and then
turned into a pattern tree. The resulting pattern trees will then have a
CQ in each of its nodes.

Barceló et al. define pattern trees to be well-designed if, for each
variable, the set of nodes in which it occurs forms a connected set. Notice
that this is the case for T1 and T2. It would be violated in T1 if the root
would not use the variable ?A. Likewise, it would be violated in T2 if the
node labeled (?A, email, ?E) would not use the variable ?A.

The interface width of the pattern trees is the maximum number of
common variables between a node and its child. Both trees in Figure 4.2
(and both queries P1 and P2) therefore have interface width one. (Com-
mon variables are bold in Figure 4.2.) If T1 would use variable ?W
instead of ?N , then its interface width would be two.

(?A, name, ?N)

(?A, email, ?E) (?A, webPage, ?W)

(?A, name, ?N)

(?A, email, ?E)

(?A, webPage, ?W)

T1: T2:

Figure 4.2: Pattern trees that correspond to the queries.
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Definition 4.1.7. A SPARQL pattern P using only the operators And,
Filter, and Optional is a CQOF query if it has a well-designed pattern tree
with interface width 1. It is suitable for graph analysis if it is a graph
pattern and all its filter conditions are simple. The canonical graph
and hypergraph of a CQOF query is defined analogously to that of CQF
queries. That is, its triple graph (resp., hypergraph) is augmented with
edges {x, y} (resp., hyperedges {x1, . . . , xk}) for each filter constraint
that uses precisely the variables x and y (resp., x1, . . . , xk) for each filter
constraint.

For the Multi-Source Collection, it turns out that 98.72% (98.13%) of
the AOF patterns are CQOF queries, which is almost equal to the number of
well-designed patterns. Moreover, 85.30% (93.87%) are CQOF patterns that
are suitable for graph analysis.

Adding Values The Values keyword was used in 2.24% (5.61%) of the
queries in the Multi-Source Collection. It is used particularly often in
DBpedia17, where it appears in 4.03% (13.37%) of the queries. The usage of
Values in Wikidata Collection is very similar, it is used 4.56% (4.58%).

The purpose of Values blocks is to test if a variable (or a tuple of variables)
appears in a set that is given in the query. For instance, the Values block

VALUES (?country) {
"Belgium" "France" "Germany"

}

restricts the variable ?country to be assigned to one of the values "Belgium",
"France", or "Germany". Values blocks are used almost exclusively for unary
conditions, that is, to test if the value of a single variable is in a given set of
constants. However, it can also be used to test higher arity constraints, as
in the Values block

VALUES (?x ?y) {
(:a :b)
(:a :c)

}

which imposes a binary constraint, i.e., it binds the variable pair (?x ?y)
to one of the two pairs in the body of the Values block. Concerning the
shape analysis, Values blocks that use constraints of arity two or less are
distinguished from the others.
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Definition 4.1.8. A CQOFV query is a SPARQL pattern P using only the
operators And, Filter, Optional, and Values, such that the pattern obtained
from P by removing all Values blocks is a CQOF query. It is suitable for
graph analysis if all filters are simple and all values blocks have arity at
most two. If a CQOFV query is suitable for graph analysis, its canonical
graph is obtained from the triple graph by augmenting it with an edge for
each binary filter constraint, and an edge for each binary Values block.
For every other CQOFV queries, its canonical hypergraph is obtained from
the triple hypergraph by augmenting it with a hyperedge {x1, . . . , xk} for
each filter- or values block that uses precisely the variables x1, . . . , xk.

Adding Service For the Multi-Source Collection, Service was used very
rarely. Therefore it was not considered when analyzing the logs. However,
this changes when going to the Wikidata Collection. Service is used exten-
sively in Wikidata queries, most commonly for Wikidata’s labeling service.
For this reason, Bielefeldt et al. [BGK18] ignore the labeling service entirely
in their co-occurrence analysis of SPARQL features. Similarly to before, a
Service element S is k-ary if it contains k variables. All unary or binary Ser-
vice elements are suitable for graph analysis. When considering the graph of
patterns with Service, edges of the form {x, y} for all binary Service elements
are added, in which x and y are the variables. Higher arity Values conditions
are considered in Section 4.2.2. We will revisit this operator soon, when we
take a closer look at what queries are dominant in the Wikidata Collection.

Adding Bind For the Multi-Source Collection, Bind was not considered,
but is considered for the Wikidata Collection. Concerning Bind, the approach
is similar to Filter. A Bind-condition is k-ary if it involves k variables. Unary
and binary Bind-conditions are considered to be suitable for graph analysis
and are materialized as edges in the graph. Higher-arity Bind-conditions are
considered in Section 4.2.2.

Definition 4.1.9. A CQOF+ query is an extension of a CQOFV query. It
also permits Bind and Service similarly to Filter and Values: If all edges
induced by Bind and Service are at most binary, the query is suitable
for graph analysis and the edges are added to the canonical graph of
the query. The canonical hypergraph is obtained by adding hyperedges
induced by by Bind and Service to the hypergraph.
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Operators in Wikidata Collection If you look at the Wikidata Col-
lection, even after adding Filter and Optional, only 53,804,198 (14,649,616)
queries are eligible for graph shape analysis. This is still only 25.87%
(42.32%) of the data set. This is because of the high usage of property
paths. We will now see how property paths (recursion), Bind, Service, and
Values can be incorporated to increase the number of suitable queries to
177,022,071 (30,540,864), or 85.11% (88.22%) of these logs.

Property Paths Property paths are unproblematic. Conjunctive queries
extended with property paths closely correspond to the well known conjunc-
tive two-way regular path queries (C2RPQs), which form a basis of naviga-
tional query languages for graphs. Indeed, property paths are very closely
related to regular path queries and, due to theˆ-operator, they can navigate
edges in both forward and backward direction, which makes them two-way.

Although there are some semantical differences between two-way regular
path queries and property paths [ACP12]; [HS13]; [LM13], these differences
are not crucial for the analysis.

Definition 4.1.10. A conjunctive two-way regular path query (C2RPQ)
is a SPARQL pattern that only uses triple patterns, the operator And,
and property paths.

Every C2RPQ that is a graph pattern is suitable for analysis. The graph
of a C2RPQ P is obtained from GP by adding the edges {{x, y} | (x, pp, y) is
a property path pattern in P} to EP (and adding nodes to VP if necessary).

Definition 4.1.11. By C2RPQ+ we denote the entire fragment that uses
And, Optional, Filter, property paths, Bind, Service, and Values and that
is suitable for graph analysis.

If you look at the Wikidata Collection, in total, this amounts to 176,679,495
(30,371,003) robotic and 342,576 (169,861) organic queries, which make up
85.22% (88.39%) and 51.50% (65.22%) of the robotic and organic queries,
respectively.

The fragments CQF, CQOF, and CQOF+ can be naturally extended like
going from CQ to C2RPQ, by permitting property paths. These extensions
are called C2RPQF, C2RPQOF, and C2RPQ+.

The Set of Shape Analysis Experiments For the Wikidata Collection
the graphs of 8 fragments were analyzed, namely CQ, CQF, CQOF, CQOF+,
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C2RPQ, C2RPQF, C2RPQOF, C2RPQ+. All fragments were analyzed across
three dimensions: (1) Robotic versus Organic, (2) Valid versus Unique, and
(3) with constants versus without constants. In the analyses without con-
stants, all nodes in the graphs that originated from IRIs or literals were
removed. Furthermore, for all fragments, the time-out (TO) queries were
analyzed separately from the successful (OK) queries. This results in 64
separate runs of the shape analysis (8 fragments with three splits for three
different dimensions).

Finally, to finish this section, Figure 4.3 illustrates how the query frag-
ments are related.

CQ

CQF

CQOF

CQOF+

C2RPQ

C2RPQF

C2RPQOF

C2RPQ+

add filter

add optional

add values,
service, bind

add filter

add optional

add values,
service, bind

add property paths

add property paths

add property paths

add property paths

Figure 4.3: Query fragments for shape analysis.
Inclusions are represented by arrows.

4.1.3 Well-Designedness and Unions
In this section we will take a look at the usage of well-designedness of the
queries in the logs. Kaminski and Kostylev [KK16] defined a weaker ver-
sion of well-designedness that has similar favorable computational properties.
Therefore it was also analyzed whether queries are weakly well-designed.

The definition for weakly well-designed patterns is similar to Defini-
tion 4.1.4, but it introduces the notion of pattern domination. Given a
pattern P , an occurrence i1 in P dominates another occurrence i2 if there
exists an occurrence j of an OPT-pattern, such that i1 is inside the left ar-
gument of j, and i2 is inside the right argument. A pattern P is weakly
well-designed if the outside occurrences i only appear in

• subpatterns whose occurrences are dominated by i, and
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• constraints of top-level occurrences of FILTER-patterns.

If you apply this relaxed definition to Example 4.1.5, then the pattern is
weakly-well designed, because (?y, c, ?z) dominates over (?x, b, ?y).

Multi-Source Collection Table 4.1 shows the number of AOF queries
(and the percentages thereof) that are well-designed (wd) and weakly well-
designed (wwd). We also took the set of queries that only use And, Optional,
Filter, and Union (AOFU in Table 4.1) and investigated the percentages of
queries thereof that are unions of wd or wwd queries. In most cases where
the query is not a union of wd or wwd queries, it is because the union is not
the top-level operator.

Property #Valid %Valid #Unique %Unique

wd 198,109,323 98.74% 63,677,171 98.18%
wwd 200,064,814 99.71% 64,749,468 99.83%
AOF 200,641,891 100.00% 64,857,889 100.00%

uwd 208,672,931 74.35% 69,279,286 88.72%
uwwd 210,638,343 75.05% 70,360,134 90.10%
AOFU 280,672,732 100.00% 78,088,794 100.00%

Table 4.1: Well-designedness (wd),
weak well-designedness (wwd),

and unions thereof (Multi-Source Collection).

Wikidata Collection Table 4.2 summarizes the well-designedness of
queries in the Wikidata Collection.

An interesting observation is that the weakly well-designed queries in
robotic queries cover practically 100% in the logs. In general, the results
are quite similar to the results for the Multi-Source Collection in Table 4.1.
However, the results for unions of well-designed queries appear to be higher
on first glance, but this is due do the fact that AOFU queries are not much
higher than AOF queries. Although Union appears in almost 10% of the
queries (see Table 2.4), it does not occur in combination the operators And,
Filter, and Optional, which can be seen in Table 2.7 for combinations with
And and Filter, And the combination of And, Filter, and Optional together.
Note that Table 2.7 only provides a subset of combinations, meaning that
combinations with other operators are not included.
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Property #O V %O V #R V %R V

wd 122,519 96.90% 54,177,960 94.17%
wwd 126,234 99.84% 57,527,655 100.00%
AOF 126,436 100.00% 57,530,280 100.00%

uwd 123,427 94.36% 54,195,498 93.24%
uwwd 127,142 97.20% 57,545,193 99.00%
AOFU 130,811 100.00% 58,125,339 100.00%

Property #O U %O U #R U %R U

wd 56,729 96.42% 15,030,107 98.51%
wwd 58,708 99.78% 15,256,298 99.99%
AOF 58,838 100.00% 15,257,255 100.00%

uwd 57,128 94.31% 15,036,064 98.07%
uwwd 59,107 97.58% 15,262,255 99.54%
AOFU 60,573 100.00% 15,332,293 100.00%

Table 4.2: Well-designedness (wd), weak well-designedness (wwd),
and unions thereof (uwd and uwwd)

(Robotic (R) and Organic (O), Valid (V) and Unique (U)).

4.1.4 Benchmarking: Impact of Query Structure

In this section, we study the impact of query structure on actual evaluation
in real-world systems.

A set of experiments were conducted, aiming at comparing the execution
times of conjunctive queries whose canonical graphs exhibit specific shapes.
Because of their simplicity and prevalence, chain and cycle queries were cho-
sen for this empirical study.

A chain query (of length k) is a CQ for which the canonical graph is iso-
morphic to the undirected graph with edges {x0, x1}, {x1, x2}, . . . , {xk−1, xk}.
A cycle query (of length k) is a CQ for which the canonical graph is isomor-
phic to {x0, x1}, . . . , {xk−1, x0}. As an edge case, chains of length zero are
also allowed. Such chains consist either of a single node or no node at all.

These shapes have been selected as representatives of the queries with
hypertreewidth 1 and 2, respectively, and have also been used to compare
the performances of join algorithms in other studies, e.g., [KEK17].
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Experimental Setup In order to generate query workloads containing
the aforementioned types of queries, gMark [Bag+17] was used, a publicly
available1 schema-driven generator for graph instances and graph queries.
gMark was tuned to generate diverse query workloads, each containing 100
chain and cycle queries, respectively.2 Each workload has been generated by
using chains and cycles of different length varying from 3 to 8.

In these experiments, two opposite graph database systems were consid-
ered and contrasted, namely PostgreSQL [Pos18], an open-source relational
DBMS, and Blazegraph [Sys17], an high-performance SPARQL query en-
gine powering the Wikimedia’s official query service [VK14] and thus used
for Wikidata real-world queries. These experiments were run on a dual-
CPU Intel Xeon E5-2630v2 2.6 GHz server3 with 128GB RAM and running
Ubuntu 16.04 LTS. For the experimental setup, the version of PostgreSQL
was 9.3 and the version of Blazegraph was 2.1.4. In the gMark configura-
tion [Bag+17] the use base Bib was employed for the schema of the generated
graph (of size 100k nodes) and for the generated queries as well. The query
workloads in SQL and SPARQL was employed as generated by gMark after
the elimination of empty unions (since gMark is geared towards generating
UCRPQs) and of the keyword Distinct in the body of the queries. For the
experimental setup, it seemed to be a good idea to focus one query type at
a time to keep results compatible for comparison, but since gMark normally
generates a mixed workloads of Select/Ask queries, the Select clauses were
transformed to compatible Ask clauses.

1https://github.com/graphMark/gmark
2Recall that gMark can generate queries of four shapes: chain, star, chain-star and

cycle. Thus chain queries were cherry-picked as representatives of queries with hyper-
treewidth equal to 1.

3Every CPU has 6 physical cores and, with hyperthreading, 12 logical cores.
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Figure 4.4: Execution times (top) of diverse workload of chain/cycle queries
(of length 3,4,5,6) on Blazegraph (BG) and PostgreSQL(PG).
Number of timeouts per workload for CyclePG only (bottom).

CyclePG times include t/o of 300s (per query).

Experimental Results Figure 4.4 (top) depicts the average runtime (in
ns, log scale) of the workloads of chain (cycle, resp.) queries with length from
3 to 8 on Blazegraph (BG) and PostgreSQL (PG). It can be observed that
the overall performance of Blazegraph is superior to that of PostgreSQL.
Indeed, in PostgreSQL many cycles queries are timed out (after 300s per
query), and one can expect that the real overall performance of PostgreSQL
is even worse than the results reported in Figure 4.4. Figure 4.4 (bottom)
reports the percentages of the number of reached timeouts for workloads of
cycle queries of various sizes when executed in PostgreSQL.

