On piRNAs and PIWI proteins in *Schmidtea mediterranea* and their role in mRNA surveillance of adult stem cells

DISSERTATION
submitted to the Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT) of the University of Bayreuth for obtaining the academic grade of

Doctor rerum naturalium (Dr. rer. nat.)

by

Iana V. Kim

from Zhanatas, Kazakhstan

February 2020
This doctoral thesis was carried out in the laboratory "Gene regulation by non-coding RNA" at the University of Bayreuth from January 2015 until October 2019 and was supervised by Dr. Claus-D. Kuhn.

This is a full reprint of the thesis submitted to obtain the academic degree of Doctor of Natural Sciences (Dr. rer. nat.) and approved by the Bayreuth Graduate School of Mathematical and Natural Sciences (BayNAT) of the University of Bayreuth.

Date of submission: 28.10.2019

Date of defense: 31.01.2020

Acting director: Prof. Dr. Markus Lippitz

Doctoral committee:

Dr. Claus-Dieter Kuhn (reviewer)

Prof. Dr. Olaf Stemmann (reviewer)

Prof. Dr. Gerrit Begemann (chairman)

Prof. Dr. Andreas Möglich

additional reviewer: Prof. Dr. Gunter Meister
Copyright information

Results from this dissertation were published in their entirety or in part in the following manuscripts:

All immunostaining experiments were conducted by Dr. Elizabeth M. Duncan, Dr. Stephanie H. Nowotarski and Dr. Sarah A. Elliott.

Dr. Elizabeth M. Duncan performed in situ hybridization experiments.

Eric J. Ross annotated planarian piRNA clusters and provided sequences of planarian ribosomal RNA.

Dr. Sean McKinney quantified the localization of foci on in situ hybridization experiment images.

Dr. Kristina Döring and Dr. Sascha Dietrich prepared and analyzed RNA-sequencing libraries from the gram-negative bacterium Salmonella typhimurium.
Summary

PIWI proteins utilize small RNAs, called piRNAs, to silence transposable elements, thereby protecting the integrity of animal germline genome. In the planarian flatworm *Schmidtea mediterranea*, piRNAs and PIWI proteins are enriched in adult stem cells, called neoblasts. Neoblasts give rise to all planarian cell types ensuring tissue turnover and animal regeneration. The knockdown of two planarian PIWI proteins - SMEDWI-2 and SMEDWI-3 - impairs neoblasts development and deprives planarians of their ability to regenerate, resulting in a lethal phenotype.

This study is focused on the characterization of the planarian piRNA pathway and on understanding the essential functions of piRNAs in neoblast biology. To gain insights into the planarian piRNA machinery, a combination of immunostaining and small RNA sequencing of immunoprecipitated piRNAs was used. We discovered two functionally distinct classes of piRNAs in planarians: piRNAs that map to transposable elements (TE) and those that map to coding genes. TE-derived piRNAs are produced during the post-transcriptional degradation of TE transcripts in a heterotypic ping-pong cycle, which is predominantly constituted by SMEDWI-2 and SMEDWI-3. Genic piRNAs, on the other hand, originate from the homotypic ping-pong cleavage of coding transcripts by SMEDWI-3 only. The guide piRNAs that direct the degradation of both transposable elements and protein-coding mRNAs are encoded in uni-strand genomic clusters.

Further exploration of SMEDWI-3-targeted transcripts using combination of RNA-Seq, HITS-CLIP, CLASH and Degradome-Seq revealed the engagement of the piRNA pathway in mRNA surveillance in neoblasts. In particular, we find that one class of mRNAs is degraded in homotypic ping-pong cycle by SMEDWI-3, while another class of targeted transcripts evades SMEDWI-3-mediated endonucleolytic cleavage and processing into piRNAs. The two distinct modes of SMEDWI-3 activity are dictated by the degree of complementarity between a SMEDWI-3-bound guide piRNA and its target mRNA. In case guide piRNAs bind their targets with non-perfect complementarity, especially in the vicinity to the scissile phosphate bond between nucleotides 10 and 11, the degradation of the mRNA transcript by SMEDWI-3 is precluded. Otherwise, perfect or near-perfect base-pairing of guide piRNA to its target triggers the endonucleolytic cleavage of the targeted mRNA and the production of genic piRNAs. Further analysis of planarian mRNAs degraded in the piRNA pathway revealed the
presence of an active piRNA pathway in epidermal cells, in which these transcripts are likely used as piRNAs precursors.

Taken together, our data demonstrate that a piRNA pathway comprising three PIWI proteins (SMEDWI-1, -2, and -3) operates in neoblasts of *S. mediterranea*. However, only two PIWI proteins - SMEDWI-2 and -3 - are essential for regeneration and tissue homeostasis. Moreover, we find a somatic piRNA pathway that acts in epidermal cells with the use of SMEDWI-2 only. Another somatic pathway may also operate in neuronal cells, where we observed two SMEDWI proteins - SMEDWI-2 and -3. Functionally, the planarian piRNA pathway is responsible for silencing of transposable elements, which is the primary function of piRNA pathway in most animal. In addition, planarians have recruited piRNAs for mRNA surveillance - at least in neoblasts. Overall, this study sets the stage for studying the role of PIWI proteins and piRNAs in the planarian flatworm *Schmidtea mediterranea*. Moreover, it will serve as a catalyst for the use of numerous biochemical and sequencing techniques in planarians that were established during the course of this thesis.
Zusammenfassung

Weitere Untersuchungen an SMEDWI-3-interagierenden Transkripten unter Verwendung einer Kombination aus RNA-Seq, HITS-CLIP, CLASH-Seq und Degradome-Seq zeigten die Beteiligung der piRNA-Maschinerie am mRNA-Umsatz in Neoblasten. Unsere Ergebnisse zeigen insbesondere, dass eine Klasse von mRNAs im homotypischen Ping-Pong-Zyklus durch SMEDWI-3 abgebaut wird, während eine andere Klasse von Transkripten eine SMEDWI-3-vermittelte endonukleolytische Spaltung und Prozessierung in piRNAs vermeidet. Die zwei von uns entdeckten Modi der Aktivität von SMEDWI-3 werden durch das Ausmaß an Komplementarität zwischen Ziel-Transkript und PIWI-geladener piRNA reguliert. Im Falle einer nicht perfekten Komplementarität der piRNA zur Ziel-mRNA, insbesondere in der Region nahe der nukleolytischen Spaltstelle (zwischen Nukleotid 10 und 11), ist der Abbau der erkannten mRNA durch SMEDWI-3 nicht möglich. Im Falle nahezu perfekter Komplementarität von piRNA und mRNA wird die Ziel-mRNA gespalten. Die weitere
Analyse von mRNAs, die durch piRNAs abgebaut werden, zeigten das Vorhandensein eines aktiven piRNA-Pfades in epidermalen Zellen, in denen diese Transkripte wahrscheinlich als piRNAs-Vorläufer verwendet werden.

The modern ideal has its type in art, and its means is science. It is through science that it will realize that august vision of the poets, the socially beautiful. Eden will be reconstructed by A+B.

Victor Hugo, *Les Misérables*
Acknowledgement

First of all, I would like to thank my supervisor Dr. Claus-D. Kuhn, who believed in me and gave me the opportunity to work on this project. His constant support and patience in guiding me through my PhD research were invaluable and highly appreciated. I am extremely grateful to him for his constructive criticism and his extensive discussions around my work, as well as for the proofreading of this thesis. Additionally, I thank my mentors, Prof. Dr. Birgitta Wörl and Prof. Dr. Olaf Stemmann, for their helpful comments and encouragement during our committee meetings.

This work would not have been possible without the contribution of collaborators I was so lucky to work with. I am extremely grateful to Prof. Dr. Alejandro Sánchez Alvarado for hosting me at the Stowers Institute for Medical Research in Kansas city, and for his insightful comments and suggestions. My deepest appreciation goes to Dr. Elizabeth M. Duncan, who provided ongoing scientific support, conducted immunostaining and in situ hybridization experiments, FACS sorted neoblasts and always warmly supported me. Her involvement in the project and assistance cannot be overemphasized. I also sincerely thank Eric J. Ross for his bioinformatics expertise and his perceptive suggestions. I would like to acknowledge Dr. Stephanie H. Nowotarski and Dr. Sarah A. Elliott for generating wonderful immunostaining images. In addition, I am very grateful to Stephanie for her enormous effort in sorting 8 million neoblasts cells for our Degradome-seq libraries. Many thanks to Vlada Gorbovitska for deciphering the structure of mRNAs and conducting SHAPE experiments for our paper. I would like to acknowledge Dr. Kristina Döring for making our sequencing runs smooth and flawless, and Dr. Sascha Dietrich for his input in testing our rRNA depletion workflow. I also thank Prof. Dr. Gunter Meister, Norbert Eichner and Gerhard Lehmann for their hospitality in Regensburg, for teaching me how to produce small RNA-Seq libraries and nurturing my first steps in bioinformatic analysis.

I would like to express my gratitude to Silke Spudeit. Her cheerful presence and technical support have helped me a great deal over these years.

Special thanks to Sebastian H. Riedelbauch for proofreading the introduction section of this thesis and for translating English summary into German.
I would like to acknowledge my colleagues, present and former, for sharing the struggle of daily laboratory life, for our scientific and philosophical discussions, and, of course, our many wonderful lunches.

Lastly, I would like to thank my mother and sister, Tatiana and Alena Kim, and Stavros Athanasopoulos. Their unconditional love and endless patience have helped me through the roller coaster of this research journey.
Table of contents

List of figures xix
List of tables xxiii
List of abbreviations xxv
Preamble xxvii

1 Introduction
1.1 piRNA biogenesis
 1.1.1 Discovery of small silencing RNAs
 1.1.2 Structural details and expression characteristics of PIWI proteins
 1.1.3 Genomic origin of piRNAs
 1.1.4 Biogenesis of phased piRNAs
 1.1.5 The ping-pong cycle
1.2 Biological function of piRNAs
1.3 The piRNA pathway in *S. mediterranea*
 1.3.1 Planarians as a model organism
 1.3.2 Planarian PIWI proteins

2 Results part 1
2.1 The role of piRNA pathway in *S. mediterranea*
 2.1.1 Immunoprecipitation of piRNAs associated with SMEDWI proteins
 2.1.2 SMEDWI-2 and SMEDWI-3 cooperate to degrade planarian transposons
 2.1.3 Genic piRNAs bound to SMEDWI-3 are degradation products of planarian mRNAs

2.1.4 Crosslinking immunoprecipitation confirms that SMEDWI-3 targets hundreds of planarian transcripts .. 27
2.1.5 The dual role of SMEDWI-3 in neoblast mRNA surveillance 32
2.1.6 The base-pairing pattern between SMEDWI-3-bound piRNAs and target mRNAs ... 35
2.1.7 Transcripts degraded by SMEDWI-3 reveal a piRNA pathway in the planarian epidermis ... 36
2.2 Discussion of Results part 1 ... 40
 2.2.1 Planarian piRNAs may function in cell cycle regulation and immune defense ... 41
 2.2.2 The potential role of SMEDWI-3 in determining neoblast mRNA fate 42

3 Results part 2 ... 45
 3.1 rRNA depletion workflow ... 45
 3.1.1 Development of an efficient rRNA depletion protocol for planarians 45
 3.1.2 Detailed rRNA depletion workflow 47
 3.1.3 Ribosomal RNA depletion in planarian species related to S. mediterranea ... 49
 3.1.4 Comparison of RNA-seq libraries prepared using rRNA-depletion or poly(A) selection .. 51
 3.1.5 Non-specific depletion of coding transcripts in ribodepleted libraries 54
 3.1.6 Applicability of the described ribodepletion method to other organisms 56
 3.2 Discussion part 2 .. 57

4 Conclusion ... 59

5 Experimental procedures ... 63
 5.1 Experimental procedures of Results part 1 63
 5.1.1 Chemicals reagents .. 63
 5.1.2 Primer’s sequences ... 63
 5.1.3 Planarian culture ... 63
 5.1.4 Antibodies production and purification 63
 5.1.5 Expression of Strep-tagged SMEDWI 64
 5.1.6 Western blotting .. 64
 5.1.7 RNA interference ... 64
 5.1.8 Flow cytometry .. 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.9 Slide-section immunofluorescence</td>
<td>65</td>
</tr>
<tr>
<td>5.1.10 Whole-mount in situ hybridization</td>
<td>66</td>
</tr>
<tr>
<td>5.1.11 Immunoprecipitation of SMEDWI proteins</td>
<td>66</td>
</tr>
<tr>
<td>5.1.12 Small RNA library preparation</td>
<td>67</td>
</tr>
<tr>
<td>5.1.13 Ribosomal RNA depletion</td>
<td>67</td>
</tr>
<tr>
<td>5.1.14 RNA library preparation</td>
<td>67</td>
</tr>
<tr>
<td>5.1.15 SMEDWI-3 HITS-CLIP</td>
<td>68</td>
</tr>
<tr>
<td>5.1.16 SMEDWI-3 CLASH</td>
<td>68</td>
</tr>
<tr>
<td>5.1.17 Degradome library preparation</td>
<td>69</td>
</tr>
<tr>
<td>5.1.18 Processing of small RNA libraries</td>
<td>69</td>
</tr>
<tr>
<td>5.1.19 Calculation of the ping-pong signature</td>
<td>69</td>
</tr>
<tr>
<td>5.1.20 Sequence logos and Venn diagrams</td>
<td>70</td>
</tr>
<tr>
<td>5.1.21 piRNA cluster prediction</td>
<td>70</td>
</tr>
<tr>
<td>5.1.22 Processing of the ChIP-Seq libraries</td>
<td>70</td>
</tr>
<tr>
<td>5.1.23 Processing of RNA-seq libraries</td>
<td>70</td>
</tr>
<tr>
<td>5.1.24 Processing of HITS-CLIP libraries</td>
<td>71</td>
</tr>
<tr>
<td>5.1.25 Genic piRNA density across SMEDWI-3 HITS-CLIP target sites</td>
<td>71</td>
</tr>
<tr>
<td>5.1.26 Gene-set enrichment analysis (GAGE)</td>
<td>71</td>
</tr>
<tr>
<td>5.1.27 Processing of Degradome-seq libraries</td>
<td>72</td>
</tr>
<tr>
<td>5.1.28 GO term enrichment analysis</td>
<td>72</td>
</tr>
<tr>
<td>5.1.29 Identification of chimeric reads</td>
<td>72</td>
</tr>
<tr>
<td>5.1.30 Data availability</td>
<td>72</td>
</tr>
<tr>
<td>5.2 Experimental procedures of Results part 2</td>
<td>72</td>
</tr>
<tr>
<td>5.2.1 Ribosomal RNA depletion</td>
<td>72</td>
</tr>
<tr>
<td>5.2.2 Planarian rRNA-depleted RNA-Seq dataset</td>
<td>72</td>
</tr>
<tr>
<td>5.2.3 Publicly available RNA-Seq datasets</td>
<td>73</td>
</tr>
<tr>
<td>5.2.4 Salmonella typhimurium SL1344 datasets</td>
<td>73</td>
</tr>
<tr>
<td>5.2.5 Processing of RNA-Seq libraries</td>
<td>73</td>
</tr>
<tr>
<td>5.2.6 Phylogenetic tree</td>
<td>74</td>
</tr>
<tr>
<td>5.2.7 Analysis of DNA probe specificity</td>
<td>74</td>
</tr>
</tbody>
</table>

References 75

Appendix A Adapter and primer sequences 93
Appendix B Experimental protocols
 B.1 dsRNA synthesis for RNA interference 99
 B.2 Immunoprecipitation of SMEDWI 104
 B.3 TruSeq small RNA library preparation 109
 B.4 Planarian rRNA depletion 117
 B.5 SMEDWI-3 HITS-CLIP .. 120
 B.6 Degradome-seq library preparation 136

Appendix C Data processing pipelines
 C.1 small RNA-seq pipeline .. 141
 C.2 RNA-seq pipeline .. 145
 C.3 Processing of HITS-CLIP libraries 146

(Eidesstattliche) Versicherungen und Erklärungen
 151
List of figures

1.1 Temporally controlled expression of PIWIs during spermatogenesis in mice 3
1.2 Three types of piRNA clusters .. 4
1.3 Production of phased piRNAs .. 6
1.4 Homotypic and heterotypic ping-pong cycles 8
1.5 Phylogenetic tree illustrating the similarity of amino acid sequences of PIWI proteins ... 12
1.6 Sequence alignment of PIWI domains of PIWI proteins 13
2.1 Specificity of anti-SMEDWI antibody 16
2.2 Co-immunostaining of SMEDWI proteins on cross-sections through planarian brain and pharynx 17
2.3 Immunoprecipitation of SMEDWI proteins 18
2.4 Characterization of piRNAs associated with SMEDWI proteins. 19
2.5 Local Z-score for the occurrence of homotypic and heterotypic ping-pong pairs .. 20
2.6 Evaluation of SMEDWIs RNAi knockdown 21
2.7 Immunostaining of SMEDWI-1, -2 and -3 on cross-sections through the planarian pharynx in control (unc-22 RNAi) or knockdown (smedwi-1,-2,-3 RNAi) ... 23
2.8 Differentially expressed transposable element families upon RNAi knockdown of smedwi-2 or smedwi-3 24
2.9 SMEDWI-3 binds a diverse class of genic piRNAs 25
2.10 Genic piRNAs exhibit ping-pong signature 26
2.11 PAGE analysis of SMEDWI-3 HITS-CLIP and CLASH libraries ... 27
2.12 CIMS analysis and identification of chimeric reads 30
2.13 Identification of SMEDWI-3-targeted transcripts in HITS-CLIP and CLASH libraries .. 31
List of figures

2.14 SMEDWI-3 degrades planarian mRNAs using the ping-pong cycle .. 33
2.15 Three groups of SMEDWI-3 CLIP targets ... 34
2.16 The base-pairing patterns between SMEDWI-3-bound piRNAs and target mRNAs ... 36
2.17 Differential expression of the three distinct SMEDWI-3 target groups upon smedwi-2) and smedwi-3(RNAi) .. 37
2.18 GO term enrichment analysis of ping-pong degraded group 1 SMEDWI-3 targets. ... 37
2.19 SMEDWI-3 group 1 ping-pong targets form nuclear foci in the planarian epidermis .. 39
2.20 Immunostaining of SMEDWI-1 and SMEDWI-2 in the epidermis on cross-sections through the pharynx of S. mediterranea upon differential RNAi knockdown ... 40

3.1 Separation profile of total RNA and rRNA-depleted RNA of S. mediterranea .. 46
3.2 Schematic representation of rRNA removal protocol .. 49
3.3 Phylogenetic tree showing the taxonomic position of the analyzed planarian species. .. 50
3.4 Total RNA separation profiles after the depletion of rRNA of other freshwater triclads .. 51
3.5 Comparison of rRNA-depleted and poly(A)-enriched planarian RNA-seq libraries ... 52
3.6 Difference in the expression value of histones and TEs in rRNA-depleted libraries ... 53
3.7 Off-target analysis of DNA probes used for rRNA depletion .. 55
3.8 Application of the developed rRNA workflow to Salmonella typhimurium using organism-specific probes 57

4.1 Model of planarian piRNA pathway in neoblasts and epidermis .. 61

B.1 Template amplification for in vitro transcription .. 100
B.2 In vitro transcribed dsRNA. .. 102
B.3 Prepared small RNA-seq libraries .. 111
B.4 Bioanalyzer electropherogram of prepared small RNA library .. 116
B.5 Separation profile of planarian total RNA and rRNA depleted RNA ... 119
B.6 SMEDWI-3 HITS-CLIP immunoprecipitated complexes ... 125
B.7 PAGE analysis of SMEDWI-3 crosslinked RNA species from the excised upper or lower band 131
B.8 PAGE analysis of prepared HITS-CLIP libraries 133
B.9 Bioanalyzer electropherogram of prepared HITS-CLIP libraries 135
B.10 Separation profile of degradome-seq libraries 140
List of tables

2.1 Sequenced HITS-CLIP and CLASH reads. .. 28
2.2 HITS-CLIP and CLASH reads mapped to the planarian genome. 29

A.1 Primer sequences used for cloning N-terminal 200 amino acids of SMEDWI-
 3 into pGEX vector ... 93
A.2 Primer sequences used for cloning Strep-tagged SMEDWIs into pFL vectors 94
A.3 Primer sequences used for cloning gene fragments into pPR-T4P vector .. 94
A.4 Primer sequences used for in vitro transcription 95
A.5 Primers and adapters for small RNA-seq library preparation 96
A.6 Primers and adapters for HITS-CLIP ... 96
A.7 Primers and adapters for Degradome-seq 97
List of abbreviations

C. elegans Caenorhabditis elegans

D. melanogaster Drosophila melanogaster

M. musculus Mus musculus

S. mediterranea Schmidtea mediterranea

dpf days post feeding

dsRNA double-stranded RNA

E. coli Escherichia coli

GST Glutathione S-transferase

kb kilobase

LTR long terminal repeat

miRNAs microRNAs

nt nucleotide

OSCs ovarian somatic cells

piRNAs PIWI-interacting RNAs

PIWI P-element Induced WImpy testis

poly(A) polyadenylated

PTGS post-transcriptional gene silencing
RNAi RNA interference
rRNA ribosomal RNA
RT Room Temperature
siRNAs small interfering RNAs
TE transposable element
UTR untranslated region
Preamble

This thesis contains five chapters that are either published (ch. 2 and parts of ch. 5) or submitted for publication in a peer-reviewed journal (ch. 3 and parts of ch. 5) or they are being prepared for publication (ch. 1).

The first chapter comprises a broad overview of our current knowledge of the piRNA pathway and its functions in different organisms. Although the architecture of the piRNA pathway is quite diverse throughout the animal kingdom, this thesis only describes the mechanistic aspects of the pathway in the fruit fly (Drosophila melanogaster) and in mouse (Mus musculus) as two examples of well-studied organisms. An overview of the functional aspects of the pathway attempts to cover the entire variety of piRNA functions. These functions reach from the conserved role of piRNAs in counteracting transposable elements to their role in mRNA surveillance, from specific genome editing in ciliates to antiviral defense mechanisms in mosquitoes. This thesis explores the piRNA pathway in the planarian flatworm Schmidtea mediterranea, a model organism with a large population of adult stem cells, called neoblasts. Neoblasts equip planarians with amazing regenerative abilities and a seemingly infinite life. Thus, the first chapter also illustrates why planarians are suitable for the study of piRNAs and summarizes current knowledge about the key molecular players involved in the planarian piRNAs pathway.

The second chapter of this thesis comprises the analysis of planarian piRNAs and explores the roles of PIWI proteins in neoblast biology. It describes the main principles of the piRNA pathway organization and localization in S. mediterranea. Additionally, this chapter demonstrates the involvement of planarian piRNA pathway in mRNA surveillance of adult stem cells.

In chapter three, a newly developed workflow for the efficient depletion of ribosomal RNA (rRNA) in planarian flatworms is presented. The protocol is based on the subtractive hybridization using organism-specific probes and can be applied to other freshwater triclad families. In addition, the presented rRNA-depletion procedure was successfully applied to the removal of ribosomal RNA from the gram-negative bacterium Salmonella typhimurium,
which indicates that the workflow can be adapted to any prokaryotic or eukaryotic species of choice.

The forth chapter summarizes the main findings of this thesis.

The final chapter (chapter 5) describes the experimental and computational procedures used in this thesis.
Chapter 1

Introduction

1.1 piRNA biogenesis

1.1.1 Discovery of small silencing RNAs

Small silencing RNAs are short (21 - 35 nt) non-coding RNAs associated with members of the Argonaute protein family. The small RNA thereby serves as a guide to target transcripts leading to the reduction in expression level of the latter. In 1993, two groups [97, 195] simultaneously reported that small RNA \textit{lin-4} negatively regulates the level of \textit{LIN-14} protein in \textit{Caenorhabditis elegans} (\textit{C. elegans}) by partial complementary base pairing to multiple sites in the 3’ untranslated region (UTR) of \textit{lin-14} mRNA, thus inhibiting its translation [49]. This event marks the discovery of the first class of small silencing RNAs, micro RNAs (miRNAs) in eukaryotes. At present, thousands of miRNAs were characterized and found to be conserved from plants to humans [86].

Next in a line of revolutionary discoveries that shaped our current understanding of small RNA-mediated silencing was a report by A. Fire and C. Mello (1998) that described a phenomenon termed RNA interference (RNAi) [42]. RNAi denotes a type of post-transcriptional gene silencing (PTGS), in which double-stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) that then direct target RNA recognition followed by target cleavage.

Finally, in 2001 a third class of small regulatory RNAs, PIWI-interacting RNAs (piRNAs), was discovered in \textit{D. melanogaster} testis by A. Aravin and colleagues [7]. In the initial study, 25 - 27 nt long RNAs were detected and found responsible for silencing of the multicopy \textit{Stellate} gene. Later, in 2006 these small RNAs, piRNAs (for PIWI-interacting RNAs), were found to be bound by PIWI-clade Argonaute proteins [6, 50, 55, 181, 93].
This is in contrast to other small silencing RNAs that associate with AGO-clade Argonautes. The knockdown of PIWI proteins in most organisms affects division and maintenance of germline and causes a sterility phenotype. The piwi (P-element induced wimpy testis) gene itself was identified during a P-element enhanced trap screen in *D. melanogaster*. It was named after a specific phenotype as mutant flies had a reduced number of egg chambers and sperm bundles [108, 25]. Since then, a constantly growing number of studies on piRNA biology have revealed a complex, diverse, and highly adaptive system employed by animal species, from sponges to humans. Its best-known functions are to safeguard the germline genome from transposable elements (TEs), to control gene expression, to ensure antiviral defense and to regulate sex determination in silkworms and genome rearrangement in ciliates [18, 69, 191, 162, 151, 148, 82, 40].

1.1.2 Structural details and expression characteristics of PIWI proteins

Argonaute proteins can be classified into two main clades, the Ago and the PIWI clade. The typical functional feature of both Ago- and PIWI-clade proteins is to bind small regulatory RNAs and to participate in small RNA-mediated gene silencing [119]. The structural organization of the proteins reflects this functional specification. Argonaute proteins consist of four domains: the N-terminal, the PAZ domain, the Mid domain and the PIWI domain [119, 36, 87, 117]. The crystal structure of a silkworm PIWI-clade Argonaute, Siwi, which was resolved by Matsumoto, Nishimasu and colleagues (2016), confirmed that the structure of PIWI proteins is very similar to its Ago-clade counterparts [117]. Siwi binds the 5’-monophosphate of a guide piRNA in a pocket between the Mid (from middle) and the PIWI domain in a Mg$^{2+}$-dependent manner. Moreover, its Mid domain is accommodated for the preferred binding of uridine as a first nucleotide. The 3’-end of the guide piRNA is anchored within the PAZ domain (named after Piwi-Ago-Zwille). The PIWI domain contains an RNase H fold with the catalytic tetrad DEDX (X is generally Asp or His), which ensures Siwi endonuclease activity [117].

Most animals express several PIWI proteins, which might reflect their participation in mechanistically distinct silencing modes, such as transcriptional and posttranscriptional gene silencing [9, 8, 172]. *D. melanogaster*, for example, expresses three PIWI proteins: Piwi, Aubergine (Aub) and Argonaute-3 (Ago3). Aub and Ago3 show a cytoplasmic localization and they are enriched in the perinuclear nuage, whereas Piwi is predominantly nuclear. All three PIWI proteins are expressed in the *Drosophila* germline. However, somatic ovarian
1.1 piRNA biogenesis

Follicular cells (OSCs) possess a simplified piRNA pathway operated only by Piwi [62, 187]. In mouse (*M. musculus*) three PIWI are expressed as well, although in a temporally controlled manner (Fig. 1.1). Nuclear MIWI2 is expressed along with cytoplasmic MILI for a short time in the pre-pachytene stage during mouse spermatogenesis. Later, MILI is expressed together with MIWI, which is localized to the cytoplasm [148].

![Fig. 1.1 Temporally controlled expression of PIWI proteins during spermatogenesis in *Mus musculus*. The figure is adapted from Rojas-Ríos and Simonelig (2018) [148].](image)

1.1.3 Genomic origin of piRNAs

piRNAs originate from specific genomic loci called piRNA clusters. piRNA clusters cover up to 200 kilobases (kb) and are transcribed by RNA polymerase II (Pol II) into long single-stranded precursors [95, 77]. Based on the mode of transcription and chromatin organization in the vicinity, clusters are divided into three known types: uni-strand clusters, bidirectional clusters and dual-strand clusters (Fig. 1.2) [199, 27, 132].

Uni-strand clusters are the most common type among animals and potentially the most ancient one [27, 132]. Their gene structure is similar to ordinary coding genes and includes exons, introns and regulatory sequences such as promoter and terminator. In mouse, uni-strand clusters are located in euchromatic regions of the genome. The promoter area and body of the clusters are enriched for trimethylation on lysine 4 of histone H3 (H3K4me3) [105], a histone mark that strongly correlates with active transcription [70, 71]. Mouse piRNA clusters that are expressed in the pre-pachytene stage of spermatogenesis harbor the remnants of TEs or are derived from 3'-UTRs of genes [9, 46]. piRNAs produced from these pre-pachytene clusters bound by MILI and MIWI2 (mouse PIWI proteins) ensure the silencing of TEs and *de novo* methylation of their loci in the genome [8].
Fig. 1.2 Simplified schematic representation of the three types of piRNA clusters. The transcription of mouse uni-strand clusters located in euchromatic region can be initiated from the promoter region in one direction or bidirectionally. Uni-strand cluster flamenco of D. melanogaster positioned at the border of eu- and heterochromatin. Dual-strand clusters of flies are transcribed from heterochromatic region. The Rhino-Del-Moon/Cuff complex marks transcription initiation sites of dual-strand cluster.
Pachytene piRNA precursors are produced from genic and intergenic regions at the pachytene stage of meiosis in mouse spermatocytes [53]. Their transcription is controlled by the transcription factor A-MYB. Moreover, the piRNA precursors transcribed from such clusters are capped, polyadenylated and spliced [105]. Pachytene clusters can be transcribed both uni- or bidirectionally, thus producing non-overlapping transcripts from the same promoter region (Fig. 1.2) [199]. Currently, it is not known how piRNA precursors are distinguished from other mRNAs, whose transcription is also regulated by A-MYB.

