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Abstract

The decisive advantage of density functional theory in comparison with other electronic structure
methods is its favorable ratio of accuracy to computational cost. In its standard Kohn-Sham
formulation, both of these aspects are determined by the density functional that is selected to
approximate the exchange-correlation energy. While the computational cost plays a minor role
for systems of small to moderate size, its significance rises quickly when one considers extended
systems of increasing size as it is common, e.g., in the realms of biology, nano-science, or
supramolecular science. These real-world systems, which are areas of great scientific interest, are,
thus, typically only accessible with computationally feasible density functional approximations.
However, this so-called class of semilocal functionals is known to have hallmark deficits that are
closely interconnected by the absence of ultranonlocality. This absence manifests itself, e.g., in
the inability to properly describe band gaps or charge transfer. The latter deficit is, for instance,
detrimental when one tries to understand light-harvesting systems. Therefore, long-standing
effort was and is invested to address this problem and develop semilocal density functional
approximations that possess or mimic ultranonlocality.

The first part of this thesis focuses on two promising candidates for this task, the Becke-
Johnson potential and the Armiento-Kümmel generalized gradient approximation (GGA). Both
functionals share a signature asymptotically nonvanishing potential and, as is shown here, also
anomalous features that constitute a formidable challenge for their application and the future
development of functionals based on their construction concept. Most notably, the corresponding
potentials are demonstrated to diverge exponentially in the vicinity of orbital nodal surfaces.
These topological challenges of orbital nodal surfaces are also shown to affect many other
frequently used density functional approximations. Consequently, exact constraints to avoid
such divergences are formulated.

In the second part of this thesis, a new construction strategy for meta-GGAs that focuses on
the derivative discontinuity is developed and employed. The resulting computationally feasible
semilocal functionals are demonstrated to achieve substantial ultranonlocality due to their use
of the kinetic energy density. Thereby, considerably more realistic band gaps are obtained in
comparison to other semilocal exchange-correlation energy functionals. The meta-GGAs of
this thesis are, therefore, promising future candidates for the study of large-scale systems that is
presently limited by the above-mentioned deficits of traditional semilocal functionals.

Furthermore, the concept of a local range-separation parameter is revisited. It promises formal
and practical improvements for the class of range-separated hybrid functionals, which currently
spearhead the description of charge transfer in systems of small to moderate size. In particular,
a local range-separation parameter is constructed that satisfies additional exact constraints,
such as one-electron self-interaction freedom, and exhibits a non-trivial spin-dependence.
Lastly, the hyper-GGA approximation, which is based on semilocal exchange hole models
and computationally essential to the local range-separation approach, is assessed.
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Kurzdarstellung

Der entscheidende Vorteil der Dichtefunktionaltheorie im Vergleich mit anderen Methoden
zur Berechnung der elektronischen Struktur ist ihr vorteilhaftes Verhältnis von Genauigkeit
zu Rechenkosten. In ihrer typischen Kohn-Sham-Formulierung werden diese beiden Aspekte
durch das Dichtefunktional bestimmt, das als Näherung an die Austauschkorrelationsenergie
ausgewählt wird. Während für kleine und mittelgroße Systeme die Rechenkosten eine unterge-
ordnete Rolle spielen, nimmt deren Bedeutung signifikant zu, sobald zunehmend ausgedehntere
Systeme betrachtet werden, wie es etwa in den Bereichen der Biologie, Nanowissenschaften,
oder Supramolekularforschung üblich ist. Die dort betrachteten Systeme, die aus der realen
Welt stammen und von hohem wissenschaftlichen Interesse sind, sind somit typischerweise nur
mit Dichtenfunktionalen zugänglich, die niedrige Rechenkosten aufweisen. Diese Klasse an
sogenannten semilokalen Funktionalen ist jedoch für ihre schwerwiegenden Defizite bekannt,
die mit dem Fehlen an Ultranichtlokalität verknüpft sind. Dieser Mangel manifestiert sich in
einer fehlerhaften Beschreibung von Bandlücken oder Ladungstransfer. Letzteres Defizit ist
beispielweise sehr beeinträchtigend, wenn man in der Natur vorkommende Lichtsammelsysteme
verstehen möchte. Entsprechend werden seit längerem intensive Anstrengungen unternommen,
semilokale Dichtefunktionalnäherungen zu entwickeln, die Ultranichtlokalität besitzen oder
nachahmen.

Der erste Teil dieser Dissertation beschäftigt sich mit zwei vielversprechenden Kandidaten
für dieses Ziel: dem Becke-Johnson Potential und der Armiento-Kümmel generalized gradient
approximation (GGA). Beide Funktionale teilen sich ein charakteristisches, asymptotisch nicht
verschwindendes Potential und, wie hier gezeigt wird, ebenso anomale Eigenschaften, die
eine ernsthafte Herausforderung für ihre Anwendung sowie für die zukünftige Funktionalent-
wicklung auf Basis ihrer Konstruktionsprinzipien darstellen. Insbesondere wird aufgezeigt,
dass die zugehörigen Potentiale in der Nähe von Knotenflächen der Orbitale exponentiell
divergieren. Ebenso zeigt sich, dass diese topologischen Herausforderungen viele weitere
Dichtefunktionalnäherungen betreffen, die häufig Verwendung finden. Entsprechend werden
exakte Bedingungen formuliert, um diese Art von Divergenzen zu vermeiden.

Im zweiten Teil dieser Arbeit wird eine neue Konstruktionsstrategie für meta-GGAs, welche
sich auf die sogenannte derivative discontinuity fokussiert, entwickelt und angewendet. Es wird
gezeigt, dass die resultierenden semilokalen und entsprechend kostengünstigen Funktionale
substantielle Ultranichtlokalität aufgrund ihrer Abhängigkeit von der kinetischen Energiedichte
aufweisen. Entsprechend sind diese meta-GGAs vielversprechende zukünftige Kandidaten für
die Anwendung in ausgedehnten Systemen, die momentan aufgrund der obengenannten Defizite
herkömmlicher semilokaler Funktionale nur eingeschränkt möglich ist.

Zusätzlich wird das Konzept eines lokalen Parameters für die Reichweitentrennung unter-
sucht. Dieses Konzept verspricht formale und praktische Verbesserungen für die Klasse der
reichweitenseparierten Hybridfunktionale, welche momentan die Beschreibung von Ladungs-
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transfer in Systemen kleiner und mittlerer Größe anführen. Insbesondere wird ein lokaler
Parameter für die Reichweitentrennung konstruiert, der zusätzlichen exakten Bedingungen
wie etwa der Freiheit von Einelektronenselbstwechselwirkung genügt und eine nicht triviale
Spinabhängigkeit aufweist. Abschließend wird die hyper-GGA-Näherung detailliert untersucht,
welche auf semilokalen Austauschlochmodellen beruht und essenziell für den Ansatz einer
lokalen Reichweitentrennung ist.
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CHAPTER 1

Introduction

Nearly a century past the modern formulation of quantum theory, we have achieved a remarkable
accuracy in the description of the microscopic world of atoms and molecules around us. We
likewise have well-established models to describe physical phenomena at the macroscopic length
scale at our disposal. The intermediate region between the microscopic description based on
quantum theory and the macroscopic description based on classical physics is, however, still
difficult to access. These difficulties arise in this mesoscopic region because the length scale is
typically still small enough that a quantum-mechanical description is required, as, e.g., quantum
interference is of significant relevance, but at the same time large enough that such a description
is close to or beyond today’s computational capabilities. Yet, the mesoscopic length scale is of
increasing importance: First, from an epistemological point of view, as a proper mesoscopic
description would provide us with a direct link from fundamental physics to macroscopic
phenomena and thus a fundamental understanding. Second, from a practical point of view, as the
scientific interest and progress are increasingly heading into mesoscopic length scales. Prime
examples for the latter can be found in biophysics, nano-science, or supramolecular science.

Density functional theory [HK64, KS65] has proven to be a predestined electronic structure
theory for this purpose [Koh99]. Since it relies on the electron density distribution in place of the
many-body wave function, density functional theory grants computationally inexpensive access
to large-scale systems and provides transparent insight into their nature. The low computational
cost, however, is closely tied to the approximation to the exchange-correlation energy, which is in
practice necessary for every density functional theory calculation. The low-cost approximations
to the exchange-correlation energy, which are required to access the mesoscopic length scale,
unfortunately miss important features that may be characterized as “ultranonlocal”.

This ultranonlocality, which illustratively depicts that small changes in the density of the
system can influence the associated exchange-correlation potential over arbitrary distances, is,
e.g., pivotal to the proper description of electronic charge transfer. The absence of ultranon-
locality in the description can, therefore, have severe consequences and effectively limits the
usefulness of density functional theory for many systems of high practical relevance. Many
such systems can be found in biology or biochemistry, where processes are frequently driven by
electrochemical gradients and thus involve charge transfer or related physics. To gain deeper
scientific understanding of such mesoscopic processes, it is, hence, essential to develop low-cost
approximations to the exchange-correlation energy that incorporate ultranonlocality. This thesis
is dedicated to this aspiration and part of the long-standing scientific effort in this direction.
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Chapter 1 Introduction

To this end, the fundamentals of density functional theory are briefly summarized in Chapter 2
and followed by Chapter 3, which outlines how and where ultranonlocality manifests itself in this
theory. An overview of the constraint-guided construction of density functional approximations
is given in Chapter 4. Thereupon, Chapter 5 completes the presentation of the fundamentals of
this thesis by portraying the power of orbital dependence to model ultranonlocality in density
functional theory. Building upon this, the final Chapter 6 summarizes the developments and
results of the four publications, which make for Part II of this thesis, and puts them into
perspective: While Pubs. 1 and 2 analyze already proposed exchange-correlation functionals
critically, new low-cost functionals that capture ultranonlocality are constructed and presented
in Pub. 3. This thesis concludes with Pub. 4, which advances a rather unexplored concept to
improve certain exchange-correlation functionals that are currently used primarily to describe
ultranonlocality at smaller length scales.
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CHAPTER 2

Fundamentals of Density Functional Theory

Density functional theory (DFT) is an in principle exact reformulation of many-body quantum
theory to predict quantum physical properties without requiring the calculation or actual
knowledge of the corresponding many-body wave function. While DFT is not limited to
the description of electrons in condensed matter, this is unquestionable its main application
and biggest success story since DFT has become the most popular electronic structure method
in computational physics, chemistry and materials science [Bur12, Bec14, Jon15]. For a
comprehensive introduction to and overview of DFT see, e.g., Refs. [PY89, PK03, ED11].

The foundation of DFT is the Hohenberg-Kohn theorem [HK64], which ensures that stationary
many-particle systems can be fully characterized by their ground-state density n(r). This allows
to express DFT entirely in terms of the density and hereby surpass the “exponential wall”
[Koh99] that wave function methods encounter and are ultimately stopped by – the sheer
exponential growth of the wave functions dimensionality with respect to the particle number.
Moreover, the Hohenberg-Kohn theorem states that the ground-state density can be determined
by minimizing the energy functional E[n] [Lev82, Lie83] and is thus given by the variational
equation

δ

δn(r)

{
E[n]−µ

(∫
n(r)d3r−N

)}
= 0 , (2.1)

where the Lagrange multiplicator µ of the subsidiary condition to enforce the correct particle
number N defines the chemical potential. In the standard formulation of DFT [KS65] within the
Born-Oppenheimer approximation [BO27], the electronic energy functional is partitioned as

E[n] = Ts[n]+EH[n]+Eext[n]+Exc[n] (2.2)

in terms of the kinetic energy functional

Ts[n] = Ts[{ϕiσ [n]}] =−
h̄2

2me
∑

σ=↑,↓

Nσ

∑
i=1

∫
ϕ
∗
iσ (r)∇

2
ϕiσ (r)d3r (2.3)

of non-interacting fermionic particles, the classical (Hartree) interaction energy

EH[n] =
e2

2

∫∫ n(r)n(r′)
|r− r′| d3r′ d3r , (2.4)
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Chapter 2 Fundamentals of Density Functional Theory

the external energy

Eext[n] =
∫

vext(r)n(r)d3r , (2.5)

and in terms of the exchange-correlation (xc) energy Exc[n] that absorbs all remaining energy
contributions. This partitioning allows to minimize the energy and thus to obtain both the ground-
state density and energy by solving an effective non-interacting system, the Kohn-Sham (KS)
system. In the spin-polarized formulation of DFT [vBH72] the corresponding single-particle
equations are given by{

− h̄2

2me
∇

2 + vKSσ ([n↑,n↓];r)
}

ϕiσ (r) = εiσ ϕiσ (r) , (2.6)

where the effective multiplicative potential, the KS potential, is a functional of the density itself,

vKSσ ([n↑,n↓];r) = e2
∫ n(r′)
|r− r′| d

3r′+ vext(r)+
δExc[n↑,n↓]

δnσ (r)
. (2.7)

As the KS orbitals ϕiσ (r) in turn sum up to the true electron density,

n(r) = ∑
σ=↑,↓

nσ (r) = ∑
σ=↑,↓

Nσ

∑
i=1
|ϕiσ (r)|2 , (2.8)

the KS scheme of Eq. (2.7) requires a self-consistent solution that is typically obtained in an
iterative procedure.

The central quantity of DFT and also this thesis is the xc energy Exc[n] and its functional
derivative, vxcσ ([n↑,n↓];r) = δExc[n↑,n↓]/δnσ (r), the xc potential. In principle the exact xc
functional is known [LP77, Lev79, GL94] and can even be constructed, see, e.g., Ref. [MSC18].
However, obtaining the ground-state energy after constructing the exact functional is significantly
more difficult than directly solving the many-body Schrödinger equation. Therefore, in practice
virtually every DFT calculation requires an explicit density functional approximation (DFA) to
Exc[n]. The choice of this approximation to Exc[n] does not only dictate the accuracy with which
specific properties can be calculated but also determines the associated computational cost.

Despite representing a rather small energy contribution, Exc[n] is crucial for obtaining a
qualitatively correct description of condensed matter and is conventionally split further into the
exchange Ex[n] and the correlation energy Ec[n] [PK03]. The recurring theme of this thesis is to
capture ultranonlocal properties of the xc potential within DFAs. As the exchange energy makes
for the substantial contribution to Exc[n] and also typically captures the significant portion of its
ultranonlocality, this thesis is primarily focused on Ex[n] and vx(r). The following Chapter 3 is
dedicated to ultranonlocality, while other exact properties of Exc[n] and vxc(r) that are typically
used to guide the construction of DFAs are presented in Chapter 4.
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CHAPTER 3

Ultranonlocality in Density Functional Theory

Despite the fact that in KS formulation of DFT the xc potential is merely a multiplicative
potential, the exact vxc(r) has to mediate the entire correlated two-particle interaction – aside
from the Fermi repulsion in Ts[n] and the classical repulsion in EH[n]. As a consequence, the
xc potential has remarkable but at the same time unconventional properties. Some of these
properties can be characterized as “ultranonlocal” and will be discussed in detail in this chapter.

As the term “ultranonlocality” [GGG95, GvGSB00, vFdBvL+02, AKK08, NV11] has been
used in the literature in different contexts, is sometimes interchanged with nonlocality, and has
thus been assigned different meanings, it is necessary to define what ultranonlocality should
mean throughout this thesis. Here “ultranonlocality” comes down to the functional dependence
of the xc potential with respect to the density, vxc([n];r):

An xc potential is said to be “local” if at each point of space r, it is an ordinary function of
the density at the same point, n(r). The most prominent example of a local xc potential is the
one of the local density approximation (LDA) [HK64], cf. Sec. 4.6. In terms of the xc kernel

fxc([n];r,r′) =
δvxc([n];r)

δn(r′)
(3.1)

that mathematically describes how the xc potentials changes at r if the density is changed at r′,

δvxc([n];r) =
∫

fxc([n];r,r′)δn(r′)d3r′ , (3.2)

a local potential is associated with a kernel of the form

f local
xc ([n];r,r′) = f0([n];r)δ (r− r′) . (3.3)

The next tier is labeled “semilocal” and describes the situation that the potential at r depends
not only on the value of the density at this point, but also on density in a neighborhood around r,
i.e., on spatial derivatives of the density at r like ∇n(r) or ∇2n(r). The kernel of a semilocal
potential, thus, takes the form

f sl
xc([n];r,r′) = f0([n];r)δ (r− r′)+ f1([n];r) ·∇δ (r− r′)+ f2([n];r)∇2

δ (r− r′)+ . . . (3.4)

and is historically sometimes already termed “nonlocal” in the sense of “not local” [PBE96].
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Chapter 3 Ultranonlocality in Density Functional Theory

Going by this definition, generalized gradient approximations (GGAs) [PW86], for instance,
yield an entirely semilocal potential. However, meta generalized gradient approximations
(meta-GGAs), which are termed “semilocal functionals” in the literature as well as in this
thesis since their energy density depends on semilocal quantities only, do not have a purely
semilocal potential due to their kinetic energy dependence [NV11] as will be discussed in detail
in Chapter 5.

Next comes a “nonlocal” potential, which is the most ambiguously used term in the literature,
e.g., used to describe a “non-multiplicative” potential [SGV+96]. Throughout this thesis, how-
ever, a “nonlocal” potential – in contrast to an ultranonlocal potential – shall mean that vxc([n];r)
depends continuously on the density in the long-ranged neighborhood of the corresponding point
in space. A kernel in the form

f nl
xc([n];r,r′) ∝ 1/|r− r′| (3.5)

and the corresponding potential as, e.g., realized by the Hartree potential, vh([n];r), are
considered nonlocal by this definition. A nonlocal xc potential is, therefore, here associated with
long-rangedness of the Coulomb interaction.

Ultranonlocality shall be defined as the nonlocality in the xc potential that goes beyond the
common long-rangedness associated with the Coulomb interaction. An xc potential is therefore
considered ultranonlocal if either vxc([n];r) at r depends on the density at a distant point r′ that
may in principle be infinitely far apart or if an infinitesimally small change of the density leads
to a finite change of the corresponding xc potential. Consequently, ultranonlocality is typically
associated with divergences in the xc kernel [GGG97a, DHG04].

Understandably, these ultranonlocal properties are notoriously hard to capture within a DFA
and are cause to hallmark deficiencies, reaching from the early days of DFT to the present
[CMSY08, KK08, CMSY12]. Moreover, they are not only vital to ground-state DFT but
also [LK05, MK05, EFRM12, MT06] to time-dependent DFT [RG84]. To this end, the central
question of this thesis is how to capture these ultranonlocal properties on a feasible computational
level. The following sections will outline how and where ultranonlocality manifests itself in
ground-state DFT.

3.1 Fractional Particle Numbers and Derivative Discontinuity

A vital point of view to gain understanding of ultranonlocality in DFT are fractional particle
numbers. Within the ensemble extension of DFT by Perdew et al. [PPLB82] a fractional particle
number N = N0 +η , where N0 is an integer and 0 < η < 1, is associated to an open system
described by a statistical mixture of the pure N0 and N0 +1 ground states. Consequently, the
exact ground-state energy as a function of the fractional particle number consists of straight line
segments between the values at integer points [PPLB82, YZA00],

E(N) = (1−η)E(N0)+ηE(N0 +1). (3.6)

8



3.1 Fractional Particle Numbers and Derivative Discontinuity
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Figure 3.1: Illustration of the straight-line condition: Particle number dependence of the exact total
ground-state energy E(N) for fractional particle number N.

Thus, when crossing an integer the exact chemical potential µ(N) = ∂E(N)/∂N jumps discon-
tinuously [PPLB82],

µ(N) =

−I(N0), N0−1 < N ≤ N0

−A(N0), N0 < N ≤ N0 +1
, (3.7)

from the negative ionization potential −I(N0) = E(N0)−E(N0− 1) to the negative electron
affinity −A(N0) = E(N0 + 1)− E(N0). The discontinuity of the total energy derivative is
therefore given by the fundamental gap ∆g,

lim
η→0+

(
∂E
∂N

∣∣∣∣
N0+η

− ∂E
∂N

∣∣∣∣
N0−η

)
= I(N0)−A(N0) =: ∆g , (3.8)

and implies that the underlying total energy functional E[n] of Eq. (2.2) must have derivative
discontinuities with respect n(r). The exact E(N) curve with its straight line segments is
illustrated in Fig. 3.1.

Within KS DFT the total ensemble density is calculated from a single KS system,

n(r) = (1−η)nN0(r)+ηnN0+1(r) =
N0

∑
i=1
|ϕi(r)|2 +η |ϕN0+1(r)|2 , (3.9)

using the corresponding ensemble xc potential1, i.e., vxc([n];r) = δExc[n]/δn(r) where n(r)
can integrate to a non-integer particle number. Following the variational Eq. (2.1) and KS
partitioning of energy according to Eq. (2.2), the discontinuity splits into two contributions

1Note that other non-standard generalizations of Exc[n] to fractional particle numbers have been put forward in, e.g.,
Refs. [KK13, Gö15].
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Chapter 3 Ultranonlocality in Density Functional Theory

[PL83, SS83],

∆g = lim
η→0+

{
δTs[n]
δn(r)

∣∣∣∣
N0+η

− δTs[n]
δn(r)

∣∣∣∣
N0−η

}
︸ ︷︷ ︸

=:∆KS

+ lim
η→0+

{
δExc[n]
δn(r)

∣∣∣∣
N0+η

− δExc[n]
δn(r)

∣∣∣∣
N0−η

}
︸ ︷︷ ︸

=:∆xc

.

(3.10)
The first contribution is due to the non-interacting kinetic energy Ts[n] and reduces to the KS

gap, i.e., the energy difference between the lowest unoccupied (lu) and the highest occupied (ho)
KS eigenvalue at integer electron number,

∆KS = εN0+1(N0)− εN0(N0) = εlu− εho . (3.11)

As the Hartree and external energy are continuous functionals of the density by definition, the
second contribution to ∆g emerges from Exc[n],

∆xc = lim
η→0+

{
δExc[n]
δn(r)

∣∣∣∣
N0+η

− δExc[n]
δn(r)

∣∣∣∣
N0−η

}
= v+xc([n];r)− v−xc([n];r) , (3.12)

and is attributed to a spatially uniform jump of the xc potential. This global discontinuous shift of
the exact xc potential by a finite constant, ∆xc, upon an infinitesimal small change of the density
is the prime example for ultranonlocality in DFT. Naturally, other aspects of ultranonlocality in
the potential are closely related to the derivative discontinuity ∆xc. Again, ∆xc can be split into
an exchange ∆x and correlation ∆c contribution. All experience and arguments to the present
date point at a positive ∆x and ∆xc, while ∆c is known to partially compensate ∆x in many cases
[PL83, Cha99, SP08]. Note that the extension to fractional particle numbers uniquely defines

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1 10

v
E

X
X

x,
↑

/
E

h

r / a0

Mg2.00+

Mg1.99+

Figure 3.2: Visualization of the derivative discontinuity in vxc(r) as shown in Fig. 5 of Pub. 2: The
exact-exchange potential (EXX) jumps in a finite domain upon addition of a fraction of an electron to
double-ionized atomic magnesium. When the fraction is further decreased the step wanders outwards to
infinity. Thereby the plateau in vxc(r) and thus the domain of the jump stretch out to all of space until a
spatially uniform jump of vxc(r) by ∆xc is reached in the limit of an infinitesimally small fraction.
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3.2 Band Gap Problem

the xc potential for a given energy functional and associates the potential at integer particle
number with the limit from below, vxc([n];r) = v−xc([n];r), whereas it is only defined up to a
spatial constant for integer number of particles.

When one considers a DFA to Exc[n] and not the exact functional, the corresponding E(N)

curve is not given by perfectly straight line segments. The deviation from the straight-line
condition is typically convex because the local or semilocal potentials of common DFAs lack a
derivative discontinuity completely and thus average over it [PL83, Toz03]. The corresponding
E(N) curve, however, still displays kinks due to the KS gap ∆KS but of underestimated magnitude.
Moreover, Janak’s theorem [Jan78],

µ(N) =
∂E(N)

∂N
= εho(N) , (3.13)

ensures that even for DFAs to Exc[n] the chemical potential equals the highest occupied KS
eigenvalue. However, εho(N) and thus µ(N) vary unphysically as function of fractional N
between integer points. Janak’s theorem is employed in Pub. 2 to prove that the potential of a
specific DFA is not discontinuous, even though it mimics features that are typically associated
with a xc derivative discontinuity.

One might be tempted to dismiss the significance of the (missing) derivative discontinuity
and its associated physics, as every extended system will correspond to a integer number
of electrons. The fact, however, is that the missing derivative discontinuity of traditional
DFA has detrimental consequences for the prediction of band gaps [PL83, GSS86, MSCY08],
polarizabilities [vGSG+99, KKP04], charge transfer [Toz03], charge localization or charge
distribution between subsystems [MSCY08, HKSG17] as will be outlined in the following
sections.

3.2 Band Gap Problem

In solid-state physics it is common to use ground-state DFT to calculate the electronic band
structures directly from KS eigenvalues, e.g., as these can be viewed as the leading order
contribution to the quasiparticle energies [CGB02]. While the band shapes are typically well
reproduced by the KS eigenvalues and in good agreement with experiment, the band gap of
insulators and semiconductors, i.e., the energetic difference between the conduction and valence
band, is systematically and significantly underestimated [GSS86, PL83]. This is especially
concerning in cases where semiconductors are predicted to be metallic. The underlying reasons
for this band gap problem are twofold and summarized briefly below – for a detailed discussion
see, e.g., Ref. [KK08].

First, from a conceptual point of view, KS ground-state DFT is not supposed to yield the
complete (fundamental) band gap directly from the KS eigenvalue gap ∆KS. The latter energy
difference is exactly short of the xc derivative discontinuity ∆xc because the KS potential and
thus the KS eigenvalues would jump by ∆xc upon occupying the conduction band. However, if
the exact Exc[n] or a DFA with a sizable derivative discontinuity thereof is used to calculate the
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Chapter 3 Ultranonlocality in Density Functional Theory

KS band structure, ∆xc can be evaluated and added to ∆KS to obtain an accurate fundamental
band gap. Another frequently taken option is to resort to generalized Kohn-Sham [SGV+96],
cf. Sec. 5.3, where the restriction of a multiplicative KS potential is lifted and thereby the
derivative discontinuity is readily and directly incorporated into the then generalized KS gap
[SGV+96, PYB+17, YPSP16, PR18], ∆g = ∆gKS ≈ ∆KS +∆xc.

Second, while the band gap problem is thus solved conceptually, the problem still persists
from a practical point of view: Given that ∆xc makes for the pivotal missing contribution to the
band gap and that common semilocal DFAs completely lack a ∆xc, the band gap problem of
(semilocal) DFT is apparent and an intrinsic limitation of explicit density-dependent semilocal
functionals. Upto now, the options to surpass the band gap problem in practice are either
to employ nonlocal DFA [KK08] such as range-separated hybrids [HSE03], which increase
the computational cost, or to use semi-empirical methods like DFT+U [AZA91, LAZ95] or
model potentials [GvLvLB95, BJ06, TB09, KOER10, KTB12]. Both of the latter come with
formal and practical limitations [AKJS06, MKvLR07, GS09, KAK09, KAK13], which are also
partially discussed in Pubs. 1 and 2 in case of the model potentials. While meta-GGAs have
been recently shown [YPSP16] to improve on the band gap problem, Pub. 3 demonstrates that a
meta-GGA with a novel construction strategy with focus on the derivative discontinuity is able
to overcome the band gap problem of semilocal DFT. Thereby, a new computationally feasible
avenue without the formal and practical limitations of the methods mentioned above opens.

3.3 Shell and Step Structures

When adding a small, but finite fractional charge to a system, the ultranonlocal discontinuous
shift of vxc(r) that is associated with the derivative discontinuity reduces to a plateau of finite
width that lifts the KS system energetically and thus increases the energy to add an electron,
cf. Fig. 3.2. When the added fractional charge is continously decreased the steps of the plateau
wander outwards to infinity [PL83, KLI92a]. In the opposite limit, i.e., when the fractional
charge approaches a full electron, the step is absorbed into the vxc(r) and is, e.g., associated
with a pronounced shell structure [HS89, vLGB95, BJ06] that can be found in the exchange
potential of atoms.

A plateau in vxc(r) and thus step structures are also observed in a different but related
physical situation [Per90, GB96, MKK11, KAK09, HKSG17], which is schematically depicted
in Fig. 3.3: In case of a combined system composed of two different subsystems, e.g., two atoms
of different species, separated by a large distance a plateau in the exact vxc(r) forms around one
of the subsystems to ensure the physically correct distribution of charge, i.e., the correct integer
number of electrons at each subsystem. The link to the derivative discontinuity is apparent when
considering the physically equivalent description of the two isolated subsystems. Upon moving
an infinitesimal test charge between the systems in a thought experiment in order to minimize
the energy, the acceptor system would prevent this charge transfer by virtue of a discontinuous
upshift of its xc potential. In the combined system this shift has to be present as a plateau in
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Figure 3.3: Schematic depiction of the exact xc potential for a combined system comprised of two
well-separated subsystems (A and B) along their bond axis (without the interbond peak): the xc potential
(solid blue line) forms a ultranonlocal plateau that uplifts system A by a constant ∆ relative to the potential
that corresponds to the individual system A (dashed light blue line). Thereby, an integer number of
electrons at both A and B is enforced in the combined KS system.

vxc(r) even at integer distribution of charge.
Common local and semilocal DFAs that do not possess the required ultranonlocal properties,

i.e., a derivative discontinuity, violate the integer preference principle [Per90] in these situations.
The consequence is an unphysical dissociation limit with fractional numbers of electrons in both
subsystems [RPC+06].

3.4 Polarizabilities and Charge Transfer

The basically same physics of the derivative discontinuity and thus ultranonlocality present
themselves in the case of charge transfer [Toz03, DWHG03, Mai05, TFSB05, KBY07, Kü17],
especially long-range charge transfer. Here, the energies of the subsystems are shifted relative to
each other by an additional external electric field. When the distance between the subsystems is
sufficiently large, no charge should be transferred until the potential difference of the external
electric field surpasses the difference between the electron affinity of the acceptor and the
ionization potential of the donor. At this point, precisely one electron should be transferred and
the transfer should stop until the next threshold field strength is reached and the next integer
electron transfer occurs. In addition to the plateau discussed in the previous section, which is
already present without an external electric field when different donor and acceptor molecules
are used, vxc(r) has to build a plateau around the acceptor to prevent a fractional transfer of
charge induced by the external field until the external field threshold is reached. Consequently,
this plateau counteracts the external electric field and thus increases with the field strength. Once
an integer electron transfer occurred a step in the opposite direction, i.e., a plateau around the
donor system, can be observed in the xc potential in order to stabilize the transferred charge
[HK12]. The initial plateau and the field-counteracting terms in the xc potential are thus vital
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Chapter 3 Ultranonlocality in Density Functional Theory

to the proper description of charge transfer within DFT. An absence of these ultranonlocal
properties in common DFAs results in a significant underestimation of charge transfer energies
[Toz03] and in the prediction of a fractional transfer of charge [KBY07].

Moreover, these field-counteracting properties of vxc(r) are also present [CPvG+98, KKP04,
KK18] when the distance between the subsystems approaches zero, i.e, within molecules. This
is especially relevant for extended molecular systems such as conjugated polymers that are
of particular interest because of their widespread optoelectronic applications [KRM94]. The
absence of the derivative discontinuity and hence of the field-counteracting term manifests
itself very prominently in the incorrect description of electric response properties such as the
detrimental overestimation of the static electric (hyper)polarizabilities of extended molecular
systems [CPvG+98, vGSG+99, KKP04, KK06, AKK08, KAK09]. This type of ultranonlocality
can also be observed in solids and is of relevance when calculating their polarization dependence
[GGG95, GGG97a, GGG97b].

Valuable model systems that are frequently used to investigate these field-counteracting
physics and to benchmark DFAs are hydrogen chains, i.e., linear chains of hydrogen atoms.
While they are most difficult to describe accurately within DFT, their electronic structure remains
transparent and mimics features of polymers like polyacetylene [KKP04]. Hydrogen chains
can either be used to study the field-counteracting term and its effects on the static electric
response within a single chain [CMVA95, vGSG+99, GGB02, MSWY03, vFdBvL+02, KKP04,
KK06, MvF07, KMK08, RPC+08, PSB08, AKK08] or to assess charge transfer properties
and integer preference between two chains [KBY07, HK12, SK16]. Figure 3.4 showcases
the field-counteracting term in the former model of a single linear chain consisting of twelve
hydrogen atoms with alternating distances. The single chain model is also used briefly in Pub. 2,
whereas both models play a central role in Pub. 3.
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Figure 3.4: Visualization of the field-counteracting term in the xc potential as present in the hydrogen
chain model: Difference between the xc potential of calculations with and without a small external linear
electric field (dashed gray line) for a H12 chain (atom positions are indicated by circles). The solid red
line shows the desired field-counteracting behavior of the exact-exchange potential, whereas the solid
blue line shows the absence of this ultranonlocal term in the LDA xc potential.
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3.5 Delocalization, Density-Driven, and Self-Interaction Errors

The error related to a missing derivative discontinuity in Exc[n] is also frequently referred to
differently in the literature, connoting different perspectives on the same principle issue at
the core, e.g., delocalization, density-driven, or self-interaction error. The related changes in
perspective were and still remain useful to find, better understand and overcome the various
manifestations of this tedious error, which appears to be ultimately solved by the exact functional
only.

A powerful perspective is the delocalization error [MSCY08, JMSCY08] which depicts the
tendency of common semilocal DFAs to Exc[n] to unphysically favor delocalization of charge in
the system. This delocalization error is directly related to the convex violation of the straight-line
condition between integer points in the E(N) curve and can instructively explain the various
practical deficiencies reaching from the band gap problem to charge transfer and the prediction
of fractional charge distributions. Overcoming the delocalization error is, however, a fine line
because overcorrection leads to the reverse error, which is termed localization error.

Many of these deficits of common DFAs related to the missing derivative discontinuity may
also be characterized as density-driven errors [Jan17, WNJ+17, SSB18]. A density-driven error
is defined as the error of DFAs due to not being evaluated at the exact but on the self-consistently
calculated density. While many DFAs yield surprisingly accurate energies when evaluated at
the exact densities, they perform considerable worse at their self-consistent densities that can
deviate from the exact one substantially [MBS+17]. This deviation in turn is attributed to their
incorrect functional derivative, i.e., their potential that misses crucial features – for example
ultranonlocal features like step structures in the potential. This underscores that DFAs to Exc[n]
should ideally not only be constructed with the focus on the energy as it is very common but
also with a focus on the corresponding potential.

A final perspective is given by the self-interaction error [Per79, PZ81, ZY98]. Due to the
nature of DFT that is based on the density, there is no obvious way to distinguish between the
legit Coulomb-interaction between two electrons and the artificial interaction of an electron with
itself. The resulting self-interaction error is most transparent for one-electron systems, where
the correlation energy should vanish and the exchange energy should cancel the Hartree energy
completely, i.e., EH[n1e]+Exc[n1e] = 0 for any single-electron ground-state density n1e(r). For
a many-electron system this definition of one-electron self-interaction freedom is commonly
extended [Per79, PZ81] by identifying the fictional KS orbitals with electrons [KKM08] to

∑
σ=↑,↓

Nσ

∑
i=1
{EH[niσ ]+Exc[niσ ,0]}= 0 , (3.14)

where niσ (r) = |ϕiσ (r)|2 are the KS orbital densities. A DFA is thus considered one-electron
self-interaction free if EH[n1e]+EDFA

xc [n1e] = 0 for any single-electron density including non-
ground-state densities. Explicit elimination of the one-electron self-interaction by subtracting
Eq. (3.14) lead to self-interaction corrected DFAs [PZ81, KKM08], which can be shown
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[Per90, TFSB05, KMK08, RPC+08, PSB08] to improve on the various longstanding problems
outlined throughout this chapter. Other pathways to eliminate the one-electron self-interaction
error involve semilocal iso-orbital indicators [Bec98, PKZB99, JSE03, KP03c, SKM+14, FS19]
in combination with nonlocal functional expressions in order to cancel the nonlocal Hartree
energy. This is demonstrated in Pub. 4 for local range-separated hybrids. While these single-
orbital indicators are also frequently used in meta-GGAs, meta-GGAs cannot be formally
one-electron self-interaction free. However, one-electron correlation freedom is achievable
[Bec98, PKZB99]. Additionally, one-electron self-interaction freedom of the exchange part
can be realized in a loose sense by typically requiring one-electron self-interaction freedom
for the exact hydrogen ground state only [TPSS03] as it is done in Pub. 3. Eliminating the
one-electron self-interaction error is, however, not sufficient to completely eliminate [RPC+07] –
or in instances even reduce [SK16] – the many-electron self-interaction [MSCY06], which in
turn is defined by satisfying the straight-line condition in the E(N) curve, i.e., identical to the
definition of the absence of the (de-)localization error.
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CHAPTER 4

Constraint-Guided Construction of Density
Functional Approximations

This chapter presents an overview of the formal properties of the exact xc energy and potential
that are typically used as constraints on DFAs to Exc[n] and in particular as guidance on their
construction. Depending on the given form of the DFA, however, some exact constraints are
impossible to satisfy, incompatible with others, or may be inappropriate. Moreover, even a
complete set of known appropriate constraints does not define a functional uniquely since there
are still infinitely many ways to satisfy these constraints [SRP15]. Consequently, the selection
and realization of exact constraints in the DFA construction are to some extent experience-driven
and an active field of research. The advantage of constraint-guided DFAs [PBE96, TPSS03,
SRP15, TM16] in contrast to DFAs that are optimized for a dedicated purpose, e.g., by fitting to
molecule data, is that they are non-empirical and expected [PS01, PSTS08, RCFB09, SRP15]
and found [KPB99, MBS+17] to be more reliable – or at least systematic in their error – over a
wide range of situations and systems, e.g., atoms, molecules, solids, and surfaces. In particular,
this includes situations that are different from those the DFA has been constructed, tested, and
validated for. Therefore, these non-empirical DFAs are, e.g., valuable in material science and
in their search for new materials. The DFAs developed as part of this thesis and presented in
Pubs. 3 and 4 follow this constraint-guided construction concept.

4.1 Size Consistency

A fundamental principle of physics and thus of electronic structure theory including DFT is size
consistency [PK03]. It states that the total energy of a system comprised of two subsystems (A
and B) separated by a large distance must equal the sum of the energies of the separate parts,

E(A · · ·B) = E(A)+E(B) . (4.1)

Moreover, the density should also be additive,

nA···B(r) = nA(r)+nB(r) . (4.2)
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In absence of degeneracy most DFAs such as the LDA, GGAs, or meta-GGAs are size consistent
[Sav09]. Functionals which are not size-consistent should in general be avoided in ground state
DFT. An example of DFAs that violate size consistency are optimally tuned range-separated
hybrid functionals [KKK13]. The concept of a local range separation, which is the topic of
Pub. 4, is in part motivated by restoring size consistency for this class of functionals.

4.2 Unitary Invariance

The exact xc functional is ultimately by virtue of the Hohenberg-Kohn theorem [HK64] a
functional of the density alone, Exc[n]. DFAs that model this complex density dependence
implicitly via other ingredients should consequently yield the same energy when evaluated at
the same density. Therefore, DFAs to Exc[n] should be invariant under changes that do not alter
the density. Such a change, which is highly relevant for explicitly orbital-dependent DFAs, is a
unitary transformation of the orbitals. A prominent counterexample for a DFA that is unitary
variant is the self-interaction correction to LDA [PZ81]. Following this line of arguments,
orbital-dependent functionals should only use unitary invariant ingredients, such as the positive
non-interacting kinetic energy density

τ(r) = ∑
σ=↑,↓

τσ (r) = ∑
σ=↑,↓

h̄2

2me

Nσ

∑
i=1
|∇ϕiσ (r)|2 . (4.3)

4.3 Spin Scaling

Both the exchange energy Ex[n] as well as the non-interacting kinetic energy Ts[n] are by
definition separable with respect to the two spin orientations. This implies [OP79] the exact
spin-scaling relations

Ex[n↑,n↓] =
1
2

Ex[2n↑]+
1
2

Ex[2n↓] (4.4)

and
Ts[n↑,n↓] =

1
2

Ts[2n↑]+
1
2

Ts[2n↓] . (4.5)

The former is typically utilized to generate spin-density approximations of a DFA to Ex[n↑,n↓]
from the corresponding spin-unpolarized form Ex[n] as demonstrated in Appendix A.1. For
a meta-GGA in particular, the combination of both spin-scaling relations allows notating the
kinetic energy dependence explicitly,

Ex[n↑,n↓,τ↑,τ↓] =
1
2

Ex[2n↑,2τ↑]+
1
2

Ex[2n↓,2τ↓] . (4.6)

While in certain cases the spin dependence of the correlation energy Ec[n] is similar to the
one of the exchange energy [vBH72], there is, in general, no simple spin-scaling relation for
Ec[n] since two electrons of anti-parallel spin repel one another due to their Coulomb interaction.
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To account for the spin dependence of Ec[n], the (local fractional) spin-polarization

ζ (r) =
n↑(r)−n↓(r)
n↑(r)+n↓(r)

(4.7)

is typically used as an additional variable. Publication 4 exploits this fact to model a local range-
separation parameter for exchange with explicit dependence on ζ (r) since range separation
effectively models not only exchange but partly also correlation, cf. Sec. 6.3.

