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Summary 

 

European, temperate terrestrial ecosystems are shaped and managed by humans since millennia. 

While grasslands were consistently managed at low intensities over centuries, forest 

management changed multiple times over time and each change had an immense impact on the 

structure of forest ecosystems. Since the last decades, the management in both biomes is 

changing, but in opposite directions. Today, highly diverse grasslands are threatened by land-

use intensification, while reciprocally, forests are transformed from intensively used even-aged 

monocultures to uneven-aged multi-species stands in order to promote biodiversity. How 

species communities are affected by management and how they respond to changes, are key 

questions in ecology. But especially for some keystone taxa such as ants which are known to 

be responsive to management, they are still not sufficiently understood. In grasslands for 

example, the underlying mechanisms leading to a decrease in species richness as well as 

changes in functional community composition remain elusive. 

In forests, management has been shown to have an overall negative effect on ant communities 

in tropical, and a positive effect in boreal forests. However, in temperate forests, it is unclear 

what components of forest management affect ant communities and how.  

In my first manuscript, I studied the direct and indirect effects of land-use intensification on ant 

communities in temperate grasslands which were sampled on 110 grassland plots in three 

regions in Germany. The sampled grasslands are used as meadows or pastures, being mown, 

grazed or fertilized at different intensities. I found that ant species richness, functional trait 

space of communities and abundance of nests decreased with increasing land-use intensity. The 

land-use practice most harmful to ants was mowing, followed by heavy grazing by cattle. 

Fertilization did not strongly affect ant species richness. Grazing by sheep increased ant species 

richness. The effect of mowing differed between species and most rare species occurred mainly 

in plots managed at low intensity. The results show that mowing less frequently or later in the 

season would retain a higher ant species richness – similarly to most other grassland taxa. The 

transformation from pastures to intensively managed meadows and especially mowing directly 

affects ants via the destruction of nests and indirectly via loss of grassland heterogeneity 

(reduced plant species richness) and increased soil moisture by shading of fast-growing plant 

species.  

In my second manuscript, I explored the direct and indirect effects of forest management on the 

taxonomic and functional diversity of ant communities in 150 temperate forest stands in three 

regions in Germany. I analyzed the effects of 18 variables, including variables of forest 



2 

 

management, forest structure, arthropod diversity, and biomass, as well as abiotic factors, on 

ant species richness, abundance, and functional trait diversity. Main direct effects of forest 

management on ant abundance and species richness were caused by tree species selection, 

measured as dominant tree species. The main positive indirect effect was mediated by a reduced 

canopy cover with an increasing proportion of oak and pine, which results in a higher 

temperature amplitude. Functional diversity, based on life-history traits, was affected positively 

by tree harvesting and negatively by structural complexity. This study shows that forest 

management practices in temperate forests strongly impact the ant community structure. This 

can be beneficial for ants if management reduces the canopy cover, either by tree harvesting or 

by changing the tree species composition towards shade-intolerant tree species. To promote ant 

diversity as key taxon for maintaining ecosystem processes in forest ecosystems, I suggest 

integrating forest stands with more open and warmer conditions in future management 

strategies. 

In my first two manuscripts, I could show that ant communities respond to changes in habitat 

structures and that species with certain (morphological and life-history) traits are more sensitive 

towards management intensification than others. Thus, the question arises whether traits can be 

used to predict how a species is affected by changes in habitat structures. Or in a broader view 

and based on other studies: how reliable are morphological traits as functional traits? 

I try to answer this question in my third manuscript where I investigated the running speed of 

differently sized ants (body size and leg length) along a surface rugosity gradient which 

represents different habitat structures. In general, it is thought that leg length is a good predictor 

for running speed and by theory, similarly sized species should respond similarly towards 

changes. But the opposite was the case and leg length was not a good predictor for running 

speed. In addition, similar-sized species responded idiosyncratically to high surface rugosity, 

which might be related to species-specific habitat preferences. This hampers precise predictions 

on how species might respond to changing habitats, based on morphological traits exclusively. 

