
 

 

 

                  

 

 

 

Reusable Earth-Abundant Metal Catalysts for Selective 

Organic Syntheses 

 

 

Dissertation 

 

 

zur Erlangung des akademischen Grades 

eines Doktors der Naturwissenschaften (Dr. rer. nat.) 

im Fach Chemie der Fakultät Biologie, Chemie und Geowissenschaften 

der Universität Bayreuth 

 

 

 

vorgelegt von 

M. Sc. Tobias Schwob 

geboren in Aschaffenburg 

 

 

Bayreuth, 2019 

 





 

 

 

 

Die vorliegende Arbeit wurde in der Zeit von Januar 2016 bis März 2019 in Bayreuth am 

Lehrstuhl Anorganische Chemie II unter Betreuung von Herrn Professor Dr. Rhett Kempe 

angefertigt. 

 

 

Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der 

Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines 

Doktors der Naturwissenschaften (Dr. rer. nat.). 

 

 

Dissertation eingereicht am: 08.03.2019     

Zulassung durch die Promotionskommission: 20.03.2019  

Wissenschaftliches Kolloquium: 12.12.2019    

 

 

Amtierender Dekan:  Prof. Dr. Matthias Breuning 

 

 

Prüfungsausschuss: 

 

Prof. Dr. Rhett Kempe    (Gutachter) 

Dr. habil. Günter Motz   (Gutachter) 

Prof. Dr. Rainer Schobert   (Vorsitz) 

Prof. Dr. Seema Agarwal 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meiner Familie in Dankbarkeit gewidmet 

 





 

 

 

Table of contents 

Abbreviations ............................................................................................................................ 9 

1 Summary ............................................................................................................................. 11 

2 Zusammenfassung .............................................................................................................. 15 

3 Introduction......................................................................................................................... 19 

3.1 Polymer-derived ceramics as catalyst support materials ........................................... 19 

3.2 Heterobimetallic complexes ...................................................................................... 20 

3.3 Selective hydrogenation of nitroarenes ..................................................................... 21 

3.4 Deoxygenation of alcohols and carbonyl compounds ............................................... 22 

4 Overview of thesis results ................................................................................................... 27 

4.1 Synopsis ..................................................................................................................... 27 

4.2 Individual contribution to joint publications ............................................................. 39 

5 A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes 

and the Direct Synthesis of Imines and Benzimidazoles From Nitroarenes and 

Aldehydes............................................................................................................................. 41 

5.1 Introduction ............................................................................................................... 41 

5.2 Results and Discussion .............................................................................................. 42 

5.3 Acknowledgements ................................................................................................... 48 

5.4 References ................................................................................................................. 48 

5.5 Supplementary Information ....................................................................................... 51 

6 A Co catalyst permits the direct hydrogenative synthesis of 1H-perimidines from a 

dinitroarene and an aldehyde .......................................................................................... 101 

6.1 Introduction ............................................................................................................. 101 

6.2 Results and Discussion ............................................................................................ 102 

6.3 Acknowledgements ................................................................................................. 107 

6.4 References ............................................................................................................... 107 

6.5 Supplementary Information ..................................................................................... 110 



 

7 General and selective deoxygenation by hydrogen employing a reusable earth-abundant 

metal catalyst ..................................................................................................................... 143 

7.1 Introduction ............................................................................................................. 144 

7.2 Results and Discussion ............................................................................................ 145 

7.3 Supplementary Materials ......................................................................................... 152 

7.4 References ............................................................................................................... 152 

7.5 Supplementary Materials ......................................................................................... 156 

8 List of publications ........................................................................................................... 197 

9 Acknowledgements ........................................................................................................... 199 

10 Declaration / Erklärung ............................................................................................... 201 

 



 

9 

 

Abbreviations 

Ar    argon 

BET    Brunauer-Emmett-Teller 

DCP    dicumylperoxide 

DFT    density functional theory 
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1 Summary 

The primary aim of this thesis was the synthesis and complete characterization of novel, 

heterogeneous catalysts based on earth-abundant metals, and their application in selective 

organic syntheses. Consequently, different metal complexes were prepared and applied in the 

development of novel catalyst systems. An overview of the methods and applications is shown 

in Figure 1. 

 

Figure 1: Overview of the different catalyst systems and the corresponding catalytic applications. 

In the first part, the development of a porous Co-SiCN catalyst and its application in the 

selective hydrogenation of nitro derivatives is described. A suitable cobalt complex was 

combined with the ceramic precursor HTT-1800, followed by cross-linking and pyrolysis at 

750 °C (Figure 1A). Magnetic measurements showed a change from paramagnetic behavior of 

the cross-linked polysilazane containing cobalt to superparamagnetic properties of the 

nanocomposite after pyrolysis. This is in agreement with the presence of isolated Co2+ ions after 
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cross-linking and their reduction to small metallic Co nanoparticles during pyrolysis. TEM 

analysis provided evidence of the generation of homogeneously distributed metal nanoparticles 

with a mean diameter of 1.6 nm. The novel Co-SiCN nanocomposite emerged as a suitable 

catalyst for the reduction of nitroarenes applying molecular hydrogen. This transformation is 

one of the most important reactions in the chemical industry, since it is the method of choice 

regarding the production of aniline and its derivatives. Furthermore, two new protocols for the 

synthesis of imines and benzimidazoles from nitroarenes and aldehydes were developed. The 

general applicability was confirmed by the hydrogenation of 17 nitro derivatives and the 

synthesis of 18 imines and 8 benzimidazoles. An extraordinary tolerance towards 

hydrogenation-sensitive functional groups was demonstrated in all cases. 

Due to the importance of the reaction type, we were interested in further organic 

transformations, which include a nitroarene hydrogenation step. The direct usage of compounds 

containing two nitro functionalities is especially highly interesting, since this would allow the 

synthesis of a further class of N-heterocycles. However, the Co-SiCN nanocomposite was not 

able to mediate this reaction. The challenges of this transformation are shown in Figure 2. 

 

Figure 2: Challenges regarding the direct synthesis of 1H-perimidines from 1,8-dinitronapthalene and aldehydes. 

While the hydrogenation of the challenging 1,8-dinitronaphthalene must proceed smoothly and 

selectively, the aldehyde has to remain unaffected, even at the higher temperatures, needed for 

the condensation step. In addition, the hydrogenation of the 1H-perimidine desired must be 

suppressed, to prevent the formation of unwanted 2,3-dihydroperimidine side products. Such a 

direct synthesis route has not been described in the literature to date. The synthesis of a suitable 

catalyst is shown in Figure 1B. Commercially available activated charcoal was impregnated 

with a specific cobalt salen complex, followed by pyrolysis and reduction. TEM analysis of the 

catalyst verified the presence of small, homogeneously distributed metal nanoparticles with a 

mean diameter of 7.3 nm. XPS measurements proved the coexistence of metallic cobalt species 

besides cobalt oxides or hydroxides. The general applicability of the novel protocol was 

demonstrated by the synthesis of 20 examples. 1,8-dinitronaphthalene could be used in a 

technical grade, which is highly important for a possible industrial application. A remarkable 

tolerance towards a variety of hydrogenation-sensitive functional groups was observed in all 
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cases and six new products were synthesized. These 1H-perimidines are known as common 

starting materials for the preparation of azapyrenes, which are promising materials for the 

manufacture of organic semiconductor devices. 

The class of salen ligands is capable of complexing several metal ions. This property was used 

in the third part of the thesis for the preparation of a bimetallic Co-Ce complex, which was fully 

characterized by X-ray crystallography (Figure 1C). Regarding the synthesis of the active 

catalyst, commercially available activated charcoal was impregnated with the heterobimetallic 

complex, followed by pyrolysis and reduction. The composition of the surface was analyzed by 

a combination of HAADF-STEM and EDX measurements. The analysis indicated the presence 

of two types of nanosized species: Co nanoparticles with a mean diameter of 6.8 nm and small 

Ce agglomerates (~1 nm) which were homogeneously embedded in the matrix. The 

hydrogenation of acetophenone was chosen for the first investigation of the catalytic properties. 

The introduction of a second metal species led to a significant change in the catalytic behavior. 

While the catalyst, which was synthesized from a monometallic cobalt salen complex, was very 

selective towards aldehydes, the bimetallic catalyst showed a high activity in the 

hydrodeoxygenation of carbonyls and alcohols. This cleavage of C-O bonds is a highly 

interesting type of reaction, since it offers the possibility of a modification of functionality-

laden fine chemicals, natural products or pharmaceuticals, and it is crucial for the economic 

upgrading of biomass-derived molecules into fuels and chemicals. After optimization of the 

reaction conditions, the general applicability was demonstrated by hydrodeoxygenation of 56 

examples. A tolerance towards a variety of functional groups was observed and the concept 

could be applied to aromatic and aliphatic substrates. 
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2 Zusammenfassung 

Das primäre Ziel dieser Arbeit war die Synthese und vollständige Charakterisierung neuer, 

heterogener Katalysatoren auf Basis unedler Metalle, sowie deren Anwendung in der selektiven 

organischen Synthese. Hierzu wurden zunächst unterschiedliche Metallkomplexe hergestellt 

und über geeignete Verfahren auf die entsprechenden Trägermaterialien aufgebracht. Die 

verschiedenen Varianten sind in Abbildung 1 dargestellt. 

 

Abbildung 1: Überblick über die in dieser Arbeit vorgestellten Katalysatorsysteme mit den entsprechenden 

katalytischen Anwendungen. 

Zunächst erfolgte die Entwicklung eines porösen Co-SiCN Katalysators und dessen 

Anwendung in der selektiven Hydrierung von Nitroderivaten. Durch Kombination eines 

geeigneten Cobalt-Komplexes mit dem keramischen Präkursor HTT-1800 wurde über 

Transmetallierung des Metalls auf den Präkursor und nachfolgende Quervernetzung der 

metallhaltige Grünkörper erzeugt. Eine Pyrolyse bei 750 °C unter Inertgas führte zu der 
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Bildung von sehr kleinen Nanopartikeln mit einem mittleren Durchmesser von 1.6 nm 

(Abbildung 1A). Der Übergang vom paramagnetischen Verhalten des Grünkörpers hin zu 

superparamagnetischen Eigenschaften des Nanokomposits konnte anhand von magnetischen 

Messungen bestätigt werden. Dies steht im Einklang mit dem Vorhandensein von isolierten 

Co2+-Ionen nach der Quervernetzung und der Bildung von kleinen metallischen Nanopartikeln 

während der Pyrolyse. Der Katalysator zeigte eine außerordentliche Aktivität in der selektiven 

Hydrierung von Nitroderivaten, einer der wichtigsten katalytischen Transformationen in der 

chemischen Industrie. Weiterhin konnten auf Basis der gezeigten Selektivitäten zwei neue 

Syntheseprotokolle zur Darstellung von Iminen und Benzimidazolen entwickelt werden. Die 

generelle Anwendbarkeit wurde anhand der Hydrierung von 17 Nitroderivaten, sowie der 

Synthese von 18 Iminen und 8 Benzimidazolen bestätigt. In allen Fällen konnte eine 

außerordentliche Toleranz gegenüber weiteren hydrierempfindlichen funktionellen Gruppen 

nachgewiesen werden.  

Aufgrund der Bedeutung der beschriebenen Reaktion erfolgte im zweiten Teil der Arbeit die 

Entwicklung eines Synthesekonzepts für die direkte Darstellung von 1H-Perimidinen aus 1,8-

Dinitronaphthalen und Aldehyden. Die industriell bedeutsame Reduktion von Substraten mit 

mehreren Nitro-Gruppen konnte unter Verwendung des beschriebenen Co-SiCN 

Nanokomposits nicht vermittelt werden. In Abbildung 2 sind die Anforderungen an das 

entsprechende Katalysatorsystem dargestellt.   

 

Abbildung 2: Anforderungen an den Katalysator zur direkten Synthese von 1H-Perimidinen ausgehend von 1,8-

Dinitronapthalen und verschiedenen Aldehyden. 

Das anspruchsvolle Substrat 1,8-Dinitronaphthalen muss vollständig und selektiv hydriert 

werden, während die Reduktion des Aldehyds zum entsprechenden Alkohol zu unterdrücken 

ist. Weiterhin ist es notwendig, dass die Reaktion auf der Stufe des 1H-Perimidins stoppt, um 

die Bildung von unerwünschten Nebenprodukten zu verhindern. Eine solche direkte 

Syntheseroute wurde bisher nicht in der Literatur beschrieben. Die Darstellung des geeigneten 

Katalysators ist in Abbildung 1B dargestellt. Zunächst erfolgte die Synthese eines Cobalt-

Komplexes auf Basis einer Schiff‘schen Base (Salen-Typ-Komplex). Im Anschluss wurde 

kommerziell erhältliche Aktivkohle mit dem Salen-Komplex imprägniert, gefolgt von Pyrolyse 
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und Reduktion. TEM-Aufnahmen bestätigten die Bildung von homogen verteilten 

Nanopartikeln mit einem mittleren Durchmesser von 7.3 nm. Mittels XPS-Analyse konnte das 

Vorhandensein von metallischen und oxidischen Cobalt-Spezies auf der Katalysatoroberfläche 

nachgewiesen werden. Die generelle Anwendbarkeit des neuen Syntheseprotokolls wurde 

anhand von 20 Beispielen gezeigt, wobei 1,8-Dinitronaphthalen mit einem technischen 

Reinheitsgrad verwendet werden konnte. Auch in diesem Fall war eine bemerkenswerte 

Toleranz gegenüber einer Vielzahl an hydrierempfindlichen funktionellen Gruppen zu 

verzeichnen und es konnten sechs neue Produkte synthetisiert werden. Diese 1H-Perimidine 

werden in der Literatur beispielsweise als Ausgangsverbindungen zur Darstellung von 

Azapyrenen verwendet, für welche ein breites Anwendungsspektrum im Bereich der 

Halbleitertechnik diskutiert wird.  

Die beschriebene Klasse der Salen-Liganden ist in der Lage mehrere Metallionen zu 

komplexieren. Im dritten Teil der Arbeit wurde diese Eigenschaft genutzt, um einen 

bimetallischen Co-Ce-Komplex zu synthetisieren, welcher mittels Röntgenstrukturanalyse 

vollständig charakterisiert wurde (Abbildung 1C). Der Komplex wurde ebenfalls mittels 

Nassimprägnierung auf kommerziell erhältliche Aktivkohle aufgebracht, gefolgt von Pyrolyse 

und Reduktion. Anhand einer Kombination aus HAADF-STEM und EDX-Analyse konnte die 

Bildung von Cobalt-Nanopartikeln mit einem mittleren Durchmesser von 6.8 nm nachgewiesen 

werden. Weiterhin konnte die homogene Verteilung der zweiten Metallspezies (Ce) in Form 

von sehr kleinen Agglomeraten (~1 nm) belegt werden (Abbildung 1C). Dies führte zu einer 

signifikanten Änderung der katalytischen Eigenschaften. Während sich das Katalysatorsystem, 

welches unter Verwendung des monometallischen Co-Salen-Komplexes synthetisiert wurde, 

durch eine außerordentliche Toleranz gegenüber Aldehyden auszeichnete, zeigte der 

bimetallische Co-Ce-Katalysator eine hohe Aktivität in der Hydrodeoxygenierung von 

Carbonylen und Alkoholen. Nach Optimierung der Reaktionsbedingungen konnte die 

Anwendbarkeit anhand von 56 Beispielen demonstriert werden. Es wurde eine Toleranz 

gegenüber einer Vielzahl von funktionellen Gruppen beobachtet und das Konzept konnte 

sowohl auf aromatische als auch auf aliphatische Substrate angewendet werden. 
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3 Introduction 

3.1 Polymer-derived ceramics as catalyst support materials 

The so-called polymer-derived ceramics have attracted increasing attention in recent decades 

due to their excellent material properties, such as stability against corrosion and oxidation, as 

well as their thermal and chemical robustness.[1] Common preceramic polymers for the 

preparation of such PDCs are polysilanes, polycarbosilanes, poysiloxanes, polysilazanes and 

polysilylcarbodiimids. Depending on the ceramic precursor, there is a differentiation between 

oxidic and non-oxidic ceramics.[2] In the field of non-oxidic ceramics, silicon carbonitrides have 

proven to be excellent support materials in heterogeneous catalysis. A general synthesis route 

for this class of materials is shown in Figure 1. 

 

Figure 1: Flow chart for the molecular synthesis of polymer-derived SiCN materials. 

Starting from molecular Si- and N-compounds, the corresponding polysilazane is synthesized. 

Cross-linking leads to the formation of a Si/C/N/H–hybrid material, which is converted into an 

amorphous SiCN ceramic by subsequent pyrolysis.[3] The properties of the final ceramic 

material can be adjusted by the type and molecular structure of the preceramic polymer. This 

molecular synthesis route offers the possibility of a modification of the precursor polymers, by 

applying coordination compounds, such as metal complexes. Our group established a molecular 

approach for the transfer of transition metals from suitable aminopyridinato complexes to the 

commercially available polysilazane HTT-1800.[4] Applying this novel synthesis concept, a 

variety of heterogeneous catalysts for different catalytic applications were introduced. Glatz et 

al. developed a Cu@SiCN material, which was applied in the oxidation of cycloalkanes.[5] In 

addition, Pd2Si particles incorporated in an SiCN matrix led to an appropriate system for the 

hydrogenation of ketones and aldehydes to the corresponding alcohols.[6] The combination of 

further noble metals with the SiCN support emerged as a suitable method for the generation of 

catalysts for more complex organic transformations. It was shown that an Ir@SiCN catalyst can 

mediate the synthesis of pyrroles from secondary alcohols and 1,2-amino alcohols.[7] 

Furthermore, a bimetallic Pd2Ru@SiCN catalyst for the reversible hydrogen storage[8] and a 
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more complex system consisting of three different catalysts (Ru@SiCN, Ir@SiCN, Pd@SiCN) 

for the synthesis of carbazoles, quinolines and acridines were introduced.[9] The combination 

of earth-abundant metals with PDCs as catalyst support materials seems to be an interesting 

area of research, as this substitution could contribute to more sustainable chemistry regarding 

the conservation of rare noble metal resources. 

3.2 Heterobimetallic complexes 

Metal complexes containing an early and late transition metal are an interesting class of 

chemical compounds, as their catalytic properties may differ from those of bimetallic 

complexes with identical or closely related metals.[10] Ligands based on compartmental Schiff 

bases are capable of complexing several metal ions. A general synthesis route is shown in 

Figure 2. 

 

Figure 2: General synthesis of a Schiff base ligand containing two different coordination spheres (H2-Salen). 

There are a lot of different coordination compounds described in the literature containing a 

transition and a rare-earth metal, based on different types of salen ligands. The transition metal 

is generally located in coordination sphere I (N2O2) and the rare-earth metal in coordination 

sphere II (O2O2).
[11] Elias et al. introduced a synthetic route towards phase-pure, monodisperse 

transition-metal-substituted ceria nanoparticles applying a solution-based pyrolysis of a series 

of such heterobimetallic Schiff base complexes. Monodisperse crystallites with the composition 

M0.1Ce0.9O2-x (M = Mn, Fe, Co, Ni, Cu) and a mean diameter of 3 nm were obtained. The 

catalyst synthesized from a Cu-Ce-salen complex (Cu0.1Ce0.9O2-x) showed a high activity in the 

catalytic oxidation of carbon monoxide.[12] The development of novel synthesis concepts for 

heterogeneous catalysts applying heterobimetallic complexes seems to be an interesting field 

of research. Their combination with commercially available catalyst support materials may lead 

to unobserved catalytic activities.    
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3.3 Selective hydrogenation of nitroarenes 

The hydrogenation of nitroarenes is one of the most important reactions in the chemical industry 

because it is the method of choice for the production of aniline and its derivatives.[13] Due to 

this importance, a huge effort has been invested in the development of highly efficient and 

selective catalysts for this transformation in recent years. Haber proposed a complex reaction 

network for the electrochemical reduction of nitro compounds more than 100 years ago, which 

is now generally accepted as a basis to describe how the catalytic hydrogenation proceeds.[14] 

 

Figure 3: Reaction network proposed by Haber for the (electrochemical) reduction of a nitroarene. 

The key challenges of the catalytic transformation are demonstrated in Figure 3. An 

accumulation of the hydroxylamine intermediate must be suppressed, to prevent the formation 

of azo compounds as side products. This condensation does not usually occur, however, it was 

observed for slow reactions and low temperatures.[15] Until 1998, the field of research was 

dominated mainly by modified commercial systems based on noble metals. In this context, a 

5 wt% Pt/C catalyst modified with H3PO2 and promoted with vanadium compounds proved to 

be very effective and a tolerance towards a variety of functional groups, such as halides and 

nitriles as well as C-C double and triple bonds was observed.[16] Corma and coworkers reported 

a breakthrough regarding the tolerance of functional groups in 2006. They applied gold catalysts 

and observed a selectivity of over 95 % for the hydrogenation of the nitro group in 3-

nitrostyrene, 4-nitrobenzaldehyde, 4-nitrobenzonitrile and 4-nitrobenzamide.[17] In 2013, Beller 

and coworkers showed that reusable catalysts based on abundantly available transition metals, 

such as iron[18] and cobalt[19], can also mediate the highly chemoselective hydrogenation of 
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nitroarenes. The development of reusable, earth-abundant metal catalysts is an important area 

of research, as their industrial application could contribute to greater sustainability in terms of 

conserving precious metal resources. The substitution of these precious metals is especially 

attractive if novel selectivity patterns are observed, which allow the design of innovative 

synthesis concepts. The direct use of nitro derivatives in more complex and selective organic 

syntheses has so far been rarely disclosed. In this case, the use of molecular hydrogen as a 

reducing agent is especially attractive due to the high atom and cost efficiency.  

