
Strategy Optimization in Sports via Markov
Decision Problems

Susanne Hoffmeister and Jörg Rambau

Abstract In this paper, we investigate a sport strategic question related to the
Olympics final in beach volleyball: Should the German team play most aggressively
to win many direct points or should it rather play safer to avoid unforced errors?
This paper introduces the foundations of our new two-scale approach for the opti-
mization of sport strategic decisions. We present possible answers to the benchmark
question above based on a direct approach and the presented two-scale method. A
comparison shows the benefits of the new paradigm.

1 Introduction

Picture yourself in a beach volleyball match. The score is 14:13 for you in the third
set. One more point and you win the Olympic gold medal. Your team’s repertoire
contains a very risky and a slightly safer style. The risky style gives you more
chances to directly win the point, at the expense of a larger probability of a di-
rect failure. For the safer style, it is more likely that the rally will continue. How
should you play? This will be the benchmark question for the concepts in this paper.
Does the best style depend on the score? Does it depend on who serves first?

We approach this type of principle strategic decision problems in sports games
with mathematical models based on Markov Decision Problems (MDPs) [18].
Whereas Markov chains have been used extensively, mainly to identify which skills
are pivotal in sports games [13], MDPs, and even more so, Markov games, are much
less prominent.

An MDP consists of several (temporal) stages. In all stages there are states, ac-
tions, rewards, and transition probabilities. In each stage, the decision maker can
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specify an action depending on the state. Then the system will move to another state
in the next stage according to the transition probabilities, which depend on state and
action. Depending on the current state, the current action, and the resulting state, a
reward is granted. The goal is to find a policy, such that the expected (discounted)
total reward over all stages (finitely or infinitely many) is maximized.

Sometimes the decision maker wants to maximize the probability that the system
reaches some desired state (in our case a winning state of the game). This can be
modelled by making the desirable state an absorbing state (i.e., a state in which
the system remains forever) and granting a reward of one for entering this state
(rewards are zero everywhere else). Thus, this way we can model how to maximize
the probability to win a sports game.

The problem with the applicability of MDP models in sports is the following.
The number of different situations in sports games is, strictly speaking, inaccessibly
large, infinite, or even uncountable. Since it is not explicitly defined what the “true”
state space of a sports game is, one needs to seek for an approximation. We deliber-
ately chose to look for a representation of the really substantially different situations
by a finite number of states and actions. The finite-state-action approach comes with
the question of how detailed such a finite MDP should be. For a model with con-
tinuous state space components, the analogous question arises for the number of
state-space dimensions.

If one uses too many states and actions, one may end up with a too complicated
MDP: good policies may be too detailed to be easily adopted by the players during
the gameplay, and (near) optimal policies may even be very difficult to determine.
Moreover, the more complicated a model is, the more modeling parameters usually
need to be estimated, which may become a problem, if the solution is sensitive to
parameter deviations.

If one uses only few states and actions, then the estimation of transition probabil-
ities becomes difficult. Just think of the simplest possible MDP with only the three
states “start”, “win”, “loss”. Then the whole problem is reduced to the estimation
of the transition probabilities. Thus, in order for a coarse MDP to be realistic, a lot
of information has to be contained in the transition probabilities. Therefore, these
probabilities inevitably depend on a combination of various aspects (e.g., the com-
bination of players on the field). If for some such combination we have no or not
enough historical data, then a straight-forward estimate is not available.

One idea in statistics is to model using a formula with (few) parameters how
the data is generated from other (observable) data. Then one can estimate the (few)
parameters and use the evaluated formula in unknown terrain. We use the underly-
ing principle of this idea. However, we will not employ a parametrized formula but
we use two Markov Decision Problems (MDPs) to answer the benchmark question.
Our strategic MDP models the influence of principle strategic options. Optimal poli-
cies for it answer our question. Because these policies are principle strategic deci-
sions, players can follow the corresponding recommendations. However, the strate-
gic MDPs transition probabilities are difficult to estimate. Thus, a gameplay MDP
models the gameplay in detail. Its transition probabilities are easier to estimate. By
simulating the gameplay MDP, we estimate the transition probabilities of the strate-
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gic MDP. We carry out this program for our example benchmark question. It will
turn out that in our coarsest MDP model the optimal decision among risky play and
safe play in a service or a field attack situation depends neither on the score nor on
the right to serve. We will see that the optimal decision can be found by evaluating
a certain expression in the transition probabilities. If this expression is positive, then
playing risky throughout is optimal, otherwise playing safe throughout is better.

To arrive at our conclusions, we have developed an all new machinery based
on Markov decision problems (MDP). Our method differs from existing MDP ap-
proaches in the manner that we combine two related MDPs to answer a single strate-
gic question. A detailed MDP has transition probabilities that can be estimated, a
coarse MDP provides conclusions that can be used in practice. By relating the two,
we can provide useful conclusions on the basis of data that can be estimated.

We implemented our approach for the example beach volleyball. For the first
time, we develop a strategic MDP that models whether safe or risky play yields a
higher winning probability in a particular match (“s-MDP”); we analytically char-
acterize an optimal policy for it in terms of the (very few) s-MDP transition prob-
abilities (“optimize”); we develop a gameplay MDP that models a rally in detail
depending on the players’ individual skills (“g-MDP”); we analyse historical com-
petition videos from the London 2012 Olympics with an all new video analysis tool
in order to estimate the single-player-dependent transition probabilities for the g-
MDP (“calibrate”); we simulate the g-MDP for each policy of the s-MDP, which
provides estimations of the transition probabilities for the s-MDP (“simulate”); we
derive whether safe or risky is better against a given opponent by evaluating the
optimality criterion for the transition probabilities (“conclude”); finally, we visual-
ize the sensitivity of the strategic MDP’s recommendation depending on skills and
opponent strength in a strategy-skill score card (“present”).

For general sports games, the meta-procedure “s-MDP” – “optimize” – “g-MDP”
– “calibrate” – “simulate” – “conclude” constitutes the first two-scale approach to
answer principle strategic questions. The resulting skill-strategy score cards can sup-
port the choice of a strategy in an upcoming match against a particular opponent.
This meta-procedure defines a research program for each principal strategic ques-
tion in an individual sports game.

This paper is organized as follows. In Section 2, we briefly review the related
work in both MDP and sports strategy research. Section 3 describes our new ap-
proach of combining two MDPs of different scale. The two MDPs are defined in
Sections 4 and 6 for our example beach volleyball. Section 5 between shows some
computational results based on the s-MDP alone based on direct counts from the
2012 Olympics. In a first round of computational results, we show that a direct
estimation of s-transition probabilities yields volatile results with systematic short-
comings that motivate our two-scale procedure. Section 7 specifies the parameters
that define a g-MDP strategy and the implementation of the two special strategies
risky and safe. Our data collection from the 2012 Olympics is based on a new video
analysis tool that appears in Section 8. We present computational results in Sec-
tion 9, followed by a comparison in Section 10 and a sensitivity analysis based on
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skill-strategy score cards in Section 11. Our suggestion how to extend the method
to game theory can be found in Section 12. We conclude the paper in Section 13.

2 Sport Strategy Optimization and MDPs

If the focus of the analysis of a sports game is on interactions and strategic as-
pects of that game, then a dynamic model may be more appropriate than a statistical
approach. Markov chains (MCs), Markov decision problems (MDPs) and Markov
games (MGs) are possible frameworks for a dynamic model. They all incorporate
the Markov property: the next state may just depend on the current state and not on
the complete realization history of states.

An MC is a discrete-time stochastic process that can be characterized by a set
of states and a probability distribution P which specifies transition probabilities
between states. With an MC, it is possible to examine how a system will evolve
under P given a certain initial distribution [17].

There are several contributions that use MCs to investigate different aspects in
various types of sports. We only present a sample of recent applications of MCs that
consider beach volleyball or volleyball, as this is the type of sport we will later use
as an example. Miskin et al. [13] investigate skill importance in women’s volleyball.
The authors model play sequences as discrete absorbing MCs by using a Bayesian
approach to estimate the transition probabilities from the data gathered. The data
was collected during the 2006 competitive season of a single women’s Division I
volleyball team. The 36 states consolidated in this analysis are moves that consist
of a skill and a rating combination, e.g., a set is rated according to its distance from
the net. The importance score of a skill is a metric that incorporates its impact to
the desired outcome and its uncertainty. It is computed by the posterior distribution
associated with the skill. Ferrante and Fonseca [6] use an MC approach for volley-
ball to compute an explicit formula of the serving team’s winning probability in a
set. Beside this, the mean duration of a set is computed in terms of the expected
number of rallies. The authors make the assumption that the probability of winning
a single rally is independent of the other rallies and constant during the game. In this
way they are able to apply an MC. The states in their model correspond to different
scores that may occur in a set together with an indicator which team serves next.
The winning probability is computed in terms of two parameters which represent
the winning probability of a rally depending on the serving team. MC properties
and combinatorial arguments are used to derive the explicit formula for the winning
probability. The authors applied their formula to data from the Italian Volleyball
League. The calculated winning probabilities and set durations were close to real
data estimates. A similar MC approach as in [13] has been used by Heiner et al. [7]
for women’s soccer.

An MDP is more complex than an MC. It is a Markov decision process sup-
plemented by an optimality criterion. The decision process incorporates a decision
maker that chooses at each time step (a decision epoch) an action from a specified
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set of actions. This way, the transition probabilities do not only depend on the cur-
rent state (like in an MC), they also involve the chosen action of the decision maker.
Depending on the current state, the chosen action, and the realized next state, a re-
ward is generated. A policy is a decision rule that prescribes an action choice for
each state. Once a policy has been fixed, the system generates an MC. Policies can
be compared with respect to the optimality criterion. There are tools to determine
an optimal policy for the decision maker in many settings if the problem scale is not
too large. We follow the notation of Puterman’s textbook [18] throughout this paper.

In sports related applications, MDPs are often used in connection with gen-
eral, tactical considerations that are not team or match specific. Some examples
are: Clarke and Norman [4] as well as Nadimpali and Hasenbein [15] investigate
a Markov Decision Problem (MDP) for tennis games to determine when a player
should challenge a line call. The latter one is the more detailed model. We describe
it briefly in the following: A decision point occurs when an opportunity to challenge
the umpire arises. The states include the outcome of the point, the score, the num-
ber of challenges remaining, the probability that the call is incorrect, and the result
of a successful challenge. There are two possible actions in each state: challenge
and do not challenge. Further parameters of the model are the relative strength of
the players and the fallibility of the officials. These parameters are used to generate
the transition probabilities for the model. They use the standard linear program-
ming approach for multi-chain, average cost MDPs to obtain optimal policies under
a variety of parameter settings. Hirotsu and Wright model football as a four state
Markov Process and use dynamic programming to determine the optimal timing of
a substitution [8], the best strategy for changing the configuration of a team [9], or
to determine under which circumstances a team may benefit from a professional
foul [26]. Chan and Singal [2] use an MDP to compute an optimization-based hand-
icap system for tennis. The weaker player gets ‘free points’ at the start of the match,
such that the match-win probability of both players is equalized. Clarke and Nor-
man [3] formulate an MDP for cricket to determine whether the batsman should
take an offered run when maximizing the probability that the better batsman is on
strike at the start of the next over. The model is solved analytically by dynamic pro-
gramming. Norman [16] builds a more aggregated MDP for tennis games to tackle
the question when to serve fast or when to serve slow at each stage of a game.
The model is solved analytically using a monotonicity property of the optimal cost
function and dynamic programming.

Most of the MDPs on team or match dependent sport-strategic decisions are ret-
rospective: Terroba et al. [21] develop an MDP-based framework for tennis matches.
The information needed to build the model is semi-automatically gathered from
broadcast sports videos. Machine learning algorithms are executed to identify opti-
mal policies. They also present a novel modification to the Monte Carlo tree search
algorithm and apply their model to popular tennis matches of the past. They present
how the player who has lost in reality could have won the match with identical skills,
just by using a different policy.

To the best of our knowledge, the only MDPs that take player skills into account
and could be applied to future matches exist for baseball. Wright and Hirotsu [25]
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formulate a Markov model for baseball to calculate an optimal pinch hitting strategy
under the ‘Designated Hitter Rule’. Their method can be applied to a specific match
by using the probability of each player to achieve a single, double, triple, home run,
walk, or out.

An MG is a stochastic game in an MDP-like environment. Instead of one deci-
sion maker, there exists a whole set of players. At each decision epoch, each player
chooses an action from his action set. So, the transition probabilities and rewards in-
corporate the decisions of all players. An MG gets even more complex through the
different optimality criteria of the players. Therefore, policies that are simultaneous
best responses, i.e., Nash equilibria, are the focus of interest. In some cases, most
notably when an MG with finite strategy sets has pure Nash equilibria, they can be
found algorithmically. This requires the repeated computation of best responses to
fixed strategies. Our method in this paper can be also seen as a building block for
this problem. In Section 12 we show first results into this direction. More on MGs
can be found in Webb’s textbook [24].