It is worthwhile observing that for both systems the difference between
average runtime of chain query workloads and cycle query workloads is non
negligible, thus confirming that the graph representation and the shape of
queries cannot be ignored. This experiment also motivated to dig deeper in
the shape analysis of the query logs, which is reported in Section 4.2.
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4.2 Shape Analysis
In this section, the results of the analysis of the shapes of the canonical
graphs and the tree- and hypertreewidth are presented. For Multi-Source
Collection, this is done on CQ, CQF, CQOF, and CQOFV queries, while on
the Wikidata Collection, the CQOFV fragment is extended to CQOF+, and the
analysis is also done on C2RPQ, C2RPQF, C2RPQOF, and C2RPQ+ queries,

To start of, a note on the size of queries in the Multi-Source Collec-
tion. Figure 4.5 shows the respective sizes of these queries that have at least
two triples by considering both Valid and Unique queries side by side. The
fractions of queries with one triple are 90.65% (85.36%), 87.71% (83.22%),
81.54% (76.99%) and 81.81%(77.81%) for CQ, CQF, CQOF and CQOFV re-
spectively. Unsurprisingly, small queries are more likely to be in one of these
fragments and, therefore, simple queries are represented even more in these
data sets than in the overall data set. Nevertheless, there are CQ and CQF
queries with up to 81 triples and CQOF and CQOFV queries with up to 211
triples. This is much larger than what was observed for the Wikidata Col-
lection in Section 2.3.3.

CQ CQ
F

CQ
O
F

CQ
O
FV

0%

20%

40%

60%

80%

100% 11+
10
9
8
7
6
5
4
3
2

CQ CQ
F

CQ
O
F

CQ
O
FV

0%

20%

40%

60%

80%

100% 11+
10
9
8
7
6
5
4
3
2

Figure 4.5: Size of Valid (versus Unique) CQ-like queries with at least two
triples.

4.2.1 Query Graph Shape Classification

We first recall or define the basic shapes of the canonical graphs that we will
study in this section. The shapes chains and cycle are already defined in
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Section 4.1.4. A chain set is a graph in which every connected component is
a chain (so, each chain is also a chain set).

A tree is an undirected graph, such that, for every pair of nodes x and
y, there exists exactly one undirected path from x to y (hence, every chain
is also a tree). A forest is a graph in which every connected component is a
tree. A star is a tree for which there exists at most one node with more than
two neighbors, that is, there is at most one node u, such that there exist u1,
u2, and u3, all pairwise different and different from u, for which {u, ui} ∈ E
for each i = 1, 2, 3.

Inspired by the results obtained with gMark on synthetic queries in Sec-
tion 4.1.4, the analysis of the query logs proceeded by looking at the en-
countered query shapes. Here, we consider queries as edge-labeled graphs,
as defined in Section 4.1.1. The hypergraph structure will also be analyzed
following soon in Section 4.2.2.

Multi-Source Collection In this section the graph structure of queries is
analyzed. For this, only graphs for queries are considered that were defined
to be suitable for graph analysis in Section 4.1.1. The remaining 6.96 million
queries in CQOF are considered in Section 4.2.2.

CQ queries, CQF queries, CQOF queries, and CQOFV queries are investi-
gated. The last three fragments are interesting, because they bring more
queries under scrutiny than the plain CQ set of query logs (by an increase
of roughly 33% (50%), 44% (64%), and 47% (70%) respectively). The first
candidates for classification for identification are classical query shapes, such
as all variants of tree-like shapes (single edges, chains, sets of chains, stars,
trees, and forests). The results are summarized in Table 4.3 and Table 4.4.
From the results, the following observations can be drawn: While tree-shaped
queries even in their simple forms (chain of length 1 or single edges) are very
frequent, the only observed exception occurs with star queries, which have
very low occurrence with respect to the other tree-like shapes.

Since simple queries are overrepresented in query logs (already over
87.76% (83.23%) of CQF patterns use only one triple, for example), it is
no surprise that the overwhelming majority of the queries is acyclic, i.e., a
forest. However, to also get a better understanding of the more complex and
therefore potentially interesting queries in the logs, further investigation has
to be done on the cyclic queries. The goal is to obtain a cumulative shape
analysis where simpler shapes are subsumed by more sophisticated query
shapes, with the latter reaching almost 100% coverage of the query logs.

A first observation was that plain cycles are not very common. By visually
inspecting the remaining cyclic queries, it was observed that many of them
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could be seen as a node with simple attachments. The query shape looked
like a flower, so this name was chosen for this shape.

Definition 4.2.1. A petal is a graph consisting of a source node s, target
node t, and a set of at least two node-disjoint paths from s to t. (For
instance, a cycle is a petal that uses two paths.)

A flower is a graph consisting of a node x with three types of attach-
ments: chains (the stamens), trees that are not chains (the stems), and
petals.

Flowers have a nice property: Their treewidth is limited to two. The
cyclic attachments are series-parallel graphs, which have a treewidth of at
most two [BLS99]. For a decomposition, you can use the central node and
attach the decompositions of the attachments. An example of a real flower
query from the DBpedia logs is illustrated in Figure 4.6. It consists of a
central node with four petals (one with three paths), ten stamens and zero
stems attached.

Figure 4.6: An example of a flower query found in DBpedia query logs (arrows
were added to indicate the edge directions in the query; labels are omitted).

Like other shapes, sets of flowers were also considered, since set shapes
are used for non-connected graphs for the cumulative shape analysis. This
set of flowers is simply called bouquets. It allows to further increase the ratio
of queries that could be classified in the query logs. The number of flowers
and bouquets in the query logs only overcome those of trees and forests by
roughly 0.01%–0.09% (0.03–0.10%) for all four fragments. However, for all
fragments, the majority of the cyclic queries is captured by bouquets.

In the preceding analysis, the shapes of queries were analyzed for graphs
of queries as defined in Section 4.1.1, i.e., the nodes can be either variables or
constants. Constants are in fact helpful to obtain a rough idea of the shape
of patterns that users try to find, but research on query optimization often
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focuses on the shape of patterns without constants. The reason is that con-
stants can typically be matched to only one node in the graph and therefore
do not highly contribute to the complexity of evaluation. For that reason, a
second parallel analysis is run on graphs of queries excluding constants in or-
der to identify the differences in the obtained shape classification. Table 4.5
and Table 4.6 show the results for Valid and Unique logs respectively.

The most significant observation here is that many shapes disintegrate
to a set of variables (i.e., no more edges are present in their graph). More
precisely, for the four fragments CQ, CQF, CQOF, and CQOFV, we have that
respectively 90.44% (88.37%), 86.75% (84.07%), 84.46 (81.23%), and 83.21%
(78.36%) of the queries that are suitable for graph analysis have no more
edges when considering the restriction of their canonical graphs to variables
only. This is a huge change, since such shapes only constituted 0.00%–0.06%
of the shapes of queries with constants in Table 4.3.

Wikidata Collection In the following, we will discuss the results on the
valid queries in the largest fragment of the Wikidata Collection, the C2RPQ+
queries. Furthermore, we give some insights about how the results change
for the other fragments. The results for the valid C2RPQ+ queries are in
Table 4.7. Note that some of the queries were empty (0.8% with constants
and 2.44% after removing constants); we did not include them.

In the table, we see several trends that we also observed in the analysis for
the other fragments. First of all, in the shapes that include constants, stars
are quite common. In the C2RPQ+ queries, 85.17% (87.13%) of the organic
and 98.02% (99.30%) of the robotic queries are stars. The number of acyclic
queries is even larger: consistently over 99% when constants are absent. As
opposed to valid queries, in the timeout logs, the number of cyclic queries
significantly increases. For organic CQs, the number of cyclic queries goes
up to about 10%. This number decreases for more complex fragments, but is
still about 7.5% for the unique C2RPQ+ queries (both organic and robotic)
and around 3%–4% if constants are removed. Together with the observation
from Section 2.3 that valid queries contain 2.58 triples on average, whereas
valid timeout queries have 5.65 triples on average, this suggests that cyclicity
and query size play an important role in efficient query evaluation.

The logs strongly confirm a hypothesis that is often stated in theoretical
research: the cyclic queries in practical applications are only mildly cyclic,
i.e., with a treewidth less than or equal to k for small values of k. This means
that database queries typically do not have large k-cliques encoded in their
shape, but remain tree-like. Indeed, the largest treewidth we found in the
entire logs was four, for which we found 15 (5) queries.
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C2RPQ+ with constants / Valid

Shape #Queries Relative % #Queries Relative %
(Organic) (Organic) (Robotic) (Robotic)

node0 0 0.00% 0 0.00%
chain1 107,436 31.48% 125,277,683 71.49%
chain 207,292 60.74% 158,150,895 90.25%

star 290,665 85.17% 171,767,410 98.02%
tree 329,701 96.61% 171,885,247 98.09%

flower 335,271 98.24% 172,070,177 98.19%

chain set 209,540 61.40% 158,723,217 90.57%
forest 333,725 97.79% 172,461,994 98.41%

bouquet 339,440 99.46% 172,646,921 98.52%

tw ≤ 2 341,221 99.98% 175,240,211 100.00%
tw ≤ 3 341,268 100.00% 175,240,228 100.00%
tw ≤ 4 341,274 100.00% 175,240,237 100.00%

total 341,274 100.00% 175,240,237 100.00%

C2RPQ+ without constants / Valid

Shape #Queries Relative % #Queries Relative %
(Organic) (Organic) (Robotic) (Robotic)

node0 85,601 25.13% 63,048,127 36.58%
chain1 200,597 58.89% 155,126,595 89.99%
chain 259,074 76.06% 163,055,757 94.59%

star 312,128 91.63% 170,205,746 98.74%
tree 321,914 94.50% 170,243,847 98.76%

flower 323,830 95.07% 170,413,306 98.86%

chain set 273,992 80.44% 165,014,582 95.73%
forest 337,730 99.15% 172,203,761 99.90%

bouquet 339,661 99.71% 172,373,220 100.00%

tw ≤ 2 340,632 100.00% 172,375,717 100.00%
tw ≤ 3 340,632 100.00% 172,375,717 100.00%
tw ≤ 4 340,632 100.00% 172,375,717 100.00%

total 340,632 100.00% 172,375,717 100.00%

Table 4.7: Cumulative shape analysis of graph patterns in C2RPQ+
across the valid logs in Wikidata Collection.

0: without edges; 1: length ≤ 1
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4.2.2 Tree- and Hypertreewidth
It is well-known that the tree- or hypertreewidth of queries are important
indicators to gauge the complexity of their evaluation.

For the original definitions and more information about tree- or hyper-
treewidth, refer to an excellent introduction [GGS14]. We will only look at
the definitions briefly in the following.

Definition 4.2.2. A tree decomposition of a graph G = (N,E) is a pair
〈T, χ〉, where T = (V, F ) is a tree, and χ is a labeling function assigning
to each vertex p ∈ V a set of vertices χ(p) ⊆ N , such that the following
three conditions are satisfied:

1. for each node b ∈ N , there exists p ∈ V , such that b ∈ χ(p);

2. for each edge (b, d) ∈ E, there exists p ∈ V , such that {b, d} ⊆ χ(p);
and

3. for each node b of G, the set {p ∈ V |b ∈ χ(p)} induces a connected
subtree of T .

The width of 〈T, χ〉 is the number maxp∈V (|χ(p)| − 1). The treewidth of
G is the minimum width over all its tree decompositions.

So to phrase this in simpler terms, a tree decomposition of a graph is a
tree where all nodes of the graph are mapped (non-injectively) to the tree
nodes, and the co-occurring vertices of all graph edges are included in some
tree node. Finally, if a graph vertex appears in any two tree nodes, it must
be in all nodes in paths between them. This last property is also known
as running intersection property or coherence. A tree decomposition is not
unique. The width is characterized by the tree node with the most graph
vertex, and the minimal width of any decomposition is the treewidth of the
graph.

Intuitively, treewidth measures how close the graph is to a tree. For
instance, a tree4 has treewidth 1, and a k-clique5 (which is very cyclic) has
treewidth k − 1. Queries with tw = 1 are also called acyclic.

The importance of the shape of conjunctive queries becomes clear in the
following result, linking the treewidth (tw) of the query’s graph to the com-
plexity of query evaluation.

4The decomposition is similar to the input tree, there are two nodes in each bag, one
for the parent and one for the child.

5The nodes of the clique are a single bag in the decomposition, otherwise the conditions
(2) and (3) of Definition 4.2.2 do not hold.
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Theorem 4.2.3 (cfr. [CR97]; [GLS01]; [KV98]). Let G be a graph and Q
an eligible conjunctive query for which the canonical graph has treewidth
k. Then it can be tested in time |G|O(k)|Q|O(k) if Q returns a non-empty
result on G.

Since some queries do not have binary edges, the adequate model not a
graph, but a hypergraph. The notion of treewidth can be extended from
graphs to hypergraphs, which is called hypertreewidth.

Definition 4.2.4. A hypertree decomposition of a hypergraph H is a
hypertreeHD = 〈T, χ, λ〉 forH, with λ as a function labeling the vertices
of T by sets of hyperedges of H, such that

1. 〈T, χ〉 is a tree decomposition of Ha;

2. for each p ∈ vertices(T ), χ(p) ⊆ ⋃
h∈λ(v) h. That is, all nodes in

the χ labeling are covered by hyperedges in the λ labeling;

3. for each p ∈ N , vertices(λ(p)) ∩ χ(Tp) ⊆ χ(p). Here, Tp denotes
the subtree of T rooted at p. and χ(Tp) the set of all variables
occurring in the χ labeling of this subtree. This means, that if p
occurs in λ of a node, but not χ, then it must not occur in χ of
the child nodes. This condition is also called special condition (or
descendant condition).

The width of a hypertree (or hypertreewidth) is the cardinality of its
largest λ label, i.e., maxp∈N |λ(p)|. By dropping the special condition, a
hypertree is a generalized hypertree decomposition if all other conditions
for a hypertree decomposition hold. Correspondingly, the width of a
generalized hypertree decomposition is the generalized hypertreewidth.

aIn Definition 4.2.2 (2), the set may now contain more than two elements.

The following example from [GMS09] shows a generalized hypertree de-
composition and a hypertree decomposition of a hypergraph. Figure 4.7
shows the hypergraph, while decompositions are shown in Figure 4.8 and
Figure 4.9.
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Example 4.2.5. Hypergraph with hypertreewidth 3.

v1

e1

v2

e2v3
e3

v4

e4

v5

e5

v6

e6
v7 e7

v8

e8

v9 v10

Figure 4.7: Complex hypergraph
H0 of a query.

{e2, e6}{v3, v6, v7, v9, v10}

{e3, e7}{v3, v7, v8, v9, v10}

{e2, e8}{v1, v2, v3, v8, v10}

{e3, e5}{v3, v4, v5, v6, v9, v10}

Figure 4.8: A generalized hypertree decomposition of H0 with width 2.

{e1, e2, e6}{v1, v2, v3, v6, v7, v9, v10}

{e3, e5}{v3, v4, v5, v6, v9, v10} {e7, e8}{v1, v7, v8, v9, v10}

Figure 4.9: A hypertree decomposition of H0 with width 3.

Notice that the generalized hypertree decomposition in Figure 4.8
violates the special condition: In the root node, e2 in λ includes v2,
which does not appear in χ. But v2 appears in χ of the leftmost leaf,
which is not allowed in this case.
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4.2. Shape Analysis

Because of the importance explained before in this section, the tree- and
hypertreewidth of CQ, CQF CQOF, and CQOFV queries were investigated and
the question of acyclicity served as a basis for the investigation of graph
shapes. In the terminology of Gottlob et al., the treewidth of the graphs of
the queries and the hypertreewidth of the canonical hypergraphs of queries
were investigated.