3.4 Deoxygenation of alcohols and carbonyl compounds 

Reductive deoxygenation of alcohols and carbonyl compounds is of wide interest, since this 

transformation is connected with the synthesis of fine chemicals[20] and the production of 

biofuels[21]. There are several classic methods, such as the Barton-McCombie[22], 

Clemmensen[23], or Wolff-Kishner[24] reduction, however, all these methodologies suffer from 

harsh reaction conditions, the use of stoichiometric amounts of toxic reagents and a poor 

functional group tolerance. Volkov et al. introduced a heterogenous Pd/C catalyst and applied 

polymethylhydrosiloxane as the hydride source. They demonstrated the deoxygenation of 

aromatic ketones and aldehydes in the presence of functional groups, such as halides, amides 

and esters. The deoxygenation proceeded under relatively mild conditions, however, the scope 

was limited to benzylic carbonyl functionalities. In addition, three equivalents of the silane 

regarding the substrate were applied as a reducing agent, leading to high amounts of waste.[25] 

Li and coworkers showed the highly selective deoxygenation of primary alcohols by a 

combination of oxidative dehydrogenation and Wolff-Kishner reduction. They applied 

homogenous Ru and Ir catalysts and were able to deoxygenate benzylic and aliphatic primary 

alcohols in the presence of reducible moieties, such as C-C double and triple bonds and further 

secondary alcohol functionalities. The concept could also be extended to the selective 

deoxygenation of complex steroid molecules. Despite the outstanding substrate scope and 

functional group tolerance, this protocol bears one major disadvantage: The deoxygenation 

proceeds with an excess of very toxic hydrazine monohydrate and nearly stoichiometric 

amounts of base.[26] The use of atom-efficient and easily available molecular hydrogen as a 

reducing agent is highly attractive from an economic and environmental point of view. Yi and 

coworkers applied cationic ruthenium-hydride complexes and demonstrated the chemoselective 

hydrodeoxygenation of carbonyl compounds applying 2.0 MPa hydrogen pressure and reaction 

temperatures around 130 °C. A broad substrate scope and tolerance towards a variety of 

hydrogenation-sensitive functional groups was observed. In addition, the concept was extended 
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to the hydrodeoxygenation of biologically active molecules.[27] Current synthetic pathways for 

the hydrodeoxygenation of carbonyl compounds and alcohols based on the application of 

reusable, earth-abundant metal catalysts cannot fulfill the requirements of a broad substrate 

scope and an adequate functional group tolerance.[28] The development of novel catalyst 

systems mediating this reaction type is highly interesting, since these catalysts could contribute 

to sustainable and cost-efficient deoxygenation under industrially viable conditions. 
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4 Overview of thesis results 

This thesis contains three publications, which are presented in chapter 5-7. In chapter 4.1 the 

results are summarized and in chapter 4.2 the individual contributions are pointed out in detail. 

4.1 Synopsis 

During the past few years, the Kempe group has focused on the synthesis of novel heterogenous 

catalysts for complex organic syntheses, applying PDCs as catalyst support materials and noble 

metals as the active species. It was shown that an Ir@SiCN catalyst can mediate the synthesis 

of pyrroles from secondary alcohols and 1,2-amino alcohols. Furthermore, a bimetallic 

Pd2Ru@SiCN for the reversible hydrogen storage and a more complex system consisting of 

three different catalysts (Ru@SiCN, Ir@SiCN, Pd@SiCN) for the synthesis of carbazoles, 

quinolines and acridines were introduced. In further studies, Rößler et al. showed that 

homogeneous catalysts based on the earth-abundant metal cobalt are suitable for the 

hydrogenation of carbonyl groups and the alkylation of aromatic amines with alcohols. The 

development of such earth-abundant metal catalysts is an important area of research, as their 

industrial application could contribute to a greater sustainability in terms of conserving precious 

metal resources. The substitution of these precious metals is especially attractive if novel 

selectivity patterns are observed which allow the design of innovative synthesis concepts. The 

aim of this thesis was the development of novel catalysts, which combine the advantages of 

earth-abundant metals as an active species (low cost and selectivity) with the benefits of a 

heterogeneous catalyst system (reusability and easy separation from the reaction product) and 

their application in selective organic syntheses.  

The first part of the thesis describes the development of an SiCN-based cobalt catalyst. The 

synthesis route is shown in Figure 1A. In the first step, an amidinato cobalt(II) complex and the 

commercially available polysilazane HTT-1800 were dissolved in tetrahydrofuran, followed by 

cross-linking using dicumylperoxide as a radical initiator. After removal of the solvent in vacuo, 

the green body was pyrolyzed under a constant nitrogen flow at 750 °C. It was shown that 

higher temperatures led to an agglomeration of the nanoparticles, which is generally detrimental 

for the catalytic activity of a heterogeneous catalyst. 
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Figure 1: Synthesis and characterization of the Co-SiCN nanocomposite. A) Combination of a suitable metal 

complex with the ceramic precursor HTT-1800, followed by pyrolysis under a nitrogen atmosphere. B) TEM analysis 

and the corresponding particle size distribution provided evidence of small homogeneously distributed 

nanoparticles. C, D) Magnetic measurements verified the transition from para- to superparamagnetic properties. 

Magnetic measurements showed a change from the paramagnetic behavior of the cross-linked 

polysilazane containing cobalt to superparamagnetic properties of the nanocomposite after 

pyrolysis (Figure 1C, D). This is in agreement with the presence of isolated Co2+ ions after 

cross-linking and their reduction to small metallic Co nanoparticles during pyrolysis. TEM 

analysis provided evidence of the generation of small homogeneously distributed metal 

nanoparticles with a mean diameter of 1.6 nm (Figure 1B). The novel Co-SiCN nanocomposite 

emerged as a suitable catalyst for the reduction of nitroarenes applying cheap and easily 

available molecular hydrogen. This transformation is one of the most important reactions in the 

chemical industry, since it is the method of choice regarding the production of aniline and its 

derivatives. After the optimization of different reaction conditions, we were able to hydrogenate 

aromatic nitroarenes in a highly selective fashion. A variety of different functional groups, such 

as halides (including reactive iodides), amides, nitriles, ketones, aldehydes and nitriles, as well 

as C-C double bonds were well tolerated under reductive reaction conditions (Figure 2).  
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Figure 2: Representative substrate scope for the selective hydrogenation of nitroarenes. Reaction conditions: 

110 °C, 5.0 MPa hydrogen pressure, 35 mg catalyst (4.8 mol% Co), 2 mL ethanol, 0.5 mL H2O, 15 h. Yields were 

determined by GC and GC-MS using n-dodecane as an internal standard. 

The tolerance towards aldehydes and ketones is especially attractive, since it allows the design 

of innovative synthesis concepts. We were able to demonstrate the first highly selective 

synthesis of imines and benzimidazoles from nitro derivatives and aldehydes. After an 

adjustment of the reaction conditions, the general applicability of this reductive coupling was 

proved by the synthesis of 26 different examples (Figure 3).  

 

Figure 3: Representative substrate scope for the selective synthesis of imines and benzimidazoles. [a] Reaction 

conditions: R’’=H: 110 °C, 5.0 MPa H2, 1.5 mmol nitroarene, 3.0 mmol aldehyde, 110 mg catalyst (5.0 mol% Co), 

4 mL triethylamine, 24 h. R’’=Me: 115 °C, 5.0 MPa H2, 1.5 mmol nitroarene, 3.0 mmol ketone, 175 mg catalyst 

(8.0 mol% Co), 10 mg Amberlyst® 15, molsieves, 4 mL toluene, 48 h. [b] Reaction conditions: 110 °C, 5.0 MPa H2, 

1.5 mmol nitroarene, 3.0 mmol aldehyde, 110 mg catalyst (5.0 mol% Co), 4 mL triethylamine, 24 h; yields of isolated 

products. 
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Inspired by these results and due to the importance of the reaction type, we were interested in 

further complex organic transformations, which include a nitroarene hydrogenation step. The 

direct usage of compounds containing two nitro functionalities is especially highly interesting, 

since this would allow the synthesis of a further class of N-heterocycles. We decided to 

investigate the application of a technical grade 1,8-dinitronapthalene for the direct synthesis of 

1H-perimidines. The challenges of this reaction are shown in Figure 4. 

 

Figure 4: Challenges of the synthesis concept. The hydrogenation of 1,8-dinitronaphthalene must proceed 

smoothly and selectively, while the aldehyde and the 1H-perimidine desired must remain unaffected. 

While the hydrogenation of the challenging 1,8-dinitronaphthalene must proceed smoothly and 

selectively, the aldehyde has to remain unaffected even at the higher temperatures needed for 

the condensation step. In addition, the hydrogenation of the 1H-perimidine desired must be 

suppressed to prevent the formation of 2,3-dihydroperimidine side products. We started our 

investigations applying the Co-SiCN nanocomposite described above, however, the catalyst 

emerged as unsuitable for the hydrogenation of compounds bearing two nitro functionalities. 

The fact that this reaction type has not been described in the literature to date and the broad 

applicability of this class of substances, for example, as starting materials for the synthesis of 

azapyrenes, which are promising materials for the manufacture of organic semiconductor 

devices, motivated us to investigate the development of a novel catalyst system. Regarding the 

generation of the active catalyst, commercially available activated charcoal was impregnated 

with a specific cobalt salen complex, followed by pyrolysis and reduction. The general 

synthesis concept is shown in Figure 5. The activated charcoal was added to a solution of 

complex I in acetonitrile and the mixture was stirred at 95 °C. After evaporation of the solvent, 

the sample was pyrolyzed under a nitrogen atmosphere at 700 °C, followed by reduction at 

550 °C using forming gas (N2/H2 90/10). A homogeneous distribution of the metal species over 

the entire catalyst surface, which is particularly important when synthesizing a catalyst by wet 

impregnation, was confirmed by EDX analysis. No phase separation could be detected, 

indicating a clean and smooth impregnation process. TEM analysis of the catalyst verified the 

presence of small, homogeneously distributed metal nanoparticles with a mean diameter of 

7.3 nm (Figure 5B). XPS measurements were accomplished to get a deeper insight into the 



Overview of thesis results 

 

31 

 

composition of the surface. An analysis of the Co 2p3/2 region indicated the coexistence of 

metallic cobalt species in addition to cobalt oxides or hydroxides, which cannot be distinguished 

definitely (Figure 5C).   

 

Figure 5: Synthesis and characterization of the novel cobalt catalyst. A) Wet impregnation of commercially available 

charcoal with complex I, followed by pyrolysis and reduction. B) TEM analysis in combination with the corresponding 

particle size distribution proved evidence of homogeneously distributed metal nanoparticles with a mean diameter 

of 7.3 nm. C) XPS analysis of the Co 2p3/2 region confirmed the presence of metallic cobalt and different oxides or 

perhabs hydroxides.  

At the beginning of our catalytic studies, the influence of the support material and the pyrolysis 

temperature during the preparation of the catalyst were investigated. The reductive coupling of 

1,8-dinitronaphtalene and 4-methylbenzaldehyde was chosen as a model reaction. The nitro 

derivative was used in a technical grade around 90 % (determined by GC and GC-MS). This 

limits the isolated yields. However, it is very important to ensure the general applicability of 

the novel reaction sequence. The results are summarized in Table 1. 
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Table 1: Screening of reaction parameters – catalyst screening. 

 

Entry Metal source Pyrolysis temperature [°C] Support Yield [%] 

1 Complex I 600 Activated charcoal 41 

2 Complex I 700 Activated charcoal 72 

3 Complex I 800 Activated charcoal 61 

4 Complex I 700 TiO2 31 

5 Complex I 700 CeO2 18 

6 Complex I 700 γ-Al2O3 54 

7 Co(OAc)2 * 4 H2O 700 Activated charcoal 15 

8$ Complex I 700 Activated charcoal 87 

Reaction conditions: 0.5 mmol nitro derivative, 1.1 eq aldehyde, 35 mg catalyst (4 mol% Co), 120 °C, 6.0 MPa 

H2, 3 mL toluene, 20 h; $130 °C reaction temperature; Yields were determined by GC and GC-MS using n-

dodecane as an internal standard.  

The use of metal oxides as support materials led to a decrease in product yield in all cases 

(Table 1, entries 4-6). A significant amount of aldehyde hydrogenation, even at incomplete 

conversion of the nitroarene derivative, was observed. A replacement of complex I by the 

common metal salt cobalt acetate led to a distinct drop in catalytic activity, indicating the 

superiority of the synthesis concept based on the application of the cobalt salen complex in 

catalyst synthesis (Table 1, entry 7). In summary, the synthesis of 2-(p-tolyl)-1H-perimidine 

proceeded well with a catalyst synthesized from complex I in combination with commercially 

available activated charcoal at 130 °C reaction temperature, 6.0 MPa hydrogen pressure, 

applying toluene as the solvent. With the optimized reaction conditions in hand, the synthesis 

protocol was applied to several substrates. A representative substrate scope is shown in 

Figure 6. The reductive coupling of 1,8-dinitronapthalene with aromatic and aliphatic 

aldehydes proceeded smoothly and an extraordinary tolerance towards various hydrogenation-

sensitive functional groups was observed. The synthesis concept tolerates halides, ethers, 

thioethers, boronic esters, amides, hydroxy functionalities, as well as heterocycles, nitriles, and 

C-C double and triple bonds. An up-scaling of the reaction was demonstrated, and the catalyst 

showed stability over several consecutive runs without a remarkable decrease in catalytic 

activity. It is noteworthy to mention that we were able to synthesize six new products with this 

direct synthesis of 1H-perimidines. These compounds are generally known as common starting 

materials for the synthesis of 6,8-disubstituted 1,3-diazapyrenes or 7-bromo-1,3-diazapyrenes, 
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which are promising materials for the manufacture of organic semiconductor devices, such as 

light-emitting diodes, field-effect transistors and photovoltaic elements for solar cells. 

 

Figure 6: Selective synthesis of 1H-perimidines from 1,8-dinitronaphthalene and various aldehydes. Reaction 

conditions: 1.5 mmol nitro derivative, 1.1 eq aldehyde, 120 mg catalyst (4.7 mol% Co), 130 °C, 6.0 MPa H2, 3 mL 

toluene, 20 h; yields of isolated products. 

As described previously, salen-type ligands offer the possibility of the synthesis of stable 

heterobimetallic complexes due to the presence of two different coordination spheres. The 

impregnation of activated charcoal with a monometallic cobalt salen complex led to a highly 

active catalyst for the selective hydrogenation of nitroarenes. The third part of this thesis deals 

with the generation of a bimetallic catalyst system based on the impregnation of commercially 

available support materials with a heterobimetallic complex and the resulting changes in the 

catalytic properties. Consequently, a bimetallic Co-Ce salen complex was synthesized and 

characterized by X-ray crystallography (Figure 7A).  
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Figure 7: Synthesis of the catalyst in combination with HAADF-STEM analysis. A) Wet impregnation of 

commercially available charcoal with the bimetallic precursor complex I, followed by pyrolysis and reduction. B) 

HAADF-STEM analysis in combination with the corresponding particle size distribution (C) verified the presence of 

homogeneously distributed metal nanoparticles. 

Regarding the synthesis of the active catalyst, commercially available activated charcoal was 

impregnated with the bimetallic Co-Ce complex, followed by pyrolysis at 700 °C under a 

nitrogen atmosphere and reduction at 550 °C under forming gas (N2/H2 90/10). HAADF-STEM 

in combination with the corresponding particle size distribution verified the presence of a 

homogeneously distributed metal species over the entire catalyst sample analyzed (Figure 7B, 

C). The composition of the surface was analyzed by a combination of HAADF-STEM analysis 

and EDX measurements (Figure 8). 

 

Figure 8: Characterization of the bimetallic catalyst system. A detailed HAADF-STEM of the catalyst (A) and the 

corresponding EDX based element maps (B, C, D) indicate that Co forms the nanoparticles while Ce is distributed 

over the whole carbon support (Co: green; Ce: blue; O: red; P: orange). 

Detailed HAADF-STEM provided evidence of the presence of two types of nanosized species 

embedded in the matrix: Nanoparticles with a mean diameter of 6.8 nm and smaller (~1 nm) 

structures (Figure 8A). HAADF-STEM in combination with EDX-mapping revealed that Co 

forms the larger particles, while Ce is distributed in the matrix in the form of very small 

agglomerates (Figure 8B, C, D). The presence of oxygen and phosphorous can be reduced to 
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the use of a chemically activated carbon support. An analysis of the oxidation states of both 

metals was carried out by XPS analysis (Figure 9). 

 

Figure 9: XPS analysis of the Co 2p3/2 (A) and the Ce 3d5/2 (B) region indicated the presence of different oxidation 

states for both metal species. 

Analysis of the Co 2p3/2 region confirmed the presence of metallic cobalt species (~20 %) and 

oxides/hydroxides (~80 %), which cannot be distinguished definitely (Figure 9A). Cerium is 

present as an oxide of predominantly Ce3+ (~90 %) and small amounts of Ce4+ (~10 %), 

concluded from an analysis of the Ce 3d5/2 region (Figure 9B). 

The hydrogenation of acetophenone was chosen for a first investigation of the catalytic 

properties of the bimetallic catalyst system. The introduction of a second metal species led to a 

significant change in the catalytic behavior. While the catalyst, which was synthesized from a 

monometallic cobalt salen complex, was very selective towards carbonyl compounds, the 

bimetallic catalyst showed a high activity in the hydrodeoxygenation of acetophenone. This 

cleavage of C-O bonds is a highly interesting type of reaction, since it offers the possibility of 

a modification of functionality-laden fine chemicals, natural products or pharmaceuticals and 

it is crucial for the economic upgrading of biomass-derived molecules into fuels and chemicals. 

The influence of the catalyst support material and different metal sources was investigated first. 

The results are summarized in Table 2. 
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Table 2: Screening of reaction parameters – catalyst screening. 

 

Entry Metal source Support 
Yield [%] 

a b 

1 Bimetallic complex I TiO2 62 27 

2 Bimetallic complex I CeO2 15 69 

3 Bimetallic complex I γ-Al2O3 6 21 

4 Bimetallic complex I 

 

Activated charcoal 81 16 

 5$ Bimetallic complex I 

 

Activated charcoal 98 - 

6 Co(NO3)2 + Ce(NO3)3 Activated charcoal - 18 

 7‡ Monometallic complex II Activated charcoal - 10 

 8§ Monometallic complex III Activated charcoal - - 

9 Monometallic complex II + III Activated charcoal 32 51 

Reaction conditions: 0.5 mmol substrate, 15 mg catalyst (1.8 mol% Co, 1.6 mol% Ce), 100 °C, 

4.0 MPa H2, 3 mL methylcyclohexane, 20 h; $110 °C reaction temperature; ‡1.8 mol% Co without Ce; 
§1.6 mol% Ce without Co; Yields were determined by GC and GC-MS using n-dodecane as an internal 

standard.  

Only the combination of TiO2 with the bimetallic complex I gave moderate yields of the product 

desired, while poor yields were achieved using CeO2 and Al2O3 as a support (Table 2, entries 

1-4). When complex I was replaced by the common metal salts Co(NO3)2 and Ce(NO3)3, no 

ethylbenzene formation could be detected (Table 2, entry 6). The monometallic Co complex II 

(essentially complex I without Ce) and the monometallic Ce complex III (essentially complex I 

without Co) were used for the catalyst synthesis to ensure a necessity of the bimetallic 

complex I. Neither the use of complex II or III nor a combination of both led to comparable 

hydrodeoxygenation activities (Table 2, entries 7-9). After a further optimization of the reaction 

conditions, the substrate scope of the hydrodeoxygenation protocol was investigated.  
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Figure 10: Representative substrate scope for the selective hydrodeoxygenation of alcohols and carbonyl 

compounds I. [a] Reaction conditions: 0.5 mmol substrate, 15 or 35 mg catalyst (1.8 mol% Co and 1.6 mol% Ce or 

4.2 mol% Co and 3.7 mol% Ce, respectively), 110-130 °C, 5.0 MPa H2, 3 mL methylcyclohexane, 20 h, (10 mg 

Amberlyst® 15 for halogenated substrates). [b] Reaction conditions: 0.5 mmol substrate, 50 mg catalyst 

(6.1 mol% Co, 5.2 mol% Ce), 130 °C, 6.0 MPa H2, 3 mL methylcyclohexane, 20 h, (5 mol% Zn(OTf)2 for 

halogenated substrates). Yields were determined by GC and GC-MS using n-dodecane as an internal standard; 

isolated yields in parentheses. 

The hydrodeoxygenation of aromatic ketones, secondary alcohols, aldehydes and primary 

alcohols proceeded highly chemoselectively and functional groups, easily reduced by hydrogen 

in the presence of conventional catalysts, remained unaffected. Halides (including reactive 

iodides), ethers (including thio- and benzylethers), esters (including boronic esters), amides, 

phenols and N-heterocycles were tolerated under reaction conditions (Figure 10). The protocol 

could be extended by an adjustment of the reaction conditions and the hydrodeoxygenation of 

aliphatic and more complex substrates was accomplished. The selective removal of aromatic 

carbonyl and alcohol functionalities in the presence of an aliphatic alcohol group was 

demonstrated. The hydrodeoxygenation of complex natural products, pharmaceuticals and 

biomass-derived platform molecules was performed to ensure a general applicability and good 

to excellent yields were achieved (Figure 11). 
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Figure 11: Representative substrate scope for the selective hydrodeoxygenation of alcohols and carbonyl 

compounds II. [a] Reaction conditions: 1.0 mmol substrate, 100 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 160 °C, 

6.0 MPa H2, 6 mL methylcyclohexane, 20 mg Amberlyst® 15, 20 h; §1 mmol substrate, 30 mg catalyst 

(1.8 mol% Co, 1.6 mol% Ce), 110 °C, 4.0 MPa H2, 6 mL methylcyclohexane, 20 h, no additive. [b] Reaction 

conditions: 1.0 mmol substrate, 70 mg catalyst (4.2 mol% Co, 3.7 mol% Ce), 130 °C, 5.0 MPa H2, 6 mL ethanol, 

20 h. [c] Reaction conditions: 1.0 mmol substrate, 100 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 160 °C, 6.0 MPa 

H2, 6 mL methylcyclohexane, 20 h; $diglyme was used as the solvent; †5 mol% Zn(OTf)2 as the additive. Yields 

were determined by GC and GC-MS using n-dodecane as an internal standard. Isolated yields are given in 

parentheses. 

Up-scaling reactions and recycling studies were carried out to prove the potential of this 

hydrodeoxygenation protocol. An extension of the reaction batch by a factor of 20 showed no 

negative influence on the product yields. Furthermore, the catalyst could be reused in five 

consecutive runs without a remarkable decrease in catalytic activity, which demonstrates the 

stability of the bimetallic system clearly. 
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4.2 Individual contribution to joint publications 

The results presented in this thesis were obtained in collaboration with others and are published 

or submitted as indicated below. The contributions of all the co-authors to the respective 

publications are specified in the following. The corresponding author is denoted by an 

asterisk (*). 

 

Chapter 5 

This work is published in Angewandte Chemie International Edition (Angew. Chem. Int. Ed. 