Based on the findings of all three manuscripts, it is possible to make predictions of how future 

management will change species communities, but species-specific forecasts remain difficult. 
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Zusammenfassung 

 

Die terrestrischen Ökosysteme werden in Europa seit Jahrtausenden vom Menschen 

bewirtschaftet und geformt. Während Wiesen und Weiden über Jahrhunderte durchgängig mit 

geringer Intensität bewirtschaftet wurden, veränderte sich die Forstwirtschaft mehrfach mit der 

Zeit und jede Veränderung hatte immensen Einfluss auf die Struktur und Ökosysteme der 

Wälder. In den letzten Jahrzehnten veränderte sich die Bewirtschaftung in beiden Biomen, 

allerdings in unterschiedliche Richtungen. Grasflächen, die eine enorme Diversität aufweisen, 

werden nun durch eine intensivierende Bewirtschaftung bedroht. Gleichzeitig werden Wälder 

von intensiv genutzten Monokulturen zu naturnäheren, baumartenreicheren Wäldern verändert, 

um die Biodiversität in ihnen zu schützen und zu erhöhen. 

Wie Artgemeinschaften von Wald- und Landbewirtschaftung beeinflusst werden und wie sie 

auf daraus resultierende Veränderungen reagieren ist eine noch immer nicht ausreichend 

verstandene Grundfrage in der Ökologie. Dies gilt besonders für Schlüsselgruppen, wie etwa 

Ameisen von denen bekannt ist, dass sie auf Landnutzung reagieren. Welche genauen 

Mechanismen zu einer Reduzierung vom Artenreichtum oder zu Veränderungen in 

Artgemeinschaften führen, ist jedoch nicht ausreichend erforscht. Im Wald ist der Effekt von 

Forstwirtschaft auf Ameisen variabel und ist in den Tropen eher negativ und in der borealen 

Zone eher positiv. Welchen Effekt Forstwirtschaft in der gemäßigten Zone hat, ist bisher nicht 

bekannt. 

In meinem ersten Manuskript erforsche ich die direkten und indirekten Effekte von 

intensivierter Landnutzung auf Ameisengemeinschaften in den gemäßigten Breiten, die auf 110 

Grasflächen in drei Regionen in Deutschland gesammelt wurden. Diese Grasflächen werden als 

Wiesen und Weiden bewirtschaftet und verschieden intensiv gemäht, gedüngt und beweidet. 

Ich fand heraus, dass der Artenreichtum, die Variabilität der funktionellen Merkmale einer 

Gemeinschaft, sowie die Anzahl der Nester sich mit intensiverer Landnutzung verringert.  

Häufiges Mähen hatte die stärksten, negativen Einflüsse, gefolgt von Überweidung durch 

Rinder. Düngung hatte keinen direkten Einfluss auf Ameisen. Beweidung durch Schafe erhöhte 

hingegen den Artenreichtum. Der Effekt vom häufigen Mähen variierte zwischen den 

Ameisenarten und besonders die seltenen Arten wurden zumeist nur auf wenig bewirtschafteten 

Flächen gefunden. Die Ergebnisse zeigen, dass Ameisen, ähnlich wie andere 

Organismengruppen im Grasland, von einer weniger häufigen oder eine zeitlich spätere Mahd 

stark profitieren würden. Die Umwandlung von Weiden in intensiv genutzte Fettwiesen sowie 

das Mähen hat direkte, negative Effekte durch die Zerstörung der Nester und indirekte Effekte 
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durch den Verlust von Heterogenität (durch reduzierte Pflanzen-Diversität) und einer höheren 

Bodenfeuchtigkeit durch schnellwachsende Grasarten. 

In meinem zweiten Manuskript erforsche ich die direkten und indirekten Effekte von 

Forstwirtschaft auf den Artenreichtum und die funktionelle Diversität auf Ameisen in 150 

Waldflächen, wieder aus drei Regionen in Deutschland. Ich analysiere den Effekt von 18 

Variablen, unter anderem Forstwirtschaft, Waldstruktur, Diversität und Biomasse von 

Arthropoden, sowie auch abiotische Faktoren, auf die Ameisen-Diversität (Artenreichtum, 

Abundanz und funktionelle Diversität).  

Die stärksten direkten Effekte von Forstwirtschaft auf die Anzahl an Ameisenarten und 

Individuen hat die Auswahl der Baumart, die im Wald vorherrscht. Dabei hatte den größten, 

positiven indirekten Effekt hat eine geringe Baumkronenabdeckung, etwa durch einen hohen 

Anteil an Eichen und Kiefern, die eine tagsüber erhöhte Temperatur im Wald ermöglichen. Das 

Ausdünnen des Waldes, sowie eine weniger komplexe Waldstruktur führte zu einer Erhöhung 

der funktionellen „life-history“-Diversität. Diese Studie zeigt, dass Forstwirtschaft einen 

starken Einfluss auf die Struktur von Ameisengemeinschaften hat. Dieser Einfluss kann sich 

positiv auf Ameisen auswirken, wenn er zu einem lichteren Wald führt, etwa durch das 

Herausnehmen von einzelnen Bäumen oder dem Anpflanzen von Lichtbaumarten. Um die 

Diversität von Ameisen und ihren Einfluss auf das Ökosystem Wald zu fördern, empfehle ich 

die Managementstrategien, die zu einem lichteren und wärmeren Wald führen. 