4.4 Asymptotic Behavior

In the asymptotic region of space, i.e., outside of the domain of substantial electronic density n(r),
the xc potential is governed [AvB85] by its exchange part and can be shown [GJL79, ECMV92]
to decay as

vxc(r)∼ vx(r)∼−
e2

|r| . (4.8)

The associated exchange(-correlation) energy density per unit volume in the conventional gauge1

is proportional to the electron density in the asymptotic region and thus decays exponentially
[GJL79, ECMV92],

exc(r)∼ ex(r)∼−
e2n(r)

2|r| . (4.9)

This long-rangedness of vx(r) is reflective of the fact that exchange has to cancel the self-
interaction that is induced by the Hartree potential also in the asymptotic region [SKKK14].

In the presence of a nodal surface of the highest occupied orbital that extends to infinity – a

Figure 4.1: Exact-exchange potential evaluated in a minimal nodal plane model as shown in Fig. 3 of
Pub. 1. The characteristic pronounced ridge is visible in the potential along the nodal surface, here given
by z = 0, at intermediate distances. For large distances, the ridge contracts exponentially.

1Note that energy densities are not uniquely defined and can be subjected to a gauge transformation. The conventional
gauge of the exchange energy density is given by Eq. (5.1). See Ref. [TSSP08] for further details.
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situation that is rather the norm than the exception, especially in case of organic molecules – the
exact-exchange potential does not decay isotropically to zero as Eq. (4.8) indicates. Instead, the
exchange potential approaches a positive system-dependent constant along the nodal surfaces,
as depicted in Fig. 4.1, leading to ridges in the KS potential that contract exponentially to a
set of zero measure [DSG02a, DSG02b, KP03a]. The behavior of the exact vxc(r), including
correlation, in the presence of orbital nodal surfaces is still an area of active research [WAY03,
GGGB16, GGB18].

While the long-range behavior of vx(r) is pivotal to properly describe, e.g., Rydberg states
[CJCS98], anions [LFB10], or the binding of excitons [RORO02], semilocal DFAs on the GGA
or meta-GGA level are only capable to model long-range behavior within narrow conditions
[Bec88, BR89, ECMV92, CEGVT15, DSFC15]. Additionally, these semilocal attempts to
model long-rangedness are tpyically exclusive to certain aspects [ECMV92], e.g., either to the
potential or to the energy density, numerically fragile, cf. Pub. 2, and are shown to result in
divergences of the KS potential in presence of the above-mentioned orbital nodal surfaces in
Pub. 1. Consequently, satisfying the exact asymptotic behavior within a semilocal approximation
to Ex[n] is uncommon and typically considered inappropriate.

4.5 Density Scaling

An important concept in DFT is density scaling, which describes how the different components
of the energy, especially Ex[n] and Ec[n], change under certain well-defined transformations of
the density. The resulting scaling relations define fundamental exact constraints on DFAs.

Uniform Density-Scaling

The most relevant density transformation is the uniform density-scaling [LP85] where the density
is scaled as

nλ (r) = λ
3n(λr) (4.10)

with an inverse scaling length λ > 0. The uniform density-scaling is norm-conserving, i.e.,∫
nλ (r)d3r =

∫
n(r)d3r = N , (4.11)

and leads to higher, but compressed density for λ > 1, and to lower, but expanded density for
λ < 1. Accordingly, λ → ∞ is labeled as the high-density limit, whereas λ → 0 is termed the
low-density limit.

In the high-density limit the non-interacting kinetic energy dominates the Hartree and the
exchange energy due to the Fermi repulsion. This is reflected in the scaling relations [LP85]

Ts[nλ ] = λ
2Ts[n] , (4.12)

EH[nλ ] = λEH[n] , (4.13)
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and
Ex[nλ ] = λEx[n] . (4.14)

The latter relation is used to fix the form of semilocal approximations to Ex[n]. To this end, it is
easy to see that for an approximation to Ex[n] where the exchange energy density is an ordinary
function of semilocal ingredients, i.e.,

ex(r) = ex(n(r), |∇n(r)|,τ(r),∇2n(r), . . .) , (4.15)

one can write the corresponding exchange energy in the form

Esl
x [n] = Ax

∫
n4/3(r)Fx(s(r), t(r),q(r), . . .)d3r , (4.16)

where the functional is solely defined by its exchange enhancement factor Fx: a function of
dimensionless semilocal variables that are invariant under uniform density scaling. These
dimensionless variables are, up to second order in ∇, the reduced density gradient

s(r) =
|∇n(r)|

2(3π2)1/3n4/3(r)
, (4.17)

the reduced Laplacian of the density

q(r) =
∇2n(r)

4(3π2)2/3n5/3(r)
, (4.18)

and the reduced kinetic energy density

t(r) =
10me

3h̄2
τ(r)

(3π2)2/3n5/3(r)
. (4.19)

The prefactor Ax is fixed by the homogeneous electron gas limit as discussed in the corresponding
Section 4.6. If Fx is only a function of s(r) this semilocal form defines a GGA for exchange
[PW86]. Once Fx depends either on t(r) or q(r) – optionally alongside the other variables – it
defines a meta-GGA [DSFC16] for exchange. However, the reduced Laplacian q(r) is rarely
used as an actual meta-GGA ingredient because it typically produces strong and unphysical
oscillations in the xc potential [DSFC16, CWW12, Asc14].

While no straightforward uniform scaling relation for Ec[n] exists, the high-density behavior
of the correlation energy may be characterized by the inequality [LP85]

Ec[nλ ]< λEc[n] for λ > 1 , (4.20)

which reflects that exchange dominates correlation in the high-density limit. This allows to
define the exchange part of an arbitrary DFA to Exc[n] as [Lev91]

Ex[n] = lim
λ→∞

Exc[nλ ]

λ
(4.21)
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and thus also the correlation part [Lev91]

Ec[n] = Exc[n]− lim
λ→∞

Exc[nλ ]

λ
. (4.22)

In similar fashion, one can define [PSTS08] a DFA to Exc[n] to have “full” exact exchange by

lim
λ→∞

Exc[nλ ]

Eex
x [nλ ]

= 1 , (4.23)

where Eex
x [nλ ] is the exact-exchange energy. This defines an exact constraint that is utilized in

Pub. 4 for the construction of a local range-separation parameter.

Non-Uniform Density-Scaling

Starting from a density n(x,y,z) and a corresponding finite Ex[n], one can also define the
one-dimensionally scaled density [Lev91]

n(1)
λ
(x,y,z) = λn(λx,y,z) . (4.24)

The result is a density with the same electron number that is compressed (λ > 1) or expanded
(λ < 1) in x-direction. Of particular importance is again the high-density limit, λ → ∞, where
the density fully contracts in the x-direction and thus collapses from three to two dimensions.
It has been proven [Lev91] that the exchange energy remains finite and negative in this true
two-dimensional limit, i.e.,

−∞ < lim
λ→∞

Ex[n
(1)
λ
]< 0 . (4.25)

Satisfying this exact constraint within a meta-GGA (or a GGA) for exchange implies [PRSB14]
a condition for the large-s behavior,

lim
s→∞

Fx(s,α = 0) ∝ s−1/2 (4.26)

with α = t−5s2/3, cf. definitions of s in Eq. (4.17) and t in Eq. (4.19). While Pub. 1 shows
that this particular large-s behavior can, in principle, lead to weak divergences in the presence
of orbital nodal-surfaces, it is still employed as a constraint in the meta-GGA construction of
Pub. 3.

Note that one can also define [Lev91] a non-uniform two-dimensional scaling in analogy
to Eq. (4.24). This, however, yields no additional constraint as satisfying the uniform scaling
relation of Eq. (4.14) and the one-dimensional scaling relation of Eq. (4.25) implies the correct
two-dimensional scaling for exchange [Lev91, PRSB14].
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4.6 Homogeneous Electron Gas Limit and Gradient Expansion

The simplest model of interacting electrons that has been studied since the early days of
condensed matter physics [Tho27, Fer28] is the homogeneous electron gas. As it is characterized
by a constant uniform density n(r) = nunif, it is ideally suited to be described exactly within
DFT and has, thereby, led to the most influential DFA, the LDA [HK64].

While the exact exchange energy density of a homogeneous electron gas can be calculated
analytically, obtaining [Dir30]

eunif
x = Axn4/3

unif with Ax =−
3e2

4π

(
3π

2)1/3
(4.27)

for the spin-saturated case, no closed expression for the correlation energy density of a homo-
geneous electron gas eunif

c (nunif,ζunif) is known. In practice, however, this does not cause any
restrictions as parametrizations [VWN80, PZ81, PW92a] of the latter based on highly accurate
Quantum Monte Carlo data [CA80] are available.

Based on this exactly known homogeneous electron gas limit, the LDA is defined by
approximating the xc energy density exc(r) per unit volume of an inhomogeneous system
locally at each point in space r by the xc energy density of the homogeneous electron gas
eunif

xc (n,ζ ) of density n(r)
[
and spin-polarization ζ (r)

]
corresponding to that point,

ELDA
xc [n] =

∫
eunif

xc (n(r),ζ (r))d3r . (4.28)

While the condition under which the LDA should be valid are rarely satisfied in real electronic
systems, it produces surprisingly good results and has become the (historic) workhorse of DFT.
The reasons for this success are well understood and attributed to the fact that LDA satisfies
many exact constraints inherited from its exact description of the homogeneous electron gas
[GL76, PK03].

A DFA is said to respect the homogeneous electron gas limit if for a homogeneous density
it reduces to the exact energy, i.e., to the one of LDA. For a semilocal exchange functional in
the form of Eq. (4.16) this is equivalent with Fx(s, t,q) = 1 at s = 0, q = 0, and t = 1, i.e., for a
vanishing density variation

[
∇n(r)→ 0, ∇2n(r)→ 0, . . .

]
and when the kinetic energy density

reduces to its homogeneous electron gas limit,

τ(r)→ τunif(r) =
3h̄2

10me
(3π

2)2/3n5/3(r) . (4.29)

For small density variations it is possible to expand the exact xc energy systematically around
the homogeneous electron gas limit. The resulting gradient expansion (GE) is based on reciprocal
space analysis [HK64, ED11]. The GE for exchange in its usual real space form is given by
[SvB96]

EGE
x [n] = Ax

∫
n4/3 [1+µs2 +Cx

(
q2 +axs2q+bxs4)+ . . .

]
d3r , (4.30)
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where only the second-order coefficient µ = 10/81 [AK85] as well as one of the fourth-order
coefficients Cx = 146/2025 [EV90] are known exactly. The best numerical estimates for the two
remaining fourth-order coefficients that are typically used in practice are ax =−5/2 [SvB96]
and bx = 0 [TPSS03].

Note that this GE, as well as any xc energy density, is only determined up to some partial
integration, whereas the corresponding total xc energy and potential are unambiguous quantities
[ED11]. This, for instance, allows one to rewrite the second-order GE (GE2) contribution as a
linear combination of s2 and q,

∆EGE2
x [n] = Ax

∫
n4/3

µ
[
cs2 +3(c−1)q

]
d3r with c ∈ R , (4.31)

assuming vanishing surface contributions, and thus to change variables [ED11]. It is, however,
impossible to reformulate the fourth-order terms solely in terms of s. Consequently, a GGA can
by construction only satisfy the GE2 for exchange, whereas the meta-GGA form for exchange
allows to reproduce the fourth-order GE (GE4) completely. Further note that modified GEs
can be derived from the semiclassical theory of neutral atoms based on a large-Z asymptotic
expansion of the exchange energy [ELCB08, CTDS+16].

As meta-GGAs are commonly based on the kinetic energy density τ and not the Laplacian of
the density ∇2n, reproduction of the GE4 requires to express q in terms of t. To this end, the GE
of τ(r) [BJC76, PSHP86] in the limit of a slowly varying density,

t(r) = τ(r)/τunif(r)∼ 1+
5
27

s2(r)+
20
9

q(r)+O(∇4) , (4.32)

is employed [PKZB99]. However, this second-order expansion of the kinetic energy allows one
either to use t(r) for the exchange GE in second-order [SPR15] and thus to satisfy only the GE2
or to use it only in the fourth-order terms [PKZB99, TPSS03, SRP15] but then to satisfy the
complete GE4. The usage of t(r) in both second and fourth order while satisfying the GE4 for
exchange would require the GE4 of τ(r). Although this expansion is known [BJC76, PSHP86],
it is not being used for this purpose so far because its fourth-order terms cannot readily be
expressed in terms of s and q. Publication 3 is forced to address this issue because the second-
order contribution of t(r) to the GE4 is pivotal to its meta-GGA construction strategy. To this
end, a new generalized formulation of the GE4 for exchange in terms of the variables s and t –
or more precisely s and α = t−5s2/3 – is derived and employed in Pub. 3. The central idea of
this reformulation is that, while the fourth-order terms in the GE of t (4.32) cannot be written in
terms of s and q in general, they can very well be written this way under the exchange energy
integral:

Ax

∫
n4/3t d3r = Ax

∫
n4/3

[
1+

5
27

s2 +
20
9

q+
2
81
(
2q2−3s2q+ s4)+O(∇6)

]
d3r . (4.33)

Hence, one can account for the fourth-order contributions to the GE for exchange that are
induced by the corresponding second-order contributions written in terms of t(r).
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4.7 Lieb-Oxford and Strongly Tightened Bound

Helpful guidance on the construction of semilocal DFAs can further be found in bounds on the
xc energy, or more importantly on the xc exchange energy density when they are interpreted
locally. The most elementary such bound is the negativity of the exchange energy, Ex[n]≤ 0,
which can be locally enforced by a positive exchange enhancement factor [DSFC16],

Fx ≥ 0 , (4.34)

cf. the semilocal exchange form in terms of Fx as given by Eq. (4.16).

The Lieb-Oxford bound [LO81],

Ex[n↑,n↓]≥ Exc[n↑,n↓]≥ 2.273ELDA
x [n] , (4.35)

is another important rigorous bound. Since it is based on a best estimation for the true bound
value, it has been suggested [OC07, RPCP09] that it can be tightened further. While formally
only the global condition is an exact constraint, it is typically enforced locally [PBE96]. Thereby,
an upper bound on the exchange enhancement factor,

Fx ≤ 1.804, (4.36)

is implied. While this is a sufficient condition to satisfy the global bound, it has also been
argued based on gedanken densities that this condition is also necessary in the semilocal form
[PRSB14]. In contrast, the exact-exchange energy density in the conventional gauge [TSSP08]
is known [MSGG12] to violate the local interpretation of the Lieb-Oxford bound, e.g., in the tail
region of the density. This is not necessarily a contradiction, as semilocal DFAs are known to
describe the exchange energy in a different gauge [TSSP08].

Recently, a strongly tightened bound compared to the Lieb-Oxford bound has been proved
[PRSB14] for one- and two-electron densities, i.e.,

Fx(s,α = 0)≤ 1.174 , (4.37)

as one- and two-electron systems are characterized by α = 0 [SXF+13]. Furthermore, based on
the conjecture [PRSB14, SPR15]

Fx(s,α)≤ Fx(s,α = 0) , (4.38)

this strongly tightened bound is suspected to hold for all values of α ,

Fx(s,α)≤ Fx(s,α = 0)≤ 1.174 , (4.39)

and thus generally [PRSB14]. As this strongly tightened bound is not considered compatible
[SPR15] with the GE2 for exchange on the GGA level, it has so far only been applied on the
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meta-GGA level [SPR15, SRP15]. Interestingly, the conjectured strongly tightened bound (4.39)
is well in line with the novel meta-GGA construction principle put forward in Pub. 3.

4.8 Density-Path Integrals and Virial Theorem

A useful analytical tool to derive exact constraints or analyze DFAs are density-path integrals
[vLB95]. A density path nλ (r) is defined by connecting two densities n0(r) and n1(r) smoothly
by means of a continuous parameter λ ∈ [0,1]. The energy difference for an arbitrary DFA to
Exc[n] with its functional derivative vxc([n];r) = δExc/δn(r) can then be written as a density-
path integral,

Exc[n1]−Exc[n0] =
∫ 1

0

dExc[nλ ]

dλ
dλ =

∫ 1

0

∫
δExc[nλ ]

δnλ (r)
dnλ

dλ
(r) d3r dλ

=
∫ 1

0

∫
vxc([nλ ];r)

dnλ

dλ
(r) d3r dλ . (4.40)

If the density path is chosen such that n1(r) = n(r) and Ex[n0] = 0, e.g., as n0(r)≡ 0, it allows
to connect the energy with the corresponding potential,

Exc[n] =
∫ 1

0

∫
vxc([nλ ];r)

dnλ

dλ
(r) d3r dλ , (4.41)

provided that vxc([n];r) is the true functional derivative of Exc[n].
An important density-path is the uniform density path defined by Eq. (4.10). In Pub. 2

this particular density path is used as the central part of a proof. Additionally, it is closely
connected to the virial theorem of DFT [GP85], which can be obtained by utilizing the uniform
density-scaling relation of Ex[n] (4.14) along the uniform density path and reads

Ex[n] =
∫

[3n(r)+ r ·∇n(r)]vx([n];r)d3r =−
∫

n(r)r ·∇vx([n];r) d3r . (4.42)

It is valid for any DFA for exchange provided that the DFA satisfies the correct uniform
density-scaling and that the potential vx([n];r) is the actual functional derivative of the DFA,
i.e., δEx[n]/δn(r) = vxc([n];r). Therefore, this virial relation allows one to assess the numerical
and, in the case of orbital-dependent functionals, also the analytical quality of a numerically
implemented exchange potential corresponding to a DFA. The various implementations of, e.g.,
the meta-GGAs of Pub. 3 have been checked frequently on this basis.

4.9 Exchange-Correlation Hole

An alternative ansatz to formulate, understand, and model the xc energy is the xc hole hxc(r,r′).
It can be interpreted as a hole in the average density of electrons at r′, given that there is an
electron at r. Consequently, the hole cannot be deeper than the density, hxc(r,r′)≥−n(r′). The
xc energy can be written as [GL76] the electrostatic interaction between each electron and the
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surrounding xc hole,

Exc[n] =
e2

2

∫∫ n(r)hxc(r,r′)
|r− r′| d3r′ d3r , (4.43)

and is thus fully determined by the xc hole and its properties. Hence, all exact constraints on
Exc[n] can in principle be reformulated as constraints on the xc hole instead. Similar to the
energy, the hole can also be decomposed in an exchange and a correlation component,

hxc(r,r′) = hx(r,r′)+hc(r,r′) , (4.44)

where the exact exchange hole may be expressed in terms of the KS orbitals [Per85],

hx(r,r′) =− ∑
σ=↑,↓

Nσ

∑
i, j=1

ϕ∗iσ (r)ϕiσ (r′)ϕ∗jσ (r′)ϕ jσ (r)
n(r)

. (4.45)

The symmetry of n(r)hx(r,r′) with respect to interchange of coordinates (r↔ r′) that is apparent
from this definition of the exchange hole also holds for the exact correlation hole and thus for the
complete hole. Further, the exchange hole, which is strictly non-positive, hx(r,r)≤ 0, satisfies
the sum rule [Per85] ∫

hx(r,r′)d3r′ =−1 (4.46)

and the latter relation holds also for the complete hole, as the correlation hole integrates to zero.
Moreover, the “on-top” value of the exchange hole is given by [Per85]

hx(r,r) =−
1
2

n(r) (4.47)

for spin-unpolarized systems. The general case follows from the reformulation of the exchange
spin-scaling relation (4.4) for the hole [PBW96],

hx([n↑,n↓];r,r′) = ∑
σ=↑,↓

nσ (r)
n(r)

hx([2nσ ];r,r′) . (4.48)

Since the Coulomb interaction in Eq. (4.43) only depends on the inter-electron separation
u = |u|= |r′− r|, it is sufficient to only consider the spherical-averaged hole [Bec83],

h̄xc(r,u) =
1

4π

∮
hxc(r,r+u)dΩu , (4.49)

without loss of generality. All of the exact properties listed above translate directly to the
spherical-averaged hole as well. Moreover, it allows for a series expansion of its exchange
component around the reference point [Bec83, BR89, WZE17],

h̄x(r,u)∼−
1
2

n(r)− 1
12

{
∇

2n(r)−4
[

me

h̄2 τ(r)− |∇n(r)|2
8n(r)

]}
u2 +O(u4) . (4.50)

Semilocal models for the spherical-averaged exchange (and correlation) hole [BR89, PW92b,
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PBW96, CPT06, HJS08, TBS17] are frequently constructed based on these exact constraints
and are designed to describe the energy,

Exc[n] = 2πNe2
∫

∞

0
〈h̄xc〉(u)udu , (4.51)

rather in terms of the corresponding system- and spherical-averaged hole [BP95]

〈h̄xc〉(u) =
1
N

∫
n(r) h̄xc(r,u)d3r . (4.52)

These semilocal hole models can be used to directly construct xc functionals [PW86, TM16].
Moreover, they are built a posteriori to reproduce a DFA [PW92b, PBW96, CPT06, TBS17]
and serve as a starting point to construct more advanced DFAs, e.g., in the range-separation
scheme [HSE03], cf. Sec. 6.3, in the xc factor approach [AZE14, PBKE14, PPBKE15], or to
model non-dynamical correlation [Bec03, Bec13]. In Pub. 4 particularly semilocal exchange
hole models are used to reduce the computational cost of local range-separated hybrids through a
hyper-GGA approximation [KSPS08] where the exact exchange hole is mapped onto a semilocal
hole model.
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CHAPTER 5

Orbital-Dependent Density Functionals

The most widely used and successful way to incorporate ultranonlocality into DFT is given by
orbital-dependent DFAs. Orbital-dependent functionals have a natural mechanism that allows for
a particle number discontinuity as the addition of infinitesimal charge is realized by occupying
previously unoccupied orbitals. The non-interacting kinetic energy Ts[n] of Eq. (2.3) serves as a
prime example. This pivotal functional to the KS formulation [KS65] and thus to the success
story of DFT is written in terms of one-electron orbitals and thus is only an implicit functional of
the density. While Ts[n] is only semilocal in the orbitals, it yields a sizable derivative discontinuity
in form of the KS gap, cf. Eq. (3.10). The associated ultranonlocality enters because each KS
orbital ϕiσ (r) at r depends on the density n(r′) at all points r′ as mediated by the KS potential.
Consequently, Ts[n] is (ultra)nonlocal in density while being semilocal in the orbitals. The
following chapter will outline the aspects of orbital-dependent density functionals relevant for
this thesis. For a comprehensive review see, e.g., Refs. [KK08, Eng03].

5.1 Exact Exchange and Beyond

Another functional that is naturally written in terms of the orbitals is the exact-exchange energy
(EXX) as it is defined via

Eex
x [{ϕiσ [n]}] = 〈ΦKS|Ŵ |ΦKS〉−EH[n]

=−e2

2 ∑
σ=↑,↓

Nσ

∑
i, j=1

∫∫
ϕ∗iσ (r)ϕiσ (r′)ϕ∗jσ (r′)ϕ jσ (r)

|r− r′| d3r′ d3r (5.1)

as the difference between the expectation value of the inter-electron interaction Ŵ in the non-
interacting KS system and the Hartree energy [PK03, ED11]. Therefore, the EXX functional
coincides with the Fock exchange expression but evaluated with KS orbitals and satisfies by
definition all exact exchange constraints. Furthermore, it possesses pronounced ultranonlocality
including a derivative discontinuity ∆x.

Despite of these formal merits, EXX has two severe practical limitations. First, the evaluation
of EXX and its corresponding potential, is computationally expensive due to the Fock integrals
and, as outlined below, due the orbital dependence. Second, EXX alone naturally lacks correla-
tion and usually performs worse than LDA or even exchange-only LDA for thermochemical
properties such as atomization energies [ED11]. This is an importrant point because due to
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the (ultra)nonlocal nature of EXX finding a corresponding suitable correlation functional is
a challenging task [KK08]. One avenue to do so is the modification of EXX and its (partial)
combination with traditional semilocal expression for Exc[n] into hybrid functionals between
EXX (or Hartree-Fock) and semilocal DFT. This hybrid class of DFAs includes global hybrids
[Bec93, SDCF94, PEB96], local hybrids [PSTS08, JSE03, SKM+14] and range-separated
hybrids [LSWS97, YTH04, SKB09]. By going beyond the hybrid concept via inclusion of
unoccupied KS orbitals and eigenvalues yet higher accuracy can be reached to the impressive
point that DFT starts to rival wave-function based methods in accuracy [EBG16].

The accuracy, however, comes at a steep increase in computational cost. Thus, instead
of starting from EXX and climbing Jacob’s ladder of DFAs [PS01] and thereby increasing
computational cost, one has the option to descend one level and withdraw to explicit but
semilocal orbital-dependent ingredients such as the kinetic energy density, i.e., to meta-GGAs.
Publication 3 demonstrates that substantial ultranonlocality can be achieved even on this level.

5.2 Optimized Effective Potential Theory

Given an explicit orbital-dependent Exc[{ϕiσ}] and implicit dependence of the orbitals {ϕiσ}
on the density, the question arises of how to calculate the functional derivative with respect to
the density, vxcσ (r) = δExc[{ϕiς [n]}]/δnσ (r), i.e., the corresponding multiplicative xc potential.
The answer is given by the optimized effective potential (OEP) scheme [SH53, TS76, SGP82,
KK08], where by virtue of the chain rule the change of the energy is expressed in changes of the
KS orbitals due to a change of density that is in turn mediated by the KS potential,

vxcσ (r) = ∑
α,β=↑,↓

Nσ

∑
i=1

∫∫
δExc[{ϕ jς}]

δϕiα(r′)
δϕiα(r′)

δvKSβ (r′′)
δvKSβ (r′′)

δnσ (r)
d3r′ d3r′′+ c.c. (5.2)

This expression can eventually be recast into an integral equation for vxcσ (r),

vxcσ (r) =
1

2nσ (r)

Nσ

∑
i=1

{
|ϕiσ (r)|2

[
uxciσ (r)+

(
v̄xciσ − ūxciσ

)]
− h̄2

me
∇ ·
[
ψ
∗
iσ (r)∇ϕiσ (r)

]}
+ c.c. , (5.3)

where ψiσ (r) denotes the orbital shift that represents the first-order change of the KS orbital
ϕiσ (r) upon replacing the KS potential with the orbital-specific potential

uxciσ (r) =
1

ϕ∗iσ (r)
δExc[{ϕ jς}]

δϕiσ (r)
. (5.4)

Moreover, an overscore denotes the orbital expectation value of the potentials, i.e.,

v̄xciσ =
∫

ϕ
∗
iσ (r)vxcσ (r)ϕiσ (r)d3r and ūxciσ =

∫
ϕ
∗
iσ (r)uxciσ (r)ϕiσ (r)d3r . (5.5)
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The orbital shifts can be obtained either as solutions of partial differential equations [KP03b] or
by their Green’s functions representation,

ψ
∗
iσ (r) =−

∞

∑
j=1
j 6=i

〈ϕiσ |uxciσ − vxcσ |ϕ jσ 〉
εiσ − ε jσ

ϕ
∗
jσ (r) , (5.6)

in terms of occupied and unoccupied KS eigenvalues and orbitals. While a further reformulation
[KLI92b] of the OEP equation (5.2),

Sσ (r) =
Nσ

∑
i=1

ψ
∗
iσ (r)ϕiσ (r)+ c.c. = 0 , (5.7)

allows for simple iterative construction of the OEP potential by S-iterations [KP03b, KP03a],
solving the OEP integral equation remains numerically challenging and a computationally costly
task. A thus vital approximation to the full OEP potential, as it drastically reduces the numerical
effort, was first suggested by Krieger, Li, and Iafrate (KLI) [KLI92a, KLI92b],

vKLI
xcσ (r) =

1
2nσ (r)

Nσ

∑
i=1
|ϕiσ (r)|2

[
uxciσ (r)+

(
v̄xciσ − ūxciσ

)]
+ c.c. (5.8)

Even though the KLI approximation remains an integral equation for vxcσ (r), it allows to be
solved efficiently as system of linear equations. A similar approximation to the OEP potential
is given by the common energy denominator approximation (CEDA) [GB01, DSG01]. While
CEDA is superior to KLI on a formal level as it restores unitary invariance, cf. Sec. 4.2, the
increase in computational cost is seldom justifiable from a practical perspective since the
difference to KLI is modest and not necessarily a step closer to the full OEP [KK08].

The full OEP as well as the KLI or CEDA potential can be partitioned into two contributions.
The first part is the local average of the orbital-specific potentials of all occupied orbitals,

vhole
xcσ (r) =

1
2nσ (r)

Nσ

∑
i=1
|ϕiσ (r)|2uxciσ (r)+ c.c. (5.9)

As it may be written as the smooth Coulomb potential of the associated xc hole, cf. Eq. (4.43), it
is termed hole potential (or Slater potential). The exact hole potential makes for the substantial
part of the full potential and is responsible for the 1/r-long-rangedness of vxcσ (r), but does not
show any ultranonlocality [vLGB95]. All ultranonlocality including the derivative discontinuity
[KLI92a], shell- and step structure [vLGB95], and the field-counteracting term [vGSG+99,
KKP04] are contained in the second part of vxcσ (r), the response potential vresp

xcσ (r). In the KLI
approximation the response potential takes the transparent form

vresp,KLI
xcσ (r) =

1
2nσ (r)

Nσ

∑
i=1
|ϕiσ (r)|2

(
v̄xciσ − ūxciσ

)
+ c.c. , (5.10)

31



Chapter 5 Orbital-Dependent Density Functionals

where at each point in space a orbital-specific constant Ciσ = v̄xciσ − ūxciσ + c.c. is weighted
by the local contribution of each orbital to the density. As the differences between the orbital-
specific potentials uxciσ (r) and the multiplicative potential vxcσ (r) lead to different constants
{Ciσ}, an ultranonlocal step structure emerges naturally in the response potential. Moreover, the
ridges in asymptotic xc potential that arise in the presence of orbital nodal surfaces, as mentioned
in Sec. 4.4, are also a direct consequence of vresp

xcσ (r) and the constants {Ciσ} [DSG02a, DSG02b,
KP03a].

Further note that the solution to the OEP problem is only determined up to a global shift of
vxcσ (r). Fixing this global constant in the OEP potential such that it corresponds to the unique xc
potential of an ensemble, cf. Sec. 3.1, corresponds to the choice CNσ σ = 0 [KLI92a, EH14]. As
this condition is tied to the highest occupied orbital, the condition changes discontinuously when
an additional orbital is fractionally occupied. Thereby, this condition gives rise to a uniform
jump of vxcσ (r), i.e., to the derivative discontinuity ∆xc [KLI92a].

5.3 Generalized Kohn-Sham Scheme

A computationally feasible and frequently used alternative to the OEP scheme is given by the
generalized Kohn-Sham (gKS) scheme [SGV+96]. Formally, the gKS scheme corresponds to a
different partitioning of the energy and, thereby, an implicit redefinition of Exc[n]. Therefore,
employing the same orbital-dependent approximation to Exc[n] to the KS and gKS schemes
defines different energy functionals on a formal level. Their performance is, however, expected
to be qualitatively similar.

In the gKS scheme the interacting system of electrons is – in contrast to the standard KS
framework – not mapped into a non-interacting but into a, e.g., partially interacting system.
The type of the corresponding auxiliary system, which is still describable by a single Slater
determinant, is, however, no longer universal but depends on the precise type of the employed
functional [KK08, BK18]. Single-particle equations similar to the KS Eqs. (2.7) emerge, where
the multiplicative xc potential for all orbitals is replaced by the orbital-specific potential uxciσ (r),
which is also representable by a nonlocal potential operator for all orbitals. Thus, the gKS
scheme for EXX essentially reduces to Hartree-Fock and vx(r) becomes the usual Fock-integral
operator, whereas the gKS potential operator of a meta-GGA becomes a spatial-dependent
differential operator [NNH96, AK03].

In order to remain formally exact in the same sense that KS DFT is exact given the exact
Exc[n], a remainder energy functional and potential enters the gKS equation but is typically
neglected when not comprised by a conventional Exc[n] contribution. For meta-GGAs the
gKS scheme has additional drawbacks in time-dependent DFT and requires further care and
adjustments [BF12]. While the gKS scheme, hence, has formal deficits compared to the KS
scheme, it is in practice the primary way to employ orbital-dependent functionals – especially
so because operator potentials are readily implemented in basis set codes. But, since the
ultranonlocality in the gKS scheme is hidden in orbital-specific potentials, it is not employed

32



5.3 Generalized Kohn-Sham Scheme

throughout this thesis with the single exception of the band gap calculations of Pub. 3: because
the gKS potential operator is continuous, the band gap readily approximates the fundamental gap
in this case since it includes the derivative discontinuity due to the explicit orbital dependence
[SGV+96, PYB+17, YPSP16, PR18].
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CHAPTER 6

Developments and Results

As discussed in Chapter 3, the inclusion of ultranonlocality in DFAs plays a decisive role
to describe certain situations with DFT and its absence is responsible for hallmark deficits
throughout the history of DFT. So far, the key to capture ultranonlocality, as outlined in Chapter
5, is primarily the use of orbital-dependent functionals that are based on or make explicit use of
EXX. These functionals are, however, restricted to much smaller systems than common semilocal
functionals since they are computationally much more demanding. This restriction can have
serious consequences because often the interesting features of real-world systems, especially in
the realm of nano- and supramolecular science, stem from an intrinsic complexity that requires
the explicit treatment of a large number of particles. Understanding light-harvesting systems
[CGK06, JSARM+15, CM17] is a paradigm example: It requires calculating energy- and charge
transfer through arrays of dozens of chromophores, where each chromophore typically has
hundreds of electrons. The chromophores in turn are typically embedded in a protein matrix, at
least parts of which should also be taken into account explicitly [JSARM+15, CJC+16, ADH17,
SFG+19]. However, semilocal functionals are currently at their limits for such systems due to
their inability to properly describe charge transfer [Sun03, DHG04, SK18]. Therefore, there is a
serious need for functionals that do not suffer from the large, qualitative errors that traditional
semilocal functionals plague, yet come at a comparable computational price.

To this end, the following Sec. 6.1 outlines, as detailed in Pubs. 1 and 2, that previous
semilocal attempts to mimic ultranonlocal properties based on model potentials or on the GGA
form for exchange cannot fully meet these expectations and have serious limitations. This
is followed by Sec. 6.2 summarizing the results of Pub. 3 and showcasing that, contrary to
long-standing past experience, meta-GGAs can show substantial ultranonlocality and therefore
are likely to live up to this expectation. The final Sec. 6.3 then focuses on the computational
more demanding class of range-separated hybrids that currently spearhead the description of
charge transfer for systems of small to moderate size. After explaining the range-separation
approach and outlining its formal and practical deficits the ansatz of Pub. 4 is presented, which
tackles these deficits with a local range-separation parameter, and the corresponding results are
summarized.
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6.1 Limitations of Semilocal Approximations

More than a decade ago, two model potentials for the response part of the exchange potential
vresp

x (r), cf. Eq. (5.10), have been put forward and shown to improve the atomic-shell structure.
These exchange potentials by Gritsenko et al. (GLLB) [GvLvLB95] and by Becke and Johnson
(BJ) [BJ06] are termed model potentials as they – in contrast to being given by a functional
derivative of an associated energy functional Ex[n] – directly model the potential. Over the
past years, these model potentials and various modifications thereof [AKK08, TB09, KOER10,
RPP10, KTB12], especially of the BJ potential, have sparked interest by delivering on other
properties associated with ultranonlocality such as polarizabilities and band gaps [TBS07,
AKK08, KAK09, TB09, KOER10, TEB18, NS18, TBLDH+19].

Yet, the usefulness of model potentials is seriously limited due to their lack of a corresponding
energy functional [AKJS06, MKvLR07, GS09, KAK09, NV11, KAK13]: First, they cannot
be used in applications that require energies. Second, they are incapable of being propagated
in the time-dependent KS equations as being an actual functional derivative is pivotal for this
purpose. Third, they cause formal problems since directly modeling the xc potential sidesteps
the variational principle at the core of the KS DFT framework that leads to the KS equations.

These model potential limitations were meant to be resolved by the construction of the
Armiento-Kümmel GGA (AK13) [AK13], which is an explicit semilocal energy functional.
The AK13 energy functional is designed such that the corresponding AK13 potential shares the
asymptotic behavior of the BJ potential that was previously [AKK08] made out for effectively
mimicking the ultranonlocal features.

This signature asymptotic of the BJ potential,

vBJ
x (r) = vSlater

x (r)+
e2

π

√
5me

6h̄2
τ(r)
n(r)

(6.1)

with the kinetic energy density τ(r) as defined in Eq. (4.3), relies on the asymptotic decay of the
density: Normally, the density decay is governed by the highest occupied KS orbital and under
assumption of spherical symmetry given by [KKGG98]

n(r)∼ n0|r|q exp(−κ|r|) as |r| → ∞ , (6.2)

with an explicit dependence on the highest occupied KS eigenvalue εho via

κ = 2

√
2me

h̄2 (v∞
x − εho) . (6.3)

In this spherically symmetric case the BJ potential approaches,

v∞
x = lim

|r|→∞

vBJ
x (r) ∝ κ ∝

√
v∞

x − εho , (6.4)

a positive, system-dependent constant far outside the system. Moreover, whenever the density is
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dominated by the exponential decay of any single orbital, the potential approaches a different
but corresponding constant. Thereby, this gives not only rise to a step structure in the potential,
but also to a derivative discontinuity [AKK08]: Since the BJ potential is a model potential, it can
be arbitrarily shifted by a constant. Therefore, if the BJ potential is, in accordance with the exact
vx(r), thoroughly aligned to vanish asymptotically as |r| → ∞, it undergoes a discontinuous
uniform shift upon fractionally occupying the next orbital.

In the AK13 construction it was demonstrated [AK13] that a very similar asymptotic behavior
of a system-dependent asymptotic constant can also be realized within the restricted GGA form
for exchange, cf. Eq. (4.16), and thus in conjunction with a corresponding energy functional.
Since the exponential decay of the density (6.2) translates to an exponential growth of the
dimensionless GGA variable s(r), cf. Eq. (4.17), this characteristic asymptotic behavior of the
potential is achieved by a precisely diverging enhancement factor,

FAK13
x (s) = 1+B1s ln(1+ s)+B2s ln[1+ ln(1+ s)]∼ B1s lns as s→ ∞ , (6.5)

where B1 = 2/27+8π/15 and B2 = 4/81−8π/15 were determined in non-empirical fashion.
The resulting AK13 functional can also, to some degree, deliver on improving properties typically
associated with ultranonlocality [AK13, COM14, TBS15, VSNL+15, LA16, TBBB16, TB17].
However, it also let to the discovery of anomalous features that are closely connected to the
nonvanishing asymptotic potential. The findings, which are the topic of Pubs. 1 and 2 and thus of
this thesis, constitute a formidable challenge for the future development of semilocal functionals
based on the BJ and AK13 concept.

Publication 1 focuses on orbital nodal surfaces and demonstrates that they represent serious
topological challenges for density functionals. In many finite systems, in particular organic
systems, the highest occupied ground-state KS orbital has one or multiple nodal surfaces that
extend to infinity. In these situations, as noted in Sec. 4.4, protruding ridges along such regions
emerge in the asymptotic EXX potential, cf. Fig. 4.1. As the analytic origin of these ridges
can be traced back to the response part of the exchange potential vresp

x (r), cf. Sec. 5.2, i.e., the
origin of all ultranonlocal properties, it is not surprising that semilocal functionals which mimic
ultranonlocality display anomalous features there as well.

However, Pub. 1 shows that nodal surfaces can heavily affect the potential of semilocal DFAs
in the sense that exponential divergences in the vicinity of nodal surfaces emerge. To this end, an
analytic minimal nodal surface model is developed and utilized. These unphysical divergences
present not only conceptual challenges but can also severely hinder self-consistent calculations.
The AK13 and BJ functionals serve as a paradigm for the latter: The nonvanishing asymptotic
potentials of AK13 and BJ rely crucially on the idealized spherically symmetric decay of the
density in accordance with Eq. (6.2). As their nonvanishing constant is precariously realized by
spatial derivatives, the asymptotic potential responds strongly to any deviation of the asymptotic
density from the idealized decay. Such a deviation is, e.g., given in the presence of orbital
nodal surfaces, which break the spherical symmetry of the asymptotic density and thus lead to
an exponentially divergent potential along the nodes. The affected functionals are, however,
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not limited to functionals with a nonvanishing asymptotic potential. Various frequently used
DFAs, such as the van Leeuwen-Baerends (LB94) [vLB94] potential, the Armiento-Mattsson
(AM05) GGA [AM05], or the Becke88 GGA [Bec88], are also implicated to a lesser extent.
The Becke88 GGA makes for the semilocal exchange part of the hybrid functional B3LYP
[Bec93, SDCF94], which is one of the most used density functionals [Bec14].