2016, 55, 15175.) with the title  

“A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes 

and the Direct Synthesis of Imines and Benzimidazoles from Nitroarenes and Aldehydes” 

Authors: Tobias Schwob, Rhett Kempe* 

I synthesized and characterized the catalyst and carried out the catalytic reactions and the related 

analytics. Prof. Kempe and I designed the experiments and co-wrote the manuscript. In 

addition, Prof. Kempe was involved in the scientific discussions and supervised the work 

presented in this paper.  

 

Chapter 6 

This work is submitted to ChemSusChem and out for review with the title 

“A Co catalyst permits the direct hydrogenative synthesis of 1H-perimidines from a 

dinitroarene and an aldehyde” 

Authors: Tobias Schwob, Mirco Ade, Rhett Kempe* 

I synthesized and characterized the catalyst and carried out the catalytic reactions and the related 

analytics. M. Ade contributed to this topic during his bachelor thesis. Prof. Kempe and I 

designed the experiments and co-wrote the manuscript. In addition, Prof. Kempe was involved 

in the scientific discussions and supervised the work presented in this paper. 

Now published as:  

T. Schwob, M. Ade, R. Kempe, ChemSusChem 2019, 12, 3013. 
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5.2 Chapter 7 

This work is submitted to Science Advances and out for review with the title 

“General and selective deoxygenation by hydrogen employing a reusable earth-abundant 

metal catalyst” 

Authors: Tobias Schwob, Peter Kunnas, Niels de Jonge, Christian Papp, Hans-Peter Steinrück, 

Rhett Kempe* 

I synthesized and characterized the catalyst and carried out the catalytic reactions and the related 

analytics. R. Kempe and I designed the experiments and co-wrote the manuscript. P. Kunnas 

and N. de Jonge performed the HAADF-STEM, EDX and EELS analyses. C. Papp and H.-P. 

Steinrück accomplished the XPS studies. All authors were involved in the scientific discussions. 

R. Kempe supervised the work and was responsible for the correction of the manuscript. 

Now published as:  

T. Schwob, P. Kunnas, N. de Jonge, C. Papp, H.-P. Steinrück, Sci. Adv. 2019, 5, eaav3680. 
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5 A Reusable Co Catalyst for the Selective Hydrogenation of 

Functionalized Nitroarenes and the Direct Synthesis of Imines and 

Benzimidazoles From Nitroarenes and Aldehydes 

Tobias Schwob,[a] and Rhett Kempe*[a] 

[a] Anorganische Chemie II, Universität Bayreuth, 95440, Bayreuth. 

Published in Angew. Chem. Int. Ed. 2016, 55, 15175. 

 

Abstract: The employment of abundantly available transition metals in reactions, which have 

been preferentially mediated by rare noble metals such as hydrogenations, is a desirable aim in 

catalysis and an attractive element conservation strategy. The observation of novel selectivity 

patterns with such inexpensive metal catalysts is especially appealing. Herein, we report on a 

novel, robust and reusable cobalt catalyst, which permits the selective hydrogenation of 

nitroarenes in the presence of highly hydrogenation-sensitive functional groups, as well as the 

direct synthesis of imines from nitroarenes and aldehydes or ketones in the presence of such 

substituents. Furthermore, we introduce the first base metal-mediated direct synthesis of 

benzimidazoles from nitroarenes and aldehydes. Functional groups that are easy to hydrogenate 

are again well tolerated. 

 

5.1 Introduction 

Hydrogenation reactions are of very high and continuing interest for the chemical industry and 

academic research.[1] The hydrogenation of aromatic nitro compounds with reusable catalysts 

is the method of choice for the production of aniline derivatives, an extremely important class 

of compounds.[2] Corma and coworkers reported a breakthrough with regard to the tolerance of 

functional groups in 2006.[3] They applied gold catalysts and observed a selectivity of over 95 % 

for the hydrogenation of the nitro group in 3-nitrostyrene, 4-nitrobenzaldehyde, 4-

nitrobenzonitrile and 4-nitrobenzamide. Beller and coworkers have recently shown that 

heterogeneous catalysts based on abundantly available transition metals, such as iron[4] and 

cobalt[5] (3d-metals or base metals), can also mediate the highly selective hydrogenation of 

nitroarenes. The replacement of expensive and rare noble metals by base metals is a key to a 
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sustainable future, since it helps to preserve our element resources. The use of such abundantly 

available metals is especially attractive if novel selectivity patterns are observed. Herein, we 

report on a novel reusable and robust Co catalyst, which permits the selective hydrogenation of 

nitroarenes in the presence of iodo, olefin, aldehyde, ketone and nitrile functional groups. More 

importantly, we describe the first application of a base metal catalyst for the direct synthesis of 

imines from nitroarenes and aldehydes or ketones, tolerating functional groups regarded as 

highly hydrogenation-sensitive, such as olefins, nitriles and ketones. Furthermore, we introduce 

the first base metal-mediated direct synthesis of benzimidazoles from nitroarenes and 

aldehydes. Imines and their derivatives are an important class of compounds. They have been 

used extensively as ligands[6] and because of their diverse reactivity for the synthesis of 

materials,[7] fragrances, fungicides, pharmaceuticals and agricultural chemicals.[8] Thus, the 

development of novel imine synthesis protocols is of high interest.[9,10] Benzimidazoles and the 

development of efficient protocols permitting their synthesis are similarly important.[11] We 

have recently introduced a variety of SiCN (silicon carbonitride) metal nanocomposite 

catalysts[12] and have, very recently, introduced highly active homogenous 3d-metal or base 

metal catalysts for reactions classically mediated by expensive noble metals.[13] 

 

5.2 Results and Discussion 

Our novel cobalt nanocomposite catalyst was synthesized in a two-step procedure. In the first 

step, an amidinato cobalt(II) complex (Figure 1, top left) and a commercially available 

polysilazane were dissolved in tetrahydrofuran (THF), followed by crosslinking using 

dicumylperoxide (DCP). After removal of the solvent under vacuum, the sample was pyrolyzed 

under a constant nitrogen flow at 750 °C. Inductively coupled plasma optical emission 

spectrometry (ICP-OES) measurements revealed 3.8 wt% cobalt in the pyrolyzed sample. The 

change from a paramagnetic behavior of the Co containing crosslinked polysilazane to 

superparamagnetic properties of the nanocomposite was confirmed by magnetic measurements 

(Figure 1, middle). This is in agreement with the presence of isolated Co2+ ions after 

crosslinking and their reduction to small metallic Co nanoparticles (NPs) during pyrolysis. The 

presence of small metal NPs, homogenously distributed, was additionally verified via 

transmission electron microscopy (TEM; Figure 1, top right). The mean Co particle size, 

measured by TEM, is 1.7 nm. The Co particle size distribution is shown in Figure 1 (top right). 

After washing the as-synthesized Co-SiCN nanocomposite material with an aqueous basic 
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solution, a specific surface area of 320 m2g-1 (Brunauer-Emmet-Teller) was observed 

(Figure S1). Pore-size distribution calculations revealed a hierarchically structured Co catalyst 

containing micro- and mesopores. Temperature-programmed reduction (TPR) of the Co 

catalyst was performed next (Figure 1, bottom left). The samples were heated under a reductive 

atmosphere (95 % N2, 5 % H2, 5 K/min) up to 550 °C and held for 1 h.  

 

Figure 1: Top: Synthesis of the novel Co nanocomposite. The bisamidinato cobalt(II) complex and the commercially 

available polysilazane HTT 1800 were dissolved in THF, followed by crosslinking with DCP as a radical initiator at 

110 °C. Pyrolysis at 750 °C led to an amorphous silicon carbonitride nanocomposite. At the pyrolysis temperature 

of 750 °C, the polysilazane precursor is not fully converted into a SiCN material. The presence of small cobalt 

nanoparticles with a homogenous particle size distribution centered at 1.7 nm was verified by TEM analysis (top 

right). Middle: Magnetic measurements confirmed the change from paramagnetic behavior of the green body (left) 

to superparamagnetic properties of the as-synthesized nanocomposite (right). The magnetic data are in agreement 

with a transition from Co2+ to metallic Co NP. Bottom left: High-temperature hydrogen treatment [temperature-

programmed reduction (TPR)] was accomplished before application in catalysis; Co nanocomposite (red), cobalt 

oxide reference (blue). H2 uptake between 300 and 400 °C indicates partial oxidation of the NP during the washing 

procedure. Bottom right: Recycling of the Co catalyst. Activity could easily be regained by TPR treatment.  

Comparison to a cobalt oxide reference sample indicates the presence of reducible cobalt oxide 

species in the Co catalyst. The as-synthesized Co-SiCN nanocomposite showed no TPR signal 
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in this region, indicating a partial oxidation of the Co NP during the washing procedure. X-ray 

photoelectron spectroscopy (XPS) data are in accordance with this observation (Figure S6). The 

hydrogenation of nitrobenzene was chosen as a test reaction to optimize the performance of our 

Co catalyst in the reduction of nitroarenes and to demonstrate its reusability. The following 

reaction conditions were found to be optimal: a 4:1 ethanol/water mixture under 5.0 MPa 

hydrogen pressure at 110 °C. Our cobalt catalyst showed a slight decrease in the catalytic 

activity up to the third run and a significant decline in the fourth run (Figure 1, bottom right). 

However, leaching experiments demonstrated that only 0.05 % of the total amount of Co 

leached out during catalysis. To our delight, catalytic activity could easily be regained by TPR 

treatment (Figure 1, bottom left). This method also indicates complete reduction of the Co 

oxide species. The Co catalyst was reactivated up to five times without any remarkable decrease 

in catalytic activity and with only a slight increase of the Co particle size (Figure S14). With 

the optimized conditions in hand, we were interested in the nitroarene hydrogenation substrate 

scope of our novel catalyst. Halogenated substrates, such as chlorides and bromides, were 

smoothly converted into the corresponding anilines (Table 1; Entry 2-7), only 1-iodo-4-

nitrobenzene (Table 1; Entry 8) showed traces of dehalogenated product. In addition, different 

reducible functional groups, for example, nitrile, keto, aldehyde, amide and even vinyl groups 

were successfully tolerated (Table 1; Entry 9-11, 14, 16). The tolerance towards the aldehyde 

group is especially interesting in light of the many known Co catalysts able to hydrogenate C=O 

bonds.[13a,14] The hydrogenation of sterically demanding nitroarenes (Table 1; Entry 12, 13) 

required a slight increase in the catalyst loading to ensure high conversions under the optimized 

conditions. 

Table 1: Chemoselective hydrogenation of substituted nitroarenes: substrate scope.[a] 

 

Entry Product Yield[b] [%] 

1    
 R = H 

>99 

2   R = 2-Cl   92 

3   R = 3-Cl   96 

4   R = 4-Cl >99 

5   R = 2-Br   90 

6   R = 3-Br >99 

7   R = 4-Br >99 

8                                     R = 4-I   76 



A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes and the Direct Synthesis 

of Imines and Benzimidazoles from Nitroarenes and Aldehydes 

 

45 

 

Table 1: Continued 

9   
>99 

 
10 

  
  82 

 
11 

  
>99 

 
12 

  
  84[c] 

 
13 

  
  87[c] 

 
 

14 

  
>99 

 
15 

  
 

  91 

 
16 

  
>99 

 
 

17 

  
 

>99 

[a] Reaction conditions: 110 °C, 5.0 MPa H2, 4.8 mol% catalyst (1.4 mg Co, 0.024 mmol, 35 mg), 2 mL 
ethanol, 0.5 mL H2O, 15 h. [b] Yields were determined by GC using n-dodecane as an internal standard. 
[c] 6 mol% catalyst. 

Next, we were interested in catalytic transformations that include a nitroarene hydrogenation 

step and identified the direct synthesis of imines from nitroarenes and aldehydes or ketones as 

an interesting application. The reductive coupling of nitrobenzene with benzaldehyde was 

chosen as the benchmark reaction to find the optimal reaction conditions. Interestingly, the 

hydrogenation of benzaldehyde (alone) under our reaction conditions gave about 14 % 

conversion. If nitrobenzene is added, no aldehyde hydrogenation product could be detected 

(Figure S12). The reductive coupling of various aromatic aldehydes and nitroarenes was 

investigated to demonstrate the general applicability. Halogenated substrates (Table 2; Entry 

1c, 1d; 3a-c) gave the corresponding imines with 71-87 % isolated yields. The use of sterically 

more demanding aldehydes had no negative effect on the catalytic results (Table 2; Entry 2a, 



A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes and the Direct Synthesis 

of Imines and Benzimidazoles from Nitroarenes and Aldehydes 

 

46 

 

2b, 3e). 5-nitroisochinoline was coupled with benzaldehyde in 76 % yield for the generation of 

an N-heterocyclic imine (Table 2; Entry 4).  

Table 2: Selective synthesis of substituted imines: substrate scope.[a] 

 

Entry Product Yield[b] [%] 

 

 

1a: R = H 82 

1 1b: R = Me 74 

 1c: R = F 87 

 1d: R = Cl 81 

 

2 

 

2a: R1 = OH, R2 = OMe,               86 

      R3 = H 

2b: R1 = OH, R2 = tBu,  91 

      R3 = tBu 

  

3 

 

3a: R = 3-Cl 71 

3b: R = 4-Cl 82 

3c: R = 4-Br 86 

3d: R = 3-CN 70 

3e: R = 2-Ph 74 

 

4 

   

76 

 

5 

 

 5a: R1 = OH, R2 = tBu,   86 

      R3 = tBu, R4 = CN,  

      R5 = H 

5b: R1 = OH, R2 = tBu, 82 

      R3 = tBu, R4 = vinyl, 

      R5 = H 

 

6 

 

  

79 

 

7 

 

7a: R1 / R2 = H 75 

7b: R1 = H, R2 = Cl 

 

 

 

 

 

 

71 

7c: R1 / R2 = Me 78 

 

8 

 

 

  

8a: R1 = Br, R2 = H 67 

8b: R1 = H, R2 = Me 72 

[a] Reaction conditions: R’’=H: 110 °C, 5.0 MPa H2, 1.5 mmol nitroarene, 3.0 mmol aldehyde, 5.0 mol% 
catalyst (4.4 mg Co, 0.075 mmol, 110 mg), 4 mL triethylamine, 24 h. R’’=Me: 115 °C, 5.0 MPa H2, 
1.5 mmol nitroarene, 3.0 mmol ketone, 8.0 mol% catalyst (7.0 mg Co, 0.119 mmol, 175 mg), 10 mg 
Amberlyst® 15, molsieves, 4 mL toluene, 48 h. [b] Overall yields of isolated products. 

 

  



A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes and the Direct Synthesis 

of Imines and Benzimidazoles from Nitroarenes and Aldehydes 

 

47 

 

Keto, nitrile and even vinyl functionalities were tolerated and the corresponding products were 

obtained in 70-86 % isolated yields (Table 2; 3d, 5a, 5b, 6). Imine formation with ketones 

proceeds well under slightly harsher conditions (Table 2, Entry: 7a-c, 8a,b). Finally, we 

investigated the direct synthesis of benzimidazoles from nitroarenes and aldehydes. 4,5-

dimethyl-2-nitro-aniline was coupled with benzaldehyde as the test reaction. The product 5,6-

dimethyl-2-phenyl-1H-benzo[d]imidazole was obtained in excellent isolated yield under 

optimized reaction conditions (Table 3; Entry 1a). The introduction of halide substituents 

(Table 3; Entry 1b, 1d) or a heterocyclic aldehyde (Table 3; Entry 2) gave similarly good 

outcomes. Reductive coupling using aliphatic aldehyde compounds is more challenging, 

however, the use of n-heptanal gave the desired product in 68 % yield. Benzimidazoles 

containing functional groups, such as double bonds or nitrile groups could also be synthesized 

(Table 3; Entry 1e, 4). 

Table 3. Synthesis of benzimidazoles – substrate scope [a] 

 

Entry Product Yield[b] [%] 

1 

 

1a: Rʹ = H 91 

 1b: Rʹ = 4-F 87 

 1c: Rʹ = 4-OMe 81 

 1d: Rʹ = 3-Cl 79 

 1e: Rʹ = 4-CN 72 
 

2 

   

84 

 

3 

   

71 

 

4 

   

68 

[a] Reaction conditions: 110 °C, 5.0 MPa H2, 1.5 mmol nitroarene, 3.0 mmol aldehyde, 5.0 mol% catalyst 
(4.4 mg Co, 0.075 mmol, 110 mg), 4 mL triethylamine, 24 h. [b] Overall yields of isolated products. 

In conclusion, we developed a novel Co nanocomposite catalyst for the highly selective 

hydrogenation of functionalized nitroarenes. The catalyst is easy to synthesize in a two-step 

procedure, can be handled and stored under air and its hydrogenation activity can be regained 

via hydrogen treatment at around 400 °C. The catalyst mediates the selective direct synthesis 

of imines from nitroarenes and aldehydes or ketones through hydrogenation. This is the first 

such reaction in which functional groups that are easy to hydrogenate are tolerated, and also the 
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first base-metal catalyst that can successfully be applied to the direct synthesis of 

benzimidazoles from aromatic nitro compounds and aldehydes. We expect a broad applicability 

for reusable and robust base or 3d metal catalysts as introduced here in direct reductive 

syntheses, based on the tolerance towards hydrogenation-sensitive functional groups. 
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5.5 Supplementary Information 

General Considerations 

Air- and moisture sensitive reactions were carried out under dry argon or nitrogen atmosphere 

using standard Schlenk or glove box techniques. Dry solvents were obtained from a solvent 

purification system (activated alumina cartridges) or purchased from Acros. Chemicals were 

purchased from commercial sources with purity over 95 % and used without further 

purification. Polysilazane “KiON HTT 1800” was purchased from Clariant Advanced Materials 

GmbH, Frankfurt (Germany) and used without further purification. NMR spectra were received 

using a Varian INOVA 300 (300 MHz for 1H, 75 MHz for 13C) at 296 K. Chemical shifts are 

reported in ppm relative to the residual solvent signal (CDCl3: 7.26 ppm (1H), 77.16 ppm (13C); 

DMSO-d6: 2.50 ppm (1H), 39.51 ppm (13C)), coupling constants (J) are reported in Hz. 

Elemental analysis was performed on an Elementar Vario El III. GC analyses were carried out 

on an Agilent 6890N Network GC system equipped with a HP-5 column (30 m x 0.32 mm x 

0.25 μm). GC-MS analyses were carried out on an Agilent 7890A GC system equipped with a 

HP-5MS column (30 m x 0.32 mm x 0.25 μm) and a 5975C inert MSD detector. High resolution 

mass spectra (HRMS) were obtained from a Thermo Fisher Scientific Q-Exactive (Orbitrap) 

instrument in ESI+ mode. Ceramization was carried out under nitrogen atmosphere in a high 

temperature furnace (Gero, Berlin, Germany). Transmission electron microscopy (TEM) was 

carried out by using a LEO 922o (200 kV) instrument. The sample was suspended in chloroform 

and sonicated for 5 min. Subsequently a drop of the suspended sample was placed on a CF200-

Cu grid and allowed to dry. Energy dispersive X-ray spectroscopy (EDX) measurements were 

carried out by using a LEO 1530 GEMINI. The acceleration voltage was 1-5 kV. ICP-OES 

measurements were carried out by using a Vista-pro radical model from Varian. N2 sorption 

measurements were carried out using a Nova2000e (Quantachrome). The specific surface areas 

were calculated using p/p0 values from 0.05-0.31 (BET). The pore width and average pore 

volume were calculated by DFT calculations [calculation model: N2 at -196.15 °C on carbon 

(slit pore, NLDFT equilibrium model)]. Hydrogen chemisorption measurements were carried 

out by using a ChemBET Pulsar TPR/TPD instrument from Quantachrome. Magnetic 

measurements of the compounds were carried out using a SQUID MPMS-XL5 from Quantum 

Design with the field range of -3 to 3 T in hysteresis mode. The sample was prepared in a 

gelatine capsule held in a plastic straw under protective atmosphere. The raw data were 

corrected for the diamagnetic part of the sample holder. X-ray photoelectron spectroscopy 

(XPS) studies were carried out by means of an Axis Ultra photoelectron spectrometer (Kratos 
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Analytical, Manchester, UK). The spectrometer was equipped with a monochromatic Al K 

(h = 1486.6 eV) X-ray source of 300 W at 15 kV. The kinetic energy of photoelectrons was 

determined with hemispheric analyzer set to pass energy of 160 eV for wide-scan spectra and 

20 eV for high-resolution spectra. During all measurements, electrostatic charging of the sample 

was avoided by means of a low-energy electron source working in combination with a magnetic 

immersion lens. Milling of the catalyst was performed in a ball mill “Pulverisette 0” (Fritsch, 

Germany) for 15 min.  

Synthesis and characterization of the Co nanocomposite catalyst 

The bisamidinato cobalt (II) complex was synthesized according to a known literature 

procedure [1]. 

Ceramization 

Under vigorous stirring 0.243 g (280 µL) HTT 1800 was added drop wise to a solution of 64 mg 

(0.188 mmol) bisamidinato cobalt(II) complex and 12 mg dicumylperoxide (5 wt.-% HTT 

1800) in 1 mL tetrahydrofuran. The sample was cross-linked at 110 °C for 24 h.  After removal 

of the solvent, the brown-black solid was pyrolyzed under N2 atmosphere with the following 

heating program: 

 

The ceramic yield was 75 %. After ball milling for 15 minutes, 300 mg catalyst were washed 

by stirring in an aqueous solution of 5 mL NaOH (c = 1 mol/l) and 1 mL MeOH at 60 °C for 

12 h under aerobic conditions. 

ICP-OES Analysis 

25 mg of the sample were solved in 1.5 mL HNO3 (65 %, distilled), 4.5 mL HCl (32 %, p.a.) 

and 1 mL HF (40 %) and heated in the microwave at 170 °C for 7 min (80 % power), at 180 °C 

for 7 min (85 % power) and at 195 °C for 20 min (90 % power). 

Results:  

as synthesized: 3.8 wt% Co  

after washing procedure: 4.0 wt% Co 
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Leaching experiment: A mixture of 35 mg Co catalyst, 2 mL ethanol and 0.5 mL H2O were 

stirred at 110 °C and 50 bar H2 pressure for 20 hours. The catalyst was removed and the 

resulting solution was analyzed by ICP-OES. 0.05 % of the total Co amount were found.  

N2 sorption  

 

 

Figure S1: Nitrogen sorption measurements of the Co nanocomposite before (black) and after (red) the washing 

process. Pore characterization (calculation model: N2 at 77 K on carbon; slit pore, NLDFT equilibrium model) 

indicates an increase of the surface area in combination with a growth of the average pore width. 