To the best of our knowledge, there exist only a few applications of a Markov
Game (MG) to optimize the policies a-priori for a particular sports game. Kira
et al. [11] formulate an MG for baseball and computed Markov perfect equilib-
ria for both teams. The transition probabilities of the MG are assumed to depend
only on the probability parameters for the hitting skills of the players. They use a
dynamic-programming algorithm for solving the Bellman equations that character-
ize the value function of the game for both teams. However, MG models have been
applied in the context of sports strategies in a more general set-up: Walker et al. [23]
use Binary Markov Games to model a sports game like tennis and derive that under
certain monotonicity properties optimal policies to win the match are a repeated ap-
plication of an optimal policy to win a rally (our results on the optimality of myopic
policies in Section 4 are related but in the MDP set up). Turocy [22] uses MG mod-
els fed with massive historical data in order to clarify whether there really has been
a “last-up” advantage in baseball on average in the past. Routley and Schulte [19]
employ MG models to rank ice hockey players according to their skills. In an up-
graded MG model also location information is included [20]. Anbarc et al. [1] have
tried to decide the fairness of tie break mechanisms on the basis of MG models.

Why did we choose to utilize MDPs instead of MGs in this paper, although
our policy might be influencing the policy of our opponent? The answer is two-
fold: first, in order to investigate MG models, the problem of characterizing best-
responses to given policies is important. By investigating MDPs, we cover this step.
Second, for strategical decision support, MGs would guide us to the best policy
against a strategically perfect opponent. In most cases, this is not what we want; we
consider it rather more successful to adapt to the special strengths and weaknesses
of a particular opponent. In future models, we plan to incorporate dimensions like
variability into the MDP setting. This will at least cure some of the short-comings of
MDP models in this regard. If the sets of strategy choices are finite and small (like
for the benchmark problem in this paper), our approach can be applied to solve finite
constant-sum games modeling the behaviours of both opponents (see Section 12).
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3 The New Two-Scale MDP Approach

We seek for elementary strategic guidelines for a sports game. The dilemma in
MDP-modelling of sports strategy optimization is the following: A compact MDP
directly developed for the strategic question (“Should I play safe or risky?”) may
allow us to analytically or numerically solve for an optimal policy based on the
input data. However, this input data, in particular the transition probabilities (e.g.,
for an attack directly winning a point in a beachvolleyball rally) often depend on
the combination of all players involved. Consequently, they are hard to estimate,
since historical data for all combinations of players is needed (e.g., for the direct
point probability, the setting and hitting skills of the attacking team’s players and
reception skills of the receiving team’s players are all relevant at the same time).

For a more detailed model where transitions only depend on individual actions
(e.g., the hard smash aimed at a certain spot in the field happened as intended)
transition probabilities can be estimated easier, since only individual success prob-
abilities for a single player are needed. Such detailed MDP models with billions of
states could be very complicated to solve for optimal policies, but that is not the
main problem. A detailed MDP will inevitably produce recommendations on the
level of exact individual actions in all kinds of special situations (e.g., whenever
your opponent has taken certain positions and the ball is in another position and
flies in a certain direction and your team mate’s position is in another certain po-
sition . . . , then your next hit should be a set to a certain position.) Since strategy
recommendations have to be implemented by humans eventually, such outcomes
would be impractical.

However, the idea to use coarser, more principle MDP models can lead to a
very difficult input-data problem: The details that we may want to leave out in the
model are not irrelevant. They appear in aggregated form in the transition proba-
bilities, which often depend on the opponent’s behaviour. The consequence is that
these probabilities can hardly be estimated whenever up-to-date observations for
our team and the actual opponent are not available. In contrast, in a detailed model
the transition probabilities may refer to very simple state transitions. This could be
the probability that a certain hit is performed successfully, almost successfully, or
failed completely. Such probabilities can be observed in special training sessions or
in videos of historic events, independently of the skills of an opponent.

It seems that each modelling granularity has something to offer. Therefore, we
use both, i.e., we employ two MDPs instead of one for the optimization of a sports
strategy and relate them to each other. One is coarse and one is detailed. We obtain
our new two-scale method.

The coarse MDP is called the strategic MDP, s-MDP for short. It represents the
principle influence of the strategic decision in question on the winning probability. It
uses as its basis a plausible segmentation of the gameplay into strategic pieces. This
could be a phase of ball-possession or the like. This s-MDP will have moderate size
and a simple structure so that finding an optimal policy is within reach analytically
or numerically. Moreover, players can implement the resulting recommendation in
practice. However, its transition probabilities need not be easily observable. The
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detailed MDP is called the gameplay MDP, g-MDP for short. It is an ordinary MDP
but with a very fine granularity. Since the g-MDP is only used in a simulation, it
does not matter if it has billions of states. It represents the dynamics of the detailed
gameplay in greater detail in such a way that its gameplay-decisions (g-decisions)
and gameplay-state transitions (g-transitions) can be related to strategy decisions
(s-decisions) and strategy-state transitions (s-transitions) in a meaningful way.

Neither the size nor the structure of the g-MDP are restricted. What we care about
is that all transition probabilities in the g-MDP can be observed up to an acceptable
accuracy, possibly by some additional effort like special training sessions or video
analysis

Whether or not we are scoring a direct point depends on us and the opponent.
So, observations must be classified according to pairs of opponent teams, and there
are many. This leads to a very sparse data basis to estimate probabilities. One way
out is to develop a model how the probabilities come about. Our idea means: instead
of standard parametric statistics, we use a g-MDP to generate the transition proba-
bilities. A suitable g-MDP has single moves and hits as actions. The g-states store
the players’ and the ball’s positions plus some technical information like how many
times in a row the ball has been touched by the same team, who touched the ball
before and whether the ball was hit hard before.

In order to gain an advantage over using the s-MDP alone, we allow state transi-
tions whose g-transition probabilities only depend on the skills of the player hitting
the ball. For example, the action “smash targeted at a certain position in the oppo-
nent’s field” leads to follow-up states only depending on to what extent the smash
was carried out successfully. Whether or not the opponent can return the smash in
a controlled fashion solely depends on the returning player’s skills. The resulting g-
MDP will be complicated. It will possibly be hard to find optimal g-policies. And: a
g-policy will be complicated to implement during gameplay. But: By Monte-Carlo
simulation (g-simulation) of the g-MDP we can in certain cases estimate the result-
ing s-transition probabilities.

More specifically, we have to relate the g-MDP to the s-MDP as follows: For
each s-policy we have to specify what g-actions fit to this policy in the g-MDP. Call
a feasible sequence of g-decision rules over the epochs of a phase of ball possession
an attack plan. Any set of such attack plans is called an attack type. A probabil-
ity distribution over an attack type is called an attack style. Now, we assign to each
s-policy an attack style.1 We call this assignment the s-g-implementation. For exam-
ple, if at a certain score our team is in possession of the ball and wants to play the
s-policy risky, then we can assign to it a probability distribution over the set of all
attack plans ending with the most risky (i.e., close to the border of the field or a hard
hit like a smash) attack-hit available in the respective situation.2 The set-up of such

1 In other words, an attack style is a mixed partial g-policy consisting only of decision rules that
belong to some attack type.
2 Note that it would not be sufficient to assign a probability distribution over a set of actions to
an s-policy, since any hit in a sequence of actions could fail with some probability, resulting in
a state without feasible actions. In contrast to this, an attack plan, which uniquely determines a
sequence of decision rules, returns for all possible resulting failure states an action to cope with it.
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an s-g-implementation requires the classification of all g-decision functions in each
g-state by s-decisions. Thus, a vast amount of case-by-case analysis is necessary
using expert knowledge of the particular game. Usually, more than one g-decision
function is possible to represent a single s-decision; in that case, we choose one uni-
formly at random. A different viewpoint is that the s-g-implementation is the formal
definition of what a coach actually means by playing safe or risky.

Using this connection, one can count in simulation how often one realization of
the risky attack style results in a direct point, a direct failure, or a continuation of
the rally, which correspond to outcomes of s-transitions in our example. Essentially,
the g-MDP is utilized in the same way as a family of Markov-chains, parametrized
by classes of g-decisions, each induced by the possible s-decision it implements.
An MDP model is the better viewpoint here, since a formal connection between the
s-MDP and the g-MDP needs the concept of g-decisions.

Since the transition probabilities of the s-MDP usually depend on the combina-
tion of all players involved, it is difficult to estimate them by historical observations.
At worst, a certain combination of players may have never played in a match be-
fore. Here, our two-scale approach comes into play. The related g-MDP models
each player’s individual actions (in basketball, e.g., this might mean dribble, pass,
shoot, from where, to where, . . . ). The individual player probabilities, called skills,
describe the outcomes of these player’s actions and constitute the g-transitions. The
advantage of the g-MDP is that the g-transitions only depend on a single player’s
skills and such skills are easier to estimate. They do not depend on combination of
players and can therefore be estimated from arbitrary matches of that single player
or even from training experiments. Usually, several g-transitions in the g-MDP (i.e.,
again for basketball: pass around – no-look-pass into the attack area – shot – score)
constitute one s-transition (i.e., we score) in the s-MDP. The s-transition probabil-
ities of the s-MDP can then be estimated by counting the g-transitions in g-MDP-
simulations on the basis of estimated skills.

Given the simulated s-transition probabilities, one can solve the s-MDP and find
out an optimal s-policy, which represents a principle strategic recommendation.
Note that in order to show-case the concept in this paper in a more concise way, we
have chosen to restrict our s-MDP for beach-volleyball to only few possible poli-
cies. In priciple, which out of two (or few) policies is the best could be estimated
by simulating the corresponding Markov chains in the g-MDP for the durations of
complete games (rather than single phases of ball-possession) at the cost of longer
computation times. Even in our simple case such a brute-force numerical approach
would miss out some important information: The analysis of the s-MDP provides
us with structural results (Theorems 1 and 2 and the winning probabilities of the
tie-game in Section 4) and with useful sensitivity information (see Section 11). This
information follows from the fact how exactly the simulated probabilities influence
the qualities of the policies. This information would be substantially more difficult
to obtain by simulation alone. Furthermore, in our approach the policies in the s-

For example, in a failed attempt to set the ball properly, the most risky smash available might be
much less aggressive than the safest smash available after an excellent set – this possibility could
not be covered by classifying actions.
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MDP can be chosen to be much more involved as long as the s-MDP can be solved
fast analytically or numerically. The evaluation of the g-MDP can even be performed
on-demand inside a possible interative solution method for the s-MDP. Beyond this,
our setting allows for the following extension: we can make the s-g-implementation
the subject of optimization for each s-strategy. Implementing this extension, how-
ever, would be beyond the scope of this paper.

In the gameplay situation, the players have to decide about the explicit g-actions
they perform next, depending on the optimal s-policy and the states they encounter.
They will do this exactly by mimicking the s-g-implementation. Whenever in reality
all attack plans in an attack type are carried out similarly often as in the g-simulation,
the actual s-transition probabilities will be similar to the simulated s-transition prob-
abilities.

The exact form of the s-g-implementation is defined through expert knowledge.
It can be implicitly based on intuitive understanding of the players. This has the
advantage that no brain power is needed for it during gameplay. Alternatively, the
team may want to establish an explicit encoding what an s-policy (e.g., play risky)
is supposed to mean in terms of an attack style (play “any attack combination with
the hardest-possible smash closest-possible to the boundary of the field” or the like).
For beach volleyball, we have implemented this idea for one strategic question (see
Sections 4 through 9).

Although in this paper, the only worked example is from beach volleyball (other
examples like tennis can be worked out in a similar way), the two-scale MDP
paradigm can be used for other sports games as well. For the particular sports game,
one first has to develop an s-MDP, which models the strategic question. Second,
one needs a sufficiently related g-MDP with observable transition probabilities. The
g-MDP serves as a device to estimate the transition probabilities in the s-MDP. For
this purpose, s-transitions are counted in simulations of the g-MDP.

Consider, e.g., basketball. One interesting strategic question is whether to pro-
voke a very fast tempo with high risk against a then less consolidated defence or
to play calmly with low risk against a completely settled defence configuration. Or
soccer: Should one preferably play high long passes behind the defending lines or
should one play short low passes. A possible s-MDP would then consist of states
corresponding to the principal situations (score, ball possession, phase of attack,
shot opportunity) in which our team can choose to play “fast” or “slow” (basket-
ball) or “high” or “low” (soccer) in order to influence the transition probabilities.
Given these probabilities we could solve the s-MDP and make a recommendation:
“fast” or “slow” and “high” or “low”.