In flies, the uni-strand cluster *flamenco* is expressed in OSCs and responsible for the suppression of *gypsy-like* retrotransposons [18, 92]. The body of the *flamenco* gene is covered with histone 3 lysine 9 di- and trimethylation (H3K9me2/3) marks, which correlate with transcriptional repression and heterochromatin structure [71]. However, the promoter of *flamenco* is located in the euchromatic region of neighboring gene’s 3’-UTR and is marked with H3K4me3. As in the case for mouse pachytene clusters, the transcription of *flamenco* is triggered by the transcription factor Cubitus interruptus (Ci) [52]. Produced piRNA precursors are capped, polyadenylated, spliced and exported from the nucleus by the nuclear export factor Nxf1 (Fig. 1.2) [52, 29, 180].

Dual-strand clusters were to date only found in arthropods. They are situated in heterochromatic regions and have no defined promoter [83, 142, 123, 5]. Therefore, transcription of dual-strand clusters is initiated by a non-canonical mechanism. Due to the absence of defined promoter region, transcription initiation occurs in the inexact place of the cluster, which produces precursors of diverse sizes and varied 5’-end starting points [27]. Transcription of dual-strand clusters relies on a protein complex that consists of Rhino, a variant of heterochromatin protein 1 (HP1), which recognizes and binds H3K9me3, the scaffolding protein Deadlock (Del) and Cutoff (Cuff), a protein with similarity to the Rai1 transcription termination factor [24, 123]. Rhino recruits Moonshiner (Moon), a paralog of the germline-specific transcription initiation factor IIA subunit 1. Moonshiner then forms a pre-initiation complex with TATA box-binding protein-related factor 2 (Trf2), which recruits other transcription factors and RNA polymerase II, thus allowing specific transcription in heterochromatin [5]. Premature transcription termination at canonical polyadenylation (poly(A)) sites, which are quite abundant in dual-strand clusters, is blocked by Cuff [207, 24]. This allows the read-through steady transcription and production of extended (∼250 kb) piRNA precursors [123]. Splicing of piRNA precursors is also blocked by Del and Cuff [207, 24]. Transcribed non-spliced piRNA precursors from dual-strand clusters are exported from the nucleus using a specialized nuclear export factor, Nxf3. Nxf3 ensures the delivery of piRNA precursors to their cytoplasmic processing sites (Fig. 1.2) [38, 84].
Fig. 1.3 Phased piRNAs in mice and flies are generated in a similar way. In contrast to phased piRNAs in flies, mouse pre-piRNAs are trimmed by exonuclease PNLDC1 before their 3'-end methylation.
1.1.4 Biogenesis of phased piRNAs

The biogenesis of piRNAs is conventionally divided into a primary and a secondary pathway. Primary biogenesis entails for processing of precursors that were transcribed from piRNA clusters. This mechanism ensures the diversity and complexity of piRNA population, which is encoded in the genome. The secondary piRNA biogenesis pathway, also known as ping-pong cycle, is responsible for silencing of piRNA targeted transcripts. The targeted transcript thereby serve as templates for an additional population of piRNAs. The two pathways are interconnected and depend on each other.

Processing of piRNA precursors into mature piRNAs starts with the endonucleolytic cleavage of the precursor initiated by a member of the PIWI protein family [122, 60, 68] (Fig. 1.3). PIWI is directed to its target by a co-bound piRNA. It cleaves the recognized piRNA precursor in a ping-pong manner opposite nucleotides 10 and 11 of the piRNA guide. This initial cleavage event removes the 7-methylguanosine cap that is typical for piRNA precursors in all animals, and, instead, generates a 5’-monophosphate at the newly defined precursor 5’-end [45, 132]. Now such transcript is bound by another PIWI family member and processed in a phased manner with the help of the endonuclease Zucchini (mitoPLD/PLD6 for mouse) [190, 78, 45]. In flies, a single cleavage event by Zucchini defines both the 5’-end and the 3’-end of phased piRNAs with a distance of 0 nucleotides [122, 60]. The mouse endonuclease PLD6 generates only 5’-ends of phased piRNAs. Their 3’-ends are trimmed by the exonuclease PNLDC1 [74]. The definition of piRNA 3’-ends is concluded by the 2’-O-methylation of the 3’-end by an S-adenosylmethionine (SAM)-dependent methyltransferase (Hen1 in flies, HENMT1 in mice) [132] (Fig. 1.3). In addition to the Zucchini or PLD6 and PNLDC1, multiple other proteins are involved in the processing and loading of phased piRNAs into the designated PIWI proteins [27, 132].

1.1.5 The ping-pong cycle

To initiate the first endonucleolytic cleavage event in a piRNA precursor, a PIWI-bound guide piRNA needs to exhibit base-pair complementarity to the piRNA precursor for at least the 5’-terminal 10 - 11 nucleotides [122, 60, 169, 204]. However, the minimal base-pairing requirements between piRNA and its target that trigger the nucleolytic activity of the PIWI protein have not yet been determined [132]. The guide piRNA can be maternally deposited into the cell, derived from a piRNA precursor or obtained from transposon sequences during the ping-pong cycle, also known as the secondary piRNA biogenesis pathway [19, 45].
Fig. 1.4 Simplified illustration of homotypic and heterotypic ping-pong cycle in mice and flies, respectively.
The ping-pong cycle in flies germ stem cells operates by the use of two PIWI proteins, Aub and Ago3, thus termed heterotypic cycle [18, 57]. The guide piRNA, or initiator piRNA is bound to Aub and identifies a targeted transcript, often the mRNA of a transposable element. Next, Aub cleaves the target in case the extend of base-pairing allows for that. The cleavage event occurs between the 10th and 11th nucleotides as counted from the 5′-end of the initiator piRNA and leaves a monophosphate at the 5′-end of the cleaved target. The cleaved target RNA is then loaded into another PIWI protein, Ago3. It is trimmed to its characteristic length by Nibbler or another unknown exonuclease that uses Papi as a co-factor, thereby generating a responder piRNA [64]. As the first 10 nt of the initiator piRNA are complementary to the first 10 nucleotide of the responder piRNA, this interdependence creates so-called ping-pong signature that can be used to identify ping-pong relationships between different PIWI proteins. Finally, the responder piRNA starts another "ping-pong" cycle by guiding Ago3 to transcripts with antisense orientation to the cleaved TEs [18, 57, 132]. In mouse spermatocytes only MILI constitutes a homotypic ping-pong cycle that operates at the pre-pachytene stage [28, 188] (Fig. 1.4). In addition to the PIWI proteins that are direct players of ping-pong cycle, many other proteins coordinate the target cleavage and loading of responder piRNAs onto their designated PIWI proteins [106, 173, 208, 138, 198].

The ping-pong cycle and piRNA phasing both take place in a specialized membrane-less cellular compartment [27]. In flies germinal stem cells, these compartment is called the nuage [106, 18]. In contrast, piRNA precursors in OSCs are processed in Yb-bodies [139]. The nuage of mouse germline is better known as chromatoid bodies [177]. Apparently, the existence of these spatially confined piRNA processing sites not only increases the local concentration of proteins participating in the pathway, but also prevents the unwanted degradation of other cellular transcripts [132].

1.2 Biological function of piRNAs

Silencing of TEs in the animal germline is considered the ancestral function of piRNAs [132]. The suppression of TEs is thereby ensured both at the level of transcription by directing heterochromatin formation [94, 172, 39, 126, 14], and by the post-transcriptional degradation of TEs in the piRNA-mediated ping-pong cycle [18, 57].

In addition to their predominant function in transposon control, piRNAs also regulate the expression of coding genes. In fact, the piRNA-mediated silencing of the Stellate gene in D. melanogaster testes by Su(Ste) led to the discovery of piRNAs [7]. piRNAs also direct the degradation of selected maternal mRNAs in early embryos of D. melanogaster [151, 13,
Moreover, pachytene piRNAs were found to eliminate mRNAs in murine elongating spermatids by their direct cleavage or by guiding the recruitment of the deadenylase complex [53, 26]. Interestingly, in female silkworms, *Bombyx mori*, piRNAs are responsible for the degradation of a single mRNA that defines the male-specific phenotype using the ping-pong cycle [82].

The degradation of TEs and of protein-coding mRNAs at distinct developmental stages is considered as a reaction of piRNAs to "non-self" sequences. In a similar fashion, the ciliate *Tetrahymena* exploits piRNAs to mark entire regions of its genome that will then be eliminated during a genome rearrangement [121]. Ciliates have a germline micronucleus for reproduction and a large somatic macronucleus that harbors only genetic information required for protein coding and cell regulation. Thus, formation of the macronucleus requires elimination of repetitive content and intergenic sequences found in the micronucleus [73]. In contrast to *Tetrahymena*, piRNAs of another ciliate species, *Oxytricha trifallax*, map to somatic parts in the macronucleus, thus defining "self" sequences that are kept during genome rearrangement [40].

The nematode *Caenorhabditis elegans* combines the best of the two worlds of ciliates. Non-self transcripts are recognized by piRNAs associated with the PIWI protein PRG-1. This leads to the production of secondary siRNAs bound by WAGOs, a third clade of the Argonaute superfamily of proteins [119]. WAGOs subsequently silence non-self targets both by their direct cleavage and by the establishment of heterochromatin. In contrast, another PIWI protein, CSR-1, with its co-bound piRNAs recognizes and protects mRNAs that need to be retained [171, 96, 11, 166, 193].

Last, the expression of piRNAs is not restricted to the germline. piRNAs were found in somatic cells, such as nerve cells, where they, for example, play a role in long-term memory formation in the sea slug *Aplysia* [141], or during inhibition of axonal regeneration in *C. elegans* [81]. In addition, piRNAs and PIWI proteins were found to be essential for the regeneration capacity of several species, including hydra, colonial ascidians, and planarian flatworms [145, 133, 150, 183, 107].

1.3 The piRNA pathway in *S. mediterranea*

1.3.1 Planarians as a model organism

Freshwater planarians of the species *Schmidtea mediterranea* are well known for their extraordinary ability to regenerate. This ability is enabled by a large population of adult
pluripotent stem cells, called neoblasts [37]. Neoblasts are capable of giving rise to all planarian cell types [201]. Moreover, they preserve their potency over the entire lifespan of the animal [160]. Therefore, planarians embody an excellent model to study regeneration, aging and stem cell-based diseases.

To address a specific research question, a model organism not only needs to possess the studied feature but it also needs to be accessible for genetic manipulation. In planarians, RNA interference followed by transcriptome-wide gene expression analysis by RNA-seq is a popular and robust technique for the investigation of gene function. Data from these systems biology techniques are often combined with in situ hybridization experiments. As an increasing number of research groups focus their interest on planarians, more organism-specific antibodies are being generated by the planarian community. This makes it possible to apply fluorescent immunostaining and different immunoprecipitation experiments including CHIP-Seq and CLIP-Seq [34, 80]. Moreover, to focus on a particular tissue or cell population, simple fluorescence-activated cell sorting (FACS) protocols can be applied to sort nerve cells, to separate neoblasts from differentiated cells or even to isolate sub-populations of totipotent neoblasts [145, 66, 201, 65]. Single-cell sequencing is also widely used in planarians to dissect the molecular basis of tissue regeneration and development [41]. Although genetic engineering is currently not possible in planarian flatworms, a number of research groups are actively working to establish robust planarian transgenesis protocols [72, 98].

In addition to the aforementioned advantages, the planarian flatworm *Schmidtea mediterranea* is a stable diploid (2n = 8), unlike many planarian species that exist as mixoploids or polyploids [127]. *S. mediterranea* possesses a haploid genome with a size of ~1 - 2 gigabase pairs (Gb) [56] and a very high AT-content (~70%). Another interesting feature of the planarian genome is its high degree of repetitiveness. 61.7% of the planarian genome is repetitive, while this value does not exceed 38% or 46% in mouse and human, respectively. Interestingly, during genome re-sequencing and reassembly, giant retrotransposons named Burro elements were discovered. Burro elements span more than 30 kb genome regions compared to 5 - 10 kb for long terminal repeats in vertebrates [56]. This poses the fascinating question of how and when these elements have evolved in planarians. Thus, hand in hand with the development of new tools for gene manipulation, a new genome assembly and improved genome annotation [156, 157], planarians are becoming an attractive model to study multiple aspects of regeneration and stem cell biology.
1.3.2 Planarian PIWI proteins

In *S. mediterranea* three PIWI proteins were identified, termed SMEDWI-1, -2 and -3 [145, 133]. The *smedwi-1* gene, encoding the SMEDWI-1 protein, is expressed exclusively in neoblasts and is used as a marker of stem cells in numerous planarian studies [145]. In contrast, *smedwi-2* and *smedwi-3* expression is not limited to neoblasts. The *smedwi-2* transcript, for example, was also detected in the central nervous system and in the epidermis [34, 175], while *smedwi-3* appears to be present in the pharynx, nervous system and anterior of the photoreceptors, albeit at low levels [133]. Moreover, six additional PIWI-clade genes were identified in the planarian genome. These PIWI variants are highly similar to *smedwi-2* at the nucleotide level, making it difficult to determine their actual expression values [133].

The localization of SMEDWI proteins mainly follows their gene expression patterns. SMEDWI-1 is enriched in the cytoplasm of neoblasts [59]. SMEDWI-2 has a nuclear localization in both neoblasts and differentiated cells (shown in this thesis) [202, 170, 80]. Moreover, a PIWI protein in a related planarian species *Dugesia japonica*, DjPiwiB, is present in the nuclei of almost all differentiated cells. Moreover, at least part of this DjPiwiB pool was inherited by somatic cells during their differentiation [170]. The cytoplasmic localization of SMEDWI-3 in neoblasts and head cephalic ganglions is demonstrated in this thesis (Fig. 2.2).

![Phylogenetic tree illustrating the similarity of amino acid sequences of PIWI proteins for *D. melanogaster* (Piwi, Aub, Ago3), *M. Musculus* (MILI, MIWI, MIWI2) and *S. mediterranea* (SMEDWI-1, -2, -3). The phylogenetic distance was calculated using CLC Main Workbench 7 (https://www.qiagenbioinformatics.com).](image)

At amino acid sequence level, SMEDWI-1 and -2 have higher similarity to each other (53% identity, 71% similarity) rather than to PIWI proteins of other species. However,
1.3 The piRNA pathway in *S. mediterranea*

SMEDWI-3 is similar to Ago3 of fruit fly (34% identity, 52% similarity) and to mouse MILI (33% identity, 50% similarity) (Fig. 1.5) [133, 112]. The domain architecture of SMEDWI proteins is analogous to all Argonaute family members. They contain N-terminal, PAZ-, MID- and PIWI-domain. In addition, all three planarian PIWIs are active endonucleases that harbor catalytical DEDH tetrad in their PIWI-domain (Fig. 1.6). Furthermore, all SMEDWIs possess RG-motifs that are recognized by the arginine methyltransferase PRMT5. PRMT5 places the symmetrical dimethylarginine modification of these RG motifs, which enables the interaction of SMEDWIs and Tudor-domain-containing proteins. SMEDWI-3 has the highest density of such RG-motifs among planarian PIWIs [153].

Fig. 1.6 Sequence alignment of PIWI domains of PIWI proteins from *D. melanogaster* (Piwi, Aub, Ago3), *M. musculus* (MILI, MIWI, MIWI2) and *S. mediterranea* (SMEDWI-1, -2, -3 are in blue), and human Argonaute Ago2 (hAgo2). DEDH catalytic tetrad marked in yellow, PIWI-domain is in cyan. The alignment was performed using multiple sequence alignment program Clustal Omega [112].

SMEDWI-2 and SMEDWI-3 are essential for planarian regeneration and tissue homeostasis [145, 133]. Their knockdown abolishes the regenerative capacity of planarians and results in a lethal phenotype. The *smedwi-2(RNAi)* phenotype resembles that of irradiated animals, which are deprived of all neoblasts. They display head regression at day 9 post RNAi feeding (dpf) and body curling around their ventral surface at 11 dpf [145]. By comparison,
lethal irradiation at 6000 rads eliminates all neoblasts 24 hours post exposure, causing tissue
regression at day 9 and curling at day 15 [144]. In contrast to irradiated animals, neoblasts are
present and even dividing upon smedwi-2(RNAi). However, they are incapable of giving rise
to differentiated cells [145]. Smedwi-3(RNAi) worms also experience regeneration defects.
However, head regression and curling, typical signs of smedwi-2(RNAi) worms, appear later
and lead to lethality by days 22-24 post feeding. In addition, all SMEDWI-3 knockdown
animals experience skin lesions starting at 12 dpf [133]. Thus, the appearance of lesions may
indicate the involvement of SMEDWI-3 in the development of cells in the epidermal lineage
or the importance of SMEDWI-3 in cell differentiation. A knockdown of SMEDWI-1 did
not cause any apparent phenotypic defects.

Thus, planarian regeneration and tissue homeostasis depend on a functional piRNA
pathway. The knockdown of planarian SMEDWI-2 and -3 leads to impair neoblasts develop-
ment, in line with findings in fruit flies and mice, where mutations in piRNA pathway are
detrimental for germline development. The present study therefore aims to investigate and
expand our knowledge about the architecture of planarian piRNA pathway, its function and
the role of its key components in neoblasts biology.
Chapter 2

Results part 1

2.1 Planarians recruit piRNAs for mRNA turnover in adult stem cells

Aim and Objective

The aim of this study is to characterize the piRNA pathway in *S. mediterranea* and decipher the role of PIWI proteins in stem cell differentiation and development.

To unravel the principles of piRNA biogenesis in planarians, immunoprecipitation protocols were established for all planarian PIWI proteins. Deep sequencing of co-bound piRNAs allowed us to describe the major targets of the planarian piRNA pathway and the interaction of SMEDWI proteins in the ping-pong cycle. The exact cellular localization of SMEDWI proteins was determined using slide-section immunofluorescence. The combination of small RNA-Seq and immunofluorescence enabled us to reconstruct the main organizational principles of the planarian piRNA pathway. To further investigate the role of the piRNA pathway, we applied RNA sequencing techniques and successfully adapted HITS-CLIP, CLASH and Degradome-seq to planarian flatworms as well. The methods mentioned before were implemented in planarian flatworms for the first time. In combination with RNA-seq and RNAi knockdown experiments, newly adapted techniques uncovered the involvement of SMEDWI-3 in mRNA surveillance in planarians.
2.1.1 Immunoprecipitation of piRNAs associated with SMEDWI proteins

In planarian flatworms, three PIWI proteins are being expressed: SMEDWI-1, SMEDWI-2, and SMEDWI-3. As a prerequisite for their characterization and for the investigation of co-bound piRNAs, we raised polyclonal antibodies against SMEDWI-2 and SMEDWI-3. The anti-SMEDWI-1 antibody used here was previously described [59]. The specificity of the antibodies for each protein was confirmed using full-length Strep-SUMO-tagged SMEDWI-1, SMEDWI-2 and SMEDWI-3 expressed in insect cell (Fig. 2.1).

![Western blot analysis of SMEDWI-1, -2 and -3 antibodies confirms their specificity. Test samples were prepared from insect cell lysates expressing Strep-SUMO-tagged SMEDWI proteins or directly from planarian lysate. α-Tubulin was used as a loading control.](image)

To determine the cellular localization of SMEDWI proteins, we performed slide-section immunofluorescence. Whole-mount immunofluorescence confirmed that SMEDWI-2 is enriched in the nuclei of neoblasts and differentiated cells [202] (Fig. 2.2A). SMEDWI-2 is present in neoblasts, as its signal overlaps with SMEDWI-1, a marker of neoblasts (Fig. 2.2A). In addition, SMEDWI-2 is detectable in the nuclei of differentiated cells, and especially in cephalic ganglia and pharynx (Fig. 2.2B). SMEDWI-1 and SMEDWI-3 are predominantly cytoplasmic (Fig. 2.2A). SMEDWI-1 is enriched in neoblasts and often used as a neoblast marker [59]. The localization of SMEDWI-3 mainly matches that of SMEDWI-1. However, SMEDWI-3 is also expressed at low levels in neuronal cells of cephalic ganglia along with SMEDWI-2 (Fig. 2.2B), suggesting the presence of a neuronal piRNA pathway. In addition, SMEDWI-3 signal overlapped with Y12 antibody staining (Fig. 2.2A), a marker of planarian chromatoid bodies, as shown previously [153]. The Y12 antibody recognizes symmetric dimethylarginine (sDMA), a characteristic modification of the protein components of the chromatoid bodies.
2.1 The role of piRNA pathway in *S. mediterranea*

Fig. 2.2 (A) Subcellular localization analysis of SMEDWI-1, -2, and -3 using immunofluorescence. SMEDWI-1 (in green) is cytoplasmic, while SMEDWI-2 (in red) shows a nuclear localization. SMEDWI-3 signal (in red) is enriched in the cytoplasm and overlaps with chromatoid bodies stained by anti-Y12 antibodies (in green). Nuclei stained with DAPI are in blue.

Fig. 2.2 (B) Co-immunostaining of SMEDWI-1 and SMEDWI-2 and of SMEDWI-1 and SMEDWI-3 on cross-sections through the planarian brain and the pharynx. SMEDWI-1 is in green, SMEDWI-2 and SMEDWI-3 are in red. Nuclear DAPI staining is shown in blue.
To further investigate the small RNA population bound to SMEDWI proteins, immunoprecipitation protocols were developed for all three proteins (Fig. 2.3A). In comparison to miRNAs, piRNAs are abundant in planarians (Fig. 2.3B), especially due to the fact that SMEDWI proteins are highly expressed in neoblasts, which constitute around ≈20% of all cells in adult worms [75]. During the development of specific immunoprecipitation protocols, the low osmolality of planarian tissues rendered it difficult to adjust the ionic strength of the lysis buffer, especially for highly concentrated whole-worm lysate solution (>3 mg/ml). Planarian osmolality is estimated at 125 - 128 mosmol/l [165] in contrast to ≈285 mosmol/l for mammalian body fluids [192].

As a result, only HEPES in its hemisodium form was able to sufficiently stabilize planarian PIWI proteins in the worm lysate (Fig. 2.3C). Thus, using optimized conditions of the lysis buffer individual PIWI proteins with co-bound piRNAs were successfully immunoprecipitated, allowing for the construction and deep sequencing of small RNA libraries.

Subsequent analysis of piRNA sequences revealed that SMEDWI-1 binds piRNAs with a distribution maximum of 32 nucleotides (nt) (Fig. 2.4A). The length distribution of SMEDWI-2 and SMEDWI-3 associated piRNAs lies within a range of 32 to 33 and 31 to 32
nt, respectively. Moreover, sequence conservation analyses revealed that SMEDWI-1 and SMEDWI-2 bind piRNAs with a strong preference for a 5’-terminal uridine (78% and 67%, respectively) (Fig. 2.4B). In contrast, SMEDWI-3 binds piRNAs that show a +10 A bias (63%) and a slight conservation of a 5’-terminal uridine (41%).

Fig. 2.4 (A) Size distribution of piRNAs bound to different planarian PIWI proteins. **(B)** Nucleotide composition of immunoprecipitated piRNAs represented as a position weight matrix with seqLogo. **(C)** Percentage of unique sequences bound by different SMEDWI proteins. **(D)** Percentage of unique sequences bound by different SMEDWI proteins. Only genome-mapped piRNAs that appeared in at least two replicates were counted. **(E)** Coverage profile of H3K4me3 CHIP-seq, RNA-Seq and total piRNAs on unidirectional piRNA clusters 158 and 159.

To assess the complexity of planarian piRNAs and to visualize potential sequence overlap between different PIWI proteins, we analyzed unique piRNAs bound by all three PIWI proteins that appeared in at least two replicates (Fig. 2.4C). Intriguingly, while SMEDWI-1 and SMEDWI-2 showed significant overlap in uniquely mapped piRNAs, SMEDWI-3 binds a distinct and very diverse pool of piRNAs. Moreover, 71% of SMEDWI-3-bound piRNAs were detected only once, indicating that this piRNA pool is even more complex than we could resolve with applied sequencing depth (Fig. 2.4D). Altogether, obtained results suggest that SMEDWI-3 has a distinct role in planarians that sets it apart from the two other PIWI proteins.

To examine how planarians are able to produce a highly complex and highly abundant piRNA repertoire, we determined the genomic location of planarian piRNA clusters using
proTRAC [149]. We were able to assign 270 piRNA clusters and found 268 of them to be unidirectional (Supplemental Table 2 [80]). Moreover, 14% of planarian piRNA clusters carry histone H3K4me3 marks, suggesting their euchromatic localization (Fig. 2.4E). This confirms an earlier report [44] and resembles murine pachytene clusters and piRNA clusters in ovarian follicle cells in *D. melanogaster*. In both cases piRNA clusters show a strong strand bias [6, 26].

2.1.2 SMEDWI-2 and SMEDWI-3 cooperate to degrade planarian transposons

The recognition of an active transposon by antisense piRNAs can initiate the amplification of transposon silencing in the ping-pong cycle [18, 57]. When analyzing planarian piRNAs for the presence of such signatures, SMEDWI-2 and SMEDWI-3 were found to be the main ping-pong players in planarians, accounting for the majority of ping-pong pairs detected in our piRNA libraries (Fig. 2.5).

![Fig. 2.5](image_url)

Fig. 2.5 Local Z-score for the occurrence of homotypic and heterotypic ping-pong pairs.

We also observed a less pronounced ping-pong signature for SMEDWI-1 and SMEDWI-3, indicating that those two PIWI proteins also work together in degrading transposable elements. Additionally, SMEDWI-3-bound piRNAs show a homotypic ping-pong signature, whereas piRNAs bound to the other PIWI proteins do not (Fig. 2.5).

Since the degradation of transposable elements is the primary function of PIWI proteins in other organisms, we set out to study transposon levels in planarians upon loss of SMEDWI-2 and SMEDWI-3. As both PIWI proteins are essential for planarian homeostasis, we devised
an RNA interference (RNAi) knockdown strategy for SMEDWI-2 and SMEDWI-3 without depleting neoblasts.

Fig. 2.6 (A) Evaluation of SMEDWI-1, -2 and -3 protein levels by Western blot upon *unc-22*(RNAi), *smedwi-2*(RNAi) or *smedwi-3*(RNAi) at different days post feeding (dpf) with dsRNA. *α-Tubulin* was used as a loading control. (B) piRNAs co-immunoprecipitated from whole-worm lysates of control (*unc-22 RNAi*) or knockdown (*smedwi-1,-2,-3 RNAi*) animals using antibodies against SMEDWI-1, -2 or -3. Below: western blot showing SMEDWI-1, -2 and -3 protein levels in different RNAi knockdown backgrounds. (C) Gene expression levels in TPMs (transcript per million) of *smedwi-1*, -2 and -3 transcripts upon *unc-22*(RNAi) and *smedwi-2*(RNAi) or *smedwi-3*(RNAi) in neoblasts (X1) and differentiated (Xins) cells.

Optimal time points for RNAi knockdown experiments were defined by achieving the maximum possible depletion of SMEDWI-2 or SMEDWI-3 protein levels with only minor accompanying effects on SMEDWI-1, a marker of neoblast maintenance (Fig. 2.6A). Whereas we observed a significant reduction in SMEDWI-3 protein levels upon *smedwi-3*(RNAi) on day 11 post feeding without affecting SMEDWI-1 expression (Fig. 2.6A-C,
Fig. 2.7), SMEDWI-2 largely persisted in both neoblasts and differentiated cells on day 7 post feeding. However, the amount of co-immunoprecipitated piRNAs after SMEDWI-2 immunoprecipitation was drastically reduced upon smedwi-2(RNAi) (Fig. 2.6B). Moreover, we observed the accumulation of SMEDWI-2 in the cytoplasms of planarian cells upon smedwi-2(RNAi) (Fig. 2.7). As piRNA loading is required for the nuclear entry of PIWI protein [161, 130], we speculate that at least part of the persisting pool of SMEDWI-2 is not loaded with piRNAs. Overall, we found the levels of piRNAs co-immunoprecipitated with SMEDWI-3 not altered under smedwi-2(RNAi) conditions and vice versa.

Following RNAi, worms were dissociated and separated by FACS into neoblasts (X1) and differentiated cells (Xins). In the asexual S. mediterranea, neoblasts are the only dividing cells and hence can be separated from differentiated cells by sorting for DNA content [66, 145]. Total RNA from 100,000 FACS-isolated neoblasts was prepared and subjected to a custom ribosomal RNA (rRNA) depletion procedure. We developed this procedure to retain non-coding transcripts and those lacking long polyA tails (see Results part 2). Our protocol is robust and removes nearly 99% of the rRNA. Following ribodepletion, we prepared strand-specific libraries for knockdown and control conditions as described [206]. The expression levels of transposable elements after both SMEDWI-2 and SMEDWI-3 knockdown were analyzed by measuring the abundance of 316 consensus transposon families [12]. Upon SMEDWI-2 knockdown, 109 transposon families were upregulated, whereas the SMEDWI-3 knockdown increased the expression of only 38 families (Fig. 2.8A).