The BET surface area was calculated to be 115 m2 for the as synthesized Co nanocomposite 

and 320 m2 after pretreatment in basic solution. 

TEM analysis 

Figure S2 shows the homogeneous distribution of the Co nanoparticles in the amorphous SiCN 

matrix.  

 

Figure S2: TEM analysis of the cobalt nanocomposite catalyst pyrolyzed at 750 °C. 

The size of the cobalt nanoparticles was determined with the program “ImageJ”. The mean 

particle diameter is 1.6 nm (Figure S3). 
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Figure S3: Histogram of the measured cobalt nanoparticles. 

 Energy dispersive X-ray analysis 

To get an insight in the chemical composition of the catalyst surface, EDX analysis was 

accomplished. Besides the elements silicon, carbon and nitrogen, which can be assigned so the 

ceramic precursor, cobalt and oxygen could also be identified. The amount of oxygen is 

presumably reduced to the radical initiator (DCP) used for the cross-linking process.   

 

Figure S4: Energy dispersive X-ray analysis of the catalyst surface. 

Temperature programmed reduction 

TPR analysis was performed, after washing of the catalyst with aqueous basic solution. The 

sample was heated up to 550 °C with 5 K/min under reductive atmosphere (95 % N2, 5 % H2). 

Afterwards, the sample was cooled to room temperature (20 K/min) and the procedure was 

accomplished again. 
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Figure S5: Temperature programmed reduction of the washed Co nanocomposite. 

When temperature programmed reduction is accomplished for the first time, the broad signal 

between 300 and 400 °C indicates the presence of reducible cobalt species on the catalyst 

surface (black curve). When the procedure is carried out again (red curve) after cooling down 

without air contact, no signal is observed, indicating the complete reduction of cobalt oxide 

species on the catalyst surface. 

X-ray photoelectron spectroscopy 

Figure S6 shows the XPS spectra the Co 2p region of the washed catalyst. 

 

Figure S6: XPS spectra of the washed Co nanocomposite catalyst. 

The Co 2p3/2 signal can be divided in two minor signals with binding energies of 778.0 and 

779.6 eV. In combination with the broad satellite at 783.0 eV, this indicates the presence of 

elemental cobalt and Co2+ species. This is in good agreement with the TPR analysis, where a 

reduction peak at 360 °C could be identified (Figure S5). 

  



A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes and the Direct Synthesis 

of Imines and Benzimidazoles from Nitroarenes and Aldehydes 

 

56 

 

Variation of the pyrolysis temperature 

900 °C 

 

Figure S7: TEM analysis of the cobalt nanocomposite catalyst pyrolyzed at 900 °C. 

1 2 3 4 5 6 7 8 9

particle size [nm]  

Figure S8: Histogram of the measured cobalt nanoparticles of the 900 °C material. 

 

1000°C 

 

Figure S9: TEM analysis of the cobalt nanocomposite catalyst pyrolyzed at 1000 °C. 
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Figure S10: Histogram of the measured cobalt nanoparticles of the 1000 °C material. 

Higher pyrolysis temperatures led to an increase in the mean particle size and a significant 

decrease in the specific surface area, which is conterminous with poorer catalytic results.  

Catalytic studies 

Screening experiments 

 

Figure S11: Selective hydrogenation of nitroarenes – solvent screening. Reaction conditions: 110 °C, 

5.0 MPa H2, 4.8 mol% catalyst (1.4 mg Co, 0.024 mmol, 35 mg), 2 mL solvent, 15 h. 

Table S3: Selective hydrogenation of nitroarenes – optimization of reaction conditions. 

Entry catalyst loading [mol%] temperature [°C] pressure [bar] GC yield [%] 

1 5 110 50 >99 

2 4 110 50 83 
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Table S3: Continued 

3 5 100 50 88 

4 5 90 50 60 

5 5 110 40 86 

 

The novel cobalt nanocomposite catalyst showed a significant better performance in polar 

solvents. The addition of small amounts of water led to a slight increase in the catalytic 

performance. 5.0 MPa hydrogen pressure, 110 °C, 4.8 mol% cobalt, 0.5 mmol substrate and a 

solvent mixture of ethanol/water (4:1) was found to be optimal. For the reductive imination of 

nitroarenes, hydrogen pressure and temperature remained unchanged, while triethylamine 

(TEA) was used as the solvent. Furthermore, the reaction time was prolonged to 24 hours. 

Reductive coupling with ketones instead of aldehydes proceeded well, using toluene as the 

solvent with addition of molecular sieves and Amberlyst® 15. To overcome the lower activity 

in nonpolar solvents, the reaction conditions were adjusted (8.0 mol% catalyst, 115 °C, 48 h). 

Benzaldehyde hydrogenation 

The novel Co nanocomposite catalyst was tested in the hydrogenation of benzaldehyde. A 5 mL 

reaction vial was charged with a magnetic stirring bar, 0.5 mmol benzaldehyde, 35 mg catalyst 

(1.4 mg Co, 0.024 mmol, 4.8 mol%), 2 mL ethanol and 0.5 mL H2O. The vial was placed in a 

high-pressure autoclave (Parr Instruments) and the autoclave was flushed three times with 

20 bar of hydrogen. The autoclave was pressured with 50 bar of hydrogen and the reaction was 

stirred for 24 h at 110 °C. In a second experiment the temperature was increased to 120 °C. 

After 24 h the autoclave was cooled to room temperature and the hydrogen pressure was 

released. Yields were determined by GC and GC-MS using n-dodecane as an internal standard.  

 

Figure S12: Product distribution for the hydrogenation of sole benzaldehyde. 
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In both cases, hydrogenation of benzaldehyde took place. While 14 % of benzyl alcohol could 

be detected at a reaction temperature of 110 °C, the amount of the hydrogenation product 

increased to 26 % when the reaction is performed at 120 °C. To investigate the influence of the 

nitro compound, further studies were accomplished. The reactions were repeated as described 

above, but in this case 0.5 mmol nitrobenzene were added to the reaction mixture.  

 

Figure S13: Product distribution for the hydrogenation of a mixture consisting of benzaldehyde and nitrobenzene. 

At both temperatures, no benzaldehyde hydrogenation product was observed, not even in a 

minor side reaction. This is especially interesting in comparison to the 120 °C sample of sole 

benzaldehyde, where nearly 30 % of benzyl alcohol could be detected. In both cases N-

benzylideneaniline was identified as the main product. However, when the temperature is 

increased to 120 °C small amounts of N-benzylaniline were observed, too. This indicates that 

coordination and consequently the hydrogenation of the substrates with nitrogen functionalities 

is highly favored under the selected reaction conditions. This could be the basis of the imine 

and benzimidazole syntheses from nitroarenes and aldehydes or ketones. 

Catalyst recycling 

The hydrogenation of nitrobenzene was chosen to investigate the recyclability of the novel 

cobalt nanocomposite catalyst. A 5 mL reaction vial was charged with a magnetic stirring bar, 

0.5 mmol nitrobenzene, 2 mL ethanol, 0.5 mL H2O and 25 mg Co nanocomposite catalyst 

(1.0 mg Co, 0.017 mmol, 3.4 mol%). The vial was placed in a high-pressure autoclave (Parr 

Instruments) and the autoclave was flushed three times with 20 bar of hydrogen. The autoclave 

was pressured with 50 bar of hydrogen and the reaction was stirred for 20 h at 110 °C. After 
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20 h the autoclave was cooled to room temperature and the hydrogen pressure was released. 

The yield of aniline was determined by GC using n-dodecane as an internal standard. The 

catalyst was centrifuged, dried, treated by temperature programmed reduction (5 K/min, 

550 °C) and used again. In addition, the recycled catalyst was analyzed by TEM measurements 

after the fifth run (Figure S14).  

 

Figure S14: Results of the catalyst recycling experiment. Top left: The catalyst showed no significant decrease in 

catalytic activity until the fifth run, indicating a complete reactivation by TPR treatment. Top right: The particle size 

distribution after four times TPR treatment verifies an increase in the mean particle size. Middle/bottom: TEM 

analysis of the recycled catalyst at different positions.  

The catalyst showed no significant decrease in catalytic activity after four times high 

temperature hydrogen treatment, indicating a complete reactivation of the catalyst (top left).  

The mean particle size of the four times recycled catalyst is 3.3 nm. The particles are still 

homogenously dispersed, however, some larger aggregates could be detected. 
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General procedures 

Selective hydrogenation of nitro derivatives – general procedure 

A 5 mL reaction vial was charged with a magnetic stirring bar, 0.5 mmol nitro derivative, 2 mL 

ethanol, 0.5 mL H2O and 35 mg Co nanocomposite catalyst (1.4 mg Co, 0.024 mmol, 

4.8 mol%). The vial was placed in a high-pressure autoclave (Parr Instruments) and the 

autoclave was flushed three times with 20 bar of hydrogen. The autoclave was pressured with 

50 bar of hydrogen and the reaction was stirred for 20 h at 110 °C. After 20 h the autoclave was 

cooled to room temperature and the hydrogen pressure was released. Yields were determined 

by GC and GC-MS using n-dodecane as an internal standard.  

Selective synthesis of substituted aldimines – general procedure 

A 5 mL reaction vial was charged with a magnetic stirring bar, 1.5 mmol nitro derivative, 

3 mmol aldehyde, 4 mL triethylamine and 110 mg Co nanocomposite catalyst (4.4 mg Co, 

0.075 mmol, 5.0 mol%). The vial was placed in a high-pressure autoclave (Parr Instruments) 

and the autoclave was flushed three times with 20 bar of hydrogen.  The autoclave was 

pressured with 50 bar of hydrogen and the reaction was stirred for 24 h at 110 °C. After 24 h 

the autoclave was cooled to room temperature and the hydrogen pressure was released. The 

catalyst was removed by centrifugation and washed several times with acetone or ethyl acetate. 

The organic layers were combined and the solvent was removed under reduced pressure. 

Purification by column chromatography, crystallization or sublimation resulted in the pure 

products. The products were analyzed by NMR spectroscopy. For new compounds, elemental 

analysis or high-resolution mass spectrometry were accomplished. 

Selective synthesis of substituted ketimines – general procedure 

A 5 mL reaction vial was charged with a magnetic stirring bar, 1.5 mmol nitro derivative, 

3 mmol ketone, 10 mg Amberlyst® 15, molecular sieves, 4 mL toluene and 175 mg Co 

nanocomposite catalyst (7.0 mg Co, 0.119 mmol, 8.0 mol%). The vial was placed in a high-

pressure autoclave (Parr Instruments) and the autoclave was flushed three times with 20 bar of 

hydrogen.  The autoclave was pressured with 50 bar of hydrogen and the reaction was stirred 

for 48 h at 115 °C. After 48 h the autoclave was cooled to room temperature and the hydrogen 

pressure was released. The catalyst was removed by centrifugation and washed several times 

with acetone or ethyl acetate. The residual Amberlyst® 15 and molsieves were removed by 

sieving. The organic layers were combined and the solvent was removed under reduced 

pressure. Purification by column chromatography, crystallization or sublimation resulted in the 
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pure products. The products were analyzed by NMR spectroscopy. For new compounds, 

elemental analysis or high-resolution mass spectrometry were accomplished. 

Selective synthesis of substituted benzimidazoles – general procedure 

A 5 mL reaction vial is charged with a magnetic stirring bar, 1.5 mmol 4,5-dimethyl-2-

nitroanilinine, 3 mmol aldehyde, 4 mL triethylamine and 110 mg Co nanocomposite catalyst 

(4.4 mg Co, 0.075 mmol, 5.0 mol%). The vial was placed in a high-pressure autoclave (Parr 

Instruments) and the autoclave was flushed three times with 20 bar of hydrogen.  The autoclave 

was pressured with 50 bar of hydrogen and the reaction was stirred for 24 h at 110 °C. After 24 

h the autoclave was cooled to room temperature and the hydrogen pressure was released. The 

catalyst was removed by centrifugation and washed several times with acetone or ethyl acetate. 

The organic layers were combined and the solvent was removed under reduced pressure. 

Purification by column chromatography, or recrystallization led to the pure products. The 

products were analyzed by NMR spectroscopy. For new compounds, elemental analysis or 

high-resolution mass spectrometry were accomplished. 

Characterization of isolated products 

Imines 

1a: 

 

N-benzylideneaniline  

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.50 (s, 1H), 8.00-7.92 (m, 2H), 7.55-7.50 (m, 3H), 

7.50-7.40 (m, 2H), 7.34-7.25 (m, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 160.45, 152.12, 136.27, 131.45, 129.22, 128.87, 

128.84, 126.00, 120.95 ppm. MS (EI, m/z): 180.1 (M+). 

1b: 

 

N-(4-methylbenzylidene)aniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.47 (s, 1H), 7.86-7.83 (d, 2H), 7.47-7.41 (m, 2H), 

7.34-7.24 (m, 5H) ppm.  
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13C NMR (75 MHz, CDCl3, 296 K): δ = 160.39, 152.28, 141.88, 133.68, 129.53, 129.13, 

128.82, 125.76, 120.89, 21.67 ppm. MS (EI, m/z): 194.1 (M+). 

1c: 

 

N-(4-fluorobenzylidene)aniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.44 (s, 1H), 7.95-7.90 (m, 2H), 7.45-7.39 (m, 2H), 

7.28-7.14 (m, 5H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 166.37, 163.03, 158.84, 151.85, 130.85, 129.20, 

126.03, 120.84, 116.10, 115.81 ppm. MS (EI, m/z): 198.1 (M+). 

1d: 

 

N-(4-chlorobenzylidene)aniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.44 (s, 1H), 7.88-7.85 (m, 2H), 7.48-7.40 (m, 4H), 

7.29-7.22 (m, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 158.85, 151.66, 137.37, 134.70, 129.97, 129.22, 

129.10, 126.21, 120.87 ppm. MS (EI, m/z): 214.1 (M+). 

2a: 

 

2-methoxy-6-((phenylimino)methyl)phenol 

1H NMR (300 MHz, CDCl3, 296 K): δ = 13.70 (s, 1H), 8.64 (s, 1H), 7.47-7.41 (m, 2H), 7.31-

7.27 (m, 3H), 7.05-7.00 (m, 2H), 6.92-6.87 (m, 1H), 3.95 (s, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 162.62, 151.50, 148.51, 148.19, 129.42, 126.99, 

123.79, 121.16, 119.12, 118.52, 114.80, 58.21 ppm. MS (EI, m/z): 227.1 (M+). 
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2b: 

 

2,4-di-tert-butyl-6-((phenylimino)methyl)phenol 

1H NMR (300 MHz, CDCl3, 296 K): δ = 13.71 (s, 1H), 8.65 (s, 1H), 7.48-7.40 (m, 3H), 7.31-

7.23 (m, 4H), 1.50 (s, 9H), 1.35 (s, 9H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 163.81, 158.26, 148.75, 140.56, 136.99, 129.33, 

128.00, 126.79, 126.52, 121.16, 118.30, 35.11, 34.19, 31.48, 29.43 ppm. MS (EI, m/z): 308.1 

(M+). 

3a: 

 

N-benzylidene-3-chloroaniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.43 (s, 1H), 7.95-7.92 (m, 2H), 7.54-7.47 (m, 3H), 

7.37- 7.31 (m, 1H), 7.26-7.23 (m, 2H), 7.15-7.11 (m, 1H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 161.29, 153.40, 135.90, 134.76, 131.80, 130.21, 

129.04, 128.87, 125.86, 120.98, 119.49 ppm. MS (EI, m/z): 214.1 (M+). 

3b: 

 

N-benzylidene-4-chloroaniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.44 (s, 1H), 7.94-7.91 (m, 2H), 7.52-7.49 (m, 3H), 

7.39- 7.36 (m, 2H), 7.19-7.16 (m, 2H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 160.68, 150.54, 135.99, 131.65, 131.48, 129.27, 

128.92, 128.85, 122.25 ppm. MS (EI, m/z): 214.1 (M+). 

3c: 
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N-benzylidene-4-bromoaniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.43 (s, 1H), 7.93-7.90 (m, 2H), 7.54-7.48 (m, 5H), 

7.13- 7.08 (m, 2H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 160.73, 151.02, 135.98, 132.23, 131.68, 128.93, 

128.85, 122.64, 119.35 ppm. MS (EI, m/z): 259.1 (M+). 

3d: 

 

3-(benzylideneamino)benzonitrile 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.43 (s, 1H), 7.93-7.90 (m, 2H), 7.55-7.41 (m, 7H) 

ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 162.31, 152.76, 135.52, 132.17, 130.11, 129.24, 

129.14, 128.95, 125.65, 124.26, 118.65, 113.12 ppm. MS (EI, m/z): 205.1 (M+). 

3e: 

 

N-benzylidenebiphenyl-2-amine 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.55 (s, 1H), 7.91-7.88 (m, 2H), 7.64-7.57 (m, 3H), 

7.52-7.37 (m, 8H), 7.19-7.16 (m, 1H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 149.80, 139.63, 136.56, 135.46, 131.30, 130.46, 

130.35, 128.96, 128.79, 128.49, 127.80, 126.67, 126.12 ppm. MS (EI, m/z): 257.1 (M+). 

4: 

 

N-benzylideneisoquinolin-5-amine 

1H NMR (300 MHz, CDCl3, 296 K): δ = 9.27 (s, 1H), 8.58-8.56 (m, 2H), 8.14-8.12 (m, 1H), 

8.05-8.01 (m, 2H), 7.85-7.82 (d, 1H), 7.62-7.52 (m, 4H), 7.29-7.27 (m, 1H) ppm.  
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13C NMR (75 MHz, CDCl3, 296 K): δ = 161.38, 152.14, 148.20, 143.11, 136.04, 131.88, 

131.66, 129.11, 128.92, 127.48, 125.07, 116.80, 116.62 ppm. MS (EI, m/z): 231.1 (M+). 

5a: 

 

3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino)benzonitrile 

1H NMR (300 MHz, CDCl3, 296 K): δ = 13.17 (s, 1H), 8.65 (s, 1H), 7.57-7.52 (m, 5H), 7.27-

7.26 (m, 1H), 1.50 (s, 9H), 1.36 (s, 9H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 165.79, 158.38, 149.68, 141.06, 137.28, 130.32, 

129.77, 129.08, 127.27, 125.99, 124.51, 118.34, 117.93, 113.50 ppm. MS (EI, m/z): 333.1 (M+). 

5b: 

 

2,4-di-tert-butyl-6-((3-vinylphenylimino)methyl)phenol 

1H NMR (300 MHz, CDCl3, 296 K): δ = 13.70 (s, 1H), 8.68 (s, 1H), 7.49-7.48 (m, 1H), 7.42-

7.32 (m, 3H), 7.26-7.25 (m, 1H), 7.22-7.18 (m, 1H), 6.82-6.72 (m, 1H), 5.86-5.81 (m, 1H), 

5.35-5.31 (m, 1H) 1.51 (s, 9H), 1.36 (s, 9H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 163.92, 158.29, 149.03, 140.59, 138.86, 137.02, 

136.38, 129.45, 128.08, 126.84, 124.46, 120.36, 119.06, 118.28, 114.71, 35.11, 34.21, 31.39, 

29.45 ppm. MS (EI, m/z): 335.1 (M+). 

HRMS (ESI): calc. for C23H29NO [M+H]+: 336.23218; found: 336.23219 

6:  

 

1-(4-((4-fluorobenzylidene)amino)phenyl)ethan-1-one 
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1H NMR (300 MHz, CDCl3, 296 K): δ = 8.40 (s, 1H), 8.01-7.99 (m, 2H), 7.94-7.91 (m, 2H), 

7.23-7.16 (m, 4H), 2.61 (s, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 196.93, 165.72, 163.70, 159.86, 155.65, 134.29, 

130.91, 130.84, 129.45, 120.53, 115.87, 115.70, 26.27 ppm. MS (EI, m/z): 240.1 (M+). 

7a: 

 

N-(1-phenylethylidene)aniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.04-8.01 (m, 2H), 7.50-7.48 (m, 3H), 7.42-7.27 (m, 

2H), 7.16-7.11 (m, 1H), 6.86-6.84 (m, 2H), 2.27 (s, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 165.49, 151.76, 139.52, 130.52, 129.01, 128.41, 

127.22, 123.25, 119.42, 17.42 ppm. MS (EI, m/z): 195.1 (M+). 

7b: 

 

N-(1-(4-chlorophenyl)ethylidene)aniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 7.95-7.92 (m, 2H), 7.44-7.35 (m, 4H), 7.14-7.09 (m, 

1H), 6.81-6.79 (m, 2H), 2.23 (s, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 164.25, 151.37, 137.89, 136.62, 129.01, 128.56, 

123.42, 119.32, 17.26 ppm. MS (EI, m/z): 229.1 (M+). 

7c: 

 

N-(1-(3,4-dimethylphenyl)ethylidene)aniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 7.83 (s, 1H), 7.71-7.68 (m, 1H), 7.40-7.35 (m, 2H), 

7.27-7.22 (m, 1H), 7.13-7.08 (m, 1H), 6.84-6.81 (m, 2H), 2.36-2.35 (m, 6H), 2.24 (s, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 165.52, 151.91, 139.44, 137.20, 136.64, 129.60, 

128.93, 128.23, 124.80, 123.07, 119.50, 19.88, 19.77, 17.36 ppm. MS (EI, m/z): 223.1 (M+). 
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8a: 

 

3-bromo-N-(1-phenylethylidene)aniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 7.99-7.96 (m, 2H), 7.53-7.44 (m, 3H), 7.24-7.22 (m, 

2H), 7.00 (s, 1H), 6.76-6.73 (m, 1H), 2.26 (s, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 166.32, 153.08, 138.96, 130.75, 130.33, 128.40, 

127.20, 126.09, 122.65, 122.30, 118.11, 17.55 ppm. MS (EI, m/z): 273.1 (M+). 

8a: 

 

4-methyl-N-(1-phenylethylidene)aniline 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.02-7.99 (m, 2H), 7.49-7.45 (m, 3H), 7.21-7.18 (m, 

2H), 6.76-6.73 (m, 2H), 2.39 (s, 3H) 2.27 (s, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 165.39, 149.02, 139.60, 132.51, 130.28, 129.44, 

128.27, 127.08, 119.33, 20.82, 17.23 ppm. MS (EI, m/z): 209.1 (M+). 