Based on the minimal nodal surface model, Pub. 1 further derives new formal constraints on
the GGA exchange enhancement factor for a well-behaved potential: To avoid divergences in
the presence of nodal surfaces the asymptotic enhancement factor,

Fx(s) ∝ sd as s→ ∞ , (6.6)

has to satisfy d ≤−2 in general with the exception of a constant limiting value of Fx(s), while
for some systems −2 < d < 2/5 is also sufficient. For further details and a more rigorous
formulation of the constraint see Pub. 1. A rather far-reaching implication thereof is that the
following GGA design criteria are all incompatible with a regularly behaving potential in the
vicinity of asymptotic nodal surfaces: a nonvanishing asymptotic constant in the potential and
the correct asymptotic Coulombic long-range behavior of the potential or of the energy density.

Publication 2 continues along this line and uncovers further challenges for semilocal density
functionals with asymptotically nonvanishing potentials. It is shown that in the context of
ensemble DFT the AK13 potential does not include the actual ultranonlocal shift associated
with the derivative discontinuity. Based on a density-path integration it is further proven that
no straightforward energy correction to the AK13 functional exists that yields the missing
discontinuous shift. Additionally, the inaccurate energetics of AK13, numerical and therefore
practical difficulties, as well as the nonphysical response to an external electric field are also a
topic of Pub. 2. The latter is detrimental as it discloses the inability of AK13 to properly describe
charge transfer via a field-counteracting term in the potential.

Further unfavorable findings [GHAK18] for AK13 in the context of time-dependent DFT
complete the case that the semilocal construction strategies of AK13 and BJ have serious deficits
on both a formal and a practical level. Consequently, different approaches are likely needed
to properly incorporate ultranonlocality in DFT at a computationally feasible level. A very
promising approach in this respect is given by the meta-GGA form and outlined in the following
section.

6.2 Capturing Ultranonlocality via a Kinetic Energy Density
Dependence

The inclusion of the kinetic energy density τ(r), cf. Eq. (4.3), as an additional ingredient for
semilocal DFAs to Exc[n] has by now been long-standing practice for over two decades. The
resulting meta-GGAs have become an impressive success story [DSFC16, PKZB99, TPSS03,
ZT06, SXF+13, SRP15, TM16], as they, e.g., produced and still produce the energetically most
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accurate semilocal functionals [TPSS03, CPT06, SRP15, TM16]. Yet, even though the orbital
dependence of the kinetic energy density makes meta-GGAs explicitly orbital-dependent by
definition and thereby nonlocal in the density, experience so far seemed to show that, in practice,
semilocality in the orbitals is similar to semilocality in the density [KK08]. From a historical
perspective, this is not suprising given that the development of meta-GGAs emerged from and
naturally stayed close to the firm ground that was paved by years of experience with GGAs.
While, therefore, most traditional meta-GGAs do not incorporate a derivative discontinuity
[EH14] and the associated ultranonlocality [NV11] in sufficient magnitude, more recent work,
e.g., on band gaps [YPSP16], indicate improvement in this area. So, while in principle, it is
known that meta-GGAs can show ultranonlocality in the corresponding potential, the central
question becomes how to capture ultranonlocality via a kinetic energy dependence.

An answer to this question is provided by Pub. 3. To this end, first a relation between the
derivative discontinuity of a meta-GGA ∆meta-GGA

x and the partial derivative of the corresponding
exchange energy density ex(n(r), |∇n(r)|,τ(r)) with respect to τ(r) is established,

∆
meta-GGA
x = lim

η→0+

[
vmeta-GGA

x (r)
∣∣
N0+η

− vmeta-GGA
x (r)

∣∣
N0−η

]
= lim

η→0+

∫
∂ex

∂τ
(r′)

[
δτ(r′)
δn(r)

∣∣∣∣
N0+η

− δτ(r′)
δn(r)

∣∣∣∣
N0−η

]
d3r′

≈ ∂ex

∂τ
lim

η→0+

[
δTs[n]
δn(r)

∣∣∣∣
N0+η

− δTs[n]
δn(r)

∣∣∣∣
N0−η

]
=

∂ex

∂τ
∆KS . (6.7)

As both the derivative discontinuity ∆meta-GGA
x as well as the KS gap ∆KS should be positive,

cf. Sec. 3.1, this relation suggests a positive (∂ex/∂τ)(r) with a large enough magnitude as
a design criterium to obtain a sizable derivative discontinuity and thus ultranonlocality for
a meta-GGA for exchange. Second, Pub. 3 demonstrates that the dimensionless variable
[TPSS03, RSXC12, SXR12, SHX+13, SPR15, SXF+13, SRP15, DSFC15]

α(r) = t(r)− 5
3

s2(r) =
τ(r)− τW(r)

τunif(r)
≥ 0 , (6.8)

cf. Eqs. (4.17) and (4.19) for the definition of s(r) and t(r), is well suited to introduce ultra-
nonlocality. Here τunif(r) is the uniform-density limit, cf. Eq. (4.29), and the von-Weizsäcker
kinetic energy density

τ
W(r) =

h̄2

8me

|∇n(r)|2
n(r)

(6.9)

the single-orbital limit of τ(r).

For the meta-GGA exchange enhancement factor Fx(s,α) parametrized in s(r) and α(r) the
design criterium for ultranonlocality becomes

∂Fx(s,α)

∂α
< 0 (6.10)
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and a larger negative slope is expected to correspond to a larger derivative discontinuity. Given
that α(r) is a well established measure for electron localization [SJF+92, SS94, SNWF97] by
virtue of the electron localization function [BE90],

ELF(r) =
1

1+α2(r)
, (6.11)

Eq. (6.10) can be illustratively interpreted to energetically favor electron localization and thereby
combat the delocalization error of common semilocal DFT, which is closely interconnected with
the lack of ultranonlocality, as detailed in Sec. 3.5.

Based on this insight, two meta-GGAs for exchange are constructed and presented in Pub. 3.
First, a proof of concept (PoC) meta-GGA is discussed. It impressively demonstrates that
a simplistic meta-GGA solely parametrized in α can achieve ultranonlocality in the same
magnitude as the nonlocal EXX functional. For this demonstration, the two hydrogen model
systems as detailed in Sec. 3.4 are employed. In these model systems the PoC meta-GGA
yields polarizabilities close to reference values of higher-order methods, possesses a similar
field-counteracting term in vx(r) as EXX, and demonstrates integer preference in the charge-
transfer model system due to a proper ultranonlocal step structure in the potential. In a second
meta-GGA, named TASK for the initials of the developers, the construction strategy based on
the derivative discontinuity is combined with the well-established constraint-guided construction
concept of meta-GGAs, which was detailed in Chapter 4. The resulting TASK functional is a
non-empirical, general purpose meta-GGA for exchange that shows substantial improvement
for properties associated with ultranonlocality while giving reasonable energetics. To this
end, it is demonstrated that the TASK meta-GGA yields significantly improved band gaps in
close agreement with experimental values for systems ranging from traditional semiconductors
to wide-gap insulators. Thereby, it showcases that the band gap problem of semilocal DFT,
cf. Sec. 3.2, can be overcome within the meta-GGA form for Exc[n].

The analytic formulas for the functional derivatives of the PoC and TASK meta-GGAs of
Pub. 3 as implemented in BAND [tVB91, WB91, FPV13, FPvLV14, SCM], BTDFT [SK18],
DARSEC [MKK09], and PARSEC [KMT+06] are given in Appendix A.1.

6.3 Nonlocality from the Range-Separated Coulomb Interaction

The meta-GGAs of the previous section and Pub. 3 are ultimately aimed to describe particularly
large systems due to their low computational cost. However, powerful approaches to capture
ultranonlocality and, in particular, to describe charge transfer already exist for systems of small
to moderate size in the form of range-separated hybrids (RSH) [KSRAB12, Kü17].

The underlying concept of this class of DFAs is to split [SF95, TCS04] the Coulomb
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interaction formally,

1
|r− r′| =

1− erf(ω|r− r′|)
|r− r′|︸ ︷︷ ︸

short range

+
erf(ω|r− r′|)
|r− r′|︸ ︷︷ ︸
long range

, (6.12)

into a short-range (SR) and a long-range (LR) component by means of a range-separation
parameter ω . Subsequently, this splitting is applied to the exchange energy Ex[n] in its
representation via the exchange hole hx(r,r′), cf. Eq. (4.43). By using the exact orbital-
dependent exchange hole (4.45) for one component and a semilocal exchange hole model,

hsl
x (r,r

′) = h̄sl
x (n(r), |∇n(r)|,τ(r),∇2n(r), |r− r′|) , (6.13)

for the other component, an effective model for exchange and correlation1 is created. While in
solids the exact exchange hole is typically screened and therefore used in the SR component
[HSE03], the standard for finite systems [LSWS97] and subsequently for this thesis is to model
SR semilocally,

Esl,SR
x [n,ω] =

e2

2

∫∫ n(r)hsl
x (r,r′)

|r− r′|
[
1− erf

(
ω|r− r′|

)]
d3r′ d3r , (6.14)

and to treat the LR component exactly,

Eex,LR
x [n,ω] =−e2

2 ∑
σ=↑,↓

Nσ

∑
i, j=1

∫∫
ϕ∗iσ (r)ϕiσ (r′)ϕ∗jσ (r′)ϕ jσ (r)

|r− r′| erf
(
ω|r− r′|

)
d3r′ d3r . (6.15)

The choice of the semilocal exchange hole model, which is usually based on a common semilocal
DFA, defines different RSHs: the exchange hole [PBW96] of the PBE GGA [PBE96], for
example, defines the RSH ωPBE [VS06]. In Pub. 4 the SR component is, however, modeled for
transparency via the LDA exchange hole [GAP96, Sav96].

In addition to the SR component, the value of the range-separation parameter ω , which
determines an inverse length for the separation between SR and LR, must also be chosen.
Based on this choice, the performance of an RSH can vary considerably [VHKS06]. Moreover,
a parameter dilemma is observed [RH08] as a universal range-separation parameter cannot
simultaneously describe thermochemical and optical properties – for instance, binding energies
and ionization potentials. And even when one considers only a single property, the optimal value
of ω can be strongly system-dependent [KSSB11, SEKB10, RABK11].

For the description of charge transfer or optical spectra, in particular, the freedom to choose
ω can be exploited further by determining an optimal ω in a self-consistent procedure for each
system individually [SKB09, KSRAB12]. However, this tuning procedure, which determines
ω by essentially optimizing for the straight-line condition of Eq. (3.6), is not only taxing,

1As the range-separation approach models only a nonlocal part of the correlation energy, a common semilocal DFA
to Ec[n] (typically corresponding to the semilocal exchange component) is additionally employed.
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computationally demanding, and requires special care [Kü17], it also violates the formal concept
of size-consistency implying actual practical drawbacks [KKK13]. As the tuning procedure
effectively makes the global range-separation parameter an implicit density-functional, ω =ω[n],
a naturally next step is to construct this density-functional explicitly. However, size-consistency,
cf. Sec. 4.1, requires that the range-separation parameter cannot be a global parameter, but
has to be, at least, a local function, ω = ω([n];r). If this approach is successful, it might be
possible to solve the parameter dilemma of RSHs, supersede the taxing tuning procedure, and
resolve additional formal restraints of the RSH class, e.g., the violation of size-consistency or
the one-electron self-interaction error.

The ansatz of a local range-separation parameter was first and so far last investigated by
Krukau et al. [KSPS08]. This work, which is central to Pub. 4, demonstrates that the local
range-separation parameter

ω
K([n];r) = 0.135

|∇n(r)|
n(r)

(6.16)

gives excellent thermochemical properties, superior to any spatially constant choice for ω .
This ansatz for ω([n];r) also later inspired a seminal modification of the BJ potential [TB09],
cf. Sec. 6.1.

It was further pointed out by Krukau et al. [KSPS08] that, due to the spatial dependence
of ω(r), the various techniques [Sav96, GAP96, DSG01] to numerically efficiently evaluate
the computationally critical LR component can no longer be applied. Therefore, a hyper-GGA
approximation to the LR component was proposed [KSPS08],

Eex,LR
x [n,ω]≈ Ehyper-GGA,LR

x [n,ω]

=
e2

2

∫∫ n(r)h̄sl
x (n(r), |∇n(r)|,τ(r),eex

x (r), |r− r′|)
|r− r′| erf

(
ω([n];r)|r− r′|

)
d3r′ d3r . (6.17)

In this approximation the spherically averaged exact exchange hole h̄ex
x (r, |r− r′|) at each

reference point r is mapped onto a semilocal model h̄sl
x (r, |r−r′|) by virtue of the exact exchange

energy density eex
x (r) and exact constraints. As the r′-integral can subsequently be carried out

analytically, the computational cost is drastically reduced and the resulting DFA takes the usual
hyper-GGA form [PS01], where eex

x (r) is used as an additional ingredient alongside the common
semilocal ingredients. The quality and reliability, which depends on the choice for h̄sl

x , is only
mildly assessed by Krukau et al. because, e.g., only a single variant of the exchange hole model
[CPT06] of the TPSS meta-GGA [TPSS03] adapted for this purpose was used.

Hence, Pub. 4 revisits the hyper-GGA approximation and investigates a newly revised TPSS
exchange hole model [TBS17] as well as a generalized version [Bec03, PPBKE15] of the
Becke-Roussel (BR) exchange hole model [BR89] in comparison with the initially used TPSS
hole. Moreover, Pub. 4 showcases that for spherically symmetric systems, e.g., closed-shell
atoms, a direct assessment of the hyper-GGA approximation including a real space analysis of
the screened exchange holes is possible. To this end, a Slater-type [Sla30] basis set code for
closed-shell atoms was written as part of this thesis and is employed in Pub. 4 – see Appendix
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A.2 for further details. Publication 4 concludes this assessment by advocating that the hyper-
GGA approximation is substantial and therefore the resulting DFA should rather be seen as a
definition of a hyper-GGA motivated by the range-separation approach than as an approximation
to a (local) RSH.

In a second part of Pub. 4, the local range-separation parameter construction is refined
by applying additional exact constraints. Most notably, the correct high-density limit (4.23)
under uniform density-scaling (4.10) as well as one-electron self-interaction freedom (3.14) are
enforced. While the former constraint takes the form [KSPS08]

ω([nλ ];r)� λω([n];λr) as λ → ∞ , (6.18)

the latter may be formulated as a pole of the range-separation parameter

ω([n];r)→ ∞ (6.19)

whenever a chosen semilocal one-electron indicator detects a corresponding point in space
to have single-electron character. For this task, a common single-orbital indicator [PKZB99,
TPSS03, DSFC16]

z(r) = τ
W(r)/τ(r) , (6.20)

which has already been used for the same purpose in local hybrids [JSE03, SKM+14, SKKK14],
is employed. Publication 4 demonstrates further that this one-electron self-interaction pole is
best combined with a spin scaling for ωσ ([n↑,n↓];r) that deviates from the straightforward spin
scaling for exchange (4.4) by explicit use of the spin-polarization ζ (r) to detect one-electron
instead of iso-orbital regions. The constructed local range-separation parameter of Pub. 4, which
satisfies the two additional exact constraint, is given by

ωσ ([n↑,n↓];r) =
0.68ωK

σ (r)
{

1+ ln
[
1+0.90a0 ωK

σ (r)
]}

1− zσ (r)ζ 2(r)
(6.21)

with

ω
K
σ (r) = ω

K([2nσ ];r) = 0.135
|∇nσ (r)|

nσ (r)
. (6.22)

It is shown to significantly improve on the original local range-separation parameter (6.16) pro-
posed by Krukau et al. [KSPS08] in the considered thermochemical test set. This improvement
is closely tied to the modification of the spin scaling in conjunction with the self-interaction pole.
Moreover, it demonstrates that local range separation is a promising avenue for the constraint-
guided construction of DFAs in DFT to combine ultranonlocality with thermochemical accuracy.
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APPENDIX A

Complementary Work

A.1 Functional Derivatives of the Developed Meta-GGAs

The meta-GGAs of Pub. 3, i.e., PoC and TASK, may both be written in the general exchange
energy form of

EmGGA
x [n] = Ax

∫
n4/3Fx(s,α) d3r (A.1)

with Ax = −(3e2/4π)(3π2)1/3 for spin-saturated systems – the spin-polarized case will be
considered hereafter. Thus, the associated exchange energy density per unit volume is given by

ex(r) = Axn4/3(r)Fx(s(r),α(r)) . (A.2)

The exchange enhancement factor Fx(s,α) is parametrized by the dimensionless variables

s(r) =
|∇n(r)|

2γn4/3(r)
(A.3)

with γ = (3π2)1/3 and

α(r) =
τ(r)− τW(r)

τunif(r)
, (A.4)

where

τunif(r) =
3h̄2

10me
γ

2n5/3(r) (A.5)

is the uniform-density limit of the (positive) non-interacting kinetic energy density

τ(r) =
h̄2

2me
∑

i
fi|∇ϕi(r)|2 (A.6)

and the von-Weizsäcker kinetic energy density

τ
W(r) =

h̄2

8me

|∇n(r)|2
n(r)

(A.7)

its single-orbital limit. For completeness, the (fractional) occupation number fi will be consid-
ered explicitly and hence the density is given by n(r) = ∑i fi|ϕi(r)|2.

To separate the explicit density and kinetic energy density dependence, n(r) and τ(r) are
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considered to be independent and therefore the chain rule of functional derivatives yields

ϕ
∗
i (r)uxi(r) =

1
fi

δEmGGA
x [n]

δϕi(r)
=
∫

δEmGGA
x

δn(r′)
1
fi

δn(r′)
δϕi(r)

d3r′+
∫

δEmGGA
x

δτ(r′)
1
fi

δτ(r′)
δϕi(r)

d3r′ (A.8)

in an initial step to calculate the meta-GGA functional derivative. From the definitions of n(r)
and τ(r) now follows

1
fi

δn(r′)
δϕi(r)

= ϕ
∗
i (r
′)δ (r− r′) (A.9)

as well as
1
fi

δτ(r′)
δϕi(r)

=
h̄2

2me
∇
′
ϕ
∗
i (r
′) ·∇′δ (r− r′) . (A.10)

While δEmGGA
x /δτ(r) = (∂ex/∂τ)(r), the explicit dependence on the density-gradient ∇n(r)

implies

δEmGGA
x

δn(r)
=

∂ex

∂n
(r)+

∫
δEmGGA

x

δ∇′n(r′)
· δ∇′n(r′)

δn(r)
d3r′

=
∂ex

∂n
(r)+

∫
δEmGGA

x

δ∇′n(r′)
·∇′δ (r− r′) d3r′ =

∂ex

∂n
(r)−∇ ·

[
∂ex

∂∇n
(r)
]
. (A.11)

Combination of these relations gives the meta-GGA functional derivative in its general form

1
fi

δEmGGA
x

δϕi(r)
= ϕ

∗
i (r)

{
∂ex

∂n
(r)−∇ ·

[
∂ex

∂∇n
(r)
]}

− h̄2

2me

{
∂ex

∂τ
(r)∇

2
ϕ
∗
i (r)+∇

[
∂ex

∂τ
(r)
]
·∇ϕ

∗
i (r)

}
. (A.12)

For further evaluation, a change of variables from {s,α} to {s, t}, where t = τ/τunif and
hence α = t − 5s2/3, is convenient. In connection with this and for numerical stability of
the single-orbital limit, i.e., when n(r)→ |ϕ(r)|2 and thus τ(r)→ τW (r), it is important to
treat n(r) and ϕi(r) identically on a numerical level, see, e.g., Ref. [SKM+14]. Consequently,
henceforth n(r) is written in terms of

√
n(r) whenever appropriate, as for real-valued orbitals in

the single-orbital limit ϕ(r) =±
√

n(r) .

From the chain rule follows

∂ex

∂n
=

4
3

Axn1/3Fx +Axn4/3 ∂Fx

∂ s

∣∣∣∣
t

∂ s
∂n

+Axn4/3 ∂Fx

∂ t

∣∣∣∣
s

∂ t
∂n

= Axn1/3
[

4
3

Fx(s, t)−
4
3

s
∂Fx

∂ s

∣∣∣∣
t
− 5

3
t

∂Fx

∂ t

∣∣∣∣
s

]
(A.13)

as well as

−∇ ·
[

∂ex

∂∇n
(r)
]
=−∇ ·

(
Ax

1
s

∂Fx

∂ s

∣∣∣∣
t

∇n
4γ2n4/3

)
=
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=−Ax

2

[
∇n
n
·∇
(

1
2γ2n1/3

1
s

∂Fx

∂ s

∣∣∣∣
t

)
+

1
2γ2n1/3

1
s

∂Fx

∂ s

∣∣∣∣
t

∇2n
n
− 1

2γ2n1/3

1
s

∂Fx

∂ s

∣∣∣∣
t

|∇n|2
n2

]
=−Ax

[
∇
√

n√
n
·∇
(

1
2γ2n1/3

1
s

∂Fx

∂ s

∣∣∣∣
t

)
+

1
2γ2n1/3

1
s

∂Fx

∂ s

∣∣∣∣
t

∇2√n√
n
− 1

2
n1/3s

∂Fx

∂ s

∣∣∣∣
t

]
, (A.14)

and therefore

∂ex

∂n
(r)−∇ ·

[
∂ex

∂∇n
(r)
]
= Axn1/3

(
4
3

Fx−
5
6

s
∂Fx

∂ s

∣∣∣∣
t
− 5

3
t

∂Fx

∂ t

∣∣∣∣
s

)
−Ax

[
∇2√n√

n
1

2γ2n1/3

1
s

∂Fx

∂ s

∣∣∣∣
t
+

∇
√

n√
n
·∇
(

1
2γ2n1/3

1
s

∂Fx

∂ s

∣∣∣∣
t

)]
. (A.15)

Similarly
∂ex

∂τ
= Axn4/3 ∂Fx

∂ t

∣∣∣∣
s

∂ t
∂τ

= Axn−1/3 10me

3h̄2
1
γ2

∂Fx

∂ t

∣∣∣∣
s

(A.16)

and thus

− h̄2

2me

[
∂ex

∂τ
∇

2
ϕ
∗
i +∇ϕ

∗
i ·∇

(
∂ex

∂τ

)]
=−5

3
Ax

[
∇2ϕ∗i
γ2n1/3

∂Fx

∂ t

∣∣∣∣
s
+∇ϕ

∗
i ·∇

(
1

γ2n1/3

∂Fx

∂ t

∣∣∣∣
s

)]
. (A.17)

With the help of the auxiliary functions

hs(n,s, t) =
1

2γ2n1/3

1
s

∂Fx

∂ s

∣∣∣∣
t

(A.18)

and

ht(n,s, t) =
1

Ax

h̄2

2me

∂ex

∂τ
=

5
3

1
γ2n1/3

∂Fx

∂ t

∣∣∣∣
s
, (A.19)

one obtains

ϕ
∗
i (r)uxi(r) =

1
fi

δEmGGA
x

δϕi(r)
= ϕ

∗
i Axn1/3

(
4
3

Fx−
5
6

s
∂Fx

∂ s

∣∣∣∣
t
− 5

3
t

∂Fx

∂ t

∣∣∣∣
s

)
−ϕ

∗
i Ax

(
hs

∇2√n√
n

+∇hs ·
∇
√

n√
n

)
−Ax

(
ht∇

2
ϕ
∗
i +∇ht ·∇ϕ

∗
i
)
. (A.20)

In a final step, the change of variables is reversed back to {s,α} or more precisely to {s2,α}
as it is implied that Fx(s,α) depends only on even powers of s (since s ≥ 0, this is no loss of
generality). To this end,

1
2s

∂Fx

∂ s

∣∣∣∣
t
=

∂Fx

∂ s2

∣∣∣∣
t
=

∂Fx

∂ s2

∣∣∣∣
α

− 5
3

∂Fx

∂α

∣∣∣∣
s2

and
∂Fx

∂ t

∣∣∣∣
s
=

∂Fx

∂α

∣∣∣∣
s2

(A.21)
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is used to rewrite Eq. (A.20) as

ϕ
∗
i (r)uxi(r) =

1
fi

δEmGGA
x

δϕi(r)
= ϕ

∗
i Axn1/3

(
4
3

Fx−
5
3

s2 ∂Fx

∂ s2

∣∣∣∣
α

− 5
3

α
∂Fx

∂α

∣∣∣∣
s2

)
−ϕ

∗
i Ax

(
hs

∇2√n√
n

+∇hs ·
∇
√

n√
n

)
−Ax

(
ht∇

2
ϕ
∗
i +∇ht ·∇ϕ

∗
i
)

(A.22)

with

hs(n,s,α) =
1

γ2n1/3

(
∂Fx

∂ s2

∣∣∣∣
α

− 5
3

∂Fx

∂α

∣∣∣∣
s2

)
(A.23)

and

ht(n,s,α) =
5
3

1
γ2n1/3

∂Fx

∂α

∣∣∣∣
s2
. (A.24)

Equation (A.22) reflects the grid-based meta-GGA implementation that is used in BTDFT,
DARSEC, and PARSEC. Other implementations, such as in BAND or in LIBXC [LSOM18],
explicitly need

∂ex

∂n
= Axn1/3

[
4
3

Fx−
8
3

s2 ∂Fx

∂ s2

∣∣∣∣
t
− 5

3
t

∂Fx

∂ t

∣∣∣∣
s2

]
= Axn1/3

[
4
3

Fx−
8
3

s2 ∂Fx

∂ s2

∣∣∣∣
α

+
5
3
(s2−α)

∂Fx

∂α

∣∣∣∣
s2

]
, (A.25)

as well as

∂ex

∂ |∇n|2 = Axn4/3 ∂Fx

∂ s2

∣∣∣∣
t

∂ s2

∂ |∇n|2 =
Ax

4γ2n4/3

∂Fx

∂ s2

∣∣∣∣
t

=
Ax

4γ2n4/3

(
∂Fx

∂ s2

∣∣∣∣
α

− 5
3

∂Fx

∂α

∣∣∣∣
s2

)
=

Ax

4
hs

n
(A.26)

and
∂ex

∂τ
=

10me

3h̄2
Ax

γ2n1/3

∂Fx

∂ t

∣∣∣∣
s2
=

10me

3h̄2
Ax

γ2n1/3

∂Fx

∂α

∣∣∣∣
s2
=

2meAx

h̄2 ht . (A.27)

For a particular meta-GGA these implementations require the specification of the enhancement
factor Fx(s,α) and its partial first-order derivatives, ∂Fx/∂ s2|α and ∂Fx/∂α|s2 , as given below
for PoC and TASK. Additional details on and insight into the functional derivative of meta-GGAs
and their implementation can be found in Refs. [AK03, ZLG13].

Spin-Polarization

The generalization for a spin-polarized system follows from the spin-scaling relationship for the
exchange energy given by Eq. (4.6). It implies

ex(n↑,n↓, |∇n↑|2, |∇n↓|2,τ↑,τ↓) =
1
2

ex(2n↑,4|∇n↑|2,2τ↑)+
1
2

ex(2n↓,4|∇n↓|2,2τ↓) (A.28)
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for the exchange energy density, which leads to

∂ex

∂nσ

=
∂ex

∂n

∣∣∣∣
n=2nσ ,τ=2τσ

,
∂ex

∂∇nσ

=
∂ex

∂∇n

∣∣∣∣
n=2nσ ,τ=2τσ

, (A.29)

∂ex

∂ |∇nσ |2
= 2

∂ex

∂ |∇n|2
∣∣∣∣
n=2nσ ,τ=2τσ

,
∂ex

∂τσ

=
∂ex

∂τ

∣∣∣∣
n=2nσ ,τ=2τσ

. (A.30)

Therefore, the generalization of Eq. (A.22) is given by

ϕ
∗
iσ (r)uxiσ (r) =

1
fiσ

δEmGGA
x

δϕiσ (r)
= ϕ

∗
iσ Axn1/3

(
4
3

Fx−
5
3

s2 ∂Fx
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α

− 5
3

α
∂Fx

∂α

∣∣∣∣
s2

)
−ϕ

∗
iσ Ax

(
hs

∇2√n√
n

+∇hs ·
∇
√

n√
n

)
−Ax

(
ht∇

2
ϕ
∗
iσ +∇ht ·∇ϕ

∗
iσ
)

(A.31)

but evaluated at n = 2nσ and τ = 2τσ , as is also evident when taking the functional derivative of
Eq. (4.6) with respect to nσ (r),

vxσ ([n↑,n↓,τ↑,τ↓];r) =
δEx[n↑,n↓,τ↑,τ↓]

δnσ (r)
=

1
2

δEx[2nσ ,2τσ ]

δnσ (r)
= vx([2nσ ,2τσ ];r) . (A.32)

PoC meta-GGA

The PoC meta-GGA enhancement factor is parametrized solely by α and given by [P3]

FPoC
x (α) = cH−

c1α

1+ c2α
(A.33)

with cH = (40/81)
(
4π2/3

)1/3, c1 = 27/40, and c2 = c1/(3+ cH). Thus, only

∂FPoC
x

∂α

∣∣∣∣
s2
=− c1

(1+ c2α)2 (A.34)

is required, as ∂FPoC
x /∂ s2

∣∣
α
= 0, and therefore hs =−ht .

TASK meta-GGA

The TASK meta-GGA enhancement factor is given by [P3]

FTASK
x (s,α) = h0

xgx(s)+ [1− fx(α)]
[
h1

x(s)−h0
x
]
[gx(s)]

d (A.35)

with h0
x = 1.174, d = 10,

gx(s) = 1− exp(−cs−1/2) , (A.36)

where c = 4.9479. Moreover,

h1
x(s) =

2

∑
ν=0

aνRν(s2), fx(α) =
4

∑
ν=0

bνRν(α) , (A.37)
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are written in terms of Chebyshev rational functions [Boy87, GSW02, PTVF92] Rν(x) of degree
ν . In particular,

R0(x) = 1 , (A.38)

R1(x) =
x−1
x+1

, (A.39)

R2(x) =
x2−6x+1
(x+1)2 , (A.40)

R3(x) =
x3−15x2 +15x−1

(x+1)3 , (A.41)

R4(x) =
x4−28x3 +70x2−28x+1

(x+1)4 . (A.42)

The coefficients of the Chebyshev rational functions are a0 = 0.938719, a1 = −0.076371,
a2 =−0.0150899, b0 =−0.628591, b1 =−2.10315, b2 =−0.5, b3 = 0.103153, b4 = 0.128591.
Consequently, the required derivatives are given by

∂FTASK
x

∂ s2

∣∣∣∣
α

=
{

h0
x +d [1− fx(α)]

[
h1

x(s)−h0
x
]
[gx(s)]

d−1
}

∂gx

∂ s2

+[1− fx(α)] [gx(s)]
d ∂h1

x

∂ s2 (A.43)

and
∂FTASK

x

∂α

∣∣∣∣
s2
=
[
h1

x(s)−h0
x
]
[gx(s)]

d ∂ fx

∂α
(A.44)

with
∂gx

∂ s2 =− c
4s5/2 exp(−cs−1/2) (A.45)

and
∂h1

x

∂ s2 =
2

∑
ν=1

aνR′ν(s
2),

∂ fx

∂α
=

4

∑
ν=1

bνR′ν(α). (A.46)

For numerical purpose, the functions h1
x(s) and fx(α), which are represented by a series of

Chebyshev rational functions, as well as their derivatives, ∂h1
x/∂ s2 and ∂ fx/∂α , can be evaluated

efficiently via a recursion relation [PTVF92].

A.2 Slater-Type Basis Set Code for Closed-Shell Atoms

Publication 4 employs a Slater-type basis set code for closed-shell atoms written as part of
this thesis. This section outlines the analytic formulas the code is based on. Even though the
use of Slater-type basis sets [Sla30] is rather uncommon, most of these formulas should also
be available in the literature. However, since only the special case of a closed-shell atom is
considered and the formulas were derived directly from the definition of the basis set, no explicit
references are given. Hartree atomic units are used throughout this section, as these are also
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utilized in the code.

As only spin-saturated atoms with closed shells are considered, the density and therefore the
KS potential maintains spherical symmetry. Consequently, the KS orbitals can be written as a
product of a real-valued radial function and a spherical harmonic,

ϕi(r) = Rl
n(r)Ylm(θ ,φ) , (A.47)

where i = (n, l,m) serves as a multi-index. For each principle quantum number n, i.e., for each
shell, all orbitals with the same angular momentum l = 0,1, . . . – enumerated by the magnetic
quantum number m = 0,±1, . . . ,±l – are degenerated and either completely double-occupied
(spin-up and -down) or completely unoccupied. Thus, the sum over all occupied orbitals of
either spin-channel can be written as

N

∑
i=1

ϕi(r) =
lmax

∑
l=0

Nl

∑
n=1

Rl
n(r)

l

∑
m=−l

Ylm(θ ,φ) , (A.48)

where N is the number of occupied orbitals per spin channel, i.e., half of the number of electrons,
lmax is the highest occupied angular quantum number, and Nl is the number of occupied states
with angular quantum number l. For later purposes, note the spherical harmonic addition theorem

l

∑
m=−l

Y ∗lm(θ
′,φ ′)Ylm(θ ,φ) =

2l +1
4π

Pl(cosδ ) , (A.49)

where Pl(x) is the Legendre polynomial of degree l [AS72] and δ is the intermediate angle
between r and r′. For δ = 0, in particular,

l

∑
m=−l

|Ylm(θ ,φ)|2 =
2l +1

4π
(A.50)

follows from the spherical harmonic addition theorem.

The radial function for each n and l is expanded with real coefficients cnl
ν in terms of a

Slater-type basis set {ν}l that in turn is unique with respect to l, i.e.,

Rl
n(r) = ∑

{ν}l

cnl
ν χν(r) . (A.51)

However, the notation of the implicit l-dependence of the basis set {ν}l will be suppressed
hereinafter. Each Slater-type basis function [Sla30],

χν(r) = χ
ζ
a (r) = ra−1e−ζ r , (A.52)

is specified by a double-index ν = (a,ζ ) – a pair of a positive integer a ≥ 1 and a positive
parameter ζ > 0. As the radial basis functions are neither normalized nor orthogonal, an overlap
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matrix of basis functions with the same angular momentum l

Sνµ :=
1

4π

∫
χν(r)χµ(r)d3r =

∫
∞

0
χν(r)χµ(r)r2 dr =

(a+b)!
(ζ +ξ )a+b+1 (A.53)

is defined with ν = (a,ζ ) and µ = (b,ξ ) here and hereon. The overlap matrix allows to
formulate the orbital normalization as

1 !
=
∫
|ϕi(r)|2 d3r = ∑

ν ,µ

∫
cnl

ν cnl
µ χν(r)χµ(r)|Ylm(θ ,φ)|2 d3r = ∑

ν ,µ

cnl
ν Sνµcnl

µ . (A.54)

Similarly, one can define the kinetic energy matrix

T l
νµ :=− 1

2

∫
χν(r)Y ∗lm(θ ,φ)∇

2 [
χµ(r)Ylm(θ ,φ)

]
d3r

=− 1
2

a(a−1)ζ 2 +b(b−1)ξ 2−2abζ ξ − l(l +1)(ζ +ξ )2

(a+b)(a+b−1)
Sνµ , (A.55)

and the Coulomb matrix

Vνµ :=− 1
4π

∫
χν(r)

1
r

χµ(r)d3r =−
∫

∞

0
χν(r)χµ(r)r dr =−ζ +ξ

a+b
Sνµ . (A.56)

For a KS calculation the evaluation of the Hartree and xc potential, vhxc(r) = vh(r)+ vxc(r), is
required additionally. While vxc(r) depends on the DFA employed, the Hartree potential can be
calculated as

vh(r) =
∫ n(r′)
|r− r′| d

3r′ =
N

∑
i=1

∫ 2|ϕi(r′)|2
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∑
l=0

Nl

∑
n=1
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∑
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µ (A.57)

with

vνµ

h (r) =
1

4π

∫
χν(r′)χµ(r′)
|r− r′| d3r′ =

1
r

∫ r

0
χν(r′)χµ(r′)r′2 dr′+

∫
∞

r
χν(r′)χµ(r′)r′ dr′

=

[
P
(
a+b+1,(ζ +ξ )r

)
r

+(ζ +ξ )
Q
(
a+b,(ζ +ξ )r

)
a+b

]
Sνµ , (A.58)

where P(s,x) and Q(s,x) are the regularized lower- and upper incomplete gamma functions
[AS72, PTVF92]. Let then

Uhxc
νµ =

1
4π

∫
χν(r)vhxc(r)χµ(r)d3r =

∫
∞

0
χν(r)vhxc(r)χµ(r)r2 dr (A.59)
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be the hxc matrix to be evaluated numerically on a radial grid.

Finally, based on the KS Hamiltonian

Ĥ =−∇2

2
− Z

r
+ vhxc(r) (A.60)

with the nuclear charge Z, the KS equation can be recast into independent generalized eigenvalue
problems for each angular momentum l,

∑
ν

(
H l

µν − ε
nlSµν

)
cnl

ν = 0 , (A.61)

where
H l

νµ =
∫

χν(r)Y ∗lm(θ ,φ)Ĥχµ(r)Ylm(θ ,φ)d3r = T l
νµ +ZVνµ +Uhxc

νµ (A.62)

and εnl is the eigenvalue of the orbital corresponding to the n-th shell and angular momentum
l. These real generalized symmetric-definite eigenproblems can be solved conveniently with a
standard linear algebra library. The closed-shell code outlined here uses the LAPACK DSYGV

routine [ABB+99] for this purpose.

The KS iterations as well as the evaluation of the local range-separation parameters and of
the hyper-GGA approximation, cf. Sec. 6.3 and Pub. 4, require the semilocal quantities n(r),
∇n(r), ∇2n(r), τ(r), and eex

x (r). These quantities can be calculated from the Slater-type basis as
follows:

n(r) = 2
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∑
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∑
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=
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∑
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, (A.63)
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∑
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∇
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and

τ(r) =
N
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where
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was used in the final step. Lastly,

eex
x (r) =−e2

2 ∑
σ=↑,↓

Nσ

∑
i, j=1

∫
ϕ∗iσ (r)ϕiσ (r′)ϕ∗jσ (r′)ϕ jσ (r)

|r− r′| d3r′

=−e2
lmax

∑
l1,l2=0

Nl1

∑
n1=1

Nl2

∑
n2=1

Rl1
n1
(r)Rl2

n2
(r)
∫

d3r′
Rl1

n1
(r′)Rl2

n2
(r′)

|r− r′|

×
[

l1

∑
m1=−l1

Y ∗l1m1
(θ ,φ)Yl1m1(θ

′,φ ′)

][
l2

∑
m2=−l2

Y ∗l2m2
(θ ′,φ ′)Yl2m2(θ ,φ)

]
. (A.68)

Using the addition theorem (A.49) twice as well as the Legendre expansion [ÁGM06]

1
|r− r′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosδ ) , (A.69)

where r> = max(r,r′), r< = min(r,r′), and δ is the intermediate angle, then yields
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with
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<
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>

r′2 dr′ , (A.71)

as only atoms up to the p-shell (l = 1) are considered, cf. a similar calculation in the
supplementary material of Pub. 4.
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A.2 Slater-Type Basis Set Code for Closed-Shell Atoms

Publication 4 compares the exact spherical-averaged exchange hole, cf. Eq. (4.49), with
corresponding semilocal hole models. The former hole can be obtained as follows, starting from
its definition (4.45),

h̄ex
x (r,u) =− ∑

σ=↑,↓

Nσ

∑
i, j=1

ϕ∗iσ (r)ϕ jσ (r)
n(r)

∮
ϕ
∗
jσ (r+u)ϕiσ (r+u)dΩu , (A.72)

where the solid angle integral is evaluated over a sphere of radius u: Let r′ = r+u, δ be the
intermediate angle between r and r′, and δu be the intermediate angle between r and u. Then for
each r the zenith direction of the Ωu integration can be chosen parallel to r and therefore such
that δu is the polar angle of the Ωu integration, cf. Fig. A.1. Hence,
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x

z

z′

x′

r

u

r′

δ

δu

Figure A.1: Illustration of the solid angle integration Ωu (blue coordinate system) of the exact exchange
hole hex

x (r,r′) with r′ = r+u and the intermediate angles δ (between r and r′) and δu (between r and u).
The latter is chosen as the polar angle of the Ωu integration.
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with
Λ

l1,l2
ζ+ξ ,a+b−1(r,u) =

∫
π

0
χ

ζ+ξ

a+b−1(r
′)Pl1(cosδ )Pl2(cosδ )sinδu dδu . (A.74)

To derive an explicit formula for this remaining set of integrals, Λ
l1,l2
ζ+ξ ,a+b−1(r,u),

r′ =
√

r2 +u2 +2rucosδu (A.75)

and

cosδ =
r+ucosδu√

r2 +2rucosδu +u2
(A.76)

are used, cf. Fig. A.1, to write
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As atoms up to the p-shell are considered, only the following three of these integrals are needed
explicitly:

Λ
0,0
ζ ,n(r,u) =

Γ(n,ζ |r−u|)−Γ(n,ζ |r+u|)
2ζ nru

, (A.78)

Λ
0,1
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1,0
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4ζ n+1r2u
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, (A.79)

and

Λ
1,1
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Γ(n+2,ζ |r−u|)−Γ(n+2,ζ |r+u|)
2ζ n+2ru
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. (A.80)

Here
Γ(s,x) =

∫
∞

x
ts−1e−t dt (A.81)

is the upper incomplete gamma function [AS72].