As epigenetic silencing of transposable elements by PIWI proteins has been reported in other organisms [200, 172], we asked whether this is also the case in planarians. We performed CHIP-seq experiments for trimethylated histone H3 Lysine 4 (H3K4me3), a chromatin mark associated with active transcription [70]. We found a considerable increase of H3K4me3 peaks at transposable elements upon smedwi-2(RNAi) and smedwi-3(RNAi) (Fig. 2.8B). Out of 515 upregulated peaks overlapping with transposable elements upon smedwi-2(RNAi), 40% were located at DNA transposons and 28% at long terminal repeat elements (LTRs) (Fig. 2.8B). Smedwi-3(RNAi) also led to an increase in the active transcription mark at DNA transposons (115 out of 367 upregulated peaks mapped to transposable elements) and LTRs (156 peaks) (Fig. 2.8B).
Fig. 2.7 Immunostaining of SMEDWI-1, -2 and -3 on cross-sections through the planarian pharynx in control (unc-22 RNAi) or knockdown (smedwi-1,-2,-3 RNAi) animals. SMEDWI-1 is in green, SMEDWI-2 is in red, SMEDWI-3 is in yellow. Nuclear staining with DAPI is shown in blue.
Altogether, the enrichment of SMEDWI-2 in the nucleus (Fig. 2.3C) and the observed increase in the expression of transposable elements upon SMEDWI-2 and SMEDWI-3 RNAi knockdown (Fig. 2.8A, 2.8B), indicate that SMEDWI-2 is likely directly involved in epigenetic silencing of transposable elements. Why a knockdown of SMEDWI-3 also leads to an increase in H3K4me3 peaks remains to be investigated.

Fig. 2.8 (A) Differentially expressed transposable element families upon RNAi knockdown of smedwi-2 or smedwi-3 (in red). The dashed horizontal red line represents the p-value threshold (p-value < 0.01). The two dashed vertical lines illustrate the threshold of log2 fold changes > 1 or < -1. **(B)** Numbers of up- and downregulated H3K4me3 peaks mapping to transposable elements upon smedwi-2(RNAi) and smedwi-3(RNAi).

2.1.3 Genic piRNAs bound to SMEDWI-3 are degradation products of planarian mRNAs

To decipher which genomic targets apart from transposable elements are subjected to piRNA-mediated regulation, all immunoprecipitated piRNAs were mapped to the planarian genome (see chapter 4). By allowing no mismatches and retaining multiple alignments we achieved mapping rates of 52%, 56% and 43% for SMEDWI-1, -2 and -3-bound piRNAs, respectively. The mapping rates we obtained are rather low, likely due to the high degree of genome heterozygosity in planarians [128, 58]. Nonetheless, the alignment of SMEDWI-1, -2, and -3 co-bound piRNAs resulted in 2.8, 3.0 and 9.9 million uniquely mapped sequences, respectively. We found that the majority of planarian piRNAs mapped to unannotated regions. Only 25 - 30% of piRNAs were assigned to repetitive loci associated with transposable elements (Fig. 2.9A). This fact is in agreement with previous reports [44] and resembles a
2.1 The role of piRNA pathway in *S. mediterranea*

Genomic distribution of the pachytene piRNAs (74% pachytene piRNAs map to unannotated regions and 17% to TEs) [9]. In *D. melanogaster* over 70% of immunoprecipitated piRNAs were annotated to TEs [18].

However, a significant fraction of SMEDWI-3-bound piRNAs mapped to genic features, especially to coding regions, also displaying a strong sense bias and comparatively little multimapping (Fig. 2.9A-B). What is more, SMEDWI-3-bound genic piRNAs do not map to annotated transposable elements, further strengthening our conclusion that these piRNAs are directly derived from mRNA transcripts (Fig. 2.9C).

![Fig. 2.9 (A)](image)

Fig. 2.9 (A) Genomic locations of piRNAs associated with different SMEDWI proteins. piRNA counts weighted by the number of places they map to were used for the genomic annotation of piRNAs. (B) piRNAs co-immunoprecipitated with SMEDWI protein mapped to 5’-UTRs, coding regions or 3’-UTRs of mRNAs. (C) Percentages of SMEDWI-3-bound genic piRNAs mapping in sense and antisense orientation to transposable elements.

We then focused our attention on mRNAs to which SMEDWI-3-bound piRNAs mapped with an average of 10 reads per million (RPM) in all three immunoprecipitation replicates.
Using this cutoff, we identified 925 transcripts that are processed into SMEDWI-3 bound piRNAs (Supplemental Table 1 [80]).

Figure 2.10A shows a representative gene, *traf-6* (SMESG000000371.1), which is degraded into great numbers of SMEDWI-3 bound piRNAs. The resulting genic piRNAs map in a sense orientation exclusively to coding regions of the targeted genes. In contrast, we only detected negligible amounts of *traf-6* piRNAs bound to SMEDWI-1 and SMEDWI-2. Neither of the two proteins showed the strong sense bias of mapped piRNAs that we find to be characteristic for SMEDWI-3. Furthermore, transposon-related elements near genes are not degraded into strand-specific SMEDWI-3-bound piRNAs, yet can be detected bound by all three PIWI proteins (Fig. 2.10A). We also detected significant ping-pong signatures and the characteristic 5’ 1U and 10A nucleotide biases that accompany ping-pong amplification for our list of genic SMEDWI-3 bound piRNAs (Fig. 2.10B). These data strongly suggest that the piRNA-mediated mRNA turnover results in genic piRNAs specifically bound to SMEDWI-3. Notably, the large number of targeted mRNAs contains ankyrin-repeat-containing domain, zinc-finger TRAF-type domain, histone fold etc. (Fig. 2.10C), suggesting the possibility that piRNAs might regulate the expression levels of entire protein domain families.

![Fig. 2.10 (A)](image-url) Coverage profile of RNA-seq and immunoprecipitated piRNAs for *traf-6* (SMESG000000371.1). The gene loci are highlighted in blue. A neighboring transposable element is highlighted in gray. (B) Ping-pong analysis of transcripts producing sense piRNAs. Nucleotide composition analysis of total piRNAs mapped to processed transcripts confirms the involvement of the ping-pong cycle. (C) Heatmap showing the enrichment of predicted InterPro protein domains in transcripts with mapped genic piRNAs.
2.1 The role of piRNA pathway in *S. mediterranea*

2.1.4 Crosslinking immunoprecipitation confirms that SMEDWI-3 targets hundreds of planarian transcripts

To gain direct evidence of the involvement of SMEDWI-3 in planarian mRNA decay, we established a crosslinking immunoprecipitation (CLIP) protocol for SMEDWI-3 in planarians [185]. Since UV irradiation does not penetrate tissues efficiently, we first rapidly dissociated planarians into a single cell suspension and then crosslinked the dissociated cells on ice at $\lambda = 254$ nm (Fig. 2.11A).

Fig. 2.11 (A) Schematic representation of HITS-CLIP in planarians. (B) Fragment Analyzer digital gel image and electropherogram of RNA fragments crosslinked and co-immunoprecipitated along with SMEDWI-3. Pre-immune serum was used as a negative control. The gel electrophoresis profile for total planarian RNA demonstrates the high level of RNase activity in planarian lysates. (C) Immunoprecipitated HITS-CLIP SMEDWI-3-RNA complexes were radioactively labeled, separated on an 8% Bis-Tris gel and blotted onto a nitrocellulose membrane. CLIP libraries were prepared from RNA extracted separately from the upper and lower bands. Pre-immune serum served as negative control. (D) The same as (C) for SMEDWI-3 CLASH libraries. (E) Length distribution of CLIP reads from the upper and lower band.

Crosslinked protein-RNA complexes were isolated using the anti-SMEDWI-3 antibody and resolved by PAGE. The average size of RNAs crosslinked to SMEDWI-3 was below
200 nts, hinting at strong nucleolytic activity in planarian lysates (Fig. 2.11B). We also used a modified CLASH (cross-linking ligation and sequencing hybrids) protocol to capture chimeric piRNA-mRNAs reads to gain direct experimental evidence of piRNA-target interactions [169, 67]. Both HITS-CLIP (Fig. 2.11C) and CLASH (Fig. 2.11D) libraries were prepared from two crosslinked RNA species that were separately isolated: a shorter, very prominent species crosslinked to SMEDWI-3 (labeled "down"), and a smear of longer RNA fragments (labeled "up") (Fig. 2.11E).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Raw reads</th>
<th>Collapsed</th>
<th>rRNA</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASH rep1 Up</td>
<td>24 491 573</td>
<td>4 852 114</td>
<td>23 402 (0.48%)</td>
<td>4 828 712 (99.52%)</td>
</tr>
<tr>
<td>CLASH rep1 Down</td>
<td>26 355 748</td>
<td>7 165 640</td>
<td>10 563 (0.15%)</td>
<td>7 155 077 (99.85%)</td>
</tr>
<tr>
<td>CLASH rep2 Up</td>
<td>27 365 590</td>
<td>6 868 529</td>
<td>26 767 (0.39%)</td>
<td>6 841 762 (99.61%)</td>
</tr>
<tr>
<td>CLASH rep2 Down</td>
<td>25 765 796</td>
<td>7 680 635</td>
<td>10 827 (0.14%)</td>
<td>7 669 808 (99.86%)</td>
</tr>
<tr>
<td>CLASH rep3 Up</td>
<td>21 465 736</td>
<td>4 734 867</td>
<td>26 630 (0.56%)</td>
<td>4 708 237 (99.44%)</td>
</tr>
<tr>
<td>CLASH rep3 Down</td>
<td>24 209 886</td>
<td>7 526 984</td>
<td>11 138 (0.15%)</td>
<td>7 515 846 (99.85%)</td>
</tr>
<tr>
<td>CLASH rep4 Up</td>
<td>20 977 519</td>
<td>5 260 232</td>
<td>20 596 (0.39%)</td>
<td>5 239 636 (99.61%)</td>
</tr>
<tr>
<td>CLASH rep4 Down</td>
<td>25 279 223</td>
<td>9 016 828</td>
<td>12 621 (0.14%)</td>
<td>9 004 207 (99.86%)</td>
</tr>
<tr>
<td>CLASH rep5 Up</td>
<td>19 402 092</td>
<td>1 125 858</td>
<td>154 604 (13.73%)</td>
<td>971 254 (86.27%)</td>
</tr>
<tr>
<td>CLASH rep5 Down</td>
<td>28 465 247</td>
<td>741 847</td>
<td>6 663 (0.90%)</td>
<td>735 184 (99.10%)</td>
</tr>
<tr>
<td>CLASH rep6 Up</td>
<td>25 713 339</td>
<td>1 790 701</td>
<td>133 178 (7.44%)</td>
<td>1 657 523 (92.56%)</td>
</tr>
<tr>
<td>CLASH rep6 Down</td>
<td>28 902 373</td>
<td>940 761</td>
<td>12 647 (1.34%)</td>
<td>928 114 (98.66%)</td>
</tr>
<tr>
<td>HITS-CLIP rep1 Up</td>
<td>22 658 032</td>
<td>5 740 698</td>
<td>33 265 (0.58%)</td>
<td>5 707 433 (99.42%)</td>
</tr>
<tr>
<td>HITS-CLIP rep1 Down</td>
<td>25 275 256</td>
<td>8 037 363</td>
<td>12 600 (0.16%)</td>
<td>8 024 763 (99.84%)</td>
</tr>
<tr>
<td>HITS-CLIP rep2 Up</td>
<td>27 914 812</td>
<td>1 992 586</td>
<td>197 431 (9.91%)</td>
<td>1 795 155 (90.09%)</td>
</tr>
<tr>
<td>HITS-CLIP rep2 Down</td>
<td>29 016 966</td>
<td>1 554 661</td>
<td>14 472 (0.93%)</td>
<td>1 540 189 (99.07%)</td>
</tr>
<tr>
<td>HITS-CLIP rep3 Up</td>
<td>25 854 504</td>
<td>1 203 988</td>
<td>247 219 (20.53%)</td>
<td>956 769 (79.47%)</td>
</tr>
<tr>
<td>HITS-CLIP rep3 Down</td>
<td>26 441 640</td>
<td>1 426 598</td>
<td>5 201 (0.36%)</td>
<td>1 421 397 (99.64%)</td>
</tr>
</tbody>
</table>

Table 2.1 Sequenced HITS-CLIP and CLASH reads.

In total, we analyzed nine CLIP replicates. After removal of PCR duplicates and rRNA filtering (Table 2.1), fragments from "up" and "down" libraries were pooled and jointly analyzed. CLIP reads were mapped to the planarian genome, resulting in a mapping rate
of 55 – 65%. This corresponds to between 0.4 and 6.6 million uniquely assigned reads per replicate (Table 2.2).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total reads (Up + Down)</th>
<th>Mapped to the genome</th>
<th>Unique mappers</th>
<th>Multi-mappers</th>
<th>Chimeric reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASH rep1</td>
<td>11 983 789</td>
<td>7 467 622</td>
<td>5 123 574</td>
<td>2 344 048</td>
<td>3 836</td>
</tr>
<tr>
<td></td>
<td>(62.3%)</td>
<td>(42.75%)</td>
<td>(19.56%)</td>
<td>(0.03%)</td>
<td></td>
</tr>
<tr>
<td>CLASH rep2</td>
<td>14 511 570</td>
<td>9 685 201</td>
<td>6 681 087</td>
<td>3 004 114</td>
<td>3 851</td>
</tr>
<tr>
<td></td>
<td>(66.7%)</td>
<td>(46.04%)</td>
<td>(20.7%)</td>
<td>(0.026%)</td>
<td></td>
</tr>
<tr>
<td>CLASH rep3</td>
<td>12 224 083</td>
<td>7 785 957</td>
<td>5 360 248</td>
<td>2 425 709</td>
<td>5 553</td>
</tr>
<tr>
<td></td>
<td>(63.7%)</td>
<td>(43.85%)</td>
<td>(19.84%)</td>
<td>(0.045%)</td>
<td></td>
</tr>
<tr>
<td>CLASH rep4</td>
<td>14 243 843</td>
<td>9 336 396</td>
<td>6 412 284</td>
<td>2 924 112</td>
<td>3 885</td>
</tr>
<tr>
<td></td>
<td>(55.5%)</td>
<td>(45.02%)</td>
<td>(20.53%)</td>
<td>(0.027%)</td>
<td></td>
</tr>
<tr>
<td>CLASH rep5</td>
<td>1 706 438</td>
<td>632 053</td>
<td>424 656</td>
<td>207 397</td>
<td>33 418</td>
</tr>
<tr>
<td></td>
<td>(37%)</td>
<td>(24.89%)</td>
<td>(12.15%)</td>
<td>(1.95%)</td>
<td></td>
</tr>
<tr>
<td>CLASH rep6</td>
<td>2 585 637</td>
<td>1 110 606</td>
<td>750 874</td>
<td>359 732</td>
<td>26 125</td>
</tr>
<tr>
<td></td>
<td>(65.2%)</td>
<td>(29.04%)</td>
<td>(13.91%)</td>
<td>(1.01%)</td>
<td></td>
</tr>
<tr>
<td>HITS-CLIP rep1</td>
<td>13 732 196</td>
<td>9 058 729</td>
<td>6 226 614</td>
<td>2 832 115</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>(65.9%)</td>
<td>(45.34%)</td>
<td>(20.62%)</td>
<td>(0.002%)</td>
<td></td>
</tr>
<tr>
<td>HITS-CLIP rep2</td>
<td>3 335 344</td>
<td>2 202 502</td>
<td>1 539 741</td>
<td>662 761</td>
<td>9 979</td>
</tr>
<tr>
<td></td>
<td>(66%)</td>
<td>(46.16%)</td>
<td>(19.87%)</td>
<td>(0.3%)</td>
<td></td>
</tr>
<tr>
<td>HITS-CLIP rep3</td>
<td>2 378 166</td>
<td>1 324 806</td>
<td>907 520</td>
<td>417 286</td>
<td>13 646</td>
</tr>
<tr>
<td></td>
<td>(55.7%)</td>
<td>(38.16%)</td>
<td>(17.55%)</td>
<td>(0.57%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2 HITS-CLIP and CLASH reads mapped to the planarian genome.

Next, we applied crosslinking induced mutation site analysis (CIMS) to define CLIP sites in planarian mRNAs [203, 168]. CIMS analysis identifies crosslink-induced deletions, substitutions and insertions, which are introduced at the protein-RNA crosslink sites by reserve transcriptase [203]. As reported for human Argonaute-2 and others, mutation-induced base substitutions were most frequent in our data (present in 56% of CLIP tags), while deletions accounted only for 13% of all mutations (Fig. 2.12A-B) [124]. We focused our analysis on CLIP tags that carry both deletions (FDR \(\leq 0.001 \)) and substitutions (FDR \(\leq 0.001 \)) and that appear in at least two replicates, since both types of mutations were evenly
distributed throughout the length of the CLIP read (Fig. 2.12C). We detected 745 deletions in 366 mRNAs and 1629 substitutions in 788 mRNAs. All final CLIP tags comprise > 30 unique reads in at least two replicates per site of mutation.

![Fig. 2.12](image)

Fig. 2.12 (A) Percentage of mutations in CLIP tags. (B) Nucleotide substitution frequency observed in CLIP reads. (C) Distribution of deletions (in orange), substitutions (in grey) and insertions (in red) along CLIP reads.

Using the CLIP-chimaeric pipeline, our data also revealed thousands of chimeric piRNA-mRNA reads (Table 2.2) [3, 184]. The piRNA parts of these chimeric reads were mapped on the extended mRNA fragments, and chimeric reads with alignments of piRNA parts within \(\pm 20 \) bp around the midpoint of the mRNA fragments were kept for the subsequent analysis (Fig. 2.13A). In total, we discovered chimeric reads for 280 planarian mRNAs (Supplemental Table 3 [80]). The mRNAs carrying chimeric reads were also detected by our CIMS analysis (Fig. 2.13B).

After combining chimeric reads and CIMS-analyzed CLIP tags we were able to define 1,116 transcripts as SMEDWI-3 targets (Fig. 2.13B, Supplemental Table 4 [80]). To compare the distribution of the reads mapping to genes in CLIP-Seq and RNA-Seq experiments, the Spearman correlation coefficient was calculated between both types of experiments. It revealed that the correlation between the gene expression and CLIP tag abundance is low (R=0.29, \(p < 2.2e-16 \)) strengthening the specificity of our CLIP experiment (Fig. 2.13C). Moreover, we note that about 50% of all chimeric reads are derived from the top 25% of highly abundant transcripts in the CLIP libraries (Fig. 2.13D).
2.1 The role of piRNA pathway in *S. mediterranea*

Fig. 2.13 (A) Alignment of the piRNAs parts of chimeric reads onto the ± 100 nt extended midpoint of mRNA fragments. An alignment of piRNAs to random mRNA fragments was used as a negative control (in grey). (B) Venn diagram representing the identified SMEDWI-3 CLIP targets carrying deletions, substitutions and chimeric reads. (C) Scatter plot comparing log2 normalized CPM (counts per million) of mapped reads for CLIP-Seq and RNA-Seq data. Transcripts carrying chimeric reads are highlighted in blue. The Spearman’s correlation coefficient is indicated. (D) Cumulative sum of chimeric reads in nine replicates of CLIP targets. All CLIP targets were divided into bins based on their expression value (in CPMs) in the four quantiles. (E) The annotation of CLIP fragments to the planarian genome confirms the involvement of SMEDWI-3 in the post-transcriptional regulation of transposable elements and coding transcripts. (F) Percentage of chimeric reads mapped to different genomic features in sense and antisense orientation. (G) Density of the CLIP fragments mapping to 5’-UTRs, coding regions and 3’-UTRs of coding genes. Each feature was divided into 30 bins. The mean density of CLIP fragments was calculated over the corresponding features. Error bars represent SE.

As expected, a significant fraction of CLIP reads (10%) could be traced back to coding regions of genes and not UTRs (Figs. 2.13E-G). They preferentially map in sense orientation,
confirming that SMEDWI-3 indeed targets coding transcripts (Fig. 2.13F). In addition, 28% of our CLIP reads are derived from transposable elements, a fact that supports SMEDWI-3’s central role in the ping-pong cycle (Figs. 2.13E).

2.1.5 The dual role of SMEDWI-3 in neoblast mRNA surveillance

To dissect how planarian mRNAs are converted into piRNAs, we analyzed the abundance of SMEDWI-3-bound genic piRNAs in the identified CLIP regions. piRNAs were mapped to CLIP regions allowing one mismatch to account for planarian heterozygosity [58, 128]. Next, we computed the piRNA density per bp in all CLIP regions by normalizing weighted piRNA counts to the length of the corresponding CLIP regions. Unexpectedly, not all CLIP regions were densely covered with genic piRNAs. In contrast, our analysis revealed two distinct modes of SMEDWI-3 transcript targeting. A first class of transcripts displayed significant CLIP peaks across their coding regions and showed SMEDWI-3-bound piRNA coverage in the sense direction (Fig. 2.14A). A second class of transcripts showed CLIP signals, yet hardly any piRNA coverage (less than 0.5 piRNA counts per bp of CLIP region) (Fig. 2.14B).

The presence of genic piRNAs in CLIP regions suggested that these targets might be cleaved and processed into piRNAs. To confirm that the degradation of SMEDWI-3 CLIP targets is indeed piRNA-dependent, we performed 5’-monophosphate-dependent cloning of mRNA fragments (Degradome-seq) in sorted planarian neoblasts (X1 cells). We focused on X1 cells since SMEDWI-3 is predominantly present in these cells (Fig. 2.2). Degradome-seq allows the capture of RNA cleavage products that result from piRNA targeting [188, 146]. In total, we were able to map 10,230,560, 10,346,869 and 10,372,010 unique degradome reads to the planarian genome for three biological replicates, respectively. Approximately 9% of all degradome reads mapped to gene coding regions, with 1% possessing a 5’-5’ 10-nt overlap with immunoprecipitated piRNAs (Fig. 2.14C). The vast majority of ping-pong pairs between degradome reads and PIWI-bound piRNAs were formed with piRNAs bound by SMEDWI-3 (Z-score = 5.36). This suggests that SMEDWI-3 plays a leading role in degrading planarian transcripts that are not transposable elements.
2.1 The role of piRNA pathway in *S. mediterranea*

Z-score = 5.36

0.0e+00
5.0e+03
1.0e+04
1.5e+04
2.0e+04
2.5e+04
3.0e+04
1 5 10 15 20 25 30
Length (nt)

Pairs with 5' to 5' overlap

Degradome / SMEDWI-1
Degradome / SMEDWI-2
Degradome / SMEDWI-3

Fig. 2.14 (A) RNA-Seq, piRNA-seq and HITS-CLIP coverage profiles for *traf-6* (SMESG000000371.1). The presence of both genic SMEDWI-3-bound piRNAs and CLIP fragments suggests their piRNA-mediated degradation by SMEDWI-3. (B) The presence of CLIP fragments along with the simultaneous absence of sense piRNAs for *dgcr-6* (SMESG000021088.1) indicates that those transcripts are regulated by SMEDWI-3 in a cleavage-independent manner. (C) Genomic annotation of Degradome-Seq reads showing 5' to 5' overlap with piRNAs immunoprecipitated with anti-SMEDWI-1, -2, and -3 antibodies. (D) Number of unique pairs with 5' to 5' 10 nt overlaps between degradome sequences and piRNAs immunoprecipitated with anti-SMEDWI antibodies. (E) Correlation of normalized CPMs of CLIP-Seq and Degradome-Seq data. Each dot represents a transcript with ping-pong degradation signature. Spearman’s correlation coefficient is indicated.

Next, we intersected the list of genes showing piRNA-dependent degradation with our list of 1,116 CLIP targets. Using at least five unique ping-pong pairs per transcript as cutoff, we identified 232 SMEDWI-3 CLIP targets to be processed into genic piRNAs (Fig. 2.14D, Supplemental Table 5 [80]). CLIP targets with stronger degradation signal were slightly
less abundant in our CLIP-seq libraries ($R = -0.28, p = 2e-05$), a fact likely attributed to their efficient degradation into genic piRNAs. In agreement with the latter, the majority of degraded transcripts showed a high density of genic piRNAs across their CLIP sites (Fig. 2.15).

![Graph showing piRNA density per bp of CLIP site](image)

Fig. 2.15 Left: Boxplots of three groups of CLIP transcripts that are defined based on SMEDWI-3-bound genic piRNA density per bp of CLIP site and the presence of a piRNA-dependent degradation signature. The unpaired t-test was applied to estimate significant differences between groups. P-value ≤0.0001 is marked with ****. Right: Scatter plot showing the cumulative density of genic piRNAs across the CLIP sites of SMEDWI-3 targets and the corresponding abundance of CLIP counts assigned to the transcript. Group 1 includes transcripts that display a ping-pong degradation pattern along with high genic piRNAs density. Group 2 comprises transcripts with piRNAs density ≥0.5/bp CLIP and without a piRNA-dependent degradation signature. Transcripts with a piRNA density <0.5/bp CLIP are sorted in group 3. Spearman’s correlation coefficients for all three groups are indicated in different colors.

We therefore combined these SMEDWI-3 targets into a first group of targets (group 1). Subsequently, we assigned 621 transcripts to a second group of SMEDWI-3 targets (group 2). Group 2 targets exhibit substantial density of genic piRNAs (>0.5 piRNAs/bp of CLIP region), however, no ping-pong degradation pairs were detected for these transcripts in the degradome data (Fig. 2.15). Most likely, group 2 transcripts are degraded in the ping-pong cycle as well, however, their degradation might be triggered by piRNAs that exhibit non-perfect base-pairing for target recognition. As we only considered piRNAs mapping to the genome with a single mismatch, we have no means to detect these cases. Combining all SMEDWI-3 CLIP targets with significant genic piRNA density (>0.5 piRNAs/CLIP bp) left 263 transcripts. For these group 3 transcripts we detected significant SMEDWI-3 binding, yet very little piRNA mapping (<0.5 piRNAs/CLIP bp) (Fig. 2.15, Supplemental Table 6 [80]). The correlation coefficients for the three groups of transcripts support our classification, as the positive correlation between the number of CLIP reads and the density of genic piRNAs decreases from group 1 through group 3. We therefore conclude that SMEDWI-3 binds
group 3 transcripts, but does not trigger their degradation into significant numbers of genic piRNAs.

2.1.6 The base-pairing pattern between SMEDWI-3-bound piRNAs and target mRNAs

To investigate whether piRNAs are responsible for guiding SMEDWI-3 to group 3 transcripts, we examined the presence of chimeric reads mapping to this group of transcripts. In total, we identified 259 chimeric reads mapping to 75 group 3 transcripts. In addition, our data revealed 752 chimeric reads for 88 group 1 transcripts and 556 for 117 group 2 transcripts. To determine the base-pairing patterns underlying the interaction of SMEDWI-3-bound piRNAs with all three groups of transcripts, the unweighted local read aligner as implemented in the CLIP-chimeric pipeline was used [3, 184]. After subtraction of a randomized control, we observed continuous base pairing over the whole length of antisense piRNAs for group 1 targets (Fig. 2.16A). This observation confirms that antisense piRNAs need to recognize their targets with perfect or near-perfect complementarity to initiate target cleavage. It also confirms prior knowledge on cleavage-competent Argonaute proteins, which require continuous base-pairing across the scissile phosphate between target nucleotides 10 and 11 [163]. Meanwhile, piRNAs that target group 3 transcripts show a significant drop in base-pairing at nucleotides 10 and 11 and a general lack of base-pairing between nucleotide positions 16 and 26 (Fig. 2.16B). These data argue that group 3 transcripts are recognized by SMEDWI-3 with piRNAs as guides. However, target cleavage by SMEDWI-3 is likely precluded due to the multitude of mismatches between piRNA and mRNA target. In support of this notion group 3 transcripts show a low density of genic piRNAs across their CLIP sites. Last, when analyzing the base-pairing patterns of group 2 chimeras, we noticed almost continuous piRNA-mRNA base-pairing apart from a significant drop thereof between nucleotide positions 10 and 13 (Fig. 2.16C). Because we detected significant genic piRNAs for this group of transcripts yet no degradome signal (Fig. 2.15), we speculate that this drop may illustrate that efficient target cleavage is impaired for these transcripts due to a lack of base-pairing over the scissile phosphate group. Alternatively, due to limitations of our classification of group 2 transcripts, this group might include transcripts from both group 1 and group 3. Taken together, our results are in agreement with the previously described piRNA targeting rules in C. elegans [169, 204]. Moreover, they are also in line with the rules established for Argonaute targeting and underline the importance of continuous base-pairing over the scissile phosphate bond to initiate target cleavage [163] (Fig. 2.16A).
Fig. 2.16 (A) Average density of base-pairing events per nucleotide position of the piRNA parts of chimeric reads. Chimeric piRNA parts were mapped onto targeted mRNA fragments in the vicinity of pm20 nt from the mRNA fragment midpoint. Only unique chimeric reads mapping to transcripts of Group 1 were included from all nine replicates. Random piRNA mapping densities were subtracted as negative control. Below, an illustration of one exemplary chimeric read from group 1 transcripts is shown. The extended mRNA part of the chimeric read is shown in gray. Left: schematic representation of mRNAs degradation in a homotypical ping-pong cycle by SMEDWI-3. (B) Same as in (A) for group 3 SMEDWI-3 targets. (C) Same as in (A) for group 2 SMEDWI-3 targets.

2.1.7 Transcripts degraded by SMEDWI-3 reveal a piRNA pathway in the planarian epidermis

To decipher the impact of SMEDWI-3 on its target mRNAs, we examined the expression levels of transcripts in all three previously defined groups after smedwi-3(RNAi) knockdown. A gene set enrichment analysis [111] revealed that the expression of ping-pong degraded group 1 targets increased significantly in both smedwi-3(RNAi) neoblasts and differentiated cells (Fig. 2.17A). However, we also observed a significant upregulation of group 1 targets upon smedwi-2(RNAi) (Fig. 2.17B).
2.1 The role of piRNA pathway in *S. mediterranea*

![Fig. 2.17](A) Violin plots showing the log2 fold differential expression changes of the three distinct SMEDWI-3 target groups upon *smedwi-3* knockdown in neoblasts (X1) and differentiated cells (Xins). Statistical significance of differential expression of the gene sets was assessed using Generally Applicable Gene-set Enrichment (GAGE) analysis with a two-sample t-test ("ns" = not significant). (B) The same as (A) for *smedwi-2(RNAi)*.