In meinen ersten beiden Manuskripten konnte ich zeigen, dass Ameisengemeinschaften auf 

Änderungen in der Habitatstruktur reagieren und das Arten mit bestimmten (morphologischen 

sowie life-history) Merkmalen sensibler für Veränderungen sind als andere. Daraus resultierte 

die Frage ob man bestimmte Merkmalsausprägungen dazu nutzen kann um die Reaktion einer 

Art auf Veränderungen in der Habitatstruktur abzuschätzen. Oder grober gesagt: Kann man 

einem morphologischen Merkmal eine klare Funktion zuordnen? 

Diese Frage versuche ich in meinem dritten Manuskript zu beantworten. In diesem vergleiche 

ich die Laufgeschwindigkeit verschieden großer Ameisenarten (Körpergröße und Beinlänge) 

auf unterschiedlich strukturierten Oberflächen, die verschieden komplexe Habitate darstellen 

sollen. Die Beinlänge eines Tieres ist generell als guter Prädikator für die Laufgeschwindigkeit 

angesehen und theoretisch sollten gleich große Arten auch ähnliche Reaktionen auf 

Veränderungen zeigen. Allerdings war das Gegenteil der Fall und die Beinlänge erwies sich als 

kein guter Prädiktor für Laufgeschwindigkeit. Zudem reagierten gleichgroße Arten sehr 

unterschiedlich auf zunehmende Oberflächenstruktur, die auf artspezifische Unterschiede in 

den bevorzugten Habitaten zurückzuführen ist. Diese Erkenntnis zeigt, dass es schwierig ist 
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genaue Erwartungen zu formulieren wie ein Tier auf Habitatveränderung reagiert, wenn man 

nur dessen Morphologie betrachtet. Basierend auf den Erkenntnissen aller drei Manuskripte ist 

es möglich abzuschätzen wie zukünftige Bewirtschaftung Ameisengemeinschaften 

beeinflussen wird, jedoch sind artgenaue Vorhersagen nur schwer möglich.  
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Introduction 

 

Grassland management in temperate Europe 

 

European terrestrial ecosystems are shaped and managed by humans since millennia. Naturally, 

about 95% of the temperate forest zone of Central Europe would be covered by forest, 

dominated by deciduous trees, and only interrupted by marshes, bogs or rocky areas (Ellenberg 

1996, Rüther and Walentowski 2008). But today, undisturbed regions with primeval forests are 

rare and very limited in size and the rest is covered with grassland, farmland, urban or rural 

areas.  

Based on pollen studies, mankind started changing forest structures and progressively cutting 

down the closed forests to transform land into fields and meadows approximately 5000 years 

ago (Küster 1996, Rüther and Walentowski 2008). The created temperate grasslands were 

mostly managed by grazing of domestic livestock and haymaking (Poschlod and WallisDeVries 

2002, Habel et al. 2013). The need for grazers to sustain temperate grasslands is the reason why 

this ecosystem is often named “semi-natural” (Hejcman et al. 2013).  

Independently of their origin, temperate grasslands were managed at low intensities for 

millennia and accumulated a huge amount of biodiversity. Especially vascular plant species 

richness can be extremely high at small spatial scales with up to 76 species within on one square 

meter (Sammul et al. 2003) or 98 species on 10 square meters (Dengler et al. 2012). This 

exceeds plant diversity in any other ecosystem (at least at this small spatial scale) (Wilson et al. 