We will first look at treewidth and hypertreewidth for the Multi-Source
Collection, and then we will turn to the Wikidata Collection.

Treewidth in Multi-Source Collection All shapes discussed in Sec-
tion 4.2.1 have treewidth at most two. Forests (and all subclasses thereof)
have treewidth one, whereas flowers and bouquets have treewidth two. The
remaining queries were inspected by using the tool JDrasil6 [BBE17] and
three queries were discovered that had treewidth three (one such query is
in Figure 4.10) and all others had treewidth two, see Table 4.3. From the
treewidth perspective, it is interesting to note that many queries of treewidth
two are also flowers or bouquets (Definition 4.2.1), which are a very restricted
fragment.

?subject nationality?subject birthPlace ?subject genre

?object genre?object birthPlace ?object nationality

Figure 4.10: The DBpedia query exhibiting treewidth equal to 3.

Hypertreewidth in Multi-Source Collection Recall that only graphs
of queries are considered, for which variables in the predicate position are not
re-used elsewhere (if they occur at all). In CQOFV, 58,782,592 (17,333,741)
queries used a variable in a predicate position, or a filter, or Values operator
of arity greater than two. Only for those queries their hypergraph structure is
considered, without constants, to assess the cyclicity of these queries. Their
hypertreewidth was determined with the tool detkdecomp [Sam18], which is
based on [GS09]. Furthermore, the cyclicity of the hypergraphs is measured
without constants, as it is usually done in the literature.

Our results are summarized in Table 4.8, which contains the hyper-
treewidth of queries from CQ, CQF, CQOF, and CQOFV that were not yet

6Available on https://maxbannach.github.io/Jdrasil/
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analyzed in Section 4.2.1. Concerning CQ, all the remaining queries had hy-
pertreewidth one, except for 68 (56) queries with hypertreewidth two, and
eight queries with hypertreewidth three. In the largest fragment, CQOFV,
there are 542,409 (242,941) such queries with hypertreewidth two, and nine
with hypertreewidth three. So, especially in the fragment CQOFV, there is
a significant portion of the queries that exhibits cyclicity, i.e., 8.03% of the
unique queries.

The number of nodes in the hypertree decompositions that the tool re-
turns is also of interest, since this number can be a guide for how well caching
can be exploited for query evaluation [KEK17] (the higher the number, the
better caching can be exploited). For the queries with hypertreewidth one,
the number of nodes in the decompositions corresponds to their number of
edges, which can already be seen in Figure 4.5. (Nevertheless, there are
several hundred queries in CQOFV queries with 100 or more nodes in their
hypertree decompositions, the vast majority occurring in the DBpedia logs.)
Finally, out of the queries with hypertreewidth two, 598 (465) had decom-
positions of size more than 10, going up to a maximum of 16. The CQOFV
queries of hypertreewidth three all had decompositions of size smaller than
10, except for one query in DBpedia17 which had a decomposition of size 33.

Wikidata Collection Hypergraphs generalize graphs in the sense that
they allow more than two nodes per edge. As such, the queries that were not
suitable for graph shape analysis in Section 4.2.1, because they either went
beyond graph patterns, or used Filter, Service, Bind, or Values constraints
with arity three or more can be considered here. This amounts to a total
of 1,915,550 (1,229,035) CQOF+ queries that were not yet analyzed in Sec-
tion 4.2.1.

We keep the restriction on well-designed Optional constructs with inter-
face width 1, since for these queries, there still is a correlation between the
cyclicity of the hypergraph and complexity of query evaluation [Bar+18]. We
do not consider queries with property paths in the hypergraph analysis.

A hypergraph is a pair H = (V , E) where V is its finite set of nodes and
E ⊆ 2V is a set of hyperedges. The canonical hypergraph of a SPARQL pattern
P is defined as E = {X | there is a triple pattern t in P , such that X is the
set of blank nodes and variables appearing in t} and V is the union of the
nodes in the edges in E .

Using the tool detkdecomp [Sam18], we analyzed the hypergraphs of all
CQOF+ queries for which the Optional constructs are well-designed and have
interface width one. Overall, we found 590,005 (273,947) remaining queries
with hypertreewidth two. All others new queries had hypertreewidth one.
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4.2.3 Quantitative Measuring of Shapes

In this section, a deeper characterization of the query shapes found in the logs
is performed, by presenting various measures of these shapes. The focus is
here is on chain, tree, and star-shaped queries, which are the most recurring
shapes in our logs. Some measures are shared for certain shapes, while some
are separate for a class. This is because some measures are not applicable
for some shapes, while other measures do not make sense to measure, for
instance, chains do not diverge and as such, measuring degrees is not needed,
because all inner nodes have degrees two, while the ends have degree one.
While most shapes are non-cyclic, later on, there will also be more insights
about the cyclic queries the logs.

In the presentation, the results will be tagged to aid in quickly identifying
the results: The Multi-Source Collection will be abbreviated as MS, while
the Wikidata Collection will be annotated as WD.

To give an overview of what measures in shapes will be analyzed: Longest
paths in chains, stars, and trees; maximum and average degrees in trees;
minimum and maximum lengths of cycles.

Multi-Source Collection An immediate measure of the span of a query
shape is the size of the longest (undirected) path in the query. Such a measure
is readily applicable to chains, stars and tree-shaped queries. The size of the
longest path for a tree-shaped query is the length of the longest path from
one leaf to another leaf.

Example 4.2.6. For instance, consider the tree-shaped query in Fig-
ure 4.11. Observe that its longest path has length 7 (highlighted in
bold). The same applies to star-shaped queries where the longest path
is the path from one vertex to another traversing the central node of the
star, whereas the longest path in a chain is the length of the chain itself.

Figure 4.11: A tree-shaped query with longest path of length 7 (in bold
and dashed) and maximal degree of nodes equal to 4 (for the grey node).
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length #V chain %V chain #V star %V star #V tree %V tree

1 142,644,649 87.34% - - - -
2 16,185,787 9.91% 7,884,906 92.42% - -
3 3,880,284 2.38% 376,217 4.41% 59,537 8.00%
4 601,580 0.37% 264,287 3.10% 284,953 38.29%
5 1,970 0.00% 6,408 0.08% 14,167 1.90%
6 2,132 0.00% 136 0.00% 385,110 51.75%
7 1,011 0.00% 10 0.00% 436 0.06%
8 1,015 0.00% 8 0.00% 2 0.00%
9 4 0.00% 7 0.00% 0 0.00%

10–23 8 0.00% 11 0.00% 2 0.00%

total 163,318,440 100.00% 8,531,990 100.00% 744,207 100.00%

length #U chain %U chain #U star %U star #U tree %U tree

1 49,039,098 84.01% - - - -
2 6,853,199 11.74% 3,833,545 91.21% - -
3 2,400,853 4.11% 212,739 5.06% 17,213 15.56%
4 76,828 0.13% 155,883 3.71% 31,779 28.73%
5 1,333 0.00% 901 0.02% 12,752 11.53%
6 1,468 0.00% 50 0.00% 48,792 44.11%
7 1,009 0.00% 8 0.00% 79 0.07%
8 1,011 0.00% 8 0.00% 2 0.00%
9 3 0.00% 6 0.00% 0 0.00%

10–23 7 0.00% 7 0.00% 2 0.00%

total 58,374,809 100.00% 4,203,147 100.00% 110,619 100.00%

Table 4.9: Analysis of longest paths in chain, star, and tree queries
(Valid and Unique queries) in Multi-Source Collection.

Longest Paths (MS) Table 4.9 reports the lengths of the longest paths in
chain, tree, and star-shaped queries in the Multi-Source Collection. One
can notice that the longest paths in chain and star queries are mostly small
(significant percentages go up to size of the longest path equal to 3 for chain
queries, and to 4 for star queries, respectively), whereas trees are somehow
different. Their non-zero percentages characterize lengths of longest paths up
to 6 for tree-shaped queries. In all shapes, there are some examples of queries
with quite long paths (from length 10 to 23) and these are comparably higher
in chains and stars than in tree-shaped queries.
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degree #V star %V star #U star %U star

3 5,791,971 67.89% 3,173,041 75.49%
4 1,183,578 13.87% 406,272 9.67%
5 350,676 4.11% 191,479 4.56%
6 710,511 8.33% 228,573 5.44%
7 223,651 2.62% 68,179 1.62%
8 78,890 0.92% 55,056 1.31%
9 38,711 0.45% 25,152 0.60%

10–19 147,266 1.73% 53,067 1.26%
20–29 2,758 0.03% 2,077 0.05%
30–39 230 0.00% 192 0.00%
40–49 64 0.00% 51 0.00%
50–59 6 0.00% 6 0.00%
60–63 3,678 0.04% 2 0.00%

total 8,531,990 100.00% 4,203,147 100.00%

degree #V tree %V tree #U tree %U tree

3 401,873 54.00% 73,125 66.11%
4 26,154 3.51% 2,640 2.39%
5 279,092 37.50% 30,844 27.88%
6 31,258 4.20% 3,305 2.99%
7 5,367 0.72% 589 0.53%
8 375 0.05% 51 0.05%
9 47 0.01% 36 0.03%

10–19 39 0.01% 27 0.02%
20–29 2 0.00% 2 0.00%

total 744,207 100.00% 110,619 100.00%

Table 4.10: Maximal degree of nodes in star and tree queries
(Valid (V) and Unique (U)) in Multi-Source Collection.

Maximum Degrees (MS) The next analysis of the shapes is focusing on the
nodes with the maximal degree of nodes in star- and tree-shaped queries.
In the example of a tree-shaped query in Figure 4.11, it can be seen that
the maximal degree of nodes is equal to 4. Obviously, this measure is not
informative for chain queries, since they are completely characterized by their
length (and their vertices have a degree of a most 2). Table 4.10 shows the
results for stars and tree-shaped queries.

The higher percentages of star queries have maximal degree of their ver-
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#HD #V tree %V tree #U tree %U tree

2 59,537 8.00% 17,213 15.56%
3 281,184 37.78% 31,197 28.20%
4 14,348 1.93% 12,877 11.64%
5 365,318 49.09% 47,920 43.32%
6 23,811 3.20% 1,405 1.27%
7 7 0.00% 5 0.00%
9 1 0.00% 1 0.00%
11 1 0.00% 1 0.00%

total 744,207 100.00% 110,619 100.00%

Table 4.11: Number of high-degree nodes (#HD) in tree-shaped queries
(Valid (V) and Unique (U)) in Multi-Source Collection.

tices equal to 3, whereas for tree-shaped queries, the majority has maximal
degree equal to 3 or 5. The highest values of maximal degrees can be observed
in stars more than in tree-shaped queries.

Tree Queries (MS) The next focus is on tree-shaped queries. To this end,
the number of queries were computed that contained nodes with highest de-
grees. This measure is only applicable to tree-shaped queries and neither to
stars (that always have a single node with a highest degree) nor to chains.
The results are shown in Table 4.11. There, one can notice 49.09% (43.32%)
of the tree-shaped queries have 5 high-degree vertices. Otherwise, 3 is the sec-
ond most popular number for high-degree vertices covering 37.78% (28.20%).
This means that an odd number of high-degree vertices is more popular. A
high-degree vertex is a vertex that branches more than two times. There was
also one unique query with 9 high-degree vertices and another unique one
with 11 high-degree vertices.

Some values of high-degree nodes are aggregated because of their scarcity,
this provides an easier overview. There is combined view of for degrees in
queries of different shapes in Table 4.10 (maximal) and Table 4.12 (average)
to provide a quick grasp of more details regarding the values of degrees.
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AvgDeg #V tree %V tree #U tree %U tree

2–2.9 400,426 53.81% 61,955 56.01%
3–3.9 308,649 41.47% 44,358 40.10%
4–4.9 34,514 4.64% 4,027 3.64%
5–5.9 346 0.05% 160 0.14%
6–6.9 103 0.01% 52 0.05%
7–7.9 157 0.02% 58 0.05%
8–8.9 12 0.00% 9 0.01%

total 744,207 100.00% 110,619 100.00%

Table 4.12: Average degree of inner nodes (AvgDeg) in tree-shaped queries
(Valid (V) and Unique (U)) in Multi-Source Collection.

Average Degrees (MS) Further investigating the tree shapes, in Table 4.12
the average degrees of inner nodes in these shapes is computed (again not
applicable to chains and stars). Observer that the majority of inner nodes
degrees stay between 2 and 4 on average.

Cycle Lengths (MS) Finally, the class of cyclic queries was investigated.
The minimal and maximal lengths of all cycles in a query was measured.
The cycle computation again considered the queries as undirected graphs
and computed the cycle basis for such graphs. A cycle basis is formed from
any spanning tree or spanning forest of the given graph, by selecting the
cycles obtained by combining a path in the tree with a single edge outside
the tree. This technique is described in [CGH95]. In order to keep the
computation of cycle basis polynomial, an empirical bound (equal to 8) was
set for the number of cycles that form the cycle basis. Thus the minimal
and maximal cycle length of the discovered cycle basis of each query were
counted. Table 4.13 (maximal) and Table 4.14 (minimal) report the results
of this analysis for CQOFV queries.

Free-Connex Acyclicity (MS) Another measure that was computed is the
property of free-connex acyclicity for CQ, CQF, CQOF and CQOFV. A con-
junctive query is free-connex acyclic if it is acyclic and the set of its free
variables7 is a connex subset of the join tree of the query [BDG07]. The
join tree of a query corresponds to the tree-structure of the acyclic hyper-
graph underlying the query. Free-connex acyclicity is interesting because it

7The free or distinguished variables of a query considered as a first-order propositional
formula are the set of variables used as output in the formula.
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Max #Valid #Unique

3 1,455,724 328,118
4 51,308 23,946
5 25,062 5,865
6 3,243 79
7 7 7
8 1 1
10 1 1

total 1,535,346 358,017

Table 4.13: Maximal cycle length
in cyclic queries in Multi-Source

Collection.

Min #Valid #Unique

3 1,456,037 328,347
4 51,023 23,739
5 25,048 5,853
6 3,230 70
7 7 7

10 1 1

total 1,535,346 358,017

Table 4.14: Minimal cycle length
in cyclic queries in Multi-Source

Collection.

characterizes the conjunctive queries for which certain kinds of efficient algo-
rithms exist for enumerating their output [BDG07]; [IUV17] (under standard
complexity-theoretical assumptions).

Table 4.15 shows the results by comparing the number of all conjunctive
queries (including those that are not suitable for graph analysis and thus are
not considered in Table 4.3) and the number of free-connex acyclic queries
found in the Multi-Source Collection. Notice that the latter are abundant in
all the fragments CQ, CQF, CQOF and CQOFV. For a cross comparison, the
hypertreewidth of all the conjunctive queries in the logs is shown (and not
only those reported in Table 4.3). Observe that all the CQs in our logs have
htw less or equal to 3.
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Shapes in Wikidata Collection We now turn to the quantitative analy-
sis of shapes in the Wikidata Collection. For this, it is especially interesting
to compare organic queries to robotic queries. Additionally, the results are
also looking at the Valid and Unique variants of the data sets, because this
can show that there are some very distinct queries in the data sets, and that
some high concentrations in Valid logs are in fact duplicates.

depth #O V %O V #R V %R V

2 107,436 51.83% 125,277,683 79.21%
3 80,736 38.95% 29,562,694 18.69%
4 15,812 7.63% 3,195,157 2.02%
5 2,412 1.16% 113,203 0.07%
6 239 0.12% 1,994 0.00%
7 644 0.31% 0 0.00%
8 6 0.00% 0 0.00%
9 7 0.00% 0 0.00%
10 0 0.00% 164 0.00%

total 207,292 100.00% 158,150,895 100.00%

depth #O U %O U #R U %R U

2 50,908 48.41% 24,688,374 92.24%
3 45,495 43.27% 1,919,179 7.17%
4 7,356 7.00% 151,649 0.57%
5 1,161 1.10% 4,971 0.02%
6 124 0.12% 27 0.00%
7 97 0.09% 0 0.00%
8 4 0.00% 0 0.00%
9 7 0.01% 0 0.00%
10 0 0.00% 1 0.00%

total 105,152 100.00% 26,764,201 100.00%

Table 4.16: Analysis of longest paths in chain queries
(Robotic (R) and Organic (O), Valid (V) and Unique (U)).