We therefore speculate that piRNA pathway-dependent factors contribute to the degradation of these mRNAs or that SMEDWI-2 is involved in piRNAs precursor transcription and processing. Alternatively, a knockdown of either PIWI protein might disturb neoblasts fate and lead to the upregulation of SMEDWI-3 ping-pong targets (group 1). We note here that group 1 targets are enriched in transcripts involved in protein ubiquitination and immune response (Fig. 2.18).

![Fig. 2.18](Degraded CLIP targets)

Overall, group 2 and group 3 targets do not show significant expression changes upon SMEDWI-2 and SMEDWI-3 knockdown. This suggests that SMEDWI-3 binding to these mRNAs does not have an immediate impact on their stability. However, their interaction...
with SMEDWI-3 might still be important by either licensing these transcripts in a type of surveillance pathway or by regulating their translation [167, 186].

Given the significant upregulation of SMEDWI-3 group 1 targets in neoblasts and differentiated cells, we asked where these targets are expressed in planarians. We carried out whole-mount fluorescent in situ hybridization (WISH) of four group 1 transcripts that we found targeted by the ping-pong cycle (histone H2B (SMESG000052758.1), ankl (SMESG000076223.1), dapk1 (SMESG000043474.1), traf-6 (SMESG000000294.1)). Staining for histone H2B confirmed an earlier report that found histone mRNAs to be enriched in chromatoid bodies of neoblasts [155] (Fig. 2.19A). However, we were unable to detect the other three transcripts in neoblasts, a fact likely owed to their low expression levels (average expression level 23 TPM) when compared with histone H2B mRNA (22,677 TPM). Instead, we detected strong punctuated staining for all three transcripts in the epidermal cell layer in planarians (Fig. 2.19B). This finding was unexpected, since the expression levels of these transcripts in differentiated cells (Xins) is low (ankl = 2.3 TPM, traf6 = 37 TPM, dapk 1 = 97.7 TPM). To understand the nature of the foci, we quantified their exact localization and found them to be predominantly nuclear. More precisely, they were enriched in the nuclear periphery (Fig. 2.19C). Moreover, using immunostaining on sectioned animals, we could demonstrate that SMEDWI-2 is present in the epidermis, whereas the amount of SMEDWI-3 is negligible (Fig. 2.19D, Fig. 2.20).

We found the observed nuclear foci to be reminiscent of the accumulation of piRNA precursors in Dot COM structures in somatic cells in Drosophila [30]. Thus, we suspect that the three tested transcripts might actually be processed just like piRNA precursors in the epidermis. Taken together, our in situ data on group 1 SMEDWI-3 targets demonstrates that planarians possess an epidermal somatic piRNA pathway involving likely only a single PIWI protein, SMEDWI-2. That is in addition to the piRNA pathway, which operates in neoblasts and requires the presence of at least SMEDWI-2 and SMEDWI-3 [145, 133].
2.1 The role of piRNA pathway in *S. mediterranea*

Fig. 2.19 (A) *Histone H2B* (SMESG000052758.1) mRNA (in green) localizes to chromatoid bodies stained with anti-Y12 (in magenta). Nuclei stained with Hoechst are in blue. (B) Expression and localization pattern of three exemplary ping-pong targets of SMEDWI-3 (*dapk1* (SMESG000043474.1), *traf6* (SMESG000000294.1), *ank1* (SMESG000076223.1)) in the planarian epidermis analyzed with whole-mount in situ hybridization (WISH). Nuclei stained with Hoechst are in blue, mRNAs are in yellow. (C) Nuclear localization of foci was calculated as a distance between each in situ signal (in orange) and the nearest nuclear center (x-axis = 0). The nuclear membrane data is plotted in blue. The analysis was performed on WISH signal for *traf6*. (D) Co-immunostaining of SMEDWI-1, -2, and -3 in the epidermis on a cross-section through the planarian pharynx. SMEDWI-1 is in green, SMEDWI-2, and -3 are in red. Nuclei stained with DAPI are in blue.
2.2 Discussion of Results part 1

The piRNA pathway was discovered in the germline, where it orchestrates germline development and ensures genome integrity by silencing of transposable elements [6, 25, 50, 55]. However, piRNAs were recently found to also have important roles in somatic cells such as neurons, cancer cells, embryonic stem cells and adult somatic stem cells [148, 183]. Somatic piRNAs are widely expressed across arthropods, where they target both transposable elements and protein-coding transcripts. Yet, the best-studied arthropod, *D. melanogaster*, only expresses piRNAs in the germline, thus representing an evolutionary exception in its phylum [100]. Therefore, much remains to be understood about the role of piRNAs in somatic tissues of animals. In this study, we developed an arsenal of biochemical tools that will now make it possible to further dissect piRNA function in the planarian *S. Mediterranea* - an organism that neither senesces nor develops stem cell-based diseases like cancer [134, 160].

Fig. 2.20 Immunostaining of SMEDWI-1 (in green) and SMEDWI-2 (in red) in the epidermis on cross-sections through the pharynx of *S. Mediterranea* upon differential RNAi knockdown. Nuclei are stained with DAPI and are shown in blue.
2.2.1 Planarian piRNAs may function in cell cycle regulation and immune defense

Embryonic stem cells are transcriptionally hyperactive. This allows for the expression of repetitive sequences and mobile elements as well as the expression of lineage- and tissue-specific genes at low levels [35]. In addition to their role as a counteracting force to detrimental transposon activity (Figs. 2.8), we show that the planarian PIWI protein SMEDWI-3 utilizes a diverse set of piRNAs to degrade, among others, a multitude of traf mRNAs, histone mRNAs, mRNAs coding for E3 ubiquitin ligases and transcripts containing ankyrin repeats (Supplemental Table 5 [80]). These results suggest that piRNA-mediated degradation of SMEDWI-3 group 1 targets might be important for planarian regeneration and neoblasts cell cycle control. In addition, a modulation of the histone mRNA metabolism has the potential to directly control cell cycle progression and cell division [114]. Moreover, E2- and E3-ubiquitin ligases are known to regulate the proteolysis of key cell cycle-regulatory proteins, chromosome separation, cytokinesis and cell differentiation [179].

The transcripts of group 2, which show significant SMEDWI-3 binding and high genic piRNA density, although no SMEDWI-3-mediated cleavage, might be degraded into piRNAs using a mechanism distinct from direct cleavage. For example, in the early embryos of Drosophila's during maternal-to-zygotic transition numerous mRNAs undergo Aub-dependent mRNA deadenylation and decay in the soma through recruitment of the CCR4-NOT deadenylation complex [13, 148, 151].

As in other organisms secondary piRNA production operates in chromatoid bodies or the nuage [106], we envision that SMEDWI-3 needs to be localized to chromatoid bodies for the degradation of transposons and mRNAs in the ping-pong cycle (Fig. 2.2A, 2.19A) [76, 106, 155]. In support of this, RNAi knockdown of SMEDWI-1 and SMEDWI-3 leads to the increased expression level of histone mRNAs and their delocalization from chromatoid bodies [155]. Apart from SMEDWI-3, planarian chromatoid bodies contain homologs of Tudor proteins[176], helicase VASA [152] and methylated substrates of the protein arginine methyltransferase 5 (PRMT5) [153]. These results strongly suggest that chromatoid bodies are the host of the piRNA pathway.

In addition to the piRNA pathway in neoblasts, we also found an active piRNA pathway in epidermal cells operating with the use of SMEDWI-2 only (Fig. 2.19). As epidermal cells do not divide and rapidly turn over, we hypothesize that the function of the epidermal piRNA pathway goes beyond the maintenance of genome integrity. We propose that piRNAs in the planarian epidermis might play a role in innate immunity, along with the role of the epidermis
in phagocytic cell responses, the secretion of anti-microbial mucus [135] and the response to bacterial infection [10]. The piRNA pathway also plays an important role in epithelium cell metabolism and development. In support, planarian myb-1, whose mouse homolog initiates pachytene piRNA production in testes [105], was recently shown to be responsible for the progression of the epidermal lineage, in particular for the specification of the early progeny cell state (prog-1) [209]. Moreover, we note that smedwi-3(RNAi) treatment leads to skin lesions in planarians on days 13 - 14 post RNAi, well before the animal lyses (21 days post RNAi) [133]. This might be due to reduced SMEDWI-2 protein levels in the epidermis of smedwi-3(RNAi) animals (Fig. 2.7, 2.20).

Furthermore, two SMEDWI proteins - SMEDWI-2 and -3 - were found to be expressed in neuronal cells of planarian brain (Fig. 2.2) [133, 170], suggesting the presence of an additional somatic piRNA pathway in planarians operated by two SMEDWIs. Planarians possess a relatively primitive brain composed of glia and multiple neuronal subtypes [136]. However, planarian brain is a highly dynamic structure that undergoes constant neuronal turnover at the level of 25% per week. Upon injury or amputation, the planarian brain can regenerate and functionally reintegrate new tissue in 7 days without scaring [20]. This raises a fascinating question about the role of piRNA pathway in planarian brain metabolism. Especially, since in other organisms piRNAs play a role in the long-term memory formation and axon regeneration [81, 141].

2.2.2 The potential role of SMEDWI-3 in determining neoblast mRNA fate

SMEDWI-3, apart from degrading planarian mRNAs by targeting their coding sequences in the ping-pong cycle, specifically binds numerous planarian mRNAs, including its own. The key to these seemingly opposed SMEDWI-3 activities might lie in the presence or absence of antisense piRNAs that exhibit distinct base-pairing patterns when recognizing their mRNA targets (Fig. 2.16). Moreover, piRNAs render it unnecessary to evolve conserved nucleotide binding motifs for each mRNA to be targeted.

We hypothesize that the degradation-independent interaction of SMEDWI-3 with group 3 transcripts might be a sign of transcript binding by SMEDWI-3, analogous to mRNA surveillance in the *C. elegans* germline. There, PRG-1 and CSR-1 act out a functional rivalry to achieve the degradation of transcripts that are rated foreign and to establish an epigenetic memory of this distinction [11, 96, 166, 171]. However, at this point it is not certain whether SMEDWI-3-mediated piRNA-mRNA interactions that do not trigger mRNA degradation
persist long enough to have a biological function in planarians. Whether SMEDWI-3 is involved in recognizing and licensing neoblast mRNAs in the planarian *S. mediterranea* will thus require a thorough study of the piRNA pathway response to the invasion of foreign nucleic acids.

Furthermore, to dissect the molecular mechanism of piRNA-mediated mRNA turnover biochemical studies addressing the function and composition of planarian chromatoid bodies as well as a thorough investigation of the role of the planarian epidermis in immune defense are necessary.
Chapter 3

Results part 2

3.1 Efficient depletion of ribosomal RNA for RNA sequencing in planarians

Aim and Objective

The aim of this study is to develop a workflow for the efficient depletion of rRNA in the planarian flatworm *S. mediterranea*.

To establish rRNA depletion protocol, we designed 40-mer biotinylated DNA oligonucleotide probes antisense to rRNA. We based our protocol on the hybridization of synthesized probes to rRNA followed by the subtraction of formed DNA-RNA hybrids. Specificity of the developed protocol was tested on total RNA isolated from stem cells of *S. mediterranea*. The expression level of genes in obtained rRNA-depleted libraries was compared with publicly available poly(A)-enriched ones.

3.1.1 Development of an efficient rRNA depletion protocol for planarians

To deplete ribosomal RNA from planarian total RNA, we chose to develop a protocol based on the hybridization of rRNA-specific biotinylated DNA probes to ribosomal RNA and the capture of the resulting biotinylated rRNA-DNA hybrids using streptavidin-coated magnetic beads (Fig. 3.1A).
Fig. 3.1 (A) Schematic representation of rRNA depletion workflow. Biotinylated DNA probes are hybridized to rRNA, followed by subtraction of DNA-rRNA hybrids using streptavidin-coated magnetic beads. (B) Separation profile of planarian total RNA. The large peak at 1527 nts corresponds to the co-migrating 18S rRNAs and the two fragments of processed 28S rRNA. LM denotes the lower size marker with a length of 15 nts. (C) Increasing concentration of NaCl improves the efficiency of rRNA removal. (D) Total planarian RNA after rRNA depletion.

To that end, we synthesized a pool of 88 3’-biotinylated 40-nt long DNA oligonucleotide probes (siTOOLs Biotech, Martinsried, Germany). We chose probes with a length of 40 nucleotides since their melting temperature in DNA-RNA hybrids was shown to be $80 \pm 6.4^\circ$C in the presence of 500 mM sodium ions [194]. This would allow probe annealing at 68°C in agreement with generally used hybridization temperatures [54]. The probes were devised in antisense orientation to the following planarian rRNA species: 28S, 18S type I and type II, 16S, 12S, 5S, 5.8S, internal transcribed spacer (ITS) 1 and ITS 2 (Additional file 1).

To assess RNA quality and the efficiency of rRNA removal, we used capillary electrophoresis (Fragment Analyzer, Agilent). The separation profile of total planarian RNA only shows a single rRNA peak at about 1500 nt (Fig. 3.1B). This single rRNA peak is the result of the 28S rRNA being processed into two fragments that co-migrate with the peak of 18S rRNA [178]. Planarian 28S rRNA processing usually entails the removal of a short
3.1 rRNA depletion workflow

sequence located in the D7a expansion segment of 28S rRNA. The length of the removed fragment thereby varies between 4 nt and 350 nt amongst species (e.g. in *Dugesia japonica* 42 nt are removed) [178]. Intriguingly, a similar rRNA maturation process was observed in particular protostomes, in insects such as *D. melanogaster* and in other Platyhelminthes [178, 182, 189]. In addition to the 28S rRNA maturation phenomenon, *S. mediterranea* possesses two 18S rDNA copies that differ in about 8% or their sequence. However, only 18S rRNA type I was reported to be functional and predominantly transcribed [21, 22].

As a first step during rRNA removal all 88 DNA probes were annealed to total planarian RNA. Since RNA molecules are negatively charged, the presence of cations facilitates the annealing of probes to RNA by reducing the repulsion of phosphate groups [33, 90]. Although Mg$^{2+}$ ions are most effective in stabilizing the tertiary structure of RNA and in promoting the formation of DNA-RNA hybrids, they are also cofactors for multiple RNases [47] and hence should not be included during ribodepletion. Therefore, we tested several hybridization buffers with varying concentrations of sodium ions (Fig. 3.1C). In the absence of sodium ions we could only accomplish an incomplete removal of rRNA. However, hybridization buffers with a sodium concentration >250 mM led to the complete depletion of rRNA from planarian total RNA (Fig. 3.1C, 3.1D). Thus, optimal rRNA removal requires the presence of >250 mM NaCl in the hybridization buffer. As we obtained the most consistent results in the presence of 500 mM NaCl, we decided to utilize this salt concentration in our procedure (Fig. 3.1D).

3.1.2 Detailed rRNA depletion workflow

Required buffers:

Hybridization buffer (20 mM Tris-HCl (pH 8.0), 1 M NaCl, 2 mM EDTA)
Solution A (100 mM NaOH, 50 mM NaCl, DEPC-treated)
Solution B (100 mM NaCl, DEPC-treated)
2xB&W (Binding&Washing) buffer (10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 2 M NaCl)
Dilution buffer (10 mM Tris-HCl (pH 7.5), 200 mM NaCl, 1 mM EDTA)

Protocol:

1. RNA input

The following protocol efficiently depletes ribosomal RNA from 100 ng up to 1.5 µg of total RNA (Fig. 3.2). The procedure can be scaled up for higher RNA input.
2. Hybridization of biotinylated DNA oligonucleotides (40-mers) to ribosomal RNA (step 1 Fig. 3.1A).

- For oligonucleotide annealing the following reaction is set up:

 - 10 µl hybridization buffer
 - 10 µl RNA input (1 µg)
 - 1 µl 100 µM biotinylated DNA probes

- Gently mix the solution by pipetting and incubate at 68°C for 10 min.
- Immediately transfer the tubes to 37°C for 30 min.

3. Prepare Dynabeads MyOne Streptavidin C1 (Invitrogen) according to the manufacturer’s instruction as follows:

- For each sample use 120 µl (10 µg/µl) of bead slurry.
- Wash the beads twice with an equal volume (or at least 1 ml) of Solution A. Add Solution A and incubate the mixture for 2 min. Then, place the tube on a magnet for 1 min and discard the supernatant.
- Wash the beads once in Solution B. Split the washed beads into two separate tubes for two rounds of subtractive rRNA depletion (Round1 and Round2). Place the beads on a magnet for 1 min and discard Solution B.
- Resuspend the beads for Round1 in 2xB&W buffer to a final concentration of 5 µg/µl (twice the original volume). The beads for Round1 will be used during the first round of rRNA depletion. For the second round of depletion, resuspend the beads for Round2 to a final concentration of 5 µg/µl in 1xB&W buffer. The beads for Round2 will be used during a second depletion step. Keep the beads at 37°C until use.

4. Capture of DNA-RNA hybrids using magnetic beads (step 2 Fig. 3.1A).

- Briefly spin the tubes containing total RNA and probes. Then, add the following:

 - 100 µl dilution buffer
 - 120 µl washed magnetic beads (5 µg/µl) in 2xB&W (Round1)

- Resuspend by pipetting up and down ten times. The final concentration of NaCl during this step is 1 M. Incubate the solution at 37°C for 15 min. Gently mix the sample by occasional tapping.
3.1 rRNA depletion workflow

- Place on magnet for 2 min. Carefully remove the supernatant and add it to the additional 120 µl of washed magnetic beads in 1xB&W (Round2). Incubate the mixture at 37°C for 15 min with occasional gentle tapping.

- Place on magnet for 2 min. Carefully transfer the supernatant into a new tube and place on magnet for another 1 min to remove all traces of magnetic beads from the sample (step 3 Fig. 3.1A).

- Transfer the supernatant into a fresh tube.

5. Use the RNA Clean & Concentrator-5 kit (Zymo Research) to concentrate the ribodepleted samples, to carry out size selection and to digest any remaining DNA using DNase I treatment as described [206].

![Fig. 3.2](image)

Fig. 3.2 Removal of DNA-rRNA hybrids was performed in two consecutive steps using streptavidin-coated magnetic beads resuspended in 2x of 1x B&W buffer.

3.1.3 Ribosomal RNA depletion in planarian species related to *S. mediterranea*

Ribosomal DNA genes are among the most conserved sequences in all kingdoms of life. They are present in all organisms and are widely used for the construction of phylogenetic trees [197]. The latter is possible because of the low rate of nucleotide substitutions in rRNA sequences (about 1 - 2% substitutions occur per 50 million years based on bacterial 16S rRNA) [129]. The divergence of 18S rRNA sequence between different families of freshwater planarians lays in the range of 6 – 8%, while interspecies diversity does not exceed 4% [22]. Therefore, low rRNA divergence between taxa can be exploited for the design of universal probes for rRNA depletion in different organisms. To assess the specificity and universal applicability of our DNA probes, we depleted rRNA in flatworm species of the order Tricladida, all related to *S. mediterranea* (Fig. 3.3).
Total RNA separation profiles were analyzed before and after rRNA depletion of six planarian species from three different families. Two of these, *Dugesia japonica* and *Cura pinguis*, belong to the same family as *S. mediterranea*, the Dugesiidae family. In addition, we examined three species from the family Planariidae (*Planaria torva*, *Polycelis nigra* and *Polycelis tenuis*) and one species from the genus *Camerata* of Uteriporidae (subfamily Uteriporinae). For all tested species our DNA probes proved efficient for the complete removal of rRNA, which migrated close to 2000 nt on all electropherograms (Fig. 3.4). The peak at about 100 nt in the rRNA-depleted samples represents a variety of small RNAs (5S and 5.8S rRNA, tRNAs, and other small RNA fragments), which escaped the size selection aimed at retaining only fragments longer than 200 nt. Taken together, the probes developed for *S. mediterranea* can be utilized for the removal of ribosomal RNA in a multitude of planarian species and may even be generally applicable to all studied planarian species.

Fig. 3.3 Phylogenetic tree showing the taxonomic position of the analyzed planarian species.
3.1 rRNA depletion workflow

Fig. 3.4 Total RNA separation profile before and after rRNA depletion. In all species analyzed, the 28S rRNA undergoes “gap deletion” maturation, which results in two co-migrating fragments. Both 28S fragments co-migrate with 18S rRNA, resulting in a single rRNA peak.

3.1.4 Comparison of RNA-seq libraries prepared using rRNA-depletion or poly(A) selection

To assess the efficiency of rRNA removal and the specificity of our DNA probes, we prepared and analyzed RNA-seq libraries from rRNA-depleted total RNA from *S. mediterranea*. Total RNA was extracted from 100,000 FACS-sorted planarian neoblasts, resulting in 70 – 100 ng of input RNA. RNA-seq libraries were prepared and sequenced as described [206] following 15 cycles of PCR amplification. The subsequent analysis of sequenced libraries confirmed
the efficient removal of rRNAs. Less than 2% of total sequenced reads constituted ribosomal RNA (Fig. 3.5A). Next, we compared our rRNA-depleted libraries with three publicly available planarian poly(A) enriched RNA-Seq datasets (poly(A) libraries) [34, 164, 120]. In case publicly available libraries were sequenced in paired-end mode, we analyzed only the first read of every pair to minimize the technical variation between libraries [196].

As shown in Figure 3.5A, the ribodepleted libraries contained significantly less rRNA compared to all poly(A) enriched ones. Interestingly, the major rRNA species that remained after poly(A) selection was mitochondrial 16S rRNA (Fig. 3.5B). Although the planarian genome has a high A-T content (>70%) [56], we could not attribute the overrepresentation of 16S rRNA in poly(A) libraries to a high frequency or longer stretches of A nucleotides as compared to other rRNA species (Fig. 3.5C). Moreover, using publicly available planarian poly(A)-position profiling by sequencing (3P-Seq) libraries [89], which allow the identification of 3’-ends of polyadenylated RNAs, no polyadenylation sites were detected in 16S rRNA. Therefore, we speculate that upon folding of 16S rRNA stretches of A nucleotides become exposed and facilitate the interaction with oligo-dT beads during transcript poly(A) selection.
We next assigned the analyzed datasets to the planarian genome. In ribodepleted libraries more than 13% of all mapped reads were assigned to intergenic regions, compared to 7% – 10.5% for poly(A)-enriched ones (Fig. 3.5D).

![Fig. 3.6 (A)](image)

Sequencing depth and number of reads mapped to the planarian genome in analyzed rRNA-depleted and poly(A)-enriched samples. (B) Comparison of gene expression in transcripts per million (TPM) between planarian rRNA-depleted and poly(A)-enriched (polyA) RNA-Seq data. The Pearson’s correlation coefficient is indicated. (C) Increased representation of histone mRNAs in rRNA-depleted libraries. (D) Boxplot of log2 fold differences in the expression values of transposable elements between rRNA-depleted and poly(A)-enriched libraries.

In addition, the percentage of unmapped reads was higher in rRNA-depleted libraries and constituted about 17.6%, which is on average 2.4% more than in poly(A) datasets. We speculate that for rRNA-depleted libraries the proportion of reads mapping to intergenic regions will increase in the future, once complete assemblies of the planarian genome are available. Currently, the planarian genome assembly consists of 481 scaffolds [56]. To detect gene expression variabilities between the analyzed libraries, we performed principal component analysis for the clustering of gene expression data. Although all poly(A) selected libraries were grouped closer together along the PC1 scale, all four analyzed datasets appeared...
as separated clusters. This indicates considerable variation even amongst different batches of poly(A) libraries (Fig. 3.5E). One possible source of such variation might be the sequencing depth of the analyzed libraries, which varied considerably from 13 to 64 millions of mapped reads (Fig. 3.6A).

Next, to estimate the correlation between rRNA-depleted and poly(A) libraries, we calculated their Pearson correlation coefficients (Fig. 3.6B). We found the highest Pearson correlation between rRNA-depleted libraries and polyA B2 samples ($R = 0.94$, $p < 2.2e^{-16}$) (Fig. 3.6B). This could be due to their similar sequencing depth compared to the other polyA libraries. The transcripts, whose abundance was most significantly affected by poly(A) selection, were found to be histone mRNAs that are known to lack polyA tails (Fig. 3.6B, 3.6C) [116]. Their expression level appeared to be $8 – 10 \log_2$ fold higher in our rRNA-depleted libraries. Moreover, in the rRNA-depleted libraries we also detected significantly higher expression levels for transposable elements (Fig. 3.6B, 3.6D). Out of 316 planarian transposable element families [12], 254 were on average upregulated 5.2, 3.5 and 4.0 \log_2 fold as compared to polyA B1, polyA B2 and polyA B3 libraries, respectively (Fig. 3.6D). Moreover, the rRNA-depleted libraries revealed that Burro elements, giant retroelements found in planarian genome [56], gypsy retrotransposons, hAT and Mariner/Tc1 DNA transposons are the most active transposable elements in planarian stem cells. Although some transposable elements are polyadenylated, long-terminal repeat elements (LTRs) lack poly(A)-tails [79]. This renders their detection in poly(A)-enriched sample non-quantitative.

3.1.5 Non-specific depletion of coding transcripts in ribodepleted libraries

In using custom rRNA-depletion probes, our major concern was that the utilized probes would lead to unspecific co-depletion of planarian coding transcripts. To exclude this possibility, we first mapped our pool of 88 DNA probes in antisense orientation to the planarian transcriptome allowing up to 8 mismatches and gaps of up to 3 nt. This mapping strategy requires at least 75% of a DNA probe to anneal to its RNA target. It resulted in only 11 planarian genes to be potentially recognized by 20 DNA probes from our oligonucleotide pool. Next, we carried out a differential expression analysis of these 11 potentially targeted transcripts between the ribodepleted libraries and poly(A)-selected ones. The analysis revealed that 9 out of 11 potential targets were downregulated at least 1-fold in at least two poly(A) experiments (Fig. 3.7A).
3.1 rRNA depletion workflow

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SMESG000014330.1</td>
<td>0.27</td>
<td>0.24</td>
<td>0.38</td>
<td>0.005</td>
<td>-5.82</td>
<td>-5.30</td>
<td>-6.41</td>
<td>rhodopsin-like orphan gpcc</td>
</tr>
<tr>
<td>SMESG0000068163.1</td>
<td>0.38</td>
<td>0.15</td>
<td>0.08</td>
<td>0.006</td>
<td>-6.13</td>
<td>-4.39</td>
<td>-3.89</td>
<td>NA</td>
</tr>
<tr>
<td>SMESG000069530.1</td>
<td>0.26</td>
<td>0.102</td>
<td>0.027</td>
<td>0.006</td>
<td>-5.99</td>
<td>-4.34</td>
<td>-2.51</td>
<td>NA</td>
</tr>
<tr>
<td>SMESG000022863.1</td>
<td>10.05</td>
<td>2.78</td>
<td>10.47</td>
<td>0.60</td>
<td>-4.23</td>
<td>FALSE</td>
<td>-4.34</td>
<td>NA</td>
</tr>
<tr>
<td>SMESG0000201061.1</td>
<td>10.94</td>
<td>10.32</td>
<td>15.38</td>
<td>5.38</td>
<td>-1.27</td>
<td>-0.82</td>
<td>-1.77</td>
<td>MS3_11207 (MYOGF)</td>
</tr>
<tr>
<td>SMESG000067473.1</td>
<td>17.62</td>
<td>6.69</td>
<td>20.57</td>
<td>1.13</td>
<td>-4.21</td>
<td>-2.44</td>
<td>-4.45</td>
<td>MS3_08805 (GID8)</td>
</tr>
<tr>
<td>SMESG000044545.1</td>
<td>30.91</td>
<td>32.22</td>
<td>34.31</td>
<td>16.72</td>
<td>-1.11</td>
<td>-0.82</td>
<td>-1.25</td>
<td>REEP2</td>
</tr>
<tr>
<td>SMESG000043656.1</td>
<td>48.2</td>
<td>24.8</td>
<td>36.5</td>
<td>12.3</td>
<td>-2.20</td>
<td>-0.88</td>
<td>-1.81</td>
<td>COX11</td>
</tr>
<tr>
<td>SMESG000066644.1</td>
<td>1020.6</td>
<td>605.8</td>
<td>798.9</td>
<td>51.9</td>
<td>-4.53</td>
<td>-3.41</td>
<td>-4.19</td>
<td>RPL26</td>
</tr>
</tbody>
</table>

Fig. 3.7 (A) Expression levels in TPM (transcripts per million) of nine transcripts targeted by probes utilized for ribodepletion. LFC stands for the log2 fold difference in the expression level of individual transcripts between ribodepleted and poly(A) enriched libraries. (B) RNA-seq coverage profile for SMESG000067473.1, SMESG000021061.1 and SMESG000044545.1 in rRNA-depleted (riboDepleted) and poly(A) enriched (polyA B1, polyA B2, polyA B3) libraries. The location of antisense probes mapping to the transcripts is marked in red. (C) The same as in (B) for SMESG000066644.1, SMESG000043656.1 and SMESG000022863.1.
As the abundance of three transcripts (SMESG000014330.1 (rhodopsin-like orphan gpcr [159]), SMESG000068163.1 and SMESG000069530.1 (both without annotation)) was very low in all polyA libraries (<0.6 transcripts per million (TPM)), we did not consider these any further. However, the remaining six transcripts were found to be significantly down-regulated in ribodepleted libraries. For three of these targeted genes (SMESG000067473.1, SMESG000021061.1 and SMESG000044545.1) the probes map in regions that display significant RNA-seq coverage (Fig. 3.7B). Therefore, their lower expression values in ribodepleted libraries is likely attributed to probe targeting. Intriguingly, for the remaining three targets (SMESG000066644.1, SMESG000043656.1 and SMESG000022863.1 annotated as RPL26 (ribosomal protein L26), COX11 (cytochrome c oxidase copper chaperone) and an unknown transcript, respectively) the probes were predicted to map to loci that do not exhibit RNA-seq coverage (Fig. 3.7C). The likely reason for this is inaccurate gene annotation. Alternatively, target regions might represent repetitive, multimerizing sequences, which we excluded during read mapping. Taken together, our off-target analysis revealed that a maximum of 11 genes might be affected by our rRNA removal procedure - a very low number that underscores the specificity and efficiency of our depletion protocol.