2012). Along with plant diversity, temperate grasslands harbor a very high arthropod diversity, 

which relies on the vegetation as habitat and nutritional base of arthropod food webs (Murdoch 

et al. 1972, Tilman 1986). The grasslands were managed extensively for centuries as mostly 

unfertilized meadows with one or two cuts per year for haymaking, or as pastures for a low 

number of livestock like cattle or sheep. This extensive management is thought to be one of the 

main factors causing high plant species richness (Pärtel et al. 2005, Hejcman et al. 2013, Chytrý 

et al. 2015) and is needed for continuity of semi-natural grasslands to prevent scrub and tree 

encroachment and associated diversity declines (Ratajczak et al. 2012). Since terrestrial 

ecosystems are managed by mankind all over Europe and large parts of the temperate zone, it 

can be assumed that most of today's species communities are shaped or at least strongly 

influenced by human intervention. Overall, arthropod species are known to respond to 

environmental changes and react sensitively to changes in the management intensity or 

management type (Haddad et al. 2000, Morris 2000, Joern and Laws 2013). 
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The effect of grassland management and its intensification on biodiversity  

 

With the beginning of the 20th century, semi-natural grasslands across Europe were exposed to 

habitat destruction and fragmentation. This is due to the abandonment of traditional 

management practices (Hallanaro et al. 2002) and management intensification by additional 

fertilization or liming, increased number of cuts per year and higher stocking rates (Isselstein 

et al. 2005). With the improvement of the agronomic potential of grasslands, biodiversity 

decreased. Today, land-use change (the alteration from one land-use type to another), and land-

use intensification (within one land-use type) have been identified as one of the most important 

drivers of global species loss (Sala 2000, Maxwell et al. 2016).  

Beside the land-use intensification, the loss of semi-natural grasslands is immense. In Sweden 

for example, semi-natural grasslands used as pastures have been reduced by almost 90% over 

the past 80 years (Bernes 1994) and similar patterns can be found across Europe (Luoto et al. 

2009). The risk is very clear and Habel et al. (2013) names European grasslands a “threatened 

hotspot of biodiversity”. 

Overall, multiple studies found a significant and on-going loss of general insect species richness 

across Europe (Thomas et al. 2004, Conrad et al. 2006, Shortall et al. 2009, Habel et al. 2016). 

The threat reached even public attention with the study of Hallmann et al. (2017) who showed 

a biomass reduction of 75% in flying insects over 30 years in various sites in Germany. Habel 

et al. (2019) reviewed these studies and stated: “Agricultural intensification is the main driver 

of recent terrestrial insect decline, through habitat loss, reduced functional connectivity, overly 

intense management, nitrogen influx, and use of other fertilizers, as well as application of 

harmful pesticides”.  
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Figure 1. a) Meadow managed at high intensities, dominated by fast-growing plant species and 

a very low number of flowering plant species; b) Freshly mown high-intensity managed 

meadow without any remaining flowers; c) Example of overgrazing by a single horse, which 

result in similarly structured grassland as high mowing intensities. 
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In grassland ecosystems, increasing land use has been shown to reduce species richness and 

abundance of plants (Haddad et al. 2000, Harpole and Tilman 2007, Kleijn et al. 2009, Socher 

et al. 2012), as well as different arthropod groups (Hendrickx et al. 2007, Attwood et al. 2008, 

Simons et al. 2014, Allan et al. 2014, Chisté et al. 2016) and overall functional diversity of 

communities (Flynn et al. 2009, Birkhofer et al. 2015b, Blüthgen et al. 2016). However, 

generalizations are hard to make since, for example Simons et al. (2017) found no effects on 

taxonomic richness across groups with increasing land-use intensification. Likewise, Birkhofer 

et al. (2017) found no generally reduced trait diversity. However, both studies found that 

different taxa varied in their response to increased land use or different management practices. 

Importantly, the effects of each land-use component can differ in strength or direction (Socher 

et al. 2012, Simons et al. 2014, Gossner et al. 2016). Like already stated, the three management 

practices used in agricultural grasslands are mowing, fertilization and grazing (mostly by cattle 

and sheep), or a combination of them (Fischer et al. 2010).  

The effects of grassland management can be direct, as a result of active management, or indirect 

as the response of species to the actual management. Direct effects are for example the killing 

of individuals by machines during mowing events (Thorbek and Bilde 2004, Humbert et al. 

2010), which has direct negative effects on arthropod communities (Nickel and Hildebrandt 

2003, Marini et al. 2007, Socher et al. 2012, Simons et al. 2017) or the plant removal, trampling 

and soil compression by grazers (Helden et al. 2010, van Klink et al. 2015).  