Longest Paths in Chains (WD) Table 4.16 depicts the longest paths in chain
queries. Chain queries of length 2 make up the overwhelming majority of
robotic chains, with almost 80% for Valid logs and going up even more to
90% for Unique logs. The rest of robotic queries has length 3 and only a
negligible amount (around 1-2%) of queries being longer. Surprisingly, the

83



4. STRUCTURAL ANALYSIS

depth #O V %O V #R V %R V

2 53,581 64.27% 8,509,904 62.50%
3 21,050 25.25% 4,546,615 33.39%
4 7,813 9.37% 551,265 4.05%
5 850 1.02% 6,039 0.04%
6 62 0.07% 1,490 0.01%
7 10 0.01% 1,202 0.01%
8 2 0.00% 0 0.00%
9 5 0.01% 0 0.00%

total 83,373 100.00% 13,616,515 100.00%

depth #O U %O U #R U %R U

2 27,976 66.54% 2,056,510 64.93%
3 10,270 24.43% 1,000,269 31.58%
4 3,489 8.30% 106,350 3.36%
5 257 0.61% 3,380 0.11%
6 38 0.09% 356 0.01%
7 10 0.02% 214 0.01%
8 2 0.00% 0 0.00%
9 5 0.01% 0 0.00%

total 42,047 100.00% 3,167,079 100.00%

Table 4.17: Analysis of longest paths in star queries
(Robotic (R) and Organic (O), Valid (V) and Unique (U)).

longest chain is a robotic query of length 10 in the Unique logs which appears
164 times in the Valid logs. Organic logs are a bit more distributed, with
only around 50% using length 2, around 40% using length 3, and around 7%
using length 4. The rest quickly declines to 1% and less.
Longest Paths in Stars (WD) The longest paths in in star queries are shown
in Table 4.17. Star-shaped queries look very similar across the board when
looking at organic and robotic queries and Valid and Unique logs. Roughly
two thirds use only depth 2, which is the minimal star depth. The second
largest depth 3 is used around 25% for organic stars, and about one third
for robotic queries. Then 8-9% (for Unique, resp. Valid) organic queries use
depth 4, while the robotic queries and the rest of the organic queries use
negligible amounts of queries with higher depths. The maximum depth goes
up to 8 and 9 for a few organic queries, which surprisingly seem to be unique.
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depth #O V %O V #R V %R V

3 21,885 56.06% 69,110 58.65%
4 9,369 24.00% 40,161 34.08%
5 7,375 18.89% 8,306 7.05%
6 293 0.75% 254 0.22%
7 105 0.27% 4 0.00%
8 4 0.01% 0 0.00%
9 0 0.00% 2 0.00%
10 1 0.00% 0 0.00%
11 3 0.01% 0 0.00%
12 1 0.00% 0 0.00%

total 39,036 100.00% 117,837 100.00%

depth #O U %O U #R U %R U

3 5,723 40.87% 6,753 44.23%
4 3,445 24.60% 3,502 22.94%
5 4,574 32.67% 4,966 32.53%
6 205 1.46% 42 0.28%
7 48 0.34% 3 0.02%
8 2 0.01% 0 0.00%
9 0 0.00% 1 0.01%
10 1 0.01% 0 0.00%
11 3 0.02% 0 0.00%
12 1 0.01% 0 0.00%

total 14,002 100.00% 15,267 100.00%

Table 4.18: Analysis of longest paths in tree queries
(Robotic (R) and Organic (O), Valid (V) and Unique (U)).

Longest Paths in Trees (WD) After going from chains to stars, finally Ta-
ble 4.18 depicts the longest paths in tree queries. Very few tree-shaped
queries exceed a depth of 7. There seems to be one robotic query with depth
9 which occurs two times, and some organic queries with length 8-12 which
in some cases appear to be unique or with a very low number of duplicates.
If one looks at the deduplicated Unique logs, it is interesting to note that
the organic and robotic queries are quite close: Around 41-44% use depth 3,
23-25% use depth 4, and 33% use depth 5. This changes a bit if one focuses
on the Valid logs with duplicates, there are both organic and robotic queries
use 56-58% of depth 3, but organic queries have 24% of depth 4 and 19% of
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max degree #O V %O V #R V %R V

3 6,891 17.65% 60,960 51.73%
4 6,544 16.76% 15,377 13.05%
5 18,255 46.76% 5,523 4.69%
6 2,060 5.28% 19,889 16.88%
7 550 1.41% 1,814 1.54%
8 635 1.63% 279 0.24%
9 1,719 4.40% 11,570 9.82%
10 2,000 5.12% 8 0.01%
11 265 0.68% 528 0.45%
12 44 0.11% 798 0.68%
13 2 0.01% 0 0.00%
14 2 0.01% 0 0.00%
15 0 0.00% 214 0.18%
16 1 0.00% 0 0.00%
17 62 0.16% 877 0.74%
18 2 0.01% 0 0.00%
19 4 0.01% 0 0.00%

total 39,036 100.00% 117,837 100.00%

Table 4.19: Maximum degree in tree queries
(Robotic (R) and Organic (O), Valid (V)).

depth 5, while robotic logs use 34% of depth 4 and 7% of depth 5. Overall,
robotic queries are a bit simpler, and there are a few very unique deeper
queries in the organic queries. This is what one would expect.

Maximum Degrees in Trees (WD) The maximum degree of nodes in tree
queries are depicted in Table 4.19 (Valid) and Table 4.20 (Unique). On first
glance, most tree-shaped queries have a maximum degree of less than 5. In
more detail, it is noticeable that organic queries seem to have a majority of
queries with degree 5, but this difference shrinks if one goes from Valid to
Unique queries.

For robotic queries, more than 50% are the simplest trees with degree 3,
but this shrinks dramatically and shifts to the degree 4 if one goes from Valid
to Unique.

The highest degree goes up to 19 for some organic queries, which is a
bit higher than 17, which is the highest degree for robotic queries. It is
interesting that there seem to be some degrees that are used more often after
skipping some degrees, this is true even after deduplicating the queries. For
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max degree #O U %O U #R U %R U

3 2,812 20.08% 4,953 32.44%
4 3,645 26.03% 6,242 40.89%
5 5,196 37.11% 2,792 18.29%
6 583 4.16% 502 3.29%
7 246 1.76% 49 0.32%
8 264 1.89% 24 0.16%
9 609 4.35% 438 2.87%
10 324 2.31% 2 0.01%
11 242 1.73% 22 0.14%
12 33 0.24% 33 0.22%
13 2 0.01% 0 0.00%
14 2 0.01% 0 0.00%
15 0 0.00% 63 0.41%
16 1 0.01% 0 0.00%
17 38 0.27% 147 0.96%
18 2 0.01% 0 0.00%
19 3 0.02% 0 0.00%

total 14,002 100.00% 15,267 100.00%

Table 4.20: Maximum degree in tree queries
(Robotic (R) and Organic (O), Unique (U)).

example, while degree 17 occurs in some notable numbers, this is not the
case for queries after degree 12.

Maximum Degrees in Stars (WD) After examining tree queries, Table 4.21
shows the maximum degree of nodes in star queries. Star-shaped queries are
quite similar for organic and robotic queries. Over 50% of organic queries
and over 60% of robotic queries have degree 3, with the second largest degree
being 4 then declining rapidly, with the decline for robotic queries being
larger. There is no pronounced difference when going from Valid to Unique
logs.

Interestingly, star-shaped queries seem to have higher degrees than tree-
shaped queries. They go up to degree 27. While they this high, there are no
notable observations when looking at degrees after 5.
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max degree #O V %O V #R V %R V

3 46,048 55.23% 8,461,436 62.14%
4 18,017 21.61% 2,527,507 18.56%
5 7,426 8.91% 281,542 2.07%
6 4,504 5.40% 75,436 0.55%
7 2,312 2.77% 77,571 0.57%
8 2,270 2.72% 63,218 0.46%
9 270 0.32% 3,356 0.02%
10 350 0.42% 18,466 0.14%
11 709 0.85% 66,290 0.49%
12 990 1.19% 125,246 0.92%

13-20 473 0.57% 655,855 4.82%
21-25 3 0.00% 1,260,514 9,26%

27 1 0.00% 78 0.00%

total 83,373 100.00% 13,616,515 100.00%

max degree #O U %O U #R U %R U

3 24,391 58.01% 2,108,835 66.59%
4 9,082 21.60% 451,628 14.26%
5 4,051 9.63% 33,750 1.07%
6 1,963 4.67% 7,650 0.24%
7 812 1.93% 28,850 0.91%
8 740 1.76% 29,970 0.95%
9 212 0.50% 1,464 0.05%
10 235 0.56% 5,828 0.18%
11 113 0.27% 9,905 0.31%
12 110 0.26% 71,974 2.27%

13-20 335 0.80% 202,481 6.39%
21-25 2 0,00% 214,741 6.78%

27 1 0.00% 3 0.00%

total 42,047 100.00% 3,167,079 100.00%

Table 4.21: Maximum degree in star queries
(Robotic (R) and Organic (O), Valid (V) and Unique (U)).
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#HD #O V %O V #R V %R V

2 35,252 90.31% 97,279 82.55%
3 2,148 5.50% 20,428 17.34%
4 249 0.64% 128 0.11%
5 9 0.02% 0 0.00%
6 353 0.90% 2 0.00%
7 558 1.43% 0 0.00%
8 467 1.20% 0 0.00%

total 39,036 100.00% 117,837 100.00%

#HD #O U %O U #R U %R U

2 12,027 85.89% 14,685 96.19%
3 781 5.58% 570 3.73%
4 108 0.77% 10 0.07%
5 7 0.05% 0 0.00%
6 328 2.34% 2 0.01%
7 518 3.70% 0 0.00%
8 233 1.66% 0 0.00%

total 14,002 100.00% 15,267 100.00%

Table 4.22: Number of high-degree nodes in tree-shaped queries
(Robotic (R) and Organic (O), Valid (V) and Unique (U)).

Inner Nodes (WD) Table 4.22 depicts the number of inner nodes in tree
queries. Very few tree-shaped queries contain nodes that have a highest
degree node larger than 3. Organic queries still manage to go up to 5-8 for
a fair number of queries, but there are only 2 robotic queries that go up to
6. Still, 85-90% (Unique, resp. Valid) of organic queries only go up to 2.

For Valid robotic queries, with 83% going up to 2, and 17% going up
to 3, this suggests that robotic queries are more diverse. But if one goes
from Valid to Unique logs, this changes drastically, with over 96% of robotic
queries going up to only 2. So there is a very low number of uniquely more
complex robotic queries.
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range #O V %O V #R V %R V

2-2.9 2,422 6.20% 1,094 0.93%
3-3.9 17,426 44.64% 99,275 84.25%
4-4.9 17,336 44.41% 1,677 1.42%
5-5.9 1,593 4.08% 13,185 11.19%
6-6.9 128 0.33% 189 0.16%
7-7.9 42 0.11% 776 0.66%
8-8.9 5 0.01% 528 0.45%
9-9.9 16 0.04% 236 0.20%

10-10.9 13 0.03% 650 0.55%
11-11.9 55 0.14% 227 0.19%

total 39,036 100.00% 117,837 100.00%

range #O U %O U #R U %R U

2-2.9 960 6.86% 106 0.69%
3-3.9 9,412 67.22% 13,630 89.28%
4-4.9 3,094 22.10% 766 5.02%
5-5.9 352 2.53% 480 3.14%
6-6.9 90 0.64% 20 0.13%
7-7.9 32 0.23% 11 0.07%
8-8.9 5 0.04% 22 0.14%
9-9.9 14 0.10% 85 0.56%

10-10.9 10 0.07% 100 0.66%
11-11.9 33 0.24% 47 0.31%

total 14,002 100.00% 15,267 100.00%

Table 4.23: Average degree of inner nodes in tree-shaped queries
(Robotic (R) and Organic (O), Valid (V) and Unique (U)).

Average Degrees (WD) The average degree of tree queries is shown in Ta-
ble 4.23. The average degree of inner nodes of tree-shaped queries for organic
logs has the highest concentration in the ranges from 3-3.9 and 4-4.9 with
around 44% in unique logs. If one goes from Valid to Unique logs, this shifts
to 67% to the lower range and 22% to the higher range. There is a small
amount of organic queries above and below these ranges, but ranges higher
than 6 are very rare. These ranges are also very rare for robotic queries. But
for robotic queries, there are almost no queries in the 4-4.9 range, instead
84% are in the lower 3-3.9 range, and 11% are in the higher 5-5.9 range. This
changes when going the deduplicated logs, then 89% are in the range above 3,
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length #O V %O V #R V %R V

3 742 52.92% 3,443 27.48%
4 602 42.94% 8,979 71.67%
5 45 3.21% 82 0.65%
6 9 0.64% 24 0.19%
7 3 0.21% 0 0.00%
10 1 0.07% 0 0.00%

total 1,402 100.00% 12,528 100.00%

length #O U %O U #R U %R U

3 382 58.68% 92 2.12%
4 223 34.25% 4,249 97.81%
5 33 5.07% 1 0.02%
6 9 1.38% 2 0.05%
7 3 0.46% 0 0.00%
10 1 0.15% 0 0.00%

total 651 100.00% 4,344 100.00%

Table 4.24: Maximal cycle length in cyclic queries
(Robotic (R) and Organic (O), Valid (V) and Unique (U)).

5% are in the range above 4, and 3% are in the range above 5. This suggests
that there seem to be a larger number of duplicates in the 4-4.9 range, but
still, most queries (both organic and robotic), especially after deduplication,
are in the 3-3.9 range.

Cycle Lengths (WD) Table 4.24 depicts the length of the longest cycle in
queries. The maximum length of cycles of Unique robotic queries almost
solely consists of cycles of length 4. It is interesting that the robotic queries
seem to have a higher concentration of marginally larger length of 4 instead
of the minimum length of 3. In Valid logs, organic queries still have more
than 50% of only length 3, and 43% of length 4.

There is a minor shift going from Valid to Unique logs for organic logs,
but for robotic logs, it goes from 27% for length 3, and 72% for length 4 to
98% for length 4.

Finally, longer cycles are very rare for robotic queries. There is one unique
query with length 5, and 2 unique queries with length 6. On the other hand,
there are over 50 queries in the organic logs over length 4, going up to a
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length #O V %O V #R V %R V

3 751 53.57% 3,443 27.48%
4 607 43.30% 9,003 71.86%
5 35 2.50% 82 0.65%
6 5 0.36% 0 0.00%
7 3 0.21% 0 0.00%
10 1 0.07% 0 0.00%

total 1,402 100.00% 12,528 100.00%

length #O U %O U #R U %R U

3 390 59.91% 92 2.12%
4 227 34.87% 4,251 97.86%
5 25 3.84% 1 0.02%
6 5 0.77% 0 0.00%
7 3 0.46% 0 0.00%
10 1 0.15% 0 0.00%

total 651 100.00% 4,344 100.00%

Table 4.25: Minimal cycle length in cyclic queries
(Robotic (R) and Organic (O), Valid (V) and Unique (U)).

length of 10 even. This is significant, because there are almost 10 times more
robotic queries in this comparison. So again, as expected, it seems that there
are more unique complex queries in the organic subset.