In the following sections, we will present an s-MDP/ g-MDP pair for beach vol-
leyball that finds rules when to play risky or safe, depending on the skills of the
individual players and the opponent’s skills. Even for beach volleyball, we note that
our special choices of an s-MDP and a g-MDP are by no means unique. Our choices
were guided by the wish to base the answer to the team-strategic question on the
skills of the individual players for common hitting techniques. All rules concerning
beach volleyball can be found in official documents by the Fédération Internationale
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de Volleyball [5]. We will briefly sketch the most important scoring rules when they
become relevant in Sections 4 and 6.

The two-scale MDP paradigm can be transferred to other sports games, but the
concrete implementation in this paper, i.e., the s-MDP, the g-MDP, and the data
estimation are tied to the beach volleyball example with the benchmark question. A
concrete implementation of our new paradigm for interesting strategic questions in
basketball and other sports games is research in progress.

4 A Strategic MDP for Beach Volleyball

From now on we show how our two-scale model can be applied to a particular
sports game, namely beach volleyball, and a particular strategic question, namely
safe versus risky play. At this point, safe and risky play are just names for two
strategies in the s-MDP. Eventually, it is only the s-g-implementation that will give
this a concrete meaning in terms of classes of detailed g-decision rules.

In this section, we specify an s-MDP for our benchmark question. Recall that
we want to find out in which situations (score, possession, serve or field attack)
risky play will lead to a higher set-winning probability than safe play. Our strategy
is to construct the s-MDP as simple as possible. The benchmark question requires
to model the actions of one of the two teams. Moreover, we distinguish between
service play and field attack play – it might be optimal to serve safe and to attack
risky or vice versa.

Let Team P be the team whose strategy we want to optimize, and let Team Q
be P’s opponent. The control set in all states s where team P possesses the ball is
given by As :=

{
risky, safe

}
. The control set in the states where team Q possesses

the ball contains a unique dummy control. Aiming at the benchmark question, a
state has to contain the current score, which team starts the next attack plan and an
indicator whether the state is a serving state or not. Thus, the simplest possible state
space with respect to the benchmark question is Sreg :=

{
(x,y,k, `) | x,y ∈ N, k ∈

{P,Q}, ` ∈ {0,1}
}

. Here, x and y denote the scores of Team P and Q, respectively.
Moreover, k specifies which team possesses the ball, and ` encodes whether or not
this is a serving state (`= 1) or a field attack state (`= 0).

Let us restrict to matches consisting of a single set to 21 points in the following.
The state set winning states Swin contains all states, where team P has won the set,
e.g., states where P has 21 points and Q no more than 19. Similarly, the state set
losing states Slose contains all states, where team P has lost the set, e.g., where Q
has 21 points and P no more than 19. At states with a score of 20 : 20, the so called
“tie game” starts, where a team wins if it has a lead of 2 points. As our s-MDP
should have a finite number of states, we use a different state representation for
the tie-game. Instead of remembering the number of points for team P and team Q
separately, we only denote the point difference of the two teams in a state. So, the
states of the tie game are
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Stie = {(z,k, `) | z ∈ {−2,−1,0,1,2}, k ∈ {P,Q}, ` ∈ {0,1}},

which are only finitely many states. This kind of state representation is not possible
in the regular set, since the absolute number of 21 points must be reached to win
a set. In the tie game, only a relative criterion must be fulfilled. Note that with
this simpler representation it is not possible to make the s-transition probabilities
dependent on the duration of the tie game. Incorporating dependence on the duration
requires a more complicated solution procedure, generally using a countably infinite
number of states. In this paper, we stick to stationary probabilities, which is not
an uncommon assumption in professional sports [12]. Using the relative notation
for the tie-game states, there we have finitely many states that describe a beach
volleyball set. Let Swin and Slose contain all winning and losing states respectively
for team P which are modelled as absorbing states that are, once entered, never left.

A decision epoch starts when Team P gains control over the ball and starts its
attack. The decision epoch ends when Team P makes a fault or a point, or when
the attack is successful but Team Q has gained control over the ball and starts
its own attack plan. The actions of Team Q are modelled as part of the transi-
tion probabilities in the s-MDP. These decision epochs in general allow for in-
finitely many stages. Let p+(P)a [p−(P)a] be the probability that Team P play-
ing action a directly wins [loses] the rally. The corresponding probabilities for
Team Q are denoted by p+(Q) and p−(Q), respectively. As abbreviations, we de-
note the probabilities that none of this happens by p0(P)a := 1− p+(P)a− p−(P)a
and p0(Q) := 1− p+(Q)− p−(Q), respectively. Since a serving attack has tran-
sition probabilities clearly different from a field attack, we distinguish between
them. This is denoted by a superscript field or serve on the transition probabili-
ties. In the following, we are considering the strategic options risky and safe ei-
ther for the service or for the field attack. Thus, the evolution of the system is
governed by twelve probabilities p+(P)att

a , p−(P)att
a , p+(Q)

att
, p−(Q)

att, where
a ∈ {risky, safe}, att ∈ {serve, field}.

These probabilities induce all transition probabilities by incrementing points and
changing the right to serve in the obvious way. Entering a winning state yields a re-
ward of one; all other transitions have reward zero. Table 1 summarizes our s-MDP.
Note how the whole construction of our s-MDP was guided only by the benchmark
question, not by finding the most compact representation or a being able to solve
the model. In Figure 1, we illustrate the resulting transition diagram in the case that
P services first in the set for a simplified beach volleyball set requiring only two
(instead of 21) points for a win. At the states (1,1,P,1) and (1,1,Q,1), the tie game
starts.

Our s-MDP was constructed with a symmetric view on teams P and Q: The only
difference is that team P can choose a strategy whenever in possession of the ball
whereas team Q’s strategy is fixed. In practice, we aim at optimizing the strategy
for team P using a strategy for team Q that has been estimated from earlier games
in the same tournament or the like. In Sections 11 and 12 we will discuss sensitivity
issues and extend this best-response approach to a finite constant-sum game setting,
which allows to prepare for more than one opponent strategy.
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Table 1 Strategic MDP (s-MDP)

Strategic MDP Beach Volleyball Set between Team P and Team Q

Decision Epochs: T = {1,2,3, . . .}

State Sets:

S =Sreg∪Stie

Sreg ={(x,y,k, `) | x,y ∈ {0, . . . ,21} with x≤ 19∨ y≤ 19,

k ∈ {P,Q}, ` ∈ {0,1}}
Stie ={(z,k, `) | z ∈ {−2, . . . ,2}, k ∈ {P,Q}, ` ∈ {0,1}}

Swin ={(21,y,k, `) ∈ Sreg}∪{(2,k, `) ∈ Stie}
Slose ={(x,21,k, `) ∈ Sreg}∪{(−2,k, `) ∈ Stie}

Action Set: As =


{risky,safe} ∀s = (x,y,P,1) ∈ Sreg, s = (z,P,1) ∈ Stie

{risky,safe} ∀s = (x,y,P,0) ∈ Sreg, s = (z,P,0) ∈ Stie

/0 else.
There exist an artificial action at the absorbing states Swin∪Slose.

Transitions: regular game and transition to tie-game

Let s = (x,y,P,1) ∈ Sreg \{Swin∪Slose}, a ∈ As.
p((x+1,y,P,1) | s,a) = p+(P)serve

a if (x,y) 6= (19,20), p((0,P,1) | s,a) = p+(P)serve
a if (x,y) = (19,20).

p((x,y+1,Q,1) | s,a) = p−(P)serve
a if (x,y) 6= (20,19), p((0,Q,1) | s,a) = p−(P)serve

a if (x,y) = (20,19).

p((x,y,Q,0) | s,a) = p0(P)
serve
a

Let s = (x,y,P,0) ∈ Sreg \{Swin∪Slose}, a ∈ As.
p((x+1,y,P,1) | s,a) = p+(P)field

a if (x,y) 6= (19,20), p((0,P,1) | s,a) = p+(P)field
a if (x,y) = (19,20).

p((x,y+1,Q,1) | s,a) = p−(P)field
a if (x,y) 6= (20,19), p((0,Q,1) | s,a) = p−(P)field

a if (x,y) = (20,19).

p((x,y,Q,0) | s,a) = p0(P)
field
a

Transitions: tie-game

Let s = (z,P,1) ∈ Stie \{Swin∪Slose},a ∈ As. Let s = (z,P,0) ∈ Stie \{Swin∪Slose},a ∈ As.

p((z+1,P,1) | s) = p+(P)serve
a

p((z−1,Q,1) | s) = p−(P)serve
a

p((z,Q,0) | s) = p0(P)
serve
a

p((z+1,P,1) | s) = p+(P)field
a

p((z−1,Q,1) | s) = p−(P)field
a

p((z,Q,0) | s) = p0(P)
field
a

The transitions of team Q are modelled analogously.
Swin∪Slose are modelled as absorbing states and all other transitions have zero probability.

Rewards: r(s,a,s′) =

{
1 if s /∈ Swin, s′ ∈ Swin

0 else.

Objective: maximize the total expected reward
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field
a

p+(P)
serve
a

p0 (P)
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field
a

p−(P)field
a

p+(Q)
field

p0 (Q)
field

p
− (Q

)
field

1

1

Fig. 1 General s-MDP

It will turn out that the problem to find an optimal policy can be partitioned
into two special cases of the s-MDP because the optimal policies for them are my-
opic (see Appendix 13) and, thus, do not interfere with each other. One case is the
serving s-MDP, where the attack types differ only in the serving technique, i.e.,
As = {risky,safe} for all serving states s = (x,y,P,1) of P. The other case is the field
attack s-MDP, where the attack types differ in the attack plans used during a field
attack, i.e., As = {risky,safe} for all non-serving states s = (x,y,P,0) of P.

One may observe that there are many states in the two subproblem s-MDPs in
which no action of P is required. In an MDP these states are unnecessary. By con-
catenating all paths between states in which P has to make a decision, we can trans-
form the s-MDPs into versions where decision states of P, absorbing states and only
some additional states – for better readability – occur.

Moreover, since there exists a stationary optimal policy and the choice of an
action in A for P depends in both subproblems only on the score, P plays the same
action in all decisions states with identical scores. Therefore, all transitions that are
neither changing the score nor involve actions of P can be merged. This requires
the evaluation of some geometric series in a straight-forward fashion. For simpler
notation of the result, we defined the following probability terms for score changes
in the serving s-MDP (based on an arbitrary fixed field attack strategy for team P)
and in the field attack s-MDP (the events are denoted in parentheses):

αserve
Q =

p−(Q)
field

+p0(Q)
fieldp+(P)field

1−p0(Q)fieldp0(P)field , (reception Q, point for P)

β serve
Q =

p+(Q)
field

+p0(Q)
fieldp−(P)field

1−p0(Q)fieldp0(P)field , (reception Q, point for Q)
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αserve
P =

p+(P)field
+p0(P)fieldp−(Q)

field

1−p0(P)fieldp0(Q)field , (reception P, point for P)

β serve
P =

p−(P)field
+p0(P)fieldp+(Q)

field

1−p0(P)fieldp0(Q)field , (reception P, point for Q)

αfield
a =

p+(P)field
a +p0(P)field

a p−(Q)
field

1−p0(P)field
a p0(Q)field , (ball possession P, point for P)

β field
a =

p−(P)field
a +p0(P)field

a p+(Q)
field

1−p0(P)field
a p0(Q)field (ball possession P, point for Q)

γserve
a = p+(P)serve

a +p0(P)
serve
a αserve

Q . (service P, point for P)

Note that αfield
a + β field

a = 1. Figure 2 and Figure 3 illustrate the outcome of this
transformation for the two-point field attack s-MDP. The same transformation is
also possible for the tie-game since the structure of the transition probabilities in the
tie-game is identical to the regular game.

(0, 0, P, 1)

(1, 0, P, 1)

(0, 1, Q, 1)

(2, 0, P, 1)

(1, 1, P, 1)

(1, 1, Q, 1)

(0, 2, Q, 1)

tie game
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a
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0 (P)
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α
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e

Q

p−
(P) servea + p 0

(P) servea β serveQ

p+(P)
serve
a + p0 (P)

serve
a αserve

Q

p−
(P) servea

+ p 0
(P) servea β serveQ

p+(Q)
serve

+ p0 (Q)
serve

βserve
P

p
− (Q)

ser
ve + p

0 (Q)
ser

ve α
ser

ve

P

1

1

Fig. 2 Serving s-MDP

The s-MDP can be solved analytically for an optimal policy. The total expected
reward is monotonically increasing in the number of points of P and monotonically
decreasing in the number of points of Q (Appendix 13 provides a formal proof for
this plausible proposition). Due to this property, a myopic policy that maximizes the
probability to win the next point is optimal. This result was found independently
of a result by Walker et al. [23], who proved that given a monotonicity property a
myopic policy is optimal for binary Markov games. Since the transition probabilities
are identical in every stage of the game, the optimal myopic policy stays the same
throughout the game. Our theoretical main result is the following:

Theorem 1 (Optimal Policy – Field Attack s-MDP). There exists a stationary op-
timal policy that chooses in each state the action a∗ with αfield

a∗ ≥ αfield
a for all a ∈ A.