Benzimidazoles 

1a: 

 

5,6-dimethyl-2-phenyl-1H-benzo[d]imidazole 

1H NMR (300 MHz, CDCl3, 296 K): δ = 12.66 (s, 1H), 8.18-8.16 (d, 2H), 7.55-7.31 (m, 5H), 

2.32 (s, 6H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 150.81, 143.03, 134.01, 131.57, 130.96, 130.36, 

129.88, 129.30, 126.67, 119.42, 111.80, 20.49 ppm. MS (EI, m/z): 221.1 (M+). 

1b: 

 

2-(4-fluorophenyl)-5,6-dimethyl-1H-benzo[d]imidazole 
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1H NMR (300 MHz, CDCl3, 296 K): δ = 8.20-8.15 (m, 2H), 7.40-7.34 (m, 4H), 2.32 (s, 

6H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 164.92, 161.64, 149.96, 131.01, 128.95, 127.54, 

116.48, 116.19, 20.46 ppm. MS (EI, m/z): 240.1 (M+). 

1c: 

 

2-(4-methoxyphenyl)-5,6-dimethyl-1H-benzo[d]imidazole 

1H NMR (300 MHz, CDCl3, 296 K): δ = 12.47 (s, 1H), 8.09-8.06 (m, 2H), 7.38 (s, 1H), 7.25 

(s, 1H), 7.10-7.07 (m, 2H), 3.83 (s, 3H), 2.30 (s, 6H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 160.78, 150.92, 143.01, 133.93, 131.02, 130.01, 

128.20, 123.48, 119.09, 114.71, 111.57, 55.74, 20.48 ppm. MS (EI, m/z): 252.1 (M+). 

1d: 

 

2-(3-chlorophenyl)-5,6-dimethyl-1H-benzo[d]imidazole 

1H NMR (300 MHz, CDCl3, 296 K): δ = 12.76 (s, 1H), 8.18 (s, 1h), 8.12-8.09 (m, 1H), 7.58-

7.31 (m, 4H), 2.32 (s, 6H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 149.24, 142.80, 134.15, 132.93, 131.30, 129.59, 

126.18, 125.21, 119.52, 111.90, 20.49 ppm. MS (EI, m/z): 256.1 (M+). 

1e: 

 

4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)benzonitrile 

1H NMR (300 MHz, CDCl3, 296 K): δ = 8.30-8.27 (d, 2H), 8.00-7.97 (d, 2H), 7.40 (s, 2H), 2.32 

(s, 6H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 148.87, 134.97, 133.36, 132.00, 127.13, 119.17, 

111.86, 20.52 ppm. MS (EI, m/z): 247.1 (M+). 
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2: 

 

5,6-dimethyl-2-(5-methylfuran-2-yl)-1H-benzo[d]imidazole 

1H NMR (300 MHz, CDCl3, 296 K): δ = 12.54 (s, 1H), 7.34-7.24 (m, 2H), 7.01-7.00 (d, 1H), 

6.31-6.30 (d, 1H), 2.39 (s, 3H), 2.30 (s, 6H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 153.69, 144.75, 143.49, 133.14, 131.40, 130.38, 

119.07, 111.70, 111.25, 108.87, 20.43, 13.90 ppm. MS (EI, m/z): 226.1 (M+). 

3: 

 

2-hexyl-5,6-dimethyl-1H-benzo[d]imidazole 

1H NMR (300 MHz, CDCl3, 296 K): δ = 11.87 (s, 1H), 7.26 (s, 1H), 7.15 (s, 1H), 2.76-2.71 (t, 

2H), 2.27-2.26 (m, 6H), 1.77-1.67 (q, 2H), 1.32-1.23 (m, 6H), 0.87-0.83 (m, 3H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 154.56, 142.42, 133.19, 129.92, 129.05, 118.68, 

111.23, 31.35, 28.99, 28.82, 28.09, 22.48, 20.38 ppm. MS (EI, m/z): 230.2 (M+). 

4: 

 

5,6-dimethyl-2-styryl-1H-benzo[d]imidazole 

1H NMR (300 MHz, CDCl3, 296 K): δ = 12.43 (s, 1H), 7.66-7.59 (m, 3H), 7.42-7.18 (m, 6H), 

2.31 (s, 6H) ppm.  

13C NMR (75 MHz, CDCl3, 296 K): δ = 150.54, 143.15, 136.41, 133.74, 131.75, 130.49, 

129.39, 129.05, 127.31, 119.23, 118.46, 111.58, 20.48 ppm. MS (EI, m/z): 247.1 (M+). 
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NMR Spectra 

Imines 

1a: 

  

200 180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

1
2
0
.9

5
1
2
6
.0

0
1
2
8
.8

4
1
2
8
.8

7
1
2
9
.2

2
1
3
1
.4

5
1
3
6
.2

7

1
5
2
.1

2

1
6
0
.4

5

chloroform - d1

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

3.042.053.012.021.00

8
.5

1
7
.9

9
7
.9

6
7
.5

4
7
.5

2
7
.4

8
7
.4

3
7
.3

2
7
.2

7

chloroform - d1



A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes and the Direct Synthesis 

of Imines and Benzimidazoles from Nitroarenes and Aldehydes 

 

72 

 

1b: 
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1c:  
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1d: 
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2a: 
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2b: 
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3a: 
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3b:  
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3d: 
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3e: 
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Benzimidazoles 
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Abstract: We report here on a novel sustainable catalytic reaction: The synthesis of 1H-

perimidines from a dinitroarene and an aldehyde in the presence of dihydrogen. We had to 

develop a novel earth-abundant metal catalyst permitting the efficient, highly chemoselective 

and consecutive hydrogenation of dinitroarenes. The catalyst is reusable and easy to handle.  

The use of a specific Co complex and its pyrolysis at a certain temperature is crucial to achieve 

high activity for the complex organic transformation. Benzylic and aliphatic aldehydes can 

undergo the hydrogenative condensation and many functional groups, including hydrogenation-

sensitive examples such as an iodo aryl, nitrile, olefins and alkyne, can be tolerated. 

 

6.1 Introduction 

The development of catalysts based on earth-abundant metals is an important area of research, 

as their industrial application, here mostly reusable and nanostructured catalysts are employed, 

could contribute to a more sustainable chemistry - specifically regarding the conservation of 

rare noble metal resources. The substitution of precious metals is especially attractive if novel 

selectivity patterns are observed permitting novel syntheses. Impressive progress has been 

achieved in the field of selective nitroarene hydrogenation employing reusable earth-abundant 

metal catalysts in recent years. The hydrogenation of nitroarenes is an important reaction in 

chemical industry since it is the method of choice for the production of aniline and its 

derivatives.[1]  After Beller and coworkers showed that reusable catalysts based on abundantly 

available transition metals, such as iron[2]  and cobalt[3]  can mediate the chemoselective 

hydrogenation of nitroarenes[4], many workgroups focused on the development of catalyst 

systems based on non-precious metals, such as Fe[5], Co[6], Ni[7].  However, the direct use of 
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nitro derivatives in more complex hydrogenative catalytic syntheses has so far been rarely 

disclosed. Beller and coworkers introduced the reductive amination of carbonyl compounds 

with nitroarenes applying cobalt-based catalyst systems[8], while the selective synthesis of 

benzimidazoles and quinoxalines from amino nitroarenes was introduced by our group[5e,9]. We 

also reported recently on a nickel catalyst formed from a salene complex and a porous alumina 

support[10] and wanted to extend this catalyst synthesis concept to other earth-abundant metals 

such as Co. Herein, we report on the direct synthesis of 1H-perimidines from a dinitroarene and 

an aldehyde in the presence of a catalyst and hydrogen. Benzylic and purely aliphatic aldehydes 

can be employed in this novel reaction. The hydrogenative synthesis tolerates many functional 

groups including hydrogenation-sensitive examples (aryl iodides, nitriles and C-C double and 

triple bonds). Our catalyst is based on the earth-abundant metal Co, is efficient, easy to handle 

and its synthesis is simple and straightforward. The key to a high catalytic activity is the 

combination of a specific Co coordination compound with commercially available charcoal. 

There is no direct synthesis of 1H-perimidines from nitroarenes and aldehydes described in the 

literature to the best of our knowledge and dinitro compounds could not be employed in any of 

the direct hydrogenative syntheses of aromatic N-heterocyclic compounds yet. Perimidines are 

a very important class of chemical compounds, due to their biological activity[11] and their 

application as ligands[12]. In addition, 1H-perimidines are common starting materials for the 

synthesis of azapyrenes, which are promising materials for the manufacturing of organic 

semiconductor devices.[13] 

 

6.2 Results and Discussion 

Our novel catalyst (Co-CoxOy/C) was synthesized in a practical two-step procedure (Figure 1). 

At first, commercially available activated charcoal (Norit CA1, Cabot Corporation) was 

impregnated with Complex I, followed by pyrolysis under a nitrogen atmosphere at 700 °C and 

reduction (N2/H2 90/10) at 550 °C (Figure 1A; for a detailed description, please see SI). The 

active catalyst obtains a specific surface area (Brunauer-Emmet-Teller) of 723 m2/g and the 

amount of mesopores is about 40 %. This is in good accordance with the results of the pure 

carbon support. The hierarchical pore structure remains intact after impregnation and pyrolysis 

(Figure S1). Energy-dispersive X-ray spectroscopy (EDX) verifies the homogeneous 

distribution of the metal species over the whole carbon support indicating a clean and smooth 

impregnation process (Figure S2). Transmission electron microscopy (TEM) in combination 
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with the corresponding particle size distribution provide evidence for the presence of small, 

homogeneously distributed Co nanoparticles with a mean diameter of 7 nm (Figure 1B,C).  

X-ray photoelectron spectroscopy (XPS) verifies the presence of metallic cobalt and cobalt 

oxides/hydroxides (Figure 1D). Inductively coupled plasma optical emission spectrometry 

(ICP-OES) revealed 3.5 wt% Co in the as-synthesized catalyst, which is in good agreement 

with the Co loading expected theoretically.  

 

Figure 1: Catalyst synthesis and characterization. A) Synthesis of the novel catalyst by wet impregnation of 

commercially available charcoal with Complex I, followed by pyrolysis and reduction. B) TEM analysis of the catalyst 

indicates homogenously distributed Co nanoparticles. (C) Size distribution of these nanoparticles with a mean 

diameter of 7 nm. D) XPS analysis confirms the presence of metallic cobalt and cobalt oxides or hydroxides. 

The reductive coupling of 1,8-dinitronaphtalene and 4-methylbenzaldehyde was chosen for the 

optimization of the reaction conditions. We decided to use the nitro derivative in a technical 

grade, around 90 % purity, as determined by GC and GC-MS. This lowers the isolated yields 

of the products (Figure 2), however, the purification step of the dinitroarene can be avoided. 

Varying the solvent (Table S1), the reaction temperature and the pressure, led to 87 % product 

formation [2-(p-tolyl)-1H-perimidine] in toluene at 130 °C with a hydrogen pressure of 

6.0 MPa. A pyrolysis temperature of 700 °C during catalyst synthesis was found to be optimal. 

Pyrolysis at 600 or 800 °C led to less active catalysts (Table 1, entries 1-3). Regarding to 

catalyst supports, we investigated TiO2, Al2O3 and CeO2. A decrease in the product yield 

(Table 1 entries 4-6) was observed in all cases. The use of metal oxides as support materials led 
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to a significant amount of aldehyde hydrogenation even at incomplete conversion of the 

dinitroarene derivative. This is in good agreement with the results of the Beller group, who 

demonstrated the hydrogenation of carbonyl compounds applying Al2O3- and CeO2- based Co 

catalysts.[14]  In addition, Complex I was replaced by the common metal salt cobalt acetate, 

however, a significant decrease in product formation was observed (Table 1, entry 7), verifying 

the importance of our Co-salen complex which had already been observed in a previous work 

of our group.[10] In summary, the synthesis proceeded well with a catalyst synthesized from 

Complex I in combination with commercially available activated charcoal at a reaction 

temperature of 130 °C (Table 1, entry 8), 6.0 MPa hydrogen pressure applying toluene as the 

solvent (Table S1, entry 4). 

Table 1. Catalyst screening.[a] 

 

Entry Metal source Pyrolysis temperature [°C] Support Yield [%] 

1 Complex I 600 Activated charcoal 41 

2 Complex I 700 Activated charcoal 72 

3 Complex I 800 Activated charcoal 61 

4 Complex I 700 TiO2 31 

5 Complex I 700 CeO2 18 

6 Complex I 700 γ-Al2O3 54 

7 Co(OAc)2 * 4 H2O 700 Activated charcoal 15 

8$ Complex I 700 Activated charcoal 87 

[a] Reaction conditions: 0.5 mmol nitro derivative, 1.1 eq aldehyde, 35 mg catalyst (4 mol% Co), 120 °C, 
6.0 MPa H2, 3 mL toluene, 20 h; $130 °C reaction temperature; yields were determined by GC and GC-MS 
using n-dodecane as an internal standard. OAc = acetate. 

With the optimized reaction conditions in hand, we were interested in the substrate scope and 

the functional group tolerance of our novel catalyst system. The reductive coupling of 1,8-

dinitronaphthalene and benzylic aldehydes was investigated first. The introduction of methyl 

groups at other positions than para proceeded well, and the corresponding products were 

obtained in up to 84 % isolated yield (Figure 2, 2-4). To our delight, the use of halogenated 

substrates showed minor influence on the catalytic activity and the corresponding 1H-

perimidines were obtained in 67-71 % yield (Figure 2, 5-9). Trace amounts of dehalogenated 

product were observed only in the case of 4-iodobenzaldehyde. Further aldehydes bearing 

functional groups, such as ethers, amides and hydroxy functionalities, were well tolerated 

(Figure 2, 10-13). The stability of boronic esters under reaction conditions is of special 
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importance, since they are common starting materials for cross-coupling reactions (Figure 2, 

14). The reductive coupling of 1,8-dinitronaphthalene with a heterocyclic and an aliphatic 

aldehyde proceeded smoothly and product yields of 75 and 85 % were observed, respectively 

(Figure 2, compound 17, 19).  

 

Figure 2: Highly selective synthesis of 1H-perimidines from 1,8-dinitronaphthalene and various aldehydes. 

Reaction conditions: 1.5 mmol nitro derivative, 1.1 eq. aldehyde, 120 mg catalyst (4.7 mol% Co), 130 °C, 6.0 MPa 

H2, 3 mL toluene, 20 h; yields of isolated products. Note that technical grade, around 90 % purity, 1,8-

dinitronaphtalene was used. Yields of isolated product were calculated assuming 100% purity, since the purity was 

not uniform. 

Finally, we demonstrated the possibility of an introduction of further reducible functionalities, 

such as nitriles, as well as C-C double and triple bonds. The 1H-perimdines desired were 

obtained in good to excellent yields confirming the broad applicability (Figure 2, compound 

15, 16, 18, 20). It is noteworthy to mention that we were able to synthesize six new products 

with our direct synthesis concept, starting from a technical grade 1,8-dinitronaphthalene and 

various benzylic and aliphatic aldehydes. The catalyst was reused in five consecutive runs to 
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confirm its stability under reaction conditions and no remarkable decrease in catalytic activity 

could be detected (Figure S3). An up-scaling of the reaction (10 mmol nitro derivative) 

proceeded well and the 1H-perimidine desired was obtained in 80 % isolated yield (For a 

detailed description please see SI). 

 

Figure 3: Proposed reaction pathway for the direct synthesis of 1H-perimidines via a nitro-imine intermediate (R = 

aryl or alkyl substituent). 

Mechanistically, we propose a reductive cyclization pathway via in situ nitroarene reduction as 

shown in Figure 3. The role of the catalyst is the selective and consecutive hydrogenation of 

the two nitro groups of the naphthalene derivative. We observed the formation of the nitro-

imine intermediate as shown in Figure 3. The reaction of the hydroxylamine nucleophile, a 

common intermediate in the hydrogenation of nitroarenes[15], with the electrophilic carbon of 

the imine is highly likely, especially under the sterically constrained conditions. This is in good 

agreement with the results of Yang et al., who described a similar pathway for the synthesis 

benzimidazoles from o-nitroaninlines and aldehydes via reduction applying stoichiometric 

amounts of sodium dithionite.[16]  Our catalyst cannot dehydrogenate 2,3-dihydroperimidines 

in toluene at 130 °C, even in an Ar atmosphere open to air via a bubble counter, assuming that 

a dehydrogenative pathway in the presence of 6.0 MPa hydrogen pressure is extremely unlikely. 

1,8-Diaminonaphhalene reacts smoothly under reaction conditions with aldehydes to form 2,3-

dihydroperimidines supporting that diaminonaphtalene is not formed under reaction conditions. 

In conclusion, a novel earth-abundant catalyst permits the first direct synthesis of 1H-

perimidines from 1,8-dinitronaphthalene and various benzylic and aliphatic aldehydes. The 

catalyst is easy to synthesize by wet impregnation of commercially available charcoal with a 

specific cobalt complex, which is crucial for a high catalytic activity. Our methodology permits 

tolerance towards a variety of functional groups, including hydrogenation-sensitive examples 

(aryl iodides, nitriles, as well as C-C double and triple bonds). We synthesized six new 1H-

perimidine derivatives and could use a technical grade dinitro derivative without purification. 
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An up-scaling of the reaction proceeds smoothly and the catalyst shows stability over several 

consecutive runs without any remarkable decrease in catalytic activity.  

A number of challenges are associated with our novel synthesis. The key seems to be that our 

catalyst can selectively and consecutively hydrogenate dinitroarenes. The aldehyde must 

remain unaffected, even at the higher temperatures, needed for the condensation step. In 

addition, formation of the diaminoarene, as well as the hydrogenation of the 1H-perimidine 

have to be avoided. 
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6.5 Supplementary Information 

General considerations 

Air- and moisture sensitive reactions were carried out under dry argon or nitrogen atmosphere 

using standard Schlenk or glove box techniques. Solvents were dried and distilled from sodium 

benzophenone, stored over molecular sieves (3 Å) before use, or were obtained from Acros. 

1,8-Dintronaphthalene was purchased from TCI with a purity >85 % and used without further 

purification. All other chemicals were purchased from commercial sources with purity over 

95 %. Activated charcoal (Norit CA1) was purchased from Cabot Corporation and heated up to 

700 °C (10 K/min, dwelling time 3 h) before use. NMR-Spectra were collected on Varian 

INOVA 300 (300 MHz for 1H, 75 MHz for 13C) or Bruker Avance III HD 500 (500 MHz for 

1H, 125.7 MHz for 13C) instruments at 298 K. Chemical shifts are reported in ppm relative to 

the residual solvent signal (CDCl3: 7.26 ppm (1H), 77.16 ppm (13C); DMSO-D6: 2.50 ppm (1H), 

39.51 ppm (13C); C6D6: 7.16 ppm (1H), 128.39 ppm (13C)). Coupling constants (J) are reported 

in Hz (coupling patterns: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sxt = 

sextet, spt = septet, m = multiplet). GC analyses were carried out on an Agilent 6850 GC system 

equipped with an Optima 17 column (30 m x 0.32 mm x 0.25 μm) or an Agilent 6890N GC 

system equipped with a HP-5 column (30 m x 0.32 mm x 0.25 μm). GC-MS analyses were 

carried out on an Agilent 7890A GC system equipped with a HP-5MS column 

(30 m x 0.32 mm x 0.25 μm) and a 5975C inert MSD detector (EI, 70 eV). X-ray photoelectron 

spectroscopy (XPS) was performed using a PHI Versa Probe III instrument of Physical 

Electronics. As X-ray source a monochromatic Al K α with a spot size of 100 μm (24.5 W) was 

used. The kinetic pass energy of the photoelectrons was determined with a hemispheric analyzer 

(45°) set to pass energy of 26 eV for high-resolution spectra. The samples were prepared on a 

carbon tape. N2 physisorption measurements were determined at -196 °C using a Nova2000e 

(Quantachrome) apparatus. The specific surface areas were calculated using p/p0 values from 

0.05-0.3 (BET). The pore width and average pore volume were calculated by DFT calculations 

[N2 at -196.15 °C on carbon (slit/cylindrical pore model, NLDFT equilibrium model)]. 

Pyrolysis and reduction were carried out under nitrogen atmosphere and forming gas (90/10) in 

a high temperature furnace (EHA 12/450B200, Carbolite) or alternative using ChemBET 

Pulsar TPR/TPD. Macherey Nagel silica gel 60 (40–63 µm particle size) was used for column 

chromatography.   
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Catalyst synthesis and characterization 

Ligand Synthesis 

3.08 g (20 mmol, 2 eq) o-vanillin were dissolved in 100 mL ethanol and 1.32 mL (11 mmol, 

1.1 eq) trans-1,2-diaminocyclohexane were added. The solution was heated under reflux for 

1 h. After removal of the solvent under reduced pressure, recrystallization from diethyl ether 

yielded the product as a yellow crystalline powder (ligand I, 2.98 g, 78 %).  

Complex synthesis 

Complex I (Co-Salen) was synthesized according to a modified literature procedure.[1]  Ligand I 

(1.71 g, 4.5 mmol, 1 eq) was dissolved in ethanol and the solution was degassed by purging 

with argon for 15 min. Dry cobalt(II) acetate (0.797 g, 4.5 mmol, 1 eq) was added and the 

mixture was stirred at 50 °C for 2 h. Next, the solution was refluxed overnight. After removal 

of the solvent, the resulting solid was washed with cold ethanol and the collected product was 

dried in vacuo (1.33 g, 3.03 mmol, 67 %).  

Elemental analysis:  calcd for C22H24CoN2O4: C 60.14, H 5.51, N 6.38; found: C 59.60, H 

5.32, N 6.14  

Catalyst synthesis 

To a solution of 89 mg (M = 439.38 g mol-1, 0.203 mmol) complex I in 3 mL acetonitrile, 

300 mg activated charcoal were added, and the suspension was stirred at 95 °C. After 

evaporation of the solvent, the sample was pyrolyzed under nitrogen atmosphere at 700 °C 

followed by reduction at 550 ° (N2/H2, 90/10). The catalysts used for the screening reactions 

were synthesized using equivalent amounts support material or metal salt. 
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Catalyst characterization 

 

Figure S1: Nitrogen physisorption measurements of the catalyst in comparison to the pure carbon support. Both 

materials show the typical hysteresis of mesoporous materials. The catalyst features a specific surface area 

(Brunauer-Emmet-Teller) of 723 m2/g. The corresponding pore size distributions [N2 at -196.15 °C on carbon 

(slit/cylindrical pore, NLDFT equilibrium model) indicate a small decrease in the amount of micropores after wet 

impregnation and pyrolysis.  