In addition to the maximum length, the minimum length of cycles in
queries is shown in Table 4.25. The minimum cycle length of queries seems
to be very close the maximum cycle length. This could suggest that there
may not be many cycles in queries, or that they have the same length and
the shape of the query could be very regular. Indeed, in the exploration
of queries, there seem to have been many shapes that are very regular. For
example, there are many queries that have a central node and regular looking
cyclic parts attached to this node.
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Free-Connex Acyclicity (WD) Table 4.26 shows the free-connex acyclicity
in the CQ fragment of Wikidata Collection. As can be seen, the coverage
in robotic queries is over 99%, while it is only a bit over 91% for organic
queries. These results are to be similar to the results from the Multi-Source
Collection, considering that organic and robotic queries are not separated
there.

Log #Organic %Organic #Robotic %Robotic

Valid 80,420 92.97% 82,249,379 98.52%
Unique 33,414 91.04% 22,886,318 99.37%

Table 4.26: Free-Connex Acyclicity in the Wikidata Collection, showing results
for Valid and Unique.
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5
Inter-Query Analysis

In the following sections, we turn to quite different topics compared to earlier
sections. Before, the focus was on isolated queries, and neither the order of
queries log files was of no importance, nor where some structural properties
that are lost in the analysis like the order of conjunctions or other idiosyn-
crasies that are lost during normalization. There are connections between
queries in logs, which is the focus in the following.

5.1 Evolution of Queries over Time: Streaks
In a typical usage scenario of a SPARQL endpoint, a user queries the data
and gradually refines the query until the desired result is obtained. In this
section, an analysis is performed to determine to which extent such behavior
occurs. The results show that, in certain contexts, it can be interesting to
investigate optimization techniques for sequences of similar queries.

For the following purposes, a query log can be considered to be an ordered
list of queries q1, . . . , qn. We introduce a new notion called a streak, which
intuitively captures a sequence of similar queries within close distance of each
other. To this end we assume the existence of a similarity test between two
queries.

Definition 5.1.1. Two queries qi and qj with i < j match if (1) qi and qj
are similar and (2) no query qi′ with i < i′ < j is similar to qi. A streak
(with window size w) is a sequence of queries qi1 , . . . , qik , such that, for
each ` = 1, . . . , k − 1, we have that i`+1 − i` ≤ w and qi`+1 matches qi` .

Notice that it is theoretically possible for a query to belong to multiple
streaks. E.g., it is possible that q1 and q2 do not match, but query q3 is
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sufficiently similar to both. In this case, q3 belongs to both streaks q1, q3 and
q2, q3.

Generally calculating streaks can become very expensive, because each
new query that gets examined must be tested against all ongoing streaks.
The window size is important here, because it limits the number of ongoing
streaks. There can be at most w ongoing queries, which would create streaks
of length 1; otherwise there would exist a query in between matching queries,
which would contradict Definition 5.1.1. Therefore, we need to track at most
w streaks. Also note that we only need to store the last query in a streak for
comparison with a new query. These two observations are very helpful for
performing a streak analysis more efficiently.

For this study a curated subset of Multi-Source Collection is used. In
Section 5.2 it will explained why Wikidata Collection is less suitable for this
investigation due to its anonymization. In the present study, Levenshtein
distance will be used as a similarity test. The Levenshtein distance [Lev66]
is a String Edit Distance (SED) to measure the dissimilarity if two strings.

Definition 5.1.2. The edit distance of two string s1 and s2 is the mini-
mum number of edit operations (insert, delete, substitute) to transform
s1 into s2. The normalized string edit distance is obtained by dividing
the string edit distance by max(len(s1), len(s2)).

This number is between 0 and 1 and been be interpreted as percent-
age, it measures dissimilarity (distance), but by inverting it, it measures
similarity.

More precisely, two queries are similar if the Levenshtein distance of their
strings, after removal of namespace prefixes, is at most 25%. Furthermore,
namespace prefixes were removed (or rather resolved) prior to measuring
their Levenshtein distance, because they can introduce superficial similarity.
As such, queries are required to be at least 75% similar starting from the first
occurrence of the keywords Select, Ask, Construct, or Describe. After some
experimentation with some sample logs, a window size of 30 was chosen.
This window size seemed to yield adequate performance and seemed to yield
feasible results.
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Streak length #DBP’14 #DBP’15 #DBP’16

1–10 42,272 167,292 199,375
11–20 3,732 24,001 37,402
21–30 2,425 4,813 17,749
31–40 884 667 5,849
41–50 283 162 1,998
51–60 88 40 711
61–70 27 8 322
71–80 15 4 129
81–90 5 1 47
91–100 5 0 27
>100 4 0 24

Table 5.1: Length of streaks in three single-day logs.

Streak Length Since the discovery of streaks is extremely resource-
consuming, only streaks in three randomly selected log files were analyzed.
The selection was made from DBpedia14, DBpedia15, and DBpedia16, be-
cause those were some of the larger and more interesting logs from results
from studies in the preceding sections. The sizes of these log files, each
reflecting a single day of queries of the endpoint, were 273MiB, 803MiB, and
1004MiB respectively.

For the ordering of the queries, one could simply consider the ordering in
the log files, since the logs are sorted over time.

The results on streak length are in Table 5.1. Using a window size of 30,
the longest streak found had length 169 and was in the 2016 log file. When
increasing the window size, it was still possible to obtain longer streaks. This
likely means that a more refined analysis on the encountered streaks can be
carried out when tuning the window size and deriving more complex metrics
on the similarity of the queries within each streak.
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Max Max
#Triples #Streaks #Triples #Streaks

1 130,706 13–20 9,509
2 41,811 21–30 544
3 34,081 31–40 233
4 9,990 41–50 86
5 3,325 51–60 44
6 1,733 61–70 32
7 8,465 71–80 17
8 10,604 81–90 11
9 7,837 91–100 3
10 1,080 101–110 9
11 51,521 > 110 7
12 43,819

Table 5.2: Largest query occurring in streaks.

Evolution of Size and Structure In addition to the length of streaks,
it was also investigated how the number of triples and structure of queries
in streaks change over time. To this end, queries needed to be parsed in
streaks, which was not the case before, it was sufficient to only regard the
item of the streak as a string. The three log files contain a combined amount
of 510,361 streaks. Out of these streaks, 321,042 have at least two queries
and 234,627 additionally have at least one query that parses. Remarkably, in
the latter set, only 1,402 streaks have an erroneous (i.e. not parsable) query.
Here, 1,202 have an erroneous query followed by a correct one, and 789 have
a correct query followed by an erroneous one.

Next the number of triples of queries in streaks were investigated. There
are 355,466 streaks for which have at least one parsable query that contains
at least one triple.1 Table 5.2 contains, for each of the 355,466 streaks, what
is the maximal number of triples in any of its queries. This number seems to
be quite stable: There are only 3,915 streaks, in which this number changes
during the streak.

1For 88,201 streaks, all queries had an empty body. Another 31 streaks had a non-
empty body, containing no triples.
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Shapes #Streaks

containing chn 148,632
consisting only of chn 147,106

containing bt 39,839
consisting only of bt 39,810

containing cyc 526
consisting only of cyc 493

containing bt and cyc 12
consisting only of bt or cyc 40,315

containing bt and chn 2
consisting only of bt or chn 186,918

containing chn and cyc 21
consisting only of chn or cyc 147,620

consisting only of chn, bt, or cyc 187,444

Table 5.3: Structures of queries appearing in the same streak
(chn = chain, bt = ’branching tree’, i.e., tree that is not a chain, cyc = cyclic).

Table 5.3 contains results on the shapes of queries in streaks. The only
shapes that were considered were: chain queries, trees that branch (and
therefore are no chains), and cyclic queries, that is, queries that contain a
cycle. Table 5.3 contains, for each subset S of these three shapes, the number
of streaks that contain only shapes from S and the number of streaks that
consist only of shapes from S.

Interestingly, there was a correlation between streak length and query
shape and size. For instance, out of the 526 streaks that contain a cyclic
query, 472 (89.73%) only consist of a single query. This strongly contrasts
the entire log, where only 189,319 streaks (37.10%) consist of a single query.
Similarly, there are 1,378 streaks that contain a query of at least 16 triples,
but 1,332 of these streaks (96.66%) only have a single query. This suggests
that highly complex queries are less likely to occur in longer streaks. Recall
again that the data sets used for this study only consisted of DBpedia query
logs for three days, which is a very small sample.
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5.2 Query Similarity Search
During the development of the analysis, there were times such as in Sec-
tion 4.2, it became clear that is would be useful to locate the exact prove-
nance of some queries, and to locate similar queries. This tool proved to be
very useful for the purpose of the studies that were performed in the previous
sections. In general, massive query logs are valuable sources of information
as long as they are usable for exploration and analysis. For purposes of the
study of logs, as well as in order to improve the usability of the logs, a query
similarity search facility was designed and implemented. This code is made
publicly available and can be used by other people for their purposes (see
Chapter 6). The principles and effectiveness of this facility is discussed in
the following.

Edit Distance: From Strings to Trees As a first observation, a string
similarity search with String Edit Distance (SED) as discussed in Section 5.1
runs into problems with the logs from the Wikidata Collection. They have
been modified by an anonymization process prior to their release. This means
that large elements of their strings were completely replaced, and various
normalization techniques also changed the string representation of a query.
Hence, it is highly likely that one cannot find a query by simply searching
for its exact original string, or by trying to approximate it with a string
similarity measure.

To overcome this problem a new different approach to the problem was
taken: Instead of just using the query string, the processed query structure
is used as model for comparing queries in terms of their similarity. This
structure is a tree, and with this a Tree Edit Distance (TED) can be used.

This choice solves several problems when comparing queries: comments,
prefixes, whitespace, normalization measures, and variable names do not
affect the structure of a query and do not influence the computation of the
query similarity measure. This is especially important with the Wikidata
logs, because specifically in this case, in their anonymization, all variable
names are renamed to uniform names with ascending numbers. Therefore,
if a new variable in the query is placed before other variables, it will shift
the names of all subsequent variables. The latter could potentially trigger
a large modification if a variable with a shifted number is used in several
places in the remainder of the query statement, although the change could
have occurred much more locally in another place. The anonymization also
removes all prefixes and inlines them, therefore the impact of changing a
single IRI could become large depending on the length of the IRI in case of
adoption of a SED measure.
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Query AST To enable a structural search on Wikidata queries, the ab-
stract syntax tree (AST) of a query is translated into a tree structure as fol-
lows. The query type and the solution modifier of the query respectively be-
come a leaf node in the tree (with a value for the latter), whereas the pattern
P is a subtree instantiated triple t with three leaves (from 〈s, p, o〉), or a prop-
erty path pattern, or a subtree rooted in And,Filter,Union,Optional,Graph
whose respective patterns are also subtrees, or, recursively, the subtree of a
query Q.

Figure 5.1 exemplifies the translation of the following Wikidata query
from the logs into the AST:

SELECT * WHERE {
?item wdt:P31 wd:Q146 .
SERVICE wikibase :label {

bd: serviceParam
wikibase : language
"[ AUTO_LANGUAGE ],en"

}
}

Listing 5.1: SPARQL query

SELECT

? pattern

triple

var P31 Q146

SERV ICE

triple

servicePar lang ”en”

Figure 5.1: Abstract Syntax Tree of an example query.

Notice that in Figure 5.1, the actual instantiation of a triple variable
name is ignored by labeling it var, as are the variable names that are used
in the target list of the Select clause for the same reason. In the figure, the
namespace prefixes are omitted for brevity, furthermore, they do not matter,
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for identity of IRIs in the matching, they are completely resolved and have
to match exactly. For the TED algorithm, each node can be given a weight
contributing to the total sum of the AST that is used to calculate the TED.
In particular, in the above AST for the example query, all nodes have equal
weight (= 1, meaning that no specific bias is introduced). Adjustments of
the weights are of course possible, targeting a specific user requirement.

Example 5.2.1. The example AST tree in Figure 5.1 has thus a total
weight of 12, this being the sum of the weight of its nodes. Within the
logs, a query almost identical to the above example was found that only
changed the object wd:Q146 to wd:Q11538. This renaming of a single
node in a triple would result in a total similarity of 0.92.

Renaming two nodes in a triple would result in a similarity of 0.83.
Adding a single triple anywhere, for example, outside the Service clause,
would result in a total weight of 16. Such a change amounting to a total
weight of 4 would result in a similarity of 0.75. Conversely, this can be
seen as a removal by starting with a tree exhibiting the additional triple
and deleting it.

As for the implementation of the TED algorithm, an available implemen-
tation of the APTED algorithm [PA15a]; [PA15b] was chosen, because the
implementation was easy to embed into the software, it offered the option
to use different weights for nodes, and it yielded good performance results
when tested.

To calculate the similarity between an initial query Q and a new query
Q2, the size of the largest AST is taken and divided by the calculated TED.
This value is inverted by subtracting it from 1.0 in order to measure similarity
instead of dissimilarity. When collecting matches in a collection of queries
(within the same log file), a maximum threshold of 0.75 was used. The
reasoning is: A threshold of 0.5 would mean that two queries are equally
similar and dissimilar, so the step to 0.75 is right in the middle between
this and being classified as identical (which corresponds to similarity equal
to 1.0). Based on manually inspecting samples, this already seems to be be
a high threshold, and this method based on TED yielded more predictable
results than a method based on SED.

To illustrate this: A typical Wikidata entity has a string length of about
36. Changing the entity number are 2-4 edits. Even if all triples are changed,
this results in almost a 0.9 SED-similarity for the query, while even a two
node change with TED in a small query would be classified as major change.
Conversely, adding an additional Optional has an impact of only 4 with TED,
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Figure 5.2: Number of queries that exhibit a similarity degree between 75%
and 100% in Wikidata logs compared to examples.

while the SED changes by at least 158 if typical Wikidata entities are used,
and this already assumes no extra white space usage.

Application on Wikidata Collection In order to measure the structural
similarity of Wikidata queries as test, the focus was put on the OrganicOK
query logs by considering their unique version only (since exact matches can
just be detected by examining the strings)2. Since we needed seed queries for
which we want to find similar queries, the well-known set of online Wikidata
examples from [Wik18] come to mind. Via scripting, a set of 412 queries
could be extracted and parsed by Jena.3

It turns out that matches for most online example queries are found in
the Wikidata Collection. Only 28 queries could not be matched, while the
rest had at least one match above the threshold.

Figure 5.2 shows (in log scale) the number of similar queries that were
found in the OrganicOK unique query logs in the order of ascending similarity.
Some outliers can be observed in several buckets in the scatter plot, showing
that these queries have higher number of similar counterparts with respect
to their pairs in the same bucket.

The entire logs could be scanned with input queries for the similarity
search quite efficiently in less than 20 minutes without further optimizations.

2The same analysis can be applied to the other logs, but is probably less interesting
for the present discussion.