Theorem 2 (Optimal Policy – Serving s-MDP). There exists a stationary optimal
policy that chooses in each state the action a∗ with γserve

a∗ ≥ γserve
a for all a ∈ A.
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Fig. 3 Field Attack s-MDP

Note that it is important for this result that a rally cannot result in a draw (like in
the famous MPD-text-book example on a multiple-game chess match, where it is
optimal to play safe when in the lead). Also games in which time marks the end
(like in soccer) need a different analysis.

Since we have only two actions in A, risky play (a∗= risky) is optimal throughout
whenever αfield

risky−αfield
safe is positive in the field attack s-MDP or when γserve

risky − γserve
safe

is positive in the serving s-MDP, respectively. The optimal policy is unique if these
expressions are strictly positive. Observe that αserve

Q depends on the played field at-
tack strategy. For determining the best combination of a field attack and a serving
strategy one first has to compute best field attack strategy according to Theorem 1,
calculating αserve

Q for this field attack strategy and then apply Theorem 2 to deter-
mine the optimal serving strategy based on the optimal field attack strategy.

As an optimal decision rule in the s-MDP does only depend on the situation
type, and furthermore only selects between two actions, we define a decision in the
s-MDP as a mixture between risky and safe that only depends on the situation type:

Definition 1 (s-MDP decision rule). A s-MDP decision rule is a mixture between
the two actions risky and safe where

mixsit

is the fraction by which the action risky is chosen in situation sit.

Even if Theorem 1 and Theorem 2 are sufficient to characterize an optimal strat-
egy in the whole s-MDP, we want to give an analytic formula for the winning prob-
ability of the tie-game. As before, stationary data guarantees the existence of an
optimal stationary policy and we can aggregate the transitions and states such that
we get a simplified representation that consists only of serving states. The sum-
marized transition probabilities are computed from the original s-MDP transition
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probabilities by using the geometric series. The cumulated probability of gaining or
losing a point if serving variant a and field attack variant b is played is:

αa,b
P := p+(P)serve

a +p0(P)
serve
a ·p−(Q)

field
+p0(P)

serve
a ·p0(Q)

field ·αfield
b,P

β a,b
P := p−(P)serve

a +p0(P)
serve
a ·p+(Q)+p0(P)

serve
a ·p0(Q)

field ·β field
b,P .

So, we compute the terms for every combination of a serving variant a with a field
attack variant b. In a serving state of team Q, team P has only to choose a field
attack variant b. The cumulated probability of gaining, or losing, a point if field
attack variant b is played is:

αb
Q := p−(Q)

serve
+p0(Q)

serve ·αfield
b,P β b

Q := p+(Q)
serve

+p0(Q)
serve ·β field

b,P .

Figure 4 visualizes the aggregated tie-game.

0, P 0, Q

1, P

−1, Q

2, P

−2, Q

α
a,
b

P

β a,bP

αa,b
P

β a,bP

α b
Q

β
b
Q

βb
Q

α b
Q

1

1

Fig. 4 Tie Game s-MDP

For the winning probabilities va,b
0,P and va,b

0,Q for team P in the tie states (0,P) and
(0,Q), we can set up a system of equations

va,b
0,P = αa,b

P · v
a,b
1,P +β a,b

P · v
a,b
−1,Q

va,b
1,P = αa,b

P ·1+β a,b
P · v

a,b
0,Q

va,b
0,Q = αb

Q · v
a,b
1,P +β b

Q · v
a,b
−1,Q

va,b
−1,Q = αb

Q · v
a,b
0,P +β b

Q ·0.

Solving this system of equations yields the following formula for the winning prob-
ability of P depending on the service strategy a and the field attack strategy b:

va,b
P =

(αa,b
P )2

(1−αb
Qβ a,b

P )2−αa,b
P αb

Qβ a,b
P β b

Q

, va,b
Q =

αa,b
P αb

Q(α
a,b
P β b

Q−αb
Qβ a,b

P +1)

(1−αb
Qβ a,b

P )2−αa,b
P αb

Qβ a,b
P β b

Q

.
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We could now answer the benchmark question if we knew the twelve governing
probabilities for Teams P and Q. However, whether or not P scores directly depends
also on the skills of Q, and vice versa. Thus, a direct estimation of these probabilities
would require to make historical observations of Team P for each opponent team
separately. In the following section, we ignore the dependence of these probabilities
on the opponent and try to estimate them from all matches in the same tournament.

5 Computational Results I

After having found an analytic solution of the s-MDP, we can try to answer the
benchmark question raised in the introduction of this paper. First, the analytical so-
lution of the s-MDP showed us that the optimal strategy is myopic. So, independent
of the current score, it is always optimal to choose the strategy that maximizes the
probability to win the next point. We now turn our attention to the estimation of the
s-transition probabilities from historic observations directly.

All our computational results in this paper are based on a video analysis of the
Olympics 2012 in London. We took the point of view of strategic consultants for the
German team Brink-Reckermann (Team P) for the final against the Brazilian team
Alison-Emanuel (Team Q). In order to estimate the direct point and fault probabili-
ties directly from the matches prior to the final, each service and field attack of each
team was classified according to whether

• it was played risky or safe or can not be classified
• whether it led to an immediate point, an immediate fault, or a continued rally.

The absolute counts were used for a maximum-likelihood estimation of all the s-
transition probabilities. Their dependence on the opponent team was ignored. For
the purpose of comparison we also estimated these probabilities a-posteriori from
the final match alone. Note that – although we take this a-posteriori measurement as
a yard-stick – the observations in the final match contain only very few realizations
of a distribution over possible outcomes.

Any comparison of a-priori estimates with these a-posteriori observations is sub-
ject to two types of errors: the a-priori estimates have a certain prediction error that
comes from both systematic errors (like ignoring the dependence on the opponent)
and sampling errors (like small observation counts), and the a-posteriori estimate
has a particularly large sampling error (only the points of a single match are used).
Therefore, a discrepancy between the predictions of our model and the actual out-
come in the one final should not be solely attributed to modeling/estimation errors.
It might as well be the case that the actual outcome of the final did not coincide with
the expected outcome of the final.

Table 2 and Table 3 show the resulting maximum-likelihood estimations of the
s-transition probabilities based on the match data. Table 2 evaluated the rallies of
the prefinal matches while Table 3 considered only rallies of the final match. Since
the s-MDP strategies risky and safe are characterized by more than one property
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(hitting technique and target field) there exist observed attacks that neither belong
to the risky nor to the safe strategy. Therefore, the number of observations stated in
the #-column is, e.g., for risky serves in the final, quite small.

The prefinal-mix respective final-mix is the actual mixture of risky and safe ser-
vices and field attacks played in the prefinal matches respective in the final match.
According to Definition 1, we have

prefinal-mixserve =
32

134
prefinal-mixfield =

58
91

final-mixserve =
1

39
final-mixfield =

12
23

.

Table 2 Direct estimation of s-MDP probabilities – prefinal setting

strategy a # p+(P)serve
a p−(P)serve

a # p+(P)field
a p−(P)field

a γserve
a αfield

a win. Prob.

risky-risky 32 16% 22% 58 66% 17% 37% 34% 77%
risky-safe 32 16% 22% 33 48% 0% 36% 33% 60%
safe-risky 102 4% 9% 58 66% 17% 34% 34% 69%
safe-safe 102 4% 9% 33 48% 0% 32% 33% 50%
prefinal-mix 134 7% 12% 91 59% 11% 34% 34% 65%

# p+(Q)
serve p−(Q)

serve # p+(Q)
field p−(Q)

field

prefinal-mix 165 2% 10% 105 58% 15%

Table 3 Direct estimation of s-MDP probabilities – postfinal setting

strategy a # p+(P)serve
a p−(P)serve

a # p+(P)field
a p−(P)field

a γserve
a αfield

a win. Prob.

risky-risky 1 0% 0% 12 42% 25% 29% 29% 14%
risky-safe 1 0% 0% 11 64% 9% 34% 34% 73%
safe-risky 38 3% 0% 12 42% 25% 30% 29% 18%
safe-safe 38 3% 0% 11 64% 9% 36% 34% 77%
final-mix 39 3% 0% 23 52% 17% 33% 31% 44%

# p+(Q)
serve p−(Q)

serve # p+(Q)
field p−(Q)

field

final-mix 28 4% 14% 39 59% 15%

Using the optimality criteria of Theorems 1 and 2, we can compute that a risky
service and a risky field attack (short: risky-risky) is the optimal policy under the
considered policies in the prefinal setting against the Brazilian team playing their
prefinal strategy, compare column 8 and 9 in Table 2. By dynamic programming,
we computed the winning probabilities in the last column and found that the prefinal
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recommended risky-risky strategy would have led to the highest winning probability
of 77% by a seemingly large margin.

We wish to evaluate how our prefinal recommendation would have proven in the
final match. However, an evaluation of the directly estimated s-transition probabili-
ties from the final match can not be given large weight due to the small number of
observations. If the compared strategies were more specialized (e.g. requiring cer-
tain positions of players on the court), the number of observations would have been
even smaller. Also, if a team likes to evaluate a strategy they have not played before
in the tournament, a direct estimation of the s-transition probabilities is not possible
for that new strategy.

In order to see how well the estimations for the s-transition probabilities and the
corresponding s-MDP-based winning probabilities match what actually happened
in the final, one can compare the values from Table 3. The resulting differences in
winning probabilities are substantial, and it is not clear whether these are due to the
prefinal estimations and their systematic short-comings, to the postfinal estimations
due to their small number of observations, or to an actual deviation of the teams’
skills exposed in the final compared to the matches before.

Since in a direct estimation of the s-transition probabilities from the matches are
independent of the opponent, the estimations in the prefinal setting are always iden-
tical, no matter which team Germany faces in the final match. Since the s-transition
probabilities describe events that depend on both teams (e.g., the probability of an
ace depends on the serving skills of the serving team as well as the reception skills
of the opponent team) the s-transition probabilities estimates should vary for differ-
ent opponents. The more the opponent in the final match varies from the prefinal
opponents, the more probable it is that the optimal strategy against the opponent in
the final is different. It is not possible to directly estimate the s-transition probabil-
ities dependent on the opponent team for two reasons: First, like in our example of
the beachvolleyball tournament of the Olympic games 2012, the team may not have
faced the opponent of the final match prior to the final. Second, estimating from at
maximum one match, the resulting number of observations would be as small as in
Table 3. A clustering of opponent teams may be tried to cure the first problem. In
this application example, however, Germany did not even play any team of similar
strength as Brazil prior to the final.

For those cases in which the results based solely on the s-MDP are not satisfying
(as is the case for our benchmark question), we suggest our two-scale approach. The
use of an adequate g-MDP can help to overcome the issues resulting from the direct
estimation of the s-transition probabilities. Moreover and more importantly, with
the new method it will become possible to define and analyse many more strate-
gic options on the basis of the same individual player-skill estimates. This will be
demonstrated in Section 12.
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6 A Gameplay MDP for Beach Volleyball

This section sketches the infinite-horizon, stationary g-MDP for a beach volleyball
rally. The formal details can be found in Appendix 1. Its purpose is to provide an
approximation architecture for estimating opponent-dependent s-transition proba-
bilities from simulation runs based on the individual players’ skills, which govern
the g-transition probabilities.

In this section, it becomes relevant how a point is won in beach volleyball. We
summarize briefly the scoring rules as far as they are relevant to the model. A point
is won whenever after a hit the ball touches the ground inside the opponent’s field.
As soon as the opponent touches the ball, this is counted as the hit of the opponent.
A point is lost if the ball is hit outside the court, grounds on the own court, or a
hit is not executed properly. Moreover, a point is lost when a team touches the ball
four times in a row or a player hits the ball twice in succession. A block is a passive
contact close to the net in order to rebound an attack-hit of the opponent. The first hit
after a block may be executed by both players. However, a blocking contact counts
for the rules concerning the number of contacts of a team. Furthermore, a point is
lost when a player touches the net. Each rally starts with a service from behind the
ground line that must not be blocked.

