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Abstract

The Shapley-Shubik index is a specialization of the Shapley value and is widely applied to evaluate

the power distribution in committees drawing binary decisions. It was generalized to decisions with

more than two levels of approval both in the input and the output. The corresponding games are

called (j, k) simple games. Here we present a new axiomatization for the Shapley-Shubik index for

(j, k) simple games as well as for a continuous variant, which may be considered as the limit case.
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1 Introduction

In [18] Shapley introduced a function that could be interpreted as the expected utility of a game from

each of its positions via the axiomatic approach � the so-called Shapley value. A bit later, see [19], it

was restricted to games with binary decisions, i.e., simple games. An axiomatization of this so-called

Shapley-Shubik index was given quite a few years later by Dubey [3]. Nowadays, the Shapley-Shubik

index is one of the most established power indices for committees drawing binary decisions. However,

not all decisions are binary. Abstaining from a vote might be seen as a third option for the committee

members. In general, there might also be any number j ≥ 2 of alternatives that can be chosen from. To
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this end, simple games were generalized to (j, k) simple games [7], where j is the number of alternatives

in the input, i.e., the voting possibilities, and k the number of alternatives for the group decision. A

Shapley-Shubik index for these (j, k) simple games was introduced in [5] generalizing earlier attempts

for special cases, see e.g. [4, pp. 291�293]. However, also other variants have been introduced in

the literature, see e.g. [2, 8, 10]. Here, we will only consider the variant from [5]. A corresponding

axiomatizations is given in [6].

If we normalize the input and output levels to numbers between zero and one, we can consider

the limit if j and k tend to in�nity for (j, k) simple games. More precisely we can consider the input

levels i/(j − 1) for 0 ≤ i ≤ j − 1 and the output levels i/(k − 1) for 0 ≤ i ≤ k − 1. Then those

games are discrete approximations for games with input and output levels freely chosen from the real

interval [0, 1]. The later games were called simple aggregation functions in [13], linking to the literature

on aggregation functions [9], and interval simple games in [14]. A Shapley-Shubik like index for those

games was motivated and introduced in [12], an axiomatization is given in [14].

The success story of the Shapley-Shubik index for simple games, initiated by [18] and [19], triggered

a huge amount of modi�cations and generalizations to di�erent types of games, see e.g. [1] for some

current research directions. We think that the variants from [5], for (j, k)-simple games, and from

[12], for interval simple games, form one consistent way to generalize the Shapley-Shubik index for

simple games. Here we mainly focus on an axiomatic justi�cation, see our main result in Theorem 5.1.

Moreover, we present another formula for the Shapley-Shubik index for (j, k) simple games which is

better suited for computation issues, see Lemma 3.1 and Theorem 4.1. For a generalization of the

Banzhaf index a similar result was obtained in [17]. As the title of the preface of [1] names it, the idea

of the Shapley value is the root of a still ongoing research agenda.

The remaining part of this paper is organized as follows. In Section 2 we introduce the necessary

preliminaries and present the �rst few basic results. A Shapley-Shubik index Φ for general (j, k) simple

games is introduced in Section 3. Moreover, we study the �rst basic properties of Φ. In Section 4

we introduce the average game, which is a TU game associated to each (j, k) simple game. This

notion is then used to formulated the new axiom of average convexity, which culminates in an axiomatic

characterization of Φ in Section 5. In Section 6 we transfer all notions and the axiomatic characterization

to interval simple games.
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2 Preliminaries

Let N = {1, 2, ..., n} be a �nite set of voters. Any subset S of N is called a coalition and the set of all

coalitions ofN is denoted by the power set 2N . For given integers j, k ≥ 2 we denote by J = {0, . . . , j−1}

the possible input levels and by K = {0, . . . , k − 1} the possible output levels, respectively. We write

x ≤ y for x, y ∈ Rn if xi ≤ yi for all 1 ≤ i ≤ n. For each ∅ ⊆ S ⊆ N we write xS for the restriction of

x ∈ Rn to (xi)i∈S . As an abbreviation, we write x−S = xN\S . Instead of x{i} and x−{i} we write xi and

x−i, respectively. Slightly abusing notation we write a ∈ Rn, for the vector that entirely consists of a's,

i.e., 0 for the zero vector.

A simple game with player set N is a mapping v : 2N → {0, 1} with v(∅) = 1, v(N) = 1, and

v(S) ≤ v(T ) for all ∅ ⊆ S ⊆ T ⊆ N . Coalitions S ⊆ N with v(S) = 1 are called winning and losing

otherwise. The interpretation in the voting context is as follows. Those elements i ∈ N , called voters or

players, that are contained in a coalition S are those that are in favor of a certain proposal. The other

voters, i.e., those in N\S, are against the proposal. If v(S) = 1 then the proposal is implemented and

otherwise the status quo persists. A simple game v is weighted if there exists a quota q ∈ R>0 and weights

wi ∈ R≥0 for all i ∈ N such that v(S) = 1 i� w(S) :=
∑

i∈S wi ≥ q. As notation we use [q;w1, . . . wn]

for a weighted (simple) game. An example is given by v = [4; 3, 2, 1, 1] with winning coalitions {1, 2},

{1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}, and {2, 3, 4}. A simple game v is a unanimity game

if there exists a coalition ∅ 6= T ⊆ N such that v(S) = 1 i� T ⊆ S. As an abbreviation we use the

notation γT for a unanimity game with de�ning coalition T . It is well known that each simple game

admits a representation as disjunctions of a �nite list of unanimity games. Calling a winning coalition

minimal if all proper subsets are losing, such a list is given by the minimal winning coalitions, i.e., by

{1, 2}, {1, 3}, {1, 4}, and {2, 3, 4} in the above example.

If being part of a coalition is modeled as voting �yes� and �no� otherwise, represented as 1 and 0,

respectively, then one can easily reformulate and generalize the de�nition of a simple game:

De�nition 2.1. A (j, k) simple game for n players, where j, k ≥ 2 and n ≥ 1 are integers, is a mapping

v : Jn → K with v(0) = 0, v(j− 1) = k − 1, and v(x) ≤ v(y) for all x, y ∈ Jn with x ≤ y. The set of

all (j, k) simple games on N is denoted by U j,kn or by Un, whenever j and k are clear from the context.

So, (2, 2) simple games are in one-to-one correspondence to simple games. We use the usual ordering

of J (and K) as a set of integers, i.e., 0 < 1 < · · · < j − 1. In words, in the input set, 0 is the lowest

level of approval, followed by 1 and so on. In general, we call a function f : Rn ⊇ U → R monotone if

we have f(x) ≤ f(y) for all x, y ∈ U with x ≤ y. We remark that in [5] the author considers a more

general de�nition of a (j, k) simple game than we have presented here. Additionally the j input levels
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and the k output levels are given by a so-called numeric evaluation. Our case is called uniform numeric

evaluation there, which motivated the notation Un for (j, k) simple games for n players. We also call a

vector x ∈ Jn a pro�le.

De�nition 2.2. Given a (j, k) simple game v with player set N , we call a player i ∈ N a null player if

v(x) = v(x−i, yi) for all x ∈ Jn and all yi ∈ J . Two players i, h ∈ N are called equivalent if v(x) = v(x′)

for all x, x′ ∈ Jn with xl = x′l for all l ∈ N\{i, h}, xi = x′h, and xh = x′i.

In words, a player i is a null player if its input xi does not alter the output v(x). If interchanging

the input xi and xh of two players does never alter the output v(x), then players i and h are equivalent.

By πih we denote the transposition on N interchanging i and h, so that the previous condition reads

v(x) = v(πihx) for all x ∈ Jn. By Sn we denote the set of permutations of length n, i.e., the bijections

on N .