3On August 23, 2018. Jena version same as in Section 2.1.
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Software

The following sections focus on the software components that were developed
during research to analyze and compile the results presented in this work.

As such, first a general outline is given, which is intended to aid in un-
derstanding the software, and highlight entry points that can be used for
modifying and extending it. Then, the usage of the software and the output
is discussed. This shows how all results can be reproduced and inspected, or
how the software can be applied to different input data to perform the same
analyses. Finally, the software is not only capable of performing analyses, it
is also possible to explore query logs to pinpoint areas of interest and devise
new analyses; as such this part of the software is presented and explained in
more detail.

A goal of some summaries in the following is also to document the software
from a very high-level perspective, so it can be understood and the source
can be picked up with greater ease.

6.1 Architecture and Components
This section is intended to serve as a high-level overview of the software parts.
The core component is written in Java, but there are also scripts written in
Python, Groovy, and Bash, as well as external binaries, and embedded parts
in other languages like of SQL.

The diagram in Figure 6.1 contains the most important parts of the pro-
gram to get an understanding how the parts of the software are composed
and interact. In the diagram, nodes surrounded with an ellipsis denote the
actual class names as they are used in the Java part. Nodes in rectangular
boxes are logical components that are used to group concepts. The upper
part describes the flow of input, the middle part the output, and the bottom
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parts the analysis. These parts can also be used independently for other
purposes as well.

Starting from the top, the Main class is the program entry point that
dispatches to a component of choice. This is also used to invoke utilities and
tests, which is not shown in the diagram. For most purposes, this component
simply invokes the BatchProcessor. This component can read and traverse
directories or archives of files (e.g. compressed tarballs). It abstracts the
concept of a filesystem with a virtual file system (VFS, see interface Vfs),
so new archive formats can be added. But if enough file system storage is
available, the usage of uncompressed log files is recommended for performance
reasons. It is important to align the input files in a fashion that is useful
for further analysis. For example, DBpedia logs were split into sources of
origin, while Wikidata logs were split by the properties robotic and organic,
and timeout and non-timeout. This split can simply be achieved by putting
logs into different top-level directories. Each top-level directory is logically
grouped then directed towards a concept that is called a Job (see interface
of the same name) in the program.

The BatchProcessor basically tries to read all input contents with opti-
mized buffers as then directs this input reading to the next step. The class
FileDispatcher is responsible for a single log, since there are multiple log
formats (CSV, CLF, etc.), this components dispatches the reading of input
based on the format of the log to the next component. The class FileHan-
dler is streaming the contents of the files, and hands of the processing to the
appropriate log format parser. Query logs formats have two main types: In
line type formats, a single line corresponds to a query and its metadata, and
in multiline type formats, a single query can span multiple lines.

After passing these stages, a grouped set of queries is finally used as input
for various jobs. Most jobs are classified as a asyncJob, which means that
the steps of the jobs take the input queries that are fed into them, and queue
them up asynchronously for parallel execution. But this does not work for
all jobs. For example, the StreakAnalysis requires that all queries are run
synchronously in order, as each query relies on the previous one to perform
a temporal analysis. Finally, there are also some more complex jobs that do
not fit into one of those two categories, as they have different configuration
options that they can be run either synchronously or asynchronously in other
parts. This mainly concerns

• the Deduplicator, which is used solely to produce unique query logs,
which then can be used as new input for analysis jobs,

• and the DatabaseFiller, which is used to put queries and results of the
analysis into a relational database for exploration and further analysis.
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Figure 6.1: Overview of core components.
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Most asynchronous jobs (surrounded by a box) are analysis jobs that
use counters to store results of analyses for grouped sets of input files and
output these results to YAML key-value files. A script transforms these files
to XLSX spreadsheets, which can be directly used, or they can loaded into
a tool like Jupyter for further analysis steps. These analysis jobs are

• OpDistribution to compile operator distributions for different operator
combinations (see Section 2.3.2).

• PathExtractor to extract property paths from queries (as used for
Chapter 3).

• UriCounter to create the sunburst diagram (Figure 3.1).

• PropertyCounter, the main component that contains counters for anal-
ysis properties.

The PropertyCounter and RecordProcessor used by the DatabaseFiller
use a red ellipsis to denote that they are complex components that perform
the core analyses. The DatabaseFiller also does deduplication and stores a
DupeRecord for a duplicate query, and results of the analyses are stored in
a QueryRecord. For PropertyCounter, the components for the analyses are
shown under it:

• FeatureCount does keyword (Section 2.3.1) and projection (Section 2.3.4)
analyses.

• StructureCount does analysis concerning query design (Section 4.1.3)
and shape analysis (Section 4.2).

As can be seen, the class ShapeAnalysis is one of the most complex classes.
It splits a query up into eligible fragments (Section 4.1.2) denoted by cq_x
and runs applicable tests on them based on their graph or hypergraph.
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6.2 Reproducibility of Results
The software is open-source and available at [Tim19a] on Github. It is li-
censed under the Apache Software License 2.0. There are full instruction on
how to run build and run the software. There are scripts that can be used
to do this, this will also try to download all tools including external tool
binaries. These can be used to build Docker images to execute analyses on
any platform.

All results in this work are reproducible by rerunning the analyses.
The Wikidata Collection is publicly available and there is a script called
prepare wikidata.sh that can be used to download, decompress, and align
the query logs for the analyses as performed. The Multi-Source Collection
is not publicly available, but there is a script for preparing the files.

Finally, there are scripts for running a complete analysis or build a
database from groups of input files. For Wikidata Collection, this script
is called batch wikidata.sh. By default, the output will be in a directory
xlsx for sheets, and in a directory batch with subdirectories for each group
of logs. The script for producing the spreadsheet is called XLSX.groovy and
can be rerun on the output in batch to produce a spreadsheet.

A group of logs has the following output files:

• property count.yaml is the main output for various general and one-
off properties.

• op distribution.yaml for the operator distribution.

• pp sparql.txt contains SPARQL queries with property paths, sepa-
rated by an extra empty line to denote a new query.

• prop paths.txt contains only the property paths, used for compiling
results in Chapter 3.

• shapeless.txt contains unclassified shapes from the shape analysis on
CQs.

• shapeless f.txt contains unclassified shapes from the previous anal-
ysis augmented by adding Filter.

• shapeless fo.txt contains unclassified shapes from the previous anal-
ysis augmented by adding Optional.

• shapeless fov.txt contains unclassified shapes from the previous
analysis augmented by adding Values.
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• shapeless fox.txt contains unclassified shapes from the previous
analysis augmented by adding Service and Bind.

Results from prop paths.txt can be anonymized/normalized with the
script anon prop paths.py, but this is also done by the batch script, which
also produces a file prop path count.tsv that contains the count of property
paths per group of logs as presented in Tables 3.2, 3.4, and 3.3.

A spreadsheet contains several sheets, they are produced from the YAML
files discussed above, and a file prop2cat.yaml is used to control how prop-
erties are grouped to sheets. This can also be customized with scripting as
done in the batch scripts. The sheets are:

• property count with all remaining properties from
property count.yaml that are not moved by the scripts.

• keywords containing the count of queries that use given keyword at
least once. May include operators that do not have a real explicit key-
word such as And or Subquery. Results are presented in Section 2.3.1.

• op distribution contains a count of comma-separated sorted operator
combinations that are present in queries. Results are presented in in
Section 2.3.2.

• tw, htw, and fca for treewidth, hypertreewidth (Section 4.2.2), and
free-connex acyclicity (Section 4.2.3) with suffixes f, fo, fov, and
fox as discussed above (with output files). All subsequent properties

also have variants with these suffixes.

• shapes combined with prefix combinations of re for fragments includ-
ing property paths, nc for a variant without constants. All subsequent
properties also have variants with these prefixes. Results are presented
in Section 4.2.1

• cl max and cl min for maximum and minimum length of cycles in
cyclic queries. Results are presented in Section 4.2.3.

• tripleCount and tripleSymbolCount for counting the number of
triples or triples including distinct symbols in predicates. Results are
presented in Section 2.3.3.

• varCount and constCount for count of variables and constants per
query in Section 2.3.3.

• treePattern for the tree pattern results in Section 3.4 (also available
with suffixes).
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• For quantitative shape properties for shapes (Section 4.2.3):

– Chain queries with prefix chain followed by
∗ depth max for the longest path in the graph of a query.

– Star queries with prefix star followed by
∗ depth max like for chains.
∗ degree max for the highest degree of any node.

– Tree queries with prefix tree followed by
∗ The same properties for chains and stars.
∗ inner deg avg for the average degree of all inner nodes.
∗ inner deg max for the highest degree of all inner nodes.
∗ inner tot for the counting the number of all inner nodes.
∗ inner rel for the number of inner nodes divided by the num-

ber of all nodes of a query graph.
∗ split tot for the number of nodes that have a degree higher

than two.

The classes identified in shapes (available in variants with prefixes and
suffixes) for Section 4.2.1 are:

• selfLoops for queries containing self-loops.

• parallelEdges for queries containing parallel edges.

• noNode for queries with an empty graph.

• noEdge for queries that at most contain nodes.

• singleNode for queries with only a single node.

• singleEdge for queries with only a single edge.

• singleEdgeSet for queries with only disconnected edges.

• chain for chain queries.

• chainSet for sets of chain queries.

• star for star queries.

• tree for tree queries.

• forest for sets of tree queries.
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• flower for flower queries as described in Definition 4.2.1.

• flowerSet for bouquets.

The results for projection in Section 2.3.4 use the following properties
(available with suffix variants):

• projection_cq for Select queries positively identified using projection.

• projectionUnsure_cq for Select queries that use constructs that did
not allow for positive identification of projection.

• askProjection_cq for Ask queries positively identified using projec-
tion.

• askProjectionUnsure_cq for Ask queries that use constructs that did
not allow for positive identification of projection.

For the well-designed results in Section 4.1.3, properties are:

• wd for well-designed queries.

• wwd for weakly well-designed queries.

• uwd for unions of well-designed queries.

• uwwd for unions of weakly well-designed queries.

Important properties for reconstructing results with total numbers (for
example for Section 2.1) are:

• total_queries for number of queries read.

• total_valid for number of parsed queries.

• count_cq for each shape variant (with prefixes/suffixes) as discussed
above.

Note that these names are also mapped to columns names in the database.
And the strings can be used to find search for the constant definition in the
source code code to trace back to the implementation of tests.
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6.3 A System for Exploration: DARQL
A plethora of SPARQL endpoints1 is proliferating on the Internet thus allow-
ing ordinary users to specify their queries either via APIs or manually. But
understanding and exploring these vast amounts of data is challenging. The
queries are collected into log files by their respective owners and represent
a valuable resource for understanding users’ preferences and needs in terms
of query specification, but also for guiding us in research on query language
design, query evaluation and benchmarking [BMT17a]; [KK16].

To help facilitating the research of SPARQL logs, we developed DARQL,
a tool for deep and fast analysis of large SPARQL query logs. The tool
comes equipped with an extensive set of pre-defined tests, including sim-
ple tasks (keyword counts, triple counts, operator distributions), moderately
deep tasks (projection test, query classification), and deep analysis (shape
analysis, well-designedness, weakly well-designedness, hypertreewidth, and
fractional edge cover). The primary goal of our tool is to let the users dive
into SPARQL query logs and let them discover the inherent characteristics
of the queries. DARQL is an easy-to-use tool for SPARQL query analysis
in the research community. Out of the box, DARQL analyzes 62 properties
per query. We believe that DARQL will give researchers who want to dive
into query log analysis a significant head start. Indeed, in our former analyt-
ical study [BMT17a] we only scratched the surface when it comes to finding
correlations between query properties.

There are publicly available logs that can be used [Bie+18] that can
be used, or other non-public sources that can be obtained as outlined in
[BMT17a]. We release the tool itself at https://github.com/PoDMr/darql.

6.3.1 System and Main Components
A query builder lets the user modify the features of the queries under scrutiny
to respectively enlarge or restrict the scope of the analyzed portion of the
corpus. Since our tool is deployed on top of a relational DBMS with a web-
based front end, each search on the corpus corresponds to an SQL query
issued on the database. The user can also manually modify this query and
rerun a deeper or coarser analysis at will.

Internally, the system consists of the following main components:

• a batch processing system (for loading and analyzing query logs, writing
to files),

1https://www.w3.org/wiki/SparqlEndpoints
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Figure 6.2: General architecture of the DARQL system.

• a PostgreSQL 10 database, and

• a GUI served from a connecting back-end.

Refer to Figure 6.2 for a more detailed overview. The main components are
described next.

Loading and Analyzing Query Logs We release DARQL as open-source
project and therefore also discuss some aspects that surround it, such as the
batch processing system. Before the user can start exploring queries through
the database interface, the queries need to be analyzed, deduplicated, and
stored into the system. To this end, we provide scripts that can handle three
main log formats: CLF-based logs (Common Log Format) used by most
web servers, delimiter-based line log formats (e.g. CSV, TSV), or multi-
line delimited formats. Every query in the log is parsed and stored into the
database. For queries that do not parse, we record this in the database and
do not perform further analysis. Every query that parses is run through an
extensive set of analytical tests: 1 parse test, 31 keyword tests (query type,
operators, solution modifiers, aggregation operators, . . . ), 8 simple structural
tests (property path, projection, . . . ), 4 well-designedness tests, 3 classifica-
tions into different kinds of conjunctive queries, 11 complex shape tests for
the structure of conjunctive queries (chain, star, cycle, tree, flower,. . . ), and
4 value tests (number of triples of the queries, hypertreewidth, fractional
edge cover, and the origin of the query logs). These tests include (but are
not limited to) all those that have been used in [BMT17a].

Prior to analysis, we test for duplicates in the query logs. We use SHA-256
for hashing to detect potential duplicates. The strings of queries are normal-
ized by outputting them with the Jena parser, which normalizes whitespace
and formats the queries in a readable form for our GUI. For some of the
logs, we also need to add implicit prefixes explicitly to make queries valid as
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standalone queries. If we discover duplicate queries we do not re-run query
analysis, but simply record its occurrence by referring to the first occurrence
and store the new origin (log file and line number). As such, our system can
display, for each query, how many duplicates were found and where.

The batch processing system can write output to either files or databases.
It also allows logs to be rewritten in different formats, and deduplicated in
a normalized form. The analysis output is in machine readable formats, and
it can be transformed to spreadsheets.

Database The database is a PostgreSQL 10 system that stores the results
of each analysis for every query. For duplicate log entries it stores the origin
of each entry. We used PostgreSQL 10 in order to utilize new parallelization
features for queries and joins, which after appropriate tuning resulted in
much faster query times compared to PostgreSQL 9.6.

We tested the system through a web interface on our server2and noticed
that most queries that our Query Builder generates are typically done in less
than a second (e.g. 200ms). Count queries are generally more expensive
in PostgreSQL and take between 2–4 seconds on large sets (50–100 million
queries) and are faster if subsets are smaller. In order to achieve this perfor-
mance, we created a set of indexes. Depending on the queries, one can try
to get faster queries, by creating more specific indices, but they can get very
large. One also has to consider that the indexes a specific user really needs
can vary very widely. Depending on data, index creation can take up to 2–4
minutes.

All non-duplicate queries are stored in a single table Queries with the
information of analysis results as Boolean or numeric columns. Each query is
assigned a unique ID. Additionally, it contains the string of the query, a hash
of this string, and its origin (data set, filename, line number in file). Dupli-
cates are stored in a table Duplicates, containing an ID for the duplicate,
a reference ID to the original query, and the origin of the duplicate.