 

 

Figure S2: SEM- in combination with EDX element maps of the active catalyst system. A homogeneous distribution 

of the metal species is verified. No phase separation could be detected, indicating a clean and smooth impregnation 

process. The presence of phosphorus can be reduced to the use of a chemically activated carbon support. 
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Catalytic studies 

Screening of reaction parameters 

Table S1: Screening of reaction parameters – solvent. 

 

Entry Solvent Yield [%] 

1 Ethanol 18 

2 Dioxane 42 

3 Diglyme 64 

4 Toluene 87 

5 Methylcyclohexane 34 

Reaction conditions: 0.5 mmol nitro derivative, 1.1 eq. aldehyde, 35 mg catalyst (4 mol% 

Co), 130 °C, 6.0 MPa H2, 3 mL toluene, 20 h; yields were determined by GC and GC-MS 

using n-dodecane as an internal standard.  

 

Synthesis of 1H-perimidines – general procedure 

A 10 mL reaction vial was charged with a magnetic stirring bar, 1.5 mmol 1,8-

dinitronaphthalene, 1.1 eq aldehyde, 3 ml toluene and 120 mg catalyst. The vial was placed in 

a 300 mL high-pressure autoclave (Parr Instruments) and the autoclave was flushed three times 

with 2.0 MPa hydrogen. Afterwards, the final pressure was applied and the reaction was stirred 

at the desired temperature for 20 h. After completion of the reaction time, the autoclave was 

cooled to room temperature and the hydrogen was released. Quantitative GC analysis was 

accomplished using n-dodecane as an internal standard. For an isolation of the products, the 

catalyst was removed using a magnet and washed several times with acetone. The organic 

phases were combined and the solvent was removed under reduced pressure. Purification was 

accomplished by column chromatography applying pentane/ether as the eluent. The products 

were analyzed by NMR spectroscopy. For new compounds, elemental analysis was carried out. 

Up-scaling  

10 mmol 1,8-dinitronaphthalene were chosen for the up-scaling reaction. A 25 ml high-pressure 

autoclave (Parr Instruments) equipped with a teflon inlet and a magnetic stirring bar was filled 

with 10 mmol nitro derivative, 1.1 eq 4-methylbenzaldehyde, 800 mg catalyst (4 mol% Co) and 

15 ml toluene. The autoclave was flushed three times with 2.0 MPa of hydrogen and afterwards 

the final pressure of 6.0 MPa was applied. The reaction was stirred for 20 h at 130 °C. After 
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completion of the reaction time, the autoclave was cooled to room temperature and the 

hydrogen was released. The catalyst was removed using a magnet and washed several times 

with acetone. The organic phases were combined and the solvent was removed under reduced 

pressure. Purification was accomplished by column chromatography applying pentane/ether as 

the eluent and the product was obtained in 80 % isolated yield.  

Recycling studies 

 

Figure S3: Recycling study. The catalyst was reused in five consecutive runs without any remarkable decrease in 

catalytic activity. Reaction conditions: 0.5 mmol 1,8-dinitronapthalene, 1.1 eq. aldehyde, 30 mg catalyst (3.6 mol% 

Co), 3 ml toluene, 120 °C, 6.0 MPa H2, 20 h; yields were determined by GC and GC-MS using n-dodecane as 

internal standard. The catalyst was separated using a magnet, washed and reused again.   

 

Characterization of isolated products 

2-phenyl-1H-perimidine (1) 

 

FW (C17H12N2) = 244.30 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.68 (s, 1 H), 8.04-8.01 (m, 2 H), 7.57-7.50 (m, 3 H), 7.21-

7.01 (m, 4 H), 6.72-6.56 (m, 2 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 152.67, 145.02, 138.49, 135.06, 133.47, 130.98, 128.94, 

128.37, 127.98, 126.80, 121.58, 119.25, 117.71, 113.92, 102.76 ppm. 

Yield: 83 % (1.25 mmol, 305 mg), yellow solid. 
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2-(o-tolyl)-1H-perimidine (2) 

 

FW (C18H14N2) = 258.32 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.76 (s, 1 H), 7.49-7.48 (m, 1 H), 7.42-7.39 (m, 1 H), 7.33-

7.30 (m, 2 H), 7.20-7.17 (m, 1 H), 7.12-7.02 (m, 3 H), 6.65-6.64 (m, 1 H), 6.41-6.39 (m, 1 H), 

2.47 (s, 3 H) ppm. 

13C NMR (75 MHz, dmso-d6): δ = 154.99, 145.32, 138.57, 135.77, 135.23, 130.56, 129.58, 

128.97, 128.21, 128.00, 125.82, 121.58, 119.21, 117.68, 113.66, 102.76, 19.43 ppm. 

Yield: 72 % (1.08 mmol, 279 mg), yellow solid. 

2-(m-tolyl)-1H-perimidine (3) 

 

FW (C18H14N2) = 258.32 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.62 (s, 1 H), 7.83-7.79 (m, 2 H), 7.44-7.36 (m, 2 H), 7.20-

7.00 (m, 4 H), 6.69-6.53 (m, 2 H), 2.41 (s, 3 H) ppm. 

13C NMR (75 MHz, dmso-d6): δ = 152.74, 145.07, 138.51, 137.70, 135.06, 133.44, 131.62, 

128.95, 128.30, 127.99, 127.25, 123.98, 121.57, 117.66, 113.86, 102.71, 21.03 ppm. 

Yield: 81 % (1.22 mmol, 314 mg), yellow solid. 

2-(p-tolyl)-1H-perimidine (4) 

 

FW (C18H14N2) = 258.32 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.58 (s, 1 H), 7.94-7.91 (m, 2 H), 7.35-7.33 (m, 2 H), 7.14-

7.02 (m, br, 4 H), 6.65-6.57 (m, br, 2 H), 2.39 (s, 3 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 152.95, 145.56, 141.40, 138.99, 135.54, 131.07, 129.42, 

128.46, 127.21, 122.02, 119.02, 119.56, 118.13, 114.30, 103.16, 21.47 ppm. 

Yield: 84 % (1.26 mmol, 325 mg), yellow solid. 
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2-(4-fluorophenyl)-1H-perimidine (5) 

 

FW (C17H11FN2) = 262.29 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.67 (s, 1 H), 8.10-8.06 (m, 2 H), 7.40-7.34 (m, 2 H), 7.21-

7.01 (m, 4 H), 6.69-6.53 (m, 2 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 165.41, 162.11, 151.72, 144.87, 135.03, 129.93, 129.41, 

129.29, 128.95, 128.95, 128.01, 121.48, 119.33, 117.80, 115.51, 115.22, 113.94, 102.80 ppm. 

Yield: 74 % (1.11 mmol, 291 mg), light yellow solid. 

2-(3-chlorophenyl)-1H-perimidine (6) 

 

FW (C17H11ClN2) = 278.74 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.70 (s, 1 H), 8.06-7.98 (m, 2 H), 7.64-7.53 (m, 2 H), 7.21-

7.01 (m, 4 H), 6.72-6.69 (m, 1 H), 6.55-6.53 (m, 1 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 151.34, 144.67, 138.29, 135.39, 135.01, 133.29, 130.77, 

130.31, 128.92, 128.01, 126.47, 125.51, 121.65, 119.60, 117.89, 114.15, 102.89 ppm. 

Yield: 71 % (1.07 mmol, 297 mg), yellow solid. 

2-(4-chlorophenyl)-1H-perimidine (7) 

 

FW (C17H11ClN2) = 278.74 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.69 (s, 1 H), 8.05-8.02 (m, 2 H), 7.61-7.58 (m, 2 H), 7.20-

7.01 (m, 4 H), 6.70-6.67 (m, 1 H), 6.55-6.53 (m, 1 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 151.66, 144.76, 138.34, 135.77, 135.04, 132.17, 128.95, 

128.65, 128.48, 128.02, 121.57, 119.49, 117.88, 114.06, 102.88 ppm. 

Yield: 80 % (1.07 mmol, 334 mg), yellow solid. 
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2-(4-bromophenyl)-1H-perimidine (8) 

 

FW (C17H11BrN2) = 323.19 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.68 (s, 1 H), 7.98-7.96 (m, 2 H), 7.76-7.73 (m, 2 H), 7.21-

7.01 (m, 4 H), 6.69-6.67 (m, 1 H), 6.55-6.52 (m, 1 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 151.73, 144.75, 138.32, 135.03, 132.51, 131.41, 128.94, 

128.85, 128.02, 124.64, 121.55, 119.49, 117.86, 114.06, 102.86 ppm. 

Yield: 72 % (1.07 mmol, 349 mg), orange solid. 

2-(4-iodophenyl)-1H-perimidine (9), new compound 

 

FW (C17H11IN2) = 370.19 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.67 (s, 1 H), 7.92-7.80 (m, 4 H), 7.14-7.02 (m, br, 4 H), 

6.67-6.56 (m, br, 2 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 151.92, 144.78, 138.34, 137.22, 135.01, 132.81, 128.92, 

128.68, 127.99, 121.60, 119.48, 117.86, 114.06, 102.86, 99.38 ppm. 

Elemental analysis: calcd.: C 55.16, H 3.00, N 7.57; found: C 54.79, H 3.18, N 7.19  

Yield: 67 % (1.01 mmol, 372 mg), orange solid. 

2-(4-(methylthio)phenyl)-1H-perimidine (10), new compound 

 

FW (C18H14SN2) = 290.38 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.60 (s, 1 H), 7.99-7.97 (m, 2 H), 7.40-7.38 (m, 2 H), 7.20-

7.00 (m, 4 H), 6.69-6.66 (m, 1 H), 6.56-6.54 (m, 1 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 152.02, 144.99, 142.29, 138.44, 135.03, 129.40, 128.94, 

127.96, 127.17, 124.99, 121.49, 119.11, 117.66, 113.82, 102.69, 14.18 ppm. 

Elemental analysis: calcd.: C 74.45, H 4.86, N 9.65; found: C 74.81, H 4.49, N 9.49  

Yield: 78 % (1.17 mmol, 340 mg), yellow solid. 
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2-(4-methoxyphenyl)-1H-perimidine (11) 

 

FW (C18H14ON2) = 274.32 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.56 (s, 1 H), 8.03-8.00 (m, 2 H), 7.20-6.97 (m, 6 H), 6.69-

6.55 (m, 2 H), 3.83 (s, 3 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 161.50, 152.09, 145.16, 138.55, 135.04, 128.94, 128.50, 

127.95, 125.58, 121.37, 118.87, 117.57, 133.68, 102.62, 55.38 ppm. 

Yield: 76 % (1.14 mmol, 313 mg), orange solid. 

3-(1H-perimidin-2-yl)phenol (12) 

 

FW (C17H12N2O) = 260.30 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.59 (s, 1 H), 9.76 (s, 1 H), 7.46-7.42 (m, 2 H), 7.35-7.30 

(m, 1 H), 7.20-6.96 (m, 5 H), 6.68-6.66 (m, 1 H), 6.56-6.54 (m, 1 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 157.44, 152.79, 145.10, 138.54, 135.09, 134.90, 129.49, 

128.97, 128.02, 121.65, 119.20, 118.09, 117.69, 117.45, 113.83, 113.76, 102.77 ppm. 

Yield: 80 % (1.20 mmol, 312 mg), orange solid. 

N-(4-(1H-perimidin-2-yl)phenyl)acetamide (13) 

 

FW (C19H15N3O) = 301.35 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.56 (s, 1 H), 10.22 (s, 1 H), 7.99-7.96 (m, 2 H), 7.75-7.73 

(m, 2 H), 7.20-6.99 (m, 4 H), 6.68-6.53 (m, 2 H), 2.09 (s, 3 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 169.20, 152.61, 145.59, 142.30, 138.97, 135.52, 129.43, 

128.44, 128.12, 128.03, 121.91, 119.47, 118.72, 118.10, 114.21, 103.13, 24.62 ppm. 

Yield: 82 % (1.23 mmol, 371 mg), yellow solid. 
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2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-perimidine (14),  

new compound 

 

FW (C23H23BN2O2) = 370.26 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.69 (s, 1 H), 8.08-8.05 (m, 2 H), 7.85-7.82 (m, 2 H), 7.21-

6.99 (m, 4 H), 6.72-6.56 (m, 2 H), 1.32 (s, 12 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 152.25, 144.88, 138.41, 135.82, 135.04, 134.37, 128.92, 

128.01, 126.09, 121.65, 119.43, 117.77, 115.02, 114.03, 102.83, 83.94, 24.69 ppm. 

Elemental analysis: calcd.: C 74.61, H 6.26, N 7.57; found: C 74.23, H 6.54, N 7.24 

Yield: 70 % (1.05 mmol, 389 mg), red solid. 

4-(1H-perimidin-2-yl)benzonitrile (15) 

 

FW (C18H11N3) = 269.31 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.78 (s, 1 H), 8.19-8.16 (m, 2 H), 8.01-7.98 (m, 2 H), 7.21-

7.00 (m, 4 H), 6.72-6.69 (m, 1 H), 6.54-6.52 (m, 1 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 151.37, 144.55, 138.23, 137.44, 135.03, 132.39, 128.94, 

128.05, 127.58, 121.68, 119.92, 118.43, 118.03, 114.38, 113.22, 103.02 ppm. 

Yield: 66 % (0.99 mmol, 267 mg), red solid. 

2-(4-((trimethylsilyl)ethynyl)phenyl)-1H-perimidine (16), new compound 

 

FW (C22H20N2Si) = 340.50 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.68 (s, 1 H), 8.06-8.03 (m, 2 H), 7.64-7.61 (m, 2 H), 7.21-

7.00 (m, 4 H), 6.70-6.68 (m, 1 H), 6.56-6.54 (m, 1 H), 0.26 (s, 9 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 151.70, 144.79, 138.35, 135.01, 133.36, 131.58, 128.91, 

127.99, 126.97, 124.54, 121.57, 119.48, 117.80, 114.08, 104.53, 102.83, 99.59, 0.19 ppm. 

Elemental analysis: calcd.: C 77.60, H 5.92, N 8.28; found: C 77.98, H 5.61, N 8.71 

Yield: 65 % (0.98 mmol, 332 mg), red solid. 
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2-undecyl-1H-perimidine (17) 

 

FW (C22H30N2) = 322.50 g mol-1 

1H NMR (500 MHz, chloroform-d1): δ = 8.14 (s, 1 H), 7.14-7.08 (m, 4 H), 6.56-6.55 (m, 2 H), 

2.36 (t, J = 7.62 Hz, 2 H), 1.72 (quint, J = 7.62 Hz, 2 H), 1.38-1.19 (m, 16 H), 0.88 (t, J = 7.02 

Hz, 3 H) ppm. 

 13C NMR (125.76 MHz, chloroform-d1): δ = 157.84, 140.41, 135.44, 128.30, 121.81, 119.61, 

107.91, 35.81, 31.94, 29.64, 29.62, 29.52, 29.42, 29.41, 29.37, 27.65, 22.73, 14.17 ppm. 

Yield: 85 % (1.28 mmol, 411 mg), white solid. 

2-(2,6-dimethylhept-5-en-1-yl)-1H-perimidine (18), new compound 

 

FW (C20H24N2) = 292.43 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.40 (s, 1 H), 7.10-7.06 (m, 2 H), 6.97-6.94 (m, 2 H), 6.50-

6.30 (m, br, 2 H), 5.09 (t, J = 7.03 Hz, 1 H), 2.29-2.23 (m, 1 H), 2.08-1.92 (m, 4 H) 1.62 (s, 3 

H), 1.55 (s, 3 H), 1.46-1.36 (m, 1 H), 1.26-1.14 (m, 1 H), 0.94 (d, J = 6.45 Hz, 3 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 156.69, 145.31, 138.40, 135.13, 130.60, 128.76, 128.05, 

124.48, 121.42, 118.33, 117.34, 112.92, 101.50, 42.20, 36.40, 30.87, 25.49, 24.97, 19.14, 

17.48 ppm. 

Elemental analysis: calcd.: C 82.15, H 8.27, N 9.58; found: C 81.67, H 7.75, N 9.61  

Yield: 81 % (1.22 mmol, 355 mg), light yellow oil. 

2-(5-methylfuran-2-yl)-1H-perimidine (19) 

 

FW (C16H12N2O) = 248.29 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.55 (s, 1 H), 7.18-6.98 (m, 5 H), 6.64-6.61 (m, 1 H), 6.55-

6.53 (m, 1 H), 6.334-6.327 (m, 1 H) 2.39 (s, 3 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 154.71, 145.40, 144.76, 144.73, 137.88, 135.07, 128.89, 

127.93, 121.39, 119.07, 117.66, 113.79, 113.53, 108.71, 102.66, 13.60 ppm. 

Yield: 75 % (1.13 mmol, 279 mg), red solid. 
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2-(4-styrylphenyl)-1H-perimidine (20), new compound 

 

FW (C25H18N2) = 346.43 g mol-1 

1H NMR (300 MHz, dmso-d6): δ = 10.66 (s, 1 H), 8.09-8.06 (m, 2 H), 7.78-7.75 (m, 2 H), 7.65-

7.63 (m, 2 H), 7.44-7.02 (m, 9 H), 6.75-6.72 (m, 1 H), 6.61-6.59 (m, 1 H) ppm. 

 13C NMR (75 MHz, dmso-d6): δ = 152.69, 145.56, 140.16, 139.02, 137.25, 135.58, 132.64, 

130.64, 129.46, 129.25, 129.16, 128.50, 128.02, 127.68, 127.21, 126.86, 122.08, 119.75, 

118.20, 114.47, 103.27 ppm. 

Elemental analysis: calcd.: C 86.68, H 5.24, N 8.09; found: C 87.12, H 5.18, N 8.13 

Yield: 79 % (1.19 mmol, 410 mg), red solid. 
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NMR spectra 
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Abstract: Chemoselective deoxygenation by hydrogen is particularly challenging but crucial 

for an efficient late-stage modification of functionality-laden fine chemicals, natural products 

or pharmaceuticals and the economic upgrading of biomass-derived molecules into fuels and 

chemicals. We report here on a reusable earth-abundant metal catalyst that permits highly 

chemoselective deoxygenation employing inexpensive hydrogen gas. Primary, secondary and 

tertiary alcohols, as well as alkyl and aryl aldehydes and ketones can be selectively 

deoxygenated, even when part of complex natural products, pharmaceuticals or biomass-

derived platform molecules. We can tolerate many functional groups including hydrogenation-

sensitive examples. Our catalyst is efficient, easy to handle and conveniently synthesized from 

a specific bimetallic coordination compound and commercially available charcoal. Selective, 

sustainable and cost-efficient deoxygenation under industrially viable conditions seems 

feasible. 

One Sentence Summary: A nanostructured Co-Ce catalyst permits the hydrodeoxygenation 

of alcohols, aldehydes and ketones tolerating numerous functional groups.  
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7.1 Introduction 

The use of earth-abundant metals in key technologies classically associated with noble metals, 

such as catalysis, helps to conserve rare elements and becomes especially attractive if novel 

selectivity patterns are observed. Significant progress has been made recently concerning the 

use of homogeneous earth-abundant metal catalysts(1-10) for reactions customarily mediated 

by noble metals. However, the highly desirable employment of reusable nanostructured 

catalysts of such metals, broadly applicable in organic synthesis and essential for the production 

of fine and agrochemicals and pharmaceuticals, has been rarely shown.(11-14) One of the 

haunting problems of organic synthesis is the mild and selective defunctionalization of C-O 

bonds in the presence of other functional groups, such as in high-value fine chemicals, 

pharmaceuticals or natural products.(15) Such a selective and pinpoint deoxygenation method 

would allow the fine-tuning of highly functionalized molecules at a late stage of their synthesis. 

In addition, many biomass-derived platform molecules are highly oxidized and the removal of 

surplus oxygen is key to their usability as fuels and bulk chemicals.(16-17) C-O bond cleavage 

using inexpensive hydrogen gas (hydrodeoxygenation) is challenging, but highly attractive for 

economic reasons. The hydrodeoxygenations of alcohols and carbonyl compounds in the 

presence of functional groups have been realized by means of a homogeneous noble metal 

catalyst.(18) This impressive progress has been accomplished using a Ru complex and the 

tolerance of phenolic hydroxyl groups, aryl and alkylethers, olefins, fluorides, chlorides, a 

nitroarene and an amide was observed. In addition, selective hydrodeoxygenation of diols has 

been demonstrated. A homogeneous or heterogeneous earth-abundant metal catalyst for the 

highly chemoselective hydrodeoxygenation of alcohols and carbonyl compounds has not been 

disclosed yet. We report here on a novel nanostructured earth-abundant metal catalyst for the 

deoxygenation of various classes of chemical compounds using inexpensive hydrogen gas as 

the reducing agent (hydrodeoxygenation). The process is highly chemoselective and functional 

groups, easily reduced by hydrogen in the presence of conventional catalysts, remain 

unaffected. Halides (including reactive iodides), ethers (including thio- and benzylethers), an 

olefin, esters (including boronic esters), amides, carboxylic acids, phenols and N-heterocycles 

survive the catalytic hydrodeoxygenation process. Furthermore, the selective removal of an OH 

group of a secondary or a tertiary alcohol in the presence of a primary alcohol was 

demonstrated. The scope of possible substrates is large regarding their nature and oxidation 

state. Aldehydes, benzylic and purely aliphatic, dialkyl, aryl-alkyl and diaryl ketones, as well 

as primary, secondary and tertiary alcohols including purely aliphatic ones, complex natural 
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products, pharmaceuticals and biomass-derived platform molecules have been 

hydrodeoxygenated selectively. Our novel catalyst is efficient, easy to handle and its synthesis 

is simple and straightforward, starting from a specific Co-Ce bimetallic complex and 

commercially available charcoal. Cerium is the most abundant element of the lanthanoids. It is 

more abundant in the earth’s crust than the 3d metal cobalt.(19) The catalyst proved stable over 

at least five consecutive runs without any remarkable decrease in product formation. Up-scaling 

proceeds smoothly and in high yields, for example, small scale: 86 %, large scale: 92 %. We 

have recently introduced a variety of homogeneous earth-abundant catalysts(20-26) and 

reusable nanostructured catalysts for hydrogen storage(27) and novel organic reactions(28), 

including an earth-abundant metal catalyst.(29) 

 

7.2 Results and Discussion 

Our catalyst (Co-Ce/C) was synthesized in a convenient and practical two-step procedure. At 

first, commercially available activated charcoal (Norit CA1, Cabot Corporation) was 

impregnated with the bimetallic complex I, followed by pyrolysis under nitrogen atmosphere 

at 700 °C and reduction (N2/H2 90/10) at 550 °C (Fig. 1A; Supplementary Material (SM) for 

detailed information). Scanning electron microscopy (SEM) and energy-dispersive X-ray 

spectroscopy (EDX) indicates a homogeneous distribution of both metal species over the entire 

catalyst sample analyzed (Fig. S1). High-angle annular dark-field scanning transmission 

electron microscopy (HAADF-STEM) provides evidence for the presence of two types of 

nanosized species more or less homogeneously embedded in the matrix: nanoparticles with 

mean diameter of 6.8 nm and smaller (~1 nm) structures (Fig. 1B). HAADF-STEM in 

combination with EDX-mapping reveals that the 6.8 nm-diameter nanoparticles consist of Co, 

while the element Ce is distributed in the matrix (Fig. 1 C, D; Fig. S2).  HAADF-STEM 

combined with electron energy loss spectroscopy (EELS) mapping indicates the presence of 

~1 nm-sized cerium-rich structures in the vicinity of a Co nanoparticle (Fig. S3). X-ray 

photoelectron spectroscopy (XPS) analysis of the Co 2p3/2 region confirms the presence of 

metallic cobalt species (~20 %) and oxides/hydroxides (~80 %). Cerium is present as an oxide 

of predominantly Ce3+ (~90 %) and small amounts of Ce4+ (~10 %) (Fig. 1E, Fig. S4), 

concluded from an analysis of the Ce 3d5/2 region. The catalyst features a specific surface area 

(Brunauer-Emmet-Teller) of 740 m2/g and a 40 % fraction of mesopores, which is in good 

accordance with the key figures of the pure carbon support (Fig. S5).  
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Inductively coupled plasma optical emission spectrometry (ICP-OES) revealed 3.6 wt% Co and 

7.3 wt% Ce in the as-synthesized catalyst sample. 