56



List of Abbreviations
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[SS83] L. J. Sham and M. Schlüter, Density-Functional Theory of the Energy Gap,
Phys. Rev. Lett. 51, 1888 (1983).

[SS94] B. Silvi and A. Savin, Classification of chemical bonds based on topological,
Nature 371, 683 (1994).

[SSB18] E. Sim, S. Song and K. Burke, Quantifying Density Errors in DFT, J. Phys.
Chem. Lett. 9, 6385 (2018).

[Sun03] D. Sundholm, A density-functional-theory study of bacteriochlorophyll b, Phys.
Chem. Chem. Phys. 5, 4265 (2003).

[SvB96] P. S. Svendsen and U. von Barth, Gradient expansion of the exchange energy
from second-order density response theory, Phys. Rev. B 54, 17402 (1996).

[SXF+13] J. Sun, B. Xiao, Y. Fang, R. Haunschild, P. Hao, A. Ruzsinszky, G. I. Csonka,
G. E. Scuseria and J. P. Perdew, Density Functionals that Recognize Covalent,
Metallic, and Weak Bonds, Phys. Rev. Lett. 111, 106401 (2013).

[SXR12] J. Sun, B. Xiao and A. Ruzsinszky, Communication: Effect of the orbital-overlap
dependence in the meta generalized gradient approximation, J. Chem. Phys.
137, 051101 (2012).

[TB09] F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators
with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102, 226401
(2009).

[TB17] F. Tran and P. Blaha, Importance of the Kinetic Energy Density for Band Gap
Calculations in Solids with Density Functional Theory, J. Phys. Chem. A 121,
3318 (2017).

[TBBB16] F. Tran, P. Blaha, M. Betzinger and S. Blügel, Approximations to the exact
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I discovered the divergences in the vicinity of orbital nodal surfaces, developed the model system
and math to quantify the divergences as presented in the paper. I began to gather these insights
during my master’s thesis [Asc14]. I implemented the relevant routines in PARSEC, performed
all calculations, prepared all figures, and wrote the first draft of the manuscript.
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Orbital nodal surfaces: Topological challenges for density functionals

Thilo Aschebrock,1 Rickard Armiento,2 and Stephan Kümmel1
1Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany

2Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
(Received 22 December 2016; published 15 June 2017)

Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham
density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge
along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic
limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-
functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111,
036402 (2013)] and Becke88 [Phys. Rev. A 38, 3098 (1988)] energy functionals, i.e., the corresponding semilocal
exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006)] and van Leeuwen–
Baerends (LB94) [Phys. Rev. A 49, 2421 (1994)] model potentials, we explicitly demonstrate exponential
divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have
similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham
equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form,
enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on
or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding
such divergences.

DOI: 10.1103/PhysRevB.95.245118

I. INTRODUCTION

Kohn-Sham (KS) density-functional theory (DFT) [1,2] has
become the method of choice for calculating the electronic
structure of physical, chemical, and biological systems. This
success is based on the favorable ratio of accuracy to
computational cost that DFT offers, especially with semilo-
cal approximations for the exchange-correlation (xc) energy
Exc[n(r)]. However, while the low computational cost of
semilocal functionals has very much contributed to the success
of DFT because it enables access to large systems of practical
relevance, the functional derivatives of typical semilocal func-
tionals, i.e., their corresponding xc potentials, miss important
features of the exact xc potential, in particular discontinuities
[3,4] and step structures [5–9] that are relevant, e.g., in
charge-transfer situations [10–12] and ionization processes
[5,13–16]. Many attempts have been made to incorporate some
of the missing features into semilocal DFT [17–27]. In recent
years, it was the Becke-Johnson (BJ) model potential [28] in
particular that sparked interest in this respect [22,29–35]. Its
key characteristic is to effectively mimic nonlocal exchange
features in the asymptotic behavior of the potential by means
of having a nonzero limiting value far away from a finite
system. This key characteristic was later adopted for the
Armiento-Kümmel 2013 energy functional (AK13) by two of
the present authors [36]. While this asymptotic behavior of the
xc potential has a variety of implications [37], one particularly
striking consequence becomes most apparent in systems with
nodal surfaces of the highest occupied (homo) KS orbital.

Such orbital nodal surfaces have emerged as a topic of
particular interest in DFT in recent years. To be precise, by
the term “nodal surface” we refer here to the situation in
which the highest occupied KS orbital in the ground state
of a finite system has a nodal surface that extends to infinity.
The first observation that such nodal surfaces of the homo play
a special role in KS theory came from studying the exact KS

exchange potential. It has been shown—first in the localized
Hartree-Fock approximation [38,39] and then exactly via
optimized effective potential (OEP) calculations [40,41]—that
a pronounced “ridge” appears in the bare exchange potential
along a nodal surface at intermediate distances. At large
distances, it contracts exponentially to a set of zero measure. As
visualization of this counterintuitive feature might be helpful
for further discussion, we refer to Fig. 3 of Ref. [41] and to
Fig. 3 of this article. It has been argued that such ridges are of
practical relevance as they can significantly affect unoccupied
KS orbitals and eigenvalues [38,39], i.e., quantities that are
important in particular for time-dependent DFT calculations
or perturbation theory methods.

However, the ridge feature has also sparked interest from a
fundamental perspective. Along a ridge, the exact KS exchange
potential asymptotically goes to a nonzero constant. In all
other directions of space, it asymptotically falls off to zero.
One may argue that no physical potential may go to different
asymptotic limits in different directions of space, because
this would allow us to build some sort of perpetuum mobile:
Consider an electron from the center of the system out to
infinity along some direction that does not coincide with the
nodal surface, i.e., does not coincide with the ridge. Common
sense tells us that independent of the shape of the potential,
there cannot be any interaction between the electron and the
system when the electron is at infinity, so at infinity the
electron can be moved at zero energy cost to any point,
e.g., a point on the nodal surface and thus to the top of the
ridge. Then bring the electron back into the center of the
system right along the ridge. When the full cycle has been
completed, the electron will have gained an amount of energy
that is proportional to the height of the ridge “out of nothing.”
Obviously this cannot be, so how can the KS exact exchange
potential show such an “unphysical” feature? The gist of the
matter is that the KS potential is not a physical potential, but
a mathematical object defined as a functional derivative [46].
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FIG. 1. Contour plot of the AK13 potential landscape of benzene
in the plane of the molecule. The semilocal AK13 potential diverges
exponentially along the three nodal planes. Due to serious numerical
difficulties, which are intensified by the nodal surfaces issues, the
AK13 potential could not be calculated self-consistently. For this
plot, the AK13 potential was evaluated on a tightly converged self-
consistent LDA valence density obtained from the Bayreuth version
[42] of the PARSEC real-space code [43] with a sphere radius of 30a0

and a grid spacing of 0.3a0.

Therefore, one cannot move electrons (KS particles are not
electrons) around in the KS potential and obviously cannot
build an “exact exchange perpetuum mobile.” Nevertheless,
the question of whether the nonvanishing asymptotic constants
and associated ridge structures are only a feature of bare
exchange, or whether these signatures of nodal surfaces would
prevail also in the total exchange-correlation potential, has
been debated [47,48]. The discussion of nodal surfaces has
gained further momentum through the recent discovery [49]
that nodal surfaces can also lessen the significance of so-called
“iso-orbital indicator” functionals that have been frequently

used, e.g., for the purpose of eliminating self-correlation
errors.

One may wonder why nodal surfaces of an orbital can play
such a special role in DFT, although a ground-state density
itself does not have nodes [50]. The answer is that although
the ground-state density is nodeless, it is nevertheless strongly
affected by homo nodal surfaces. While the asymptotic density
is governed by the homo in almost all of space, we discuss in
this work that not all asymptotic properties of the density
(such as certain partial derivatives) are determined solely by
the homo in the vicinity of nodal surfaces. As a consequence,
semilocal functionals that use derivative information can show
unexpected and quite violent features in the vicinity of nodal
surfaces. This is exemplified by Fig. 1, which shows the AK13
potential for benzene: The potential diverges exponentially
in the vicinity of a nodal surface. We show in this paper
that such an anomalous behavior is also found for the BJ
exchange potential and even—though in somewhat weaker
form—also for generalized gradient approximations (GGAs)
with less strongly diverging enhancement factors than that of
AK13. The most prominent example of such an affected GGA
is the Becke 1988 exchange functional (B88) [51], which is the
semilocal ingredient of the hybrid functional B3LYP [52,53].
As the latter is one of the most used density functionals for
molecular systems, the relevance of the nodal surface features
that we discuss here is apparent.

In addition to conceptual questions that a diverging poten-
tial raises, divergences at nodal surfaces can also severely
hinder self-consistent calculations. This has far reaching
consequences, because many systems of practical relevance, in
particular organic molecules from a chemical and biological
context, exhibit at least one and often even multiple nodal
planes. Furthermore, simple systems can also show nodal
planes. As a prime example, Fig. 2 visualizes the orbital
structure of the boron atom with its noded pz orbital. Similar
features are seen in the density of many open-shell atoms. In
first-principles electronic structure theory for finite systems,
the occurrence of nodal surfaces is therefore the rule rather
than the exception.

FIG. 2. Contour plots of the highest (right) and of the second highest occupied spin-up orbital densities (left) for the boron atom based
on self-consistent LSDA all-electron calculations with the real-space grid program DARSEC [44,45]. While the homo-1 is of perfect spherical
symmetry and exhibits a single radial node, the homo is a paradigm of a pz orbital with its nodal plane at z = 0.
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In this paper, we take a close look at the density in the
vicinity of nodal surfaces, and we show how nodal surfaces can
affect density functionals. Toward that end, we first introduce
a minimal model of auxiliary orbitals that serves as a paradigm
system with nodal planes. The model is then utilized to
investigate the asymptotic behavior of the density, reduced
density derivatives, and the kinetic energy density in the
vicinity of nodal surfaces. Based on these findings, we study
the exchange potentials of AK13 and B88, as well as the model
potential of BJ and van Leeuwen and Baerends (LB94) [17],
and we comment on several other functionals. We deliberately
focus only on the exchange part in this analysis of approximate
functionals, as the design criteria that led to irregular behavior
in the vicinity of asymptotic nodal surfaces are specific to
exchange. This is a consequence of the fact that the long-range
part of the exact xc potential is dominated by exchange.
Consequently, also approximate correlation potentials are
typically constructed such that they vanish considerably faster
than their exchange counterparts in the asymptotic region.
Therefore, they are of little relevance in the present context.
We conclude by discussing the implications of our findings.
Hartree atomic units are used throughout.

II. MINIMAL NODAL SURFACE MODEL

In the following, we introduce a minimal model describing
the simplest kind of nodal plane. The model is of general
utility and inspired by the ground state of a neutral cluster of
four sodium atoms [41]. It can be motivated equally well as a
schematic variant of the boron-atom shown in Fig. 2. When the
Na4 cluster is described in the pseudopotential approximation
[54,55], its two valence orbitals that are each occupied by
two electrons are smooth and can be approximated by s and
p orbitals, respectively. The energetically lower orbital is of
s character, and for simplicity modeled by a 1s orbital. The
highest occupied orbital is of p character and chosen to be
described by a 2pz orbital. Therefore, the nodal plane in our
minimal model is given by the x − y plane and extends to
infinity. Due to rotational symmetry with respect to the z axis,
we chose cylindrical coordinates {r,z,φ}. The density of the
minimal model is thus given by

n(r,z) =2n0
s exp(−αs

√
r2 + z2)

+ 2n0
p z2 exp(−αp

√
r2 + z2), (1)

where n0
s = α3

s /8π and n0
p = α5

p/32π for normalization. It
is known that the exponential decay lengths αs and αp of
the corresponding orbital contributions to the density are
determined by their respective eigenvalues. All subsequent
results are derived without explicit values for αs and αp,
given that αs > αp > 0. Nonetheless, for the purpose of
visualization we choose these free parameters inspired by the
EXX eigenvalues of the cluster Na4, given in Ref. [41], via
αs = 2

√−2εs ≈ 1.1873 and αp = 2
√−2εp ≈ 1.0587, and

thus we conclude our model.
The density is asymptotically dominated by the pz orbital

except in the neighborhood of the nodal plane (z = 0). In fact,
for every distance to the nodal plane, z > 0, there exists a finite
distance from the center of the molecule r such that n(r,z) is

FIG. 3. EXX potential (shown in the KLI approximation [56])
evaluated in the minimal model of a nodal plane located at z = 0 using
MATHEMATICA [57]. The characteristic pronounced “ridge” is visible
in the potential along the nodal surface at intermediate distances.
For large distances, the ridge contracts exponentially to the nodal
plane—a set of zero measure.

arbitrarily accurately described by only its p component,

np(r,z) = 2n0
p z2 exp(−αp

√
r2 + z2). (2)

This non-ground-state density, np(r,z), will be referred to as
the pure model of the nodal plane, as it features an actual node.
In the limit r → ∞ and except for a set of zero measure, given
by the nodal plane itself, semilocal potentials are completely
determined by this density of the pure model.

However, when considering a given finite value of r , the
s-density part of the minimal model contributes noticeably
in a small region of space that encloses the nodal plane. We
will refer to this region as the transition region, as semilocal
quantities in this region are typically determined by the
interplay of contributions from both orbitals. In the limit r →
∞, it contracts exponentially to a set of zero measure. Closely
connected to this region is the behavior exactly on the nodal
plane. While the p contribution to the density itself vanishes
by construction on or along this plane, the p contribution
to the Laplacian of the density, ∇2n, remains finite and even
dominates in the large-r limit, essentially explaining why some
semilocal potentials with critical asymptotics diverge along
nodal surfaces, as we will show below.

To showcase the capabilities of this minimal model of a
nodal plane, we have plotted the EXX potential evaluated
within this model in Fig. 3. For this purpose, the EXX potential
is approximated by solving the KLI equation [56] for the fixed
auxiliary orbitals of the minimal model. The clearly visible
pronounced potential ridge along the nodal plane serves as
verification of the model. The behavior of the EXX potential
in this figure will be utilized as a reference to the subsequent
study of the exchange potentials of AK13, BJ, B88, and LB94.
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III. RESULTS FOR THE ASYMPTOTICS OF SEMILOCAL
FUNCTIONAL EXPRESSIONS

Before examining the full expressions of semilocal poten-
tials, we will use the minimal model to study the asymptotics
of a few semilocal ingredients appearing in such potentials.
We begin from the common definitions of reduced spatial
derivatives of the density,

s = |∇n|
2γ n4/3

, t = ∇2n

4γ 2n5/3
, u = ∇n · ∇|∇n|

8γ 3n3
, (3)

where γ = (3π2)1/3, and the positive-defined kinetic energy
density is

τ = 1

2

∑
i

fi |∇ϕi |2 (4)

with fi the occupation number of KS orbital i.
For an electron density n(r) that decays regularly, i.e.,

governed by the highest occupied orbital in a spherical
symmetric manner, one finds [58]

n(r) ∼ n0|r|q exp(−α|r|) as |r| → ∞, (5)

where n0 and q are system-dependent constants, and the decay
parameter

α = 2
√

−2
(
εho − v∞

xc

)
(6)

is determined by the homo eigenvalue εho relative to the
limiting value of the potential v∞

xc = lim|r|→∞ vxc(r).
For a density that decays isotropically according to Eq. (5),

one finds that the following characteristic combinations of
semilocal components approach nonzero limiting values:

u

s3
∼ 1,

t

s2
∼ 1 − 2

3

1

ln(s)
,

2γ n1/3s ∼ α,
τ

n
∼ α2

8
(7)

as |r| → ∞.
However, when the density does not decay regularly, e.g.,

due to a nodal plane of the homo, the asymptotic behaviors of
the quantities in Eq. (7) are different. Figures 4–7 show these
quantities evaluated in the minimal model via cross sections
perpendicular to the nodal plane for several distances from the
molecular center r .

The behavior of t/s2 = n∇2n/|∇n|2 is shown in Fig. 4:
Well outside of the nodal plane (for large z values) the semilo-
cal ratio approximately approaches its spherical asymptotic
limit, t/s2 ∼ 1. Exactly on the plane, t/s2 fails to balance
the exponential decay of the density, due to the finite p

contribution to ∇2n, and it diverges exponentially as r → ∞.
However, the transition region surrounding this divergence
contracts to a set of zero measure in the same limit, leaving
the behavior of the quantity t/s2 given by the pure model of
the nodal plane [cf. Eq. (2)], which can by summarized by the
asymptotic relation

t

s2
∼ 1

2
+

(
1

8
− 1

αpr

)
α2

pz2 (8)

as z → 0+. In summary, the quantity t/s2 diverges expo-
nentially along a nodal plane, but the region affected by the

FIG. 4. Cross section of t/s2 evaluated in the minimal model of a
nodal plane (z = 0), cf. Eq. (1). Different lines correspond to different
values of r as indicated by the subscripts.

divergence contracts to a set of zero measure leaving an almost
everywhere finite limiting value. This value, however, differs
considerably from its spherical symmetric limit in the vicinity
of the nodal plane.

The ratio u/s3 = n∇n · ∇|∇n|/|∇n|3, shown in Fig. 5,
behaves similar to t/s2: In the pure model, which is approached
as r → ∞ nearly everywhere, one obtains

u

s3
∼ 1

2
+

(
1

4
− 3

4αpr

)
α2

pz2 (9)

as z → 0+, and likewise far outside the nodal plane u/s3

approaches its ordinary spherical asymptotic limit, u/s3 ∼ 1.
However, exactly on the nodal plane this ratio is given solely
by the s contribution, thus u/s3 converges to the spherical
asymptotic limit instead of diverging. This limit is surrounded
by a transition region, which features exponentially diverging
elements but contracts to the nodal plane as r → ∞.

So far all diverging contributions to semilocal potentials
that we have examined contract to a set of zero measure in the
limit r → ∞, i.e., when evaluated in the pure model of the
nodal plane. The quantity 2γ n1/3s = |∇n|/n, which is key to
the construction of AK13, is different in this respect, as Fig. 6

FIG. 5. Cross section of u/s3 evaluated in the minimal model of
a nodal plane.
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FIG. 6. Cross section of 2γ n1/3s evaluated in the minimal model
of a nodal plane.

demonstrates. Far from the nodal plane, i.e., for |z| → ∞,
2γ n1/3s approaches the system-dependent constant αp, which
is given by the homo as expected by Eq. (7). Once more,
exactly on the nodal plane the quantity is solely determined by
the s contribution and therefore approaches αs , the analogous
constant of the underlying s orbital. As the neighborhood
affected by this limit contracts to the nodal plane as r → ∞,
the semilocal ratio approaches its behavior on the pure nodal
plane, which is given by

2γ n1/3s ∼ 2

z
+

(
1

4
− 1

αpr

)
α2

pz2 (10)

as z → 0+. Hence, unlike t/s2 or u/s3, 2γ n1/3s is not almost
everywhere smooth as r → ∞, but it develops a pole of first
order: its denominator n has a double root on the pure nodal
plane, while its numerator |∇n| exhibits only a single root.
Therefore, even infinitely far outside of the molecule the region
affected by the nodal plane maintains a finite width for this
quantity.

Finally, the semilocal quantity 2
√

2τ/n, which is key to the
BJ potential, is examined. It is shown in Fig. 7. The kinetic
energy density, τ , is constructed in analogy to the density of

FIG. 7. Cross section of 2
√

2τ/n evaluated in the minimal model
of a nodal plane.

Eq. (1) by evaluating Eq. (4) with the orbitals of the minimal
model. Since the prefactor is chosen such that the quantity
approaches the same spherical symmetric limit as 2γ n1/3s, the
behavior of 2

√
2τ/n is similar to this quantity for |z| → ∞ and

the system-dependent constant αp is likewise approached far
outside the nodal surface. Exactly on the nodal plane, however,
2
√

2τ/n does not approach the constant αs , but it diverges
exponentially along the plane, as the p contribution to τ does
not vanish. Because the pure model, which is approached as
r → ∞ almost everywhere, is determined by a single orbital
only, 2

√
2τ/n equals 2γ n1/3s strictly in this limit, as τW =

|∇n|2/8n is the single orbital limit of τ . Hence, on the pure
nodal plane

2

√
2τ

n
∼ 2

z
+

(
1

4
− 1

αpr

)
α2

pz2 (11)

as z → 0+, which features a pole of first order, implying once
more a region of finite width affected by the nodal plane as r →
∞. Further insight into the consequences that nodal surfaces
have when τ is used as a part of an iso-orbital indicator, e.g.,
in the context of local hybrid functionals [59], is discussed in
Ref. [49].

IV. RESULTS FOR THE ASYMPTOTICS OF SEMILOCAL
POTENTIALS

We now evaluate the behavior of semilocal potentials in the
vicinity of a nodal surface based on the minimal model. We
focus on two aspects: First, we examine the behavior exactly
along the nodal plane, which is described by the complete
minimal model. While this gives insight into whether and
how rapidly the potential diverges along the nodal plane, the
affected region might be arbitrarily small and might contract
with increasing distance from the center of the system r .
Therefore, secondly, the pure model is used to classify the
impact of the nodal surface on its neighborhood as r → ∞.

A. The BJ potential functional in the vicinity of nodal surfaces

Various modifications of the BJ exchange potential func-
tional are used quite frequently in the literature [29–35].
Therefore, we begin our application of the minimal model
with the BJ expression. The BJ functional directly models the
exchange potential as a sum of the Slater exchange potential
[60] and a term expressed in the kinetic energy density,

vBJ
x = vSlater

x + C	v

√
2τ

n
, (12)

where C	v = √
5/12/π . As it is a potential functional, it has

the major drawback that no corresponding exchange functional
exists [24,61–63]. For a regular decaying density in the sense
of Eq. (5), the correction term to the Slater potential approaches
its characteristic positive asymptotic constant,

vBJ
x ∼ C	v

2
α, (13)

as |r| → ∞.
Since the Slater potential vanishes ∝ −1/|r| isotropically

even in the presence of nodal surfaces, we can restrict the
investigation to the correction term, which is proportional
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to the semilocal quantity 2
√

2τ/n of the last paragraph.
Therefore, we can conclude that the BJ potential diverges
exponentially along the nodal plane; insertion of the model
density yields

vBJ
x (r,z = 0) ∼ C	v

√
n0

p

n0
s

exp [(αs − αp)r/2]. (14)

Hence, the rate of the exponential divergence is given by the
difference of the decay parameters of the homo, αp, and that of
the underlying orbital, αs , which in turn are closely connected
to the corresponding eigenvalues. A combination of Eq. (11)
with the asymptotics of the Slater potential gives the behavior
of the BJ potential in the vicinity of the pure nodal plane,

vBJ
x ∼ C	v

z
− 1

r
+ O(z2) (15)

as z → 0+. Therefore, the divergence of the BJ potential
affects a finite region enclosing the nodal plane and does not
contract to a set of zero measure as r → ∞. A visualization
of the asymptotic BJ potential in the vicinity of a nodal plane
was essentially given in Fig. 7.

While it has already been noted in the original work
that the BJ potentials diverges at orbital nodes, and should
consequently be used with ground-state configurations only
[28], our analysis aggravates these observations, as it shows
them to be relevant for ground-state configurations as well.

B. AK13 in the vicinity of nodal surfaces

We now turn to the AK13 functional, which is based on the
usual GGA form of the exchange energy,

EGGA
x = Ax

∫
n4/3F (s)d3r. (16)

In the case of AK13, the enhancement factor F (s) is given by

F AK13(s) = 1 + B1s ln(1 + s)

+ B2s ln [1 + ln(1 + s)], (17)

where the constants B1 = 2/27 + 8π/15 and B2 = 4/81 −
8π/15 have been determined in a nonempirical fashion. Its key
feature is that its corresponding potential, i.e., the functional
derivative of Eq. (16),

vGGA
x = Ax

4

3
n1/3

[
F (s) − s∂sF (s) + 3

4

(
u

s3
− t

s2

)
s∂sF (s)

+
(

1 − 3

4

u

s3

)
s2∂2

s F (s)

]
, (18)

typically approaches a positive system-dependent constant
outside of a finite system. This novel GGA feature was inspired
by the BJ exchange potential that we investigated in Sec. IV A.
The asymptotic constant of the AK13 potential,

vAK13
x ∼ −AxB1

6γ
α (19)

as |r| → ∞, follows formally from inserting the asymptotic
relations for a regular decaying density, Eq. (7), together with
the asymptotic enhancement factor of AK13 as s → ∞ in

leading order,

F AK13(s) ∼ B1s ln(s) + B2s ln[ln(s)]. (20)

Hence, the asymptotic constant is related to the precise leading
term in the divergent enhancement factor F (s) ∝ s ln(s) as
s → ∞, which we will refer to as “critical asymptotic.” It is
the threshold between asymptotic GGA potentials that are, for
a regularly decaying density, vanishing and diverging in the
limit |r| → ∞.

To discuss the behavior of a GGA potential in the vicinity
of a nodal plane, Eq. (18) has to be examined in the limit
s → ∞ as well. The key difference is that one has to consider
the altered relations of n, s, t , and u due to the presence
of the nodal surface, which we have discussed in Sec. III.
In particular, it was shown that the Laplacian contribution to
the GGA potential is dominant exactly along the nodal plane.
Therefore, the asymptotic of the GGA potential along the plane
is given by

vGGA
x (r,z = 0) ∼ −Axn

1/3 t

s
∂sF (s). (21)

Inserting the asymptotic enhancement factor of AK13 as
s → ∞ in leading order given by Eq. (20), i.e., ∂sF

AK13(s) ∼
B1 ln(s), and using the density of the minimal model, we find

vAK13
x (r,z = 0) ∼ −AxB1r

3γ

(
n0

p

n0
s

)
exp [(αs − αp)r]. (22)

Thus, the AK13 potential diverges exponentially along nodal
surfaces at twice the rate of the BJ potential; cf. Eq. (14).

To evaluate the behavior of the AK13 potential in
the neighborhood of the nodal plane as r → ∞, we use
the pure minimal model: Inserting relations (8)–(10) into the
asymptotic GGA potential, deduced from Eq. (18), yields

vAK
x ∼ −AxB1

2
n1/3s ∼ −AxB1

2γ

1

z
(23)

as z → 0+. Hence, far from the center of the molecule, the
AK13 potential behaves similar to the BJ potential, i.e., as
if it had a pole of first order on the nodal plane; even the
amplitude of the pole is approximately of the same strength.
Consequently, the region affected by the nodal plane has a
fixed width and does not contract to a set of zero measure in
the case of the AK13 potential, either. Figure 8 visualizes the
AK13 potential in the vicinity of the nodal plane via cross
sections.

In addition to the features that we just discussed, Fig. 8
demonstrates that local minima surrounding the nodal surface
show up in the AK13 potential. To explain the mechanism
behind them, we have to revisit the asymptotic GGA potential
and note that the AK13 construction relies on the cancellation
of the first-order terms, i.e., contribution to the potential ∝
s ln(s). To achieve the cancellation, the asymptotic limits of
t/s2 and u/s3 have to be equal, as they are in the spherical
symmetric case and exactly on a pure nodal surface. However,
for a fixed distance to the nodal surface z > 0 the limits of these
semilocal ratios differ slightly as r → ∞, as a comparison of
the second-order terms in the asymptotic relations (8) and (9)
readily demonstrates. Consequently, the leading-order terms
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FIG. 8. Cross sections of the AK13 potential at different r

values evaluated in the neighborhood of the nodal surface in the
minimal model. Exactly at the nodal plane (z = 0) the potential
diverges exponentially as r → ∞, being surrounded by an area
where the potential behaves ∝ 1/z. Given a finite r value, the
potential approaches the constant v∞

x for z → ∞. Additionally, with
an increasing r value, local minima surrounding the nodal surface
show up, as the potential diverges linearly in r toward negative infinity
for every finite z 	= 0.

remain, i.e.,

vAK13
x ∼

[
lim

r→∞

(
u

s3
− t

s2

)]
AxB1

6γ
α2

pr (24)

as r → ∞ for z > 0 fixed. This implies a linearly diverging
potential. Hence, except for right on the nodal surface (a set
of zero measure where the potential diverges exponentially
to positive infinity), the AK13 potential approaches negative
infinity linearly in r with a z-dependent slope. This results in a
further amplification of the divergence. A nodal behavior very
similar to the AK13 potential is to be expected of the potentials
of exchange-enhanced GGAs [64] due to their usage of the
same s ln(s) asymptotics.

C. B88 in the vicinity of nodal surfaces

Next, we turn to GGAs with enhancement factors F (s) 

s ln(s) as s → ∞, i.e., identified above as subcritical asymp-
totics. The potential of these GGAs will vanish with increasing
distance from a finite spherically symmetric system. However,
we will demonstrate that this condition is not sufficient to
avoid the divergence of the corresponding potential along
nodal surfaces. We discuss this issue with the widely used
B88-GGA serving as an example. To reproduce the correct
asymptotic behavior of the exact exchange-energy density, the
B88 enhancement factor diverges slightly slower than that of
AK13,

F B88(s) ∼ − γ

3Ax

s

ln(s)
(25)

as s → ∞, causing the corresponding potential to vanish ∝
−1/|r|2 [65] in the asymptotic region outside of nodal surfaces.
Utilizing Eq. (21) and the minimal model gives the asymptotic

FIG. 9. Cross sections of the B88 potential at different r values
evaluated in the immediate vicinity of the nodal surface in the minimal
model. Exactly at the nodal plane (z = 0) the potential diverges
exponentially as r → ∞, being surrounded by an area where the
potential behaves ∝ −1/[z ln2(z)] (visible from 64a0 onward), which
in turn contracts ∝ 1/r2 as r → ∞.

behavior of the B88 potential along the nodal plane,

vB88
x (r,z = 0) ∼ 1

α2
s r

(
n0

p

n0
s

)
exp [(αs − αp)r] (26)

as r → ∞. Consequently, the B88 potential diverges slightly
slower than the AK13 potential along nodal surfaces, while
maintaining the same exponential rate, which is twice the rate
of the BJ potential.

On the pure model and close to the nodal plane, the leading-
order terms cancel and we find

vB88
x ∼ −γ

6

n1/3s

ln2(s)
(27)

as s → ∞ and for |z| 
 1. While the numerator n1/3s features
a pole of first order in z [cf. Eq. (10)], the denominator is
ambivalent, as, on the one hand,

ln(s) ∼ −5

3
ln(z) (28)

as z → 0+ for fixed r , and, on the other hand,

ln(s) ∼ αpr/3 (29)

as r → ∞ for fixed z > 0. Therefore, the B88 exchange
potential exhibits a negative pole on the pure nodal surface,

vB88
x ∼ − 3

50

1

z ln2(z)
(30)

as z → 0+, but the region affected by the pole contracts, as
for fixed z > 0 the quantity n1/3s approaches a constant as
r → ∞; cf. Fig. 6. Therefore, the potential vanishes,

vB88
x ∼ −3

2
γ n1/3s

1

α2
pr2

(31)

as r → ∞ for a fixed z > 0. All of these aspects are visualized
in Fig. 9 by cross sections of the B88 potential in the immediate
vicinity of the nodal plane.
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The exchange parts of the AM05 functional [66] as well
as QrevLB94 [67] are expected to be similar to B88 with
respect to their nodal surface properties, because they share
the asymptotic enhancement factor ∝ s/ ln(s) with B88.

D. LB94 potential functional in the vicinity of nodal surfaces

The final potential we wish to discuss in this context is
the exchange model potential of van Leeuwen and Baerends
(LB94) [17], as it also exhibits irregularities, but ones that are
qualitative different from the ones of AK13, BJ, or B88. The
LB94 model potential is designed as a semilocal correction
to the exchange LDA potential based on n and s, with the
aim to incorporate the correct −1/|r| asymptotic as well as
an atomic-shell structure. In the asymptotic region, i.e., for
s → ∞, the LB94 model potential is generally described by
the relation

vLB94
x ∼ −2γ

3

n1/3s

ln(s)
(32)

even along or in the vicinity of nodal surfaces. Importantly,
due to its model potential character, the LB94 potential does
not depend on the Laplacian of the density, in contrast to GGA
potentials that are functional derivatives. Consequently, the
LB94 potential does not diverge exponentially exactly along a
nodal plane, but vanishes there in Coulombic fashion ∝ −1/r ,
and likewise in any other direction. Nevertheless, the LB94
potential features divergent behavior in a region enclosing the
nodal plane. This can best be understood by using the pure
minimal model, which gives the asymptotic relation

vLB94
x ∼ 2

5

1

z ln(z)
(33)

as z → 0+, and it describes a negative pole of the LB94
potential on the pure nodal plane. In the full model, these poles
translate into minima of the LB94 potential surrounding the
nodal plane at intermediate distances. As r → ∞, the depth
of these minima grows without bounds as the position of the
minima converges exponentially to the nodal plane. Yet, in the
same limit the region affected by the minima contracts as the
LB94 potential vanishes,

vLB94
x ∼ −2γ n1/3s

1

αpr
(34)

for a fixed z > 0. This follows from the same arguments as
in the discussion of the B88 potential, i.e., for fixed z > 0 the
quantity n1/3s approaches a constant while ln(s) shows a linear
behavior in r . Figure 10 visualizes these findings for the LB94
potential, once more via cross sections in the vicinity of the
nodal plane. We note that the nodal surface behavior of the
model potentials of Lembarki et al. [68] can be expected to be
similar to that of LB94.

E. Potential landscapes of semilocal potentials

For a final comparison of the behavior in response to nodal
surfaces of all exchange potentials that were discussed in
this article, we have plotted these potentials along the nodal
plane of the minimal model in Fig. 11 and the landscapes of
the potentials in Fig. 12. Figure 11 confirms the asymptotic
relations of Eqs. (14), (22), and (26), while the EXX potential

FIG. 10. Cross sections of the LB94 potential at different r values
evaluated in the vicinity of the nodal surface in the minimal model.
Exactly at the nodal plane (z = 0), the potential does not diverge
but vanishes ∝ −1/r , being surrounded by a divergent area where
the potential behaves ∝ 1/[z ln(z)], which in turn contracts ∝ 1/r as
r → ∞.

tends to a finite positive value in the same limit. Whereas the
B88 potential diverges formally faster than the BJ potential,
this is only relevant in the far asymptotic region, which is
typically not part of numerical calculations.

Figure 12 displays the effect of the nodal plane on all
four exchange potentials within the typical spatial range of a
numerical calculation, and it should be compared to the EXX
potential in Fig. 3. Aside from the (irregular) behavior exactly
along the nodal plane, the landscapes demonstrate how the
width of the affected region differs. In the case of EXX, the
region affected by the nodal plane, i.e., the ridge, contracts
exponentially with increasing distance from the center of
the system. The closest to this ideal is the B88 potential,
though the affected region contracts even faster. Therefore, the

FIG. 11. Exchange potentials along the nodal surface of the
homo (z = 0) in the minimal model. While the EXX potential [in
the Krieger-Li-Iafrate (KLI) approximation [56]] reaches a positive
constant, the AK13, B88, and the BJ potentials diverge exponentially
as r → ∞. The LB94 potential is not visible in this figure, as it
behaves regularly exactly on the nodal plane and approaches zero
from below.
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FIG. 12. Semilocal exchange potentials in the minimal model of a nodal plane located at z = 0. Note that the scale of the potential axis as
well as the coloring visualizing the height of the potentials are not standardized. For a comparison to EXX, see Fig. 3. Except for LB94, all
exchange potentials diverge exponentially along the nodal plane, though with different magnitude and width. All potentials were evaluated and
plotted using MATHEMATICA [57].

numerical resolution of the B88 potential irregularity is highly
questionable in practice, unless grid points exactly along the
nodal plane are used. In the case of BJ, the region affected by
the nodal plane is qualitatively different, as it does not contract
but approaches a finite width as r → ∞. The AK13 potential
is similar in principle, though one could argue that in the case
of AK13 the width is even expanding as minima surrounding
the divergent region grow without limits. It is noteworthy that
even though the GGA potentials of AK13 and B88 diverge
along the nodal plane, their corresponding exchange energies
per volume remain finite throughout.

V. FORMAL CONSTRAINTS FOR WELL-BEHAVED
GGA POTENTIALS

The rate of divergence of a GGA potential for exchange
along the nodal plane is determined by the leading power d of
the asymptotic enhancement factor, F (s) ∝ sd as s → ∞ ne-
glecting logarithmic contributions, i.e., F (s) ∼ Csd lnc(s) ∝
sd regardless of the precise value of C and c; consequently,
in the case of AK13 and B88, d = 1. For more general
enhancement factors, d may be defined via

d = inf
{
b ∈ R

∣∣ lim
s→∞ F (s)/sb = 0

}
. (35)

Additionally, if F (s) approaches a finite constant F (∞) as
s → ∞, one should replace F (s) in the equations above by
[F (s) − F (∞)], which then corresponds to a negative leading
power d < 0.

One can show that in general

vGGA
x (r,z = 0) ∝ exp

[(
2 + d

3
αs − αp

)
r

]
(36)

based on Eq. (21) and the insight that ∇2n is in contrast to n

and ∇n governed by the p orbital exactly along the nodal plane
as r → ∞—a detailed derivation can be found in Appendix
A. Thus, avoiding a divergence along a nodal surface requires

d � −2 + 3
αp

αs

=: dc, (37)

or system-independently and therefore strictly formulated,

d � −2. (38)

Consequently, F (s) ∼ C1 + C2/s
2 as s → ∞ is a sufficient

condition to avoid a divergence along a nodal surface, while
an asymptotic enhancement factor in the range −2 < d < 1
will diverge in some systems with a nodal surface, but not
in all. Note that for exactly d = 0 without any logarithmic
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contribution there is no divergence, because the proportionality
constant in Eq. (36) vanishes trivially. The system-specific
threshold value dc depends on the difference between the
highest and second highest occupied orbital eigenvalues.
While a nearly degenerate situation corresponds to dc ≈ 1,
the lower limit dc = −2 is approached in the case of a weakly
bound highest occupied orbital on top of a strongly bound
second highest occupied orbital. The threshold of our minimal
model is, for instance, dc ≈ 0.775 and thus describes a rather
degenerate case.

Exchange GGAs that we therefore expect to show a system-
dependent exponential divergence of the potential along the
nodal planes are, e.g., PW86 [69] and B86b [70] with d = 2/5
as well as the Local Airy gas approximation (LAG) [71] with
d ≈ 0.9. Additionally, GGAs for exchange that are designed to
satisfy the correct nonuniform coordinate scaling limit [72,73]
via F (s) ∼ Cs−1/2 as suggested in Ref. [74] might in rare
cases (αs > 2αp) lead to an exponential divergence of the
corresponding potential along the nodal plane as well.

In addition to the exponential divergence along the nodal
plane, irregular behavior in the neighborhood of the nodal
plane has to be considered. To avoid this, i.e., a pole on the
pure model of the nodal plane, the leading asymptotic power
of the enhancement factor d, F (s) ∝ sd as s → ∞ neglecting
logarithmic contributions, has to be in general less than or
equal to 2/5. This follows from Eq. (18), when using the
asymptotic relations Eqs. (8) and (9) via

vGGA
x ∝ n1/3sd ∝ z(2−5d)/3 (39)

as z → 0+. As this requirement is naturally included in the
constraint of Eq. (38), i.e., d � −2, the latter is sufficient to
avoid any irregular behavior of a GGA potential in the vicinity
of nodal surfaces. It follows from this argument that several
widely used semilocal functionals for exchange are free of any
irregular behavior in the vicinity of nodal surfaces, as they
fulfill this sufficient condition. Among these are LDA, B86a
[75], and PBE [76].

A rather far-reaching consequence of this analysis is that
for the GGA exchange form, the design criteria of either a
nonvanishing asymptotic constant in the potential or the correct
asymptotic Coulombic behavior of the potential or of the
energy density are all incompatible with the regular behavior
of the potential in the vicinity of asymptotic nodal surfaces.
The detailed line of arguments that leads to this conclusion is
given in Appendix B.