Now let us introduce a subclass of (j, k) simple games with the property that for each pro�le x,

the collective decision v(x) is either 0 (the lowest level of approval) or it is k − 1 (the highest level of

approval) depending on whether some given voters report some minimum approval levels. For example,

when any full support of the proposal necessitates a full support of each voter in a given coalition S,

players in S are each empowered with a veto. One may require from each player in S only a certain

level of approval for a full support of the proposal. All such games will be called (j, k) simple games

with point-veto.

De�nition 2.3. A (j, k) simple game with a point-veto is a (j, k) simple game v such that there exists

some a ∈ Jn\{0} satisfying v(x) = k − 1 if a ≤ x and v(x) = 0 otherwise for all x ∈ Jn. In this case,

a is the veto and the game v is denoted by ua. For each coalition S ∈ 2N we abbreviate wS = ua, where

ai = j − 1 for all i ∈ S and ai = 0 otherwise.

We remark that (2, 2) simple games with a point veto are in one-to-one correspondence to the

subclass of unanimity games within simple games. The set of all players who report a non-null approval

level is denoted by Na, i.e., Na = {i ∈ N : 0 < ai ≤ j − 1}. Every player in Na will be called a vetoer

of the game ua. Note that for the vector a de�ned via wS = ua we have Na = S.

Null players as well as equivalent players can be identi�ed easily in a given (j, k) simple game with

point-veto:

Proposition 2.1. Let a ∈ Jn\{0}. A player i ∈ N is a null player of ua i� i ∈ N\Na. Two players

i, h ∈ N are equivalent in ua i� ai = ah.

4



Proof. For every a ∈ Jn\{0} and every i ∈ N\Na we have ai = 0 by the de�nition of Na. Now let

i ∈ N\Na. For every x ∈ Jn and every yi ∈ J we have a ≤ x i� a ≤ (x−i, yi). Thus, u
a(x) = ua (x−i, yi)

and i is a null player in ua. Now let i ∈ Na, i.e., ai > 0. Since v(a) = k − 1 6= 0 = v (a−i,0i), player i

is not a null player in ua.

Assume that ai = ah and consider an arbitrary x ∈ Jn. Then we have a ≤ x if and only if a ≤ πihx.

The de�nition of ua directly gives ua(x) = ua(πihx), so that the players i and h are equivalent in ua. Now

suppose that the players i and h are equivalent in ua. Since a ≤ a, we obtain ua(a) = ua(πiha) = k− 1.

This implies that a ≤ πiha. Therefore ai ≤ ah and ah ≤ ai, that is ai = ah.

Note that (j, k) simple games can be combined using the disjunction (∨) or the conjunction (∧)

operations to obtain new games.

De�nition 2.4. Let v′ and v′′ be two (j, k)-simple games with player set N . By v′ ∨ v′′ we denote the

(j, k) simple game v de�ned by v(x) = max{v′(x), v′′(x)} for all x ∈ Jn. Similarly, by v′ ∧ v′′ we denote

the (j, k) simple game v de�ned by v(x) = min{v′(x), v′′(x)} for all x ∈ Jn.

We remark that the de�ning properties of a (j, k) simple game can be easily checked. This can be

specialized to the subclass of (j, k) simple games with point veto, i.e., (j, k) simple games with point-veto

can be combined using the disjunction (∨) or the conjunction (∧) operations to obtain new games. To

see this, consider a non-empty subset E of Jn\{0} and de�ne the (j, k) simple game denoted by uE by

uE(x) = k − 1 if a ≤ x for some a ∈ E and uE(x) = 0 otherwise, where x ∈ Jn is arbitrary. Note that

the notational simpli�cation u{a} = ua, where a ∈ Jn\{0}, goes in line with De�nition 2.3.

Proposition 2.2. Let E and E′ be two non-empty subsets of Jn\{0}. Then, we have uE ∨uE′ = uE∪E
′

and uE ∧ uE′ = uE
′′
, where E′′ = {c ∈ Jn : ci = max(ai, bi) for some a ∈ E and b ∈ E′}.

Proof. In order to prove uE ∨ uE′ = uE∪E
′
we consider an arbitrary x ∈ Jn. If uE∪E

′
(x) = k − 1,

then there exists a ∈ E ∪ E′ such that, a ≤ x. Therefore uE(x) = k − 1 or uE
′
(x) = k − 1 and

(uE ∨ uE′)(x) = k− 1. Now suppose that uE∪E
′
(x) = 0. Then, for all a ∈ E ∪E′ we have a � x. Since

E ⊆ E ∪ E′ and E′ ⊆ E ∪ E′ we have b � x and c � x for all b ∈ E and all c ∈ E′. This implies that

uE(x) = uE
′
(x) = 0 and (uE ∨ uE′)(x) = 0. Thus, uE ∨ uE′ = uE∪E

′
.

Similarly, in order to prove uE ∧uE′ = uE
′′
we consider an arbitrary x ∈ Jn. If uE′′(x) = k−1, then

there exists c ∈ E′′ such that c ≤ x. But, by de�nition of E′′, c = max(a, b) for some a ∈ E and b ∈ E′,

that is a ≤ c ≤ x and b ≤ c ≤ x. Hence, uE(x) = uE
′
(x) = k−1 and (uE∧uE′)(x) = k−1. Now assume

that uE
′′
(x) = 0 and (uE ∧ uE′)(x) 6= 0. By de�nition of uE and uE

′
, we have (uE ∧ uE′)(x) = k − 1.
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Thus, there exists a ∈ E and b ∈ E′ such that a ≤ x and b ≤ x. It follows that c = max(a, b) ≤ x,

which is a contradiction to uE
′′
(x) = 0. This proves uE ∧ uE′ = uE

′′
.

For (j, k) = (5, 3) and n = 3 an example is given by E = {(1, 2, 3), (2, 1, 2)}, E′ = {(4, 1, 1), (1, 1, 3)}.

With this, E′′ = {(4, 2, 3), (1, 2, 3), (2, 1, 3), (4, 1, 2)}. Note that we may remove (4, 2, 3) from that list

since (4, 2, 3) ≥ (1, 2, 3) (or (4, 2, 3) ≥ (4, 1, 2)).

Especially, Proposition 2.2 yields that every (j, k) simple game of the form uE is a disjunction of

some (j, k) simple games with point-veto. So, each (j, k) simple game of the form uE will be called a

(j, k) simple game with veto. In the game uE , E can be viewed as some minimum requirements (or

thresholds) on the approval levels of voters' inputs for the full support of the proposal. It is worth

noticing that uE is {0, k − 1}-valued; the �nal decision at all pro�les is either a no-support or a full-

support. The set of all veto (j, k) simple games on N is denoted Vn. Note that Proposition 2.2 shows

that Vn is a lattice.

The sum of two (j, k) simple games cannot be a (j, k) simple game itself. However, we will show

that each (j, k) simple game is a convex combination of (j, k) simple games with veto.

De�nition 2.5. A convex combination of the games v1, v2, . . . , vp ∈ Un is given by v =
∑p

t=1 αtvt for

some non-negative numbers αt, where t = 1, 2, . . . , p, that sum to 1.

Note that not all convex combinations of (j, k) simple games are (j, k) simple games.

Proposition 2.3. For each (j, k) simple game v there exist a collection of positive numbers αt, where

t = 1, 2, . . . , p, that sum to 1 and a collection Ft(v), where t = 1, 2, . . . , p, of non-empty subsets of Jn

such that v =
∑p

t=1 αtu
Ft(v).