As an alternative, the analysis results could have been stored in an addi-
tional separate table, but this approach was not chosen, because the queries
from the interface often fetch all analysis results anyway, since this is much
more efficient for the interface and the user. However, from a software ar-
chitectural standpoint, it is possible to easily change this in the code, the
queries for the interface would then need to be done with more joins.

The schemas are generated by the batch processor if the database is
empty. It is possible to do this manually, which allows to use a different

2A 2-CPU Intel Xeon E5-2630v2 2.6 GHz server with 128GB RAM and running Ubuntu
16.04 LTS.
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(a) Screenshot of the Query builder,
showing a few of the properties (with
“Solution Modifiers” unfolded)

(b) Automatically generated SQL query (this
one fetches the SPARQL select-queries with hy-
pertreewidth two)

Figure 6.3: Query Builder and SQL text editor.

order of columns if desired, and it allows changes to the schema so columns
for new tests could be added or data could be stored in additional tables that
could be joined as needed.

6.3.2 User Interface

The user interface consists of several components that are connected. The
main ones are: (1) a query builder, (2) an SQL text editor, (3) a query
visualizer, (4) a SPARQL text display, and (5) a query result table display.

In a typical usage scenario of the tool, the user employs the query builder
to select properties that she is interested in. Figure 6.3(a) shows a partial
screenshot of the query builder. Under “Query Types”, one can click if one
wants to search for Select, Ask, Construct, or Describe queries. Likewise, we
have categories for “Operators”, “Solution Modifiers”, “Well Designedness”,
“Shapes”, etc. As Figure 6.3(a) shows, groups of properties can be folded and
unfolded at need. Boolean properties can be set to True, False, or N/A (don’t
care). For numerical properties (e.g., number of triples, hypertreewidth), the
user enters can enter a number or a range. A range is specified by using a
comma to separate lower and upper bound, either one can also be omitted.

The GUI automatically generates an SQL query interactively when prop-
erties are changed in the query builder, see Figure 6.3(b) for an example
query. The SQL query in the editor is fully editable, in case the user wants
to refine the search. It can be executed by several means, the most obvious
way is clicking “Run”. By default, a query execution fetches up to ten queries
from our query logs and displays the first retrieved query as current query.

Upon executing the SQL query, several things happen at once:
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(a) Query result table (second entry is high-
lighted).

(b) One of the queries in our log (in the
SPARQL editor).

(c) Visualization of the graph of Fig-
ure 6.4(b)’s query.

(d) Visualization of the hypergraph of Fig-
ure 6.4(b)’s query.

Figure 6.4: Partial screenshots of the query viewer and visualizer for an
example query as regular graphs.

• its results are shown in the query result table display (shown in Fig-
ure 6.4(a));

• the first result is displayed in the SPARQL text display (shown in
Figure 6.4(b)) and

• the first result is visualized in the query visualizer (shown in Fig-
ure 6.4(c) and 6.4(d)).

The entries in the result table display are clickable, so the user can im-
mediately select a query she is interested in (e.g., the second entry in Fig-
ure 6.4(a)). When clicking a query, it is shown in the SPARQL editor and
visualized (e.g., Figure 6.4(b) –6.4(d)) show the highlighted query from Fig-
ure 6.4(a) and two different visualizations. Furthermore, the query visualizer
has controls for going to the previous and next query. Additional properties
of the currently displayed query can be shown in a “Details” panel.

Figure 6.7(c) shows a query from the DBpedia 2016 (Jan. 17th) log file,
corresponding to one of the results of the SQL query in Figure 6.3(b) on
our database, fetching the queries of hypertreewidth two. The visualizer
automatically renders a visualization of the query and can be configured to
render the graph- and hypergraph structure. Although the graph structure
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of a query is usually rather simple, it is often not sufficient to convey the full
complexity of the query. For instance, the graph in Figure 6.4(c) ignores the
variables ?p1, ?p2, and ?p3 from Figure 6.7(c).

The hypergraph structure captures this complexity more accurately.
Since we only had graph render libraries at our disposal, we display a
hyperedge {s, p, o} coming from SPARQL triple (s, p, o) as a new node h
(representing the identity of the hyperedge) which we connect to nodes s,
p, and o. We use the edges s → h and h → o (in blue) and h → p (in
orange). Figure 6.4(d) has such a visualizations for the SPARQL query in
Figure 6.7(c).

The visualizer currently uses several graph layout algorithms (cose, cose-
bilkent, concentric, breadth-first, grid, and circle) and can readily switch
between them. This gives users a quick idea of the query’s structure.

Note that the SPARQL editor can be used to edit the current query,
and the SPARQL visualizer is immediately updated to show changes. The
SPARQL visualizer also allows manual layouting by dragging nodes, and it
can also be zoomed and moved around.

Finally, we provide a data sets panel (shown in Figure 6.5), which shows
general statistics of the data that is currently in the database, ordered by ori-
gin. The panel contains four columns: name of the data set (“originMajor”),
total number of queries (“total”), number of unique queries (“unique”), and
finally the number of unique queries that can be parsed (“unique valid”). The
total number of queries in each log is the sum of the “dupe” and “nodupe
”values. Notice that some logs contain more duplicate entries, while oth-
ers contain more unique entries. Duplicates are tested globally, so we may
classify a query from dbpedia 15 as a duplicate if it already occurred in db-
pedia 12.

In the GUI, it is possible to individually move, resize, or maximize all
panels, this allows to give the user a complete overview. It also allows to
hide the panels the user is currently not interested in. The panels can be
used as stacked tabs or as split views with advanced layout capabilities found
in full-fledged IDEs.

6.3.3 Usage Scenarios
DARQL is a user-friendly system to explore query logs, as such, it is inter-
esting to see how queries from actual SPARQL log files (DBpedia, BioPortal,
LGD, OpenBioMed, Semantic Web Dog Food, British Museum; Wikidata,
or any other logs one decides to feed into it) look like. Since DARQL is very
flexible, and immediately shows visualization such as in Figures 6.7(b) and
6.4(d), this can be done interactively and with ease. . Nevertheless, there
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Figure 6.5: The data sets panel from the GUI, showing the currently loaded
queries.

are specific scenarios that come to mind how the system can be used, which
will be discussed in the following.

Search for Complex Queries Besides searching simple queries in our
large corpus, the tool allows us to quickly search for queries by size (so
the largest ones can be found quickly), with complex structures (e.g., cyclic
queries), and with advanced keywords. Since our corpus encompasses a varied
set of SPARQL log files coming from disparate SPARQL endpoints, DARQL
lets the users access the lineage of the queries under inspection and have a
perception of what logs contain queries with certain complex characteristics.

Shape-Driven Exploration Here we start by selecting a specific shape
(e.g., “star”) and show visitors on the visualizer how star-shaped queries
in the log files actually look like. This gives an impression on the size,
complexity, branching, and diameter of such queries. The tool supports
many different shapes to start from, such as star, tree, chain, forest, flower,
and cycle. We can also start from a given hypertreewidth, which might be
desirable, since queries with hypertreewidth three are already quite complex
and rare in practice (as seen in in Section 4.2.2).

In fact we already used the front-end extensively for our study of shapes
in [BMT17a]: we gradually implemented more and more shape tests and then
visually inspected queries that were not classified by any known shapes. So,
this part of the tool has already been heavily used behind the scenes in our
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own research. It helped us identify new shapes and we could gradually cover
almost all queries of a limited treewidth with a defined shape.

Getting Statistics DARQL can get statistics such as “How many of the
SELECT queries are conjunctive queries?” or “How many of the construct-
queries do a non-trivial insertion?” and it is possible to immediately display
these queries. For every query that can be constructed with the query builder,
we can toggle if the tool should count the number of the results, or if it
should produce a sample of the answers. Therefore, such statistics can be
easily computed.

Most Popular Queries Statistics on the logs can be easily computed and
lead to identify for instance the most (or the least) occurring queries in the
entire corpus or in a single log file or data source. We can thus access the
most (or less) popular queries in the logs with a breakdown view on each
individual log file, on each individual data source (e.g., Wikidata, DBPedia,
BioPortal etc.), or on the entire corpus.

Expert Search in SQL The predefined user interface only generated SQL
queries to the database that test conjunctions of conditions. Using the direct
SQL interface, we show that if the user wants, also more advanced conditions
can be queried. For example, one can search the union of all queries that
have a minimum size and those that have cycles.

Furthermore, it is possible to explore queries in the context of time. Al-
though only some logs have timestamps, most log files have names that in-
dicate a date. Figure 6.4(a) shows five queries from January 17th, 2016,
for example. Using the SQL editor, queries coming from a specific date (or
month, or year) can be found as well. With this date, we could perform
complex interesting queries with a temporal aspect. For instance, we could
inspect how many queries were submitted on the same day, or try to find days
or time spans that have the most or least queries. Or, we could calculate
the time span (first and last occurrence) for duplicates of a query. User can
design their own very complex log searches by formulating them as queries
in SQL.
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6.4 Advanced Visualization and Statistics:
SHARQL

SHARQL builds on DARQL [BMT18], a system deployed on top of a rela-
tional DBMS (PostgreSQL 10) with a web-based front end alongside a batch
processing system (for loading and analyzing query logs, writing to files)
and initially conceived for DBpedia queries. DARQL [BMT17a]; [BMT18]
was however working on an initial batch of DBpedia logs augmented with
logs from other sources and roughly amounting to 1/4 of our current huge
corpus in SHARQL (whose data set breakdown is illustrated later in Figure
6.11). Since the logs from [Bie+18] is publicly available, there is a script to
import them automatically into SHARQL. Due to the fact that additional
large query logs have been added since then, the new system SHARQL has
an array of new features including:

• Adaptive edge rendering suitable for hypergraph visualization of
queries; coupled with tree decomposition visualization.

• Precise shape analysis (with/out constants) and property paths support
in visualization and shape analysis.

• A much larger query fragment wrt shape analysis covering C2RPQs
(Conjunctive Two-ways Regular Path Queries). The latter fragment
is 57x times larger than the fragment of recursive queries found in
previous logs (including DBpedia).

• Precise analytics on a rich variety of query features, such as spanning
size, diameter, cycle lengths of queries alongside the numbers of nodes
with branching, maximum node degree, edge cover, and total sum of
triples and symbols in property paths. These analytics can be obtained
for each particular class of queries exhibiting one of the discovered query
shapes as well as for organic (“human-written”) and robotic (“automat-
ically generated”) queries, and for timeout and well-executed queries.

The code base for the query analysis and visualization is available at
https://github.com/PoDMr/sharql. An additional advantage of SHARQL
is that the 200M Wikidata queries are freely available for download [Mal+18]
and can be imported into the database using our scripts.

Advanced Usage Scenarios SHARQL allows to visualize the queries of
SPARQL log files with rather different characteristics (Wikidata, DBpedia,
BioPortal, LGD, OpenBioMed, Semantic Web Dog Food, British Museum),
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Figure 6.6: The Henry VIIIth Query.

out of which there are recently publicly available logs and undisclosed logs.3
Furthermore, the system is able to digest a huge amount of queries, currently
about 500M in total. To illustrate the system more, here are some scenarios
for using SHARQL.

6.4.1 Rendering and Visualization of Queries

In order for a human to quickly understand queries, visualization may be
very helpful. For instance, consider the query in Figure 6.6, coming from
DBpedia. The query consists of 21 edges involving one constant (“Henry
VIII”) and six variables. Whereas the query itself (Figure 6.6 right) takes
some time to parse, a visualization immediately shows that its shape is a
7-clique and that the user may be interested in obtaining the six spouses of
Henry VIII.

Furthermore, the graph- or hypergraph structure of queries gives crucial
information concerning the complexity of evaluating them. In the case of case
of conjunctive queries, it is well known that acyclic queries can be evaluated
efficiently, whereas queries that are highly cyclic are very complex. (For
instance, if a query’s shape is a k-clique, then evaluating it is equivalent to
solving the NP-complete k-clique problem.)

Central aspects to query visualization are the rendering of constants and
variables, property paths, and hypergraph representations. We will prepare a
set of queries to show visitors how these aspects are visualized.

3The massive DBpedia logs are not publicly available and have been given to us courtesy
of OpenLink Software.
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(a) An organic query from our logs featuring all kinds of
edges

(b) A complex (organic) query from our logs prone to hy-
pertree decomposition (c) A complex organic query

from our logs

Figure 6.7: Partial screenshots of our query viewer and visualizer for example
queries with hypergraph components.

Hypergraph rendering of queries and navigation In the visualization
of SPARQL queries, the necessity for hyperedges (edges with more than two
nodes) arises when rendering queries that use complex subqueries using the
Values, Service, Bind and Filter operators from SPARQL. Hyperedges may also
necessary when variables are used in the predicate position of graph pattern
triples, but we noticed that in practice this is needed much less often than
with the abovementioned keywords. We therefore implemented a hypergraph
rendering algorithm, which we will show in action here. Figure 6.7 contains
three example queries and their rendering as hypergraph.

We let the user navigate through our massive logs and visualize the hy-
pergraph rendering of queries, starting with a few selected queries like the
ones in Figure 6.7. Query log exploration can then be done in many different
directions: we ran about 120 tests on every query in the logs. Any of these
tests can be used for further exploration. For instance, users can search for
queries with the largest hyperedge in the logs; focus on queries within the
subsets of bot queries or user queries; focus on timeout queries, etc. Later,
we will explain our novel hypergraph rendering of queries and the render-
ing of Fig. 6.7 in detail. We note that all our graph layout algorithms are
interactive: the user can click a node and drag it, and the layout changes
dynamically.
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Property Path Visualization and Related Types Property paths are
extremely common in Wikidata query logs [BMT19b]. However, they can
consist of complex expressions and can therefore quickly overcrowd the vi-
sualization. We solved this by rendering property paths as special (dashed)
edges, without any annotation, for which the property path expression can
be seen by hovering over the edge with the mouse.

Impact of Constants on Query Shapes We want to show how the
shape of queries changes if constants are removed from their (hyper-)graph.
We noticed that the shape of many queries becomes disconnected if constants
are removed [BMT19b]. This means that we can show on actual examples
that it makes much sense for query evaluation to start with searching the
constants in the query in the data and expand to variables later. This avoids
the computation of huge Cartesian products (joins) that are only pruned
later when the constants are added.

6.4.2 Flexible Analytics
We have subjected each query in our database to a total of roughly 120 tests,
compared to 62 we did in DARQL [BMT18]. These tests involve informa-
tion on the set of operators it uses, its number of triples, its graph shape,
its hypergraph shape, well-designedness, weak well-designedness, acyclicity,
free-connex acyclicity, whether it uses property paths, number of variables,
number of constants, etc.

For queries that can be rendered as a graph, we test if it has self-loops
(self-joins), parallel edges, we measure the diameter of its graph (longest
distance between nodes), maximum degree, its number of nodes with high
degree, length of its shortest and longest simple cycles.4 Furthermore, our
database records, if available, whether the query was robotic or organic and
whether it timed out or not. SHARQL allows to use each of these analysis
results to study subgroups of queries in detail. Under the hood, each query
is stored together with 120 attributes in our query database, each of which
represents the outcome of one of our tests.