VI. DISCUSSION

While many of the results of the previous sections were
derived utilizing a model system, we expect them to be at
least qualitatively transferable to true nodal surfaces of real
molecules or atoms. Our reasoning is that the behavior of
the density in the vicinity of an asymptotic nodal surface is
universal in the sense that it essentially consists of two additive
contributions. Both contributions vanish exponentially, but
with different decay lengths. Whereas the slower decaying
contribution is smooth and nodeless in the asymptotic region,
the faster decaying contribution features a nodal surface,
which is likely to be approximate harmonically in terms of
the distance to the nodal surfaces. Since these conditions

are sufficient to derive all presented results to leading order
and are satisfied by our minimal model, our results are of
general relevance. For example, our arguments also apply to
other nodal surfaces as, e.g., generated by higher spherical
harmonics. In the latter case, all results will be maintained
qualitatively, as well as quantitatively in leading order, when
one measures the distance to a specific nodal surface by z,
and the coordinate along the nodal surface by r . One may also
specifically wonder how our arguments change if one replaces
the pz orbital in our model by the linear combination px + ipy ,
changing the homo density into a torus. In this case, the nodal
plane would reduce to a single line, the z axis. Yet, except for an
interchange of r and z, the results and plots would look nearly
indistinguishable to the ones that we present here. In addition to
these arguments, the relevance of our findings is also evident
from the divergences that are observed in real systems, as
demonstrated, e.g., in Fig. 1 for the benzene molecule and the
AK13 functional.

We observe that all functionals that we know of that
incorporate in a semilocal fashion either a system-dependent
asymptotic constant or the correct asymptotic Coulombic
behavior of the potential or the energy density are affected
by nodal surfaces issues—this list even includes Laplacian
based meta-GGA constructions [19,77]. Additionally, we
attempted to combine any of these asymptotic criteria with
regular behavior on nodal surfaces in density functionals of
rather general semilocal form—but without success so far. For
the GGA exchange form in particular, such asymptotics are
incompatible with a potential that behaves regularly in the
vicinity of asymptotic nodal surfaces; cf. Appendix B. This
is in line with the observation that commonly used semilocal
functionals do not perform well when the exact xc hole is not
localized around its electron. The hole-localization condition
is radically violated in the asymptotic limit, where the electron
is far out but its hole remains well inside the system. Therefore,
the above-mentioned asymptotic features are very challenging
design criteria for semilocal functionals.

The exponentially diverging semilocal exchange potentials
of AK13, BJ, B88, and LB94 have several potentially unpleas-
ant implications. Diverging potentials are suspicious from a
conceptual perspective. Even though it was found that the
EXX potential approaches a positive constant [38–41] in the
direction of nodal surfaces, its implications and the behavior
of the combined xc potential are still controversially discussed
[47,48]. Adopting a positive perspective, one may interpret
the divergences that we discuss here as a contribution to this
discussion.

However, in terms of the practical application of these
semilocal functionals, their irregular behavior is problematic.
In particular, when the irregularities are confined to very
narrow regions of space, such as, e.g., in the case of B88,
a numerical representation in terms of some chosen basis set
may not resolve the divergence. In this case, the numerical
calculation may converge without problems. Strictly speaking,
however, such a calculation has concealed a feature that is part
of the proper functional derivative. On the other hand, choosing
the numerical resolution such that it captures the divergence
can have detrimental consequences: As a divergence of these
potentials is generated in a semilocal fashion, small, normally
insignificant changes of the density in the asymptotic region
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close to a nodal surface can cause tremendous feedback
on these potentials. Hence, in an iterative KS calculation,
a positive feedback loop for irregularities and numerical
instabilities can arise, impeding a self-consistent solution of
the KS equations. We find this to be very much the case for
our own attempts at converging AK13 results for systems with
nodal surfaces, and also other authors have reported numerical
problems with self-consistent calculations [78]. Furthermore,
unusual oscillations in the AK13 potential have also been
observed in the interstitial region of Si crystals [35], and these
might be another consequence of the features that we discussed
here for finite systems. Quite generally, one might speculate
that similar issues could have influenced the convergence of
some of the many published values obtained with B88- and
BJ-based potential functionals.

VII. SUMMARY AND CONCLUSIONS

We have introduced and used a minimal model of general
utility to examine exchange potentials along nodal surfaces
of the highest occupied orbital. The model was used to
investigate the corresponding potentials from the exchange-
energy functionals AK13 and B88, as well as the BJ and LB94
model exchange potentials. We commented on several other
functionals that are expected to have nodal surface properties
in close similarity to these four paradigm cases. None of these
potentials is well-behaved in the vicinity of a nodal surface,
but rather they diverge exponentially. The AK13 functional has
the most strongly divergent potential, which appears to prevent
numerical convergence in practical calculations on molecular
systems with nodal surfaces. The present work gives results
and tools that should be useful for the investigation of other
functional constructs, and for creating future expressions that
avoid nodal surface anomalies. In particular, we derived a
condition that is sufficient for avoiding nodal surface problems,
and we pointed out that, e.g., LDA, B86a, and PBE fulfill this
condition. Our results are relevant for the developers of density
functionals, and also for users of DFT: Divergent potentials
pose a challenge for the numerical convergence of solutions
to the KS equations. Our work serves to caution that great
care has to be taken in calculations with functionals that show
special features close to nodal surfaces.
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APPENDIX A: ASYMPTOTICS OF GGA POTENTIALS
EXACTLY ALONG THE NODAL PLANE OF THE

MINIMAL MODEL

Here we provide a detailed derivation of Eq. (36), i.e., rate
of divergence for GGA potentials exactly along a nodal plane

of the minimal model: As we have demonstrated in Sec. III,
the Laplacian of the density is the only ingredient of the GGA
potential of Eq. (18) whose p contribution does not vanish
exactly on the nodal plane and therefore dominates,(∇2n

)
(r,z = 0) ∼ (∇2np

)
(r,z = 0) ∝ exp

(−αpr
)

(A1)

in the limit r → ∞. On the contrary, the p contribution to n,
∇n, and ∇|∇n| vanishes at z = 0, thus their dominant behavior
as r → ∞ is determined by the exponential decay of the s

orbital,

n(r,z = 0) ∝ (∇n)(r,z = 0) ∝ (∇|∇n|)(r,z = 0)

∝ ns(r,z = 0) ∝ exp (−αsr). (A2)

Because the exponential divergence of GGA potentials along
nodal planes stems from the occurrence of these different decay
lengths, it is given by Eq. (21),

vGGA
x (r,z = 0) ∼ −Axn

1/3 t

s2
s ∂sF (s), (A3)

where we have to consider F (s) in the limit s → ∞, as this
limit is approached for r → ∞ on the nodal plane (just as in the
spherically symmetric case for |r| → ∞). Now, we consider
a general asymptotic enhancement factor in this limit,

F (s) ∼ Csd lnc(s), (A4)

where C, d, and c are arbitrary constants. Therefore,

vGGA
x (r,z = 0) ∼ −AxC dn1/3 t

s2
sd lnc(s). (A5)

Concerning the exponential divergence, we can neglect the
prefactor and the logarithm as lnc(s) is only polynomial in
r . Inserting the definitions of s and t [cf. Eq. (3)] and using
relations (A1) and (A2) gives the final result,

vGGA
x (r,z = 0) ∝ n1/3 t sd−2

∝ n1/3−5/3−(d−2) 4/3(∇2n)|∇n|d−2

∝ n−(d+2)/3
s np ∝ exp

[(
2 + d

3
αs − αp

)
r

]
,

(A6)

which was presented in Eq. (36) and discussed thereupon.

APPENDIX B: INCOMPATIBILITY OF ASYMPTOTIC
SEMILOCAL DESIGN CRITERIA WITH

NODAL SURFACES

Under the assumption of a regularly decaying density in the
sense of Eq. (5), one can connect a given asymptotic behavior
of the corresponding potential, e.g., a nonvanishing asymptotic
constant or the correct Coulombic −1/|r| asymptotic, to the
asymptotic enhancement factor F (s) of an exchange-only
GGA. The connection is based on an asymptotic differential
equation, which was derived in the supplemental material
of Ref. [36] and determines F (s) as s → ∞ for a given
asymptotic behavior of the corresponding potential,

F (s) − s

(
1 − 1

2 ln(s)

)
F ′(s) + 1

4
s2F ′′(s) = ν(s). (B1)

The source term on the right-hand side of this equation
is uniquely determined by the asymptotic behavior of the
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potential,

ν(s) ∼ 3

4Ax

vGGA
x [n,s]

n1/3
, (B2)

as s → ∞ via |r| → ∞. Therefore, a nonvanishing asymptotic
constant corresponds to ν(s) ∝ s, and the correct Coulomb
asymptotics corresponds to

ν(s) = − γ

2Ax

s

ln(s)
. (B3)

Thus, up to a linear combination of the two homogeneous
solutions h1(s) and h2(s) of this differential equation, F (s)
is asymptotically uniquely determined by the behavior of the
potential. To leading order, the homogeneous solutions are
characterized by the relations

h1(s) ∼ s ln2/3(s) (B4)

and

h2(s) ∼ s4

ln8/3(s)
(B5)

as s → ∞, i.e., in terms of Eq. (35) by d = 1 and 4. Therefore,
both homogeneous solutions represent enhancement factors

that lead to irregular behavior in the vicinity of nodal surfaces.
Consequently, if for a given potential asymptotic the particular
solution [79] for F (s) also exhibits nodal surfaces issues, then
this specific potential asymptotic is (in the GGA exchange
form) incompatible with a potential that behaves regularly
in the vicinity of nodal surfaces. This is the case for the
criteria of a nonvanishing asymptotic constant and of the
correct Coulombic −1/|r| asymptotic of the potential, where
the asymptotics of the particular solutions are F (s) ∼ B1s ln(s)
and F (s) ∼ −(γ /Ax)s as s → ∞, correspondingly. The latter
asymptotic is, e.g., used in a recent GGA of Carmona-
Espíndola et al. [27].

Moreover, the correct asymptotic behavior of the exchange-
energy density, ex(r) ∼ −n(r)/2|r|, is in the GGA form only
realizable by the asymptotic enhancement factor

F (s) ∼ − γ

3Ax

s

ln(s)
, (B6)

as implemented in the B88-GGA. Therefore, we conclude
based on Sec. IV C that this asymptotic-design criterion is also
incompatible with regular behavior close to nodal surfaces.
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The Becke-Johnson model potential [A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006)]
and the potential of the AK13 functional [R. Armiento and S. Kümmel, Phys. Rev. Lett. 111, 036402 (2013)]
have been shown to mimic features of the exact Kohn-Sham exchange potential, such as step structures that are
associated with shell closings and particle-number changes. A key element in the construction of these functionals
is that the potential has a limiting value far outside a finite system that is a system-dependent constant rather than
zero. We discuss a set of anomalous features in these functionals that are closely connected to the nonvanishing
asymptotic potential. The findings constitute a formidable challenge for the future development of semilocal
functionals based on the concept of a nonvanishing asymptotic constant.

DOI: 10.1103/PhysRevB.96.075140

I. INTRODUCTION

The paramount decision to be made when using Kohn-Sham
(KS) density functional theory (DFT) [1,2] for physical,
chemical, or biological applications is the choice of the ap-
proximation used for the universal exchange-correlation (xc)
functional Exc[n]. A variety of approximations is available,
sometimes classified according to Jacob’s ladder [3,4] of DFT,
reaching from the basic local functionals to constructs of
increasing sophistication. The high-rung functionals nowadays
achieve an accuracy that rivals the one of higher-order wave-
function-based methods [5]. However, many questions of
practical relevance require functionals of the lower rungs
for reasons of computational cost. These semilocal density
functionals, which only depend on the electron density n(r)
and its spatial derivatives, e.g., |∇n(r)|, can provide an overall
reasonable accuracy for Exc. Yet their functional derivatives,
i.e., the corresponding xc potentials, typically completely miss
important features of the exact xc potential [6–15]. Among
them are, e.g., the particle-number discontinuity [16,17] and
step structures or steepening effects [8,18–23] that enforce
[24], e.g., the principle of integer preference. Particle-number
discontinuities and potential step structures and steepenings
are mathematically different properties, but they are closely
related to each other [8,17]. Also the asymptotic features of
the exact exchange [25–28] and xc [6,29] potential are not
reproduced at all by standard semilocal approximations.

It became clear that these omitted features play a decisive
role, e.g., in the description of charge transfer [20,30,31]
and ionization [8,17,18,32,33]. Attempts have been made
to model such features directly into semilocal xc potentials
[34–45], partially also with an additional (nonlocal) eigenvalue
dependence, e.g., as done by Gritsenko et al. (GLLB) [46] and
Kuisma et al. [47].

In past years, the Becke-Johnson (BJ) model potential [36]
and various modifications thereof [41,48,49] have sparked
interest in this respect by showing improved atomic-shell
structure, polarizabilities, atomic and molecular properties,
and band gaps closer to experimental values [36,39,48,50].

*stephan.kuemmel@uni-bayreuth.de

Two of the present authors have discussed that one of its key
features is to effectively mimic “nonlocal” exchange features
in the asymptotic behavior of the potential caused by the
particle-number discontinuity by means of having a nonzero
limiting value far away from a finite system [39].

However, model potentials are only of limited usefulness.
Since they lack a corresponding xc energy, they cannot be used
in applications that require energies, and not being functional
derivatives [51,52] also renders them useless for propagating
the time-dependent Kohn-Sham equations [53,54]. Further-
more, they are problematic from a formal perspective: directly
modeling the xc potential sidesteps the original derivation of
the KS equations as variational equations over the energy, and
thus forgoes much of the formal framework of KS DFT. This
limitation was resolved by the derivation of a semilocal energy
functional, AK13 [55], designed to yield as its functional
derivative a potential that shares the key features with the BJ
model, in particular the asymptotically nonvanishing potential
with a system-dependent limiting value.

The overall appeal of BJ, AK13, and derived methods is
clear: including features in the exact xc potential missing
from other functionals bears the promise of computational
results closer to higher-order methods at the low computational
expense of a semilocal functional. To some degree, the various
modifications of the BJ approach and AK13 have delivered on
this promise [39,48,50]. Thus, it may seem pertinent to ask
why these methods are not more widely used. In applying
AK13 and BJ to broader sets of systems, and in our attempts at
improving the properties of AK13, we have identified a set of
anomalies, most of which are more or less directly connected to
the key property of the asymptotically nonvanishing potential.
These anomalies pose a clear problem to broader adoption of
functionals of this kind and present a serious challenge to their
further development. The purpose of the present paper is to
bring these issues to light, both as a warning against a too
undiscriminating use of the present realizations of this type of
methods and with the hope to inspire further development to
resolve these issues.

The paper is organized as follows. First, in Sec. II, we
review the AK13 and BJ functionals and their key features.
In Sec. III, we discuss issues that appear when AK13 is
applied to noninteger particle-number systems in the context
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of ensemble DFT. Sections IV and VI summarize findings
presented elsewhere on energies and energetics of AK13 and
the issue of divergent potentials along nodal surfaces. In
Sec. VII, we discuss the behavior of AK13 and the BJ model
in external electrical fields. Section VIII focuses on difficulties
that can arise when evaluating these potentials, stemming from
the numerical representation of the KS orbitals. Finally, Sec. IX
gives our summary and conclusions. Hartree atomic units are
used throughout this paper.

II. AK13 AND BJ MODEL REVIEW

The AK13 functional [55] is of the standard generalized-
gradient approximation (GGA) form for exchange (x) func-
tionals, [56] i.e.,

EGGA
x = Ax

∫
n4/3F (s)d3r, (1)

parametrized by the reduced density gradient,

s = |∇n|
2γ n4/3

, (2)

where Ax = −3/4 (3/π )1/3 and γ = (3π2)1/3. Nevertheless, it
is uniquely different from other GGAs. Its foremost feature is
that its potential, as usually given by the functional derivative

vGGA
x = Ax

4

3
n1/3

[
F (s) − s∂sF (s)

+3

4

(
u

s3
− t

s2

)
s∂sF (s)

+
(

1 − 3

4

u

s3

)
s2∂2

s F (s)

]
, (3)

with the semilocal quantities

t = ∇2n

4γ 2n5/3
and u = ∇n · ∇|∇n|

8γ 3n3
, (4)

typically approaches a positive system-dependent constant
outside a finite system. This is achieved by a divergence of the
enhancement factor F (s) ∝ s ln(s) as s → ∞, which typically
marks the threshold between a vanishing and a diverging
asymptotic GGA potential. The AK13 functional implements
this and additional requirements with the choice

F AK13(s) = 1 + B1s ln(1 + s) + B2s ln[1 + ln(1 + s)], (5)

where the constants B1 = 2/27 + 8π/15 and B2 = 4/81 −
8π/15 have been determined in a nonempirical fashion.
This asymptotic behavior has been adopted from the model
potential of Becke and Johnson (BJ) [36], which proposes a
semilocal correction to the Slater potential [57] utilizing the
positively defined kinetic-energy density,

τ = 1

2

∑
i

fi |∇ϕi |2, (6)

to mimic missing exchange features,

vBJ
x = vSlater

x + C�v

√
2τ

n
, (7)

where C�v = √
5/12/π , and the occupation numbers fi .

Concerning their limiting value, both potentials rely semilo-
cally on the fact that far outside the system, the density as well
as τ are governed by the highest occupied orbital. Under the
assumption of spherical symmetry, this leads to the asymptotic
relation [58]

n(r) ∼ n0|r|q exp(−α|r|) as |r| → ∞, (8)

where n0 and q are system-dependent constants. The decay
parameter

α = 2
√−2(εho − v∞

x ) (9)

is determined by the highest occupied eigenvalue εho relative
to the limiting value of the potential v∞

x = lim|r|→∞ vx(r).
Additional asymptotic relations involving the spatial deriva-
tives of the density follow hereby:

u

s3
∼ 1,

t

s2
∼ 1 − 2

3

1

ln(s)
,

(10)

2γ n1/3s ∼ α,
τ

n
∼ α2

8
,

as |r| → ∞. Utilizing these, one can calculate the limits

vAK13,∞
x = −AxB1α

6γ
, vBJ,∞

x = C�vα

2
, (11)

to show the asymptotic similarities of both potentials. Thus,
the limit of the AK13 potential approximately equates to 68%
of the limit of the BJ potential. For further discussions, we note
that the limit of the AK13 potential relies on the cancellation of
the first-order terms ∝s ln(s), while the limit of the BJ potential
is determined by a single first-order term.

Solving Eqs. (9) and (11) for a self-consistent value of v∞
x

gives

v∞
x = Q(1 +

√
1 − 2εho/Q) (12)

with, respectively, Q = (AxB1/6γ )2 in the case of AK13 and
Q = (C�v/2)2 in the case of BJ. Hence, the limiting values of
both semilocal potentials depend on the value of the highest
occupied eigenvalue and therefore change discontinuously if,
e.g., an additional fraction of an electron is added to the system.

As the limiting value of the exact exchange-correlation
potential equals zero [59], it is tempting [39,55] to apply a
constant shift vDD

x to both semilocal potentials,

v0
x(r) = vSL

x (r) + vDD
x , (13)

where vDD
x = − lim|r|→∞ vSL

x (r) = −v∞
x . Due to this realign-

ment, the semilocal limiting value v∞
x gives rise to a nonlocal

discontinuity of the potential triggered by a change in the
value of the highest occupied eigenvalue. Thus, both realigned
versions of the AK13 and the BJ potential mimic a feature
associated with the derivative discontinuity (DD) [16] of the
exact exchange (EXX) functional. Moreover, both models for
exchange share additional attractive properties such as a step
structure in the potential for well-separated subsystems and
an improved shell structure in the potential for atoms [36,55];
in bulk systems, they show band gaps, band structures, and
optical dielectric constants closer to EXX results [50,55,60]—
and are thus typically in better agreement with experiments.
Hence, AK13 and BJ functionals implement several promising
features. In terms of qualitative results, they are quite similar
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with the decisive advantage that the AK13 potential is an actual
functional derivative while the BJ potential is not [37,52,54].

However, as explained in Sec. I, we have now identified
a number of anomalies and general difficulties caused by
the construction scheme summarized above. Some stem from
specific choices made in the construction of AK13 and could
thus potentially be circumvented by improved design criteria.
However, others appear more intimately coupled to the key
feature of an asymptotically nonvanishing potential.

III. AK13 FOR SYSTEMS WITH FRACTIONAL
PARTICLE NUMBERS

In this section, we will point out some features that
AK13 shows when particle-number variations are explicitly
considered. The shift vDD

x must be carefully examined in this
context. For a system with fixed integer electron number, the
constant shift of the potential by vDD

x serves two purposes: On
the one hand, this shift realigns the zero of the eigenvalues,
{ε0

i = εi + vDD
x }, onto the limiting value of the potential. This

is a natural choice, as it separates bound from unbound states.
One the other hand, the realignment of the potential introduces
a nonlocal mechanism akin to the discontinuity of the exchange
optimized effective potential (OEP) [61], a feature that is
associated with the DD of the corresponding energy functional.

Such a shift is fully in line with the Hohenberg-Kohn
theorem [1], as the effective potential is only determined up
to an arbitrary constant. One may further argue that strictly
speaking such a shift does not affect observables: It does
not change the density, but only affects the Kohn-Sham
eigenvalues, which are auxiliary quantities. A subtlety in
this argument is related to the highest occupied eigenvalue,
which equals minus the first ionization potential in exact DFT
[59,62] and therefore can be equated to an observable. One
may thus wonder whether in a functional such as AK13 the
shifted or the unshifted highest occupied eigenvalue should
be used as an approximation to the first ionization potential.
As the self-consistent density from such a functional decays
according to Eq. (8), i.e., the asymptotic decay is governed by
the shifted highest occupied eigenvalue, εho − v∞

x , whereas
the decay of the exact density is likewise determined by the
ionization potential, it seems reasonable to use the negative-
shifted eigenvalue as an approximation to the ionization
potential. In practice, the shifted AK13 eigenvalues generally
are in better [55] agreement with the ionization potential from
EXX (and thus also experimental values) than the highest
occupied eigenvalues of other, commonly used, semilocal
functionals [63].

However, the idea of shifting the eigenvalues can also be
seen more critically when one adopts a different perspective.
Consider the behavior of AK13 within the ensemble extension
of DFT by Perdew et al. [16], i.e., the generalization to
fractional particle numbers. In this framework, the absolute
offset of the exchange-correlation potential is fixed and
the exchange-correlation potential, vxc = δExc/δn, is defined
uniquely for a given energy functional Exc. This can be
understood directly from Janak’s theorem [65],

∂E

∂N
= εho(N ), (14)

FIG. 1. Highest occupied orbital energy ε3s,↑ corresponding to
the semilocal AK13 potential [see Eq. (3)] ε0

3s,↑ = ε3s,↑ + vDD
x

corresponding to its realigned version [see Eq. (13)] and the total-
energy derivative ∂E/∂N as a function of the number of electrons N

for ionized atomic magnesium. ∂E/∂N is calculated using central
nonuniform first-order finite differences and the values of E(N )
at the shown points. The data points are based on self-consistent
calculations with a code for atoms originating from Ref. [64].

which establishes a direct link between the particle-number
dependence of the energy functional and the absolute offset
of the eigenvalue energies in the KS system. Hence, one
is not allowed to shift the energy scale of the KS system
(which would shift the potential and eigenvalues) without also
modifying the energy functional.

Janak’s theorem can also be used to numerically verify the
correct absolute offset. We demonstrate this in the following
for AK13 (and in Fig. 6 of Appendix A for EXX). Figure 1
confirms that in a straightforward extension of AK13 to
ensemble DFT [66], the appropriate exchange potential is not
the zero-aligned one v0

x, but the unshifted, semilocal potential
vSL

x . This should not be surprising since vSL
x is the unmodified

expression given by a straightforward functional derivative of
the AK13 energy functional of Eq. (1).

A major conclusion from Janak’s theorem is that the
straightforward application of the AK13 energy functional
in ensemble DFT gives a functional derivative that does not
explicitly exhibit a discontinuity, i.e., a discontinuous shift
of the potential at integer particle number. We illustrate the
difference between the AK13 potential and the EXX potential
with respect to the discontinuity in Appendix A using Mg2+

as an example. Despite lacking this absolute overall shift,
fractional particle AK13 reproduces the step structure in its
asymptotic behavior that is associated with the shift. For
example, for a single ion, when the fractional occupancy goes
through an integer, the asymptotic potential incorporates a step
related to the atomic-shell structure that moves inwards as the
fractional particle number increases, qualitatively mimicking
a behavior seen in the EXX potential [55,67].

The discussion above may suggest the idea of adding a term
to the AK13 energy functional with the sole responsibility of
generating a discontinuous shift. We have explored this idea,
and in Appendix B we discuss why such an energy correction
term is not straightforward to construct.
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FIG. 2. Contour plot of the BJ, AK13, and EXX (OEP) potential landscapes of O2 for the majority spin channel in the plane containing
the bond axis (x axis). The figure demonstrates that both semilocal potentials diverge exponentially along the nodal surfaces of the highest
occupied orbital. Note that the scale of the potential axis as well as the coloring visualizing the height of the potentials differ. Due to serious
numerical difficulties, which are intensified by the nodal surfaces [68], the BJ and AK13 potentials could not be calculated self-consistently and
were instead evaluated on tightly converged self-consistent local spin density approximation (LSDA) orbitals. The calculations were performed
with the all-electron code DARSEC [69], which is specialized on diatomic molecules and operates on a real-space grid of prolate-spheroidal
coordinates.

Looking once more at the graph of Fig. 1 with the focus
on the region close to N → 10+ reveals that the AK13 energy
response to a change in the fractional particle number deviates
significantly from the exact behavior. Due to the critical
behavior of F AK13(s) in the limit s → ∞ [see Eq. (5)], the
exchange-energy density of AK13 is highly sensitive to small
changes of the electron density which alter its exponential
decay. Addition of a fraction of an electron to the system by
fractionally occupying a new orbital is such a change. The
result is a short interval with high curvature of the E(N ) curve
which deviates from the desired piecewise-linear behavior
[16]. Thus, whereas the exact DD goes along with piecewise
linearity, its semilocal imitation here is acting contrarily.

Finally, it is worthwhile to return to the discussion of
whether it is more appropriate to use the shifted or the unshifted
highest occupied eigenvalue to approximate the negative first
ionization potential. At the beginning of this section, we
had presented arguments for using the shifted eigenvalue.
However, Janak’s theorem shows that the highest occupied
eigenvalue equals the total-energy difference between the
N − 1 and N particle system for functionals that sufficiently
fulfill the piecewise-linearity condition [16] (which AK13 does
not). This applies regardless of whether or not the functional
has a nonvanishing asymptotic potential. Therefore, from the
perspective of Janak’s theorem, one comes to the conclusion
that from a formal standpoint, it is appropriate to identify
the unshifted highest occupied eigenvalue with the negative-
ionization potential. Although this seems like a contradiction
to the arguments given above, there is no formal mistake. These
two different perspectives are possible due to the approxima-
tive nature of the functionals under consideration—the exact
functional does not exhibit a nonvanishing asymptotic constant
and is piecewise linear. From a pragmatic point of view, it
makes sense to adopt the perspective which gives better results
in practice, i.e., for AK13 to use the shifted eigenvalue.

IV. ENERGIES AND ENERGETICS

AK13 can be seen as an improvement over the BJ model
especially because it has an energy functional. However, as

discussed in past works that go back to the original AK13
paper, the accuracy of total energies from this functional is
not as good [40,45,55,70] as from established GGAs, e.g., the
one of Perdew, Burke, and Ernzerhof (PBE) [71]. Instead, one
finds that the energetics displayed upon structural relaxation
are distorted beyond what seems reasonable even for an
exchange-only functional (see Ref. [72] and the Supplemental
Material of Ref. [55]). This was the topic of a recent work
[72], with a typical example of a bad structural relaxation
being AlAs, which deviates from the experimental lattice
constant by 16%. Another similar indication of something
missing from the AK13 total energies is the self-consistent
field (SCF) results for atomic ionization; AK13 SCF energies
deviate more from exact-exchange results than those of the
local density approximation (LDA) [55].

V. DIVERGENT POTENTIAL ALONG NODAL SURFACES

In many finite systems, the highest occupied ground-state
KS orbital has a nodal surface extending to infinity. The
asymptotic density is normally governed by the highest
occupied orbital; however, this is not necessarily the case for
all its asymptotic properties in the vicinity of nodal surfaces.
We recently pointed out that this region is troublesome for
many semilocal exchange functionals [68]. In summary, the
behavior of EXX on nodal surfaces is a protruding ridge along
such regions [25–28]. Ordinary semilocal potentials such as
the LDA potential decay rapidly in the asymptotic region
in a way that mostly does not distinguish nodal surfaces.
Energy functionals with divergent enhancement factors can
display a range of different behaviors, but, if the divergence is
strong enough, the potential will diverge exponentially along
the nodal surface. Examples of such functionals are the BJ
potential, the Becke 1988 exchange functional [73], and AK13.
Of these, AK13 displays the strongest divergence; it is twice
as strongly diverging as the BJ model. A demonstration of
this issue is presented in Fig. 2, which features the divergent
BJ and AK13 potentials in comparison with the EXX (OEP)
potential evaluated for O2, a system with nodal surfaces of
the highest occupied KS orbital. As previously discussed
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[68], these divergences are not only theoretically worrisome
but also lead to major numerical difficulties when trying to
converge calculations for finite systems with nodal surfaces.
The O2 molecule that we show here presents a situation that
somewhat differs from the common cases discussed previously
in Ref. [68], as here the doubly degenerate highest occupied
orbitals of the majority spin channel form a nodal line along
the bond axis in addition to a nodal plane between the two
oxygen nuclei, and also the two degenerate orbitals below the
highest occupied ones exhibit this nodal line along the bond
axis. As a consequence of this unusual electronic structure,
the density of the majority spin channel along the bond axis is
asymptotically dominated by the fifth-highest occupied orbital
[74] and produces a rare feature in the asymptotic exact
exchange potential as well: In addition to a ridge that results
from a positive limiting value along the nodal plane, a furrow
related to an uncommon negative limiting value shows up in
the potential along the nodal line of the bond axis, as can be
seen in Fig. 2(c).

VI. SECOND-ORDER ASYMPTOTICS

Next we discuss an unintended behavior of the AK13
construct that relates to its asymptotic second-order term,
∼B2s ln[ln(s)] as s → ∞, in the enhancement factor F AK13(s);
cf. Eq. (5). The original motivation [55] of the s ln[ln(s)] term
was to mimic the leading asymptotic behavior vx ∼ −c/z

outside the surface of a half-infinite bulk system with c a
system-dependent prefactor and z the distance to the surface.
However, in leading asymptotic order, a term ∼s ln[ln(s)]
results in a system-independent contribution to the potential
∝1/z. Nonetheless, this term is important as it balances the
divergence of the enhancement factor in the limit s → ∞
having the opposite sign of the leading term, ∼B1s ln(s).
This balance is needed to provide reasonable energies as well
as to improve numerical evaluability of the potential in the
asymptotic region of finite systems.

The drawback of this B2 term becomes evident when
evaluating the asymptotics of the AK13 potential in detail,

vAK13
x (r) ∼ −AxB1

6γ
α + AxB2

γ

ln(αr/3)

r

+ Ax

γ

[(
B1 − 3

2
B2

)
− B1 ln(2γ n

1/3
0 /α)

]
1

r
,

(15)

as r = |r| → ∞ and given the asymptotic density of Eq. (8)
with q = 0 for simplicity. The first term of Eq. (15) represents
the positive system-dependent asymptotic constant of AK13,
whereas the second and third terms describe how the poten-
tial approaches this nonvanishing asymptotic constant. The
system-independent contribution to the third term gives by
construction the desired −1/r behavior. However, this term
is asymptotically dominated by the second term ∝ ln(r)/r ,
which has a positive sign. Therefore, the asymptotic constant
of the AK13 potential is ultimately approached from above and
the potential has a local maximum in the asymptotic region.
The latter is approached too fast for the potential to be able to
bind additional electrons [70].

FIG. 3. AK13 potential evaluated for the exact hydrogen ground-
state density. Looking at the outer graph, i.e., a typical computational
length scale, the potential seems to approach a positive constant
unequal to v∞

x given by Eq. (11). The inset shows the same potential
on a logarithmic scale.

A second consequence is exemplified by Fig. 3. It shows the
AK13 potential for the exact hydrogen ground-state density.
Within the typical length scale of a numerical electronic
structure calculation of less than 30 Bohr radii, the AK13
potential seemingly approaches an asymptotic constant which
is 16% higher than the actual limiting value given by Eq. (11).
The true limiting value is approached only within a length
scale of several-thousand Bohr radii. This is a consequence of
ln(r)/r decaying only marginally more slowly than 1/r . This
undesirable behavior can be noticed in numerical calculations
of other systems as well. The theoretical limiting value of the
potential is therefore of only limited significance in typical
calculations.

This drawback could be corrected by modifying the
construction of AK13. In such a revised construction of AK13,
one could, e.g., replace the B2s ln[1 + ln(1 + s)] term by a
term that exhibits an asymptotic behavior ∝s as s → ∞ and
maintains reasonable balance with the original B1 term.

VII. EXTERNAL ELECTRICAL FIELDS

The hope for improved charge-transfer characteristics
spurred some of the investigations of the BJ potential
[39,41,52], and corresponding hopes may have been associated
with AK13. Mimicking the field-counteracting behavior of
exact exchange [31,75] with the semilocal BJ potential,
however, turned out to be difficult. In order to clarify the
situation for AK13, here we look at a standard test case. We
study external electrical fields that are weak and linear, i.e.,
their contribution to the Hamiltonian is Fz with some small
field amplitude F and the z axis chosen in the direction of
the field. Such “infinitely large, weak fields” are, e.g., used to
calculate the electrical response of molecules [76], in particular
of molecular chains, within DFT. In the following, we study
a frequently used [31,75–87] model molecular system: the
hydrogen chains.

Given the asymptotic similarities of the AK13 and BJ
potential pointed out in Sec. II, it does not come as a surprise
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FIG. 4. Difference between the exchange potential of calculations
with and without an external electric field of strength F = 5 ×
10−3Eh/a0 for a H4 chain (atom positions are indicated by circles).
The solid blue line shows the desired field-counteracting behavior
of EXX within the Krieger-Li-Iafrate (KLI) approximation (xKLI).
AK13 (dashed red line) is tilted in the direction of the field, similarly
to BJ (see Fig. 5 of Ref. [39]). The AK13 potentials are not calculated
self-consistently due to the discussed numerical difficulties, but
evaluated on self-consistent xKLI KS orbitals in PARSEC [88]
with Giannozzi pseudopotentials [89], ellipsoidic boundaries with
semiaxis of 10a0 perpendicular to and 30a0 along the chain, and a
grid spacing of 0.2a0.

that in the presence of an external electric field, AK13 shows
the same surprising unphysical behavior as BJ [39], i.e., the
potential is asymptotically tilted in the direction of the external
field and does not go to zero. Figure 4 demonstrates this
by showing the difference between the exchange potential
of a chain of four hydrogen atoms in a weak electric
field and the potential with no external field, v

F �=0
x − vF=0

x .
The approximately linear tilt of the AK13 potential in the
asymptotic region arises solely in the presence of the external
field. It can be understood as a consequence of the deviation
of the asymptotic density from Eq. (8) in response to the
electric field. Terms of the AK13 potential that contribute to an
asymptotic constant when Eq. (8) holds, i.e., terms that arise
from F (s) ∼ B1s ln(s) as s → ∞, now yield (in first order) a
linearly diverging contribution to the potential.

The leading asymptotic behavior in the presence of a linear
electric field can be retraced by utilizing the one-dimensional
Airy gas model in the spirit of the analogous calculation for the
BJ potential of Ref. [39]. While the result of the corresponding
AK13 calculation for this one-dimensional model is in full
analogy to the BJ result [90], it is not quantitatively transferable
to the three-dimensional case, as the asymptotics of the AK13
potential show a direct dependence on the spatial dimension
[55] (which BJ does not show). The one-dimensional result
and Fig. 4 suggest that

vAK13
x (ρ = 0,z) ∼ vAK13,∞

x + C
Fz√−2εho

(16)

in the asymptotic region while |z| 
 |F/εho| with some
constant C > 0 and ρ =

√
x2 + y2.

In Ref. [39], the relation that is the analog of Eq. (16) for BJ
was used to justify a linear, field-dependent correction to the BJ
potential. Since this correction is applied globally, it fixes the
unphysical tilt in the asymptotic region, but more importantly
leads to a slope counteracting the external field in the inner
region, thus mimicking response physics that could previously
not be captured by semilocal constructions. The resulting total
BJ potential response to the electrical field is remarkably close
to exact-exchange calculations and yields vastly improved
polarizabilities [39,52]. Consequently, an analogue correction
to AK13 suggests itself. However, the one important benefit of
AK13 over BJ is the fact that its potential is an actual functional
derivative of a well-defined energy expression. Thus, to
maintain a correspondence between energy and potential, the
field-dependent correction to AK13 has to originate from an
energy correction. Given that this energy correction cannot
explicitly depend on the external electrical field in order to
yield consistent polarizabilities from energy and potential [76],
there is no clear way to create such a term.

VIII. INFLUENCE OF THE NUMERICAL
REPRESENTATION

Next we will discuss how strongly the chosen numerical
representation (basis set) of the KS orbitals influences calcu-
lations of finite systems for functionals with asymptotically
nonvanishing potentials. This can hardly be referenced as
anomalies in the functionals themselves, but is still an issue
of high relevance for their application. For usual (semi)local
functionals, the accuracy of the numerical representation
of the far asymptotic density is typically of little concern
because the energy and potential of such functionals are not
sensitive to these regions of space. The AK13 energy and the
AK13 and BJ potentials, however, are by construction highly
sensitive to the precise decay of the density, which is measured
by ratios such as |∇n|/n. When this ratio is numerically
evaluated, a representation of the asymptotic density that is
not highly accurate can cause serious numerical problems,
e.g., instabilities. Small numerical errors might, for example,
prevent the required cancellation of the leading-order terms
∝s ln(s) in the AK13 potential, and therefore cause a linearly
growing error in the potential in the asymptotic region. This
then can amplify the numerical error in the next step of a
KS iteration.

In the following, we discuss three common approaches to
represent KS orbitals, and their implications for the asymptotic
potential: real-space grids [69,88,91–94], Slater-type orbitals
(STOs) [95], and Gaussian-type orbitals (GTOs) [96,97].

The representation of orbitals on real-space grids is the most
flexible, yet the computationally most expensive one of these
three. The relative numerical accuracy of this representation
is typically decaying in the far asymptotic region, especially
when looking at spatial derivatives represented via finite
differences. The restriction to a necessarily finite grid also
introduces boundary effects. As a consequence, the above-
discussed problems of evaluating the AK13 potential in the
asymptotic region are strongly noticeable and make three-
dimensional, grid-based AK13 calculations extremely hard.

The usage of either STOs or GTOs circumvents some
of these problems. The reason is that, on the one hand,
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critical ingredients to the semilocal potential, i.e., the density
derivatives |∇n| and ∇2n, are analytically accessible and
are thereby numerically arbitrarily accurate, even in the
asymptotic region. On the other hand, both representations
require only a relative small basis-set size, as these sets are
highly tailored and specific to each atom. Therefore, the
degrees of freedom and, consequently, the susceptibility to
instabilities are considerably reduced compared to real-space
methods. Yet, there is a non-negligible price to pay for this
“convenience”: It is the qualitatively wrong behavior of the
density in the asymptotic region that occurs for both STOs and
GTOs. It in turn has the following conceptional implications:
In the case of STOs, the issue is that the exponential decay
of the KS orbitals is predefined by the basis set. This
means that when using semilocal density functionals with an
asymptotically nonvanishing potential, the nonzero limiting
value of the potential, v∞

x , is not determined by the system
within the self-consistent calculation, but rather is given by the
basis set and thus already fixed prior to the actual calculation.
Therefore, in the case of STOs, neither Eq. (9) nor Eq. (12) hold
strictly. Yet, they can hold approximately when a reasonable
basis set of STOs is chosen.

The issue with GTOs is similar, but even more apparent.
GTOs sacrifice the correct orbital asymptotic that is achieved
with STOs. Thus, in the case of GTOs, the asymptotic
relation n(r) ∝ exp(−βr2) as r → ∞ replaces Eq. (8), which
results in a qualitatively different behavior of semilocally
nonvanishing potentials: Instead of approaching a system-
dependent asymptotic constant outside of a finite system, the
AK13 and BJ potentials spuriously diverge linearly to positive
infinity, e.g.,

vAK13
x (r) ∼ −2AxB1

3γ
βr, (17)

as r → ∞. Additionally, the asymptotic slope of these
potentials is akin to the asymptotic constant in the case of
STOs, predefined by the basis set via the value of β.

Hence, one should be aware that semilocal density func-
tionals with an asymptotically nonvanishing potential show
significantly higher demands on the numerical representation
of the KS orbitals, especially in the asymptotic region. To
summarize, real-space methods provide, in principle, the
qualitatively most accurate representation in this region, but
are susceptible to instabilities, whereas STOs or GTOs provide
higher stability, but imply a qualitatively wrong asymptotic
density and potential.