3.1.6 Applicability of the described ribodepletion method to other organisms

To demonstrate the applicability of the developed rRNA workflow to other organisms, we employed our protocol to the depletion of ribosomal RNA from *Salmonella typhimurium* using a pool of organism-specific DNA probes (riboPOOL) developed by siTOOLS Biotech (Martinsried, Germany) (Fig. 3.8A). We compared the libraries resulting from the application of our newly developed procedure to the established rRNA depletion workflow that utilizes the Ribo-Zero rRNA Removal Kit (Bacteria) from Illumina. Removal of rRNA from a *S. typhimurium* sample using riboPOOL probes was as successful as a depletion reaction using Ribo-Zero, leaving as low as 3.4% rRNA in the final library (Fig. 3.8A). Moreover, an overall comparison of gene expression levels showed a high correlation (Pearson correlation R = 0.98, p < 2.2e-16) between riboPOOL depleted libraries and libraries prepared with the Ribo-Zero kit (Fig. 3.8B). Taken together, the rRNA depletion workflow described in this manuscript is robust and easily applicable to any bacterial and eukaryotic species of choice utilizing organism-specific probes.
3.2 Discussion part 2

For samples from typical model organisms, such as human, mouse and rat, there are numerous commercial kits available for the removal of rRNA, e.g. NEBNext from New England Biolabs, RiboGone from Takara and RiboCop from Lexogen. This also applies to typical gram-positive and gram-negative bacteria (MICROBExpress from Thermofisher and Ribominus from Invitrogen). Moreover, these kits can be utilized with a certain degree of compatibility for the depletion of rRNA in organisms of distinct phylogenetic groups (e.g. RiboMinus Eukaryote Kit for RNA-Seq, Invitrogen). However, as the breadth of molecularly tractable organisms has increased in the past decade, the necessity to develop organism-specific rRNA depletion techniques has risen as well [31, 51, 158]. To date, custom protocols either use biotinylated antisense probes along with streptavidin-coated magnetic beads for rRNA removal or rely on the digestion of DNA-RNA hybrids with RNase H [88, 131, 104, 125].

In this study, we describe a novel rRNA depletion workflow for the planarian flatworm *S. mediterranea*. Our protocol is based on the hybridization of biotinylated DNA probes to planarian rRNA followed by the subsequent removal of the resulting rRNA-DNA hybrids by using streptavidin-labeled magnetic beads. We tested the efficiency and specificity of our protocol by depleting rRNA from total RNA of neoblasts, planarian adult stem cells. A comparative analysis between rRNA-depleted and poly(A)-selected libraries revealed that our protocol retains all information present in poly(A) selected libraries. Over and

![Fig. 3.8 (A)](image-url) Percentage of rRNA in sequenced libraries from *Salmonella typhimurium*. Libraries were prepared using our developed rRNA depletion workflow with organism-specific riboPOOL probes (siTOOLs Biotech) or the commercially available Ribo-Zero kit (Illumina). (B) Scatter plot comparing transcript abundance (TPM) between ribodepleted libraries using our developed workflow and the commercial Ribo-Zero kit. The Pearson’s correlation coefficient is indicated.
above, we found ribodepleted libraries to contain additional information on histone mRNAs and transposable elements. The abundance of histone mRNAs in neoblasts is not unexpected, as planarian neoblasts are the only dividing cells in adult animals and thus require histones for packaging newly synthesized DNA [115, 143]. The high expression values of transposable elements likely reflects our ability to detect both non-poly(A) transcripts and degradation products of transposable elements generated by PIWI proteins loaded with transposon-specific piRNAs [170, 80]. Planarian PIWI proteins and their co-bound piRNAs are abundant in neoblasts and essential for planarian regeneration and animal homeostasis [145, 170, 80, 133]. Using our rRNA depletion protocol, we are now able to estimate the actual abundance of transposons and other repeats in planarians. This is important as these transcripts are generated from a large fraction of planarian genome (about 62% of the planarian genome comprise repeats and transposable elements) [56]. In addition, the planarian PIWI protein SMEDWI-3 is also involved in the degradation of multiple protein-coding transcripts in neoblasts (was shown in Chapter 2). Such mRNA degradation processes complicate the analysis of mRNA turnover using poly(A) enriched libraries, as these only represent mRNA steady-state levels. To study dynamic changes in mRNA levels is especially intriguing during neoblasts differentiation, as then the steady-state levels of numerous mRNAs are changing [174, 109]. Using our rRNA-depletion protocol, we can now determine whether mRNA expression changes are due to altered transcription rates or due to increased degradation. Taken together, rRNA-depleted RNA-seq libraries are particularly valuable for the investigation of piRNA pathway and RNA degradation processes, since they retain the dynamics inherent to cellular RNA metabolism. Furthermore, by successfully depleting rRNA from other freshwater triclad species, we could demonstrate the versatility of the DNA probes designed for S. mediterranea. Last, we validated the efficiency of the developed workflow by removal of rRNA in the gram-negative bacterium S. typhimurium. Therefore, the proposed workflow likely serves as an efficient and cost-effective method for rRNA depletion in any organism of interest.
Chapter 4

Conclusion

This study marks a significant step forward in understanding the role of piRNAs and PIWI proteins in planarian adult stem cells. The presented data reveal the general organization principles of the piRNA pathway in planarian flatworms and it uncovers the involvement of planarian piRNAs in mRNA surveillance.

The main findings of this study are summarized below (Fig. 4.1):

• The piRNA pathway regulates the expression of transposable elements at the level of transcription. In addition, post-transcriptional regulation is ensured by the degradation of TEs in a heterotypic ping-pong cycle operated predominantly by SMEDWI-2 and SMEDWI-3;

• SMEDWI-3 degrades a class of mRNA transcripts in a homotypic ping-pong cycle in adult stem cells;

• SMEDWI-3 also binds to another group of transcripts without triggering their degradation into piRNAs;

• The degree of complementarity between the piRNA guide and its target defines whether SMEDWI-3 binds or degrades targeted transcript;

• SMEDWI-3 ping-pong targets are present in nuclear foci in planarian epithelial cells along with the SMEDWI-2 protein. This indicates the presence of an active piRNA pathway in the planarian epidermis;

• Numerous systems biology techniques, such as Degradome-Seq, RNA-Seq, small RNA-Seq, HITS-CLIP and CLASH were successfully adapted to planarian flatworms;
• A ribosomal RNA depletion workflow was developed for planarian flatworms. It preserves the dynamic information of transcriptomes and facilitates the investigation of the piRNA pathway, in particular, and processes such as RNA degradation and decay, in general.
Neoblasts

![Neoblasts diagram]

Epidermis

![Epidermis diagram]

Fig. 4.1 Schematic representation of planarian piRNA pathway. In neoblasts piRNA pathway operates with the use of three SMEDWI proteins, ensuring the silencing of transposable elements and numerous mRNAs of coding genes. Epidermal piRNA pathway acts only by means of SMEDWI-2. The group 1 SMEDWI-3 ping-pong targets concentrate at the nuclear periphery of epidermal cells forming the foci reminiscent of the accumulation of piRNA precursor in nuclear structures of *Drosophila’s* follicle cells.
Chapter 5

Experimental procedures

5.1 Experimental procedures of Results part 1

5.1.1 Chemicals reagents

Reagents used in this study were purchased from Carl Roth GmbH & Co (Karlsruhe, Germany) unless specified otherwise in the text.

5.1.2 Primer’s sequences

All primer sequences used in the study can be found in Appendix A.

5.1.3 Planarian culture

Asexual Schmidtea mediterranea, clonal line CIW4 [4], were maintained at 20°C in Montjuic solution (1.6 mM NaCl, 1.0 mM CaCl₂, 1.0 mM MgSO₄, 0.1 mM MgCl₂, 0.1 mM KCl, 1.2 mM NaHCO₃, pH 7.0) in the presence of 50 μg/ml gentamycin [23]. Animals were fed weekly with homogenized calf liver and starved at least 7 days prior to experiments.

5.1.4 Antibodies production and purification

The anti-SMEDWI-1 antibody specific to peptide NEPEGPTEDQSLS [59] was a kind gift of Dr. K. Bartscherer (Hubrecht Institute, Utrecht, Netherlands).

The anti-SMEDWI-2 antibody was generated by immunizing rabbits with the peptide KKDEEGVEKEK (BioGenes, Berlin, Germany). Rabbit antiserum was used for all experiments.
For the production of a polyclonal anti-SMEDWI-3 antibody, the N-terminal 200 amino acids of SMEDWI-3 were fused to GST expressed in *Escherichia coli* strain Rosetta DE3 and then used for immunization (BioGenes, Berlin, Germany). Obtained SMEDWI-3 antiserum was further purified against the antigen coupled to NHS-activated sepharose (GE Healthcare) according to manufacturer's instruction.

5.1.5 Expression of Strep-tagged SMEDWI

Full-length SMEDWI-1, SMEDWI-2 and SMEDWI-3, each carrying a Strep-SUMO-Star tag, were expressed in High Five insect cells. Following 72 hours of protein expression, cells were pelleted, snap-frozen in liquid nitrogen and homogenized in RIPA buffer (25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% NP-40, 0.5% Sodium deoxycholate, 0.1% SDS). Primers used for the cloning of full-length genes can be found in Appendix A.2.

5.1.6 Western blotting

For protein sample preparation, 3 - 5 snap-frozen worms (5 - 7 mm) were homogenized in 50 µl lysis buffer (30 mM HEPES (pH 7.7) (Sigma, H989), 150 mM NaCl, 10 mM KCl, 4 mM MgCl₂, 1 mM DTT, 0.5% Triton X-100, Complete EDTA-free protease inhibitor (Roche, 4693159001)) using a micropestle. The lysate was then cleared by centrifugation at 21,130 g for 15 min at 4°C. Protein concentration of the extracts was measured using Bradford assay. In total, 15 - 20 µg of whole cell extract was loaded per lane and separated on 8% Bis-Tris gel before transfer onto nitrocellulose membrane. In total, 15 - 20 µg of protein extract was loaded per lane. Antibodies for Western blots were used with the following dilutions:

- rabbit polyclonal anti-SMEDWI-1: 1:2,000;
- rabbit antiserum anti-SMEDWI-2: 1:500;
- rabbit polyclonal anti-SMEDWI-3: 1:4,000;
- mouse monoclonal anti-Strep-tag (iba, 2-1207-001): 1:1,000;
- mouse monoclonal anti-α-Tubulin (Sigma, T5168): 1:4,000;
- goat anti-rabbit IgG-peroxidase (Sigma, A0545): 1:20,000;
- goat anti-mouse IgG-peroxidase (Sigma, A9917): 1:20,000.

5.1.7 RNA interference

cDNA fragments for *smedwi-1* (SMESG000036375.1) (nucleotides (nts) 1579 - 2555), *smedwi-2* (SMESG000069984.1) (nt 81 - 975) and *smedwi-3* (SMESG000081970.1) (nt...
1347 - 2332) were cloned into the pPR-T4P vector (kind gift of Dr. J. Rink, Max Planck
Institute of Molecular Cell Biology and Genetics, Dresden, Germany) using SLIC-cloning
[103]. Unc-22 dsRNA from C. elegans comprising nt 6616 - 7358 was used as a control.

dsRNA synthesis and RNAi feeding experiments were carried out as described [154] with
the following modifications. In vitro transcription reaction was set in the presence of 8%
PEG 8000. Synthesized dsRNA was DNase I treated (Roche, 04536282001) and sodium
acetate/ethanol precipitated. The detailed protocol can be found in Appendix B.1. Primers
used for cloning gene fragments into pPR-T4P vector and for in vitro transcription template
preparation can be found in Appendix A.4 and Appendix A.3.

For smedwi-2 RNAi experiments animals were fed twice (0 dpf (days post feeding) and 3
dpf) and sacrificed on day 7 post feeding. For smedwi-1 and smedwi-3 RNAi experiments
animals were fed three times (0 dpf, 3 dpf and 6 dpf) and sacrificed on day 11 post feeding.

5.1.8 Flow cytometry

FACS sorting of X1 and Xins cells was performed by Dr. Elizabeth M. Duncan (University
of Kentucky, Lexington, USA) as described [34].

5.1.9 Slide-section immunofluorescence

Slide-section immunofluorescence was performed by rinsing animals 3 times in planarian
water, incubating in 5% N-acetyl-cysteine in 1x PBS for 5 min with light hand-rolling of
tubes and then fixing in 4% PFA in 0.5x PBS overnight at 4°C with no rocking. Then
dehydrated into ethanol by 30%, 50%, 70% dilutions in water and samples were stored
for a minimum overnight and maximum 7 days at 4°C prior to embedding. Samples were
automatedly infiltrated with paraffin (Thermoscientific, Richard-Allan Type 9) using a Delta
Pathos processor (Milestone Medical, Sorisole Italy). The automation included a 4 min
rinse in 85% ethanol, 100% ethanol for 25 min at 65°C, 100% isopropanol for 35 min
at 68°C, 2 changes of paraffin at 70°C each, 8 min and then 6 min (Tissue Infiltration
Medium: Surgipath through Leica). Following a final step of 20 min in 65°C paraffin, the
tissue was embedded in paraffin for transverse sectioning onto Superfrost Plus slides (Fisher
Scientific) at 5 microns using a Leica RM2255 microtome (Leica Biosystems Inc. Buffalo
Grove, IL). Slides were deparaffinized by incubating in 100% Xylene for 3 min (repeated
twice), 100% ethanol for 3 minutes (repeated twice), 80% ethanol rinse and a water rinse.
Slides were fixed with 4% PFA for 3 hours at room temperature (RT) and washed with PBS
three times. Antigen retrieval was performed in citrate buffer heated to 95°C for 15 min,
cooled down for 20 min and then washed in TBST for 30 min. Slides were blocked with 4 drops of Background Buster (Innovex Biosciences) and incubated for 30 min at RT. Primary antibody was applied and incubated over night at 4°C. The following dilutions were used: anti-SMEDWI-1 at 1:200, anti-SMEDWI-3 at 1:4000 and anti-Y12 at 1:500. Slides were washed with TBST three times and secondary Alexafluor antibodies (647, 488) were applied at 1:500 at RT for 1 hour. Slides were washed three times with TBST and mounted using Prolong Gold Mounting media (Thermofisher). Sections were imaged using a Zeiss 710 with a Nikon 20x Plan-Apo 0.8 NA objective.

5.1.10 Whole-mount in situ hybridization

Whole-mount in situ hybridization were performed as described [34]. Investigated transcripts have the following gene identifiers: *ankl* (SMESG000076223.1), *dapk1* (SMESG000043474.1), *traf6* (SMESG000000294.1), *histone H2B* (SMESG000052758.1) [156].

5.1.11 Immunoprecipitation of SMEDWI proteins

Approximately 70 worms (7 - 10 mm) were collected, snap-frozen in liquid nitrogen and homogenized in 4 ml lysis buffer (30 mM HEPES (pH 7.7) (Sigma, H989), 150 mM NaCl, 10 mM KCl, 4 mM MgCl$_2$, 1 mM DTT, 0.5% Triton X-100, Complete EDTA-free protease inhibitor (Roche, 4693159001)) with a Dounce homogenizer. The planarian lysate was cleared by centrifugation at 50,000 g for 30 min at 4°C, followed by lysate filtration through a 0.20 µm cellulose acetate syringe filter (LLG labware, 9.055501). The protein concentration of the resulted lysate was about 3 mg/ml. For each immunoprecipitation experiment 1 ml of cleared lysate was incubated with 10 µg of purified antibody or 30 µl of antiserum for 2 hours at 4°C with gentle rotation. Pre-immune serum was used as a negative control. Next, 50 µl pre-equilibrated Dynabeads Protein A (Invitrogen, 10002D) were added to each sample and the incubation was continued for an additional 2 hours at 4°C with gentle rotation. Beads were washed twice with low salt buffer (30 mM HEPES (pH 7.7), 150 mM NaCl, 10 mM KCl, 4 mM MgCl$_2$, 5 mM EDTA, 1 mM DTT, 0.1% Triton X-100) and twice with high salt buffer (30 mM HEPES (pH 7.7), 300 mM NaCl, 10 mM KCl, 4 mM MgCl$_2$, 5 mM EDTA, 1 mM DTT, 0.1% Triton X-100). Next, beads were transferred to a new tube and resuspended in 200 µl of Proteinase K buffer (200 mM Tris-HCl (pH 7.5) 300 mM NaCl, 25 mM EDTA, 1.5% SDS) containing 120 µg/ml Proteinase K (Roche, 03115879001). To extract piRNAs that co-immunoprecipitated with SMEDWI proteins, the beads were incubated with Proteinase K for 20 min at 42°C and 1000 rpm, followed
by phenol-chloroform extraction and ethanol precipitation of all isolated nucleic acids. For radioactive 5’-labeling the extracted nucleic acids were then dephosphorylated with calf intestine phosphatase (NEB, M0290S), isolated with peqGOLD Trifast (peqlab, 30-2010) and labeled with [γ-\(^{32}\)P]-ATP (PerkinElmer, NEG002A250UC) using T4 polynucleotide kinase (NEB, M0201S) according to the manufacturer’s protocol. Labeled RNA was resolved on a 10% denaturing urea polyacrylamide gel. The detailed protocol can also be found in Appendix B.2.

5.1.12 Small RNA library preparation

Small RNA libraries were constructed as described [63] with some modifications. Briefly, total small RNA from 100,000 FACS-sorted X1 and Xins cells, or RNA co-immunoprecipitated by SMEDWI-1, SMEDWI-2, or SMEDWI-3 were used for small RNA cloning. Pre-adenylated 3’-adapters were ligated to the 3’-end of all RNAs by a truncated T4 RNA Ligase 2 (NEB, M0351S) in the presence of 10% PEG 8000 at 16°C overnight. The addition of PEG 8000 considerably improved the ligation efficiency of 3’-adapter to piRNAs. piRNAs carry 2’-O-methyl group on their 3’-end, which generally hampers adapter ligation. Next, T4 RNA Ligase 1 was used to add an RNA adapter to the 5’-end of all RNAs at 37°C for 1 hour. Reverse transcription of the resulted product was performed with SuperScript III (Invitrogen, 18080085) followed by PCR amplification, gel purification and size selection. Deep sequencing was performed on Illumina HiSeq1000 (single-end 50 nt) or Illumina NextSeq 500 (single-end 75 nt) platforms. The detailed protocol can be found in Appendix B.3. Primer and adapter sequences used for library preparation can be found in Appendix A.5.

5.1.13 Ribosomal RNA depletion

Ribosomal RNA depletion was performed as described in Chapter 3. The complete protocol can be found in Appendix B.4.

5.1.14 RNA library preparation

RNA libraries from 100,000 FACS-sorted planarian X1 and Xins cells were constructed as described [206]. Next generation sequencing was carried out on an Illumina Next-Seq 500 platform (paired-end 75 nt or single-end 75 nt mode).
SMEDWI-3 HITS-CLIP

SMEDWI-3 HITS-CLIP libraries were prepared as described [185] with the following modifications: Approximately 50 worms (7 - 10 mm) were dissociated in cold calcium- and magnesium-free buffer with 1% BSA (CMFB). Dissociated cells were then filtered, pelleted, and resuspended in cold CMFB buffer. Next, cells were irradiated at 254 nm using a Stratalinker 1800 (Stratagene) once with 400 mJ/cm² and then again after 30 sec at 200 mJ/cm² [124]. Then, cells were pelleted, snap-frozen in liquid nitrogen and resuspended in lysis buffer (30 mM HEPES (pH 7.7) (Sigma, H989), 150 mM NaCl, 10 mM KCl, 4 mM MgCl₂, 1 mM DTT, 0.5% Triton X-100, 0.8 U/µl Rnasin (Promega, N2515), Complete EDTA-free protease inhibitor (Roche, 03115879001)). After treatment with DNase I (Roche, 04536282001) the whole cell extract was centrifuged at 50,000 g for 30 min at 4°C. To immunoprecipitate SMEDWI-3 with crosslinked RNA, lysate was incubated with 18 µg of anti-SMEDWI-3 antibody for 2 hours at 4°C with gentle rotation, followed by incubation with 150 µl Dynabeads Protein A slurry (Invitrogen, 10002D) for another 2 hours at 4°C with gentle rotation. Next, beads were washed twice with low salt buffer (30 mM HEPES (pH 7.7), 150 mM NaCl, 10 mM KCl, 4 mM MgCl₂, 5 mM EDTA, 1 mM DTT, 0.1% Triton X-100), twice with high salt buffer (30 mM HEPES (pH 7.7), 500 mM NaCl, 10 mM KCl, 4 mM MgCl₂, 5 mM EDTA, 1 mM DTT, 0.1% Triton X-100) and twice with 1x PNK buffer (70 mM Tris-HCl (pH 7.5), 10 mM MgCl₂, 5 mM DTT, 0.1% Triton). Following 3’-adapter ligation RNA-protein complexes were eluted from the beads, separated on an 8% Bis-Tris gel and transferred onto a nitrocellulose membrane (GE Healthcare, 10600012). RNA-protein complexes were then excised from the nitrocellulose membrane and crosslinked RNA was extracted using Proteinase K (Roche, 03115879001), followed by 5’-adapter ligation and DNase I treatment. Ligated RNA was then reverse transcribed and PCR-amplified in two steps as described [185]. Size-specific libraries were extracted excised from a 6% urea PAGE, collected using Spin-X filter tubes (Costar, CLS8163) and precipitated with ethanol. Prepared libraries were sequenced on an Illumina NextSeq 500 platform (single-end 75 nt). The detailed protocol can be found in Appendix B.5. Primer and adapter sequences can be found in Appendix A.6.

SMEDWI-3 CLASH

CLASH libraries were prepared as described for SMEDWI-3 HITS-CLIP with slight modifications [169]. After immunoprecipitation of crosslinked RNA-SMEDWI-3 complexes, samples were treated with RNase T1 (0.1 U in 500 µl of lysis buffer) for 5 min at 20°C. Next,
samples were washed once with low salt buffer, once with high salt buffer and three times
with 1x PNK buffer. To phosphorylate the mRNA 5’-ends for chimera formation and discard
possible DNA contaminants, sample were treated with DNase I and PNK 3’-phosphatase
minus. Chimera ligation was conducted overnight in the presence of T4 RNA ligase 1 (1U/µl)
and 10% PEG 8000. Next, 3’-ends of crosslinked transcripts were dephosphorylated with
Antarctic phosphatase. Adapter ligation, library preparation and sequencing were carried out
as described for SMEDWI-3 HITS-CLIP.

5.1.17 Degradome library preparation

Degradome libraries (5’-monophosphate-dependent cloning of mRNA fragments) were
prepared from 2.5 µg total RNA of 1.8 million X1 FACS sorted cells as described [188].
Next generation sequencing was carried out on an Illumina Next-Seq 500 platform (single-
end 75 nt mode). The detailed protocol can be found in Appendix B.6. Primer and adapter
sequences can be found in Appendix A.7.

5.1.18 Processing of small RNA libraries

Statistical and graphical analysis were performed with R/Bioconductor [48]. To process
small RNA-seq data, 3’-adapters were trimmed using cutadapt [113] and filtered against
planarian rRNA sequences with SortMeRNA [85]. Only sequences longer than 18 nt and
shorter than 40 nt were kept for the following analysis. Processed reads were mapped against
planarian genome [56] by using bowtie (1.1.2) [91] with the following settings “-v 0 -a
–best –strata”. The resulting alignment files were converted into bed2 format with piPipes
[61]. To account for multi-mapping reads, the total read count was divided by the number
of locations that they map to. These weighted counts were used to characterize piRNAs
mapping to genomic features with BEDTools (2.25.0) [140]. To compare the abundance
of mRNA-derived piRNAs associated with SMEDWI-1, SMEDWI-2 and SMEDWI-3 and
to compute the small RNA coverage of target genes, piRNAs were normalized to RPM
sequences, and only uniquely mapping piRNAs were considered. The detailed pipeline can
be found in Appendix C.1.

5.1.19 Calculation of the ping-pong signature

Homotypic and heterotypic ping-pong signatures were calculated with piPipes [61].
5.1.20 Sequence logos and Venn diagrams

To generate sequence logos with seqLogo (1.46.0) piRNA sequences mapped to the reference genome were collapsed to avoid biases due to the presence of highly abundant piRNAs. Only mapped piRNAs that appear in at least two replicates were used to generate Venn diagrams with the eulerr package (4.1.0).

5.1.21 piRNA cluster prediction

proTRAC version 2.4.2 [149] was used to assign 405,725 sequence reads to 270 piRNA clusters, covering 3.8 million base pairs. ProTRAC was run with “-clsize 1000, -pimax 40, pimin 26, -pdens 0.09”.

5.1.22 Processing of the ChIP-Seq libraries

H3K4me3 ChIP-Seq reads were processed by Eric Ross (Stowers Institute for Medical Research, Kansas City, MO, USA) as following. Reads were aligned to the Schmidtea mediterranea genome with bowtie (version 1; parameters: -k 100 –strata) and formatted with samtools (version 1.8) [56, 102, 91, 156]. Peaks were called with macs2 (version:2.1.1.20160309; parameters: -q 0.01) [205]. The R library DiffBind was used to identify peaks differentially bound between smedwi-2(RNAi), smedwi-3(RNAi) and unc-22 (C. elegans) RNAi as control. BEDTools (version: v2.26.0) was used to calculate the overlap of differential peaks with annotated repeat families [140, 56, 156].

5.1.23 Processing of RNA-seq libraries

Reads after removal of 3’-adapters and quality filtering with Trimmomatic (0.36) [15] were trimmed to a length of 50 nt. Next, sequences mapped to planarian rRNAs were removed with SortMeRNA [85]. Reads were assigned to the reference genome or consensus transposable element sequences [12] in strand-specific mode and quantified with kallisto [17] with “-single -l 350 -s 30 -b 30” for single-end libraries and “-b 30” for paired-end libraries. Differential expression analysis of transposable elements upon RNAi knockdown was performed with edgeR (3.20.9) using the TMM normalization method [118, 147]. Differentially expressed planarian transcripts were identified by sleuth (0.29.0) [137]. The detailed pipeline can be found in Appendix C.2.
5.1.24 Processing of HITS-CLIP libraries

Before mapping reads to the planarian genome, 3’-adapters were removed with cutadapt, sequences mapping to planarian rRNA were discarded with SortMeRNA, and all duplicated reads were collapsed with the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). Large and small CLIP reads from separately prepared upper and down band (Appendix B, Fig. B.8) libraries were pooled for their subsequent joint analysis. CLIP reads were mapped to the planarian genome using the bwa aligner with the following settings “bwa aln –n 0.06 –q 20” [101]. CLIP sites were determined employing CIMS analysis as implemented in the CTK tool kit [203, 168]. Briefly, sites with aligned CLIP reads carrying substitutions and deletions (FDR ≤ 0.001) that appeared in at least in two libraries and with a total number of overlapping unique tags k at the aligning position ≥ 30 were considered as SMEDWI-3 targeted CLIP regions.

For the annotation of CLIP regions to genomic features reads were mapped to the planarian genome using STAR [32] with the following settings: –outFilterMatchNmin 15 –outFilterMatchNminOverLread 0.72. Uniquely mapped CLIP libraries were annotated to transposable elements, piRNA clusters and coding genes with BEDTools [140]. The employed pipeline can be found in Appendix C.3.

5.1.25 Genic piRNA density across SMEDWI-3 HITS-CLIP target sites

To estimate the abundance of genic piRNAs across SMEDWI-3-targeted CLIP-sites, we calculated the density of the mapped SMEDWI-3 immunoprecipitated piRNAs per base pair of respective CLIP sites. Briefly, CLIP sites were defined as merged overlapping CLIP regions. Next, piRNAs were mapped to the CLIP sites with the following parameters “–v1 –a –best –strata”. Weighted counts for piRNAs mapping to CLIP regions in sense orientation were normalized to the length of the respective CLIP region (in bp).

5.1.26 Gene-set enrichment analysis (GAGE)

To analyze the coordinated differential expression of SMEDWI-3 transcripts, we carried out gene-set enrichment analysis with GAGE (2.28.2) [111]. Expression changes of the two groups of genes upon RNAi knockdown in X1 and Xins cells were assessed with edgeR [147].
5.1.27 Processing of Degradome-seq libraries

Degradome libraries were processed using piPipes [61]. Only genes that had at least 5 unique pairs of 5’ to 5’ 10 nt overlap between degradome reads and antisense piRNAs were considered as degraded in the ping-pong cycle.

5.1.28 GO term enrichment analysis

GO term enrichment analysis was conducted using topGO (2.30.1) with Fisher’s exact test [2]. GO-term gene annotations were obtained from PlanMine [16, 157].

5.1.29 Identification of chimeric reads

Chimeric reads were identified using the CLIP-chimaeric pipeline with default parameters [3, 184]. To calculate the base-pairing density for Group 1, Group 2 and Group 3 only chimeric reads with piRNAs part mapping within ±20 bp from the midpoint of mRNAs fragments were considered.

5.1.30 Data availability

All sequencing data have been deposited in the Gene Expression Omnibus (GEO), series GSE122199.