Proof. Let v ∈ Un and F(v) = {x ∈ Jn, v(x) > 0}. Since Jn is �nite and v is monotone, the elements of

F(v) can be labeled in such a way that F(v) = {x1, x2, . . . , xp}, where xp = 1, v(xt) ≤ v(xt+1) for all

1 ≤ t < p, and t ≤ s whenever xt ≤ xs. Now, set x0 = 0 and Ft(v) = {xs, t ≤ s ≤ p}, αt = v(xt)−v(xt−1)
k−1

for all 1 ≤ t ≤ p. By our assumption on xt we have αt ≥ 0 for all 1 ≤ t ≤ p. Moreover, it can be easily

checked that
∑p

t=1 αt = v(xp)−v(x0)
k−1 = 1. set u =

∑p
t=1 αtu

Ft(v).

In order to prove that v = u, we consider an arbitrary x ∈ Jn. First suppose that x /∈ F(v). Since

v is monotone, there is no a ∈ F(v) such that a ≤ x. By de�nition, it follows that vFt(v)(x) = 0

for all t = 1, 2, . . . , p. Therefore v(x) = u(x) = 0. Now suppose that x ∈ F(v). Then x = xs for

some s = 1, 2, . . . , p. It follows that for all t = 1, 2, . . . , p we have vFt(v)(x) = k − 1 if 1 ≤ t ≤ s and

vFt(v)(x) = 0 otherwise. Therefore

u(x) =

s∑
t=1

αt =

s∑
t=1

(
v(xt)− v(xt−1)

k − 1
· (k − 1)

)
= v(xs) = v(x).
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Clearly, the game v is a convex combination of the games uFt(v), where t = 1, 2, . . . , p.

Proposition 2.3 underlines the importance of (j, k) simple games with veto, i.e., every (j, k) simple

game can be obtained from (j, k) simple games with veto as a convex combination.

Now let us consider a continuous version of (j, k) simple games normalized to the real interval

I := [0, 1] for the input as well as the output levels. Following [13] and using the name from [14], we

call a mapping v : [0, 1]n → [0, 1] an interval simple game if v(0) = 0, v(1) = 1, and v(x) ≤ v(y) for all

x, y ∈ [0, 1]n with x ≤ y. Replacing J by [0, 1] in De�nition 2.2 we can transfer the concept of a null

player and that of equivalent players to interval simple games.

3 The Shapley-Shubik index for simple and (j, k) simple games

Since in a typical simple game v not all players are equivalent, the question of in�uence of a single

player i on the �nal group decision v(S) arises. Even if v can be represented as a weighted game, i.e.,

v = [q;w], the relative individual in�uence is not always reasonably re�ected by the weights wi. This

fact is well-known and triggered the invention of power indices, i.e., mappings from a simple game on n

players to Rn re�ecting the in�uence of a player on the �nal group decision. One of the most established

power indices is the Shapley-Shubik index [19]. It can be de�ned via

SSIi(v) =
∑

i∈S⊆N

(s− 1)!(n− s)!
n!

· [v(S)− v(S\ {i})] (1)

for all players i ∈ N , where s = |S|. If v(S) − v(S\{i}) = 1, then we have v(S) = 1 and v(S\{i}) = 0

in a simple game and voter i is called a swing voter.

In [19] the authors have motivated the Shapley-Shubik index by the following interpretation. Assume

that the n voters row up in a line and declare to be part in the coalition of �yes�-voters. Given an

ordering of the players, the player that �rst guarantees that a proposal can be put through is then

called pivotal. Considering all n! orderings π ∈ Sn of the players with equal probability then gives a

probability for being pivotal for a given player i ∈ N that equals its Shapley-Shubik index. So we can

rewrite Equation (1) to

SSIi(v) =
1

n!
·
∑
π∈Sn

(
v({j ∈ N : π(j) ≤ π(i)})− v({j ∈ N : π(j) < π(i)})

)
. (2)

Setting Siπ := {j ∈ N : π(j) ≤ π(i)} we have Siπ = S for exactly (s− 1)!(n− s)! permutations π ∈ Sn

and an arbitrary set {i} ⊆ S ⊆ N , so that Equation (1) is just a simpli�cation of Equation (2).
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Instead of assuming that all players vote �yes� one can also assume that all players vote �no�. In [16]

it is mentioned that the model also yields the same result if we assume that all players independently

vote �yes� with a �xed probability p ∈ [0, 1]. This was further generalized to probability measures p

on {0, 1}n where vote vectors with the same number of �yes� votes have the same probability, see [11].

In other words, individual votes may be interdependent but must be exchangeable. That no further

probability measures lead to the Shapley-Shubik index was �nally shown in [15]. For the most symmetric

case p = 1
2 we can rewrite Equation (2) to

SSIi(v) =
1

n! · 2n
·

∑
(π,x)∈Sn×{0,1}n

M(v, (π, x), i), (3)

where M(v, (π, x), i) is one if player i is pivotal for ordering π and vote vector x in v, see [15], and zero

otherwise.

This line of reasoning can be used to motivate a de�nition of a Shapley-Shubik index for (j, k) simple

games as de�ned in [5], c.f. [12]. Suppose that voters successively and independently each choose a level

of approval in J with equal probability. Such a vote scenario is modeled by a roll-call (π, x) that consists

in a permutation π of the voters and a pro�le x ∈ Jn such for all i ∈ N , the integer π(i) ∈ {1, 2, . . . , n}

is the entry position of voter i and xi is his approval level. Given an index h ∈ {1, . . . , k − 1}, a voter

i is an h-pivotal voter if the vote of player i, according to the ordering π and the approval levels of his

predecessors, pushes the outcome to at least h or to at most h− 1.

Example 3.1. Let v be the (3, 3) simple game v for 2 players de�ned by v(0, 0) = v(1, 0) = 0, v(1, 1) =

v(0, 1) = 1, and v(2, 0) = v(0, 2) = v(2, 1) = v(1, 2) = v(2, 2) = 2. As an example, consider the ordering

π = (2, 1), i.e., player 2 is �rst, and the vote vector x = (2, 1). Before player 2 announce his vote x2 = 1

all outcomes in K = {0, 1, 2} are possible. After the announcement the outcome 0 is impossible, since

v(0, 1) = 1, while the outcomes 2 and 3 are still possible. Thus, player 2 is the 1-pivotal voter. Finally,

after the announcement of x1 = 2, the outcome is determined to be v(2, 1) = 2, so that player 1 is the

2-pivotal voter.

Going in line with the above motivation and the de�nition from [5], the Shapley-Shubik index for

(j, k) simple games is de�ned for all v ∈ Un and for all i ∈ N by:

Φi(v) =
1

n! · jn · (k − 1)

k−1∑
h=1

|{(π, x) ∈ Sn × Jn : i is an h-pivot for π and x in v}| . (4)

Since several di�erent de�nitions of a Shapley-Shubik index for (j, k)-simple games have been intro-

duced in the literature, we prefer to use the more inconspicuously notation Φi(v) instead of the more
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suggestive notation SSIi(v). For the (j, k) simple game v from Example 3.1 we have

Φ(v) = (Φ1(v),Φ2(v)) =

(
5

12
,

7

12

)
.

Hereafter, some properties of Φ are explored. To achieve this, we introduce further de�nitions and

axioms for power indices on (j, k) simple games. First of all, we simplify Equation (4) to a more handy

formula.

Lemma 3.1. For each (j, k) simple game v ∈ Un and each player i ∈ N we have

Φi(v) =
∑

i∈S⊆N

(s− 1)!(n− s)!
n!

· [C(v, S)− C(v, S\{i})] , (5)

where s = |S| and

C(v, T ) =
1

jn(k − 1)
·
∑
x∈Jn

(
v((j− 1)T , x−T )− v(0T , x−T )

)
(6)

for all T ⊆ N .