Analytics on the Entire Logs and Subsets Thereof We can use our
database as a back-end for Jupyter, which means that, for each of the indi-
vidual analyses we did, bar charts or other charts (scatter plots, etc.) can

4Only up to length 10, since deciding if a graph has a long simple cycle is NP-complete.
It is at least as difficult as the Hamilton Cycle problem.
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(a) Diameter distribution
(user vs. bot)

(b) Diameter distribution
(user vs. bot) for star queries
only

(c) Diameter distribution
(user vs. bot) for star
timeout queries only

Figure 6.8: Examples of diameter distributions on the entire Wikidata logs and
subsets thereof.

readily be produced. Already these simple distributions show interesting
insights on global properties of the logs.

But the integration with Jupyter is much more flexible and we can com-
bine statistics in an almost arbitrary manner. We discuss one scenario as an
example. Figure 6.8(a) shows a bar chart, obtained using SHARQL, with
the distribution of the diameter of the graphs of user versus bot queries in
Wikidata, roughly 208M queries. (Notice the log scale on the vertical axis.)
A user may be interested in refining this result to, say, star-shaped queries
only, for which we see the result in Figure 6.8(b). (Here, “star” is a prede-
fined shape we identified in [BMT19b] and which is very prominent in the
logs.)

The statistic can be refined even more by, e.g., only focusing on timeout
star queries, see Figure 6.8(c). We can observe from the three views that user
queries have significantly larger diameters than their robotic counterparts
(Figure 6.8(a)). This is confirmed by star queries (Figure 6.8(b)), whereas
for timeout queries the percentages are more balanced (Figure 6.8(c)). As
an example, we give the Jupyter code we used to produce Figure 6.8(c) in
Figure 6.9. When we computed these results, the system is quite responsive
and answered (produced the output bar charts) within a matter of seconds.

The combination of the SHARQL database and Jupyter is extremely
flexible, and gives the user more than 0.5B queries to analyze. The currently
loaded data sets in the system are depicted in Figure 6.11.

Search for Complex Queries Besides searching for simple queries in
our large corpus, the tool allows us to quickly search for queries by size
(so the largest ones can be found quickly), with complex structures (e.g.,
cyclic queries), and with advanced keywords. Since our corpus encompasses
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Figure 6.9: Jupyter code used to produce Figure 6.8(c).

a varied set of SPARQL log files coming from disparate SPARQL endpoints,
SHARQL lets the users access the lineage of the queries under inspection
and have a perception of what logs contain queries with certain complex
characteristics.

Hypertree Decomposition and its Visualization A hypertree decom-
position of a hypergraph (similar to a tree decomposition of a graph) is a
suitable clustering of its hyperedges yielding a tree or a forest. Such de-
compositions are important for database queries, since they can serve as a
guide for join orderings. In SHARQL we can derive the hypertree decom-
position of all queries in the logs that are sufficiently close to a conjunctive
query so that hypertree decompositions make sense.5 These queries amount
to roughly 177.5M queries in the Wikidata data set only (and 351.3M for the
entire data set). As an example, Figure 6.10 shows a hypertree decomposition
of the query illustrated in Figure 6.7(c) with overlapping hyperedges.

6.4.3 Graph Rendering
In this section, we explain some visualization aspects in more detail. Our
query visualizer can render the edges of a query as regular edges or hyper-

5We use detkdecomp (https://github.com/daajoe/detkdecomp) for obtaining the
hypertree decompositions.
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Figure 6.10: Hypertree decomposition of the query in Figure 6.7(b).

edges. Regular edges have two nodes (and possibly an edge label) and are
either dashed or solid. A dashed regular edge is an edge for which the edge
label is hidden, and for which the label appears when hovering over it. This
is especially helpful for property paths, since these expressions are arbitrarily
complex. Solid regular edges may be grey or colored. If it is colored (as the
green edge in Figure 6.7(b)), it means that it is generated from a Service,
Bind, Values, or Filter clause. (The green edge in Figure. 6.7(c) is generated
from the Bind clause of the query.)

Hyperedges are edges that have more than two nodes. They can be
generated in two scenarios. The first scenario occurs with a Service, Bind,
Values, or Filter clause, which creates a constraint (and thus a hyperedge)
between three or more variables or constants, as illustrated in Figures 6.7(c)
for the blue edge, and 6.7(b) for the green and purple edges. The second
scenario is illustrated in Figure 6.7(a). Here, the green hyperedge arises
from an ordinary triple pattern 〈s p o〉, for which the p position (?var3), is
a variable that is used elsewhere. Notice that we can deal with the triple
pattern 〈?var5 ?var6 ?var3〉 differently. Since ?var6 is not used elsewhere,
we can render it as a regular labeled edge.

As shown in the screenshots, we also render variables and constants in
a different color. This is crucial for being able to judge the complexity of
evaluating a query, because a constant can only match to one node in the
graph, whereas a variable can potentially match to any node. Moreover,
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Figure 6.11: The data sets currently loaded in the system.

constants play a crucial role in shape classification of our queries, since dis-
carding them might lead to breaking up query shapes that consider both
variables and constants [BMT19b].

In drawing queries as hypergraphs, we have used the notion of planarity
introduced in [SO87]. Not all hypergraphs have a vertex-planar represen-
tation, but in the majority of the cases in our queries this is the case. (In
general, determining if a given hypergraph has a vertex-planar representa-
tion is NP-complete [SO87].) We adapted the layout algorithm of Arafat
and Bressan [AB17] in order to handle the visualization of ordinary edges
and hyperedges in our corpus.
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We will now reflect on the results and discuss them, see what lessons were
learned, and what this means for future work.

7.1 Reflecting on Multi-Source Collection
An extensive analytical study on a large corpus of real SPARQL query logs
was conducted. The Multi-Source Collection corpus is inherently heteroge-
neous and consists of a majority of DBpedia query logs along with query logs
on biological data sets (namely BioPortal and BioMed data sets), geological
data sets (LGD), bibliographic data (SWDF), and query logs from a mu-
seum’s SPARQL endpoint (British Museum). This corpus was augmented
with the example queries from Wikidata (Feb. 2017), which are cherry picked
from real SPARQL queries on this data source.

Differences in Data Sets The majority of the data sets exhibit similar
characteristics, such as for instance the simplicity of queries amounting to 1
or 2 triples. The only exception occurs with British Museum and Wikidata
data sets, where the former is a set of queries generated from fixed templates
and the latter is a query wiki rather than a query log. Clearly, the DBpedia
data sets are the most voluminous and recent in this corpus, thus making
their results quite significant. For instance, despite the fact that single triple
queries are numerous in these data sets, more complex queries (with 11 triples
or more) have lots of occurrences (up to 21% of the total number of queries
for DBpedia13). Strikingly, the largest queries of all belong to DBpedia,
which is one of the outcome of the comparison between Valid and Unique
queries.

Moreover, it can be observed that most of the analyzed queries across all
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data sets are Select/Ask queries, which range between 91% and 99.88% for
all data sets except DBpedia16 and LGD13, which have lower percentages.
Therefore these queries were put into focus in the analysis, since these queries
turn out to be the queries that users most often formulate in SPARQL query
endpoints. The occurrences of operator distributions and the number of
projections and subqueries were further examined. This analysis addresses a
specific fragment, namely the And/Optional/Filter patterns (AOF patterns).
For such patterns, the graph- and hypergraph structures were derived and
this allowed to analyze the impact of the structure on query evaluation.

Benefits of Shape Analysis We synthetically reproduced the observed
real chain and cycle query logs with a synthetic generator by building diverse
workloads of Ask queries and measured their average runtime in two systems,
Blazegraph, used by the Wikimedia foundation, and PostgreSQL. In both
systems, the difference between average performances of such different query
shapes are perceivable. We dug deeper in the shape analysis in order to
classify these queries under general query shapes as canonical graphs and
characterize their tree-likeness as hypergraphs. This shape analysis can serve
the need of fostering the discussion on the design of new query languages for
graph data [Bar16]; [Bon+18], as pursued for instance by the LDBC Graph
Query Language Task Force [LDB]. It can also inspire the conception of
novel query optimization techniques suited for these query shapes, along with
tuning and benchmarking methods. For instance, we are not aware of existing
benchmarks targeting flowers and flower sets. The analysis on property paths
showed that these are not yet widely used in the entire corpus, even though
they are numerous in the Wikidata corpus.

Benefits of Streak Analysis Finally, we performed a study on the way
users specify their queries in SPARQL query logs, by identifying streaks of
similar queries. This analysis is for instance crucial to understand query
specification from real users and thus usability of databases, which is a hot
research topic in our community [Jag+07]; [NJ11].

Extensibility Our analysis has been carried out with scripts in different
languages, amounting to a total of roughly 9, 000 source lines of code (SLOC).
These scripts are open-source [Tim18] and extensible to the new query logs
that will be produced by users on SPARQL endpoints in the near future.

Future Work A preliminary investigation on our data set showed that a
shape analysis that incorporates property paths (and therefore considering
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Henry VIII

?Spouse1

?Spouse2

?Spouse3

?Spouse4

?Spouse5

?Spouse6

Figure 7.1: The Henry VIII query, a 7-clique containing one constant and six
variables. All edges between Henry VIII and the variables are labeled

“dbpedia-owl:spouse” and all edges between variables are labeled with the
property path “!dbpedia-owl:sameAs”.

extensions of CRPQs instead of CQs) may reveal interesting results. For
instance, we found a 7-clique query (6-clique without constants) similar to the
one in Figure 7.1. We also found this particular query interesting, because we
believe that its semantics is probably different from what the user intended.
We believe that the user wanted to search for (possibly all permutations of)
six different spouses of Henry VIII. However, “!dbpedia-owl:sameAs” tests
if there exists an edge between two nodes that is not classified as dbpedia-
owl:sameAs.

7.2 Reflecting on Wikidata Collection
An in-depth analysis of the recently released Wikidata query logs was pre-
sented. It highlighted the presence of their most prominent query fragment,
i.e. C2RPQs. This fragment corresponds to highly complex recursive queries
with joins and property paths. Apart from simple counting measures on
this fragment, the focus was on tailoring a property path analysis and shape
analysis to these queries .

Even though Bielefeldt et al. [BGK18] rightfully note the difficulty of
obtaining stable observations from these query logs due to massive presence of
robotic traffic, several similarities can be discovered, like low hypertreewidth
and structure of property paths seem to be relatively consistent between the
present study and previous work.

Additionally, while investigating on a newly discovered fragment (C2RPQs),
entirely new observations were made across the distinction in terms of Valid

131



7. CONCLUSION

and Unique logs, further segmented into RoboticOK and OrganicOK, the
addition of timeout logs never analyzed before, which led to add interesting
dimensions to the analysis.

Main Findings We succinctly report the main findings of the analysis
regarding the guiding research questions. About the distributions of sizes,
we see that the RoboticOK queries are less skewed in terms of sizes than
the OrganicOK queries, and this also applies to OrganicTO and RoboticTO
queries, that are also inherently more complex in terms of sizes than the
RoboticOK plus OrganicOK queries.

Next, property paths occur in these logs 57x more than in previously an-
alyzed logs, which made us focus on the most representative query fragment
C2RPQs. Notice that a bigger variety of property path classes again occurs
with Organic queries rather than with Robotic queries, and that they exhibit a
rather different structure. In fact, while the most occurring transitive classes
of property paths for Robotic queries are a∗, a+ and ab∗ (thus with single al-
phabet symbols), the most occurring transitive classes of property paths for
Robotic queries contains unions of (at least two) symbols, thus corresponding
to AB∗ and A∗. Such a discovery might spur interesting query processing and
query optimization questions around C2RPQs, which were not addressed for
the much simpler fragments of CQ. For instance, landmarking indexes have
been introduced for one of the prominent classes of Robotic queries (A∗) in
Valstar et al. [VFY17], but also the other prominent classes need attention
when designing indexes for C2RPQs.

In the analysis, the question on the prominence of CQs and C2RPQs
in these logs compared to other logs was addressed, thus bringing to the
surface the most occurring recursive fragment of C2RPQs enriched with The
shape classification was run with and without constants for several fragments
ranging between the class of CQs and C2RPQ+ by considering/excluding
constants. We essentially see that stars are a common shape; trees/forests are
very common. And even 25% organic and 36% robotic queries disintegrate to
a single node if constants are removed. The shape analysis with or without
constants also led us to identify shifts in the shape classes due to removal
of constants that are worth looking at. Constants have been disregarded in
the study of C2RPQs, where indexing techniques have mainly considered the
labeled paths as key index terms. The combination of indexing techniques
looking at constants and labeled paths could thus be a direction to pursue
in future studies on indexing structures and index maintenance for these
queries [Bon+18]. The timeout queries are also interesting because they are
on average greater in size and more cyclic.
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Concerning tree- and hypertreewidth, the logs strongly confirm a hypoth-
esis that is often stated in theoretical research: the cyclic queries in practical
applications are only mildly cyclic. This means that database queries typi-
cally do not have large k-cliques encoded in their shape, but remain tree-like.

Benefits of AST Similarity Classification Next, a novel Wikidata-
specific query similarity search allows to efficiently navigate the query logs
starting from an initial query that users have at their disposal. This search
improves the usability of the Wikidata query logs for both recursive and non-
recursive queries, and it is valuable for identifying subsets of similar queries
on which further assessment is possible.

After pre-processing, i.e., computing the Valid and Unique data sets, the
entire analysis of the Wikidata query logs (not including the query similarity
search, which has been separately measured) takes roughly 12 hours on a 24
core machine with a 2.6 GHz CPU and 128 GB RAM.

Future Isolating complex query fragments and studying suitable sophisti-
cated metrics can be valuable for the community and may lead to further
studies and assessment of these logs. This work can serve as a basis for re-
searchers to find further interesting fragments of queries to study; it is only
reported what was found in the analysis performed in the logs. However,
one should always keep in mind that we are looking at specific query logs.
It cannot be concluded from this study that a given fragment, operator, or
type of query is not interesting to study.

7.3 Final Words
Large query logs amounting to around half a billion queries have been thor-
oughly studied under a multitude of aspects. Both a diversified set from
multiple different sources spanning several years and more homogenous logs
from Wikidata with queries from users or bot-generated traffic were taken
into consideration.

The analysis of the logs both took existing work as starting point for
investigating and introduced new novel techniques to classify queries and
interpret the composition of queries.

The study started with simple existing measures such as operator com-
position, measuring of triple sizes, examining features such as subquery and
projection. It analyzed properties and property paths and used it as basis
for categorizing queries into fragments that take the potential complexity of
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queries into consideration. Based on this, the shape of queries and their com-
plexity as well as their hypertree representation for more complex queries is
taken into consideration. A notable, although not surprising, result of all this
is that a majority of queries are very simple, but there is a more interesting
fraction of queries that can still be covered quite reliably with known prop-
erties. A part of this fraction and an even smaller set of remaining queries
can be interesting to study under different aspects in the future.

Several approaches to problems yielded completely novel, unique results,
such as the shape analysis with the identification of flower-shaped queries,
the temporal analysis of streaks in logs, and the parse-tree-based similarity
measure for query search. These results are especially interesting since they
offer the opportunity for more interesting research in the future, since they
can be used as base for new techniques.

As it has been mentioned before, the results are entirely reproducible,
since the software that was written to obtain the results is made available
under an open-source license, and the same input logs such as the ones
from Wikidata are readily available or can be obtained from their respec-
tive sources for checking. The software framework that was developed can
be used as basis for future work. It already has uses that go beyond just
reproducing results, i.e. it can be used to search for similar queries, pro-
duce statistics, inspect the most popular queries, or it can just be used for
exploration of logs visually and based on query characteristics.
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