In order to maintain the symmetry of the gameplay, team Q’s action sets will be
analogously modelled to the action sets of team P. However, team Q plays a fixed
probability distribution over a defined set of attack plans. The transition probabili-
ties encompass both the randomized choices of Q’s actions and the realizations of
random variables in the system dynamics.

We split up the team actions of a team into two individual player actions. Any
player’s action will be defined as a combination of a hit and a move. The decompo-
sition of a complex team action into actions of a single player makes the definition
of the action sets more manageable. Furthermore, this decomposition allows us to
build the g-MDP solely on individual player probabilities, which is the big advan-
tage of the g-MDP.

The g-MDP is an infinite horizon, discrete time MDP with stationary data. Sta-
tionary data can be reasonably assumed for a professional beach volleyball rally.
In [12], Koch found that the temporal position within a rally did neither effect the
type nor the quality of the attack-hit. Our decision epochs are the points in time at
which one of the players is about to hit the ball. If a player has decided about his
next action, which may be, e.g., an attack-hit, he has to stick to it. This is because
an interruption of the current action to revise the decision would lead to a delay.
In a professional match this delay will usually outweigh any potential improvement
of the new decision. Each time a player contacts the ball, the state of the system is
observed and a decision about the next hit or movements must be made by team P.
However, there is one exception from that rule: if the ball is touched in a blocking
action, then no state will be observed until the ball is rebounded and hits the ground
or is touched by the next player. Additionally, a new state is observed when the ball
hits the ground or one team has made a fault. In that case, the rally is completed, and
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one of the teams has scored a point. We number the points in time in a rally where
the state of the system is observed by natural numbers.

The crucial property of our g-MDP is that the g-transition probabilities only de-
pend on the skills of the individual players. To this end, any possible action (which
can be a move or a hit) can result in a success, a failure, or a deviation. In our model,
positions are classified by a grid on the field. Moves are represented by changes of a
player’s position in the grid with an upper bound on the range. In our model, moves
are always successful. If an attack hit or a service is successful, then the ball lands
in the intended grid field on the opponent’s court side with the intended hardness. If
a defensive hit is successful, then the ball is received and passed on to the intended
grid field so that the team mate can continue the counter-attack. A fault means that
the hit is in the net or was carried out with an execution fault. A deviation means that
the ball passes the net, but not as intended, e.g., it lands in a neighboring grid field
(which may also be out). The skill level for a special hit is defined as a probability
distribution over these three possible outcomes. Depending on the outcomes of an
attack hit, the opponent faces various situations, depending on which his hits lead
to success, failure, or deviation. Similarly, depending on the outcomes of a recep-
tion, setting and smashing have to be performed in different situations influencing
the their probabilities for success, failure, and deviation. An analogous mechanism
works for blocking, though slightly more complicated (see Appendix 1 for details).
This way, the skills of the two teams and of the two players in a team are decoupled
completely in the g-MDP. Therefore, the number of necessary probability estimates
is linear in the number of players as opposed to quadratic in the number of teams
if the team formations are fixed or even of degree four in the number of players in
general. Depending on the g-state, there are various actions possible. Note that this
setup also accounts for how the quality of receptions and sets influence the possible
follow-up actions: A deviated reception makes subsequent setting impossible, and
an additional reception with move has to be performed; a deviated setting results in
the impossibility of a smash making a more difficult shot necessary, etc. By a plau-
sibility analysis we excluded from all rule-compliant actions the non-professional
choices. The remaining choices are made based on a g-strategy, which is linked to
the s-strategies. This will be the topic of the next section.

7 Gameplay MDP strategy

Each team in the g-MDP plays a team specific g-MDP-strategy. A g-MDP-strategy
is a variation of some basic strategy used as a default together with an modification
of the blocking, serving and attack-hit strategies according to parameters that char-
acterize a team strategy, e.g., risky or safe. Besides these configurable decisions, all
strategies in the g-MDP use the same default decision rules of the basic strategy.

In the context of MDPs, a g-MDP-strategy is a stationary policy that consists of a
decision rule that prescribes, depending on the state, which action should be chosen.
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However, since we are in a sports environment, we will speak of strategies instead
of stationary policies.

The basic strategy is implemented to guarantee a reasonable match flow. It ex-
cludes unrealistic and moreover obviously non-optimal combinations of player ac-
tions or sequences of team actions, and chooses uniformly at random one of the
plausible options in each situation.

Some parts of the basic strategy are parametrized such that extreme strategies,
like risky and safe, can be derived from it. We chose in this example to configure
the blocking, serving, and attack-hit parts of a strategy. In general, other or more
complex parametrizations of the basic strategy are possible. With an implemented
basic strategy, it is not necessary to implement an individual decision rule for each
possible state in the g-MDP – all straight-forward actions are inherited from the
basic strategy.

The decision rules of the basic strategy split up into one decision rule for each
state category. The ten different state categories are serving, reception, setting, at-
tacking and defending states from the perspective of both teams. Each category
is determined by values of the state variable counter and side(pos(ball)), where
side(pos(ball)) states on which court side the ball is. We refrain from a complete
definition in print of the straight-forward decision rules of the basic strategy that are
used also in all other strategies under consideration – it is just a very long list of
very plausible rules.

Instead, we restrict ourselves to those decision rules in which the strategies of
interest differ. We represent all strategies as randomized policies over identical sets
of plausible deterministic policies representing extremal ways to play. The inves-
tigated strategies only differ in the selection probabilities. This way we obtain a
parametrized set of randomized strategies. More specifically, all strategy-specific
decision rules are encoded by a vector π whose components determine the proba-
bility for choosing true in a Boolean decision. It represents the probabilities with
which the strategy chooses one out of two extremal ways to play in various dimen-
sions. In the basic strategy, e.g., all components of π are set to 0.5 which means that
in each dimension both decision possibilities are equally probable.

For example, the blocking strategy is specified by πb, which states with which
probability player 1 of a team is the designated blocking player in the next rally. It
follows that with probability (1−πb) player 2 is the blocking player. The param-
eter πs determines the serving strategy of a team. With probability πs, a serve on
player 1 of the opponent team is made, i.e., the target field of the serve belongs to
the opposing court half that is covered by player 1.

Further, a technique and target field decision of the serve and attack-hit are in-
cluded in πh. The two parts πserve

h and πfield
h of πh comprise the strategies corre-

sponding to service and field attack, respectively. Each component further splits
up into a technique and target field decision that can be different for both play-
ers ρ , i.e., πsit

h = (πsit
h,tech(ρ), πsit

h,target(ρ))
T with sit ∈ {serve, field}. The subscript

term indicates if the decision is related to the technique (tech) or target field (target)
decision. Now, we can summarize all parameters that are necessary for defining a
g-MDP strategy of team P:
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Definition 2 (g-MDP strategy). A strategy of the g-MDP is a parametrization of
the basic strategy and characterized by the parameters:

π =

πh
πb
πs

 , πh =

(
πserve

h
πfield

h

)
, πsit

h =

(
πsit

h,tech(ρ)
πsit

h,target(ρ)

)
,

sit ∈ {serve,field},
ρ ∈ {P1,P2}.

For a higher memorability, we defined the values of the components of πh always as
the probability for the more risky opportunity. In our example, we have two serving
techniques available in the g-MDP, namely the float serve SF and the jump serve
SJ . The float serve is considered as a safe hit and the jump serve as a risky hit.
(All classifications of this type have been determined by personal communication
with high-level amateur beach volleyball players.) So πserve

h,tech(ρ) is defined as the
probability that ρ chooses a SJ . For the attack-hit, we have three techniques available
the smash FSM , a planned shot FP and an emergency shot FE . The emergency shot
is normally only played if none of the other attack-hits is possible, and in such a
case it is chosen with certainty by each strategy. The smash is considered as a risky
hit and the planned shot as a safe hit. So πfield

h,tech(ρ) is defined as the probability that
ρ chooses a FSM . Furthermore, we define all fields that are near the touch of the
court as border fields. For example, on court side of team Q the border fields are
∂F := {Q11−Q31,Q14−Q34}. These are more risky target fields than non-border
fields. So πserve

h,target(ρ) and πfield
h,target(ρ) are the probabilities with which a border field

is chosen as a target field. Should there be several possible risky or safe options
the risky or safe, respectively, strategy chooses one of them uniformly at random.
Using this randomization is a means to prevent complete predictability, although this
advantage cannot be measured in the reward function of the current MDP-setup.
It can be seen as injecting some general key learnings from game theory into the
system.

After having introduced the general concept of a g-MDP strategy, we want to
specify two hitting strategies that implement the s-MDP strategies risky [safe] as g-
MDP strategies. For answering our benchmark question, we will compare them later
in the computational results section, see Section 9. We call the two special strategies
the risky hitting strategy πrisky

h and the safe hitting strategy πsafe
h . They are the most

extreme hitting strategies. The strategy πrisky
h takes always a risky technique and

chooses always a border field as target field. The πsafe
h strategy chooses always a

safe hit with a non border field as target field. Table 4 summarizes the techniques
and target fields chosen by the two extreme strategies. The assignment of risky 7→
πrisky

h and safe 7→ πsafe
h is the s-g-implementation of our benchmark question. In the

following, we will refer to πrisky
h [πsafe

h ] when we write about the risky [safe] strategy
in the g-MDP-setting.
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Table 4 Overview risky hitting strategy πrisky
h versus safe hitting strategy πsafe

h

Strategy πrisky
h πh(ρ) πsafe

h Strategy πrisky
h πh(ρ) πsafe

h

Serve Attack-Hit

serving technique SJ 1 πserve
h,tech(ρ) 0 attack technique FSM 1 πfield

h,tech(ρ) 0
border field 1 πserve

h,target(ρ) 0 border field 1 πfield
h,target(ρ) 0

8 Gameplay MDP validation

For calibrating the g-MDP for the German team Brink-Reckermann against the
Brazilian team Alison-Emanuel in the final match of the Olympic 2012 games,
we need estimations for the skills of all players as input parameters. To estimate
the skills, we evaluated all matches they played in the tournament except the final
match. Details of the data collection process and the complete presentation of all
data tables can be found in [10]. For illustration purposes, the skill estimates for
Julius Brink based on the pre-final matches are included in Table 5 and Table 6.

Table 5 Input data from all matches except final: Julius Brink – Serves and Attack-Hits

target fields Q11-Q14 Q21-Q24 Q31-Q34
performance # succ fault # succ fault # succ fault

Serve

SF P01 - P04 34 0.88 (0.88) 0.00 (0.00) 43 0.88 (0.88) 0.12 (0.12) - - -
SJ 34 0.94 (0.94) 0.00 (0.00) 16 0.75 (0.75) 0.19 (0.19) - - -

Attack-Hit

FSM

out 0 0.86 ( – ) 0.02 ( – ) 0 0.86 ( – ) 0.02 ( – ) - - -
P11-P14 0 0.86 ( – ) 0.02 ( – ) 0 0.86 ( – ) 0.02 ( – ) - - -
P21-P24 55 0.85 (0.85) 0.04 (0.04) 17 0.94 (0.94) 0.00 (0.00) - - -
P31-P34 7 0.77 (0.71) 0.01 (0.00) 2 0.89 (1.00) 0.02 (0.00) - - -

FE

out 0 0.76 ( – ) 0.06 ( – ) 0 0.76 ( – ) 0.06 ( – ) - - -
P11-P14 0 0.76 ( – ) 0.06 ( – ) 1 0.79 (1.00) 0.05 (0.00) - - -
P21-P24 7 0.73 (0.71) 0.11 (0.14) 7 0.82 (0.86) 0.02 (0.00) - - -
P31-P34 1 0.70 (0.00) 0.05 (0.00) 1 0.79 (1.00) 0.05 (0.00) - - -

FP

out 0 0.95 ( – ) 0.05 ( – ) 0 0.95 ( – ) 0.05 ( – ) 0 0.95 ( – ) 0.05 ( – )
P11-P14 0 0.95 ( – ) 0.05 ( – ) 0 0.95 ( – ) 0.05 ( – ) 0 0.95 ( – ) 0.05 ( – )
P21-P24 8 0.99 (1.00) 0.01 (0.00) 30 0.97 (0.97) 0.03 (0.03) 0 0.95 ( – ) 0.05 ( – )
P31-P34 2 0.96 (1.00) 0.04 (0.00) 3 0.88 (0.67) 0.12 (0.33) 0 0.95 ( – ) 0.05 ( – )
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Table 6 Input data from all matches except final: Julius Brink – Defence, Reception, Set, Block

attack strength normal hard

performance # succ fault # succ fault

Defence d 20 0.85 (0.85) 0.05 (0.05) 14 0.71 (0.71) 0.21 (0.21)
dm 29 0.93 (0.93) 0.00 (0.00) 13 0.46 (0.46) 0.38 (0.38)

Reception r 34 1.00 (1.00) 0.00 (0.00) 9 0.90 (0.89) 0.10 (0.11)
rm 42 0.95 (0.95) 0.02 (0.02) 3 0.97 (1.00) 0.02 (0.00)

Set s 117 0.99 (0.99) 0.00 (0.00) - - -

performance # direct point over net but no point fault misses ball

Block b 5 0.20 0.20 0.20 0.40

In Table 5, the maximum-likelihood estimates of the individual player probabil-
ities of Julius Brink for all types of serves and attack-hits are presented. We aggre-
gated different player positions and target fields together to get a larger number of
observations. The number of observations for a certain combination of player posi-
tion and target field is stated in the #-column. The probabilities shown in brackets
are the maximum-likelihood estimates for the specified hit whereas the other proba-
bilities are the maximum a-posteriori probability estimations which include a prior
assumption [14]. For categories with more than eleven observations both probabili-
ties are equal. More details on the a-posteriori skill estimation can be found in [10].
The column succ states for each combination the probability that the hit lands in
the target field and the column fault contains the probability of a technical error.
The remaining probability is the probability that the hit was successful but the ball
deviated into a neighbour-field of the target field.