Proof. For a given permutation π ∈ Sn and i ∈ N , we set π<i = {j ∈ N : π(j) < π(i)}, π≤i =

{j ∈ N : π(j) ≤ π(i)}, π>i = {j ∈ N : π(j) > π(i)}, and π≥i = {j ∈ N : π(j) ≥ π(i)}. With this,

we can rewrite n! · jn · (k − 1) times the right hand side of Equation (4) to∑
(π,x)∈Sn×Jn

([
v(xπ<i , (j− 1)π≥i

)− v(xπ<i ,0π≥i
)
]
−
[
v(xπ≤i

, (j− 1)π>i
)− v(xπ≤i

,0π>i)
])
. (7)

The interpretation is as follows. Since v is monotone, before the vote of player i exactly the values

in
{
v(xπ<i ,0π≥i

), . . . , v(xπ<i , (j− 1)π≥i
)
}

are still possible as �nal group decision. After the vote of

player i this interval eventually shrinks to
{
v(xπ≤i

,0π>i), . . . , v(xπ≤i
, (j− 1)π>i

)
}
. The di�erence in

(7) just computes the di�erence between the lengths of both intervals, i.e., the number of previously

possible outputs that can be excluded for sure after the vote of player i.

As in the situation where we simpli�ed the Shapley-Shubik index of a simple game given by Equa-

tion (2) to Equation (1), we observe that it is su�cient to know the sets π≥i and π>i for every per-

mutation π ∈ Sn. So we can condense all permutations that lead to the same set and can simplify the

expression in (7) and obtain Equation (5).

While we think that the roll-call motivation stated above for Equation (4) is a valid justi�cation on

its own, we also want to pursue the more rigor path to characterize power indices, i.e., we want to give

an axiomatization. A set of properties that are satis�ed by the Shapley-Shubik index for simple games

and uniquely characterize the index is given, e.g., in [18, 19]. In order to obtain a similar result for (j, k)

simple games, we consider a power index F as a map form v to Rn for all (j, k) simple games v ∈ Un.
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De�nition 3.1. A power index F for (j, k) simple games satis�es

• Positivity (P) if F (v) 6= 0 and Fi(v) ≥ 0 for all i ∈ N and all v ∈ Un;

• Anonymity (A) if Fπ(i)(πv) = Fi(v) for all permutations π of N , i ∈ N , and v ∈ Un, where

πv(x) = v(π(x)) and π(x) =
(
xπ(i)

)
i∈N ;

• Symmetry (S) if Fi(v) = Fj(v) for all v ∈ Un and all voters i, j ∈ N that are equivalent in v;

• E�ciency (E) if
∑

i∈N Fi(v) = 1 for all v ∈ Un;

• the Null player property (NP) if Fi(v) = 0 for every null voter i of an arbitrary game v ∈ Un;

• the transfer property (T) if for all u, v ∈ Un and all i ∈ N we have Fi(u) + Fi(v) = Fi(u ∨ v) +

Fi(u ∧ v), where (u ∨ v)(x) = max{u(x), v(x)} and (u ∧ v)(x) = min{u(x), v(x)} for all x ∈ Jn,

see De�nition 2.4 and Proposition 2.2;

• Convexity (C) if F (w) = αF (u) + βF (v) for all u, v ∈ Un and all α, β ∈ R≥0 with α + β = 1,

where w = αu+ βv ∈ Un;

• Linearity (L) if F (w) = αF (u)+βF (v) for all u, v ∈ Un and all α, β ∈ R, where w = αu+βv ∈ Un.

Note that α · u+ β · v does not need to be a (j, k) simple game for u, v ∈ Un, where α · u is de�ned

via (α · u)(x) = α · u(x) for all x ∈ Jn and all α ∈ R. We remark that, obviously, (L) implies (C) and

(L) implies (T). Also (S) is implied by (A). Some of the properties of De�nition 3.1 have been proven

to be valid for Φ in [5]. However, for the convenience of the reader we give an extended result and a

full proof next:

Proposition 3.1. The power index Φ, de�ned in Equation (4), satis�es the axioms (P), (A), (S), (E),

(NP), (T), (C), and (L).

Proof. We use the notation from the proof of Lemma 3.1 and let v be an arbitrary (j, k) simple game

with n players.

For each x ∈ Jn, π ∈ Sn, and i ∈ N , we have v(xπ<i , (j− 1)π≥i
) ≥ v(xπ≤i

, (j− 1)π>i
) and

v(xπ≤i
,0π>i) ≥ v(xπ<i ,0π≥i

), so that Φi(v) ≥ 0 due to Equation (7). Since we will show that Φ is

e�cient, we especially have Φ(v) 6= 0, so that Φ is positive.
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For any permutation π ∈ Sn and any 0 ≤ h ≤ n let π|h := {π(i) : 1 ≤ i ≤ h}, i.e., the �rst h

players in ordering π. Then, for any pro�le x ∈ Jn, we have
n∑
i=1

(
v(xπ<i , (j− 1)π≥i

)− v(xπ≤i
, (j− 1)π>i

) + v(xπ≤i
,0π>i)− v(xπ<i ,0π≥i

)
)

=
n∑
h=1

(
v(xπ|h−1, (j− 1)−π|h−1)−v(xπ|h, (j− 1)−π|h)

)
+

n∑
h=1

(
v(xπ|h,0−π|h)−v(xπ|h−1,0−π|h−1)

)
= v(xπ|0, (j− 1)−π|0)− v(xπ|n, (j− 1)−π|n) + v(xπ|n,0−π|n)− v(xπ|0,0−π|0)

= v((j− 1))− v(x) + v(x)− v(0) = k − 1− 0 = k − 1,

so that Equation (7) gives
∑n

i=1 Φi(v) = 1, i.e., Φ is e�cient.

The de�nition of Φ is obviously anonymous, so that it is also symmetric. If player i ∈ N is

a null player and π ∈ Sn arbitrary, then v(xπ<i ,0π≥i
) = v(xπ≤i

,0π>i) and v(xπ<i , (j− 1)π≥i
) =

v(xπ≤i
, (j− 1)π>i

), so that Φi(v) = 0, i.e., Φ satis�es the null player property. Since Equation (7)

is linear in the involved (j, k) simple game, Φ satis�es (L) as well as (C), which is only a relaxation.

Since x+ y = max{x, y}+ min{x, y} for all x, y ∈ R, Φ also satis�es the transfer axiom (T).

Actually the proof of Proposition 3.1 is valid for a larger class of power indices for (j, k) simple

games. To this end we associate each vector a ∈ Jn with the function va de�ned by

va(S) =
1

k − 1
· [v((j− 1)S , a−S)− v(0S , a−S)]

for all S ⊆ N . With this, we de�ne the mapping Φa on Un by

Φa
i (v) =

∑
i∈S⊆N

(s− 1)!(n− s)!
n!

[va(S)− va(S\{i}] (8)

for all i ∈ N . We remark that it can be easily checked that va is a TU game, c.f. Section 4.

Similar as in the proof of Lemma 3.1, we conclude:

Proposition 3.2. For every a ∈ Jn such that ai = aj for all i, j ∈ N , the mapping Φa the axioms (P),

(A), (S), (E), (NP), (T), (C), and (L).

While the Shapley-Shubik index for simple games is the unique power index that is symmetric,

e�cient, satis�es both the null player property and the transfer property, see [3], this result does not

transfer to general (j, k) simple games.

Proposition 3.3. When j ≥ 3, there exists some a ∈ Jn such that Φa 6= Φ.

Proof. Consider the (j, k) simple game ub with point-veto b = (1, j − 1, 0, · · · , 0) ∈ Jn and let a =

(j − 2, j − 2, · · · , j − 2) ∈ Jn. From Equation (8) we conclude Φa(ub) = (0, 1, 0, · · · , 0). Using

Equation (5) we easily compute Φ(ub) =

(
1

j
,
j − 1

j
, 0, · · · , 0

)
6= Φa.
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We remark that the condition j ≥ 3 is necessary in Proposition 3.3, since for (2, 2) simple games the

roll-call interpretation of Mann and Shapley, see [16], for the Shapley-Shubik index for simple games

yields Φ0 = Φ1 = Φ.