 

Fig. 1. Catalyst synthesis and characterization. A) Synthesis of the novel catalyst by wet impregnation of 

commercially available charcoal with the bimetallic precursor complex I, followed by pyrolysis and reduction. B) 

HAADF-STEM of the as-synthesized catalyst verifies the presence of homogeneously distributed metal 

nanoparticles with a mean diameter of 6.8 nm. C) Detailed HAADF-STEM image in combination with EDX mapping. 

D) EDX-based element mapping (Co: green; Ce: blue; O: red; P: orange) indicates that Co forms the nanoparticles 

and Ce is distributed over the whole carbon support. E) XPS analysis confirms the presence of metallic cobalt 

(~20 %) and cobalt oxide/hydroxide species (~80 %). Ce is mainly present as Ce3+ (~90 %) besides minor amounts 

of Ce4+ (~10 %). 

The hydrodeoxygenation of acetophenone was chosen for optimization of the new catalyst 

system. A pyrolysis temperature of 700 °C during catalyst synthesis was found to be optimal. 

The desired product ethylbenzene was obtained in 81 % yield with a catalyst made by pyrolysis 

at this temperature. The use of catalysts produced by pyrolysis at 600 or 800 °C led to a distinct 

drop of product yields under the same reaction conditions (Table S1). Methylcyclohexane 

emerged as the most suitable reaction solvent from a comparison of eight different solvents 

(Table S2). We compared different supports and metal sources under identical reaction 

conditions to demonstrate the superiority of the new bimetallic Co-Ce/C catalyst. Only the 
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combination of TiO2 with the bimetallic complex I gave moderate yields of the desired product, 

while poor yields were achieved using CeO2 and Al2O3 as a support (Table 1, entries 1-4). When 

complex I was replaced by the common metal salts Co(NO3)2 and Ce(NO3)3, no ethylbenzene 

formation could be detected (Table 1, entry 6). To ensure the necessity of the bimetallic 

complex I, the monometallic Co complex II (essentially complex I without Ce) and the 

monometallic Ce complex III (essentially complex I without Co) were used for the catalyst 

synthesis (Fig. S6). Neither the use of complex II or III nor a combination of both led to 

comparable hydrodeoxygenation activities (Table 1, entries 7-9). In summary, the 

hydrodeoxygenation of acetophenone proceeded smoothly applying a catalyst system prepared 

from the bimetallic complex I and activated charcoal by pyrolysis at 700 °C (3.6 wt% Co, 

7.3 wt% Ce). A further optimization of the reaction conditions led to the following parameters: 

0.5 mmol substrate, 15 mg catalyst (1.8 mol% Co, 1.6 mol% Ce), 3 mL methylcyclohexane, 

4.0 MPa H2, 20 h. The reaction temperature was slightly increased to 110 °C in comparison to 

the temperature at which the optimization of the reaction conditions was accomplished (100 °C) 

to finally ensure maximum yields of the desired product (Table 1, entry 5). 

Table 1. Catalyst screening. 

 
Entry Metal source Support Yield [%] 

   a b 

1 Bimetallic complex I TiO2 62 27 

2 Bimetallic complex I CeO2 15 69 

3 Bimetallic complex I γ-Al2O3 6 21 

4 Bimetallic complex I 

 

Activated charcoal 81 16 

5$ Bimetallic complex I 

 

Activated charcoal 98 - 

6 Co(NO3)2 + Ce(NO3)3 Activated charcoal - 18 

7‡ Monometallic complex II Activated charcoal - 10 

8§ Monometallic complex III Activated charcoal - - 

9 Monometallic complex II + III Activated charcoal 32 51 

Reaction conditions: 0.5 mmol substrate, 15 mg catalyst (1.8 mol% Co, 1.6 mol% Ce), 

100 °C, 4.0 MPa H2, 3 mL methylcyclohexane, 20 h; $110 °C reaction temperature; 
‡1.8 mol% Co without Ce; §1.6 mol% Ce without Co; Yields were determined by GC and 

GC-MS using n-dodecane as an internal standard.  
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Having optimized the reaction conditions of our novel catalytic hydrodeoxygenation, we 

fathomed its substrate scope. The product yields of test reactions were determined via GC and 

GC-MS, and products were isolated for selected examples. The isolated yields are given 

additionally in parentheses in Figures 2 and 3.  

 

Fig. 2. Selective hydrodeoxygenation of alcohols and carbonyl compounds I. [a] Reaction conditions: 

0.5 mmol substrate, 15 or 35 mg catalyst (1.8 mol% Co and 1.6 mol% Ce or 4.2 mol% Co and 3.7 mol% Ce, 

respectively), 110-130 °C, 5.0 MPa H2, 3 mL methylcyclohexane, 20 h, (10 mg Amberlyst® 15 for halogenated 

substrates). [b] Reaction conditions: 0.5 mmol substrate, 50 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 130 °C, 

6.0 MPa H2, 3 mL methylcyclohexane, 20 h, (5 mol% Zn(OTf)2 for halogenated substrates). Yields were determined 

by GC and GC-MS using n-dodecane as an internal standard. Isolated yields in parentheses. 
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Firstly, we investigated the hydrodeoxygenation of aryl-alkyl ketones and related secondary 

alcohols (Fig. 2, top). The introduction of methyl and electron-rich methoxy substituents had 

no significant influence on the conversion and the corresponding products were obtained in 

yields of around 90 % (Fig. 2, products 1b, c). To our delight, the hydrodeoxygenation of 

halogenated substrates, which is challenging since dehalogenation can take place, proceeded 

well when 10 mg Amberlyst® 15 were applied as an additive (Table S3). 4-Fluoro- or 4-chloro-

acetophenone were smoothly converted, no dehalogenation was observed and nearly 

quantitative yields were obtained (Fig. 2, products 1d, g). Product yields of around 70 % were 

observed for the sterically more demanding 2-chloroacetophenone and the corresponding 3-

chloro-substituted derivative (Fig. 2, products 1e, f). Aryl bromide withstood the deoxygenation 

well as can be seen from the formation of 1h in nearly 80 % yield. Functional groups such as 

amines, esters, amides, thioethers and ethers, N-heterocycles or phenols, all tolerated the 

reaction conditions (Fig. 2, products 1i-p). The performance of the new catalyst was further 

evaluated on diaryl ketones. Benzophenone, for instance, was deoxygenated to afford 

diphenylmethane in 92 % yield (Fig. 2, product 1r). Fluorinated and chlorinated 

1-phenylethanol derivatives could be deoxygenated as smoothly as the corresponding ketones. 

The desired products were obtained in yields higher than 80 % (Fig. 2, products 1u, v). It is 

noteworthy that even the delicate iodo substituent of 1-(4-iodophenyl)ethanol resisted the 

deoxygenation conditions (Fig. 2, product 1w). The transformation of benzylic aldehydes and 

related alcohols required slightly harsher reaction conditions and catalyst loadings for high 

conversions (130 °C, 6.0 MPa, 6.1 mol% Co, 5.2 mol% Ce). But even then, the 

hydrodeoxygenation of halogenated substrates proceeded well when 5 mol% Zn(OTf)2 was 

added (Table S3). Substrates bearing electron-withdrawing or -donating moieties, such as 

halides, amides, heterocycles and amino, hydroxy- and methoxy functionalities were well 

tolerated (Fig. 2, products 2a-j, l, n-q). 4-Benzyloxybenzaldehyde was deoxygenated 

selectively to give benzyl-p-tolyl ether 2m in excellent yield without a significant amount of 

hydrogenolytic ether cleavage (Fig. 2). The stability of boronic esters, which are common 

starting materials for cross coupling reactions, is of special importance (Fig. 2, product 2k). 

Next, we examined the transformation of aliphatic alcohols and carbonyl compounds, tertiary 

alcohols, diols, biomass-derived substrates and more complex organic molecules to further 

evaluate the scope of possible substrates (Fig. 3). Triphenylmethanol was easily reduced to 

triphenylmethane applying only 110 °C, 4.0 MPa hydrogen pressure and a catalyst loading of 

1.8 mol% Co and 1.6 mol% Ce (Fig. 3, product 3f). Hydrogenolysis of purely aliphatic 

compounds required typically harsher reaction conditions and higher catalyst loadings. 
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Gratifyingly, a variety of cyclic and linear substrates were deoxygenated in up to 91% yield 

(Fig. 3, products 3a-e).  

 

Fig. 3. Selective hydrodeoxygenation of alcohols and carbonyl compounds II. [a] Reaction conditions: 

1.0 mmol substrate, 100 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 160 °C, 6.0 MPa H2, 6 mL methylcyclohexane, 

20 mg Amberlyst® 15, 20 h; §1 mmol substrate, 30 mg catalyst (1.8 mol% Co, 1.6 mol% Ce), 110 °C, 4.0 MPa H2, 

6 mL methylcyclohexane, 20 h, no additive. [b] Reaction conditions: 1.0 mmol substrate, 70 mg catalyst (4.2 mol% 

Co, 3.7 mol% Ce), 130 °C, 5.0 MPa H2, 6 mL ethanol, 20 h. [c] Reaction conditions: 1.0 mmol substrate, 100 mg 

catalyst (6.1 mol% Co, 5.2 mol% Ce), 160 °C, 6.0 MPa H2, 6 mL methylcyclohexane, 20 h; $diglyme was used as 

the solvent; ‡20 mg Amberlyst® 15 as additive; †5 mol% Zn(OTf)2 as additive. Yields were determined by GC and 

GC-MS using n-dodecane as an internal standard. Isolated yields are given in parentheses. 
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We expected the selective removal of only one OH group in diols due to the different reaction 

conditions needed to deoxygenate primary, secondary and tertiary alcohols. A few diols were 

selectively deoxygenated in up to 92 % isolated yield (Fig. 3, products 4a,c,d). The preferred 

removal of a secondary or tertiary alcohol in the presence of a primary alcohol was observed. 

This selectivity is inverse to that observed in a Wolff-Kishner-based catalytic deoxygenation 

approach.(30) Interestingly, even a ketone could be deoxygenated in the presence of a primary 

alcohol (Fig. 3, product 4b). The transformation of biomass-derived furfural and 

hydroymethyfurfural also proceeded well (Fig. 3, products 5a, b).(31,32) The new 

hydrodeoxygenation protocol may also be applied to more complex organic molecules (Fig. 3, 

bottom). Ketoprofen and haloperidol were deoxygenated to the respective products in up to 

87 % isolated yield (Fig. 3, products 5c, d). The reduction of a sterically demanding alpha-

ketoamide was accomplished without any side product formation (Fig. 3, 5e). In the case of 

cholesterol, surprisingly, we observed a chemoselectivity for carbonyl reduction over double 

bond hydrogenation and a mixture of olefin isomerization products was obtained in 71% 

isolated yield (Fig. 3, 5f). The hydrodeoxygenation of acetophenone was chosen to demonstrate 

the recyclability of the catalyst, which could be reused in five consecutive runs without any 

noticeable reduction of catalytic activity (Fig. S7). An up-scaling of the reaction had no 

significant influence on the catalytic results. An amount of 10 mmol 4-acetamidoacetophenone 

were deoxygenated smoothly to afford the desired product in virtually quantitative yield (Table 

S4). Cost-efficient and selective late-stage deoxygenation of fine chemicals, natural products 

and pharmaceuticals under industrially viable and scalable conditions seems feasible now. The 

protocol is especially sustainable since a reusable earth-abundant metal catalyst is employed. 

Our work may inspire others to develop reusable and nano-structured earth-abundant metal 

catalysts for complex organic transformations in which tolerance of functional groups has so 

far been a key challenge.(33) 
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7.5 Supplementary Materials 

Materials and Methods 

General considerations 

Air- and moisture sensitive reactions were carried out under dry argon or nitrogen atmosphere 

using standard Schlenk or glove box techniques. Solvents were dried and distilled from sodium 

benzophenone, stored over molecular sieves (3 Å) before use or were obtained from Acros. All 

chemicals were purchased from commercial sources with purity over 95 % and used without 

further purification. Activated charcoal (Norit CA1) was purchased from Cabot Corporation 

and heated up to 700 °C (10 K/min, dwelling time 3 h) before use. 

NMR-Spectra were collected on Varian INOVA 300 (300 MHz for 1H, 75 MHz for 13C) or 

Bruker Avance III HD 500 (500 MHz for 1H, 125.7 MHz for 13C) instruments at 298 K. 

Chemical shifts are reported in ppm relative to the residual solvent signal (CDCl3: 7.26 ppm 

(1H), 77.16 ppm (13C); DMSO-D6: 2.50 ppm (1H), 39.51 ppm (13C); C6D6: 7.16 ppm (1H), 

128.39 ppm (13C)). Coupling constants (J) are reported in Hz (coupling patterns: s = singlet, d 

= doublet, t = triplet, q = quartet, quint = quintet, sxt = sextet, spt = septet, m = multiplet).  

GC analyses were carried out on an Agilent 6850 GC system equipped with an Optima 17 

column (30 m x 0.32 mm x 0.25 μm) or an Agilent 6890N GC system equipped with a HP-5 

column (30 m x 0.32 mm x 0.25 μm). GC-MS analyses were carried out on an Agilent 7890A 

GC system equipped with a HP-5MS column (30 m x 0.32 mm x 0.25 μm) and a 5975C inert 

MSD detector (EI, 70 eV).  

JEOL ARM200F equipped with EDX detector (JEOL) and an energy filter (GATAN) was used 

for the high-angle annular dark-field scanning transmission electron (HAADF-STEM) imaging 

and elemental mapping of the specimen. Data acquisition was accomplished with following 

parameters:  HAADF-STEM collection angle 68–280 mrad, image size 1024x1024 pixels, 

pixel size 0.63 nm, dwell time 20 µs, probe current 80 pA. EDX-mapping image size 

128x128 pixels, pixel size 1.1 nm, pixel dwell time 1 ms, 10 sweeps integrated, probe current 

1000 pA. For high-resolution EDX-line scan analysis, single scan was done to avoid damaging 

of the carbon support. EELS spectrum image collection angle 111 mrad, electron probe 

convergence semi-angle 20–30 mrad, image size 42x46 pixels, pixel size 0.43 nm, pixel dwell 

time 100 ms, sample. In short, energy dispersion of the spectrometer was set to 0.25 eV/channel 

and the elemental maps were collected in the energy-loss range of 729–1240 eV. The data 

processing and analysis for EDX mapping was conducted with JEOL Analysis Station 
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v.3.8.0.34. Elemental peaks were identified, and their areas integrated in an automatic manner 

to produce the elemental maps presented here.  

For the EELS-mapping, Gatan Digital Micrograph v2.1.1- software equipped with EELS 

Analysis-plugin v2.1.1 was used for the background subtraction and the production of elemental 

maps. In short, appropriate pre-edge area was manually chosen so that the real-time fit of the 

Power-law background model was fitting well the pre-edge background based on the visual 

inspection.  

Elemental analysis was performed by standard protocols employing microwave assisted 

digestion (7 min at 170 °C (80 % power), 7 min at 180 °C (85 % power) and 20 min at 195 °C 

(90 % power)) in HCl (32 %, 4.5 ml), HNO3 (65 %, 1.5 ml) and HF (40 %, 1 ml). The resulting 

solution was analyzed using a Vista-pro radical model from Varian.  

The XPS (X-ray photoelectron spectroscopy) measurements were conducted in a PHI Quantera 

II apparatus. A monochromatic Al Kα X-ray source (1486.6 eV) was used for excitation. The 

samples were prepared on a copper tape. The analysis was conducted along the lines of Refs. 

E. Beche et al., Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). 

Surf. Interface Anal. 40, 264–267 (2008); Y. Lykhach et al., Counting electrons on supported 

nanoparticles.  Nat. Mater. 15, 284–288 (2016). 

N2 physisorption measurements were determined at -196 °C using a Nova2000e 

(Quantachrome) apparatus. The specific surface areas were calculated using p/p0 values from 

0.05-0.3 (BET). The pore width and average pore volume were calculated by DFT calculations 

[N2 at -196.15 °C on carbon (slit/cylindrical pore model, NLDFT equilibrium model)]. 

Pyrolysis and reduction were carried out under nitrogen atmosphere and forming gas (90/10) in 

a high temperature furnace (EHA 12/450B200, Carbolite) or alternative using ChemBET 

Pulsar TPR/TPD. 

Macherey Nagel silica gel 60 (40–63 µm particle size) was used for column chromatography.  
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Ligand synthesis 

3.08 g (20 mmol, 2 eq) o-vanillin were dissolved in 100 mL ethanol and 1.12 g (11 mmol, 

1.1 eq) 2,2-dimethyl-1,3-propanediamine were added. The solution was heated under reflux for 

1 h. After removal of the solvent under reduced pressure, recrystallization from diethylether 

yielded the product as a yellow crystalline powder (ligand I, 3.07 g, 83 %).  

Complex synthesis 

The bimetallic complex I was synthesized according to a modified literature procedure.(1) 

1.71 g (4.62 mmol, 1 eq) ligand I were dissolved in 100 ml methanol at 50 °C and 1.15 g 

(4.62 mmol, 1 eq) cobalt(II) acetate tetrahydrate were added. The dark green solution was 

stirred for 2 h at 50 °C. Afterwards, the solvent was removed and the resulting solid was 

dissolved in 100 ml acetonitrile followed by the addition of 2.01 g (4.62 mmol, 1 eq) 

cerium(III) nitrate hexahydrate. The solution was stirred for 20 h at room temperature and 

thereafter for 2 h at 100 °C. After completion of the reaction time, the solvent was removed and 

the resulting solid was washed with cold ethanol. Complex I was obtained in 81 % isolated 

yield (3.72 mmol, 3.01 g). Crystallization from acetonitrile yielded the complex in form of dark 

green needles, suitable for X-ray crystallography.  

The monometallic complex II (Co-Salen) was synthesized according to a modified literature 

procedure.(2)  Ligand I (1.71 g, 4.62 mmol, 1 eq) was dissolved in ethanol and the solution was 

degassed by purging with Argon for 15 min. Dry cobalt(II) acetate (0.818 g, 4.62 mmol, 1 eq) 

was added and the mixture was stirred at 50 °C for 2 h. Next, the solution was refluxed 

overnight. After removal of the solvent, the resulting solid was washed with cold ethanol and 

the collected product was dried in vacuo (1.39 g, 3.15 mmol, 68 %).  

Elemental analysis:  calcd for C21H24CoN2O4: C 59.02, H 5.66, N 6.56; found: C 59.58, H 

5.42, N 6.31  

The monometallic complex III (Ce-Salen) was synthesized according to a modified literature 

procedure.(1)  Ligand I (1.71 g, 4.62 mmol, 1 eq) was dissolved in 100 ml ethanol at 50 °C and 

2.01 g (4.62 mmol, 1eq) cerium(III) nitrate hexahydrate were added in portions whereupon a 

yellow precipitate appeared immediately. The suspension was refluxed overnight. The crude 

product was filtered over a frit, washed with cold ethanol and dried in vacuo (2.93 g, 4.21 mmol, 

91 %). 
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Elemental analysis:  calcd for C21H26CeN5O13: C 36.21, H 3.76, N 10.05; found: C 36.68, H 

3.43, N 9.81  

Catalyst synthesis 

To a solution of 164 mg (M = 809.58 g mol-1, 0.2026 mmol) complex I in 3 mL acetonitrile, 

300 mg activated charcoal were added and the suspension was stirred at 95 °C. After 

evaporation of the solvent, the sample was pyrolyzed under nitrogen atmosphere at 700 °C 

followed by reduction at 550 ° (N2/H2, 90/10). The catalysts used for the screening reactions 

were synthesized using equivalent amounts of monometallic complexes or metal salts. 

 

Synthesis of 6-hydroxy-1-phenylhexan-1-one 

6-hydroxy-1-phenylhexan-1-one was synthesized according to a known literature procedure.(3) 

A slurry of lactone (10 mmol), HN(OMe)Me-HCl (12 mmol) and NaOCH3 (2.5 mmol) in THF 

(100 ml) was cooled to -20 °C under argon atmosphere. A solution of phenylmagnesium 

bromide in THF (30 mmol, 0.7 M, 42.9 ml) was added dropwise. After 2 h the mixture was 

allowed to warm to room temperature and stirred overnight. The reaction was quenched with 

1 N HCl and stirred for another 2 h. THF was evaporated, the residue was treated with 50 ml 

of water and then extracted with CH2Cl2. The organic phases were combined, dried with 

Na2SO4, and concentrated under reduced pressure. The residue was purified by column 

chromatography on silica gel (ether/pentane) to give the desired hydroxyketone (substrate for 

product 4b). 1,1-diphenylhexane-1,6-diol (substrate for product 4d) was obtained as a side 

product. 1-phenylhexane-1,6-diol (substrate for product 4c) was synthesized by hydrogenation 

of 6-hydroxy-1-phenylhexan-1-one (2 mmol substrate, 100 mg Co-Ce/C, 3 ml ethanol, 90 °C, 

2.0 MPa H2, 20 h). 
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Screening of reaction parameters 

Table S1: Screening of reaction parameters – pyrolysis temperature.  