Table 6 specifies the estimated probabilities of Julius Brink for defence, recep-
tions, settings, and blocks. The estimated probabilities fit our intentions that we had
when we defined the hits, e.g., receptions have a higher success rates than defence
actions and hard balls are harder to defend or receive than normal balls. For the
blocking skills, the first three columns after the number of observations describe
the possible results of a block that catches the ball, while the last column is the
probability that the block misses the ball. Since Jonas Reckermann is the designated
blocking player in the German team, Julius Brink has done nearly no blocks in all
these matches [10]. We have done the same estimations of the individual probabili-
ties of the other players. The respective tables are presented in [10].

Before going on with strategic recommendations in the next section, we want to
check how well the g-MDP model fits a real beach volleyball match. We use the
final match of the Olympic games as a benchmark for our model and the estimated
input skills. It is the only match of the tournament where we have estimations of the
skills of both teams.
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Table 7 Estimated final and prefinal strategies of Brink-Reckermann and Alison-Emanuel of the
Olympic 2012 games

final πfinal prefinal πprefinal

GER BRA GER BRA
Brink Reckermann Alison Emanuel Brink Reckermann Alison Emanuel

πserve
h,tech 19.23% 24.14% 68.00% 36.67% πserve

h,tech 39.37% 50.41% 37.24% 35.34%
πserve

h,target 3.85% 17.24% 16.00% 26.67% πserve
h,target 18.90% 36.36% 17.93% 17.29%

πfield
h,tech 73.91% 69.23% 92.86% 81.48% πfield

h,tech 65.32% 71.67% 82.00% 86.19%
πfield

h,target 26.09% 33.33% 42.86% 53.70% πfield
h,target 38.71% 45.00% 36.00% 30.94%

πb 1.56% 96.08% πb 2.44% 95.85%
πs 27.27% 34.55% πs 50.00% 50.00%

Table 7 shows the strategy estimations for both teams in terms of the strategy
definition of Section 7. It contains the strategy estimated from observations of the
final match and the estimation from the prefinal matches. The estimated strategy of
the final is used for validating the g-MDP model definition. In the prefinal strategy,
we used 50% as the estimate for the team’s serving strategy. Since the teams faced
different opponents in the prefinal matches, we could not derive any meaningful
value from the observations. Recall, that the classification of a hit as safe or risky
depends on the state of the system, e.g., whether or not the setting resulted in a
deviation or not.

We collected the realized s-MDP transition probabilities from the Olympic final
by counting the number of serves and field attacks as well as the direct points and
faults. These values are presented in the first line of Table 8.

For validating our approach, we simulated 1000 batches of 100 beach volleyball
rallies each where both teams played the estimated strategy of the final match. We
implemented a special-purpose simulation code in Java. The g-MDP simulation has
been slightly tweaked from the ideal descriptions of the g-MDP in order to match
as closely as possible our interpretation of the video data for the data collection.

By counting the number of serves and field attacks as well as their outcome (di-
rect point, fault or a subsequent attack), we calculated the s-MDP transition prob-
abilities from the g-MDP simulation by a maximum-likelihood estimation. That is,
we counted the number of times the action was performed and the number of times it
resulted in a success, a failure, or a deviation. The quotients were taken as estimates
for the probabilities. Since the case of a deviation of target field for an attack hit
is difficult to judge upon (because we cannot tell the intention from the video), we
only classified outs as a deviation. Whenever there were fewer than eleven (a num-
ber determined in many experiments) observations for an action, we used actions
from an extended category to add additional observations. The results for different
skill estimations are shown in the last three lines of Table 8.



28 Susanne Hoffmeister and Jörg Rambau

Table 8 Validation of simulated s-MDP transition probabilities based on different skill estimates

estimation method p+(P)serve
πfinal p−(P)serve

πfinal p+(Q)
serve
πfinal p−(Q)

serve
πfinal

realized probabilities final 2% 4% 4% 14%

simulating the g-MDP with

skills of all matches except final 2% 15% 3% 15%
skills of all matches 2% 12% 4% 14%
skills of final only 1% 2% 6% 10%

estimation method p+(P)field
πfinal p−(P)field

πfinal p+(Q)
field
πfinal p−(Q)

field
πfinal

realized probabilities final 49% 17% 55% 16%

simulating the g-MDP with

skills of all matches except final 32% 15% 26% 19%
skills of all matches 36% 15% 36% 19%
skills of final only 46% 12% 50% 15%

The deviations of the predictions in the prefinal row from the direct observations
in the final in the very first row are partly small and encouraging and partly quite
large. However, as discussed before, one should not consider the first row as con-
taining the “true” probabilities because the values from the final are an estimation
for the probabilities, too, and one with a large sampling error, given the small num-
ber of observations. Still, it can be seen that the pattern of which probability is large
and which probability is small looks quite similar. We have to keep in mind, though,
that any interpretation of an outcome of our analysis must be accompanied by a
thorough sensitivity analysis. We will show a possibility to implement a concept for
this in Section 11.

9 Computational Results II

After having found an appropriate g-MDP model, we can estimate s-MDP transition
probabilities from simulating the g-MDP and answer the benchmark question raised
in the introduction of this paper. Using the g-implementation of risky and safe as
described in Table 4 and the a-priori skill estimations of all player, we can estimate
the s-MDP transition probabilities, see Table 9. Assuming Brazil plays a similar
strategy as their prefinal strategy πprefinal, their s-MDP transition probabilities can
be estimated from the g-MDP simulation as well, see last line in Table 9.

Using the optimality criteria of Theorem 1 and 2, we can compute that a risky
service and a risky field attack (short: risky-risky) is the optimal policy under the
considered policies in the prefinal setting against the Brazilian team playing their
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Table 9 Estimation of s-MDP probabilities from g-MDP simulation – prefinal setting

strategy a p+(P)serve
a p−(P)serve

a p+(P)field
a p−(P)field

a γserve
a αfield

a winning Prob

risky-risky 5% 20% 40% 16% 46% 55% 80%
risky-safe 5% 20% 16% 13% 39% 46% 31%
safe-risky 1% 13% 40% 16% 48% 55% 84%
safe-safe 1% 13% 16% 13% 40% 46% 34%
πprefinal 2% 16% 32% 14% 45% 53% 73%

p+(Q)
serve p−(Q)

serve p+(Q)
field p−(Q)

field

πprefinal 2% 12% 24% 18%

Table 10 Estimation of s-MDP probabilities from g-MDP simulation – postfinal setting

strategy a p+(P)serve
a p−(P)serve

a p+(P)field
a p−(P)field

a γserve
a αfield

a winning Prob

risky-risky 2% 8% 52% 14% 36% 37% 49%
risky-safe 2% 8% 40% 12% 33% 34% 25%
safe-risky 1% 2% 52% 14% 37% 37% 52%
safe-safe 1% 2% 40% 12% 34% 34% 28%
πfinal 1% 2% 47% 12% 36% 36% 41%

p+(Q)
serve p−(Q)

serve p+(Q)
field p−(Q)

field

πfinal 6% 10% 51% 14%

prefinal strategy. This result coincides with the prefinal recommendation based on
the direct estimated transition probabilities presented in Section 5.

The reader may have noticed that there are differences in the performances and
the played strategy when comparing the prefinal matches with the final match: The
skill estimates based on the prefinal matches differ from the estimates based on the
final match, compare e.g. Tables for the skills of Reckermann in [10]. Furthermore,
the strategy of Brazil in the final match deviates slightly from their prefinal strategy,
see Table 7. Because of these differences, we wish to evaluate how our prefinal rec-
ommendation would have proven in the final match. Table 10 shows the estimated
s-MDP transition probabilities estimated from the g-MDP simulation provided with
the postfinal setting. Applying again the optimality criteria of Theorems 1 and 2, we
derive that in the postfinal setting a safe service strategy and a risky field-attack strat-
egy would be the best response to the Brazilian final strategy. However, the a-priori
recommendation proves to be quite good. By dynamic programming, we computed
the winning probabilities and found that the a-priori recommended risky-risky strat-
egy would have led in the postfinal setting to a winning probability of 49%, which
is better that the actual played strategy of Germany in the final (41% winning prob-
ability) and only slightly worse than the optimal safe-risky strategy (52% winning
probability).
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It should be said that we experienced deviations between our predictions and the
outcomes of the final in this case as well, as in the pure s-MDP case in Section 5.
The deviations are attributed to changes in the individual skills. The skill estimates
from the prefinal matches differ from skill estimates based on the final match only.
However, the number of observation of one match is not satisfactory to estimate
the individual skills: The whole point of basing strategic recommendation on skill
estimates rather than direct point probabilities is that the data of all matches prior to
the final can be used independently of the opponent.

In order to keep this paper focused on the as-simple-as-possible benchmark ques-
tion, we sticked to a comparison of two possible strategies only. Given the level of
detail in the g-MDP, we could easily compare more strategy combinations involving
the blocking player or the positioning of the players in the field on the basis of the
same skill estimations. Note, moreover, that the skill estimations used in this paper
are based on very few data. In practice, we suggest to evaluate the skills of our team
also in training sessions and other matches prior to the tournament.

10 Comparison of Methods

We have carried out the whole concept for the German beach volleyball team Brink
Reckermann at the the Olympic games 2012. We tried to give a recommendation
for the German prior to the final match against Brazil. Thereby we answered the
strategic question “does risky or safe play lead to a higher winning probability?”
twice: first, by using direct estimates of the s-MDP transition probabilities and a
second time by using estimates from from the g-MDP simulation. The prefinal rec-
ommendations of both methods coincided. Since both estimation methods for the
s-transition probabilities have independent weaknesses, in this case the prefinal rec-
ommendation can be trusted even more. It seems that the two-scale approach did not
gain anything new. However, that can only be said for the recommendation alone.
In Sections 11 and 12 we will see how the two-scale approach yields sensitivity and
game theoretic insights about strategies that have never been played before, which is
even more important in the presence of only loosely validated data estimation. This
would be impossible with the direct estimation of s-transition probabilities from
historic data only.

In Table 11 and Table 12, we present the estimation results of the s-MDP tran-
sition probabilities for the final strategy to compare both estimation methods. The
Table splits up into two Tables: Table 11 presents the estimates for the serving situ-
ation and Table 12 for the field attack situation. Both methods, the direct estimation
of the s-MDP transition probabilities, see Section 5, and the estimation from the g-
MDP simulation, see Section 9, are compared to the realized transition probabilities
in the final match. In the g-MDP simulation, we used as an estimate for the final
strategy πfinal the values of Table 7. The results of the g-MDP simulation, i.e., line
2 and 4 in each Table, are a compilation of the results of Table 8 where we vali-
dated the g-MDP simulation. The results of the direct estimation based on the final
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match is also a compilation of the results presented in Table 3. However, the direct
estimation for the final strategy based on the prefinal matches contains new values.
We used the prefinal estimates for risky and safe of Table 2 and mixed them by the
final-mix. For example, for the serving probabilities of team P, we get,

p+(P)serve
final-mix = final-mixserve ·p+(P)

serve
risky +(1−final-mixserve) ·p+(P)

serve
safe

p−(P)serve
final-mix = final-mixserve ·p−(P)

serve
risky +(1−final-mixserve) ·p−(P)

serve
safe

by the direct estimation method based on prefinal matches. As the proportion team Q
used a risky or a safe strategy in the final and the estimates for the transition prob-
abilities of those strategies has not been presented yet, we put them in Table 15 in
the Appendix.