4 The average game of a (j, k) simple game

Equation (5) in Lemma 3.1 has the important consequence that Φ(v) equals the Shapley value of the

TU game C(v, ·), where a TU game is a mapping v : 2N → R with v(∅) = 0. To this end we introduce

an operator that associates each (j, k) simple game v with a TU game ṽ as follows.

De�nition 4.1. Let v ∈ Un be an arbitrary (j, k) simple game. The average game, denoted by ṽ,

associated to v is de�ned by

ṽ(S) =
1

jn(k − 1)

∑
x∈Jn

[v((j− 1)S , x−S)− v(0S , x−S)] (9)

for all S ⊆ N .

With that notation our above remark reads:

Theorem 4.1. For every (j, k) simple game v the vector Φ(v) equals the Shapley value of ṽ.

For the (j, k) simple game v from Example 3.1 the average simple game is given by

ṽ(∅) = 0, ṽ({1}) =
1

2
, ṽ({2}) =

2

3
, and ṽ(N) = 1.

Before giving some properties of the average game operator we note that two distinct (j, k) simple

games may have the same average game, as illustrated in the following example.

Example 4.1. Consider the (j, k) simple games u, v ∈ Un de�ned by

• u(x) = k − 1 if x = 1 and u(x) = 0 otherwise;

• v(x) = k − 1 if x 6= 0 and v(x) = 0 otherwise

for all x ∈ Jn. Obviously, u 6= v. A simple calculation, using Equation (9), gives ũ(S) = ṽ(S) =
1

jn−s

for all S ∈ 2N .

The average game operator has some nice properties among which are the following:

Proposition 4.1. Given a (j, k) simple game v ∈ Un,

(a) ṽ is a TU game on N that is [0, 1]-valued and monotone;
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(b) any null player in v is a null player in ṽ;

(c) any two equivalent players in v are equivalent in ṽ;

(d) if v =
∑p

t=1 αtvt is a convex combination for some v1, . . . , vp ∈ Un, then ṽ =
∑p

t=1 αtṽt.

Proof. Let v ∈ Un.All mentioned properties of ṽ are more or less transfered from the corresponding

properties of v via Equation (9). More precisely:

(a) Note that ṽ(∅) = 1
jn(k−1)

∑
x∈Jn [v(x)− v(x)] = 0 and ṽ(N) = 1

jn(k−1)
∑

x∈Jn [v((j− 1))− v(0)] =

1. Since v is monotone and 0 ≤ x ≤ (j− 1) for all x ∈ Jn, we have v((j− 1)S , x−S) ≤

v((j− 1)S , x−T ) and v(0S , x−S) ≥ v(0S , x−T ) for all ∅ ⊆ S ⊆ T ⊆ N . Thus, we can conclude

0 ≤ ṽ(S) ≤ ṽ(T ) ≤ 1 from Equation (9).

(b) Let i ∈ N be a null player in v and S ⊆ N\{i}. Since v((j− 1)S∪{i}, x−(S∪{i})) = v((j− 1)S , x−S)

and v(0S∪{i}, x−(S∪{i})) = v(0S , x−S), we have that ṽ(S∪{i}) = ṽ(S), i.e., player i is a null player

in ṽ.

(c) Let i, h ∈ N be two equivalent players in v, S ⊆ N\{i, h}, and πih ∈ Sn the transposition

that interchanges i and h. Since v((j− 1)S∪{i}, x−(S∪{i})) = v((j− 1)S∪{h} , (πihx)−S∪{h}) and

v(0S∪{i}, x−(S∪{i})) = v(0S∪{h} , (πihx)−S∪{h}), we have ṽ(S∪{i}) = ṽ(S∪{h}), i.e., players i and

h are equivalent in ṽ.

(d) Now suppose that v =
∑p

t=1 αtvt is a convex combination for some v1, v2, · · · , vp ∈ Un. Since

v((j− 1)S , x−S) =
∑p

t=1 αtvt((j− 1)S , x−S) and v(0S , x−S) =
∑p

t=1 αtvt(0S , x−S), Equation (9)

gives ṽ(S) =
∑p

t=1 αtṽt(S) for all ∅ ⊆ S ⊆ N .

The operator that associates each (j, k) simple game v with its average game ṽ can be seen as a

coalitional representation of (j, k) simple games. Moreover, Proposition 4.1 suggests that this represen-

tation preserves some properties of the initial game. The average game of a (j, k) simple game with a

point-veto is provided by:

Proposition 4.2. Given a ∈ Jn\{0}, the average game ũa satis�es for every coalition S 6= N

ũa (S) =


∏

i∈N\S

(
j − ai
j

)
if S ∩Na 6= ∅

0 if S ∩Na = ∅
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Proof. Let a ∈ Jn\{0} and ∅ ( S ( N .

First suppose that S ∩Na = ∅. Then, for all x ∈ Jn we have a ≤ ((j− 1)S , x−S) i� a ≤ (0S , x−S).

Thus, ua(((j− 1)S , x−S)) = ua((0S , x−S)). It then follows from (9) that ũa(S) = 0.

Now suppose that S∩Na 6= ∅. Then, for all x ∈ Jn we have a � (0S , x−S). Thus, ua((0S , x−S)) = 0.

Note that a ≤ ((j− 1)S , x−S) i� a−S ≤ x−S . Hence,

ũa(S) =
1

jn(k − 1)

∑
x∈Jn

ua((j− 1)S , x−S) =
1

jn−s(k − 1)

∑
x−S∈J−S

ua((j− 1)S , x−S)

=
1

jn−s(k − 1)

∑
x−S∈J−S ∧ a−S≤x−S

ua((j− 1)S , x−S)

=
1

k − 1
· (k − 1)

|{x−S ∈ J−S , a−S ≤ x−S}|
jn−s

=
∏

i∈N\S

(
j − ai
j

)
.

It may be interesting to check whether each (j, k) simple game may be decomposed as a combination

of (j, k) simple game with a point-veto of the form a ∈ {0, j − 1}n. The response is a�rmative when

one considers combinations between average games. Before we prove this, recall that the average game

associated with each (j, k) simple game is a TU game on N . The set of all TU games on N is vector

space and a famous basis consists in all unanimity games (γS)S∈2N , where γS(T ) = 1 if S ⊆ T and

γS(T ) = 0 otherwise.1

In De�nition 2.3 we have introduced the notation wS = ua for a coalition S ∈ 2N , where a ∈ Jn is

speci�ed by ai = j − 1 if i ∈ S and ai = 0 otherwise.

Proposition 4.3. For every coalition C ∈ 2N , there exists a collection of real numbers (yS)S∈2C such

that

w̃C =
∑
S∈2C

ySγS .

Proof. Note that w̃C is a TU game on N . Therefore, for some real numbers (yS)S∈2N we have

w̃C =
∑
S∈2N

ySγS . (10)

This proves the result for C = N . Now, suppose that C 6= N . Consider Ek = {T ∈ 2N , T\C 6=

∅ and |T | = k} for 1 ≤ k ≤ n. We prove by induction on k that yT = 0 for all coalitions T ∈ Ek.

More formally, consider the assertion P(k) : for allT ∈ Ek, we have yT = 0.