5.2 Experimental procedures of Results part 2

5.2.1 Ribosomal RNA depletion

Ribosomal RNA depletion was conducted as described in Chapter 3. To evaluate Fragment analyzer separation profiles, planarian total RNA (1000 ng for each sample) was subjected to rRNA depletion using varying concentrations of NaCl (0 mM, 50 mM, 250 mM, 500 mM) in the hybridization buffer.

5.2.2 Planarian rRNA-depleted RNA-Seq dataset

Raw sequencing reads for planarian rRNA-depleted dataset were downloaded from the project GSE122199 (GSM3460490, GSM3460491, GSM3460492). The libraries were prepared and sequenced as described in method section 5.1.14.
5.2.3 Publicly available RNA-Seq datasets

Raw sequencing reads for all datasets were downloaded from the Sequence read archive (SRA). Planarian polyA B1 rep1, polyA B1 rep2, polyA B1 rep3 correspond to SRR2407875, SRR2407876, and SRR2407877, respectively, from the Bioproject PRJNA296017 (GEO: GSE73027) [34]. Planarian polyA B2 rep1, polyA B2 rep2 samples correspond to SRR4068859, SRR4068860 from the Bioproject PRJNA338115 [120]. Planarian polyA B3 rep1, polyA B3 rep2, polyA B3 rep3 correspond to SRR7070906, SRR7070907, SRR7070908, respectively, (PRJNA397855) [164]. Only first read of the pair was analyzed for polyA B2 and polyA B3 from Bioprojects PRJNA338115 and PRJNA397855.

5.2.4 Salmonella typhimurium SL1344 datasets

In total, four samples were sequenced for Salmonella typhimurium SL1344 by IMGM Laboratories GmbH (Martinsried, Germany) on an Illumina NextSeq 500 platform (single-end, 75 bp). One sample represented untreated total RNA, two samples comprised RiboZero and one RiboPool-treated total RNA. Sequencing data are available at the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under the accession number GSE132630.

5.2.5 Processing of RNA-Seq libraries

Planarian RNA-seq data were processed as follows: Reads after removal of 3’-adapters and quality filtering with Trimmomatic (0.36) [15] were trimmed to a length of 50 nt. For libraries sequenced in pair-end mode, only the first read of a pair was considered for the analysis. Next, sequences mapped to planarian rRNAs were removed with SortMeRNA [85]. Reads were assigned to the reference genome version SMESG.1 [56] or consensus transposable element sequences [12] in strand-specific mode. The abundance of transcripts was quantified with kallisto [17] using the settings: "--single -l 350 -s 30 -b 30". Differential gene expression analysis was performed with DeSeq2 [110]. To annotate RNA-Seq reads to coding regions (CDS), reads were mapped to the planarian genome using STAR [32] with the following settings: --quantMode TranscriptomeSam --outFilterMultimapNmax 1. RNA sequencing data from Salmonella typhimurium SL1344 were processed with READemption 0.4.3 using default parameters [43]. Sequenced reads were mapped to the RefSeq genome version NC_016810.1 and plasmids NC_017718.1, NC_017719.1, NC_017720.1.
5.2.6 Phylogenetic tree

The phylogenetic tree was constructed using NCBI taxonomic names at phyloT
(https://phylot.biobyte.de). The tree was visualized using the Interactive Tree of Life
(iToL) tool [99].

5.2.7 Analysis of DNA probe specificity

DNA probe sequences were mapped to the planarian transcriptome SMEST.1 [156] using the
BURST aligner (v0.99.7LL; DB15) [1] with the following settings "-fr -i .80 -m FORAGE".
Only sequences that mapped to genes in antisense orientation with no more than 8 mismatches
were considered as potential probe targets.
References

Table A.1

Primer sequences used for cloning N-terminal 200 amino acids of SMEDWI-3 into pGEX vector. Part of primer corresponding to vector overhang is in lower-case.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Feature</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGEX</td>
<td>Forward</td>
<td>TGACTGACTGACGATCTGCCTCGC</td>
</tr>
<tr>
<td>linearization</td>
<td>Reverse</td>
<td>TTCCGGGGATCCACGCGGAACC</td>
</tr>
<tr>
<td>smedwi-3</td>
<td>Forward</td>
<td>gttccgctggtatcccggaATGTCAGGAAGTAGTGGAATAGG TAGAGG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>aggcagatcgtcagtcgtcaTTCTTTTATTTTGAGTTGATATTCACGTC</td>
</tr>
</tbody>
</table>
Table A.2
Primer sequences used for cloning Strep-tagged SMEDWI proteins into pFL vectors. Part of primer corresponding to vector overhang is in lower-case.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Feature</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>smedwi-1</td>
<td>Forward</td>
<td>atgaccggtggcagcagatgggeATGGATTCAACTAATGTTACAAGTG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>gtacttcgacaagttctactaCTGAGACACAAAGTAAAATTCATAG</td>
</tr>
<tr>
<td>smedwi-2</td>
<td>Forward</td>
<td>attgagctcagagaacagatgtggaATGGAAGAAAATCCCGGTGAAA</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>gtacttcgacaaggtctactaCAGATAAAAACAGGCGGTT</td>
</tr>
<tr>
<td>smedwi-3</td>
<td>Forward</td>
<td>attgagctcagagaacagatgtggaATGAGCGGTTCAGCGGTAT</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>gtacttcgacaagttctactaCAAGTAGAACAGACCGGTCAC</td>
</tr>
</tbody>
</table>

Table A.3
Primer sequences used for cloning gene fragments into pPR-T4P vector. Part of a primer corresponding to vector overhang is in lower-case.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Feature</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>pPR-T4P</td>
<td>Forward</td>
<td>CGGGTAGAATTGGCCGAGGC</td>
</tr>
<tr>
<td>linearization</td>
<td>Reverse</td>
<td>CGGGATGGTAATGCCGCTAG</td>
</tr>
<tr>
<td>smedwi-2</td>
<td>Forward</td>
<td>ggctaggcattaccatcccgAGGTAAAATGGGAAATCGTG</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>taccggccgccaattctaccggTCCTGGTATTTTGTAACAGC</td>
</tr>
<tr>
<td>smedwi-3</td>
<td>Forward</td>
<td>ggctaggcattaccatcccgGAACACGTATGGAACCTACA</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>taccggccgccaattctaccgcTTGGTCTTGGCAATGCGAT</td>
</tr>
</tbody>
</table>
Table A.4

Primer sequences used for in vitro transcription template preparation. Part of the primer corresponding to T7 promoter overhang is in lower-case.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7+AA18 for T4P</td>
<td>ttgaatacgactcataagggagCCACCGGTTCCATGGGCTAG</td>
</tr>
<tr>
<td>PR244 rev T4P</td>
<td>GGCACCAAGGGTATTGTGG</td>
</tr>
</tbody>
</table>
Next-generation sequencing library preparation

Table A.5 Primer and adapter sequences used for small RNA-seq library preparation. The index part of the Primer 2 is in bold. Standard Illumina TruSeq indexes were used in the study. C7 stands for C7 amino linker modification at the 3’end. 5’(P) is a 5’-phosphate group.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>3’-adapter</td>
<td>5’(P)-TGGAATTCTCGGGTGCCAAGG-C7</td>
</tr>
<tr>
<td>5’RNA adapter</td>
<td>GUUCAGAGUUCUACAGUCCGACGAUC</td>
</tr>
<tr>
<td>RT Primer (RTP)</td>
<td>TGGAATTCTCGGGTGCCAAGG</td>
</tr>
<tr>
<td>Primer 1 (RP1)</td>
<td>AATGATACGGCGACCACCGAGATCTACAGGTTCAGAGTTCTACAGTCCGA</td>
</tr>
<tr>
<td>Primer 2 (=TruSeq index5 primer)</td>
<td>CAAGCAGAAGACGGCATACGAGATCCTGTGTGACT</td>
</tr>
<tr>
<td></td>
<td>GGAGTTCTCTGGCACCAGGAATTCCA</td>
</tr>
</tbody>
</table>

Table A.6 Primer and adapter sequences used for HITS-CLIP library preparation. The index part of the Primer 2 is in bold. Standard Illumina TruSeq indexes were used in the study. Inv.dT stands for inverted dT. 5’(P) is a 5’-phosphate group.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>adapter RA3(-P)</td>
<td>UGGAAUUUCUGGGUGCCAAGG-inv.dT</td>
</tr>
<tr>
<td>adapter RA3(+P)</td>
<td>5’(P)-UGGAAUUUCUGGGUGCCAAGG-inv.dT</td>
</tr>
<tr>
<td>RNA RA5 adapter</td>
<td>GUUCAGAGUUCUACAGUCCGACGAUC</td>
</tr>
<tr>
<td>RT Primer (RTP)</td>
<td>TGGAATTCTCGGGTGCCAAGG</td>
</tr>
<tr>
<td>DP5 primer</td>
<td>GTTCAGAGTTCTACAGTCCGACGATC</td>
</tr>
</tbody>
</table>
Table A.7 Primer and adapter sequences used for Degradome-seq library preparation. The index part of the Primer 2 is in bold. Standard Illumina TruSeq indexes were used in the study.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA RA5 adapter</td>
<td>GUUCAGAGUUCUACAGUCCGACGAUC</td>
</tr>
<tr>
<td>Deg-RT primer</td>
<td>GCACCCCGAGAATTCCANNNNNNNNN</td>
</tr>
<tr>
<td>Deg-PCR-1l</td>
<td>CTACACGTTCAGAGTTCTACAGTCCGA</td>
</tr>
<tr>
<td>Deg-PCR-1r</td>
<td>GCCTTGGCACCCGAGAATTCCA</td>
</tr>
<tr>
<td>Primer 1 (RP1)</td>
<td>AATGATACGGCGACCACCCGAGATCTACACGTTTCAGAGTTCTACAGTCCGA</td>
</tr>
<tr>
<td>Primer 2 (=TruSeq index5 primer)</td>
<td>CAAGCAGAAGACGGCATAACGAGATCACTGTTGACTGGAGTTCTTGGCACCAGAATTCCA</td>
</tr>
</tbody>
</table>
Appendix B

Experimental protocols

B.1 dsRNA synthesis for RNA interference

Day 1

1. Template preparation for dsRNA synthesis.

 • Mix the following components to prepare master mix for 10 PCR reactions (50 µl each):

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>457.4</td>
<td>H₂O</td>
</tr>
<tr>
<td>55</td>
<td>10x ThermoPol Reaction buffer (NEB, B9004S)</td>
</tr>
<tr>
<td>11</td>
<td>10 µM T7+AA18 for T4P</td>
</tr>
<tr>
<td>11</td>
<td>10 µM PR244 rev T4P</td>
</tr>
<tr>
<td>11</td>
<td>10 mM dNTPs mix (NEB, N044S)</td>
</tr>
<tr>
<td>4.6</td>
<td>Taq DNA Polymerase (NEB, M0267S)</td>
</tr>
<tr>
<td>1 ng (per reaction)</td>
<td>pPR-T4P plasmid with a gene fragment</td>
</tr>
</tbody>
</table>

 • PCR amplification program
2. PCR product purification

- Purify PCR product with QIAquick PCR Purification Kit (QIAGEN, 28104) according to manufacturer’s instruction.
- Elute PCR product in 30 µl of Elution buffer
- Control the quality and size of the amplified product on 0.8% agarose gel (Figure B.1).

![Figure B.1](image_url)

Fig. B.1 PCR product with flanking T7 RNA Polymerase promoter regions will serve as a template for in vitro transcription. Amplified products correspond to the following cDNA fragments: nt 6616 - 7358 for *unc-22*, nt 1579 - 2555 for *smedwi-1*, nt 81 - 975 for *smedwi-2* and nt 1347 - 2332 for *smedwi-3*.

3. In vitro transcription

- Mix the transcription reaction at RT to avoid the precipitation of DNA by spermidin, which is present in 10x IVT buffer (400 mM Tris-HCl (pH 8.0), 50 mM...
DTT, 10 mM Spermidin, 0.1% (v/v) Triton X-100). However, all stock solutions should be kept on ice.

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>H$_2$O</td>
</tr>
<tr>
<td>10 (1 µg)</td>
<td>Template (100 ng/µl)</td>
</tr>
<tr>
<td>12.5</td>
<td>20 mM rNTPs mix</td>
</tr>
<tr>
<td>2</td>
<td>500 mM MgCl$_2$</td>
</tr>
<tr>
<td>10</td>
<td>40% PEG 8000</td>
</tr>
<tr>
<td>5</td>
<td>10x IVT buffer</td>
</tr>
<tr>
<td>1</td>
<td>T7 RNA Polymerase (no less than 5 mg/ml)</td>
</tr>
</tbody>
</table>

Incubate the reaction at 37°C for 4 hours or overnight at RT.

4. DNase I treatment and dsRNA precipitation

- Add 2 µl of DNase I (Roche, 04716728001) and 5.7 µl of 10x DNase incubation buffer to the transcription reaction. Incubate the mixture for 15 min at 37°C and 800 rpm.
- Stop the reaction by adding 6.4 µl of 500 mM EDTA (pH 8.0). Spin the mixture for 2 min at 21,130 g to precipitate inorganic pyrophosphate (white precipitate).
- Transfer the cleared reaction mix into new 1.5 ml low-binding tube. Add 7.1 µl 3 M CH$_3$COONa, 200 µl 100% ethanol (2.5 volumes of the reaction mix). Incubate transcribed dsRNA overnight at -20°C.

Day 2

- Precipitate dsRNA by centrifugation at 21,130 g for 30 min at 4°C.
- Discard the supernatant. Add 800 µl 75% ethanol and wash the pellets at 21,130 g for 5 min at 4°C.
- Carefully remove the supernatant and air-dry dsRNA pellets for 3 min.
- Resuspend dsRNA in 30 - 50 µl of H$_2$O incubating the pellet for 30 min at 37°C and 800 rpm.
5. dsRNA annealing

- Transfer dsRNA into PCR-tubes and anneal two RNA strands using following PCR program:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°C</td>
<td>3’0”</td>
<td></td>
</tr>
<tr>
<td>ramp to 70°C</td>
<td>0.1 °C/sec</td>
<td></td>
</tr>
<tr>
<td>70°C</td>
<td>3’0”</td>
<td></td>
</tr>
<tr>
<td>ramp to 50°C</td>
<td>0.1 °C/sec</td>
<td></td>
</tr>
<tr>
<td>50°C</td>
<td>3’0”</td>
<td></td>
</tr>
<tr>
<td>ramp to 25°C</td>
<td>0.1 °C/sec</td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>5’0”</td>
<td></td>
</tr>
</tbody>
</table>

6. Examine in vitro transcribed dsRNA with agarose electrophoresis

- Mix 1 µl of dsRNA with 20 µl of 1x Formamide loading dye.
 2x Formamide loading dye: 95% Formamide (v/v), 18 mM EDTA (pH 8.0), 0.025% SDS, 0.025% Bromophenol blue (w/v), 0.025% Xylene cyanol (w/v).
- Prepare 0.8% agarose gel in 1x TAE buffer with 0.5 µg/ml Ethidium Bromide to detect dsRNA. Run the gel at 130 V for 1 hour (Figure B.2).

![Fig. B.2 In vitro transcribed dsRNA.](image)

7. RNAi food preparation

- Aliquot 75 µl of 90% liver mixture (in 1x Monjuic solution) into PCR tubes.
• Mix 25 µl of 2 µg/µl dsRNA (50 µg) with 2 µl of red food dye (E124) to color RNAi food.

• Add dsRNA/dye solution to 75 µl of 90% liver mixture. Final concentration of dsRNA in the liver is 0.5 µg/µl.

• Feed worms with the RNAi food for 1 hour in the darkness.
B.2 Immunoprecipitation of SMEDWI

Day 1

1. Lysate preparation

- To prepare worm lysate sufficient for 6 samples collect approximately 100 worms (7 - 10 mm), discard 1x Montjuic solution and snap-freeze them in liquid nitrogen.
- Transfer the frozen worms into Dounce homogenizer and add 4 ml of ice-cold lysis buffer (30 mM HEPES (pH 7.7) (Sigma, H989), 150 mM NaCl, 10 mM KCl, 4 mM MgCl₂, 1 mM DTT, 0.5% Triton X-100, Complete EDTA-free protease inhibitor (Roche, 4693159001)). Dounce stroke the sample for 15 times.
- Clear planarian lysate by centrifugation at 50,000 g for 30 min at 4°C.

Optional*: After the centrifugation step filter planarian lysate through a 0.20 µm cellulose acetate syringe filter (LLG labware, 9.055501) to remove lipids, which interfere with Bradford assay.

- Measure protein concentration in the lysate with Bradford assay. Expected concentration is ≥ 4.5 mg/ml.

2. Indirect immunoprecipitation

- Aliquot 3 mg of planarian lysate into 1.5 ml low-binding tubes (Eppendorf, 0030108051).
- For each immunoprecipitation assay incubate the lysate with 10 µg of purified antibody or 30 µl of antiserum or pre-immune serum for 2 hours at 4°C with gentle rotation.
- To each sample add 50 µl of washed twice in lysis buffer Protein A Dynabeads slurry (Invitrogen, 10002D). Continue incubation for another 2 hours.
- Place the tubes in the magnet stand for 1 min until the supernatant appears clear.
- Discard the supernatant, remove tube from the magnet stand and resuspend Dynabeads in low salt buffer.

Low salt buffer: 30 mM HEPES (pH 7.7), **150 mM NaCl**, 10 mM KCl, 4 mM MgCl₂, 5 mM EDTA, 1 mM DTT, 0.1% Triton X-100
• Repeat the wash step one more time for a total of two washes with low salt buffer.

• Wash Dynabeads once with high salt buffer.

 High salt buffer: 30 mM HEPES (pH 7.7), **300 mM NaCl**, 10 mM KCl, 4 mM MgCl$_2$, 5 mM EDTA, 1 mM DTT, 0.1% Triton X-100

• Transfer washed beads into new 1.5 ml low-binding tube.

• Repeat the wash step with high salt buffer one more time for a total of two washes.

• Discard the supernatant and resuspend the beads in 200 µl of Proteinase K buffer.

 Proteinase K buffer: 200 mM Tris-HCl (pH 7.5) 300 mM NaCl, 25 mM EDTA, 1.5% SDS

• Add 2 µl of Proteinase K (12 mg/ml) (Roche, 03115879001) to the final concentration of 120 µg/ml. Incubate the beads with Proteinase K for 20 min at 42°C and 1000 rpm.

3. Phenol-Chloroform extraction

• Add 2 volumes (400 µl) of phenol-chloroform-isoamyl alcohol (P/C/I) solution for RNA extraction (Roth, X985.1) and vortex for 1 min. Leave the mixture to stand for 5 min at RT. To separate the aqueous layer containing RNA, centrifuge the mixture at high speed (>16,000 g) for 5 min at RT.

• Collect the upper aqueous phase in a new low-binding tube.

• Add 1 volume (200 µl) of 100% chloroform solution to the sample, vortex thoroughly for 1 - 2 min and centrifuge the mixture at high speed for 5 min at RT. This step removes traces of phenol in the collected aqueous layer.

• Collect the top aqueous solution and place into a new low-binding tube.

• Add 1 µl of glycogene (20 mg/ml) (Roche, 10901393001) to each sample and vortex to mix the solution.

• Add 2.5 volumes (375 µl) 100% ethanol. Mix solution well and precipitate overnight at -20 °C.
• Spin the solution at high speed for 30 min at 4 °C.

• Decant the supernatant and wash RNA pellet with 1 ml of 70% ethanol at high speed for 5 min at 4 °C.

• Carefully discard supernatant and shortly spin down the tube once again to collect the traces of ethanol.

• Remove residual ethanol and let the tube to air-dry with an open lid for 2 min.

• Resuspend RNA pellet in 17 µl of H₂O.

4. RNA 5′-end dephosphorylation

• Mix the following reagents:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>immunoprecipitated RNA</td>
</tr>
<tr>
<td>2</td>
<td>10x CutSmart Buffer (NEB, B7204S)</td>
</tr>
<tr>
<td>1</td>
<td>CIP (NEB, M0290)</td>
</tr>
</tbody>
</table>

Incubate the mixture for 30 min at 37 °C and 800 rpm.

5. Trifast extraction

• Add 500 µl peqGOLD Trifast (peqlab, 30-2010) to the sample and mix thoroughly for 1 min. Leave the solution to stand for 5 min at RT.

• Add 100 µl of 100% chloroform and vortex vigorously for 1 min. Incubate the mixture for 2 min at RT.

• Separate the aqueous layer containing RNA by centrifugation at high speed for 5 min at RT.

• Collect the top aqueous phase into new 1.5 ml low-binding tube.

• Add 1 µl of glycogene and vortex to mix the solution.

• Add 250 µl of 100% isopropanol. Mix solution well and precipitate RNA at RT for 10 min.

• Spin the solution at high speed for 15 min at RT.

• Carefully discard the supernatant and wash RNA pellet with 1 ml of 70% ethanol at high speed for 5 min at RT or 4 °C.
• Carefully discard the supernatant and shortly spin down the tube once again to collect the traces of ethanol.
• Remove residual ethanol and let the tube to air-dry with an open lid for 2 min.
• Resuspend RNA pellet in 16 µl of H₂O.

6. RNA 5’-end labeling with [γ-32P]-ATP

• To label RNA 5’-end prepare the following mixture:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>dephosphorylated RNA</td>
</tr>
<tr>
<td>2</td>
<td>10x PNK buffer (NEB, B0201S)</td>
</tr>
<tr>
<td>1</td>
<td>[γ-32P]-ATP</td>
</tr>
<tr>
<td>1</td>
<td>T4 PNK (NEB, M0201L)</td>
</tr>
</tbody>
</table>

7. Purification of labeled RNA with illustra Microspin G50 columns (GE Healthcaare, 27-5330-01) according to manufacturer’s instructions:

• Re-suspend the resin in the column by vortexing.
• Loosen the cap one-quarter turn and twist off the bottom closure.
• Place the column in the supplied Collection tube. Spin down for 1 min at 735 g.
• Place the column into a fresh 1.5 ml low-binding tube and apply sample to the top-center of the resin, being careful not to disturb the resin bed.
• Spin for 2 minutes at 735 g. The purified sample is collected in the bottom of the 1.5 ml microcentrifuge tube.

8. Denaturing RNA Urea-PAGE

• Mix labeled purified sample with 2x Formamide loading dye (95% Formamide (v/v), 18 mM EDTA (pH 8.0), 0.025% SDS, 0.025% Bromophenol blue (w/v), 0.025% Xylene cyanol (w/v)).
• Apply 10 µl of immunoprecipitated RNA on 10% Urea gel. For whole RNA extract load \(\leq 1 \text{ Bq/cm}^2 \) of radioactive substance.
• Separate labeled RNA on 16 cm long 10% Urea gel at 21 mA for 1 hour 20 min.
• Expose the gel to a phosphoimager plate for a few hours or overnight, and scan the plate.
B.3 TruSeq small RNA library preparation

Adenylation of 3’-adapter

Day 1

1. Prepare the following mix using 5’ DNA Adenylation Kit (NEB, E2610S):

<table>
<thead>
<tr>
<th>Volume (μl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3’-Adapter (100 μM)</td>
</tr>
<tr>
<td>4</td>
<td>5’ DNA Adenylation reaction buffer</td>
</tr>
<tr>
<td>26</td>
<td>H$_2$O</td>
</tr>
<tr>
<td>4</td>
<td>ATP (1 mM)</td>
</tr>
<tr>
<td>4</td>
<td>Mth RNA ligase</td>
</tr>
</tbody>
</table>

Incubate the mixture for 1 hour at 65°C followed by enzyme inactivation for 5’ at 85°C.

2. Phenol-Chloroform extraction

- Add to the mixture 160 μl of H$_2$O and 400 μl of phenol-chloroform-isoamyl alcohol (P/C/I) solution for extraction of nucleic acids (Roth, 0038.1).
- Vortex for 1 min. Leave the mixture to stand for 5 min at RT. To separate the aqueous layer containing the DNA, centrifuge the mixture at high speed (>16,000 g) for 5 min at RT.
- Collect the upper aqueous phase in a new low-binding tube.
- Add 1 volume (200 μl) of 100% chloroform solution to the sample, vortex thoroughly for 1 - 2 min and centrifuge the mixture at high speed for 5 min at RT. This step removes traces of phenol in the collected aqueous layer.
- Collect the top aqueous solution and place into a new low-binding tube.
- Add 1 μl of glycogene (20 mg/ml) (Roche, 10901393001) to each sample and vortex to mix the solution.
- Add 2.5 volumes (375 μl) 100% ethanol. Mix solution well and precipitate overnight at -20°C.
Day2

• Spin the solution at high speed for 30 min at 4 °C.
• Decant the supernatant and wash DNA pellet with 1 ml of 70% ethanol at high speed for 5 min at 4 °C.
• Carefully discard the supernatant and shortly spin down the tube once again to collect the traces of ethanol.
• Remove residual ethanol and let the tube to air-dry with an open lid for 2 min.
• Resuspend DNA pellet in 20 µl of H₂O.
• Measure the concentration of adenylated adapter (ssDNA) with spectrophotometer. Adjust the total concentration of the adapter to 5 µM (= 5 pmol/µl).

\[
c\frac{pmol}{µl} = \frac{c[ng]{µl]}*10^3}{7138\frac{g}{mol}};
\]

\[
added\ H₂O\ [µl] = (\frac{c[pmol]{µl]}{5})*V_{Sol}[µl] - V_{Sol}[µl]
\]

MW of adenylated 3’-Adapter = 7138 g/mol

V_{Sol} = Volume of adenylated 3’-Adapter (after concentration measurement)

small RNA-seq library preparation

Day1

1. Ligation of adenylated 3’-adapter

• Prepare the following reaction mix and pipette it into PCR tube:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>RNA IP (or 1 µg of total RNA)</td>
</tr>
<tr>
<td>2</td>
<td>10x T4 RNA Ligase Reaction Buffer</td>
</tr>
<tr>
<td>4</td>
<td>50% PEG 8000</td>
</tr>
<tr>
<td>1</td>
<td>5 µM adenylated 3’-adapter</td>
</tr>
</tbody>
</table>

Heat 30” at 90°C

| 2 | T4 RNA Ligase 2, trunc. K227Q (NEB, M0351S) |
B.3 TruSeq small RNA library preparation

- Incubate the mixture overnight \((\approx 16 \text{ hours})\) at 16\(^\circ\)C (in PCR cycler).

Day 2

- Incubate additional 1 hour at 37\(^\circ\)C.
- Inactivate the enzyme for 10 min at 65\(^\circ\)C.

- Spin down the reaction mixture and place on ice. The addition of PEG 8000 in the reaction mix considerably increases the ligation rate of 3’-adapter to piRNAs (Figure B.3).

![Fig. B.3 Small RNA-seq libraries prepared in the presence or absence of 10% PEG 8000 during 3’-adapter ligation. In the presence of PEG 8000 miRNAs band is not visible in the final library because of the high abundance of cloned piRNA species. Libraries -PEG 8000 had to be amplified deeper in order to see the piRNA band.](image)

2. Ligation of RNA 5’adapter

- Add following components to the ligated RNA-3’adapter:
Experimental protocols

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>RNA-3’adapter from the previous step</td>
</tr>
<tr>
<td>2</td>
<td>10x T4 RNA Ligase Reaction Buffer</td>
</tr>
<tr>
<td>0.4</td>
<td>100 mM ATP</td>
</tr>
<tr>
<td>3</td>
<td>100% DMSO</td>
</tr>
<tr>
<td>11.6</td>
<td>H₂O</td>
</tr>
<tr>
<td>11.6</td>
<td>10 µM 5’ RNA adapter</td>
</tr>
</tbody>
</table>

Heat 30’’ at 90°C

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>T4 RNA Ligase 1 (NEB, M0204S)</td>
</tr>
</tbody>
</table>

Incubate the mixture for 1 hour at 37°C.

- Spin down the reaction mix and place on ice. Store the sample at -80°C.

3. cDNA Synthesis

- To reverse transcribe RNA add to the PCR tube:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>RNA from ligation reaction</td>
</tr>
<tr>
<td>1</td>
<td>100 µM RT Primer (RTP primer)</td>
</tr>
<tr>
<td>4</td>
<td>5x first strand buffer</td>
</tr>
<tr>
<td>1.5</td>
<td>100 mM DTT</td>
</tr>
</tbody>
</table>

Incubate for 5 min at 65°C

Place for >1 min on ice

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 mM dNTP mix</td>
</tr>
<tr>
<td>0.5</td>
<td>100 mM DTT</td>
</tr>
<tr>
<td>1</td>
<td>SuperScript III RT (Invitrogen, 18080903)</td>
</tr>
</tbody>
</table>

- Vortex the mixture and spin down. Place into PCR cycler.

- PCR program:
4. Pilot PCR amplification

- To check successful cloning and to estimate required number of cycles, prepare the following master mix:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.25</td>
<td>H₂O</td>
</tr>
<tr>
<td>2</td>
<td>5x Phusion HF buffer</td>
</tr>
<tr>
<td>0.2</td>
<td>10 µM Primer 1 (RP1)</td>
</tr>
<tr>
<td>0.2</td>
<td>10 µM Primer 2 (=TruSeq index primer)</td>
</tr>
<tr>
<td>0.25</td>
<td>10 mM dNTP mix</td>
</tr>
<tr>
<td>0.1</td>
<td>Phusion Polymerase</td>
</tr>
<tr>
<td>+1</td>
<td>cDNA</td>
</tr>
</tbody>
</table>

- PCR amplification program. Try different number of cycles (12, 14 and 16 cycles):

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>98°C</td>
<td>1'00"</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10"</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>10"</td>
<td>16</td>
</tr>
<tr>
<td>72°C</td>
<td>30"</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>3’</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

5. Analyze amplified products on 16 cm 6% PAGE.

- Prepare O’RangeRuler 20bp DNA Ladder (Thermo Scientific, SM1323) by mixing 8 µl of the ladder with 2 µl 5x Phusion HF buffer to adjust salt concentration in relation to PCR reaction.
• Add 2 µl of 6x DNA loading dye (50% Glycerol in TE buffer, 0.25% Bromphenol Blue (w/v), 0.25% Xylene cyanol (w/v)) and 1 µl of Urea Diluent to the PCR reaction and prepared ladder.