IX. SUMMARY AND CONCLUSIONS

In this paper, we have investigated a set of anomalous
features of semilocal functionals with nonvanishing asymp-
totic exchange potentials, with a particular focus on AK13
and its predecessor BJ. We also commented on the numerical
difficulties that appear when evaluating such functionals in
standard electronic structure codes. In particular, we have
discussed misfeatures seen in the direct application of AK13
in ensemble DFT for systems with fractional particle numbers,
inaccurate energies and energetics, divergent potentials along
nodal surfaces, nonphysical response to an external electric
dipole field, and practical difficulties due to the numerical

orbital representation used. The issues we have identified
and discussed in this work provide a formidable challenge
for the future development of functionals with nonvanishing
potentials.

There are different approaches one can try to overcome
these difficulties and move forward with the aim to incorporate
important exact-exchange features into functionals with mod-
est computational cost. One option is to continue the devel-
opment of semilocal density functionals with asymptotically
nonvanishing potentials. Extending the AK13 construction
idea, one can try to explicitly tackle each deficit that we have
pointed out here. This is a major challenge, but when carried
out successfully such a strategy should lead to a formally
satisfying consistent energy-potential pair. A second option
is to follow the idea of GLLB [46,47] and construct model
potentials that incorporate some of the desired exact-exchange
features via an explicit orbital and eigenvalue dependence.
This type of scheme can provide numerically robust potentials
that do not suffer from the issues that are related to the
semilocal realization of a nonvanishing asymptotic constant.
A downside of this approach is that such constructions are not
functional derivatives of a corresponding energy functional.
This implies serious drawbacks that we have already discussed
briefly in Sec. I, such as instabilities in time-dependent DFT
and no possibility for geometry optimization. A third option
is meta-generalized-gradient approximations (meta-GGAs),
i.e., energy functionals that are semilocal not in the density
but in the orbitals and make use of, e.g., the kinetic-energy
density τ . As discussed previously by Eich and Hellgren [98],
meta-GGAs used in the Kohn-Sham scheme in general have
a derivative discontinuity due the nonlocal character of their
multiplicative potential. However, as commonly used meta-
GGAs to date largely underestimate the exchange derivative
discontinuity and related properties, it remains to be seen
whether the desired potential features can be captured on the
meta-GGA level to an extent that is useful in practice.
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APPENDIX A: COMPARISON OF AK13 AND EXX
POTENTIALS FOR FRACTIONAL PARTICLES NUMBERS

Section III discussed the straightforward extension of AK13
to ensemble DFT using fractional particle numbers. We argued
on general grounds, and explicitly demonstrated for ionized
atomic magnesium in Fig. 1, that the AK13 (ensemble)
potential does not exhibit a global discontinuous shift at integer
particle number. Yet, the AK13 potential reproduces a step in
the asymptotic region that is typically associated with such a
discontinuous shift. In order to further discuss and illustrate the
relation between the step structure and the shift, we compare
the functional derivative with respect to the density of the EXX
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(a) EXX (b) AK13

FIG. 5. Change of the EXX (in the KLI approximation) and the (unshifted) AK13 spin-up potentials upon addition of a fraction of an
electron to double-ionized atomic magnesium. The potentials are based on self-consistent calculations with a code for atoms operating on
a logarithmic grid and originating from Ref. [64]. While the EXX potential jumps globally and discontinuously at integer particle numbers,
solely the asymptotic limiting value of the AK13 potentials jumps. Similar plots were shown for BJ in Fig. 2 of Ref. [39] and for AK13 in Fig.
4 of Ref. [55].

energy, on the one hand, to the unshifted functional derivative
of the AK13 energy functional for Mg2+, on the other hand, as
we add a small fraction of an electron to the system. The
functional derivatives are shown in Fig. 5 for a fractional
occupation of one percent, i.e., N = 10 + ε with ε = 0.01.
By virtue of the spin-scaling relation for exchange [99], it is
to be expected that only the exchange potential of the spin
channel in which the particle number changes is substantially
affected and can show a discontinuity or step. This is also
reflected in the AK13 functional and becomes manifest in the
fact that the asymptotic constant of the AK13 potential is spin
dependent and may differ between spin channels. Therefore,
we deliberately focus our discussion only on this spin channel,
which is here chosen to be the up-spin channel.

Upon addition of a fraction of an electron, the functional
derivative of the EXX energy jumps up in the interior region,
r � 2a0, by approximately a constant, �EXX

x , whereas in the
asymptotic region the EXX potential maintains the same
limiting value as the EXX potential at integer number of
electrons,

lim
r→∞ v

EXX,N=10+ε
x,↑ (r) = lim

r→∞ v
EXX,N=10
x,↑ (r) = 0. (A1)

As ε → 0+, the step between these two regions moves
outwards and the discontinuous shift of the potential at integer
particle number becomes apparent; the potentials at any point
r at a finite distance differ by just a constant shift in this case,

lim
ε→0+

v
EXX,N=10+ε
x,↑ (r) − v

EXX,N=10
x,↑ (r) = �EXX

x . (A2)

In the case of the unshifted AK13 functional derivative, the
situation is different: In the interior region, the potentials with
and without fractional particle number overlap perfectly due to
their semilocal nature. However, by construction, the limiting
value of the AK13 potential decreases discontinuously upon
addition of a fraction of an electron [cf. Eq. (12)], thus

lim
r→∞

[
v

AK13,N=10+ε
x,↑ (r) − v

AK13,N=10
x,↑ (r)

] = �AK13
x . (A3)

The result is a step downward in the fractional AK13 potential
between the interior and the asymptotic region. Similar to
the step that is present in the EXX potential, the step between
these two regions moves outwards as ε → 0+. However, as the
AK13 potentials with different particle numbers differ in the
asymptotic region and not in the interior region, there remains
no global discontinuous shift of the potential,

lim
ε→0+

v
AK13,N=10+ε
x,↑ (r) − v

AK13,N=10
x,↑ (r) = 0, (A4)

in contrast to EXX.
This contrast can also be summarized in the following order

of limits relation, which in the case of the EXX potential (as
well as the exact xc potential) reads

lim
ε→0+

lim
|r|→∞

[
vN0+ε

x (r) − vN0−ε
x (r)

] = 0, (A5)

lim
|r|→∞

lim
ε→0+

[
vN0+ε

x (r) − vN0−ε
x (r)

] = �x, (A6)

whereas the relation is reversed for AK13,

lim
ε→0+

lim
|r|→∞

[
vN0+ε

x (r) − vN0−ε
x (r)

] = �AK13
x , (A7)

lim
|r|→∞

lim
ε→0+

[
vN0+ε

x (r) − vN0−ε
x (r)

] = 0. (A8)

In the left-hand sides of these equations, we dropped the
superscripts EXX and AK13 for brevity of notation. Thus,
the qualitative difference between AK13 and EXX essentially
comes down to a missing global shift of the AK13 functional
derivative. This missing shift is precisely the one proposed to
be added in relation to Eq. (13) and discussed in Sec. III as
being in line with the Hohenberg-Kohn theorem for integer
particle systems but inadmissible in ensemble DFT.

If one is familiar with the OEP (or KLI) construction in
detail, one may wonder why we chose to align the EXX
potential for N = 10 + ε such that it goes to zero at infinity—
after all, one has to make a deliberate choice for the asymptotic
constant in the OEP construction [61,67]. So if we chose to
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FIG. 6. Highest occupied orbital energy ε3s,↑ corresponding to the
EXX (KLI) potential aligned to zero at infinity, εshifted

3s,↑ corresponding
to the EXX (KLI) potential aligned in the interior region with the
potential at integer number of electrons (Mg2+), and the total-energy
derivative ∂E/∂N as a function of the number of electrons N

for ionized atomic magnesium. ∂E/∂N is calculated using central
nonuniform first-order finite differences and the values of E(N )
at the shown points. The data points are based on self-consistent
calculations with the all-electron code DARSEC [69].

not align the AK13 potential at zero, why did we choose to
align the EXX potential? The answer to this question is that
as mentioned previously, we have no liberty in choosing the
constant in ensemble DFT but have to accept the constant that
comes out of the functional derivative. Figure 6 demonstrates
via Janak’s theorem that the EXX potential aligned to zero
at infinity corresponds to the functional derivative of the
EXX energy, whereas Fig. 1 shows that the unaligned AK13
potential is the functional derivative of the AK13 energy.
Therefore, Fig. 5 depicts the proper functional derivatives.
We note in passing that for model potentials such as BJ or
GLLB, the question of “properly aligning” is irrelevant, as
these potentials are not functional derivatives to begin with.

APPENDIX B: NONEXISTENCE OF A
STRAIGHTFORWARD ENERGY CORRECTION

As discussed in Sec. III, one might wonder if there
exists a straightforward energy correction to the semilocal
AK13 functional that realigns the potential and introduces a
discontinuous shift of the potential in ensemble DFT. If such
a correction could be devised, the corrected AK13 functional
would take the form

EAK13,0
x [n] = EAK13

x [n] + EDD
x [n], (B1)

where the functional derivative equals the realigned AK13
potential, as given by Eq. (13). We will in the following prove
that the behaviors under uniform density coordinate scaling
of Eqs. (13) and (B1) are in contradiction. This disproves
the existence of a “straightforward” energy correction whose
action is only a simple system-independent realignment of the
potential to zero by a constant homogeneous shift in the whole
system. We specifically note that therefore the following proof

is valid only for shifts that are rigorously constant everywhere,
i.e., including the boundary of the space that is considered.

Assume the functional EDD
x [n] exists. On addition to

EAK13
x [n], the combined exchange potential then is

δEAK13
x [n]

δn(r)
+ δEDD

x [n]

δn(r)
= vAK13

x ([n]; r) + vDD
x [n], (B2)

where vDD
x [n] = − lim|r|→∞ vAK13

x (r) by assumption. Now,
consider some well-behaved spherical-symmetric density n(r)
of a finite system, which satisfies the asymptotic relation of
Eq. (8). Hence, by virtue of Eq. (9),

vDD
x [n] = − lim

|r|→∞
vAK13

x ([n]; r) = −AxB1α

6γ
. (B3)

Given this density, we define the uniform density path,

nλ(r) = λ3n(λr) for λ ∈ (0; 1], (B4)

and investigate the derivative of EDD
x [n] with respect to λ along

this path,

dEDD
x [nλ]

dλ
=

∫
δEDD

x [nλ]

δnλ(r)

dnλ(r)

dλ
d3r, (B5)

where δEDD
x [nλ]/δnλ(r) = vDD

x ([nλ]; r) and

dnλ(r)

dλ
= 3λ2n(λr) + λ3r · ∂n(λr)

∂(λr)
. (B6)

As by construction vDD
x [n] has to system independently cancel

the nonzero asymptotic value of the AK13 potential, one can
show

vDD
x [nλ] = −AxB1αλ

6γ
= λvDD

x [n] (B7)

by evaluating vAK13
x ([nλ]; r) along the density path of Eq. (B4)

and by applying Eq. (B3), respectively. Inserting this result
together with Eq. (B6) into Eq. (B5) while applying the
substitution λr → r gives

dEDD
x [nλ]

dλ
=

∫
vDD

x [n][3n(r) + r · ∇n(r)]d3r

= vDD
x [n]

∫
∇ · [rn(r)]d3r = 0, (B8)

where we have utilized the divergence theorem in the final step
with no boundary contribution due to n(r) satisfying Eq. (8).
Thus, the energy correction EDD

x [n] is invariant under uniform
density scaling for a density that satisfies the asymptotics
relations of Eq. (8),

EDD
x [nλ] = EDD

x [n]. (B9)

Taking the functional derivative of Eq. (B9) with respect to
n(r) and applying the chain rule on the left-hand side then
yields

vDD
x ([nλ]; r) = vDD

x ([n]; λr), (B10)

which is a contradiction to Eq. (B7).
We specifically note in passing that the correction of

Cerqueira et al. [70],

EAK13,0
x = EAK13

x + vDD
x

∫
n(r)d3r, (B11)
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is not the energy functional corresponding to the realigned
potential of Eq. (13) (as one can show using Janak’s theorem

in the spirit of Fig. 1) and would imply a discontinuity of the
total energy E(N ) rather than of its derivative ∂E/∂N .
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The proper description of step structures in the exchange correlation potential, of charge localization, and a
reasonable prediction of band gaps have been long-standing, serious challenges for semilocal density functionals.
In practice, obtaining all of these properties from the functional derivative of an energy functional was possible
only at the price of incorporating exact exchange. We here show that they can be achieved at significantly lower,
semilocal computational expense by using kinetic-energy density-dependent functionals. The key to obtaining
these features is a functional construction strategy that focuses on the derivative discontinuity and the density
response.

DOI: 10.1103/PhysRevResearch.1.033082

I. INTRODUCTION

The success of density functional theory (DFT) is based on
its favorable ratio of accuracy to computational cost. Semilo-
cal functionals such as generalized gradient approximations
(GGAs) [1–5] are to this day popular in solid-state physics
and material science because of their moderate computational
cost. They also continue to play a role, especially for large-
scale applications, in the molecular sciences, where hybrid
functionals [6] have become the standard functionals for
systems of small to moderate size. However, DFT based
on semilocal functionals has also faced notorious problems,
with prime examples known since the early days of DFT. In
solid-state physics, the prediction of the fundamental (band)
gap is an intrinsic limitation of explicit density-dependent
semilocal functionals [7,8]. In material science, the proper
description of charge localization and charge distributions
between subsystems is a major challenge [9,10] that affects
many problems, e.g., surface adsorption [11,12]. In molecular
physics and chemistry, missing field-counteracting terms have
serious, detrimental consequences for the calculation of polar-
izabilities, hyperpolarizabilities, and charge transfer [13–15].
These problems originate from several fundamental short-
comings that are closely interconnected: a missing derivative
discontinuity [16–18], a lack of step structures in the exchange
correlation (xc) potential [19–22], and the delocalization error
[23,24]. Density-driven errors [25,26] characterize many of
these problems.

The standard approach to overcome the limitations is
turning to functionals that are nonlocal. Self-interaction cor-
rections can restore nonlocality [27–31], but the dominant
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and highly successful strategy of incorporating nonlocality
has been the use of exact (Fock) exchange. By exploiting
the adiabatic connection, yet higher accuracy can be reached
[32], with DFT starting to rival wave-function-based meth-
ods in accuracy. However, the accuracy comes at a steep
increase in computational cost. A standard hybrid functional
is computationally already much more demanding than a
GGA. Therefore, calculations incorporating Fock exchange
are restricted to much smaller systems than semilocal cal-
culations. This restriction can have serious consequences
because often the interesting features of real-world systems,
especially in the realm of nanomolecular and supramolecular
science, stem from an intrinsic complexity that requires the
explicit treatment of a large number of particles. Understand-
ing light-harvesting systems [33–35] is a paradigm example:
it requires calculating energy and charge transfer through
arrays of dozens of chromophores, where each chromophore
typically has hundreds of electrons. The chromophores in turn
are typically embedded in a protein matrix, at least parts of
which should also be taken into account explicitly [33,35–37].
However, semilocal functionals are currently at their limits
for such systems due to their inability to properly describe
charge transfer [38–40]. Therefore, there is a serious need for
functionals that do not suffer from the large, qualitative errors
that traditional semilocal functionals plague, yet come at a
comparable computational price.

Here we demonstrate that one can achieve this with func-
tionals that depend on the noninteracting kinetic energy den-
sity

τ (r) = h̄2

2m

N∑
i=1

|∇ϕi(r)|2. (1)

These so-called meta-GGAs are well established and their
development has become an impressive success story [41–56].
They are the natural candidates for curing the above-
mentioned deficiencies because the explicit use of the (oc-
cupied) orbitals creates nonlocality since each ϕi(r) depends
on the density n(r′) at all points r′. Yet, their computational
cost is manifestly semilocal. In the following, we show how
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meta-GGA nonlocality can be led to unfold by focusing on the
potential response and derivative discontinuity features.

Focusing the xc functional development less on the energy
and also on the density or potential has already been advocated
in principle [57–59] in the past, but in practice relied on
expensive functionals [58,60,61]. The development of model
potentials [62–66] has demonstrated that beneficial properties
can be achieved semilocally. However, model potentials lack a
corresponding energy functional and are not functional deriva-
tives [63,67–69]. Furthermore, many of these constructions,
as well as the attempt to restore the functional derivative
property within the GGA form [70], lead to divergences
[71–73]. Moreover, such purely multiplicative potentials are
formally inappropriate to yield the fundamental gap [74].

The meta-GGA form allows to bring these earlier ap-
proaches to a unifying success. To this end, we write the
exchange energy in the form

EmGGA
x [n] = Ax

∫
n4/3Fx(s, α) d3r, (2)

where as usual Ax = −(3e2/4)(3/π )1/3, thereby satisfing the
correct uniform coordinate density-scaling behavior [75].
Here the enhancement factor Fx(s, α) is parametrized by the
dimensionless variables

s = |∇n|
2(3π2)1/3n4/3

(3)

and [51–54,76,77]

α = (τ − τW)/τ unif, (4)

where the von Weizsäcker kinetic energy density

τW = h̄2

8m

|∇n|2
n

(5)

is the single-orbital limit of τ and τ unif = Asn5/3 with As =
(3h̄2/10m)(3π2)2/3 its uniform-density limit. Spin polariza-
tion can be accounted for via the spin-scaling relation for
exchange [78].

II. ORIGIN OF ULTRANONLOCALITY

In order to demonstrate that crucial (ultra)nonlocal features
of exact exchange (EXX) can be captured by a meta-GGA,
we recall that the EXX Kohn-Sham (KS) potential for a spin-
saturated N-electron system

vEXX
x (r) = e2

∫
nEXX

x (r, r′)
|r − r′| d3r′

+ 1

n(r)

N/2∑
i=1

{
|ϕi(r)|2(v̄EXX

xi − ūEXX
xi

)

− h̄2

m
∇ · [ψ∗

i (r)∇ϕi(r)]

}
+ c.c. (6)

can be decomposed [79] into the smooth Coulomb potential
of the EXX hole nEXX

x (first term) and the response potential
(second term). Here, a short overscore with index i denotes

taking the expectation value with the ith orbital. Furthermore,

uEXX
xi (r) = 1

ϕ∗
i (r)

δEEXX
x [n]

δϕi(r)
(7)

is the associated orbital-specific potential and ψi(r) denotes
the usual orbital shift of optimized effective potential (OEP)
theory [80,81]. Hallmark nonlocal features of EXX result
from the response potential [13,15,79,82,83], in particular
from the orbital-average terms on the right of Eq. (6). Note
that the KS potential retains the very same mathematical
structure [84] when the EXX energy is replaced by another
orbital-dependent energy functional, e.g., a meta-GGA. The
only difference is that EXX quantities are replaced by the
corresponding meta-GGA quantities, e.g.,

umGGA
xi (r) = 1

ϕ∗
i (r)

δEmGGA
x [n]

δϕi(r)
. (8)

Thus, it is clear that, in principle, a meta-GGA can incorpo-
rate ultranonlocal features because the ultranonlocality of the
potential stems from the orbital-average terms. For EXX, this
nonlocality is enhanced by the Fock integrals. As meta-GGAs
lack such integrals, one has to take special care to embed
the nonlocality in the v̄mGGA

xi − ūmGGA
xi terms with proper

magnitude and sign.
Guidance on how this can be achieved can be found by

recalling that the ultranonlocality in the KS potential is closely
connected [15,85] to the derivative discontinuity

�x = vx(r)|+ − vx(r)|− = δEx[n]

δn(r)

∣∣∣∣
+

− δEx[n]

δn(r)

∣∣∣∣
−
, (9)

where the positive and negative signs denote evaluation of the
functional derivative approaching the integer particle number
from above and below, respectively. All experience to date is
in line with �x � 0 [7,86,87]. When evaluating the functional
derivative of a meta-GGA,

δEmGGA
x [n]

δn(r)
= δ

δn(r)

∫
ex(n,∇n, τ ) d3r′

= ∂ex

∂n
(r) − ∇ ·

[
∂ex

∂∇n
(r)

]

+
∫

∂ex

∂τ
(r′)

δτ (r′)
δn(r)

d3r′, (10)

only the τ dependence contributes to the derivative disconti-
nuity as the first two terms correspond to the ones found in
a usual GGA potential and originate from the explicit den-
sity dependence [85]. Therefore, and since n(r) = n(r)|− =
n(r)|+ as well as τ (r) = τ (r)|− = τ (r)|+,

�mGGA
x =

∫
∂ex

∂τ
(r′)

[
δτ (r′)
δn(r)

∣∣∣∣
+

− δτ (r′)
δn(r)

∣∣∣∣
−

]
d3r′. (11)

In order to simplify this into a transparent expression, we
assume (similar to previous work [88]) that the first factor can
be approximated by its average over the energetically relevant
region of space. Thus,

�mGGA
x ≈ ∂ex

∂τ

[
δTs[n]

δn(r)

∣∣∣∣
+

− δTs[n]

δn(r)

∣∣∣∣
−

]
= ∂ex

∂τ
�s, (12)
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where Ts[n] is the usual noninteracting kinetic energy func-
tional and �s the corresponding non-negative KS gap. Equa-
tion (12) thus establishes a link between the magnitude and
sign of ∂ex/∂τ and �mGGA

x .1

A meta-GGA with a sizable discontinuity of proper sign
can therefore be constructed by requesting

∂ex/∂τ > 0, (13)

as this ensures

∂ex/∂τ > 0 (14)

for any system. For a parametrization in s and α [cf. Eq. (2)],

∂ex

∂τ
= Ax

As

1

n1/3

∂Fx

∂α
. (15)

With As and n positive and Ax < 0, a positive �mGGA
x follows

from

∂Fx/∂α < 0, (16)

and a larger negative slope in the energetically relevant regions
of space can be expected to lead to a larger �mGGA

x . We
further note that the sign in Eq. (16) goes well along with the
conjectured strongly tightened bound

Fx(s, α) � Fx(s, α = 0) � 1.174 (17)

for all α [89]. It is also in line with the observations of
ultranonlocality for the polarization dependence of solids [90]
in the meta-GGA kernel [88] (see the detailed discussion in
Appendix C). Furthermore, as α is a well-established measure
of electron localization [51,91,92], Eq. (16) can be interpreted
as a condition to energetically favor electron localization via
the exchange energy, as EXX does.

III. PROOF OF CONCEPT

In order to demonstrate how these findings can be used in
actual meta-GGA construction, we proceed in two steps. First,
as a proof of concept (PoC) we discuss the simple, conceptual
enhancement factor

F PoC
x (α) = cH − c1α/(1 + c2α) (18)

which uses only α and three parameters. This will not yield a
generally useful functional, but allows to clearly demonstrate
the connection between Eq. (16) and practically important
manifestations of meta-GGA (ultra)nonlocality. We chose

cH = 40

81

(
4π2

3

)1/3

(19)

to obtain the correct hydrogen atom energy (cf. Appendix B
for a derivation). The parameters c1 and c2 determine the slope
and the curvature of F PoC

x (α) and will be discussed in the
following.

1Note that the above arguments do not exclude the possibility that
�mGGA

x �= 0 for �s = 0; the former is in principle possible when ones
go beyond the averaging approximation of Eq. (12). Further note that
the argument formulated here for �x can readily be extended to �xc.

FIG. 1. Difference between the x(c) potentials (OEP) with and
without a homogeneous external electric field for a chain of
12 hydrogen atoms at alternating distances of 2a0 and 3a0 (cf.
Appendix D for computational details).

As a challenging, paradigm test of nonlocality we analyze
the response potential of hydrogen chains [13,30,97–103].
Figure 1 shows the potential response obtained from LDA and
EXX for a H12 chain in a static electric field, demonstrating
the well-known field-counteracting term of EXX [13] and its
absence in LDA. The striking observation in Fig. 1 is that
F PoC

x can achieve a potential response that is very close to
the one of EXX with a suitable choice of parameters, namely,
c1 = 27/40 and c2 = c1/(3 + cH). Table I shows that the
polarizabilities for hydrogen chains obtained with this F PoC

x
are close to the coupled-cluster (CCSDT) reference values for
all chain lengths. Hence, this meta-GGA exhibits the correct
trend with increasing chain length that so far has not been
accessible with any semilocal functional due to the lack of the
field-counteracting term. This is a proof of concept that even
a simple meta-GGA can yield strong ultranonlocality.

Furthermore, this simple meta-GGA allows to transpar-
ently and explicitly demonstrate the relation between the
derivative ∂Fx/∂α and the field-counteracting term in the KS
potential. By choosing different values for the parameters
c1 and c2, different slopes in α can easily be realized. For
a first alternative (1st alt.) PoC meta-GGA we opt for the
opposite slope at α = 0 compared to the original (orig.) PoC

TABLE I. Polarizability calculated from the dipole moment in
a0

−3 for hydrogen chains of different length and x(c) energy func-
tionals. CCSD(T) values from Ref. [94]. DFT calculations were
performed self-consistently in a locally modified version of PARSEC

[95,96], orbital-dependent functionals treated in full OEP unless
noted otherwise (cf. Appendix D).

H4 H6 H8 H12 H18

LDA (xc) [93] 37.6 72.8 115.0 211.4 369
PKZB (xc) [45] 35.5 65.8 105.1 189.1 323
τ -HCTH (xc) [46] 35.7 68.6 96.9 194.3 335
MVS (x) [54] 34.0 63.6 102.3 181.5 308
SCAN (xc) [52] 35.4 67.8 106.6 192.3 329

TASK (x) 34.0 62.9 96.2 169.8 286
PoC (x) 30.3 51.6 74.4 121.7 194

EXX (x) 32.1 56.5 83.0 138.7 225
CCSD(T) 28.8 50.5 74.1 123.6 200
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FIG. 2. Explicit demonstration of the relation between ∂Fx/∂α

and the field-counteracting term in vx(r). Left: original and al-
ternative PoC enhancement factors. Right: difference between the
exchange response potentials (KLI) with and without a homogeneous
external electric field of strength F = 5 × 10−4Eh/a0 for the H12

chain evaluated with the respective enhancement factors.

and use the Lieb-Oxford bound [104] as a natural limiting
value for α → ∞ and thus as the upper bound. This leads to
c1 = −27/40 and c2 = −c1/(1.804 − cH). The left panel of
Fig. 2 shows the resulting 1st alt. PoC enhancement factor as
a function of α. It has a strictly positive slope, contrary to the
strictly negative one of the orig. PoC meta-GGA. The right
panel of Fig. 2 displays the difference between the exchange
response potential [in Krieger-Li-Iafrate (KLI) approximation
[82]] [cf. decomposition in hole and response potential as in
Eq. (6), with and without a homogeneous external electric
field for the H12 chain]. While the orig. PoC meta-GGA
exhibits a pronounced field-counteracting behavior, the 1st alt.
PoC meta-GGA also displays substantial ultranonlocality in
the potential, but with the opposite sign and thus unphysically
enhances the external field. This clearly demonstrates the link
between ∂Fx/∂α < 0 and the field-counteracting term in the
KS potential. In similar fashion one can transparently alter
the slope ∂Fx/∂α in the PoC meta-GGA form to show that the
amplitude of ∂Fx/∂α is directly correlated to the amplitude of
the field-counteracting term in the KS potential. To this end,
we construct a second alternative (2nd alt.) PoC meta-GGA
with c1 = cH(cH − 1) and c2 = cH − 1, where these param-
eters are determined by the homogeneous electron gas limit,
Fx(α = 1) = 1, and by the negativity of exchange energy den-
sity, i.e., limα→∞ Fx(α) = 0. Figure 2 shows that the restricted
slope of Fx(α) of this 2nd alt. PoC meta-GGA also limits the
amplitude of the field-counteracting term in the KS potential.

Another stringent test of discontinuity features that probes
the delocalization problem is defined by the H8-H8 system of
Ref. [9]. To the best of our knowledge, no semilocal functional
to date has passed this test and even regular and local hybrids
fail it [9,105]. Two aligned, but well-separated hydrogen
chains are exposed to a constant external electric field of
increasing strength in a series of ground-state calculations.
As the field strength increases, charge eventually transfers
from one chain to the other. Due to their large separation of
8 Å, integer preference [106] must be preserved, i.e., charge
transfer should only occur via integer electron jumps at spe-
cific field strengths. However, as shown in the upper panel
of Fig. 3, the local density approximation (LDA) leads to
a gradual transfer of fractional charges, and usual semilocal

FIG. 3. Top: integrated (unsigned) charge on the H8 acceptor as a
function of the external field for LDA, as well as the PoC and TASK
meta-GGAs. Bottom: plots of the exchange potential revealing the
step structure in the PoC meta-GGA, by which the principle of
integer preference is enforced. See Appendix E for computational
details.

functionals and hybrids show similar behavior [9]. The upper
panel of Fig. 3 shows that F PoC

x (with the same choice of
parameters that lead to good hydrogen chain polarizabilities)
also correctly restores integer preference. If a step function
would be used as an external field and the chains would be
infinitely far apart, the critical step size associated with an
integer electron transfer would be given directly [17] by the
fundamental gap

I − A = �s + �xc (20)

of a single H8 chain. The situation considered here is more
complex due to the finite distance as well as the linear field
that induces a considerable polarization of both chains. Nev-
ertheless, the �xc contribution remains pivotal for a correct
description of this charge transfer within KS theory. It mani-
fests itself in the KS potential [21] as depicted in the lower
panel of Fig. 3, which demonstrates that F PoC

x leads to the
right properties for the right reason: At F = 3.6 × 109 eV/m,
which would lead to a fractional charge transfer for any con-
ventional semilocal functional, a pronounced step structure
that counteracts the charge transfer is observed. Similarly,
after the jump a potential step with opposite sign stabilizes the
charge transfer. This is exactly the behavior that EXX exhibits
and by which a nonlocal self-interaction correction cures the
charge-transfer problem [21].

IV. TASK: A GENERAL PURPOSE META-GGA

After this proof of concept as to how nonlocality can be
achieved in meta-GGA construction, we take a second step
and devise a more generally useful meta-GGA for exchange
that features nonlocality. The outer framework of this func-
tional, named TASK for the initials of the authors, is adopted

033082-4



ULTRANONLOCALITY AND ACCURATE BAND GAPS FROM … PHYSICAL REVIEW RESEARCH 1, 033082 (2019)

from the exchange part of the SCAN meta-GGA [52] and
reads as

F TASK
x (s, α) = h0

xgx(s) + [1 − fx(α)]
[
h1

x(s) − h0
x

]
[gx(s)]d .

(21)

We likewise choose

Fx � h0
x = 1.174 (22)

as an upper bound, thereby obeying the rigorous strongly
tightened bound [89] for α = 0, as well as the more strict
conjectured bound given by Eq. (17). By implying fx(α =
0) = 1 this meta-GGA is identical to SCAN for one-orbital
systems (α = 0), with

gx(s) = 1 − exp(−cs−1/2), (23)

where c = 4.9479 was obtained to recover the exact hydrogen
atom energy. Moreover, gx(s) governs Fx(s, α) for s → ∞
and vanishes like s−1/2 [89], making the exchange energy per
particle scale correctly to a negative constant under nonuni-
form coordinate scaling to the true two-dimensional limit
[107,108].

We chose h1
x(s) to only depend on s. In this way, we

can readily satisfy the construction principle of a negative
slope in α of sizable magnitude [cf. Eq. (16)] to preserve
the desired field-counteracting properties. Furthermore, we
determine fx(α) and h1

x(s) by recovering the fourth-order
gradient expansion (GE4) for exchange [109], valid for slowly
varying densities with small s and α ≈ 1. We do this in a
way, however, that deviates decisively from SCAN, where the
GE4 is solely recovered by h1

x and without a leading-order
contribution of α, as fx(α) is chosen to be flat, i.e., to vanish in
any power of ∇n. Our aim, however, is to fulfill Eq. (16) with
an appreciable slope, and therefore we require nonvanishing
GE4 contributions of fx(α) and thus α to all relevant orders.
To this end, we start from the general expression for the
gradient expansion around s = 0 and α = 1,

F GE4
x (s, α) ∼ 1 + μss

2 + μα (α − 1) + Css
4 + Csαs2(α − 1)

+Cα (α − 1)2 + O(∇6), (24)

and then make use of the GE4 of τ [110,111] as detailed in
Appendix A. Comparison with the usual GE4 for exchange
then leads to the coefficients

μs = 10 + 60μα

81
, Cs = −1606 − 50μα

18225
, (25)

Csα = −511 − 50μα

13500
, Cα = 73 − 50μα

5000
(26)

and one degree of freedom, the choice of μα . However, due

to the separation of variables with respect to s and α in our
ansatz for the enhancement factor of Eq. (21), the mixed
fourth-order term in the GE4 of Eq. (24) is generated by
multiplication and is thereby not independent of the second-
order terms. Therefore, in our construction, the corresponding
mixed coefficient Csα is directly linked to the second-order
coefficients via

μsμα = (
1 − h0

x

)
Csα, (27)

which implies two possible values for μα:

μ±
α = −

97 + 3 h0
x ±

√
9
(
h0

x

)2 + 74166 h0
x − 64175

1200
. (28)

To obtain a sizable derivative discontinuity we choose the
more negative solution

μα = μ+
α ≈ −0.209897, (29)

and, thus, a pronounced negative slope in α in accordance with
Eq. (16).

To satisfy the listed constraints while obtaining a smooth
Fx(s, α), we choose the following ansatz:

h1
x(s) =

2∑
ν=0

aνRν (s2), fx(α) =
4∑

ν=0

bνRν (α), (30)

which is based on Chebyshev rational functions [112,113]
Rν (x) of degree ν. The eight coefficients are determined by

h1
x(0) = 1, fx(0) = 1, fx(1) = 0 (31)

as well as the values of

∂2h1
x

∂s2

∣∣∣∣
s=0

,
∂4h1

x

∂s4

∣∣∣∣
s=0

,
∂ fx

∂α

∣∣∣∣
α=1

,
∂2 fx

∂α2

∣∣∣∣
α=1

(32)

that follow from imposing the GE4 as given by Eq. (24). The
final condition to determine the coefficients can be formulated
as choosing the limiting value of fx(α) as α → ∞. In order to
ensure ∂Fx/∂α < 0 everywhere as well as negativity of the
exchange energy density, fx(α → ∞) has to be limited to the
interval ] − 4.4,−2.5[ approximately. We here choose

fx(α → ∞) = −3 (33)

as a good balance between a pronounced negative slope
for small values of α and minimizing undesired cur-
vature in α. We find a0 = 0.938 719, a1 = −0.076 371,
a2 = −0.015 089 9, b0 = −0.628 591, b1 = −2.103 15, b2 =
−0.5, b3 = 0.103 153, b4 = 0.128 591.

Remarkably, the central premise of Eq. (16) follows nat-
urally from the ansatz (21) when one opts for recovering
the GE4 with a nonvanishing leading-order α contribution.
Finally, we choose d = 10 to bundle F (s, α) quickly for
s → ∞, thereby restricting numerical issues that may arise
as r → ∞ in the asymptotic region of finite systems, as
well as to enforce negativity of the exchange energy density.
In summary, our TASK functional fulfills all of the exact
constraints for exchange that were imposed on SCAN (yet
only the hydrogen atom norm), and in addition achieves a
more pronounced negative slope in Eq. (16) that is crucial
for field-counteracting properties. The resulting enhancement
factor of TASK is depicted in Fig. 4. The constraints force
the TASK functional toward a field-counteracting term that is
somewhat less pronounced than the one of F PoC

x and EXX, as
seen in Fig. 1. However, as seen in Table I the polarizabilities
are still substantially improved compared to LDA and SCAN.
Also, the upper panel of Fig. 3 depicts a clear improvement
over LDA for the H8-H8 charge-transfer system.

The potential that we obtain is relatively smooth and we
did not experience difficulties in the numerical representation.
By fulfilling Eq. (16), one guarantees that as functions of
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FIG. 4. TASK exchange enhancement factor F TASK
x (s, α) as a

function of s for fixed values of α.

s curves for different α do not cross, a condition that has
been associated with numerical stability [52]. Several meta-
GGAs that have previously been constructed have numerical
features that require special attention in their computational
evaluation, and the underlying reasons have been studied with
a new iso-orbital indicator [114].

We here deliberately focused on the exchange functional
because exchange is decisive for curing charge-transfer errors.
A recent study [118] furthermore demonstrated that correla-
tion contributes to the field-counteracting term in a similar
fashion as exchange. Therefore, it is not unreasonable to
cover the field-counteracting terms by meta-GGA exchange.
Ground-state energetics, on the other hand, usually benefit
from a correlation functional which is especially tailored
toward the corresponding semilocal exchange. However, con-
structing such a correlation functional is a task in itself, to be
addressed in future work. Therefore, we presently combine
the TASK exchange with PW92-LDA correlation [93], as
LDA is universal and not tied to a specific exchange func-
tional.

We calculated atomization energies for a set of diatomic
molecules. The set is small, but comprises single, double,
and triple bonds and thus gives a first impression of binding
properties. The mean absolute error for the atomization energy
are reported in Table II. Without further context, TASK+
PW92 accuracy for atomization energies is not impressive.
However, one can here see a parallel between meta-GGAs and
hybrid functionals: Hybrids with a small (ca. 20%) fraction of
Fock exchange are good for atomization energies. A reliable
description of charge transfer and charge localization, how-
ever, requires much larger (up to 75%) fractions [125] and
correspondingly leads to a considerably poorer description
of atomization energies [126]. Therefore, we see it as a
sign of hope that TASK+PW92 atomization energies are at
least significantly better than LDA while at the same time
successfully tackling the charge-transfer errors. Furthermore,
as the TASK functional is constructed in purely nonempirical
fashion, it can be expected to be reliable over a wide range of
systems and situations.

TABLE II. Atomization energies in kcal/mol of diatomic
molecules based on self-consistent KS calculations at experimental
bond lengths and mean absolute error (MAE) across the test set.
The calculations were performed on a real-space prolate spheroidal
grid with DARSEC [115], an all-electron code for single atoms or
diatomic molecules. SCAN, EXX, and TASK (here in combina-
tion with PW92-LDA correlation) potentials were evaluated in the
KLI approximation [82]. The experimental values (with zero point
vibration removed) and the experimental bond lengths are taken
from Ref. [116] (cf. the Supplemental Material of Ref. [117] for
computational details).

Molecule EXX LDA PBE SCAN TASK Expt.

H2 83.8 112.9 104.6 107.7 117.0 109.5
LiH 34.1 60.8 53.5 55.6 58.9 58.0
Li2 3.6 23.8 19.9 18.1 11.6 24.7
LiF 90.5 156.3 139.0 138.1 130.2 138.3
CO 172.3 299.2 269.1 255.2 248.2 259.5
N2 112.4 268.0 243.9 220.9 174.9 228.5
NO 47.6 199.4 170.9 146.5 122.9 152.5
OH 65.4 123.2 105.0 94.9 97.6 106.4
O2 30.0 175.1 144.1 126.8 131.0 120.5
FH 96.6 162.0 142.0 140.4 139.2 141.1
F2 −41.7 78.0 52.8 37.4 23.4 38.4

MAE 62.1 25.7 9.1 4.6 14.6

Further evidence that the TASK functional indeed incorpo-
rates correct physics and yields a sizable �mGGA

x is seen when
calculating band gaps. For the study of gaps, we resorted to
general KS (gKS) theory [127], as it gives direct access to the

FIG. 5. Experimental band gaps compared to band gaps com-
puted by PBE [4], SCAN (gKS) [52], and TASK+ PW92 (gKS).
See Table III for values and further details.
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TABLE III. Structure, experimental geometrical parameters, and fundamental band gaps of the solids considered in this work. All band
gaps are obtained from band structures that are sampled with a step size of 0.02a0

−1.

Fundamental band gaps (eV)

Solid Structure Lattice parameter (Å) PBE SCAN TASK+PW92 Expt.

Ge Diamond 5.652 [119] 0.03 0.19 0.85 0.74 [120]
CdO Rock salt 4.704 [121] 0.00 0.05 0.89 0.84 [122]
Si Diamond 5.430 [119] 0.68 0.93 1.12 1.17 [120]
GaAs Zinc blende 5.648 [119] 0.55 0.83 1.72 1.52 [120]
SiC Zinc blende 4.358 [119] 1.43 1.75 2.06 2.42 [120]
ZnS Zinc blende 5.409 [120] 2.10 2.63 3.84 3.66 [120]
MgS Zinc blende 5.622 [120] 3.55 4.25 5.74 5.4 [120]
C Diamond 3.567 [119] 4.21 4.60 4.36 5.48 [120]
BN Zinc blende 3.603 [120] 4.54 5.03 5.50 6.22 [120]
MgO Rock salt 4.207 [119] 4.78 5.68 7.33 7.22 [120]
LiCl Rock salt 5.106 [119] 6.37 7.32 9.55 9.4 [123]
Kr fcc 6.130 [123] 7.17 8.01 11.45 11.6 [123]
LiF Rock salt 4.010 [123] 9.17 10.14 12.93 13.6 [124]
Ar fcc 5.310 [123] 8.65 9.52 13.28 14.3 [124]

fundamental gap [74,124,128,129], i.e.,

�gKS
s ≈ �s + �xc. (34)

All calculations were performed at the experimental geometry
with a modified version of the periodic all-electron code
BAND [130], a 9 × 9 × 9 Monkhorst-Pack k grid [131], and
the TZ2P [132] basis set (except for Ar and Kr, for which
QZ4P is used). The scalar relativistic effects are included
by the ZORAmethod [133]. Figure 5 shows that gaps calcu-
lated with TASK in combination with PW92-LDA correlation
are uniformly and significantly improved compared to usual
semilocal results, here represented by PBE [4], for systems
ranging from traditional semiconductors to wide-gap insula-
tors (see Table III for detailed numbers). For most systems
studied, TASK also performs significantly better than SCAN,
which was reported [124] to already yield considerably more

FIG. 6. Band structure of Ge calculated with PBE [4] (blue),
SCAN [52] (green), and TASK+ PW92 (red) at the experimental
geometry (meta-GGAs calculated in gKS scheme). The top of the
valance band is the zero of the energy scale. The experimental
fundamental band gap is visually indicated by the hatched region.

realistic band gaps. It is noticeable that TASK band gaps are
remarkably close to experiment for a wide range of materials,
reaching from the semiconductors Ge, CdO, Si, and GaAs to
minerals such as MgO and LiCl. The functional also gives
significantly improved values for the large-gap insulators Kr,
LiF, and Ar. Most notably, TASK opens the band gap with a
magnitude close to the experimental value for Ge and CdO,
whereas PBE and SCAN incorrectly predict both systems to
be metallic (see Figs. 6 and 7 for the corresponding band
structures).