1The de�nition of unanimity games has already been given in the second paragraph of Section 2.
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First assume that, k = 1. Let T ∈ Ek, then there exists i ∈ N\C such that T = {i}. Since player i

is not contained in C, Proposition 2.1 and Proposition 4.1 yield that i is a null player in w̃C , so that

w̃C(T ) = 0. Since Equation (10) gives w̃C(T ) =
∑

S∈2T yS = yT , we have yT = 0. Therefore P(1)

holds. Now consider 2 ≤ k ≤ n suppose and P(l) holds for all 1 ≤ l < k. Let T ∈ Ek, then there exists

i ∈ N\C such that T = K∪{i}, i /∈ K 6= ∅. Since i is a null player in w̃C , we have w̃C(T )− w̃C(K) = 0.

Using Equation (10) we compute:

w̃C(T )− w̃C(T ) =
∑
S∈2T

yS −
∑
S∈2K

yS = yT +
∑
i∈S T

yS = yT

using S\C 6= ∅ and 1 ≤ |S| < |T | = k. Thus, we have yT = 0, which proves our claim.

Proposition 4.4. For every (j, k) simple game u ∈ Un, there exists a collection of real numbers (xS)S∈2N

such that

ũ =
∑
S∈2N

xSw̃S . (11)

Proof. The result is straightforward when j = 2 since J reduces to J = {0, 1}. In the rest of the

proof, we assume that j ≥ 3. Note that all TU games on N can be written as a linear combination of

unanimity games (γS)S∈2N . It is then su�cient to only prove that each TU game γC for C ∈ 2N is a

linear combination of the TU games (w̃S)S∈2C . The proof is by induction on 1 ≤ k = |C| ≤ n. More

precisely, we prove the assertion A(k) that for all C ∈ 2N such that |C| ≤ k, there exists a collection

(zS)S∈2C such that

γC =
∑
S∈2C

zSw̃S . (12)

First assume that k = 1. Using Proposition 4.2, it can be easily checked that we have γ{i} = w̃{i}

for all i ∈ N . Therefore A(1) holds. Now, consider a coalition C such that |C| = k ∈ {2, . . . , n} and

assume that A(l) holds for all l such that 1 ≤ l < k. By Proposition 4.3, there exists some real numbers

(αS)S∈2C and (βS)S∈2C\{C} such that

w̃C =
∑
S∈2C

αSγS = αCγC +
∑

S∈2C\{C}

αSγS = αCγC +
∑

S∈2C\{C}

βSw̃S .

where the last equality holds by the induction hypothesis. Moreover, αC can be determined using

Proposition 4.2 for c = |C| by:

αC =
∑
S∈2C

(−1)|C\S|w̃C(S) =

c∑
s=1

(−1)c−s
(
c

s

)(
j − 1

j

)c−s
=

1− (1− j)c

jc
6= 0 since j − 1 ≥ 2.

Therefore we get

γC =
∑
S∈2C

zSw̃S
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where for all S ∈ 2C , zS = − 1
αC

if S = C and zS = − βS
αC

otherwise. This gives A(k). In summary,

each γS , S ∈ 2N is a linear combination of w̃C , C ∈ 2N . Thus, the proof is completed since ũ is a linear

combination of γS , S ∈ 2N .

Before we continue, note that by Equation (12), for C ∈ 2N each TU game γC is a linear combination

of the TU games
(
w̃S
)
S∈2N

. Since (γS)S∈2N is a basis of the vector space of all TU games on N , it

follows that
(
w̃S
)
S∈2N

is also a basis of the vector space of all TU games on N .

5 A characterization of the Shapley-Shubik index for (j, k) simple

games

As shown in Proposition 3.2 the axioms of De�nition 3.1 are not su�cient to uniquely characterize the

power index Φ for the class of (j, k) simple games. Therefore we introduce an additional axiom.

De�nition 5.1. A power index F for (j, k) simple games is averagely convex (AC) if we always have

p∑
t=1

αtF (ut) =

q∑
t=1

βtF (vt) (13)

whenever
p∑
t=1

αtũt =

q∑
t=1

βtṽt, (14)

where u1, u2, . . . , up, v1, v2, . . . , vq ∈ Un and (αt)1≤t≤p, (βt)1≤t≤q are non-negative numbers that sum to

1 each.

One may motivate the axiom (AC) as follows. In a game, the a priori strength of a coalition, given

the pro�le of the other individuals, is the di�erence between the outputs observed when all of her

members respectively give each her maximum support and her minimum support. The average strength

game associates each coalition with her expected strength when the pro�le of other individuals uniformly

varies. Average convexity for power indices is the requirement that whenever the average game of a game

is a convex combination of the average games of two other games, then the same convex combination

still applies for the power distributions.

We remark that the axiom of Average Convexity is much stronger than the axiom of Convexity. A

minor technical point is that
∑p

t=1 αtut as well as
∑q

t=1 βtvt do not need to be (j, k) simple games.

However, the more important issue is that

p̃∑
t=1

αtut
Proposition 4.1.(d)

=

p∑
t=1

αtũt =

q∑
t=1

βtṽt
Proposition 4.1.(d)

=

q̃∑
t=1

βtvt,
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i.e., Equation (14), is far less restrictive than

p∑
t=1

αtut =

q∑
t=1

βtvt

since two di�erent (j, k) simple games may have the same average game, see Example 4.1. Further

evidence is given by the fact that the parametric power indices Φa, de�ned in Equation (8), do not all

satisfy (AC).

Proposition 5.1. When j ≥ 3, there exists some a ∈ Jn such that Φa does not satisfy (AC).

Proof. As in the proof of Proposition 3.3, consider the (j, k) simple game with point-veto b = (1, j −

1, 0, · · · , 0) ∈ Jn and let a = (j−2, j−2, · · · , j−2). It can be easily checked that, for all subsets T ⊆ N

we have

ũb(T ) =



1 if 1, 2 ∈ T

(j − 1)/j if 2 ∈ T ⊆ N\{1}

1/j if 1 ∈ T ⊆ N\{2}

0 if T ⊆ N\{1, 2}

and that

ũb =
1

j
· w̃{1} +

j − 1

j
· w̃{2} (15)

holds. Since Φa satis�es (NP), (E), (S) we can easily compute Φa
(
w{1}

)
= (1, 0, · · · , 0) and Φa

(
w{2}

)
=

(0, 1, 0, · · · , 0). Therefore,

1

j
· Φa

(
w{1}

)
+
j − 1

j
· Φa

(
w{2}

)
=

(
1

j
,
j − 1

j
, 0, · · · , 0

)
. (16)

Using (8), one gets Φa(ub) = (0, 1, 0, · · · , 0). It then follows from equations (15) and (16) that Φa does

not satisfy (AC).

As a preliminary step to our characterization result in Theorem 5.1 we state:

Lemma 5.1. If a power index F for the class Un of (j, k) simple games satis�es (E), (S), and (NP),

then we have F (wC) = Φ(wC) for all C ∈ 2N .

Proof. Let F be a power index on Un that satis�es (E), (S), (NP) and let C ∈ 2N be arbitrary.

According to Proposition 2.1, all players i, j ∈ C are equivalent in wC and those outside of C are null

players in the game wC . Since both F and Φ satisfy (E), (S), and (NP), we have Fi(w
C) = Φi(w

C) =
1

|C|
if i ∈ C and Fi(w

C) = Φi(w
C) = 0 otherwise.

Theorem 5.1. A power index F for the class Un of (j, k) simple games satis�es (E), (S), (NP), and

(AC) if and only if F = Φ.
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Proof. Necessity : As shown in Proposition 3.1, Φ satis�es (E), (S), and (NP). For (AC) the proof follows

from Theorem 4.1 since the average game operator is linear by Proposition 4.1.

Su�ciency : Consider a power index F for (j, k) simple games that satis�es (E), (S), (NP), and (AC).