• Load samples onto 16 cm 6% PAGE and separate amplified products in 1x TBE buffer at 180 V for 3 hours.

• Stain the gel with SYBR Gold Nucleic Acid Gel Stain (Invitrogen, S11494) in 1x TBE for 5 min.

A band appearing at the size of 118 bp corresponds to adapter-adapter dimer. Construct with cloned planarian piRNAs (∼32 nts) migrates at 150 bp (Figure B.3).

Day3

6. Scale up PCR amplification

• Add to the PCR tube the following components:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.25</td>
<td>H₂O</td>
</tr>
<tr>
<td>10</td>
<td>5x Phusion HF buffer</td>
</tr>
<tr>
<td>1</td>
<td>10 µM Primer 1 (RP1)</td>
</tr>
<tr>
<td>1</td>
<td>10 µM Primer 2 (=TruSeq index primer)</td>
</tr>
<tr>
<td>1.25</td>
<td>10 mM dNTP mix</td>
</tr>
<tr>
<td>0.5</td>
<td>Phusion Polymerase</td>
</tr>
<tr>
<td>+10</td>
<td>cDNA</td>
</tr>
</tbody>
</table>

• PCR amplification program:
B.3 TruSeq small RNA library preparation

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>98°C</td>
<td>1'0"</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10"</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>10"</td>
<td>16</td>
</tr>
<tr>
<td>72°C</td>
<td>30"</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

7. Separate amplified products on 16 cm 6% PAGE.

- Prepare O’RangeRuler 20bp DNA Ladder (Thermo Scientific, SM1323) by mixing 8 µl of the ladder with 2 µl 5x Phusion HF buffer to adjust salt concentration in relation to PCR reaction.

- Add 2 µl of 6x DNA loading dye (50% Glycerol in TE buffer, 0.25% Bromphenol Blue (w/v), 0.25% Xylene cyanol (w/v)) and 1 µl of Urea Diluent (Roth, 3047.1) to the PCR reaction and prepared ladder.

- Load samples onto 16 cm 6% PAGE splitting one reaction onto two lanes and separate amplified products in 1x TBE buffer at 180 V for 3 hours.

- Stain the gel with SYBR Gold Nucleic Acid Gel Stain (Invitrogen, S11494) in 1x TBE for 5 min.

- Cut out appropriate bands and place into 0.5 ml tubes punctured 2 - 3 times at the bottom with a gauge needle (0.8 mm).

- Place 0.5 ml tubes with gel pieces into 1.5 ml low-binding tubes and spin for 2 min at 16,000 g to shred gel into pieces.

- Discard 0.5 ml tubes.

- Add 300 µl of elution buffer (300 mM NaCl, 2 mM EDTA (pH 8.0)) to each tube and incubate overnight at 25°C and 1000 rpm or for 2 hours at 37°C and 1,000 rpm.

- To separate eluate from gel pieces, pipette the solution and gel pieces into SpinX centrifuge tube filter (Costar, CLS8163). Spin the tubes at 16,000 g for 2 min.

- Transfer eluate into 1.5 ml low-binding tubes.

- Add 1 µl of Glycogene, mix the solution by vortexing.
Experimental protocols

• To precipitate DNA add 2.5 volume of 100% ethanol and incubate overnight -20°C.

Day 4

• Spin the solution at high speed (>16,000 g) for 30 min at 4°C.
• Decant the supernatant and wash DNA pellet with 1 ml of 70% ethanol at high speed for 5 min at 4°C.
• Carefully discard the supernatant and shortly spin down the tube once again to collect the traces of ethanol.
• Remove residual ethanol and let the tube to air-dry with an open lid for 2 min.
• Resuspend DNA pellet in 12 µl of H2O.
• Analyze small RNA-Seq libraries on the Bioanalyzer or Fragment analyzer (Figure B.4).

Fig. B.4 Bioanalyzer electropherogram of prepared small RNA library. Peak at 151 bp corresponds to cloned piRNAs of 33 nt long.
B.4 Planarian rRNA depletion

1. Total RNA input.

The following protocol can be used for the efficient depletion of rRNA from 100 - 1500 ng of total RNA. It is possible to scale up the procedure for the larger RNA input by increasing the amount of biotinylated DNA probes and magnetic beads.

2. Hybridization of biotinylated DNA oligonucleotides (40-mers) antisense to rRNA

 • To anneal biotinylated DNA 40-mers to rRNA prepare the following mix:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>hybridization buffer</td>
</tr>
<tr>
<td>10</td>
<td>RNA sample (1 µg)</td>
</tr>
<tr>
<td>1</td>
<td>100 µM biotinylated DNA 40-mers probes</td>
</tr>
</tbody>
</table>

 Hybridization buffer: 20 mM Tris-HCl (pH 8.0), 1 M NaCl, 2 mM EDTA

 • Gently mix the solution by pipetting and incubate at 68°C for 10 min.
 • Immediately put the tube at 37°C for 30 min.

3. Prepare magnetic beads Dynabeads MyOne Streptavidin C1 (Invitrogen, 65001) according to the manufacturer’s instruction as following:

 • Resuspend the beads in the vial. For each sample use 120 µl (10 µg/µl) of beads slurry.
 • Wash the beads twice with the equal volume (or at least 1 ml) of Solution A (0.1 M NaOH, 0.05 M NaCl, DEPC-treated). Add the washing buffer and incubate the mixture for 2 min. Next, place the tube on a magnet for 1 min and discard the supernatant.
 • Wash the beads once in Solution B (0.1 M NaCl, DEPC-treated).
 • Resuspend the beads in 2xB&W buffer (10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 2M NaCl) to a final concentration of 5 µg/µl (twice original volume).
 • Separate the resuspended beads into 2 tubes. The beads from tube-1 will be used in the first round of rRNA depletion. Place the beads from tube-2 on a magnet for 1 min. Next, discard supernatant and resuspend in the equal volume of 1xB&W
Experimental protocols

(10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 1M NaCl). Final beads concentration is 5 µg/µl. Tube-2 will be used in a second depletion step. Keep it at 37°C until required.

4. Capture of RNA-DNA hybrids with magnetic beads

- Briefly centrifuge the tube with total RNA and probes. Add to the mixture the following:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>dilution buffer</td>
</tr>
<tr>
<td>120</td>
<td>magnetic beads (5 µg/µl) in 2xB&W (tube-1)</td>
</tr>
<tr>
<td>1</td>
<td>100 µM biotinylated DNA 40-mers probes</td>
</tr>
</tbody>
</table>

Dilution buffer: 10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 200 mM NaCl

- Resuspend by pipetting 10 times. Final concentration of NaCl is 1 M. Incubate the solution at 37°C for 15 min. Gently mix the sample occasionally by tapping.

- Place on magnet for 2 min. Carefully remove the supernatant and add additional 120 µl of washed magnetic beads in 1xB&W (tube-2). Incubate the mixture at 37°C for 15 min with occasional gentle tapping.

- Place on a magnet for 2 min. Carefully remove the supernatant into the new tube and place it again on a magnet for another 1 min to remove the traces of magnetic beads from the sample.

- Collect the supernatant into a new tube.

5. Sample concentration, size selection and DNase I treatment with RNA Clean & Concentrator-5 kit (Zymo Research, R1015) as described [206]. Briefly:

- Mix 180 µl of RNA binding buffer with 180 µl of 100% ethanol. Add this mixture to the 360 µl of depleted RNA and mix.

- Transfer the buffer/ethanol/RNA mixture into a Zymo-Spin IC column. Centrifuge at 16,000 g for 1 min. Discard the flow-through.

- Add 400 µl of RNA Wash buffer to the column, centrifuge at 16,000 g for 1 min. Discard the flow-through.
• To degrade contaminating DNA, mix the following reagents:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DNase I (10 U/µl)</td>
</tr>
<tr>
<td>3</td>
<td>10x DNase I buffer</td>
</tr>
<tr>
<td>26</td>
<td>RNA Wash buffer</td>
</tr>
</tbody>
</table>

Apply 30 µl of the mixture onto the column. Incubate the column at 37°C for 30 min. Centrifuge the column at 16,000 g for 1 min. Discard the flow-through.

• Add 400 µl of RNA Prep buffer to the column, centrifuge at 16,000 g for 1 min. Discard the flow-through.

• Add 800 µl RNA Wash buffer to the column, centrifuge at 16,000 g for 1 min. Discard the flow-through.

• Add 400 µl RNA Wash buffer to the column, centrifuge at 16,000 g for 1 min. Discard the flow-through.

• Centrifuge the column at 16,000 g for 2 minutes.

• To elute the RNA, replace the collection tube with a new low-binding 1.5 ml tube, and then add 7 µl of H₂O to the column (minimum elution volume is 6 µl). Incubate at RT for 1 min. Centrifuge the column at 16,000 g for 1 min to collect RNA/flow-through (Figure B.5).

Fig. B.5 Separation profile of planarian total RNA and rRNA depleted RNA. The large peak around 1527 nt corresponds to the 18S rRNAs and 28S rRNA, which was split into two parts during rRNA maturation.
B.5 SMEDWI-3 HITS-CLIP

Day 1

1. Dissociate worms into single cells to achieve uniform UV-irradiation

 • Pick 50 worms (7.5 - 10 mm) in a Petri dish.
 • Rinse worms quickly in a small volume of cold 1x CMFB buffer. Remove as much liquid as possible. Keep the Petri dish on ice.

10x CMF

<table>
<thead>
<tr>
<th>Component</th>
<th>For 100 ml solution</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH$_2$PO$_4 \times$2H$_2$O</td>
<td>0.35 g</td>
<td>25.6 mM</td>
</tr>
<tr>
<td>NaCl (5 M)</td>
<td>2.85 ml</td>
<td>142.8 mM</td>
</tr>
<tr>
<td>KCl (2 M)</td>
<td>5.1 ml</td>
<td>102.1 mM</td>
</tr>
<tr>
<td>NaHCO$_3$</td>
<td>0.79 g</td>
<td>94.2 mM</td>
</tr>
<tr>
<td>ddH$_2$O</td>
<td>up to 100 ml</td>
<td></td>
</tr>
</tbody>
</table>

Glucose stock: prepare solution of 120 mg glucose in 1 ml of H$_2$O.

1x CMFB: 1xCMF; 0.1% BSA; 240 mg/L glucose; 15 mM HEPES-hemiNa (pH 7.7) in H$_2$O.

For 50 ml 1x CMFB: 5 ml of 10x CMF; 0.5 g BSA; 100 µl of glucose stock (12 mg); 7.5 ml of 100 mM HEPES-hemiNa; 37.4 ml H$_2$O.

 • With a sharp blade dice the animals and collect them into 15 ml tube with 10 ml 1x CMFB.
 • Rock on nutator for 20 min with occasional pipetting (every 2 min pipette up and down for 6 times with 1 ml pipette tip).
 • Filter through 50 µm nylon cell strainer (CellTrics, 04-0042-2317) into 15 ml tube. Keep tubes on ice.
 • Spin cells at 290 g for 5 min at 4°C, discard supernatant and reconstitute cells in 15 ml of 1x CMFB.
 • Split reconstituted cells into two Petri dishes (7.5 ml each + 0.5 ml 1x CMFB) and irradiate with 254 nm UV-light in Stratalinker once with 400 mJ/cm2 and once with 200 mJ/cm2 with 30 sec interval in between to cool and mix cells on ice.
• Collect the cells and pellet them at 900 g for 3 min. Freeze in liquid nitrogen and keep at -80°C until required.

Day 2

2. Immunoprecipitation

Use low-binding tubes for all following steps.

• Resuspend each pellet in 750 µl of lysis buffer (30 mM HEPES (pH 7.7) (Sigma, H989), 150 mM NaCl, 10 mM KCl, 4 mM MgCl₂, 1 mM DTT, 0.5% Triton X-100, 0.8 U/µl RNasin (Promega, N2515), Complete EDTA-free protease inhibitor (Roche, 03115879001)) and let it stand for 10 min on ice.

• Ultracentrifuge lysate for 30 min at 50,000 g. Measure the concentration with Bradford assay.

• Add 18 µg of anti-SMEDWI-3 AB per sample (3 mg of cleared lysate) or 30 µl of pre-immune serum as a negative control. Incubated for 1 hour at 4°C with gentle rotation.

• Add 150 µl of Dynabeads Protein A slurry (Invitrogen, 10002D) washed twice in lysis buffer to each tube. Incubate for another 2 hours rotating at 4°C.

• Wash the beads two times with low-salt buffer.
 Low salt buffer: 30 mM HEPES (pH 7.7), 150 mM NaCl, 10 mM KCl, 4 mM MgCl₂, 5 mM EDTA, 0.1% Triton X-100, 1 mM DTT

• Wash the beads one time with high-salt buffer.
 High-salt buffer: 30 mM HEPES (pH 7.7), 500 mM NaCl, 10 mM KCl, 4 mM MgCl₂, 5 mM EDTA, 0.1% Triton X-100, 1 mM DTT

• Transfer washed beads into new 1.5 ml low-binding tube.

• Repeat the wash step with high salt buffer one more time for a total of two washes.

• Wash the beads two times with 1x PNK buffer.
 1x PNK buffer: 70 mM Tris-HCl (pH 7.5), 10 mM MgCl₂, 5 mM DTT, 0.1% Triton X-100
3. RNA 3’-end dephosphorylation with Antarctic phosphatase (AP)

- Prepare the following master mix to resuspend washed beads:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>H₂O</td>
</tr>
<tr>
<td>8</td>
<td>10x AP buffer</td>
</tr>
<tr>
<td>1</td>
<td>RNasin</td>
</tr>
<tr>
<td>2</td>
<td>AP enzyme (NEB, M0289S)</td>
</tr>
</tbody>
</table>

Add 80 µl of the master mix to each sample. Incubate for 20 min at 37°C and 1,000 rpm.

- Wash beads with ice-cold buffer:
 - Three times with 1x PNK buffer
 - Once with 1x PNK buffer without DTT and Triton X-100 (70 mM Tris-HCl (pH 7.5), 10 mM MgCl₂).

4. Radioactive labeling of 3’-adapter

- Radioactively label adapter beforehand as following:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>H₂O</td>
</tr>
<tr>
<td>2.5</td>
<td>50 µM RA3(-P)</td>
</tr>
<tr>
<td>25</td>
<td>[γ-³²P]-ATP</td>
</tr>
<tr>
<td>5</td>
<td>10x PNK buffer</td>
</tr>
<tr>
<td>8</td>
<td>T4 PNK enzyme (NEB, M0201S)</td>
</tr>
</tbody>
</table>

- Incubate the mixture for 30 min at 37°C. Then add 1 µl of 10 mM ATP and incubate the mixture for additional 5 min.

- Prepare Microspin G-25 columns (GE Healthcare, 27-5325-01). Resuspend the resin in a G-25 column by vortexing it upside down, and then break off the bottom seal and loosen the cap. Pre-centrifuge the column for 1 min at 735 g, and transfer the column to a fresh RNase-free microcentrifuge tube.
• Apply the phosphorylated adapter sample to the resin and spin the column for 2 min at 735 g at RT.

• Heat inactivate residual T4 PNK in the eluted labeled adapter RA3 for 20 min at 65°C.

• The labeled adapter can be used immediately or can be stored at -20°C until needed.

5. 3’-adapter ligation

• Resusped the beads in the following master mix:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>H2O</td>
</tr>
<tr>
<td>8</td>
<td>10x T4 RNA ligase buffer</td>
</tr>
<tr>
<td>2</td>
<td>100% DMSO</td>
</tr>
<tr>
<td>16</td>
<td>50% PEG 8000</td>
</tr>
<tr>
<td>8</td>
<td>10 mM ATP</td>
</tr>
<tr>
<td>1</td>
<td>RNasin</td>
</tr>
<tr>
<td>8</td>
<td>T4 RNA ligase 1 to 1U/µl (NEB, M0204S)</td>
</tr>
<tr>
<td>4</td>
<td>[γ-32P]-RA3 adapter</td>
</tr>
</tbody>
</table>

Incubate at 16°C for 1 hour with gentle rotation.

• Add additional 5 µl of 100 µM RA3(+P) and incubate overnight at 16°C with gentle rotation.

Day 3

• Wash beads with ice-cold buffer:
 – One time Low-salt wash buffer
 – One time High-salt wash buffer
 – Transfer washed beads into new 1.5 ml low-binding tubes
 – Two times with 1x PNK buffer

6. Treat the beads with T4 PNK to restore mono phosphate at the 5’-end of cross-linked RNA:
• Add 80 μl of PNK mix to each tube:

<table>
<thead>
<tr>
<th>Volume (μl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>H₂O</td>
</tr>
<tr>
<td>8</td>
<td>10x T4 PNK buffer</td>
</tr>
<tr>
<td>8</td>
<td>10 mM ATP</td>
</tr>
<tr>
<td>1</td>
<td>RNasin</td>
</tr>
<tr>
<td>0.5</td>
<td>DNAse I (15 U)</td>
</tr>
<tr>
<td>4</td>
<td>T4 PNK enzyme (NEB, M0201S)</td>
</tr>
</tbody>
</table>

Incubate for 30 min at 37°C and 1,000 rpm.

• Wash the beads with ice-cold buffer:
 – One time Low-salt wash buffer
 – One time High-salt wash buffer
 – Two times with 1x PNK buffer

• After removing the final wash buffer, elute protein-RNA complexes with 20 μl of 1x SDS loading buffer diluted in 1x PNK buffer.

• Incubate the mixture for 12 min at 70°C and 1,000 rpm.
 6x SDS buffer: 300 mM Tris (pH 6.8), 12% SDS, 600 mM DTT, 0.6% Bromophenol Blue (w/v), 60% glycerol

• Place the tube on magnetic stand and collect the supernatant containing RNA-protein complexes.

7. Separate RNA-protein complexes on 8% Bis-Tris PAGE Load samples on 8% Bis-Tris PAGE and run the gel for 55 min at 155 V in 1x high-molecular weight running buffer.
 5x High-molecular weight buffer: 250 mM MOPS, 250 mM Tris base, 5 mM EDTA (pH 8.0), 0.5% SDS

8. Transfer RNA-protein complexes on nitrocellulose membrane for 1 hour at 90 V in 1x Western blot transfer buffer supplemented with 20% methanol.
 5x Western blot transfer buffer: 120 mM Tris base, 960 mM Glycine, 0.15% SDS

9. After western blot transfer, rinse the membrane in RNAse-free H₂O, wrap the membrane in transparent plastic foil and expose for 1 hour to a phosphoimager plate (Figure B.6).
Fig. B.6 SMEDWI-3 HITS-CLIP immunoprecipitated complexes. RNAs crosslinked to SMEDWI-3 were radiolabeled, separated on an 8% Bis-Tris gel and blotted onto a nitrocellulose membrane.

10. Cut out the radioactive signal (upper (7-10 kDa above main signal) and lower band separately) on a light-table.

11. Shred the membrane into 4 mm long pieces and place them in a new low-binding tube.

12. Proteinase K digestion
 - Prepare Proteinase K solution with a concentration 4 mg/ml in 1x PK buffer. Preincubate the solution for 30 min at 37°C to degrade possible present nucleases. 5x PK buffer: 500 mM Tris-HCl (pH 7.5), 300 mM NaCl, 50 mM EDTA
 - Add 200 µl of Proteinase K solution to each tube containing membrane fragments. Incubate for 20 min at 37°C and 1,000 rpm.
 - Add 200 µl of solution 7 M Urea in 1x PK buffer to each tube. Incubate for 20 min at 37°C and 1,000 rpm.
 - Add 400 µl of phenol-chloroform-isoamyl alcohol (P/C/I) solution for RNA extraction and incubate for 20 min at 37°C and 1,000 rpm.

13. Phenol-Chloroform extraction
 - Spin tubes at high speed (>16,000 g) for 5 min at RT. Collect the upper aqueous phase.
• Add 400 µl of 100% chloroform, vortex for 1 min, let the tube stand for 2 min, and centrifuge at high speed for 5 min. Collect the upper aqueous phase.

• Concentrate RNA with RNA Clean & Concentrator-5 kit (Zymo Research, R1015).
 – Add to the upper phase (360 µl) 2 volumes of binding buffer (720 µl).
 – Mix vigorously, separate into 2 tubes (540 µl each tube).
 – Add 540 µl of 100% ethanol to each tube. Mix and apply the solution into Zymo columns.
 – Spin the columns at 16,000 g for 30 sec. Discard the flow-through. Repeat the procedure until all RNA will be applied onto the columns.
 – Add 400 µl of RNA Prep buffer and spin at 16,000 g for 1 min. Discard the flow-through.
 – Add 700 µl of Wash buffer and spin at 16,000 g for 1 min. Discard the flow-through.
 – Add 400 µl of Wash buffer and spin at 16,000 g for 1 min. Discard the flow-through.
 – Spin the columns for additional 2 min 16,000 g to remove the traces of Wash buffer.
 – For elution place the column into new low-binding tube and apply on top 7 µl of H₂O. Incubate the column for 1 min at RT and spin at 16,000 g for 1 min.

14. Ligation of 5’-adapter

• Set the following reaction and pipette into PCR tubes:
Vol. 127

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>eluted from the membrane RNA</td>
</tr>
<tr>
<td>1.6</td>
<td>10x T4 RNA ligase buffer</td>
</tr>
<tr>
<td>1.5</td>
<td>10 mM ATP (final 1 mM)</td>
</tr>
<tr>
<td>0.5</td>
<td>RNasin</td>
</tr>
<tr>
<td>2.4</td>
<td>50% PEG 8000 (final 8%)</td>
</tr>
<tr>
<td>0.75</td>
<td>50% DMSO (final 2.5%)</td>
</tr>
<tr>
<td>3</td>
<td>DNAse I (15 U)</td>
</tr>
<tr>
<td>1</td>
<td>100 µM RNA RA5 adapter</td>
</tr>
<tr>
<td>4</td>
<td>T4 RNA ligase 1 (final 2 U/µl) (NEB, M0204S)</td>
</tr>
</tbody>
</table>

Incubate at 16°C overnight (≈16 hours).

Day 4

- Add to the mixture 34 µl of H₂O up to the final volume of 50 µl and concentrate the sample with RNA clean & concentrate-5 extraction kit from Zymo Research.
 - Mix 50 µl of the reaction mix with 100 µl of Binding buffer. Mix vigorously.
 - Add 150 µl of 100% ethanol to each tube. Mix the solution by vortexing and apply onto Zymo columns. Spin for 1 min at 16,000 g. Discard the flow-through.
 - Add 400 µl RNA Prep buffer to each column, centrifuge at 16,000 g for 1 min. Discard the flow-through.
 - Add 700 µl of Wash buffer and spin at 16,000 g for 1 min. Discard the flow-through.
 - Add 400 µl of Wash buffer and spin at 16,000 g for 1 min. Discard the flow-through.
 - Spin the columns for additional 2 min 16,000 g to remove the traces of Wash buffer.
 - For elution place the column into new low-binding tube and apply on top 12 µl of H₂O. Incubate the column for 1 min at RT and spin at 16,000 g for 1 min.

15. Reverse transcribe crosslinked RNA
• To reverse transcribe RNA add to the PCR tube:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>RNA from ligation reaction</td>
</tr>
<tr>
<td>1</td>
<td>10 µM RT Primer (RTP primer)</td>
</tr>
<tr>
<td>4</td>
<td>5x first strand buffer</td>
</tr>
<tr>
<td>1.5</td>
<td>100 mM DTT</td>
</tr>
</tbody>
</table>

Incubate for 3 min at 65°C
Place for >1 min on ice

1	10 mM dNTP mix
0.5	100 mM DTT
1	SuperScript III RT (Invitrogen, 18080093)

– Vortex the mixture and spin down. Place into PCR cycler.

• PCR program:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>5’0’’</td>
</tr>
<tr>
<td>50°C</td>
<td>60’0’’</td>
</tr>
<tr>
<td>70°C</td>
<td>15’0’’</td>
</tr>
<tr>
<td>4°C</td>
<td>∞</td>
</tr>
</tbody>
</table>

16. Pilot PCR amplification

• To check successful cloning and to estimate required number of cycles, prepare the following master mix:
Volume (µl) Reagent

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.25</td>
<td>H₂O</td>
</tr>
<tr>
<td>2</td>
<td>5x Phusion HF buffer</td>
</tr>
<tr>
<td>0.2</td>
<td>10 µM RT Primer (RTP primer)</td>
</tr>
<tr>
<td>0.2</td>
<td>10 µM DP5 primer</td>
</tr>
<tr>
<td>0.25</td>
<td>10 mM dNTP mix</td>
</tr>
<tr>
<td>0.1</td>
<td>Phusion Polymerase</td>
</tr>
<tr>
<td>+2</td>
<td>cDNA</td>
</tr>
</tbody>
</table>

- PCR amplification program. Try different number of cycles (18, 20 and 22 cycles):

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>98°C</td>
<td>1'0”</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10”</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>10”</td>
<td>20</td>
</tr>
<tr>
<td>72°C</td>
<td>30”</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>3’</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

17. Analyze amplified products on 9 cm 6% PAGE.

- Prepare O’RangeRuler 20bp DNA Ladder (Thermo Scientific, SM1323) by mixing 2 µl of the ladder with 8 µl 1x Phusion HF buffer to adjust salt concentration in relation to PCR reaction.
- Add 2 µl of 6x DNA loading dye (50% Glycerol in TE buffer, 0.25% Bromphenol Blue (w/v), 0.25% Xylene cyanol (w/v)) and 1 µl of Urea Diluent to the PCR reaction and prepared ladder.
- Load samples onto 9 cm 6% PAGE and separate amplified products in 1x TBE buffer at 160 V for 45 min.
- Stain the gel with SYBR Gold Nucleic Acid Gel Stain (Invitrogen, S11494) in 1x TBE for 5 min.
A smear band corresponding to crosslinked RNA and piRNAs species should appear above 80 bp.

18. Scale up PCR amplification

- Add to the PCR tube the following components:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.25</td>
<td>H₂O</td>
</tr>
<tr>
<td>10</td>
<td>5x Phusion HF buffer</td>
</tr>
<tr>
<td>1</td>
<td>10 µM RT Primer (RTP primer)</td>
</tr>
<tr>
<td>1</td>
<td>10 µM DP5 primer</td>
</tr>
<tr>
<td>1.25</td>
<td>10 mM dNTP mix</td>
</tr>
<tr>
<td>0.5</td>
<td>Phusion Polymerase</td>
</tr>
<tr>
<td>+10</td>
<td>cDNA</td>
</tr>
</tbody>
</table>

- PCR amplification program:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>98°C</td>
<td>1’0”</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10”</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>10”</td>
<td>20</td>
</tr>
<tr>
<td>72°C</td>
<td>3’</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

19. Separate amplified products on 9 cm 6% PAGE.

- Prepare O’RangeRuler 20bp DNA Ladder (Thermo Scientific, SM1323) by mixing 2 µl of the ladder with 8 µl 1x Phusion HF buffer to adjust salt concentration in relation to PCR reaction.

- Add 2 µl of 6x DNA loading dye (50% Glycerol in TE buffer, 0.25% Bromphenol Blue (w/v), 0.25% Xylene cyanol (w/v)) and 1 µl of Urea Diluent to the PCR reaction and prepared ladder.
• Load samples onto 9 cm 6% PAGE and separate amplified products in 1x TBE buffer at 160 V for 45 min.

• Stain the gel with SYBR Gold Nucleic Acid Gel Stain (Invitrogen, S11494) in 1x TBE for 5 min (Figure B.7).

\[\begin{align*}
&300 \\
&200 \\
&100 \\
&80 \\
&60 \\
&\text{bp} \\
&\text{From} \\
&\text{Upper band} \\
&\text{From} \\
&\text{Down band}
\end{align*} \]

Fig. B.7 PAGE analysis of amplified PCR products from the excised upper or lower band of crosslinked RNA species with ligated adapters and reverse transcribed.

• Cut out appropriate bands and place into 0.5 ml tubes punctured 2 - 3 times at the bottom with a gauge needle (0.8 mm).

• Place 0.5 ml tubes with gel pieces into 1.5 ml low-binding tubes and spin for 2 min at 16,000g to shred gel into pieces.

• Discard 0.5 ml tubes.

• Add 400 µl of elution buffer (300 mM NaCl, 2 mM EDTA (pH 8.0)) to each tube and incubate for 2 hours at 37°C and 1,000 rpm.

• To separate eluate from gel pieces, pipette the solution and gel pieces into SpinX centrifuge tube filter (Costar, CLS8163). Spin the tubes at 16,000 g for 2 min.

• Transfer eluate into 1.5 ml low-binding tubes.

• Add 1 µl of Glycogene, mix the solution by vortexing.

• To precipitate DNA add 2.5 volume of 100% ethanol and incubate overnight -20°C.

Day 5

• Spin the solution at high speed for 30 min at 4°C.
• Decant the supernatant and wash DNA pellet with 1 ml of 70% ethanol at high speed for 5 min at 4 °C.
• Carefully discard the supernatant and shortly spin down the tube once again to collect the traces of ethanol.
• Remove residual ethanol and let the tube to air-dry with an open lid for 2 min.
• Resuspend DNA pellet in 10 µl of H₂O.