V. SUMMARY AND CONCLUSIONS

In summary, we laid out an exchange-correlation func-
tional construction strategy that takes into account properties
of the KS potential such as the derivative discontinuity and

FIG. 7. Band structure of CdO calculated with PBE [4] (blue),
SCAN [52] (green), and TASK+ PW92 (red) at the experimental
geometry (meta-GGAs calculated in gKS scheme). The top of the
valance band is the zero of the energy scale. The experimental
fundamental band gap is visually indicated by the hatched region.
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the density response in addition to the ground-state energy.
We derived a transparent general criterion for obtaining a
sizable derivative discontinuity from a meta-GGA. In a proof-
of-concept construction we demonstrated that this criterion di-
rectly governs the response potential and the ultranonlocality
of a meta-GGA. Taking into account known exact constraints,
we further developed a nonempirical, general-purpose meta-
GGA for exchange that yields improved response properties
and band gaps. This suggests that the ground-state energy
need not be the only focus of meta-GGA construction, but
construction strategies can also target the density and the
potential. Our work shows that meta-GGAs can live up to the
orbital functional promise of yielding ultranonlocal features
without requiring costly exchange integrals. The meta-GGA
form thus continues to hold great promise for future functional
development.
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APPENDIX A: FOURTH-ORDER GRADIENT EXPANSION
FOR EXCHANGE IN s AND α

We here describe in detail how Fx(s, α) is able to recover
the GE4 for exchange [47,109] with one degree of freedom.
Typically, the GE4 is written in s2 and

q = ∇2n

4(3π2)2/3n5/3
(A1)

as

F GE4
x (s, q) ∼ 1 + 10

81
s2 + 146

2025
q2 − 73

405
s2q

+ 0 · s4 + O(∇6) as s, q → 0 (A2)

assuming a vanishing s4 coefficient as the best numerical estimate. As α → 1 in the homogeneous electron gas limit, the GE4
for exchange in s and α has the general form of Eq. (24) with its five coefficients μs, μα , Cs, Csα , and Cα to be determined as
follows: First, α = τ/τ unif − 5s2/3 is expanded by utilizing the GE4 of τ [110,111] to obtain

α ∼ 1 − 40

27
s2 + 20

9
q + 1

81

[
−14q2 + 140

3
s2q − 48s2 + 12

∇2(∇2n)

24(3π2)4/3n7/3

− 30
∇n · ∇(∇2n)

24(3π2)4/3n10/3
− 7

∇2|∇n|2
24(3π2)4/3n10/3

+ 92

3

∇n · ∇|∇n|2
24(3π2)4/3n13/3

]
+ O(∇6). (A3)

Inserting this expansion into Eq. (24) gives

F GE4
x (s, α) ∼ 1 +

(
μs − 40

27
μα

)
s2 +

(
20

9
μα

)
q +

(
−14

81
μα + 400

81
Cα

)
q2 +

(
140

243
μα + 20

9
Csα − 1600

243
Cα

)
s2q

+
(

−48

81
μα + Cs − 40

27
Csα + 1600

729
Cα

)
s4 + μα

[
4

27

∇2(∇2n)

24(3π2)4/3n7/3
− 10

27

∇n · ∇(∇2n)

24(3π2)4/3n10/3

− 7

81

∇2|∇n|2
24(3π2)4/3n10/3

+ 92

243

∇n · ∇|∇n|2
24(3π2)4/3n13/3

]
+ O(∇6). (A4)

Note that, under integration by parts, ∫
n4/3s2 d3r = 3

∫
n4/3q d3r. (A5)

Therefore, and as we only consider F GE4
x (s, α) under the exchange energy integral Ex = Ax

∫
n4/3F GE4

x (s, α) d3r, the separate
occurrences of q in Eq. (A4) can be recast to s2/3. Moreover, one can transform the remaining fourth-order terms to the variables
s and q in similar fashion via integration by parts:∫

n4/3 ∇2(∇2n)

24(3π2)4/3n7/3
d3r =

∫
n4/3(2s2q − q2) d3r, (A6a)

∫
n4/3 ∇n · ∇(∇2n)

24(3π2)4/3n10/3
d3r =

∫
n4/3(2s2q − q2) d3r, (A6b)

∫
n4/3 ∇2|∇n|2

24(3π2)4/3n10/3
d3r =

∫
n4/3(−2s2q + 6s4) d3r, (A6c)

∫
n4/3 ∇n · ∇|∇n|2

24(3π2)4/3n13/3
d3r =

∫
n4/3(−s2q + 3s4) d3r. (A6d)
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This allows us to write Eq. (A4) as

F GE4
x (s, α) ∼ 1 +

(
μs − 20

27
μα

)
s2 +

(
4

81
μα + 400

81
Cα

)
q2 +

(
− 2

27
μα + 20

9
Csα − 1600

243
Cα

)
s2q

+
(

2

81
μα + Cs − 40

27
Csα + 1600

729
Cα

)
s4 + O(∇6). (A7)

Finally, comparison with the GE4 of Eq. (24) yields the values
for the coefficients already given by Eqs. (25) and (26) with
one degree of freedom, the choice of μα . When choosing
μα = 0 the resulting GE4 is identical to the one given in the
Supplemental Material of Ref. [52].

APPENDIX B: HYDROGEN ATOM NORM

A meta-GGA for exchange defined by an enhancement
factor Fx(α) that only depends on α reduces for any single-
orbital system to a multiple of LDA,

EmGGA
x [n] = Ax

∫
Fx(α(r)) n4/3(r) d3r

= Fx(0) Ax

∫
n4/3(r) d3r = Fx(0) ELDA

x [n] (B1)

since α(r) ≡ 0 in the single-orbital limit. Given the com-
pletely spin-polarized exact hydrogen ground-state density

nH(r) = 1

πa0
3

exp(−2r/a0), (B2)

the associated exchange energy of the meta-GGA is obtained
by virtue of the spin-scaling relation for exchange [78] to be

EmGGA
x [nH, 0] = Fx(0) ELDA

x [2nH]/2

= − Fx(0)
81 e2

128 a0

(
3

4π2

)1/3

. (B3)

Consequently, the exchange energy of the meta-GGA matches
the exact value at the hydrogen ground-state density

Ex[nH, 0] = −EH[nH]

= −e2

2

∫∫
nH(r)nH(r′)

|r − r′| d3r d3r′ = − 5 e2

16 a0
, (B4)

if one chooses

Fx(0) = cH := 40

81

(
4π2

3

)1/3

≈ 1.16588 (B5)

[cf. Eq. (19)].

APPENDIX C: ULTRANONLOCALITY
IN RECIPROCAL SPACE

Having explicitly demonstrated that and how a meta-GGA
can achieve ultranonlocality associated with the derivative dis-
continuity in real space and for finite systems, a comparison
with previous work on ultranonlocality in reciprocal space and
extended systems is worthwhile. Nazarov and Vignale [88]
showed via a reciprocal space analysis that the xc kernel fxc

of a meta-GGA is capable of long-rangedness, which also
is an aspect of ultranonlocality. When thinking about fxc,

different aspects of ultranonlocality are associated [90,134]
with a singularity of the type

fxc,00(q) ∼ β

q2
(C1)

in the optical limit q → 0. Using an averaging approximation
similar to the one that we use in Eq. (12) to demonstrate the
relation between �x and ∂ex/∂τ , they extract the singularity
to be

fxc,GG′ (q) ≈ −∂exc

∂τ
χ−1

s,GG′ (q), (C2)

where χ−1
s is the inverse of the noninteracting KS response

function. Using this expression as an approximation to the full
kernel, they calculate the excitation spectra of semiconductors
with a special focus on the excitonic peak. These spectra
and comparison with the work of Reining et al. [134] then
suggest β < 0, and hence ∂exc/∂τ < 0 in order to capture
the electron-hole interaction. Their analysis thus leads to the
opposite sign of ∂exc/∂τ that we reach based on the functional
derivative of Eq. (10) and the fact that �x is determined by its
last term.

To resolve this seemingly contradiction, we first note that
Ref. [88] focuses on a different physical problem than we do.
Nazarov and Vignale [88] study the binding of excitons. As
argued in Ref. [134], this merely requires a static long-range
contribution to the kernel,

� fxc(r, r′) = β

4π |r − r′| (C3)

with β < 0. We further note that obtaining properties of fxc

and vxc that are long range in real space correctly with semilo-
cal approximations is only possible within narrow conditions
and typically leads to divergences of the KS potential for
many finite systems [71,72].

In our work here, we focus on the ultranonlocality that
is associated with potential step structures and the deriva-
tive discontinuity. Our tests were done for finite systems,
but Ghosez et al. [90] demonstrated that this type of ultra-
nonlocality is also present in solids. When calculating the
polarization dependence of solids, which is in close analogy
to the ultranonlocality effects in the electrical response of
molecular chains, this ultranonlocality is connected to a pos-
itive (β > 0) singularity of the form of Eq. (C1) (see, e.g.,
Fig. 1 of Ref. [90]). Within the approximation of Eq. (C2)
this singularity can in turn be associated with ∂exc/∂τ > 0.
Therefore, the analysis of Ghosez et al. [90] is in line with our
arguments.

Finally, we note that also Ref. [134] finds a positive con-
tribution to the singularity in fxc that stems from the energy
shift between KS and quasiparticle eigenvalues. Within KS
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TABLE IV. Dimensions of ellipsoidal boundaries used for the
hydrogen chain polarizability calculation in PARSEC in a0.

Semiaxis H4 H6 H8 H12 H18

Parallel 15.0 17.5 20.0 25.0 32.5
Perp. 10.0 10.0 10.0 10.0 13.0

theory this energy shift is accounted for by the derivative
discontinuity �xc. In the calculations of Ref. [134], however,
it is absorbed into an energy shift of the starting χs.

APPENDIX D: HYDROGEN CHAIN POLARIZABILITY
CALCULATION DETAILS

The polarizabilities of hydrogen chains were calculated
with a locally modified version of the publicly available
electronic structure program PARSEC [95] on a real-space
grid with a grid spacing of 0.27a0. The linear chains with
alternating H–H distances of 2a0 and 3a0 are centered in
an ellipsoid with dimensions as listed in Table IV. All cal-
culations were performed self-consistently with a functional
independent pseudopotential [135], an energy convergence
criterion for the KS iterations of 5 × 10−7 Eh, and a field
strength of 5 × 10−5 Eh/a0. To obtain the KS potential based
on the OEP scheme via S-Iterations [81], S was converged to
at least 3 × 10−7 Eh. The implementation of all meta-GGAs
with the exception of PoC, TASK, and SCAN is built on
an interface to LIBXC version 4.3.4 [136]. We found that for
several of the meta-GGAs that are available in LIBXC [136],
e.g., TPSS [47], revTPSS [50], TM [55], and the Minnesota
meta-GGAs [49], the grid-based calculations are difficult to
converge as their potentials show rapidly varying features.
This type of observation is in line with the arguments of, e.g.,
Ref. [114]. Therefore, the results reported here are restricted
to numerically benevolent meta-GGAs. For the calculations
with the MVS functional we found that the OEP calcula-
tions converged very slowly for the longer hydrogen chains.

Therefore, for the MVS functional [54], Table I reports OEP
polarizabilities for H4 and H6, but the values reported for H8,
H12, and H18 are based on the KLI approximation [82]. All
other values are OEP based.

APPENDIX E: H8−H8 CHARGE-TRANSFER
CALCULATION DETAILS

All calculations for the H8−H8 charge-transfer system
were performed spin polarized, self-consistently on a real-
space grid with BTDFT [40] using Troullier-Martins LDA
pseudopotentials [137], ellipsoidal boundaries with semiaxis
of 20a0 perpendicular to and 32a0 along the chains, and a grid
spacing of 0.3a0. For the KS iterations, an energy convergence
criterion of 5 × 10−6 Eh was used. The two hydrogen chains,
each containing eight hydrogen atoms separated by 1 Å, are
centered in the ellipsoid with a mutual distance of 8 Å. Due to
the nature of the situation with nearly degenerate ground-state
solutions, the calculations are numerically very challenging
(cf. Refs. [9,105]). The LDA calculations were performed
with occupation numbers following from a Fermi-Dirac distri-
bution with a temperature of 800 K, as zero-temperature cal-
culations cannot be converged once the external field strength
leads to (a fractional) transfer of charge. The meta-GGA
calculations in the KLI approximation [82] were performed
at 0 K. For the PoC meta-GGA, convergence was possible
for any considered field strength. We can carefully converge
two nearly degenerate ground states with an integer charge
of 8 and 9 electrons, respectively, even for field strengths
below and above the critical field strength of 3.7 × 109 V/m,
at which an integer electron transfer occurs. Consequently, the
associated Fig. 3 only shows the solution of lower total energy
at each field strength and the critical field strength is given by
the energy crossing point of both solutions. While the TASK
functional does not allow for a numerical stable solution from
field strengths of 3.0 × 109 V/m to 5.8 × 109 V/m, it still
improves considerably over LDA as it allows to counteract
the charge transfer up to 2.8 × 109 V/m and yields a broad
integer electron plateau starting at 6.0 × 109 V/m.
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ABSTRACT
Range-separated hybrid functionals with a fitted or tuned global range-separation parameter are frequently used in density functional the-
ory. We here explore the concept of local range separation, i.e., of turning the range-separation parameter into an explicit semilocal density
functional. We impose three simple constraints on the local range-separation parameter that are frequently used in density functional con-
struction: uniform density scaling, the homogeneous electron gas limit, and freedom from one-electron self-interaction. We further discuss
different ways of how to model the spin dependence in combination with local range separation. We evaluate our local range-separation
energy functionals exactly for closed-shell atoms using the previously suggested hypergeneralized gradient approximation for molecules and
assess the quality of this approximation. We find a local range-separated hybrid functional that yields accurate binding energies for a set of
small molecules.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5121731., s

I. INTRODUCTION

Exchange-correlation (xc) functionals in which exact Fock
exchange is combined with semilocal functional components in a
range-separation approach1,2 have been very successful, in partic-
ular, for describing processes that depend sensitively on charge-
rearrangement, such as long-range (LR) charge-transfer.3,4 Yet,
commonly used range-separation functionals have at least two draw-
backs. First, they are not one-electron self-interaction5–7 free. This
is a formal deficiency as the functional is not correct in the impor-
tant limiting case of one-electron systems. It is a practical limita-
tion in problems that depend on one-electron properties, such as
electronic binding in certain systems, stretched hydrogen bonds,
and ionization energies. Second, there is no universal choice for
the range-separation parameter.8 The latter plays a decisive role in
these functionals. When it is determined empirically9–12 to opti-
mize binding energies, then one is led to relatively low frac-
tions of Fock exchange in the functional that do not yield a reli-
able description of charge-transfer characteristics. If one chooses
the parameter such that ionization potentials or charge-transfer
characteristics are well reproduced, then one finds binding ener-
gies that are of limited accuracy. Additionally, neither of these

or any other method for determining a global but system-specific
range-separation parameter conform13 with the formal concept of
size-consistency.14

In the present work, we take a step to tackle these problems.
The central idea of our approach is to solve the first problem, i.e.,
design a range-separated hybrid in such a way that it is one-electron
self-interaction free, in the hope that this will also alleviate the sec-
ond problem. To do so, we follow up on the work of Krukau et al.15

that probed the concept of a local range-separation parameter as well
as a hyper-GGA (generalized gradient approximation) approxima-
tion to range-separated hybrids. Our findings indicate, though, that
the formal property of being correct for one-electron systems does
not necessarily translate into an improved description of electronic
binding. On the other hand, we note that the way in which spin-
polarization is treated in the range-separated hybrid construction is
important for the description of binding—especially when realizing
one-electron self-interaction freedom. We also test the reliability and
robustness of the hyper-GGA approximation that has been intro-
duced to facilitate the evaluation of local range-separated hybrids.
We show that it can have significant consequences and, therefore,
should rather be seen as an alternative definition of range-separation
functionals.
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This paper is organized as follows: Section II starts by sum-
marizing the concept and formulas for the usual range-separation
approach based on a global range-separation parameter. We then
discuss the merits and limitation of a local range-separation param-
eter and how it can be utilized to eliminate the one-electron self-
interaction error in Sec. II B. We continue in Sec. II C by suggesting
new avenues to make use of spin-polarization which are opened
up by a local range-separation parameter. Next, the hyper-GGA
approximation for range-separation hybrids is recapped and its reli-
ability and robustness is assessed in Sec. III. Finally, in Sec. IV, we
present and analyze the results obtained with several local range-
separation parameters that we developed.

II. THEORY OF RANGE-SEPARATED HYBRIDS
The primary idea of the range-separation approach is to split1,2

the Coulomb interaction into short-range (SR) and long-range (LR)
components,

1∣r − r′∣ = erfc(ω∣r − r′∣)∣r − r′∣´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SR

+
erf(ω∣r − r′∣)∣r − r′∣´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LR

, (1)

where erfc(⋅) = 1 − erf(⋅) and the screening ω determines an inverse
length for the associated range separation. This range separation
is then utilized to split the exchange energy Ex[n] based on its
representation16,17 via the exchange hole hx(r, r′),

Ex[n] = 1
2∬ n(r)hx(r, r′)∣r − r′∣ d3r′ d3r, (2)

into SR and LR components of the exchange hole as well as of the
corresponding exchange energy. When focusing on finite systems,
one typically treats the LR component exactly,

Eex,LR
x [n,ω] = −1

2 ∑σ=↑,↓
Nσ∑
i,j=1
∬ φ∗iσ(r)φ∗jσ(r′)φjσ(r)φiσ(r′)∣r − r′∣

× erf (ω∣r − r′∣)d3r′ d3r, (3)

whereas the SR component is modeled by a semilocal approximation
for the exchange hole,

Esl,SR
x [n,ω] = 1

2∬ n(r)hsl
x (r, r′)∣r − r′∣ × erfc (ω∣r − r′∣)d3r′ d3r. (4)

Most semilocal exchange hole models only depend on quantities at
the reference point r and are customarily angle averaged with respect
to that point, i.e.,

hsl
x (r, r′) = h̄sl

x (n(r), ∣∇n(r)∣, . . . , ∣r − r′∣). (5)

Thus, one can perform the integration over r′ analytically. This
simplifies the expression considerably. For example, when using
the exchange hole of the local density approximation (LDA), one
arrives at18,19

ELDA,SR
x [n,ω] = Ax ∫ n4/3(r)FSR (ω/kF(r))d3r (6)

with Ax = −(3/4)(3/π)1/3, the Fermi wavevector kF(r)= [3π2n(r)]1/3, and an associated function

FSR(x) = 1 − 2x
3
[2√π erf(x−1) − 3x + x3 + (2x − x3) exp(−x−2)].

(7)

The combination of two different exchange holes for SR and LR
then effectively models not only exchange but to some extent also
correlation.

The remaining correlation part is typically approximated by an
ordinary semilocal correlation—in this work, we use, unless other-
wise specified, LDA correlation ELDA

c [n] in the parameterization of
Perdew and Wang.20 A complete range-separated hybrid (here based
on LDA) is thus given by21,22

ELC−ωLDA
xc [n,ω] = Eex,LR

x [n,ω] + ELDA,SR
x [n,ω] + ELDA

c [n]. (8)

We note that in the past successful functionals have also been
constructed by further including a SR component of Fock
exchange.9,23,24 Such more general forms have proven particularly
useful when extended, solid-state systems are of interest. However,
for the sake of transparency, we here restrict ourselves to the gen-
eral functional form of Eq. (8), to which we refer as LR corrected
(LC) LDA in the following. The fact that the local range-separation
approach is effectively modeling correlation with the help of SR
exchange can be emphasized by bringing the range-separated hybrid
to the form

ELC−ωLDA
xc [n,ω] = Eex

x [n] + ELC−ωLDA
c [n,ω] (9)

with

ELC−ωLDA
c [n,ω] = ELDA,SR

x [n,ω] − Eex,SR
x [n,ω] + ELDA

c [n]. (10)

Depending on the choice of the range-separation parame-
ter, the properties of a range-separated hybrid can vary drasti-
cally.22 It can range from treating all of the Coulomb interac-
tions as LR for ω → ∞ to treating all of them as SR for ω → 0.
Many implementations of range separation use a universal, i.e.,
system-independent range-separation parameter. However, it has
been shown that the scheme can unfold considerable further power
when the parameter is tuned for each system separately.3,25 Among
the important successes of the tuning scheme are the prediction
of charge-transfer excitations,26 fundamental gaps,27,28 and optical
gaps.29,30

Tuning is partially motivated by the already mentioned obser-
vation that there is no truly universal parameter that, e.g., accurately
describes binding energies and ionization potentials simultaneously.
However, the tuning procedure also has drawbacks. A practical
disadvantage is that it requires many more computational steps
than a usual one-way self-consistent calculation. However, there
are also conceptual questions. Most notably, a nonuniversal system-
dependent range-separation parameter violates size-consistency.11,13

Tuning for a system with a complicated intrinsic electronic struc-
ture is thus conceptually and practically challenging. Furthermore,
if one interprets tuning as a way to turn the range-separation
parameter into an (implicit) density functional, then one would
have to take the density dependence into account when taking the
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functional derivative that leads to the potential.13 This, however,
is and cannot be done as the density dependence is not explicitly
known. Also, tuning for extended, solid-state systems faces special
challenges.31

A. From a global to a local range-separation
parameter

In order to satisfy size-consistency, ω cannot just be a global
density functional, i.e., it must have an explicit spatial dependence.
Therefore, an (at least) local range-separation parameter, i.e., ω([n];
r), is inevitable. A functional of this type was proposed and explored
by Krukau et al.15 The more general case, where ω([n]; r, r′) is even
a two point function, is deliberately not considered in this work, as
already a single spatial dependence proves to be challenging—both
in the construction and implementation of such functionals. This
will become clear in the course of this paper.

The important advantage of ω([n]; r) only depending on the
reference point r is that the integration over r′ can be performed
analytically for any spherically symmetric exchange hole model that
only depends on semilocal ingredients at the reference point [cf.
Eq. (5)]. Therefore, the associated local range-separated hybrid of
a given ω([n]; r) can be obtained by simply replacing ω with ω([n];
r) in Eqs. (3) and (6). One might be led to believe that the corre-
sponding total xc energy, in particular, when written in the form of
Eq. (4), is not symmetric with respect to interchange of electrons
(r↔ r′), given that ω only depends on r. However, as demonstrated
in Ref. 15, this is purely of computational convenience since the xc
energy can formally always be symmetrized.

A so far promising ansatz by Krukau et al.15 for a local range-
separation parameter is

ωK([n]; r) = η ∣∇n(r)∣
n(r) (11)

with η = 0.135 optimized for enthalpies of formation. As detailed
in Ref. 15, this functional form and the magnitude of the value of
the parameter η can be motivated based on previous work.32–34 In
the following, we will investigate alternative expressions for ω([n],
r) based on formal constraints, in particular, to eliminate the one-
electron self-interaction error.

B. Formal constraints
In the realm of semilocal density functionals, the concept of a

constraint-guided construction has become a tremendous success
story.35–38 Given that we seek a semilocal expression for ω([n]; r),
it might be worthwhile to also explore exact constraints on ω([n]; r).

First, we consider the uniform density scaling39 to the high-
density limit,

n(r)→ nλ(r) = λ3n(λr) as λ→∞. (12)

In this limit, the exact exchange energy should dominate,40

lim
λ→∞

Exc[nλ]
Eex

x [nλ] = 1. (13)

In the context of range-separation, this implies that LR should pre-
vail, and consequently, the local range-separation parameter needs
to scale up faster than linearly,15

ω([nλ]; r)≫ λω([n]; λr) as λ→∞. (14)

Second, we seek to reproduce the homogeneous electron gas
limit. Therefore, it is natural to require ω([n]; r) → 0 in the limit of
a slowly varying density, thereby the local range-separated hybrid of
Eq. (8) reduces to LDA exactly.

A third reasonable constraint that can be imposed on ω is
freedom from one-electron self-interaction, i.e.,

EH[niσ] + Exc[niσ , 0] = 0 (15)

for any one-spin-orbital density niσ = |φiσ(r)|2, where

EH[n] = 1
2∬ n(r)n(r′)∣r − r′∣ d3r′ d3r (16)

is the usual (classical) Hartree energy. A common technique to elim-
inate (or reduce) the self-interaction error is the use of a semilocal
iso-orbital indicator or even of a one-spin-orbital-region indica-
tor.41–45 Both indicators are typically based on the noninteracting
kinetic energy density

τ(r) = 1
2 ∑σ=↑,↓

Nσ∑
i=1
∣∇φiσ(r)∣2 (17)

and its single-orbital limit

τW(r) = ∣∇n(r)∣2
8n(r) , (18)

the von Weizsäcker kinetic energy density. Their dimensionless
ratio

z(r) = τW(r)
τ(r) , (19)

a common meta-GGA ingredient, is bound between its homoge-
neous electron gas limit, 0, and its single-orbital limit, 1. As the
LR part is by definition one-electron self-interaction free and the
SR part is not, we deduce that ω → ∞ in the one-spin-orbital
limit. Thus, freedom from one-electron self-interaction for a local
range-separated hybrid can be formulated as

ω([n]; r)→∞ (20)

as z → 1 in the one-orbital limit or more strictly as additionally the
spin-polarization

ζ(r) = n↑(r) − n↓(r)
n↑(r) + n↓(r) → ±1 (21)

in the one-spin-orbital limit—provided that one uses a one-electron
self-interaction free density functional to model the semilocal corre-
lation. To this end, we employ a simple, one-electron self-interaction
corrected LDA correlation variant,

Esic-LDA
c [n] = ∫ [1 − z(r)ζ2(r)]eLDA

c (r)d3r, (22)
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in Eq. (8) instead of ELDA
c [n], where eLDA

c (r) is the usual LDA cor-
relation energy density per unit volume. This expression has been
used previously in a local hybrid functional.45 Alternatively, one
could replace ELDA

c [n] with one of the many established meta-GGAs
for correlation with more sophisticated one-electron self-interaction
freedom built in.36,37,42

We note in passing that it is difficult to precisely define single-
electron regions in many-electron systems and that this difficulty
can be reflected in mathematical properties, such as an order-of-
limits problem.46,47 In a similar vein, it has been shown that the
formal property of being one-electron self-interaction free does not
necessarily lead to a reduction of the many-electron self-interaction
error.48–50

The three constraints on the construction of a local range-
separation parameter with the addition of the trivial requirement of
positivity, i.e., ω([n]; r) ≥ 0, can be combined as follows:

First, for one-electron self-interaction freedom, we have to gen-
erate a singularity in ω([n]; r) as z → 1. A straightforward pole for
this purpose is

Θ(z) = 1
1 − z , (23)

with the property Θ(z) ≥ 1, where the equality is approached in the
homogeneous electron gas limit. Moreover, z and therefore Θ(z) are
invariant under uniform density scaling,

Θ([nλ]; r) = Θ([n]; λr). (24)

Thus, one can multiply any local range-separation parameter that
already satisfies the two other constraints with this pole to add one-
electron self-interaction freedom to the list. We have also tested
generalizations of this pole, e.g.,

Θn(z) = 1
1 − z −

n∑
k=0

zk, (25)

as well as stronger logarithmic singularities,

Θln
n (z) = 1 − ln(1 − z) − n∑

k=0

zk

k
, (26)

with n ∈ N0 for both expressions, but find that the straightforward
pole of Eq. (23) gives ultimately the best results.

Second, we seek a simple ansatz for a positive local range-
separation parameter that (i) vanishes in the homogeneous electron
gas limit, (ii) scales faster than linearly in the high-density limit, and
hence, when multiplied with Θ(z) fulfills all proposed exact con-
straints. The work of Krukau et al.15 suggests—and we have inde-
pendently confirmed this in a search for an alternative—that ωK of
Eq. (11) is almost optimal for this purpose. Only “almost” because it
only scales linearly under uniform density scaling to the high-density
limit,

ωK([nλ]; r) = λωK([n]; λr). (27)

This deficit can, however, be fixed in a minimally invasive fashion by
adding a logarithmic contribution to the high-density limit,

ω([n]; r) = c1 ωK[1 + ln (1 + c2 ωK)], (28)

and consequently,

ω([nλ]; r) ∼ λ ln(λ)ω([n]; λr)≫ λω([n]; λr) (29)

as λ→∞. Therefore, we propose

ω = c1 ωK[1 + ln (1 + c2 ωK)]Θ(z) (30)

as a local range-separation parameter that satisfies all herein
imposed exact constraints. The two positive parameters c1 and c2,
however, cannot be determined from the imposed constraints. This
demonstrates that there is a need for additional constraints to guide
the construction of local range-separation parameters further. In
Sec. IV, we try to circumvent this issue in a similar manner as Ref. 15
by testing the proposed local range-separation parameter functional
with parameters c1 and c2 that are optimized for binding energies.
Looking at other observables, e.g., reaction barriers, may lead to
other optimal parameters. The fitting to energies, however, gives us
a first estimate for the values of the parameters.

C. Spin-polarization revisited
When using a global range-separation parameter, the exten-

sion of a range-separate hybrid in the form of Eq. (8) to the spin-
polarized case is straightforward, given the standard generalization
for the semilocal correlation energy, Esl

c [n↑,n↓], and the spin-scaling
relationship for the exchange energy,51

Ex[n↑,n↓] = 1
2
(Ex[2n↑, 2τ↑] + Ex[2n↓, 2τ↓]), (31)

as well as the relationship for the exchange hole,52

hx([n↑,n↓]; r, r′) = ∑
σ=↑,↓

nσ(r)
n(r) hx([2nσ , 2τσ]; r, r′), (32)

where we have notated the kinetic energy dependence explicitly on
the right-hand side for convenience of the reader.

As the local range-separation approach is essentially a mixing of
two different exchange energies, more specifically exchange holes, it
appears to be obvious15 to apply this spin-scaling relation to the local
range-separation parameter as well. The result is a different range-
separation parameter for each spin channel,

ωσ([nσ , τσ]; r) = ω([2nσ , 2τσ]; r), (33)

which only depends on the quantities of the respective spin channel.
However, when we remind ourselves that the mixing of the

exact and the semilocally approximated exchange holes within a
range-separated hybrid is essentially modeling correlation, it stands
to reason that the spin scaling for exchange is not mandatory for a
local range-separation parameter. Similar reasoning and approaches
have been proven successful in the related field of local hybrid func-
tionals.45 The idea is particularly appealing here because this allows
us to make use of the spin-polarization ζ(r) explicitly and, thus, to
employ a one-spin-orbital indicator instead of an iso-orbital indi-
cator. Therefore, we explore using the same local range-separation
parameter
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ωσ([n↑,n↓, τ↑, τ↓]; r) = ω([n, τ, ζ]; r) (34)

for both spin channels, but with an explicit dependence on the spin-
polarization.

This can readily be done by replacing Θ(z) with Θ(zζ2). We
will also consider an intermediate path with independent range-
separation parameters for each spin channel that depend on ζ in
addition to the quantities of the respective spin channel, i.e.,

ωσ([n↑,n↓τσ]; r) = ω([2nσ , 2τσ , ζ]; r). (35)

For this purpose, zσζ2 is used as the parameter of the pole function,
e.g.,

ωσ = c1 ωK
σ [1 + ln (1 + c2 ωK

σ )]Θ(zσζ2), (36)
where we keep the original definition

ωK
σ = ωK([2nσ]; r) = 0.135 ∣∇nσ ∣/nσ (37)

to ease comparisons. The results that we find with these different
functionals are discussed in Sec. IV.

III. HYPER-GGA APPROXIMATION
A. Merits and limitation of the hyper-GGA
approximation

One of the biggest obstacles that arises when going from a
global to a local range-separation parameter is a steep increase in
the computational cost for evaluating the energy—not even consid-
ering the evaluation of the severely more complex corresponding
functional derivative that would be needed for a self-consistent (gen-
eralized) Kohn-Sham calculation. While a standard range-separated
hybrid is computationally already much more demanding than any
semilocal density functional, there exist various numerical tech-
niques, e.g., analytic integration18,19 of electrostatic integrals in a
Gaussian basis set or using a resolution of identity approxima-
tion.53 Unfortunately, neither technique can be applied to full
extent once the range-separation parameter is an arbitrary spatial
function.15

With this in mind, Krukau et al.15 proposed a hyper-GGA
approximation for the LR component,

Eex,LR
x [n,ω] ≈ Ehyper-GGA,LR

x [n,ω]
= 1

2∬ n(r)h̄sl
x (n(r), ∣∇n(r)∣, τ(r), eex

x (r), ∣r − r′∣)∣r − r′∣
× erf (ω([n]; r)∣r − r′∣)d3r′ d3r. (38)

At each point in space r, the exact exchange hole associated with this
reference point, hex

x (r, r′), represented via the exact exchange energy
density

eex
x (r) = 1

2 ∫ n(r)hex
x (r, r′)∣r − r′∣ d3r′

= −1
2 ∑σ=↑,↓

Nσ∑
i,j=1
∫ φ∗iσ(r)φ∗jσ(r′)φjσ(r)φiσ(r′)∣r − r′∣ d3r′, (39)

is approximated by the corresponding spherically averaged semilo-
cal exchange hole model. This is a common technique that has

proven successful, e.g., for modeling non-dynamical correla-
tion.54–57 In the context of a (local) range-separated hybrid, this
approximation then again allows for an analytic r′-integration of the
LR component. Thereby, the LR energy component is reduced to the
hyper-GGA form, i.e.,

Ehyper-GGA,LR
x [n,ω] = Ax ∫ n4/3(r)F(n(r), ∣∇n(r)∣,∇2n(r),

× τ(r, ), eex
x (r),ω(r))d3r, (40)

where the exact exchange energy density is used as an additional
ingredient alongside semilocal ingredients. The resulting computa-
tional expense is thus, at least in principle, reduced to the level of,
e.g., a local hybrid. Due to the fact that the unscreened semilocal
exchange hole is designed to yield the exact exchange energy density,
this approximation is also exact in the limitω→∞, in addition to the
ω → 0 limit, where exactness is given trivially as the LR component
vanishes.

The quality of the hyper-GGA approximation to a range-
separated hybrid is by construction closely linked to the choice of
the semilocal exchange hole model because different hole models
are constructed to satisfy different exact constraints. So far, only
the original Tao, Perdew, Staroverov, Scuseria (TPSS) exchange
hole,58 adopted to reproduce the exact exchange energy density, has
been used.15 In order to explore new avenues and thereby test the
robustness of the hyper-GGA approximation, we here choose to
employ a revised TPSS (TPSSrev) exchange hole model that has been
recently proposed59 as well as a generalized version54,57 of the Becke-
Roussel (BR) exchange hole model.60 The three free parameters of
the spherical-averaged BR hole are determined by the on-top value
condition,

h̄x(r, r′)∣r′=r = −1
2
n(r), (41)

the requirement that the exchange hole model must have the same
curvature60–62 as the exact exchange hole,

∂2h̄x(r,u)
∂u2 ∣

u=0
= −Q(r) (42)

with

Q(r) = 1
6
{∇2n(r) − 4[τ(r) − τW(r)]} (43)

and the inter-electron separation u = |r − r′|, and the reproduction
of the exact exchange energy density,

eex
x (r) = 2πn(r)∫ ∞

0
h̄x(r,u)udu. (44)

This, however, implies that the corresponding hole is not prop-
erly normalized to −1. It has been argued that employing a non-
normalized hole can be advantageous in cases where the exact
exchange hole is delocalized.54,57

A detailed overview of the TPSS, the TPSSrev, and BR hole
models as well as their analytically integrated screened represen-
tations that are used in this work is given in the supplementary
material.
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The reliability of the hyper-GGA approximation to a
ranged-separated hybrid has so far only been assessed15 for a global
range-separated hybrid, LC-ωLDA, but not for an actual local range-
separation parameter. Aside from indirectly analyzing this approxi-
mation by using different semilocal models for the exchange hole,
we investigate a special case where a direct comparison is possi-
ble as the computational expense can be reduced to a feasible level,
namely, spherically symmetric systems, e.g., closed-shell atoms. As
we demonstrate in detail in the supplementary material, once the
system has spherical symmetry, both angular integrations corre-
sponding to r and r′ can be performed analytically. Thereupon, the
costly LR energy component reduces to a single two dimensional
integral

Eex,LR
x [n,ω] = − ∞

∫
0

∞
∫
0

∞∑
l=0

lmax∑
l1 ,l2=0
(2l1 + 1)(2l2 + 1)(l1 l2 l

0 0 0)
2

× cl(ω(r), r, r′) Nl1∑
n1=1

Nl2∑
n2=1

Rl1
n1(r)Rl2

n2(r′)
×Rl2

n2(r)Rl1
n1(r′) r2r′2 dr′ dr, (45)

which is readily integrated numerically on a radial grid. Here, the
first sum runs over all angular quantum numbers l (but only a finite
number of terms is nonvanishing), the second double sum runs over
all occupied angular quantum numbers l1, l2, and the third and
fourth sums run over all occupied principal quantum numbers ni
of the associated angular momentum li, and

(l1 l2 l
0 0 0) (46)

are the (mostly vanishing) Wigner 3-j symbols. Furthermore,{Rl
n(r)} are the radial orbitals of angular momentum l, and the

cl(ω(r), r, r′) are the coefficients of the Legendre expansion of the
LR kernel,64

erf [ω(r)∣r − r′∣]∣r − r′∣ = ∞∑
l=0

cl(ω(r), r, r′)Pl(cos δ) (47)

with the intermediate angle δ between r and r′, and the usual Leg-
endre polynomial Pl(x) of degree l. The first three coefficients of this
expansion that are required for a calculation up to the p-shell, i.e., up
to calcium, are given in the supplementary material.

B. Reliability of the hyper-GGA approximation
We have implemented the analytic LR angular integration, i.e.,

Eq. (45), as well as the hyper-GGA approximation of Eq. (40) based
on the TPSS, on the TPSSrev, and on the BR hole in our own code
for closed-shell atoms. While the angular components described
by spherical harmonics are handled analytically, the radial func-
tions are represented by an even-tempered Slater-type QZ basis
set,65 and the numerical integration is performed on a logarith-
mic radial grid of 500 points reaching from 0.001 a0 to 25 a0. The
local range-separated hybrids are evaluated on self-consistent LDA
orbitals.

Table I presents the total energies of a global (ω = 0.6 a0
−1) and

a local range-separated hybrid, i.e., ωK(r) of Eq. (11), for all closed-
shell atoms up to Ca in comparison with the energies from the cor-
responding hyper-GGA approximation based on the three semilocal
exchange hole models. We chose ω = 0.6 a0

−1 as the reference value
for the closed-shell atom calculations with a fixed range-separation
parameter because this allows for direct comparison with the work
of Krukau et al.15 There, this value was shown to minimize stan-
dard enthalpies of formation of the AE6 test when the hyper-GGA
approximation is not employed.

On the face of it, the quality of the three hyper-GGA approx-
imations seems comparable. They yield energies reasonably close
to the exact (local) range-separated hybrid energies. Most notably,
however, is that the error of the hyper-GGA approximation dou-
bles when going from the global to the local range-separation

TABLE I. Total non-relativistic energies in Hartree of closed-shell atoms in the hyper-GGA approximations based on the TPSS, BR, and TPSSrev hole models in comparison
with the exact (EXX) local range-separated hybrid energies and with the exact energies for a constant range-separation parameter (LC-ω-LDA) with ω = 0.6 a0

−1 and for a local
range-separation parameter (LRS-ωK-LDA) of Eq. (11). All energies are evaluated on self-consistent LDA orbitals.