Next, consider an arbitrary (j, k) simple game u ∈ Un. By Proposition 4.4, there exists a collection of

real numbers (xS)S∈2N such that

ũ =
∑
S∈2N

xSw̃S =
∑
S∈E1

xSw̃S +
∑
S∈E2

xSw̃S , (17)

where E1 = {S ∈ 2N : xS > 0} and E2 = {S ∈ 2N : xS < 0}. Note that E1 6= ∅ since ũ(N) = 1. As an

abbreviation we set

$ =
∑
S∈E1

xSw̃S(N) =
∑
S∈E1

xS > 0. (18)

It follows that
1

$
ũ+

∑
S∈E2

−xS
$

w̃S =
∑
S∈E1

xS
$

w̃S . (19)

Since (19) is an equality among two convex combinations, axiom (AC) yields

1

$
F (u) +

∑
S∈E2

−xS
$

F (wS) =
∑
S∈E1

xS
$

F (wS).

Therefore by Lemma 5.1,

1

$
F (u) +

∑
S∈E2

−xS
$

Φ(wS) =
∑
S∈E1

xS
$

Φ(wS). (20)

Since Φ also satis�es (AC), we obtain

1

$
F (u) +

∑
S∈E2

−xS
$

Φ(wS) =
1

$
Φ(u) +

∑
S∈E2

−xS
$

Φ(wS), (21)

so that F (u) = Φ(u).

Proposition 5.2. For j ≥ 3, the four axioms in Theorem 5.1 are independent.

Proof. For each of the four axioms in Theorem 5.1, we provide a power index on Un that meets the

three other axioms but not the chosen one.

• The power index 2 · Φ satis�es (NP), (S), and (AC) but not (E).

• Denote by ED the equal division power index which assigns 1
n to each player for every (j, k) simple

game v. Then, the power index 1
2 · Φ + 1

2 · ED satis�es (E), (S) and (AC), but not (NP).
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• In Proposition 3.2 we have constructed a parametric series of power indices that satis�y (E), (S),

and (NP). For j ≥ 3, at least one example does not satisfy (AC), see Proposition 5.1.

• Recall that
(
w̃S
)
S∈2N

is a basis of the vector space of all TU games on N . Thus given a (j, k)-

simple game u, there exists a unique collection of real numbers (xuS)S∈2N such that

ũ =
∑
S∈2N

xuSw̃
S . (22)

Consider some i0 ∈ N and set

F (u) =
∑
S∈2N

xuS · F
(
wS
)
. (23)

For each S ∈ 2N\{N} we set Fi
(
wS
)

= Φ
(
wS
)
. For S = N we set Fi

(
wN
)

=
2

n+ 1
if i = i0 and

Fi
(
wN
)

=
1

n+ 1
otherwise. We can easily check that F satis�es (E), (NP), (AC), but not (S).

This proves that the four axioms in Theorem 5.1 are independent.

6 Axiomatization of the Shapley-Shubik index for interval simple games

Similar as for (j, k) simple games a Shapley-Shubik like index for interval simple games can be con-

structed from the idea of the roll-call model.

De�nition 6.1. (cf. [12, De�nition 6.2])

Let v be an interval simple game with player set N and i ∈ N an arbitrary player. We set

Ψi(v) =
1

n!

∑
π∈Sn

∫ 1

0
· · ·
∫ 1

0

[
v(xπ<i ,1π≥i

)− v(xπ<i ,0π≥i
)
]

−
[
v(xπ≤i

,1π>i)− v(xπ≤i
,0π>i)

]
dx1 . . . dxn. (24)

In this section, we give a similar axiomatization for Ψ (for interval simple games) as we did for (j, k)

simple games and Φ. By a power index for interval simple games we understand a mapping from the

set of interval simple games for n players to Rn. Replacing J by I = [0, 1] in De�nition 3.1, allows us

to directly transfer the properties of power indices for (j, k) simple games to the present situation. Also

Proposition 3.1 is valid for interval simple games and Ψ. More precisely, Ψ satis�es (P), (A), (S), (E),

(NP), and (T), see [13, Lemma 6.1]. The proof for (C) and (L) goes along the same lines as the proof

of Proposition 3.1. Also the generalization of the power index to a parametric class can be done just as

the one for (j, k) simple games in Equation (8).
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Proposition 6.1. For every α ∈ [0, 1] the mapping Ψa, where a = (α, . . . , α) ∈ [0, 1]n, de�ned by

Ψa
i (v) =

1

n!

∑
π∈Sn

( [
v(aπ<i ,1π≥i

)− v(aπ<i ,0π≥i
)
]
−
[
v(aπ≤i

,1π>i)− v(aπ≤i
,0π>i)

] )
for all i ∈ N , satis�es (P), (A), (S), (E), (NP), (T), (C), and (L).

Again, there exist vectors a ∈ [0, 1]n and interval simple games v with Ψa(v) 6= Ψ(v). Also the

simpli�ed formula for Φ for (j, k) simple games in Lemma 3.1 can be mimicked for interval simple games

and Ψ, see [14].

Proposition 6.2. For every interval simple game v with player set N and every player i ∈ N we have

Ψi(v) =
∑

i∈S⊆N

(s− 1)!(n− s)!
n!

· [C(v, S)− C(v, S\{i})] , (25)

where C(v, T ) =
∫
[0,1]n v(1T , x−T )− v(0T , x−T ) dx for all T ⊆ N .

This triggers:

De�nition 6.2. Let v be an interval simple game on N . The average game associated with v and

denoted by v̂ is de�ned via

∀S ⊆ N, v̂(S) =

∫
In

[v(1S , x−S)− v(0S , x−S)]dx. (26)

Theorem 6.1. For all every interval simple game v on N and for all i ∈ N ,

Ψi(v) =
∑

i∈S⊆N

(s− 1)!(n− s)!
n!

[v̂(S)− v̂(S\{i}] (27)

In other words, for a given interval simple game v the power distribution Ψ(v) is given by the Shapley

value of its average game v̂.

As with (j, k) simple games, two distinct interval simple games may have the same average game as

illustrated in the following example.

Example 6.1. Consider the interval simple games u and v de�ned on N respectively for all x ∈ [0, 1]n

by : u(x) = 1 if x = 1, and u(x) = 0 otherwise; v(x) = 1 if x 6= 0, and v(x) = 0 otherwise. It is

clear that, u 6= v. But, Equation (26) and a simple calculation give û(S) = v̂(S) = 1 if S = N and

û(S) = v̂(S) = 0 otherwise.

We can also transfer Proposition 4.1, i.e., the average game operator preserves the following nice

properties of interval simple games.
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Proposition 6.3. For all v ∈ CSGn, v̂ is a [0, 1]-valued TU game on N such that

(a) v̂ is a TU game on N that is [0, 1]-valued and monotone;

(b) any null voter in v is null player in v̂;

(c) any two symmetric voters in v are symmetric players in v̂;

(d) if v =
∑p

t=1 αtvt is a convex combination for some v1, . . . , vp ∈ Un then v̂ =
∑p

t=1 αtv̂t.

Proof. Very similar to the one of Proposition 4.1.

From Theorem 6.1 we can directly conclude that Ψ also satis�es Average Convexity (AC), which is

de�ned as in De�nition 5.1.

For the remaining part of this section we introduce some further notation. For all x ∈ In, let

1x = {i ∈ N, xi = 1}; and given a coalition S, let CS be the interval simple game de�ned for all x ∈ In

by CS(x) = 1 if S ⊆ 1x and CS(x) = 0 otherwise.

Proposition 6.4. For all T ∈ 2N , ĈS = γS .

Proof. Consider S, T ⊆ N . If S ⊆ T then for all x ∈ [0, 1]n, S ⊆ T ⊆ {i ∈ N, (1T , x−T )i = 1} and

S ∩ {i ∈ N, (0T , x−T )i = 1} = ∅. Then by de�nition of CS , CS(1T , x−T ) = 1 and CS(0T , x−T ) = 0.