20. Add index primers. Pilot PCR might be necessary to determine the right number of cycle (see as above).

• Add to the PCR tube following components:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.25</td>
<td>H₂O</td>
</tr>
<tr>
<td>10</td>
<td>5x Phusion HF buffer</td>
</tr>
<tr>
<td>1</td>
<td>10 µM Primer 1 (RP1)</td>
</tr>
<tr>
<td>1</td>
<td>10 µM Primer 2 (=TruSeq index primer)</td>
</tr>
<tr>
<td>1.25</td>
<td>10 mM dNTP mix</td>
</tr>
<tr>
<td>0.5</td>
<td>Phusion Polymerase</td>
</tr>
<tr>
<td>+10</td>
<td>cDNA</td>
</tr>
</tbody>
</table>

• PCR amplification program:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>98°C</td>
<td>1’0”</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10”</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>10”</td>
<td>6</td>
</tr>
<tr>
<td>72°C</td>
<td>30”</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>3’</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

21. Use 2.5 volume of Agencourt AMPure XP beads (BeckmanCoulter, A63880) to concentrate the PCR sample. Elute amplified DNA from the beads with 12 µl of H₂O.
22. Separate amplified products on 9 cm 6% PAGE.

- Prepare O’RangeRuler 20bp DNA Ladder by mixing 2 µl of the ladder with 8 µl 1x Phusion HF buffer to adjust salt concentration in relation to PCR reaction.
- Add 2 µl of 6x DNA loading dye (50% Glycerol in TE buffer, 0.25% Bromphenol Blue (w/v), 0.25% Xylene cyanol (w/v)) and 1 µl of Urea Diluent to the PCR reaction and prepared ladder.
- Load samples onto 9 cm 6% PAGE and separate amplified products in 1x TBE buffer at 160 V for 45 min.
- Stain the gel with SYBR Gold Nucleic Acid Gel Stain (Invitrogen, S11494) in 1x TBE for 5 min (Figure B.8).

![PAGE analysis of HITS-CLIP libraries amplified from the excised upper or lower band.](image)

- Cut out appropriate bands and place into 0.5 ml tubes punctured 2 - 3 times at the bottom with a gauge needle (0.8 mm).
- Place 0.5 ml tubes with gel pieces into 1.5 ml low-binding tubes and spin for 2 min at 16,000 g to shred gel into pieces.
- Discard 0.5 ml tubes.
- Add 400 µl of elution buffer (300 mM NaCl, 2 mM EDTA (pH 8.0)) to each tube and incubate for 2 hours at 37°C and 1,000 rpm.
- To separate eluate from gel pieces, pipette the solution and gel pieces into SpinX centrifuge tube filter (Costar, CLS8163). Spin the tubes at 16,000 g for 2 min.
- Transfer eluate into 1.5 ml low-binding tubes.
• Add 1 µl of Glycogene, mix the solution by vortexing.
• To precipitate DNA add 2.5 volume of 100% ethanol and incubate overnight -20°C.

Day6

• Spin the solution at high speed for 30 min at 4°C.
• Decant the supernatant and wash DNA pellet with 1 ml of 70% ethanol at high speed for 5 min at 4°C.
• Carefully discard the supernatant and shortly spin down the tube once again to collect the traces of ethanol.
• Remove residual ethanol and let the tube to air-dry with an open lid for 2 min.
• Resuspend DNA pellet in 12 µl of H2O.

23. Analyze HITS-CLIP libraries on the Bioanalyzer or Fragment analyzer (Figure B.9).
Fig. B.9 Bioanalyzer electropherogram of prepared HITS-CLIP libraries. The upper electropherogram corresponds to the library prepared from excised upper band with longer crosslinked RNA species. Below, electropherogram of HITS-CLIP library generated from the down band containing crosslinked piRNAs and shorter RNA species.
B.6 Degradoome-seq library preparation

1. Input total RNA
 Total planarian RNA (2.5 µg) from FACS-sorted X1 cells was ribosomal RNA depleted as described above in Appendix B section B.4. RNA was eluted from Zymo Research columns with 12 µl of H₂O.

2. Ligation of 5’adapter
 - Prepare the following reaction mix:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>rRNA depleted RNA</td>
</tr>
<tr>
<td>2</td>
<td>5x 10x T4 RNA ligase buffer</td>
</tr>
<tr>
<td>2</td>
<td>10 mM ATP</td>
</tr>
<tr>
<td>1.8</td>
<td>100 mM DTT</td>
</tr>
<tr>
<td>1</td>
<td>25 µM 5’-adapter (RA5)</td>
</tr>
<tr>
<td>2</td>
<td>T4 RNA ligase 1 (NEB, M0204S)</td>
</tr>
</tbody>
</table>

 Incubate the mixture overnight at 16°C or for 2 hours at 37°C.
 - To the reaction mix add 30 µl of H₂O and purify RNA with RNA Clean &Concentrator-5 (Zymo Research, R1015) enriching for RNA ≥200 nt long according to manufacturer’s instructions. Elute RNA with 11 µl of H₂O.

3. cDNA synthesis
 - To reverse transcribe RNA add to the PCR tube:
B.6 Degradome-seq library preparation

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>RNA from ligation reaction</td>
</tr>
<tr>
<td>1</td>
<td>50 µM Deg-RT primer</td>
</tr>
<tr>
<td>5</td>
<td>5x first strand buffer</td>
</tr>
</tbody>
</table>

- Incubate for 3 min at 65°C
- Place for >1 min on ice

5.25	H₂O
1.5	10 mM dNTP mix
1.25	100 mM DTT
1	SuperScript III RT (Invitrogen, 18080093)

- Vortex the mixture and spin down. Place into PCR cycler.

- **PCR program:**

 | 25°C | 5’0” |
 | 50°C | 60’0” |
 | 70°C | 15’0” |
 | 4°C | ∞ |

- Purify cDNA with 45 µl (1.8 volume) Agencourt AMPure XP beads. Elute with 23 µl of H₂O.

4. First PCR amplification

- Mix the following components:
Experimental protocols

<table>
<thead>
<tr>
<th>Volume (μl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>cDNA</td>
</tr>
<tr>
<td>16.25</td>
<td>H$_2$O</td>
</tr>
<tr>
<td>10</td>
<td>5x Phusion HF buffer</td>
</tr>
<tr>
<td>1</td>
<td>10 μM DEG PCR-1l primer</td>
</tr>
<tr>
<td>1</td>
<td>10 μM DEG PCR-1r primer</td>
</tr>
<tr>
<td>1.25</td>
<td>10 mM dNTP mix</td>
</tr>
<tr>
<td>0.5</td>
<td>Phusion Polymerase</td>
</tr>
</tbody>
</table>

- **PCR amplification program.**
 Try different number of cycles for a different input amount, organism or tissue:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>98°C</td>
<td>0’30”</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10”</td>
<td></td>
</tr>
<tr>
<td>59°C</td>
<td>30”</td>
<td>2</td>
</tr>
<tr>
<td>72°C</td>
<td>12”</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10”</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>10”</td>
<td>4</td>
</tr>
<tr>
<td>72°C</td>
<td>12”</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>3’0”</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

- Purify PCR product with Agencourt AMPure XP beads with double size selection to keep only fragments of 200 - 400 bp.
 - Mix PCR product (50 μl) with 0.6 volume (30 μl) of Ampure beads. Incubate the mixture at for 5 min RT.
 - Place the tube on a magnet stand for 5 min to separate the beads from the supernatant.
 - Carefully transfer the supernatant into a new tube (**do not discard the supernatant**). Discard the beads, which now contain fragments larger 400 bp.
– Mix the supernatant from the previous step with additional 40 µl of Ampure beads. Incubate 5 min at RT.
– Place the tube on a magnet stand for 5 min to separate the beads from the supernatant.
– Wash the beads twice with 70% ethanol as described [206] and elute DNA with 30 µl H₂O.

5. Second PCR amplification

• Mix the following components:

<table>
<thead>
<tr>
<th>Volume (µl)</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>eluted DNA</td>
</tr>
<tr>
<td>6.25</td>
<td>H₂O</td>
</tr>
<tr>
<td>10</td>
<td>5x Phusion HF buffer</td>
</tr>
<tr>
<td>1</td>
<td>10 µM Primer 1 (RP1)</td>
</tr>
<tr>
<td>1</td>
<td>10 µM Primer 2 (=TruSeq index primer)</td>
</tr>
<tr>
<td>1.25</td>
<td>10 mM dNTP mix</td>
</tr>
<tr>
<td>0.5</td>
<td>Phusion Polymerase</td>
</tr>
</tbody>
</table>

• PCR amplification program.
Try different number of cycles for a different input amount, organism or tissue:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>98°C</td>
<td>0’30”</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10”</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>30”</td>
<td>2</td>
</tr>
<tr>
<td>72°C</td>
<td>14”</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10”</td>
<td>6</td>
</tr>
<tr>
<td>72°C</td>
<td>14”</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>3’0”</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
- Purify PCR product with one volume (50 \(\mu l\)) Agencourt AMPure XP beads. Elute prepared Degradome-seq libraries with 12 \(\mu l\) of H\(_2\)O (Figure B.10).

Fig. B.10 Separation profile of degradome-seq libraries. (A) Prepared libraries were analyzed on 1.5% agarose gel. (B) Fragment analyzer electropherogram of degradome-seq libraries. Over amplified PCR duplicates appear as sharp peaks. LM stands for lower ladder with the length 1 nt. UM is an upper ladder with a size 1,500 nt.
Appendix C

Data processing pipelines

C.1 small RNA-seq pipeline

The example pipeline shows the processing of small RNA libraries prepared from SMEDWI-3 immunoprecipitated piRNAs. SMEDWI-1 and -2 bound piRNAs were processed the same way.

fastqc quality control
```
cd /Work1/iana/Data/Sm3wt/Raw_data
mkdir -p /Work1/iana/Data/Sm3wt/Analysis/1-fastqc
fastqc -o ../Analysis/1-fastqc *.fq.gz
```

3’-adapter clipping
```
mkdir -p /Work1/iana/Data/Sm3wt/Analysis/2-cutadapt
```
```
for f in *fq.gz; do
output=../Analysis/2-cutadapt/${f%%. *}_cutadapt.fq.gz
Log=../Analysis/2-cutadapt/${f%%. *}.Log
cutadapt -a TGGAATTCTCGGGTGCCAAGG -m 18 -M 40 $f 1> $output 2> $Log
done
```
```
cd /Work1/iana/Data/Sm3wt/Analysis/2-cutadapt
mkdir -p report
fastqc -o './report' *.fq.gz
```

rRNA filtering
```
gunzip *fq.gz
mkdir -p ../3-sortmerna/rRNA
```
```
for f in *.fq; do
rRNA=../3-sortmerna/rRNA/$(f%%.*)rRNA
output=../3-sortmerna/$(f%%.*)sortmerna
sortmerna --ref /Work1/iana/Applications/sortmerna-2.1-linux-64/
rRNA_databases/planarian_rRNA_full_sequences.fa,/Work1/iana/
Applications/sortmerna-2.1-linux-64/index/
```
```
planarian_rRNA_full_sequences --reads $f --fastx -a 8 --aligned $rRNA --other $output -v --log
done

cd ../3-sortmerna/rRNA

for f in *.log; do
    Totalreads=$(grep "Total reads" $f | awk '{print $0}"
    rRNA=$(grep "Total reads passing E-value threshold" $f | awk '{print $0}"
    other=$(grep "Total reads failing E-value threshold" $f | awk '{print $0}"
    echo "\n${f%%. *}\t$Totalreads" >> ../sortmerna_statistic_output.txt
    echo "${f%%. *}\trRNA" >> ../sortmerna_statistic_output.txt
    echo "${f%%. *}\t$other" >> ../sortmerna_statistic_output.txt
    done
gzip *.fq
cd ../

    # Generate insert file
    mkdir -p ../4-insert
    for f in *; do
        piPipes_fastq_to_insert $f ../4-insert/${f/fq/insert}
    done
gzip *fq
    cd ../

    # Map the reads to genome with bowtie
    mkdir -p ../5-bowtie
    bowtie-build /Work1/iana/Planarian_genome/final_dd_Smed_g4.fa /Work1/iana/Applications/bowtie-1.1.2/indexes/Smed_g4
    for f in sm3wt{1,2,3}; do
        DIR=/Work1/iana/Data/Sm3wt/Analysis/5-bowtie
        bowtie -r -p 8 -v 0 -a --best --strata /Work1/iana/Applications/bowtie-1.1.2/indexes/Smed_g4 $f.insert -S $DIR/$f.sam 2>> $DIR/$f.bowtie.Log
        samtools view -bS -0 8 $DIR/$f.sam | samtools sort -@ 8 - > $DIR/$f.bam
        rm $DIR/$f.sam
    done

    # Convert bam into bed2 file format
    cd ../5-bowtie
    for f in *bam; do
        bedtools_pipipes bamtobed -i $f > ${f%%. *}.bed
        piPipes_insertBed_to_bed2 ../4-insert/${f%%. *}.insert ${f%%. *}.bed
    done

    # Analyze piRNAs ping-pong signature
C.1 small RNA-seq pipeline

```
mkdir -p pingpong
for f in *bed2; do
 awk '$f length($7) > 25' > ${f%%.*}_cutoff25.bed2
done
piPipes_local_ping_pong -u 37 -a sm3wt1_cutoff25.bed2 -b sm3wt2_cutoff25.bed2 -p 8 > ./pingpong/sm3wt1_sm3wt2.pp

Length distribution of genome mapped unique piRNAs
mkdir -p Length
for f in *.bed2; do
 awk '{print length($7)}' | sort -n | uniq -c > ./Length/${f%%.*}_Length.txt
done

Create fasta files to analyze nucleotide distribution and plot venn diagram
mkdir -p fasta
for f in sm3wt{1,2,3}; do
 bedtools_piPipes getfasta -fi /Work1/iana/Planarian_genome/final_dd_Smed_g4.fa -bed $f.bed -fo ./fasta/$f.pipipes.fa -s -name
done

Calculate weighted counts of mapped piRNAs
for f in *cutoff25.bed2; do
 awk 'BEGIN {OFS=":"}; {print $0"\t"$4/$5}' $f > ${f%%_.*}.weightCounts.bed2
done

Intersect mapped piRNAs with annotation files
mkdir -p ../6-bedtools/LINE
mkdir -p ../6-bedtools/DNA
mkdir -p ../6-bedtools/LTR
mkdir -p ../6-bedtools/Unk
mkdir -p ../6-bedtools/No_annot
mkdir -p ../6-bedtools/Cluster
mkdir -p ../6-bedtools/Exon
for f in *weightCounts.bed2; do
 LINE=/Work1/iana/Planarian_genome/RepeatMaskerLINE.gtf
 DNA=/Work1/iana/Planarian_genome/RepeatMaskerDNA.gtf
 LTR=/Work1/iana/Planarian_genome/RepeatMaskerLTR.gtf
 Unk=/Work1/iana/Planarian_genome/RepeatMaskerUnk.gtf
 No_annot=/Work1/iana/Planarian_genome/genes_plus_TE.gtf
 Cluster=/Work1/iana/Planarian_genome/pirna_clusters.gtf
 Exon=/Work1/iana/Planarian_genome/smes_v2_hconf_SMESG.gtf
 bedtools intersect -split -wo -f 0.5 -a $f -b $LINE > ../6-bedtools/LINE/$f{f%.*}.intersectLINE.bed
 bedtools intersect -split -wo -f 0.5 -a $f -b $DNA > ../6-bedtools/DNA/$f{f%.*}.intersectDNA.bed
 bedtools intersect -split -wo -f 0.5 -a $f -b $LTR > ../6-bedtools/LTR/$f{f%.*}.intersectLTR.bed
```
bedtools intersect -split -wo -f 0.5 -a $f -b $Unk > ../6-bedtools/Unk/${f%. *}.intersectUnk.bed
bedtools intersect -split -s -v -a $f -b $No_annot > ../6-bedtools/No_annot/${f%. *}.intersectNo_annot.bed
bedtools intersect -split -wo -f 0.5 -a $f -b $Cluster > ../6-bedtools/Cluster/${f%. *}.intersectCluster.bed
bedtools intersect -split -wo -f 0.5 -a $f -b $Exon > ../6-bedtools/Exon/${f%. *}.intersectExon.bed
done

cd ../6-bedtools
for f in sm3wt{1,2,3}.weightCounts; do
    Unique_seq_sense='cat ./Exon/$f.intersectExon.bed | awk '$6==$15 {print $0} END {print sum}''
    Unique_seq_antisense='cat ./Exon/$f.intersectExon.bed | awk '$6!=$15 {print $0} END {print sum}''
    Unique_seq_dna_sense='cat ./DNA/$f.intersectDNA.bed | awk '$6==$15 {print $0} END {print sum}''
    Unique_seq_dna_antisense='cat ./DNA/$f.intersectDNA.bed | awk '$6!=$15 {print $0} END {print sum}''
    Unique_seq_line_sense='cat ./LINE/$f.intersectLINE.bed | awk '$6==$15 {print $0} END {print sum}''
    Unique_seq_line_antisense='cat ./LINE/$f.intersectLINE.bed | awk '$6!=$15 {print $0} END {print sum}''
    Unique_seq_ltr_sense='cat ./LTR/$f.intersectLTR.bed | awk '$6==$15 {print $0} END {print sum}''
    Unique_seq_ltr_antisense='cat ./LTR/$f.intersectLTR.bed | awk '$6!=$15 {print $0} END {print sum}''
    Unique_seq_Unk_sense='cat ./Unk/$f.bed.intersectUnk.bed | awk '$6==$15 {print $0} END {print sum}''
    Unique_seq_Unk_antisense='cat ./Unk/$f.bed.intersectUnk.bed | awk '$6!=$15 {print $0} END {print sum}''
    Unique_seq_cluster_sense='cat ./Cluster/$f.intersectCluster.bed | awk '$6==$15 {print $0} END {print sum}''
    Unique_seq_cluster_antisense='cat ./Cluster/$f.intersectCluster.bed | awk '$6!=$15 {print $0} END {print sum}''
    No_annot_sense='cat ./No_annot/$f.intersectNo_annot.bed | awk '$6!={print $0} END {print sum}''
    echo -e "$f.intersectExon.bed\texon\t${Unique_seq_sense}\t${Unique_seq_antisense} >> ./sm3ip_to_features_analysis.txt
    echo -e "$f.intersectDNA.bed\tdna\t${Unique_seq_dna_sense}\t${Unique_seq_dna_antisense} >> ./sm3ip_to_features_analysis.txt
    echo -e "$f.intersectLINE.bed\tline\t${Unique_seq_line_sense}\t${Unique_seq_line_antisense} >> ./sm3ip_to_features_analysis.txt
    echo -e "$f.intersectLTR.bed\tltr\t${Unique_seq_ltr_sense}\t${Unique_seq_ltr_antisense} >> ./sm3ip_to_features_analysis.txt
    echo -e "$f.intersectUnk.bed\tunk\t${Unique_seq_Unk_sense}\t${Unique_seq_Unk_antisense} >> ./sm3ip_to_features_analysis.txt
    echo -e "$f.intersectCluster.bed\tcluster\t${Unique_seq_cluster_sense}\t${Unique_seq_cluster_antisense} >> ./sm3ip_to_features_analysis.txt
    echo -e "$f.intersectNo_annot.bed\tno annot\t${No_annot_sense} >> ./sm3ip_to_features_analysis.txt
"
C.2 RNA-seq pipeline

```bash
echo -e "\$f.intersectLINE.bed t\$\{Unique_seq_line_sense\} t\$\{Unique_seq_line_antisense\}" >> ./sm3ip_to_features_analysis.txt
echo -e "\$f.intersectLTR.bed t\$\{Unique_seq_ltr_sense\} t\$\{Unique_seq_ltr_antisense\}" >> ./sm3ip_to_features_analysis.txt
echo -e "\$f.intersectUnk.bed t\$\{Unique_seq_Unk_sense\} t\$\{Unique_seq_Unk_antisense\}" >> ./sm3ip_to_features_analysis.txt
echo -e "\$f.intersectCluster.bed t\$\{Unique_seq_cluster_sense\} t\$\{Unique_seq_cluster_antisense\}" >> ./sm3ip_to_features_analysis.txt
echo -e "\$f.intersectNo_annot.bed t\$\{No_annot_sense\} tint(0)" >> ./sm3ip_to_features_analysis.txt
done
```

C.2 RNA-seq pipeline

# RNA libraries quality control
```
cd /Work1/iana/Data/RNA_seq_Sm3RNAi/Raw_data
mkdir -p ../Analysis/1-fastqc
fastqc -o ../Analysis/1-fastqc *fq.gz
```

# Adapter removing and quality filtering
```
for f in *fq.gz; do
 output=../Analysis/2-trimmomatic/${file%%.*}_trimmomatic.fq.gz
 Log=../Analysis/2-trimmomatic/${file%%.*}_trimmomatic.Log
 java -jar /Work1/iana/Applications/Trimmomatic-0.36/trimmomatic-0.36.jar SE -threads 8 -phred33 $f $output ILLUMINACLIP:/Work1/iana/Applications/Trimmomatic-0.36/adapters/TruSeq3-SE.fa":2:20:10 SLIDINGWINDOW:5:20 MINLEN:18 &> $Log
done
```

```bash
cd ../Analysis/2-trimmomatic
mkdir -p report
fastqc -o ./report *trimmomatic.fq.gz
for f in *Log; do
 reads='grep 'Input Reads: ' $f | awk '{print $0}''
 echo -e "\$\{f%%.*\}\:t\$\{reads\}" >> ../trimmomatic_statistic_output.txt
done
```

# rRNA filtering
```
mkdir -p ../3-sortmerna/rRNA
gunzip *.gz
for f in *.fq; do
 rRNA=../3-sortmerna/rRNA/${f%%.*}_rRNA
 output=../3-sortmerna/${f%%.*}_sortmerna
```

```bash
echo -e "\$f.intersectCluster.bed t\$\{Unique_seq_cluster_sense\} t\$\{Unique_seq_cluster_antisense\}" >> ./sm3ip_to_features_analysis.txt
echo -e "\$f.intersectNo_annot.bed t\$\{No_annot_sense\} tint(0)" >> ./sm3ip_to_features_analysis.txt
done
```
sortmerna --ref /Work1/iana/Applications/sortmerna-2.1-linux-64/ rRNA_databases/planarian_rRNA_full_sequences.fa,/Work1/iana/ Applications/sortmerna-2.1-linux-64/index/ planarian_rRNA_full_sequences --reads $f --fastx -a 8 --aligned $rRNA --other $output -v --log
done

cd ../3-sortmerna/rRNA

for f in *.log; do
    Totalreads=$(grep "Total reads" $f | awk '{print $0}"
    rRNA=$(grep "Total reads passing E-value threshold" $f | awk '{print $0}"
    other=$(grep "Total reads failing E-value threshold" $f | awk '{print $0}"
    echo -e "${f%.*}	$Totalreads" >> ../sortmerna_statistic_output.txt
    echo -e "${f%.*}	rRNA" >> ../sortmerna_statistic_output.txt
    echo -e "${f%.*}	$other" >> ../sortmerna_statistic_output.txt

    gzip *.fq

cd ../

# Assign filtered reads to planarian transcriptome and consensus transposable element sequences with kallisto
mkdir -p ../4-kallisto/rf

for f in *fq; do
    output=../4-kallisto/rf/${f%_ *}_sense"
    Log=../4-kallisto/rf/${f%_ *}.Log
    kallisto quant -i /Work1/iana/Applications/kallisto/index/ smes_v2_hconf_SMESG_flat+consensusTE -o $output --single -l 350 -s 30 -b 30 --rf-stranded -t 8 $f &> $Log

done

C.3 Processing of HITS-CLIP libraries

# HITS-CLIP libraries quality control
chmod /Work1/iana/Data/CLIP/Raw_data
mkdir -p ../Analysis/1-fastqc
fastqc -o ../Analysis/1-fastqc *fq.gz

# 3'-adapter trimming
mkdir -p ../Analysis/2-cutadapt

for f in *fq.gz; do
    output=../Analysis/2-cutadapt/${f%.*}_cutadapt.fq.gz
    Log=../Analysis/2-cutadapt/${f%.*}.Log
    cutadapt -a TGGAATTCTCGGGTGCCAAGG -m 18 $f 1> $output 2> $Log

done

cd ../Analysis/2-cutadapt
mkdir -p report
C.3 Processing of HITS-CLIP libraries

```bash
fastqc -o './report' * .fq.gz

for f in * .Log; do
 WrittenReads='grep 'Reads written (passing filters):' $f | awk '{print $(NF-1)}'
 echo -e "${ff%%. *}:	${WrittenReads}" >> ../cutadapt_statistic_output.txt
done

Collapse PCR duplicates
mkdir -p ../3-collapsed
gunzip * .fq.gz

for f in * .fq; do
 output=../3-collapsed/${f%%. *}_collapsed.fa
 fastx_collapser -Q33 -i "$f" -o $output -v &> ../3-collapsed/${f%%.*}.Log
done

cd ../3-collapsed

for f in * .Log; do
 WrittenReads='grep 'Output:' $f | awk '{print $0}'
 echo -e "$f%%. *:	$WrittenReads" >> ../collapser_statistic_output.txt
done

Remove rRNA reads
mkdir -p ../4-sortmerna/rRNA

for f in * .fa; do
 rRNA=../4-sortmerna/rRNA/${f%%_ *}_rRNA
 output=../4-sortmerna/${f%%_ *}_sortmerna
 sortmerna --ref /Work1/iana/Applications/sortmerna-2.1-linux-64/rRNA_databases/planarian_rRNA_full_sequences.fa,/Work1/iana/Applications/sortmerna-2.1-linux-64/index/planarian_rRNA_full_sequences --reads $f --fastx -a 8 --aligned $rRNA --other $output -v --log
done

cd ../4-sortmerna/rRNA

for f in * .log; do
 Totalreads='grep "Total reads" $f | awk '{print $0}'
 rRNA='grep "Total reads passing E-value threshold" $f | awk '{print $0}'
 other='grep "Total reads failing E-value threshold" $f | awk '{print $0}'
 echo -e "\n${f%%.*}	$Totalreads" >> ../sortmerna_statistic_output.txt
 echo -e "${f%%.*}	$rRNA" >> ../sortmerna_statistic_output.txt
 echo -e "${f%%.*}	$other" >> ../sortmerna_statistic_output.txt
done

cd ../
```

Data processing pipelines

# Merge fasta files of down and upper band libraries

```
for f in *up_sortmerna.fa; do
 sed -i '1~2 s/-/upper-/' $f
done

for f in *d_sortmerna.fa; do
 sed -i '1~2 s/-/down-/' $f
done

mkdir -p ../5-combinedFA
for f rep{1,2,3,4,5,6,7,8,9}; do
cat $f_d_sortmerna.fa $f_up_sortmerna.fa > ../5-combinedFA/$f_merged.fa
done

cd ../5-combinedFA
gzip *fa
```
C.3 Processing of HITS-CLIP libraries

```bash
wc -l $f &>> ${f%%. *}.sign.peak.statistic.txt
cat *.sign.peak.statistic.txt > reads_statistic_output.txt
done

Mutations in unique tags
for f in rep{1,2,3,4,5,6,7,8,9}; do
 python2 /usr/local/ctk-master/joinWrapper.py $f.mutation.txt $f.
 bed 4 N $f.mutation.uniq.txt
done

for f in rep{1,2,3,4,5,6,7,8,9}; do
 Total_mut='wc -l $f.mutation.txt'
 Unique_mut='wc -l $f.mutation.uniq.txt'
 echo -e "${Total_mut}t${Unique_mut}" >> ./
 mut_uniq_statistic_output_forCIMS.txt
done

Define mutation cites
mkdir -p ../8-CIMS/del
mkdir -p ../8-CIMS/ins
mkdir -p ../8-CIMS/sub
for f in *.mutation.uniq.txt; do
 getMutationType.pl -t del $f ../8-CIMS/del/${f%%. *}.del.bed
 getMutationType.pl -t ins $f ../8-CIMS/ins/${f%%. *}.ins.bed
 getMutationType.pl -t sub --summary ../8-CIMS/${f%%. *}.stat.txt
 $file ../8-CIMS/sub/${f%%. *}.sub.bed
done

Example of mutational analysis of substitutions
for f in *sub.bed; do
 CIMS.pl -v -n 10 -p -c ./${f%%. *}_cache_cluster --keep-cache --
 outp ${f%%. *}.pos.stat.SUB.txt -v ../../7-bed/${f%%. *}.bed"
 $f "${f%%. *}.sub.CIMS.txt"
done

mkdir -p FDR005
for f in *.CIMS.txt; do
 awk -v prefix="rep1" '{if($9<=0.001){print
 $1"t"$2"t"$3"t"prefix""$4"t"$5"t"$6}'} $f | sort -k 9,9
 n -k 8,8nr -k 7,7n > ./FDR001/${f%. *}.p001.bed
done

Intersect identified substitution sites with gene annotation
for f in *.p001.bed; do
 bedtools intersect -wa -wb -split -a $f -b /Work1/iana/Planarian_genome/smes_v2_hconf_SMESG.gtf > ./intersect/${f%%. *}.interact001.bed
done
```

(Eidesstattliche) Versicherungen und Erklärungen

(§9 Satz 2 Nr. 3 PromO BayNAT)
Hiermit versichere ich eidesstattlich, dass ich die Arbeit selbstständig verfasst und keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe (vgl. Art. 64 Abs. 1 Satz 6 BayHSchG).

(§9 Satz 2 Nr. 3 PromO BayNAT)
Hiermit erkläre ich, dass ich die Dissertation nicht bereits zur Erlangung eines akademischen Grades eingereicht habe und dass ich nicht bereits diese oder eine gleichartige Doktorprüfung endgültig nicht bestanden habe.

(§9 Satz 2 Nr. 4 PromO BayNAT)

(§9 Satz 2 Nr. 7 PromO BayNAT)

(§9 Satz 2 Nr. 8 PromO BayNAT)
Hiermit erkläre ich mein Einverständnis, dass bei Verdacht wissenschaftlichen Fehlverhaltens Ermittlungen durch universitätsinterne Organe der wissenschaftlichen Selbstkontrolle stattfinden können.

__________________________
Ort, Datum, Unterschrift