Table 11 Comparison between two scale and direct approach: The realized s-MDP transition prob-
abilities of the final are the benchmark – strategicMDP transition probabilities for serving situation.

estimation
method

data dec. rule p+(P)serve p−(P)serve p+(Q)
serve p−(Q)

serve Avg. L1-Error

observations
final

2% 4% 4% 14% -

g-MDP
simulation

prefinal
skills

πfinal 2% 15% 3% 15% 3.27%

s-MDP
direct

prefinal
matches

final-mix 4% 9% 2% 12% 2.86%

g-MDP
simulation

final skills πfinal 1% 2% 6% 10% 2.23%

s-MDP
direct

final match final-mix 3% 0% 4% 14% 1.10%

Although, the average absolute difference of the realized transition probabilities
of the final match and the direct estimates of the field attack transition probabilities
is in all cases smaller than the deviation of the estimates from the g-MDP simula-
tion, the approximation errors are of a similar order of magnitude, given that the
“benchmark” count in the final represents only the counts of one sample match,
which is a random experiment, too. Only the direct point probability for Brazil after
a field attack has been underestimated by a large margin (26% versus 55%) by the
g-MDP: This is subject to further investigation.

Note that the direct estimation of the s-transition probabilities relevant for the
final could only be done for those strategies that have been played before. If one
wants to optimize over strategy sets containing strategies that have not been played
before (in the tournament against similar opponents), then the g-MDP simulation is
the only method that yields estimates at all.



32 Susanne Hoffmeister and Jörg Rambau

Table 12 Comparison between two scale and direct approach: The realized s-MDP transition prob-
abilities of the final are the benchmark – s-MDP transition probabilities for field attack situation.

estimation
method

data dec. rule p+(P)field p−(P)field p+(Q)
field p−(Q)

field Avg. L1-Error

observations
final

49% 17% 55% 16% -

g-MDP
simulation

prefinal
skills

πfinal 32% 15% 26% 19% 12.87%

s-MDP
direct

prefinal
matches

final-mix 57% 9% 60% 17% 5.71%

g-MDP
simulation

final skills πfinal 46% 12% 50% 15% 3.40%

s-MDP
direct

final match final-mix 52% 17% 59% 15% 2.27%

11 Sensitivity and Skill Strategy Score Cards

In the following, we discuss what we call Skill-Strategy Score Cards. Skill-Strategy
Score Cards are a visualization of the sensitivity of strategy recommendations on
probability estimates. Given the substantial uncertainty in the probability estimates,
this is paramount to the correct assessment of overly detailed computational results
in practice. They indicate for various individual skill levels and for various oppo-
nent types the differences in the winning probabilities of two strategies. The skill
probabilities psucc,ρ (pos(ρ), h) and pfault,ρ (pos(ρ), h) for one hit h are varied in
each small plot from zero to one. The pdev,ρ (pos(ρ), h) is implicitly determined
through the two varied probabilities. The colour of each square-shaped data point in
the plot reflects the difference between the winning probabilities of the safe hitting
strategy πsafe

h and the risky hitting strategy πrisky
h , that were both introduced in Sec-

tion 7. A green colour means that it is better to play safe, the red colour suggests
risky play, and the yellow colour indicates that there is no difference in the winning
probabilities of both strategies.

As a reminder, the smash is played in a field attack in risky whereas the planned
shot is played in safe. Lines in each small plot indicate the real skill level of the
varied hit. For example, in Figure 5 the smashing skills are varied, and the three
lines indicate the average skill level of the smash as presented in the input data.

One can use a Strategy-Skill Score Card as follows: Imagine you want to choose
between safe and risky field attack play against a particular opponent. You can esti-
mate all necessary s-transition probabilities, either as described in this paper via the
direct estimation or via the simulation of the g-MDP (or by some other method). You
are interested in the sensitivity of the recommendation w.r.t. the opponent’s strength
and your players’ skills on complementary hits representing the safe and risky field
attack styles. For example, the skill level for a planned shot influences the winning
probability of the safe attack style, and the skill level of smash (the complementary
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Fig. 5 Skill-Strategy Score Card: difference between the winning probabilities of safe
and risky play for different opponents and varying smash skills psucc,ρ (pos(ρ), FSM) and
pfault,ρ (pos(ρ), FSM)

hit) influences the winning probability for the risky attack style; you want to know
how the strategic recommendation changes as you vary the skill levels of these hits.
Then you do the following:

1. Produce a Strategy-Skill Score Card for smash with variable skills for smash and
the estimated skills for shot. This yields a chart like the one in Figure 5. Do the
same with variable shot skills and the estimated smash skills. This yields a chart
like the one in Figure 6.
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Fig. 6 Skill-Strategy Score Card: difference between the winning probabilities of safe and risky
play for different opponents and varying shot skills psucc,ρ (pos(ρ), FP) and pfault,ρ (pos(ρ), FP)

2. Focus on the little chart at the respective (p+(Q)
field

,p−(Q)
field

)-coordinate,
where p+(Q)

field denotes the estimated opponent’s direct-point probability and
p−(Q)

field the estimated opponent’s error-probability.
3. Focus on the square at the (psucc,ρ (pos(ρ), FSM) , pfault,ρ (pos(ρ), FSM))-co-

ordinate in the little chart, where psucc,ρ (pos(ρ), FSM) denotes your players’ esti-
mated success probability for smash and pfault,ρ (pos(ρ), FSM) the corresponding
error-probability.
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4. The result for the estimated probabilities is: the greener the square, the more does
safe outperform risky.

5. Since all probabilities are only estimates, the graphics show some sensitivities:
The neighbouring little squares show how the superiority of safe over risky, or
vice versa, changes as your players’ smash skills (or planned shot skills, respec-
tively) vary: the squares above are for larger success probabilities, the squares
to the right are for larger error probabilities, and the squares to the top-right are
for larger deviation probabilities (no error but with deviation into a neighbouring
field).

6. The neighbouring little charts show how the superiority of safe over risky, or vice
versa, changes as your opponent’s strength varies: the little charts above are for
a larger direct point probability of your opponent in the field, the little charts to
the right for a larger error probability of your opponent in the field. This way, our
team can base a decision on a larger area of plausible probabilities.

7. Moreover, it is possible to assess the critical probability values where the superi-
ority of safe over risky flips fast (narrow yellow areas between green and red).

Let us draw some conclusions from the example cards in Figures 5 and 6.
If the opponent is strong (many direct points), then we have to look at the top

little chart, where the difference between the two strategies is very small (yellow all
over): Against such a strong opponent, the choice of a strategy does not matter.

We see in Figure 5 that for the field strategies a weak opponent (opponent with
many direct errors) leads to the yellow-green little chart to the right that has yellow
only if the skills for a successful-and-on-target smash are large enough. That is,
the risky field strategy against such an opponent is quite robustly never better than
safe, and both strategies are equally good if our smash skills are good enough. The
little chart at the origin, however, (opponent with few direct points and few errors)
shows a sharp dependence of the superiority of safe over risky on the smash skills
of our players. This is plausible because against such an opponent we get many
more chances for a smash during a rally, and its quality will influence the winning
probability of a risky attack style substantially.

12 Extension: Two Person Constant Sum Game

Using the two-scale approach and the skill data from the previous section, we were
able to generate the two person constant sum game presented in Figures 7 and 8.
We evaluated the s-MDP with transition probabilities resulting from a simulation of
the g-MDP based on the estimated individual skills. Tables 7 uses skill estimates
from the prefinal matches and Table 8 skill estimates from the final match. Each
Tables presents the winning probability of Germany for 32× 32 strategy combina-
tions. These Tables are an extension of the benchmark question, which compares
only two strategies against a static opponent, to game theory, where also the oppo-
nent team can vary between strategies. Note that a generation of such a table from
direct estimated s-transition probabilities would require a massive amount of data to
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Based on input parameters (skills) estimated from prefinal matches

Strategy Brazil

πfinal

St
ra
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G
er
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y

Fig. 7 Winning probabilities for Germany for different strategy combinations of both teams in the
pre final setting.

get enough estimates that belong to a strategy combination. Considering how often
certain teams meet within a season, this project would seem to have no chance of
success.

The strategies compared in the tables are all extreme strategies that are generated
by the g-MDP strategy parameters

πb, πserve
h,∗ (ρ1), πfield

h,∗ (ρ1), πserve
h,∗ (ρ2), πfield

h,∗ (ρ2).

Observe that the used technique and the target field for one situation are combined
into one value. The serving strategy πs is in the prefinal setting fixed to 0.5 and in
the postfinal setting to the observed value of πs in πfinal. By an extreme strategy, we
mean that each parameter is alternating between 0 and 1. So, we consider 5 parame-
ters, each of which can be 0 or 1, resulting in 32 different strategies. For presenting
the strategies in the table in a clear manner, we use a pattern to indicate the used
strategy. A parameter that takes the value 0 is represented by a white coloured field,
a 1 by a grey coloured field. Furthermore, we used the ordering of the parameters
as presented above. So, for example, the first line in both tables corresponds to Ger-
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Based on input parameters (skills) estimated from final match

Strategy Brazil

πfinal

St
ra
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gy
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y

Fig. 8 Winning probabilities for Germany for different strategy combinations of both teams in the
postfinal setting.

many playing the strategy 0,0,0,0,0, which means that player 2 is always blocking
and both player play a safe serve and a save field attack.

Pure green means Germany wins; yellow depicts a 50-50-chance; and red means
Germany loses. The intermediate colours indicate the intermediate values. We com-
ment only on obvious patterns. Prior to the match we would have recommended the
following for Germany:

• Since the lower half of the table is greener, player 1 (Brink) should be the block-
ing player for Germany. This need not necessarily come from blocking skills
but also from the order in which an attack is performed: the blocking player is
most often also the setting player. This result surprises us, since actually player 2
(Reckermann) is the usual blocking player for Germany. And most probably for
some reason. We still have to investigate whether this is an artefact or a reason-
able option.

• Every other row is greener, thus, player 2 should play risky field attacks; this is
also the case for player 1, but very less so (only a slight visible change in every
other group of four rows).
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• The most evenly green rows are the ones with pattern 1,∗,1,∗,1. All strate-
gies matching this pattern achieve a high winning probability against all possible
Brazilian strategies.

After the final, we see that things have changed quite substantially:

• The most prominent impression is that there is far more red: The winning prob-
abilities for the skills estimated from the final only were much reduced for Ger-
many. One possible reason for this is that the performance for the important ac-
tions of the German players was not as good as before or the performance of the
Brazilian team improved over the prefinal estimates.

• In spite of this big change, the strategic a-posterior recommendation is still to
have player 1 be the blocking player who plays risky in the field. It is much less
important in hindsight, however, what player 2 does in the field.

13 Conclusion

We presented a new concept to answer principle, match-dependent strategic ques-
tions in sports games. The question itself is modelled by a strategic MDP (s-MDP)
containing only information relevant to the question. If the direct estimation of the s-
MDP from the available data is not satisfying, an adequate gameplay MDP (g-MDP)
can help to derive valuable s-MDP transition probabilities. The important property
of the g-MDP is, that its transition probabilities depend only on the separate skills
of the players. With the probabilities derived from the g-MDP, the analytic solution
of the s-MDP can be evaluated to answer the strategic question.

We have extensively analysed the Olympic final 2012 by this new method. Some
results are encouraging, and some surprising outcomes have yet to be investigated
further. Since all estimations of probabilities are quite fragile, a sensitivity analysis
of the results is a must. We have presented skill-strategy score cards as a means to
graphically present sensitivity information showing the hot spots in parameter space
where decisions switch fast.

We think that other strategic questions with a similar structure like the bench-
mark question in this paper can be treated by following our concept of multi-scale
modelling with MDPs. Future research will deal with situations in which skills are
dependent on the current score or with the role of variability for success. Moreover,
one could try to optimize the detailed meanings of only roughly described strategies
like risky and safe by find the best possible s-g-implementation.

Appendix 1

In this section, we give the details of the proofs for Theorem 2 and Theorem 1. One
important observation is the following plausible lemma that holds for both special
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cases of s-MDPs. It says that it is no disadvantage for us when we have more points
or the opponent has fewer points.

Lemma 1. The optimal expected reward-to-go v∗(x,y,k, `) satisfies v∗(x,y,k, `) ≤
v∗(x+1,y,k, `) and v∗(x,y,k, `)≥ v∗(x,y+1,k, `).