Therefore,

ĈS(T ) =

∫
[0,1[n

[CS(1T , , x−T )− CS(0T , x−T )]dx = 1 = γS(T ).

Now assume that S * T . Let x ∈ [0 1)n. Note that {i ∈ N, (1T , x−T )i = 1} = T and {i ∈

N, (0T , x−T )i = 1} = ∅. Therefore, S * {i ∈ N, (1T , x−T )i = 1} and S * {i ∈ N, (0T , x−T )i = 1}. By

the de�nition of CS , it follows that CS(1T , x−T ) = CS(0T , x−T ) = 0. Hence

ĈS(T ) =

∫
[0,1[n

[CS(1T , x−T )− CS(0T , x−T )]dx = 0 = γS(T ).

In both cases ĈS(T ) = γS(T ) for all T ∈ 2N ; that is ĈS = γS .

Theorem 6.2. A power index Ψ′ for interval simple games satis�es (E), (S), (NP) and (AC) if and

only if Ψ′ = Ψ.

Proof.

Necessity : We have already remarked that Ψ satis�es (E), (S), (AC), and (NP).
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Su�ciency : Let Ψ′ be a power index for interval simple games on N that simultaneously satis�es (E),

(S), (AC), and (NP). Consider an interval simple game u. Note that û is a TU game by Proposition 6.3.

Thus by Proposition 6.4, there exists a collection of real numbers (αS)S∈2N such that

û =
∑
S∈2N

αS · ĈS =
∑
S∈E1

αS · ĈS +
∑
S∈E2

αS · ĈS (28)

where E1 = {S ∈ 2N : αS > 0} and E2 = {S ∈ 2N : αS < 0}. Moreover, E1 6= ∅ since v̂(N) = 1. We set

$ =
∑
S∈E1

αS · ĈS(N) =
∑
S∈E1

αS > 0. (29)

It follows that
1

$
û+

∑
S∈E2

−αS
$

ĈS =
∑
S∈E1

αS
$

ĈS . (30)

Since (30) is an equality among two convex combinations, then by (AC), we deduce that

1

$
Ψ′(u) +

∑
S∈E2

−αS
$

Ψ′(CS) =
∑
S∈E1

αS
$

Ψ′(CS). (31)

Note that given S ∈ 2N , all voters in S are equivalent in CS while all voters outside S are null

players in CS . Since Ψ′ and Ψ satisfy (E), (S), and (NP), it follows that Ψ′(CS) = Ψ(CS). Thus,

1

$
Ψ′(u) +

∑
S∈E2

−αS
$

Ψ(CS) =
∑
S∈E1

αS
$

Ψ(CS). (32)

Since Ψ also satis�es (AC), we get

1

$
Ψ′(u) +

∑
S∈E2

−αS
$

Ψ(CS) =
1

$
Ψ(u) +

∑
S∈E2

−αS
$

Ψ(CS). (33)

Hence Ψ′(u) = Ψ(u), which proves that Ψ′ = Ψ.

Proposition 6.5. The four axioms in Theorem 6.2 are independent.

Proof.

• The power index 2 ·Ψ satis�es (NP), (S), (AC), but not (E).

• Denote by ED the equal division power index which assigns 1
n to each player for every interval

simple game. Then the power index 1
2 ·Ψ + 1

2 · ED satis�es (E), (S) and (AC), but not (NP).
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• In Proposition 6.1 (c.f. [14, Proposition 4]) we have stated a parametric classes of power indices

for interval simple games that satisfy (E), (S), and (NP). In [14] it was also proved that there is

at least one parameter a for which the parameterized index Ψa 6= Ψ. Thus, by Theorem 6.2 we

can conclude that Ψa does not satis�es (AC). (Also Proposition 5.1 for (j, k) simple games can be

adjusted easily.)

• Note that by Proposition 6.4 the set
(
ĈS
)
S∈2N

is a basis of the vector space of all TU games

on N . Thus, given an interval simple game u, there exists a unique collection of real numbers

(yuS)S∈2N such that

û =
∑
S∈2N

yuSĈ
S . (34)

Consider some i0 ∈ N and set

F (u) =
∑
S∈2N

yuS · F
(
CS
)
. (35)

For each S ∈ 2N\{N} we set Fi
(
CS
)

= Φ
(
CS
)
. For S = N we set Fi

(
CN
)

=
2

n+ 1
if i = i0 and

Fi
(
CN
)

=
1

n+ 1
otherwise. We can easily check that F satis�es (E), (NP), (AC), but not (S).

This proves that the four axioms in Theorem 6.2 are independent.

Acknowledgment

Hilaire Touyem bene�ts from a �nancial support of the CETIC (Centre d'Excellence Africain en Tech-

nologies de l'Information et de la Communication) Project of the University of Yaounde I.

References

[1] E. Algaba, V. Fragnelli, and J. Sánchez-Soriano. Handbook of the Shapley Value. CRC Press, 2019.

[2] R. Amer, F. Carreras, and A. Magaña. Extension of values to games withmultiple alternatives.

Annals of Operations Research, 84:63�78, 1998.

[3] P. Dubey. On the uniqueness of the shapley value. International Journal of Game Theory, 4(3):131�

139, 1975.

[4] D. S. Felsenthal and M. Machover. The measurement of voting power. Books, 1998.

[5] J. Freixas. The Shapley�Shubik power index for games with several levels of approval in the input

and output. Decision Support Systems, 39(2):185�195, 2005.

23



[6] J. Freixas. A value for j-cooperative games: some theoretical aspects and applications. In E. Algaba,

V. Fragnelli, and J. Sánchez-Soriano, editors, Handbook of the Shapley Value, chapter 14, pages

281�311. CRC Press, 2019.

[7] J. Freixas and W. S. Zwicker. Weighted voting, abstention, and multiple levels of approval. Social

Choice and Welfare, 21(3):399�431, 2003.

[8] J. Friedman and C. Parker. The conditional shapley�shubik measure for ternary voting games.

Games and Economic Behavior, 108:379�390, 2018.

[9] M. Grabisch, J. Marichal, R. Mesiar, and E. Pap. Aggregation Functions. 2009. Cambridge Univ.,

Press, Cambridge, UK, 2009.

[10] C.-R. Hsiao and T. Raghavan. Shapley value for multichoice cooperative games, i. Games and

Economic Behavior, 5(2):240�256, 1993.

[11] X. Hu. An asymmetric Shapley�Shubik power index. International Journal of Game Theory,

34(2):229�240, 2006.

[12] S. Kurz. Measuring voting power in convex policy spaces. Economies, 2(1):45�77, 2014.

[13] S. Kurz. Importance in systems with interval decisions. Advances in Complex Systems,

21(6):1850024, 2018.

[14] S. Kurz, I. Moyouwou, and H. Touyem. An axiomatization of the Shapley-Shubik index for interval

decisions. arXiv preprint 1907.01323, 2019.

[15] S. Kurz and S. Napel. The roll call interpretation of the Shapley value. Economics Letters, 173:108�

112, 2018.

[16] I. Mann and L. Shapley. The a priori voting strength of the electoral college. In M. Shubik,

editor, Game theory and related approaches to social behavior, pages 151�164. Robert E. Krieger

Publishing, 1964.

[17] R. Pongou, B. Tchantcho, and N. Tedjeugang. Revenue sharing in hierarchical organizations: A

new interpretation of the generalized banzhaf value. Theoretical Economics Letters, 2(4):369�372,

2012.

24



[18] L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, editors, Contributions

to the Theory of Games, volume 28 of Annals of Mathematical Studies, pages 307�317. Princeton

University Press, 1953.

[19] L. S. Shapley and M. Shubik. A method for evaluating the distribution of power in a committee

system. American Political Science Review, 48(3):787�792, 1954.

25