LC-ω-LDA LRS-ωK-LDA

Atom/hole EXX TPSS BR TPSSrev EXX TPSS BR TPSSrev Exacta

He −2.925 −2.940 −2.919 −2.940 −2.899 −2.909 −2.893 −2.909 −2.904
Be −14.560 −14.578 −14.559 −14.572 −14.590 −14.621 −14.589 −14.616 −14.667
Ne −128.511 −128.506 −128.525 −128.526 −128.582 −128.669 −128.621 −128.689 −128.938
Mg −199.421 −199.410 −199.454 −199.429 −199.569 −199.659 −199.633 −199.691 −200.053
Ar −526.323 −526.270 −526.406 −526.317 −526.635 −526.702 −526.817 −526.800 −527.540
Ca −676.026 −675.948 −676.120 −676.002 −676.429 −676.477 −676.653 −676.600 −676.908
MA(E/ē)b 0.0034 0.0027 0.0023 0.0059 0.0056 0.0084

MA(E/ē)c 0.041 0.043 0.038 0.041 0.029 0.024 0.024 0.021

aReference 63.
bMean absolute error per electron relative to the corresponding (local) range-separated hybrid based on the exact exchange (EXX) hole.
cMean absolute error per electron relative to exact nonrelativistic total energy.
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parameter. The hyper-GGA approximation error is thus compara-
ble to the energy difference between different local range-separation
parameters. Therefore, we argue to take an alternative point of view
on the hyper-GGA approximation to a local range separation hybrid:
One should rather consider it a range-separated hybrid motivated
definition of a different functional, i.e., of a hyper-GGA, than an
approximation to a local range separation hybrid.

A closer look at Table I reveals that for atoms of smaller
nuclear charge the hyper-GGA approximation based on the BR
hole performs considerably better than the TPSS based approxima-
tions, whereas the TPSS hole approximation performs notably better
for atoms of larger nuclear charge. To investigate this further, we
compare the LR exchange energy densities,

eLR
x (r) = 2πn(r)∫ ∞

0
h̄x(r,u)u erf (ω(r)u)du, (48)

as well as the screened spherical-averaged exchange holes of these
approximations for the Be and Ca atoms in the top panels of Fig. 1.
Figure 1 demonstrates that the good performance of the hyper-GGA
approximation with respect to total energies is not based on error
cancellation, as the LR exchange energy density is also pointwise
well approximated by both hole models. This picture changes, how-
ever, when looking directly at the (LR-screened) spherical-averaged
exchange holes in comparison with the exact spherical-averaged
exchange hole,

h̄ex
x (r,u) = − ∑

σ=↑,↓
Nσ∑
i,j=1

φ∗iσ(r)φjσ(r)
n(r) ∮ φ∗jσ(r + u)φiσ(r + u)dΩu.

(49)

The lower panels of Fig. 1 show that while the shape of the BR hole
is in excellent agreement with the exact hole for the Be atom and in
good agreement for the Ca atom, the TPSS hole shape deviates sig-
nificantly from the exact hole for both atoms and oscillates around
it—even violating the negativity of the exchange hole.

These oscillations, which have already been reported in the
literature, are attributed to the fact that the gauge of the TPSS
exchange energy density differs from the conventional gauge of
the exact exchange energy density. To address this, gauge transfor-
mations have been proposed.59,66 However, after testing the gauge
transformation of Ref. 59, we find that while it improves the shape
of the corresponding exchange hole, it leads to large errors in
the total energy, especially for a local range-separation parame-
ter. The reason is that the gauge transformation also leads to a
change in the LR exchange energy density. When using a global
range-separation parameter, this change is expected to integrate
to roughly zero. However, as a local range-separation parameter
assigns a different screening to each point in space and a gauge
transformation can basically be understood as a mixing of differ-
ent points in space, the change in the exchange energy density due
to the gauge transformation no longer integrates to zero for its LR
component.

It is truly remarkable that despite these oscillations, the
screened TPSS hole integrates to a LR exchange energy density with
such good agreement due to error cancellation. This is no coinci-
dence but reflective of both the unscreened hole reproducing the
exact exchange energy densities and satisfying the correct norm. We
note, however, that locally significant errors are to be expected: This
can happen when the local range-separation parameter is such that
only part of the oscillation is captured and, therefore, the beneficial

FIG. 1. LR exchange energy densities eLR
x (r) (top) and LR-screened spherical-averaged exchange holes h̄x(r,u) (bottom) of the Be (left) and Ca (right) atoms for the

hyper-GGA approximations based on the BR (dashed-dotted lines) and TPSS (dashed lines) hole models in comparison with the exact (solid lines) densities and holes. The
two reference points r of holes (blue and red) are each indicated by vertically colored lines in the upper plots. The constant range-separation parameter ω = 0.6 a0

−1 is used
throughout. All quantities are evaluated on self-consistent LDA orbitals.
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averaging cannot take place. The TPSSrev hole, which is not shown
in Fig. 1, improves only slightly on the original TPSS hole with
respect to these shortcomings.

The error of the BR hole model for large nuclear charges may
also be understood in terms of the hole norm: As already discussed
in Sec. III A, the generalized BR hole model that we use in this work
is not normalized to −1. While this can be advantageous in some
situations, this is not the case for atoms, where the exchange hole
exhibits only one center. At each reference point, the local BR hole
norm is given by54,57

NBR
x (r) = − 8γ(r)

3πα3(r) . (50)

Aside of the asymptotic region of low energetic significance, we find
that the local BR norm is reasonably close to −1 with deviations of
less than 10%. Close to the nucleus, the local norm is greater than −1
for atoms with lower nuclear charge and tends to the proper norm
when the nuclear charge is increased. However, in the outer shell
regions, the local norm develops local minima that coincide with
the regions where LR exchange densities deviate the most. For Ca
(cf. Fig. 1), these minima are close to r = 0.25 a0 with a norm of−1.05 and close to r = 0.8 a0 with a local norm of −1.10. There-
fore, we conclude that the proper hole norm is vital to the quality
of the hyper-GGA approximation to a local range-separated hybrid.
However, when taking the alternative point of view that we have
advocated, i.e., when considering the local range-separated hybrid
and BR motivated hyper-GGA by itself, we have to note that the
error of the hyper-GGA approximation due to the hole norm devi-
ation for atoms of larger nuclear charge actually improves the total
energy relative to the exact total energy (cf. Table I).

IV. RESULTS AND DISCUSSION
In the following, we turn to a test set for atomization ener-

gies of dimers for which we can perform very accurate grid-based
all-electron Kohn-Sham calculations with DARSEC.68 The set is
small (H2, LiH, LiF, CO, N2, NO, OH, O2, FH, F2, CO, NO, and
FH), but comprises different bond types (single, double, and triple)
and, therefore (cf. Refs. 45 and 69), gives an impression of bind-
ing properties. The computational details including the experimen-
tal bond lengths and all numerical parameters can be found in
the supplementary material. All results presented in the follow-
ing are post-LDA, i.e., the energies are evaluated on self-consistent
LDA orbitals—cf. supplementary material for an assessment of the
influence of the reference orbitals.

Before discussing new local range-separation parameters, we
use this test set to once more assess the robustness of the hyper-GGA
approximation. In Fig. 2, we plot mean absolute errors (MAEs) in
atomization energies for this test set as a function of the ω-prefactor
η for the local range-separated hybrid based on ωK of Eq. (11), LRS-
ωK-LDA, in the hyper-GGA approximations build on the TPSS,
BR, and TPSSrev hole models. We first note that we obtain the
minimal MAE for the TPSS-based hyper-GGA approximation at
η = 0.135, the exact same value that was found by Krukau et al.15

to give the optimal MAE for standard enthalpies of formation in the
AE6 set70—a test set that has been designed to reproduce the errors
of the much larger G3 test set.71 This confirms the quality of our

FIG. 2. MAEs in atomization energies for the dimer test set as a function of the
prefactor η for the local range-separated hybrid based on ωK of Eq. (11), LRS-ωK-
LDA, in the hyper-GGA approximations build on the TPSS, BR, and TPSSrev hole
models. For η→ 0, all models reduce to LDA and its MAE of 25.7 kcal/mol.

test set as well as of the AE6 test set. While the TPSS and TPSSrev
based hyper-GGA approximations perform very similar with MAE
minima of 4.3 kcal/mol at η = 0.135 for TPSS and of 4.6 kcal/mol
at η = 0.140 for TPSSrev, the BR based hyper-GGA minimizes at
η = 0.084 with 7.6 kcal/mol. This again demonstrates that a
local range-separated hybrid within the hyper-GGA approximation
defines a distinct functional for each hole model. While the different
functionals are likely to behave similar on a qualitative level, they
likely differ quantitatively in thermochemistry.

We now turn to discuss the effect of eliminating the one-
electron self-interaction error and the treatment of spin for a local
range-separated hybrid. In Sec. II B, we have advocated from a the-
oretical point of view for a pole in ω([n]; r) to cure the one-electron
self-interaction error. The practical implication of such a pole, which
we find to be strongly interconnected with the treatment of spin, will
be assessed in the following with help of the dimer test set that was
introduced in the previous paragraph. Table II lists the atomization
energies across the dimer test set and their MAE for various local
range-separation parameters. The tabulated results are all based on
the hyper-GGA approximation using the TPSS hole because the pre-
vious results indicate that the TPSS hole performs best with respect
to energetics. Moreover, we have optimized and listed the parame-
ters (in the following referred to as c1 and c2) that give the best MAE
for each ω([n]; r).

We first stick to the spin scaling of exchange given by Eq. (33)
and change ωK of Eq. (11) by multiplication with the self-interaction
pole Θ(z) of Eq. (23), i.e.,

ωσ(r) = c1ωK
σ (r)Θ(zσ), (51)

where ωK
σ (r) is given by Eq. (37). Although having combined

the resulting local range-separation hybrid with the one-electron
self-interaction free Esic-LDA

c [n] of Eq. (22) for semilocal correla-
tion, the resulting MAE of 14.4 kcal/mol is considerably larger
than the 4.3 kcal/mol MAE of ωK without the self-interaction
pole. If ELDA

c [n] was used instead, the optimal MAE would dou-
ble to 25.6 kcal/mol. It is, therefore, important to remove the
one-electron self-interaction error in both parts of the functional
simultaneously.

As the introduction of the self-interaction pole to ω([n]; r) in
combination with the spin scaling of exchange is not satisfying, we
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TABLE II. Atomization energies in kcal/mol of diatomic molecules at experimental bond lengths and mean absolute error (MAE) across the test set. LRS energies are evaluated
post-LDA in the hyper-GGA approximation based on the original TPSS hole. Each ωσ is shown with its optimized parameters as listed. LRS-ω-sic-LDA uses the one-electron
self-interaction free Esic-LDA

c [n] of Eq. (22) for semilocal correlation instead of ELDA
c [n] that is used in LRS-ω-LDA. Experimental atomization energies (with zero point vibration

removed) are taken from Ref. 67.

LRS-ω-LDA LRS-ω-sic-LDA

Molecule LDA ωK
σ 1.08ωK

σΘ(zσ) 1.26 ωKΘ(zζ2) 1.00ωK
σΘ(zσζ2) 0.68ωK

σ [1 + ln(1 + 0.90 a0 ωK
σ )]Θ(zσζ2) Expt.

H2 112.9 115.4 143.6 126.0 117.4 111.4 109.5
LiH 60.8 62.0 64.0 72.7 65.6 60.0 58.0
Li2 23.8 21.3 8.9 31.7 26.5 23.0 24.7
LiF 156.3 138.6 129.1 143.3 141.6 136.6 138.3
CO 299.2 256.5 255.3 260.0 259.9 259.6 259.5
N2 268.0 228.3 212.6 239.4 230.9 229.8 228.3
NO 199.4 150.2 152.7 150.9 151.5 152.4 152.5
OH 123.2 95.9 95.3 96.2 96.3 94.6 107.1
O2 175.1 129.6 139.8 126.3 128.7 129.6 120.5
FH 162.0 143.3 147.5 146.6 144.8 141.1 141.1
F2 78.0 43.7 73.4 40.6 44.6 45.6 38.4

MAE 25.7 4.3 14.4 7.4 4.9 3.4

now explore the alternatives to handle the spin that we proposed
in Sec. II C. The first alternative to be considered is to use the same
local range-separation parameter based onωK for both spin channels
but weaken the self-interaction pole by using the one-spin-orbital
indicator zζ2 instead of the iso-orbital indicator z, i.e.,

ωσ(r) = c1ωK(r)Θ(zζ2). (52)

As detailed in Table II, this alternative treatment of spin halves
the (optimal) MAE to 7.4 kcal/mol—a decent value, but still dou-
ble the MAE of the original local range-separation parameter ωK.
We note that once more the combination of this particular local
range-separation parameter with the self-interaction corrected LDA
correlation in place of the standard LDA correlation gives an
improved MAE. This, however, is not necessarily so for this treat-
ment of spin. This becomes evident when considering a local range-
separation parameter with a different self-interaction pole: when
using the damped pole Θ2(zζ2), an optimal MAE of 7.0 kcal/mol
can be achieved in combination with the standard LDA correlation,
whereas the combination of this pole with self-interaction corrected
LDA correlation only yields 12.9 kcal/mol.

The second alternative treatment of spin to be considered is to
again use different range-separation parameters for each spin chan-
nel that only depend on the quantities of the respective spin channel
as implied by the spin scaling for exchange, but with the sole excep-
tion of the spin-polarization ζ. The spin-polarization, in turn, is
used, once more, to limit the self-interaction pole to one-spin-orbital
regions, i.e.,

ωσ(r) = c1ωK
σ (r)Θ(zσζ2). (53)

This compromise between the two former proposals gives an opti-
mal MAE of 4.9 kcal/mol, which is not far from the original

ωK—interestingly even the optimal prefactors coincide. We, thus,
conclude that when the spin is treated in the right way, one can
achieve good energetics in conjunction with the formal requirement
of one-electron self-interaction freedom.

Last but not least, we seek to incorporate the correct scaling to
the high-density limit. As proposed in Eq. (30), this can be achieved
via a logarithmic contribution, i.e., we use

ωσ = c1 ωK
σ [1 + ln (1 + c2 ωK

σ )]Θ(zσζ2). (54)

We note that in the absence of a self-interaction pole, this modi-
fication is not able to decrease the MAE significantly with respect
to the MAE of ωK. In the presence of this particular pole, however,
the logarithmic contribution yields a significant improvement, as
we obtain an optimal MAE of only 3.4 kcal/mol for c1 = 0.68 and
c2 = 0.90 a0 (cf. Table II). As visualized in Fig. 3, we find a set of
parameter tuples for c1 and c2 that yield a comparable result with
respect to the test set with an MAE close to or below 3.5 kcal/mol.
This new-found freedom might be exploited to optimize the local
range-separation parameter simultaneously for other observables,
e.g., reaction barriers. The remaining error in atomization energies
is essentially given by OH and F2. This variant is thus more accurate
for atomization energies than the original ωK. We reach this accu-
racy with the local range-separation parameter of Eq. (54) that sat-
isfies two additional exact constraints—freedom from one-electron
self-interaction as defined by Eq. (15) and the correct scaling to the
high-density limit in the sense of Eq. (13). This low MAE can only
be achieved in combination with a one-electron self-interaction free
semilocal correlation energy—here, Esic-LDA

c [n] of Eq. (22). For com-
pleteness, we note that this result is again specifically tied to the TPSS
hole used for the hyper-GGA approximation: The optimal MAE
for the TPSSrev hole is 3.7 kcal/mol (c1 = 0.47, c2 = 4.22 a0) and
only 7.4 kcal/mol for the BR hole (c1 = 0.67, c2 = 0.15 a0)—heat
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FIG. 3. Heat map of the mean absolute error (MAE) across the test set for atom-
ization energies of the local range-separation parameter ωσ (r) of Eq. (54) as a
function of its two parameters c1 and c2. The (red) band of low MAE is charac-
terized by ωσ (r) reducing to ωK

σ(r)Θ(zσζ2) near points of space where ωK
σ(r) is

close to 0.7 a0
−1.

maps for these hole models in analogy to Fig. 3 are presented in the
supplementary material.

To illustrate our local range-separation parameter, we present
in Figs. 4 and 5 plots of ω(r) of Eq. (54), labeled ωsic(r), in compar-
ison with the original ωK(r) for the CO molecule and the Li atom,
respectively. For the spin-saturated CO-molecule, ωsic(r) does not
change much compared to ωK(r). This is because the pole function
Θ(zσζ2) evaluates uniformly to a value of one as no spin-polarization
is present (ζ ≡ 0). While close to the nuclei, our new local range-
separation parameters tend to have higher maxima, these approach
a slightly lower value in the asymptotic regions, where both screen-
ing functions approach a system dependent constant governed by
the asymptotic decay of the density (cf. Ref. 15). A different situa-
tion is found in the case of the lithium atom, as shown in Fig. 5.
Due to the spin-polarization, the self-interaction pole Θ(zσζ2) comes
in effect in both spin-channels and leads to a divergent screening
function in the asymptotic region, i.e., to no screening and bare
exchange.

FIG. 4. Local range-separation parameters ωK(r) of Eq. (11) and ωsic(r) of Eq. (54)
along the bond axis of the CO molecule.

FIG. 5. Local range-separation parameters ωK(r) of Eq. (11) and ωsic(r) of Eq. (54)
for both spin channels (↑: majority-spin, ↓: minority-spin) for the lithium atom.

V. SUMMARY AND CONCLUSION
We have explored the concept of a local range-separation

parameter in the hyper-GGA approximation, extending earlier work
by Krukau et al.15 For computational reasons, the hyper-GGA
approximation is presently inevitable once a local range-separation
parameter is used. With the help of an analytical solid-angle inte-
gration for closed-shell atoms, we were able to assess the quality
and implications of the hyper-GGA approximation. We found that
the robustness of the approximation is closely tied to the semilo-
cal exchange hole model that it uses. Based on these findings, we
advocate to look at the hyper-GGA approximation not as an approx-
imation for evaluating a local range-separated hybrid, but instead
as a way to motivate, construct, and define a hyper-GGA whose
functional form is motivated by a range-separated hybrid. Addition-
ally, we formulated and applied an additional exact constraint in the
construction of local range-separation parameters. Freedom from
self-interaction suggested to abandon the straightforward use of the
exchange spin-scaling and explore the explicit inclusion of spin-
polarization. We demonstrated that a one-electron self-interaction
free local range-separation parameter with a correct high-density
scaling limit can give accurate atomization energies. Other prop-
erties related to the self-interaction error, e.g., the physical inter-
pretability of eigenvalues, are expected to benefit as well. How-
ever, testing this would require self-consistent calculations with local
range separation. This is a major task in itself to be addressed in
future work.

SUPPLEMENTARY MATERIAL
See the supplementary material for the analytic solid-angle

integration for closed-shell atoms and a detailed overview of the
TPSS, the TPSSrev, and BR hole models as well as their analytically
integrated screened representations.23,72,73,75 Furthermore, we report
computational details of the atomization energies calculations with
DARSEC,68 show heat maps in analogy to Fig. 3 for the TPSSrev
and BR hole models, and assess the influence of the use of different
orbitals in the non-self-consistent calculations.74
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I. SCREENED EXCHANGE HOLE MODELS IN DETAIL

A. Screened TPPS model

The spherically symmetric TPSS exchange hole model1 at reference point r is defined via

hTPSS
x (n, s, z, ex, u) = nJTPSS

x (n, s, z, eex
x , y) (S.1)

by the associated dimensionless hole JTPSS
x as a function of the dimensionless inter-electron separation y = kFu with

u = |r − r′|. The hole is parametrized by s = |∇n|/
[
2(3π2)1/3n4/3] and z = τW/τ alongside the density n and the

exact exchange energy density eex
x – all evaluated at the reference point:

JTPSS
x (n, s, z, ex, y) =

(
− A

y2
1

1 + (4/9)Ay2 +
{A

y2 + B + C [1 + F(s, z)] y2

+E [1 + G(n, s, z, ex)] y4 + K(n, s, z, ex)y6
}

e−Dy2
)

exp
[
−s2H(s, z)y2] (S.2)

with A = 1.016 114 4, B = −0.371 708 36, C = −0.077 215 461, D = 0.577 863 48, and E = −0.051 955 731. Moreover,
the functions F , G, K, and H are defined as follows:

H(s, z) = z5 c1 + c2s2 + c3s4

1 + c4s4 + c5s5 + c6s6 , (S.3)

with c1 = 0.122 499, c2 = 0.121 785, c3 = 0.066 065, c4 = 0.187 440, c5 = 0.001 208 24, c6 = 0.034 718 8;

F(s, z) = 1
2C

[
L(s)

(
1
z

+ 1
)

− 1
5 − s2H

]
(S.4)

with

L(s) = 1
3

s2

(1 + cs6)1/3 (S.5)

and c = 0.000 12;

K(n, s, z, ex) =
[
−9

8

(
ex

Axn4/3

)
− d2 +

(
3π

4 + a

)
1

bd3
1

− d3

]
d4

1
3

(
1 − d1d4

3b

)−1
(S.6)

with

d1(s, z) = D + Hs2 , (S.7)

d2(s, z) =
[
CD + BD2 + 2E + CDF + CHs2 + 2BDHs2 + CFHs2 + BH2s4] /(2d3

1) , (S.8)

d3(s, z) = A
2

[
ln
(Hs2

d1

)
− exp

(
9Hs2

4A

)
Ei
(

−9Hs2

4A

)]
, d4(s, z) = 105

32
1
d4

1

√
π

d1
, (S.9)

a(s, z) =
√

π
[
15E + 6C(1 + F)d1 + 4Bd2

1 + 8Ad3
1
]

/(16d
7/2
1 ) − 3π

√
A

4 exp
(

9Hs2

4A

)[
1 − erf

(
3s

2

√
H
A

)]
, (S.10)
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and

b(s, z) = 15
√

π

16d
7/2
1

; (S.11)

G(s, z, ex) = 1
Eb

{
−3π

4 − a − Kd4

}
. (S.12)

To calculate the screened interaction, one has to evaluate the integral

ITPSS(n, s, z, ex, ω) =
∫ ∞

0
yJTPSS

x (n, s, z, ex, y) erf
(

ω

kF
y

)
dy . (S.13)

In order to give an analytic expression for this integral, it is necessary to approximate

− A
y

1
1 + (4/9)Ay2 + A

y
exp
(
−Dy2) , (S.14)

as proposed in Ref. 2, with

fit(y) = a1y e−b1y2
+ a2y e−b2y2

+ a3y2 e−b3y2
+ a4y2 e−b4y2

+ a5y3 e−b5y2
(S.15)

where a1 = −0.000 205 484, b1 = 0.006 601 306, a2 = −0.109 465 240, b2 = 0.259 931 140, a3 = −0.064 078 780,
b3 = 0.520 352 224, a4 = −0.008 181 735, b4 = 0.118 551 043, a5 = −0.000 110 666, b5 = 0.046 003 777. Moreover, we
note the following integrals

I1(a, k) =
∫ ∞

0
y exp(−ay2) erf(ky) dy = k

2a
√

a + k2
, (S.16)

I2(a, k) =
∫ ∞

0
y2 exp(−ay2) erf(ky) dy = 1

2a
√

π

[
k

a + k2 + arctan(k/
√

a)√
a

]
, (S.17)

I3(a, k) =
∫ ∞

0
y3 exp(−ay2) erf(ky) dy = 3ak + 2k3

4a2 (a + k2)3/2 , (S.18)

I5(a, k) =
∫ ∞

0
y5 exp(−ay2) erf(ky) dy = 15a2k + 20ak3 + 8k5

8a3 (a + k2)5/2 , (S.19)

I7(a, k) =
∫ ∞

0
y7 exp(−ay2) erf(ky) dy =

3
(
35a3k + 70a2k3 + 56ak5 + 16k7)

16a4 (a + k2)7/2 , (S.20)

and therefore

ITPSS(n, s, z, ex, ω) = B I1(D + s2H, ω/kF) + C(1 + F)I3(D + s2H, ω/kF) + E(1 + G)I5(D + s2H, ω/kF)
+ K I7(D + s2H, ω/kF) + a1I1(b1 + s2H, ω/kF) + a2I1(b2 + s2H, ω/kF)

+ a3I2(b3 + s2H, ω/kF) + a4I2(b4 + s2H, ω/kF) + a5I3(b5 + s2H, ω/kF) . (S.21)

Consequently, we obtain

Ehyper-GGA,TPSS,LR
x [n, ω] = 4π

∫
n2

k2
F

∫ ∞

0
JTPSS

x (n, s, z, ex, y) erf
(

ω

kF
y

)
y dy d3r

= Ax

∫
n4/3

[
−8

9ITPSS(n, s, z, ex, ω)
]

d3r (S.22)

and therefore the hyper-GGA enhancement function F of Eq. (40) is given by

F TPSS(n, s, z, ex, ω) = −8
9ITPSS(n, s, z, ex, ω) (S.23)

for the TPSS exchange hole model.
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B. Screened TPSSrev model

A revised TPSS based spherical-averaged exchange hole model3 is given by

hTPSSrev
x (n, s, z, ex, u) = nJTPSSrev

x (n, s, z, eex
x , y) (S.24)

where again y = kFu and the shape function is defined by

JTPSSrev
x (n, s, z, ex, y) =

{
− 9

4y4
[
1 − exp(−Ay2)

]
+
[

9A
4y2 + B + C(s, z)y2 + G(n, s, z, ex)y4

+K(n, s, z, ex)y6
]
e−Dy2

}
exp
[
−H(s, z)y2] (S.25)

with A = 0.757211, B = −0.106364, and D = 0.609650. Moreover,

C(s, z) = 1
8
(
4L + 3A3 + 9A2H − 9AD2 − 18ADH + 8Bλ

)
, (S.26)

G(n, s, z, ex) = −63
8 λ3

[(
ex

Axn4/3

)
+ A ln

(
β

λ

)
+ H ln

(
β

H

)]

− 24
5 λ7/2

(
3A√

H +
√

β
− √

π

)
+ 603

40 Aλ3 − 19
10Bλ2 − 11

10Cλ , (S.27)

K(n, s, z, ex) = 8
35λ9/2

(
3A√

H +
√

β
− √

π

)
− 12

35Aλ4 − 8
105Bλ3 − 4

35Cλ2 − 2
7Gλ , (S.28)

with λ = D + H, β = A + H,

L(s, z) = 1
2 erfc

(
s2 − s2

0
s0

)[
−1

3

(
1
2

s2

z
− 9

10 + 5
6s2
)]

+
[
1 − 1

2 erfc
(

s2 − s2
0

s0

)](
1
5 − 2

27s2
)

, (S.29)

and

H(s, z) = z3 1
2 erfc

(
s2 − s2

0
s0

)
h0 + h1s2 + h2s4 + h3s6

d0 + d1s2 + d2s4 + d3s6 +
[
1 − 1

2 erfc
(

s2 − s2
0

s0

)]
p1s2 + p2s4 + p3s6

1 + p4s2 + p5s4 + p6s6 (S.30)

with s0 = 6 and h0 = 0.0060, h1 = 2.8916, h2 = 0.7768, h3 = 2.0876, d0 = 13.696, d1 = −0.2219, d2 = 4.9917,
d3 = 0.7972, p1 = 0.0302, p2 = −0.1035, p3 = 0.1272, p4 = 0.1203, p5 = 0.4859, p6 = 0.1008.

Unlike for the original TPSS hole, the screening integral of the revised TPSS hole can be calculated analytically4

as

I0(H, λ, β, k) =
∫ ∞

0
y

{
− 9

4y4
[
1 − exp(−Ay2)

]
+ 9A

4y2 e−Dy2
}

exp(−Hy2) erf(ky) dy

= 9
4

[
k
(√

H + k2 −
√

β + k2
)

+ H ln
(

k +
√

H + k2

k +
√

λ + k2

)
− β ln

(
k +

√
β + k2

k +
√

λ + k2

)
− H

2 ln
(H

λ

)
+ β

2 ln
(

β

λ

)]
(S.31)

and hence

ITPSSrev(n, s, z, ex, ω) = I0(H, λ, β, ω/kF) + B I1(λ, ω/kF) + CI3(λ, ω/kF) + GI5(λ, ω/kF) + K I7(λ, ω/kF) (S.32)

with I1, I3, I5, and I7 as defined in the previous section. Thus, the hyper-GGA enhancement function F of Eq. (40)
is given by

F TPSSrev(n, s, z, ex, ω) = −8
9ITPSSrev(n, s, z, ex, ω) (S.33)

for the TPSSrev exchange hole model.
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C. Screened BR model

An alternative spherical-averaged exchange hole model is given by the generalized5,6 Becke-Roussel hole model7

hBR
x (n, α, β, γ, u) = nJBR

x (α, β, γ, y) (S.34)

as a function of the dimensionless inter-electron separation y = kFu and the associated dimensionless hole,

JBR
x (α, β, γ, y) = − γ

2α2βy

[
(α|β − y| + 1) exp(−α|β − y|) − (α|β + y| + 1) exp(−α|β + y|)

]
. (S.35)

The BR hole is a generalized version of the exact hydrogen exchange hole that is reparametrized by α(r), β(r) and
γ(r). At each reference point r these parameters are determined such that exact conditions of Eqs. (41)-(43) are met.
With the help of a new variable

x = αβ, (S.36)

which is uniquely but implicitly defined by

x − 2
x2

[
exp(x) − 1 − x

2

]
= − 3

π

Q

n3 eex
x =: ux , (S.37)

it follows

γ = 1
2 exp(x) , (S.38)

α2 = 6Q

k2
F n

x

x − 2 , (S.39)

and β = x/α. Equation (S.37) is typically solved numerically for x by bisection.8 For ux < 0 an initial bisection
interval ]xl, xr[ is given by xl = 0 and xr = 2, whereas x can be found within xl = 2 + ln(1 + ux/2) and xr =
2 + ln(1 + ux) + ln[1 + ln(1 + ux)] for ux > 0.

To calculate the screened interaction given by this model, the following integral is required:

IBR
x =

∫ ∞

0
y JBR

x erf(ηy) dy = − γ

4α3βη2

{
8η2 erf(βη) + exp

(
α2

4η2

)

×
[(

α2 − 4η2 − 2αβη2) erfc
(

α

2η
− βη

)
exp(−αβ) −

(
α2 − 4η2 + 2αβη2) erfc

(
α

2η
+ βη

)
exp(αβ)

]}

= − γ

α2
1

xz2

{
2z2 erf(z/2) + e(x/z)2

[(
x2 − z2 − xz2/2

)
erfc

(x

z
− z/2

)
e−x −

(
x2 − z2 + xz2/2

)
erfc

(x

z
+ z/2

)
ex
]}

= − γ

α2
1

xz2

{
2z2 erf(z/2) + e−z2/4

[(
x2 − z2 − xz2/2

)
E
(x

z
− z

2

)
−
(
x2 − z2 + xz2/2

)
E
(x

z
+ z

2

)]}
(S.40)

with η = ω/kF, x = αβ, z = 2βη, and the shortcut

E(x) = erfc(x)ex2
, (S.41)

which has the property E(−x) = 2ex2 − E(x). Thus,

E
(x

z
± z

2

)
e−z2/4 = erfc

(x

z
± z/2

)
exp
[(x

z

)2
± x

]
. (S.42)

As for obvious reasons the numerical implementation via the right-hand side of this expression is highly problematic,
we recommend to use the following approximation8 for x/z ± z/2 > 0:

E(x) ≈ t(x) exp
{ 9∑

n=0
an [t(x)]n

}
(S.43)
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with

t(x) = 2
2 + |x| (S.44)

and a0 = −1.26551223, a1 = 1.00002368, a2 = 0.37409196, a3 = 0.09678418, a4 = −0.18628806, a5 = 0.27886807,
a6 = −1.13520398, a7 = 1.48851587, a8 = −0.82215223, a9 = 0.17087277. For x/z − z/2 < 0, on the other hand, we
use the relation

E
(x

z
− z

2

)
e−z2/4 = 2 exp

[(x

z
− z

2

)2
− z2

4

]
− E

(
−x

z
+ z

2

)
e−z2/4 = 2 exp

[(x

z

)2
− x

]
− E

(
−x

z
+ z

2

)
e−z2/4 (S.45)

and afterwards evaluate E on the right-hand side via Eq. (S.43), while the first term is mathematically benign as by
assumption the the argument of the exponential function is negative.

Consequently, we obtain

Ehyper-GGA,BR,LR
x [n, ω] = 4π

∫
n2

k2
F

∫ ∞

0
JBR

x (n, s, z, ex, y) erf
(

ω

kF
y

)
y dy d3r

= Ax

∫
n4/3

[
−8

9IBR(n, s, ∇2n, τ, ex, ω)
]

d3r (S.46)

and the hyper-GGA enhancement function F of Eq. (40) is given by

F BR(n, s, ∇2n, τ, ex, ω) = −8
9IBR(n, s, ∇2n, τ, ex, ω) (S.47)

for the BR exchange hole model.

II. ANALYTIC SOLID-ANGLE INTEGRATION

We look to simplify Eex,LR
x [n] of Eq. (3) in case of a spin-saturated, closed-shell system by performing both solid-

angle integrations analytically. Due to the closed shells the sum over all occupied orbitals can be written as
N∑

i=1
ϕi(r) =

lmax∑

l=0

Nl∑

n=1
Rl

n(r)
l∑

m=−l

Ylm(θ, φ) , (S.48)

where N is the number of occupied orbitals per spin channel, i.e., half of the number of electrons, lmax is the highest
occupied angular quantum number l, Nl is the number of occupied states with quantum number l, Rl

n(r) is the radial
function associated with the n-th state for quantum number l (i.e., n is the principle quantum number), m is the
magnetic quantum number, and Ylm(θ, φ) notates the spherical harmonic of degree l and order m. This relation in
conjunction with the spherical harmonic addition theorem

l∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ) = 2l + 1

4π
Pl(cos δ) , (S.49)

where δ is the intermediate angle between r and r′, and Pl(x) is the Legendre polynomial of degree l, allows us to
simplify Eq. (3):

Eex,LR
x [n] = −

N∑

i,j=1

∫∫
ϕ∗

i (r)ϕ∗
j (r′)ϕj(r)ϕi(r′)
|r − r′| erf[ω(r)|r − r′|] d3r′ d3r

= −
lmax∑

l1,l2=0

Nl1∑

n1=1

Nl2∑

n2=1

l1∑

m1=−l1

l2∑

m2=−l2

∫∫
Rl1

n1(r)Rl2
n2(r′)Rl2

n2(r)Rl1
n1(r′)

|r − r′|

× erf[ω(r)|r − r′|] Y ∗
l1m1(θ, φ)Y ∗

l2m2(θ′, φ′)Yl2m2(θ, φ)Yl1m1(θ′, φ′) d3r′ d3r

= −
lmax∑

l1,l2=0

Nl1∑

n1=1

Nl2∑

n2=1

(2l1 + 1)(2l2 + 1)
(4π)2

∫∫
Rl1

n1(r)Rl2
n2(r′)Rl2

n2(r)Rl1
n1(r′)

|r − r′|

× erf[ω(r)|r − r′|] Pl1(cos δ)Pl2(cos δ) d3r′ d3r . (S.50)
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In order to perform the angular integration in spherical coordinates the screened Coulomb kernel has to be represented
by its Legendre expansion,

erf[ω(r)|r − r′|]
|r − r′| =

∞∑

l=0
cl(ω(r), r, r′) Pl(cos δ) , (S.51)

in analogy to the well known relation for bare kernel,9

1
|r − r′| = 1√

r2 + r′2 − 2rr′ cos δ
=

∞∑

l=0

rl
<

rl+1
>

Pl(cos δ) , (S.52)

where r> = max(r, r′) and r< = min(r, r′). Next, for each r in the integral in the last line of Eq. (S.50) the spherical
coordinate system used for the r′-integration can always be chosen such that z′-axis points along the r-direction due to
symmetry and, therefore, δ becomes the polar angle of r′-integration. Subsequently, this integration can be performed
with the help of the relation

∫ 1

−1
Pk(x) Pl(x) Pm(x) dx = 2

(
k l m
0 0 0

)2
. (S.53)

When considering only atoms up to the p-shell, all of the Wigner 3-j symbols on the right-hand side of this relation
vanish with the exception of

(
0 0 0
0 0 0

)2
= 1,

(
0 1 1
0 0 0

)2
= 1

3 ,

(
1 1 2
0 0 0

)2
= 2

15 (S.54)

and their cyclic permutations, which yield the same squared value. Consequently, we have calculated the Legendre
expansion coefficients,

cl(ω(r), r, r′) = 2l + 1
2 ×

∫ 1

−1
Pl(x)

erf
[
ω(r)

√
r2 + r′2 − 2rr′x

]
√

r2 + r′2 − 2rr′x
dx (S.55)

only up to l = 2, as this is sufficient for this work. These coefficients have the form

cl(ω, r, r′) = [hl(ωr>, ωr<) − hl(ωr>, −ωr<)]
(2r>r<)l+1 ω2l+1 (S.56)

with

h0(x>, x<) = e−x2
+

√
π

+ x+ erf(x+) , (S.57)

h1(x>, x<) =
[
2(x2

> − x>x< + x2
<) − 1

] e−x2
+

√
π

+ 2(x3
> + x3

<) erf(x+) , (S.58)

and

h2(x>, x<) = 4(x5
> − x5

<) erf(x+)

+
[
4
(
x4

> − x3
>x< + x2

>x2
< − x>x3

< + x4
<

)
− 2

(
x2

> − 3x>x< + x2
<

)
+ 3
]e−x2

+
√

π
, (S.59)

where x+ = x> + x<. It is straightforward to show that this expansion recovers the correct limits: (i) cl → 0 and
thus LR vanishes as ω → 0; (ii) cl → rl

</rl+1
> and thus LR reduces to exact exchange as ω → ∞, cf. Eq. (S.52).

Insertion of the Legendre expansion of Eq. (S.51) into Eq. (S.50) and the application of relation (S.53) as well as
the remaining trivial angle integrations then yield the final result already presented in Eq. (45) of the article. In case
of a calculation up to the p-shell, this result can be evaluated further to

Eex,LR
x [n, ω] = Γ0,0,0 + Γ1,0,1 + Γ0,1,1 + 3 Γ1,1,0 + 6

5 Γ1,1,2 . (S.60)

with

Γl1,l2,l = −
Nl1∑

n1=1

Nl2∑

n2=1

∫∫
Rl1

n1(r)Rl2
n2(r′)Rl2

n2(r)Rl1
n1(r′)cl(ω(r), r, r′)r2r′2 dr′ dr . (S.61)
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III. ATOMIZATION ENERGIES OF DIATOMIC MOLECULES

Supplementary material to the atomization energies of Tab. II. The calculations were performed on a real-space
prolate spheroidal grid with Darsec10, an all-electron code for single atoms or diatomic molecules with occupation
numbers following from a Fermi-Dirac distribution with a temperature of 1 K.

LRS-ω-LDA
Molecule ωK

σ @LDA ωK
σ @PBE ωK

σ @EXX Expt.
H2 115.4 115.4 115.4 109.5
LiH 62.0 62.1 62.0 58.0
Li2 21.3 21.3 21.7 24.7
LiF 138.6 138.8 137.1 138.3
CO 256.5 256.9 256.5 259.5
N2 228.3 228.9 229.0 228.5
NO 150.2 150.6 150.3 152.5
OH 95.9 96.0 91.0 106.4
O2 129.6 130.0 128.3 120.5
FH 143.3 143.2 142.4 141.1
F2 43.7 43.7 45.4 38.4
MAE 4.3 4.3 4.8

(a) Assessment of the influence of the reference orbitals.

System RAB (a0) Nµ Nν Rmax (a0)
H2 1.4011 79 103 19.49
LiH 3.0139 79 103 19.59
Li2 5.0518 79 103 19.65
LiF 2.9553 79 103 19.57
CO 2.1322 79 103 19.55
N2 2.0744 103 133 19.65
NO 2.1743 79 103 19.55
OH 1.8324 79 103 19.53
O2 2.2817 73 103 19.56
FH 1.7327 79 91 19.52
F2 2.6681 73 91 19.57
H 79 91 19.54
Li 79 91 19.54
C 73 91 19.54
N 73 109 14.65
O 73 103 19.50
F 73 91 19.50

(b) Numerical parameters

TABLE S.I. (a) Assessment of the influence of the input non-self consistent orbitals for LRS-ω-LDA with ωK
σ of Eq. (11) in

the hyper-GGA approximation based on the original TPSS hole, cf. column 3 of Tab. II. The notation @LDA indicates that
LDA orbitals were used, @PBE indicates that PBE orbitals were used, etc. The exact exchange (EXX) reference orbitals were
generated from EXX potentials evaluated in the KLI-approximation11. (b) Numerical parameters as listed: RAB interatomic
distance; Nµ, Nµ, number of grid points along the µ, ν directions respectively; Rmax length of the semi-major axis. All single
atoms where calculated with RAB = 2.0 a0.
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FIG. S.1. Heat map of the mean absolute error (MAE) across the test set for atomization energies of the local range- separation
parameter ωσ(r) of Eq. (54) as a function of its two parameters c1 and c2 in analogy to Fig. 3 of the article but the hyperGGA-
approximation evaluated with the (a) TPSSrev and (b) BR hole model respectively.
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