Proof. We prove this by comparing all possible realizations of the game separately.
First of all, the outcome of future rallies does not depend on the score. Each winning
scenario starting from state (x,y,k, `) corresponds to a winning scenario with iden-
tical transitions starting from state (x+1,y,k, `) with one stage less that has at least
the same probability. Thus, the total winning probability starting from (x+1,y,k, `)
is no smaller than the one starting in (x,y,k, `). Moreover, each losing scenario start-
ing from state (x,y,k, `) corresponds to a losing scenario with identical transitions
starting from state (x,y+1,k, `) with one stage less that has at least the same prob-
ability. Thus, the total losing probability starting from (x,y+ 1,k, `) is no smaller
than the one starting in (x,y,k, `). The claim expresses exactly this in terms of the
optimal reward-to-go in the respective states.

In the previous lemma we compared the winning probabilities in states with iden-
tical service components. We now explain why the winning probability increases
when we win the next point.

Lemma 2. The optimal expected reward-to-go satisfies v∗(x+1,y,P,1) ≥ v∗(x,y+
1,Q,1).

Proof. Team P, in order to win starting at state (x,y+ 1,Q,1), first has to reach a
score of x+ 1 at some point in time. Thus, the main observation, denoted by (∗),
is that all winning scenarios starting from state (x,y+1,Q,1) pass through exactly
one of the states (x+1,y+ z,P,1), z = 1, . . . ,21−y. Let W be the event that P wins,
let E be the event that state (x,y+1,Q,1) is passed, and for z = 1, . . . ,21− y let Ez
be the event that state (x+1,y+ z,P,1) is passed. Then we compute:

v∗(x,y+1,Q,1) = Prob(W |E)

=
21−y

∑
z=1

Prob(Ez|E)Prob(W |Ez) (Markov-Property and ∗)

=
21−y

∑
z=1

Prob(Ez|E)v∗(x+1,y+ z,P,1)

≤
21−y

∑
z=1

Prob(Ez|E)v∗(x+1,y,P,1) (Lemma 1 and induction)

≤ v∗(x+1,y,P,1). (by ∗)

Thus, an optimal policy is myopic:

Corollary 1. The policy that always maximizes the probability to win the next point
is optimal for the s-MDP for beach volleyball. ut
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Appendix 2

This appended section defines the details for the infinite-horizon, stationary g-
MDP for a beach volleyball rally that was sketched in Section 6.

Let P and Q be the teams participating in the game. P1 and P2 are the players
of P; Q1 and Q2 are the players of Q. Team P is the team for which we want to
choose an optimal playing strategy, whereas team Q is the uncontrolled opposing
team. That means, as in the s-MDP, team P is the decision making team, and the
behaviour of team Q is part of the system disturbance in the transition probabilities.
We have decision epochs T = {1,2,3, . . .}, and t ∈ T is the total number of ball
contacts minus the blocking contacts in the rally so far.

A state in the g-MDP is a tuple that contains the players’ positions, the ball’s
position, a counter of the number of contacts, the information which player last
contacted the ball, a Boolean variable that indicates the hardness of the last hit, and
the designated blocking player of the defending team for the next attack. A general
formulation for a state is

(pos(P1),pos(P2),pos(Q1),pos(Q2),pos(ball),counter, lastContact,hard,blocker).

The function pos(·) returns the position of a player or the ball. A position on the
court is defined on basis of the grid presented in Figure 9.
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Fig. 9 Court grid

The components counter and lastContact are needed to implement the three-hits
and the double contact rule respectively. The state variable counter can take values
from the set {−1,0,1,2,3}. The case “−1’ marks a service state. This way it is pos-
sible to forbid a blocking action on services. The counter stays−1 if the ball crosses
the net after a serve. This helps to distinguish between a reception or defence action.
Consequently, if the counter is 0, the ball crossed the net via an attack-hit performed
in a field attack. The information which player last contacted the ball is needed to
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implement the double-contact fault into the model. The state variable lastContact
takes values in {P1,P2,Q1,Q2, /0}. If the ball has just crossed the net or the state is a
serving state, a /0-symbol shows that both players are allowed to execute the next hit.
The Boolean state variable hard indicates the power of the last hit. If hard = 1, then
the ball has a high speed when reaching the field, else the ball has normal speed.
Finally, the state variable blocker takes values in {P1,P2,Q1,Q2} and indicates the
designated blocking player of the currently defending team. It is necessary to save
it in the state since the decision who blocks is made once at the beginning of the
opponents attack plan and followed more than one time step. Besides these generic
states, the g-MDP contains the absorbing states point and fault, where point and
fault is denoted from the perspective of team P. The resulting g-MDP has around
one billion different states. As an example (P02,P33,Q12,Q13,P02,−1, /0,0,−) is
a typical serving state for team P.

Of course, some of the states occur more often in practice than others. Depending
on the current state, there are different actions available to each player. The individ-
ual player actions of a player ρ consist of a hit h and a move µ . We distinguish
between a one-field and a two-field movement. Also, the direction ( f := forward,
f r:= forward-right, . . . ) of the movement matters. A blocking action belongs to the
group of movements since ball possession is not required to perform a block. A
blocking action can only be performed if the player is in a field at the net. All pos-
sible moves for team P are listed in Table 13. The moves of the players that belong
to team Q are defined analogously.

Table 13 Move specification for ρ belonging to team P

Symbol Specification Description Requirements

/0 - Stay none

m f , f r,r,rb,b,bl, l, l f Move one field none

M f ,r,b, l Move two fields none

b - Block pos(ρ) ∈ {P31, . . . ,P34}, counter 6=−1

Depending on the position of a player and on the position of the ball relative to the
player, each player has a set of available hits. Sometimes, this set can consist solely
of the hit no hit. A hit htech

field is defined by a hitting technique tech and a target field
field. Depending on the hit’s degree of complexity, there are different requirements
such that the hit is allowed in the model. The function neighbour(field) returns a set
of all neighbouring fields of field according to the grid presented in Figure 9 and the
field itself. All hitting techniques with their possible target fields and requirements
are listed in Table 14. The hitting techniques for a player of team Q are defined
analogously.

There are rules in the model that restrict the possible combinations of a hit with
a move to a player action as well as rules that restrict the possible combinations
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of two player actions to a team action. Reasons for these restrictions are practical
considerations. There are three rules on combining a hit with a movement to a player
action. The first one is: If a player makes a real hit, i.e., a hit that is not no hit, due
to timing reasons only a one-field movement is allowed. The second one is: If a
player makes a hit that is performed with a jump, like, e.g., a jump serve, only
a one-field movement in forward direction (i.e., towards the net) can follow. The
third one is: If the hit requires a movement before executing the hit, no additional
movement afterwards is allowed. This is, e.g., the case for a reception that takes
place in a neighbouring field of the hitting player. We incorporate one restriction
to the combination of player actions: If two player actions are combined to a team
action, only one player may make a real hit. Team actions that themselves or whose
player actions do not follow these rules are not available in the model – for both
teams. Further conceivable restrictions could be easily implemented in the model
whenever they only depend on the current state.

Transition probabilities determine the evolution of the system if a certain action
in a certain state is chosen. Assume, we know for each player ρ and each hitting
technique htech

target the probability

psucc,ρ

(
pos(ρ), htech

target

)
:= P

(
post+1(ball) = target | post(ρ),htech

target
)
,

i.e., the probability that the specified target field target from ρ’s position at time t is
met. In the notation used above, the terms pos(ρ) and htech

target show the dependence
on the position of the hitting player and the hit he uses. The probability is time-
independent. The t on the right-hand side of the last equation is only used to indicate
that post(ρ) is the position of ρ at time t while post+1(ball) is the position of the ball
in the subsequent state. Similarly, assume, we know the probability of an execution
fault

pfault,ρ

(
pos(ρ), htech

target

)
:= P

(
st+1 = fault | post(ρ),htech

target
)

for player ρ using hit htech
target from position pos(ρ). An execution fault includes hits

where the ball is not correctly hit such that the referee terminates the rally. For serves
and attack-hits an execution fault also includes that the ball is hit into the net.

Furthermore, assume that we know the blocking skills of each player. The pa-
rameter pblock,ρ denotes the probability that player ρ touches the ball when per-
forming the block b against an adequate attack-hit from the opponent’s side of the
court. The probability pblock,ρ is independent of the skills of the attacking player.
There are three possible outcomes of that block. The block can be so strong that
it is impossible for the opponent team to get the returned ball, and the block-
ing team wins the rally. This probability is denoted by pblock,ρ,point. Also, the
block can result in a fault with probability pblock,ρ,fault. That happens if the ball
is blocked into the net and can not be regained or the blocking player touches
the net, which is an execution fault. None of the above happens with probability
pblock,ρ,ok := pblock,ρ − pblock,ρ,point− pblock,ρ,fault. This is called an “ok”-block, and
the ball lands in one random field on the opponents or own court side. We define
pno block,ρ := 1− pblock,ρ as the probability that the blocking player fails to get his
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Table 14 Hit specification for player ρ of team P and ball ball; requires always ρ 6= lastContact
except the action no hit (? if pos(ball) 6= pos(ρ) then no movement afterwards allowed)

tech target description Requirements
counter position

/0 - no hit * none

Serve

SF Q11−Q24 float serve =−1 pos(ρ) = pos(ball) ∈ P01−P04
SJ Q11−Q24 jump serve (hard) =−1 pos(ρ) = pos(ball) ∈ P01−P04

Reception

r P11−P34 receive =−1 pos(ball) = pos(ρ)
rm P11−P34 receive with move =−1 pos(ρ) ∈ neighbour(pos(ball))?

Setting

s neighbour(pos(ρ))\ (Q, ·) set > 0 pos(ρ) = pos(ball)

Attack-Hit

FSM Q11−Q24 smash (hard) > 1 pos(ρ) = pos(ball) or pos(ρ)+m f = pos(ball)
FE Q11−Q24 emergency shot > 1 pos(ρ) ∈ neighbour(pos(ball))?

FP Q11−Q34 planned shot > 0 pos(ρ) = pos(ball)

Defence

d P11−P34 defence 6=−1 pos(ball) = pos(ρ)
dm P11−P34 defence with move 6=−1 pos(ρ) ∈ neighbour(pos(ball))?

hands at the ball. In this case, the landing field of the ball is not affected by the
block. In total, the blocking probabilities are

pno block,ρ + pblock,ρ,point + pblock,ρ,fault + pblock,ρ,ok︸ ︷︷ ︸
pblock,ρ

= 1.

From all these input probabilities, we generate all transition probabilities in the
g-MDP. We explain how the next state evolves from the current state and the played
team actions: The next player’s position depends only on the current position and
the movement the player makes. An allowed movement will always be successful.
The crucial component is the next position of the ball. Here, the individual skills of
the hitting player enter the model. Assume first, no player of the opposing team is
blocking. Then with probability psucc,ρ

(
pos(ρ), htech

target
)

the ball’s next position will
be the desired target field, and with probability pfault,ρ

(
pos(ρ), htech

target
)

the hitting
player makes an execution fault. The remaining probability

1− psucc,ρ

(
pos(ρ), htech

target

)
− pfault,ρ

(
pos(ρ), htech

target

)
=: pdev,ρ

(
pos(ρ), htech

target

)
will be the probability that the ball lands in a neighbouring field of the target field.
We assume each neighbouring field is equally probable.
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If the hit is an attacking hit to the opponent’s court side, then the ball may be
blocked. The blocking action must be made from an adequate position3 such that
the block can have an impact. If all preconditions are fulfilled, we first evaluate
whether the hit is successful. A hit is successful if no execution fault occurs, the
ball crosses the net, and approaches the target field or one of its neighbours with
the respective probabilities. Given a successful attack, we evaluate in the next step
the result of the block. If the blocking player does not touch the ball, then the next
position of the ball will not be affected by the block. Otherwise, the outcome of the
block is evaluated according to the blocking skill of that player and may be a point,
fault or a different position of the ball. This need not automatically mean a point
for the attacking team, since the defending team may perform a successful defence
action in the next time step. Finally, in case of an execution fault or if the ball is not
hit by any player, then the next state will be point or fault, respectively, from the
perspective of team P.

Appendix 3

Table 15 Direct estimation of s-MDP probabilities for team Q

Based on prefinal matches

strategy # p+(Q)
serve p−(Q)

serve # p+(Q)
field p−(Q)

field

risky-risky 19 5% 32% 78 65% 21%
risky-safe 19 5% 32% 27 37% 0%
safe-risky 146 1% 7% 78 65% 21%
safe-safe 146 1% 7% 27 37% 0%

Based on final match

strategy # p+(Q)
serve p−(Q)

serve # p+(Q)
field p−(Q)

field

risky-risky 6 17% 33% 32 69% 19%
risky-safe 6 17% 33% 7 14% 0%
safe-risky 22 0% 9% 32 69% 19%
safe-safe 22 0% 9% 7 14% 0%
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