 
Entry Pyrolysis temperature Yield [%] 

1 600 51 

2 700 81 

3 800 70 

Reaction conditions: 0.5 mmol substrate, 15 mg catalyst (1.8 mol% Co, 

1.6 mol% Ce), 100 °C, 4.0 MPa H2, 3 ml methylcyclohexane, 20 h; Yields were 

determined by GC and GC-MS using n-dodecane as an internal standard. 

Table S2: Screening of reaction parameters – solvent.  

 
Entry Solvent Yield [%] 

1 Toluene 12 

2 1,4-Dioxane 5 

3 Diglyme 72 

4 tert-Butanol 49 

5 Isopropanol 54 

6 Ethanol 74 

7 H2O 18 

8 Methylcyclohexane 81 

Reaction conditions: 0.5 mmol substrate, 15 mg catalyst (1.8 mol% Co, 

1.6 mol% Ce), 100 °C, 4.0 MPa H2, 3 ml solvent, 20 h; Yields were determined 

by GC and GC-MS using n-dodecane as an internal standard.  

Table S3: Screening of reaction parameters – additive.  

 
Entry Additive Yield [%] 

1 None 30 

2 KOH 28 

3 NaOH 8 

4 KOtBu 10 

5 Amberlyst® 15 94 

6 Zn(OTf)2 93 

Reaction conditions: 0.5 mmol substrate, 35 mg catalyst (5.4 mol% Co, 

4.8 mol% Ce), 130 °C, 6.0 MPa H2, 3 ml methylcyclohexane, 5 mol% 

additive (10 mg Amberlyst® 15), 20 h; Yields were determined by GC and 

GC-MS using n-dodecane as an internal standard.  
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Hydrodeoxygenation of alcohols and carbonyl compounds I – general procedure 

A 5 mL teflon reaction vial was charged with a magnetic stirring bar, 0.5 mmol substrate, 3 ml 

methylcyclohexane and 15 or 35 mg catalyst (1.8 mol% Co, 1.6 mol% Ce or respectively 

4.2 mol% Co, 3.7 mol% Ce). For halogenated ketones and secondary alcohols 10 mg 

Amberlyst® 15 and for halogenated aldehydes and primary alcohols 5 mol% Zn(OTf)2 were 

used as an additive. The vial was placed in a 300 mL high-pressure autoclave (Parr Instruments) 

and the autoclave was flushed three times with 2 MPa hydrogen. Afterwards, the final pressure 

was applied and the reaction was stirred at the desired temperature for 20 h (reaction conditions 

vary dependent on the substrate). After completion of the reaction time, the autoclave was 

cooled to room temperature and the hydrogen was released. Quantitative GC analysis was 

accomplished using n-dodecane as an internal standard.  

Product 1a-c, 1p-s: 0.5 mmol substrate, 15 mg catalyst (1.8 mol% Co, 1.6 mol% Ce), 3 ml 

methylcyclohexane, 110 °C, 5.0 MPa H2, 20 h. 

Product 1d-h, 1t-w: 0.5 mmol substrate, 35 mg catalyst (4.2 mol% Co, 3.7 mol% Ce), 3 ml 

methylcyclohexane, 10 mg Amberlyst® 15, 130 °C, 6.0 MPa H2, 20 h. 

Product: 1i-o: 0.5 mmol substrate, 35 mg catalyst (4.2 mol% Co, 3.7 mol% Ce), 3 ml 

methylcyclohexane, 130 °C, 6.0 MPa H2, 20 h. 

Product: 2a-b, 2h-m: 0.5 mmol substrate, 50 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 3 ml 

methylcyclohexane, 130 °C, 6.0 MPa H2, 20 h. 

Product: 2c-g, 2n-q: 0.5 mmol substrate, 50 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 3 ml 

methylcyclohexane, 5 mol% Zn(OTf)2, 130 °C, 6.0 MPa H2, 20 h. 

Hydrodeoxygenation of alcohols and carbonyl compounds II – general procedure 

A 25 mL high-pressure autoclave (Parr Instruments) equipped with a teflon inlet was charged 

with a magnetic stirring bar, 1.0 mmol substrate, 6 ml solvent and the desired amount of catalyst 

and additive. The autoclave was flushed three times with 2 MPa of hydrogen. Afterwards, the 

final pressure was applied, and the reaction was stirred at the desired temperature for 20 h 

(reaction conditions vary dependent on the substrate). After completion of the reaction time, 

the autoclave was cooled to room temperature and the hydrogen was released. Quantitative GC 

analysis was accomplished using n-dodecane as internal standard.    

Products: 3a-e: 1.0 mmol substrate, 100 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 6 ml 

methylcyclohexane, 20 mg Amberlyst® 15, 160 °C, 6.0 MPa H2, 20 h. 
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Product: 3f: 1.0 mmol substrate, 30 mg catalyst (1.8 mol% Co, 1.6 mol% Ce), 6 ml 

methylcyclohexane, 110 °C, 4.0 MPa H2, 20 h. 

Products 4a-d: 1.0 mmol substrate, 70 mg catalyst (4.2 mol% Co, 3.7 mol% Ce), 6 ml ethanol, 

130 °C, 5.0 MPa H2, 20 h.  

Products: 5a, c, e: 1.0 mmol substrate, 100 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 6 ml 

methylcyclohexane, 160 °C, 6.0 MPa H2, 20 h. 

Product: 5b: 1.0 mmol substrate, 100 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 6 ml diglyme, 

160 °C, 6.0 MPa H2, 20 h. 

Product: 5d: 1.0 mmol substrate, 100 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 6 ml 

methylcyclohexane, 20 mg Amberlyst® 15, 160 °C, 6.0 MPa H2, 20 h. 

Product: 5f: 1.0 mmol substrate, 100 mg catalyst (6.1 mol% Co, 5.2 mol% Ce), 6 ml 

methylcyclohexane, 5 mol% Zn(OTf)2, 160 °C, 6.0 MPa H2, 20 h. 

Up-scaling  

10 mmol 4-acetamidoacetophenone were chosen for the up-scaling reaction. A 25 ml high-

pressure autoclave (Parr Instruments) equipped with a teflon inlet and a magnetic stirring bar 

was filled with 10 mmol substrate, 700 mg catalyst (4.2 mol% Co, 3.7 mol% Ce) and 12 ml 

methylcyclohexane. The autoclave was flushed three times with 2 MPa of hydrogen and 

afterwards the final pressure of 6 MPa was applied. The reaction was stirred for 20 h at 130 °C. 

After completion of the reaction time, the autoclave was cooled to room temperature and the 

hydrogen was released. The catalyst was removed by centrifugation and the organic phases 

were combined. After removal of the solvent, the desired product was obtained without further 

purification.  

Table S4: Up-scaling of the reaction. 

Entry Product Isolated Yield [g] Yield [%] 

 

1 

 

 

1.50 

 

92 

Reaction conditions: 10 mmol substrate, 700 mg catalyst (4.2 mol% Co, 3.7 mol% Ce), 

130 °C, 6.0 MPa H2, 12 ml methylcyclohexane, 20 h. 
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Catalyst characterization 

 

Fig. 1. SEM- in combination with EDX element maps of the active catalyst system. A homogeneous distribution 

of both metal species is verified. No phase separation could be detected, indicating a clean and smooth 

impregnation process. The presence of phosphorus can be reduced to the chemically activated carbon support.  

 

 

Fig. S2. Characterization of the active catalyst by high-angle annular dark-field scanning TEM (HAADF-

STEM) analysis combined with energy-dispersed X-ray (EDX) element maps. Co nanoparticles with a mean 

diameter of 6.8 nm are clearly visible, Ce seems to be homogeneously distributed over the whole carbon support. 
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Fig. S3. High-angle annular dark-field scanning TEM (HAADF-STEM) imaging (A and B) combined with 

electron energy loss spectroscopy (EELS) elemental mapping for Cobalt (Red) and Cerium (Cyan) (C). Direct 

comparison of the HAADF-STEM data with the EELS mapping of Cerium suggests that nanometer sized bright 

features marked with arrows surrounding Co-particles are rich in Cerium. 

 

Fig. S4. XPS analysis of the Co-Ce catalyst.  

Besides the elements C and O, the sample contained Ce, Co, N and P. The presence of 

phosphorus can be assigned to impurities of the chemically activated carbon support. An 

analysis of the Co 2p3/2 region verifies the presence of metallic cobalt, which can be identified 

due to its sharp line and its binding energy of 778 eV (20 % of the signal). At higher binding 

energies, different oxides and maybe also hydroxides are found that cannot be distinguished 

(80% of the signal). For Ce 3d5/2 the fits were carried out by comparing the results to the 

literature.(4) The spectrum is dominated by signals of Ce3+ (85%). The contribution at 916 eV 

is due to the presence of ~15% of Ce4+. The Ce4+ amount was calculated by taking into account 

the relative intensities of all Ce3+ and Ce4+ signals as described in Ref. (5).  
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Characterization of isolated products 

1-ethyl-4-methoxybenzene (1c) 

 

FW (C9H12O) = 136.19 g mol-1 

1H NMR (300 MHz, C6D6): δ = 7.01-6.97 (m, 2 H), 6.82-6.78 (m, 2 H), 3.35 (s, 1 H), 2.46 (q, 

J = 7.62 Hz, 2 H), 1.11 (t, J = 7.62 Hz, 2 H) ppm. 

13C NMR (75 MHz, C6D6): δ = 158.77, 136.66, 129.34, 114.54, 55.12, 28.72, 16.58 ppm. 

Yield: 86 % (0.43 mmol, 58 mg), colorless liquid. 

1-bromo-4-ethylbenzene (1h) 

 

FW (C8H9Br) = 185.06 g mol-1 

1H NMR (300 MHz, C6D6): δ = 7.27-7.22 (m, 2 H), 6.66-6.61 (m, 2 H), 2.21 (q, J = 7.62 Hz, 2 

H), 0.93 (t, J = 7.62 Hz, 2 H) ppm. 

13C NMR (75 MHz, C6D6): δ = 142.75, 131.30, 129.54, 119.36, 28.07, 14.98 ppm. 

Yield: 71 % (0.36 mmol, 66 mg), colorless liquid. 

N-(4-ethylphenyl)acetamide (1k) 

 

FW (C10H13NO) = 163.22 g mol-1 

1H NMR (300 MHz, CDCl3): δ = 8.11 (s, 1 H), 7.42 (d, J = 7.03 Hz, 2 H), 7.12 (d, J = 7.03 Hz, 

2 H), 2.61 (q, J = 7.62 Hz, 2 H), 2.14 (s, 3 H), 1.22 (t, J = 7.62 Hz, 3 H) ppm 

13C NMR (75 MHz, CDCl3): δ = 168.79, 140.20, 135.58, 128.08, 120.27, 28.19, 24.21, 

15.56 ppm. 

Yield: 86 % (0.43 mmol, 70 mg), white solid. 

6-ethyl-2,3-dihydrobenzo[b][1,4]dioxine (1n) 

 

FW (C10H12O2) = 164.20 g mol-1 
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1H NMR (300 MHz, CDCl3): δ = 6.81-6.78 (m, 1 H), 6.73-6.67 (m, 2 H), 4.27-4.23 (m, 4 H), 

2.60-2.53 (m, 2 H), 1.23-1.19 (m, 3 H) ppm 

13C NMR (75 MHz, CDCl3): δ = 143.27, 141.47, 137.69, 120.77, 116.98, 116.43, 64.46, 28.15, 

15.74 ppm. 

Yield: 90 % (0.45 mmol, 74 mg), colorless liquid. 

diphenylmethane (1r) 

 

FW (C13H12) = 168.24 g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 7.31-7.16 (m, 10 H), 3.94 (s, 2 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 141.51, 128.92, 128.65, 126.19, 41.37 ppm. 

Yield: 88 % (0.44 mmol, 74 mg), colorless liquid. 

9H-fluorene (1s) 

 

FW (C13H10) = 166.22g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 7.91-7.89 (m, 2 H), 7.60-7.58 (m, 2 H), 7.41-7.29 (m, 4 

H), 3.92 (s, 2 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 142.92, 141.04, 126.76, 126.70, 125.11, 119.95, 36.35 

ppm. 

Yield: 81 % (0.41 mmol, 67 mg), white solid. 

1-fluoro-4-phenethylbenzene (1t) 

 

FW (C14H13F) = 200.26 g mol-1 

1H NMR (300 MHz, CDCl3): δ = 7.34-7.14 (m, 7 H), 7.04-6.99 (m, 2 H), 2.96 (s, 4 H) ppm 

13C NMR (75 MHz, CDCl3): δ = 162.99, 159.75, 141.49, 137.37, 129.91, 129.82, 128.53, 

128.41, 126.05, 115.21, 114.94, 38.07, 37.12 ppm. 

Yield: 81 % (0.41 mmol, 81 mg), white solid. 
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p-cresol (2b) 

 

FW (C7H8O) = 108.14 g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 9.08 (s, 1 H), 6.96-6.93 (m, 2 H), 6.66-6.63 (m, 2 H), 2.17 

(s, 3 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 155.02, 129.70, 127.12, 115.01, 20.09 ppm. 

Yield: 88 % (0.44 mmol, 48 mg), colorless solid. 

1-chloro-2-methylbenzene (2d) 

 

FW (C7H7Cl) = 126.58 g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 7.41-7.20 (m, 4 H), 2.32 (s, 3 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 135.35, 133.24, 131.20, 128.77, 127.57, 127.03, 

19.49 ppm. 

Yield: 68 % (0.34 mmol, 43 mg), colorless liquid. 

1-chloro-4-methylbenzene (2f) 

 

FW (C7H7Cl) = 126.58 g mol-1 

1H NMR (300 MHz, C6D6): δ = 7.08-7.03 (m, 2 H), 6.67-6.64 (m, 2 H), 1.90 (s, 3 H) ppm. 

 13C NMR (75 MHz, C6D6): δ = 136.58, 131.85, 130.97, 128.92, 20.94 ppm. 

Yield: 86 % (0.43 mmol, 54 mg), colorless liquid. 

1-bromo-4-methylbenzene (2g) 

 

FW (C7H7Br) = 171.04 g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 7.44-7.41 (m, 2 H), 7.15-7.13 (m, 2 H), 2.26 (s, 3 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 136.84, 131.17, 130.97, 118.30, 20.39 ppm. 

Yield: 76 % (0.38 mmol, 65 mg), colorless liquid. 
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N-(p-tolyl)acetamide (2j) 

 

FW (C7H7Br) = 149.19 g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 9.85 (s, 1H), 7.50-7.47 (m, 2 H), 7.11-7.08 (m, 2 H), 2.25 

(s, 3 H), 2.04 (s, 3 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 168.46, 137.32, 132.26, 129.48, 119.46, 24.40, 20.87 ppm. 

Yield: 86 % (0.43 mmol, 64 mg), white solid. 

1-iodo-4-methylbenzene (2p) 

 

FW (C7H7I) = 218.96 g mol-1 

1H NMR (300 MHz, C6D6): δ = 7.4 (d, J = 8.2 Hz, 2 H), 6.47 (d, J = 8.2 Hz, 2 H), 1.85 (s, 3 H) 

ppm. 

13C NMR (75 MHz, C6D6): δ = 137.88, 137.70, 131.72, 90.96, 21.12 ppm. 

Yield: 62 % (0.31 mmol, 68 mg), colorless liquid. 

p-toluidine (2q) 

 

FW (C7H9N) = 107.16 g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 6.82 (d, J = 8.2 Hz, 2 H), 6.47 (d, J = 8.2 Hz, 2 H), 4.77 

(s, 2 H), 2.12 (s, 3 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 146.06, 129.23, 123.92, 114.03, 20.12 ppm. 

Yield: 87 % (0.43 mmol, 47 mg), colorless solid. 

n-dodecane (3a) 

 

FW (C12H26) = 170.34 g mol-1 

1H NMR (300 MHz, C6D6): δ = 1.3 (br, 20 H) 0.94-0.90 (m, 6H) ppm 

13C NMR (75 MHz, C6D6): δ = 32.01, 29.83, 29.49, 22.78, 14.00 ppm. 
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Yield: 91 % (0.91 mmol, 155 mg), colorless liquid. 

2-phenylethan-1-ol (4a) 

 

FW (C8H10O) = 122.17 g mol-1 

1H NMR (300 MHz, C6D6): δ = 7.16-7.01 (m, 5 H), 3.50 (t, J = 7.03 Hz, 2 H), 2.57 (t, J = 

7.03 Hz, 2 H), 1.24 (s, 1 H) ppm. 

13C NMR (75 MHz, C6D6): δ = 139.65, 129.67, 129.02, 126.83, 64.01, 39.98 ppm. 

Yield: 66 % (0.66 mmol, 81 mg), colorless liquid. 

6-phenylhexan-1-ol (4b) 

 

FW (C12H18O) = 178.28 g mol-1 

1H NMR (300 MHz, C6D6): δ = 7.21-7.06 (m, 5 H), 3.43-3.38 (m, 2 H), 2.47 (t, J = 7.61 Hz, 2 

H), 1.83 (s, 1 H), 1.56-1.46 (m, 2 H), 1.43-1.34 (m, 2 H), 1.28-1.17 (m, 4 H) ppm. 

13C NMR (75 MHz, C6D6): δ = 143.30, 129.08, 128.94, 126.35, 62.96, 36.58, 33.41, 32.19, 

29.73, 26.36 ppm. 

Yield: 85 % (0.85 mmol, 152 mg), colorless liquid. 

6,6-diphenylhexan-1-ol (4d) 

 

FW (C18H12O) = 254.37 g mol-1 

1H NMR (500 MHz, CDCl3): δ = 7.36-7.30 (m, 8 H), 7.25-7.22 (m, 2H), 3.96 (t, J = 7.94 Hz, 

1 H), 3.62 (t, J = 6.41 Hz, 2 H), 2.14 (q; J = 7.94, 2 H), 1.99 (s, 1 H), 1.60-1.55 (m, 2 H), 1.48-

1.42 (m, 2 H), 1.39-1.33 (m, 2 H) ppm. 

 13C NMR (125.7 MHz, CDCl3): δ = 145.30, 128.50, 127.93, 126.15, 62.86, 51.39, 35.76, 32.62, 

27.91, 25.83 ppm. 

Yield: 87 % (0.87 mmol, 221 mg), colorless liquid. 
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2-(3-benzylphenyl)propanoic acid (5c) 

 

FW (C16H16O2) = 240.30 g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 12.31 (s, 1 H), 7.36-7.08 (m, 9 H), 3.92 (s, 2 H), 3.66-3.59 

(m, 1 H), 1.34-1.32 (m, 3 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 175.79, 141.87, 141.63, 129.14, 128.99, 128.90, 128.27, 

127.65, 126.44, 125.47, 45.12, 41.56, 19.04 ppm. 

Yield: 87 % (0.87 mmol, 209 mg), white solid. 

4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)butyl)piperidine (5d) 

 

FW (C21H25ClFN) = 345.89 g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 7.34-7.19 (m, 6 H), 7.12-7.04 (m, 2 H), 2.93-2.89 (m, 2 

H), 2.59-2.54 (m, 2H), 2.47-2.40 (m, 1 H), 2.31-2.26 (m, 2 H), 1.97-1.88 (m, 2 H), 1.72-1.38 

(m, 8 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 162.61, 159.42, 145.76, 138.83, 130.93, 130.47, 130.37, 

129.07, 128.69, 115.46, 115.18, 58.39, 54.17, 41.78, 34.62, 33.44, 29.48, 26.46 ppm. 

Yield: 84 % (0.84 mmol, 290 mg), white solid. 

N,2-diphenylacetamide (5e) 

 

FW (C14H13NO) = 211.26 g mol-1 

1H NMR (300 MHz, DMSO-d6): δ = 10.17 (s, 1 H), 7.61-7.59 (m, 2H), 7.36-7.23 (m, 7 H), 

7.05-7.00 (m, 1H), 3.64 (s, 2 H) ppm 

13C NMR (75 MHz, DMSO-d6): δ = 169.05, 139.21, 135.99, 129.08, 128.69, 128.28, 126.50, 

123.17, 119.07, 43.32 ppm. 

Yield: 84 % (0.84 mmol, 177 mg), light yellow solid. 
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cholesten (5f) 

 

FW (C27H45) = 369.66 g mol-1 

1H NMR (500 MHz, CDCl3): δ = 5.30-5.28 (m, 1H), 2.28-2.16 (m, 1 H), 2.04-0.73 (m, 41 H), 

0.69-0.67 (m, 3 H) ppm 

13C NMR (125.7 MHz, CDCl3): δ = 145.16, 143.71, 118.98, 118.90, 56.86, 56.26, 56.21, 54.45, 

42.51, 39.51, 35.80, 32.63, 28.24, 28.01, 24.27, 23.84, 22.83, 22.56, 21.42, 19.45, 19.29, 18.65, 

11.98 ppm. 

A mixture of isomers was obtained. 

Yield: 75 % (0.75 mmol, 277 mg), white solid. 

 

Additional supplementary figures 

 

Fig. S5. Nitrogen physisorption measurements of the catalyst in comparison to the pure carbon support. 

Both materials show the typical hysteresis of mesoporous materials. The catalyst features a specific surface area 

(Brunauer-Emmet-Teller) of 740 m2/g. The corresponding pore size distributions [N2 at -196.15 °C on carbon 

(slit/cylindrical pore, NLDFT equilibrium model) indicate a small decrease in the amount of micropores after wet 

impregnation and pyrolysis.  
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Fig. S6. Structures of the different salen complexes. The complexes were synthesized according to known 

literature procedures described before. 

 

 

Fig. S7. Recycling study. The catalyst was reused in five consecutive runs without any remarkable decrease in 

catalytic activity. Reaction conditions: 0.5 mmol substrate, 15 mg catalyst (1.8 mol% Co, 1.6 mol% Ce), 100 °C, 

4.0 MPa H2, 3 ml methylcyclohexane, 20 h. Yields were determined by GC and GC-MS using n-dodecane as 

internal standard. The catalyst was separated using a magnet, washed and reused again.   
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