The indirect effects of grassland management change grasslands in a more extensive manner: 

Fertilization and mowing are often highly correlated (Blüthgen et al. 2012) and high intensities 

of both support fast-growing, dominant grass species (Socher et al. 2012). These grass species 

outcompete other plants resulting in a decrease of plant diversity (Harpole and Tilman 2007) 

and the accompanying decrease of herbivorous and predatory arthropod diversity (Simons et 

al. 2014). Mowing has been demonstrated to have the strongest negative effects on multiple 

biotas (Gossner et al. 2016). In extremes, frequent mowing creates lawn-like grasslands with 

very reduced plant species richness and low number of flowers (Figure 1a, b) which harbour a 

low arthropod species richness, dominated by opportunists and disturbance-tolerant species (Di 

Giulio et al. 2001, Gossner et al. 2014, Simons et al. 2015). 

Compared to mowing, grazers as selective feeders affect plants and the whole biotic 

environment in a much patchier manner and simplify or thin out vegetation and litter (Helden 

et al. 2010). Therewith, grazing can increase plant diversity if, for example dominant, fast-

growing species are reduced by the grazers, which create gaps for less dominant species 

(Stewart and Pullin 2008). These effects can vary between the different types of livestock which 
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differ in their feeding type and food preferences (Öckinger et al. 2006, Sjödin et al. 2008, Socher 

et al. 2013). At very high grazing intensities can have similar negative effects on species 

richness to mowing (Figure 1c). 

Fertilization has negative effects on plant diversity since the mainly dominant, fast-growing 

plant species benefit of the increased nitrogen and other nutrients availability and outcompete 

less dominant plant species (Socher et al. 2013, Simons et al. 2014, Gossner et al. 2016) 

 

Forest management in temperate Europe 

 

While 13% of the forests on the west coast of the United States and 40-52% of Canada are still 

natural (Parviainen et al. n.d., Heywood and Watson 1995), today, forests in Central Europe 

have been modified completely by mankind. Over centuries, the naturally broadleaved forests, 

which covered up to 95% of Central Europe, were managed with different strategies and for 

different purposes and their structures changed considerably over time (Rüther and 

Walentowski 2008, Leuschner and Ellenberg 2017). Today, only about 0.2% of the deciduous 

forests are in a relatively natural state (Hannah et al. 1995). 

In temperate Europe, forest management started about 5000 years ago with coppicing, a strategy 

where trees are cut down to a stump but regrow with multiple stems (Rüther and Walentowski 

2008). Large parts of European forests were managed this way for centuries which changed 

forest structures but maintained and supported mainly broad-leaved tree species. During the 

Middle Ages, coppicing with standards was established. Here, certain trees or tree species, oaks 

(Quercus) in particular, were excluded from coppicing and could grow old while other tree 

species were cut down. This management strategy was common in regions with dense 

settlement and livestock-keeping, as oaks provide e.g. food for pigs, and forests were thinned 

out over wide areas. At the same time, reforestation of deserted places started for which pioneer 

species with few demands like pine (Pinus) and spruce (Picea) trees were commonly chosen 

(Rüther and Walentowski 2008, Leuschner and Ellenberg 2017). Across Central Europe, in the 

Middle Ages, forests were used for multiple purposes, such as coppicing for firewood and 

tanning bark, together with the protection of old trees, which created a heterogeneous forest 

landscape. 

In the 18th century, coppicing started to decline and the low-forest system (coppice forests) of 

the Middle Ages were replaced by a high-forest system which consists usually of large, mature 

trees with a closed canopy. Probably due to a lack of timber, forestry changed to economically 

more profitable management (Schelhaas et al. 2003, Rackham 2008), the age-class forests. This 
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forest type consists of evenly aged, homogeneous, dense, single-species stands. The main tree 

species are conifers like Pinus sylvestris, Picea abies and the introduced Douglas fir 

Pseudotsuga menziesii, which can be harvested in shorter rotation cycles than most broad-

leaved trees. 

The gradual change from broad-leaved to conifer-dominated forests which stared in the Middle 

Ages was driven by the age-class forestry and in the 20th century, where large parts of Central 

European forests consist of coniferous monocultures. In 2012, European spruce (Picea abies) 

was the most common tree species in Germany with a percentage of 25.4% in all German 

forests, followed by Scots pine (Pinus sylvestris) with 22.3%, beech (Fagus sylvatica) with 

15.4%, and 10.4% oaks (Quercus robur or Q. patrea) (Bundeswaldinventur 3). 

These plantation-like even-aged forests are designed and managed to maximize productivity 

and forest attributes such as old trees, deadwood or gaps in the canopy are widely lacking. Due 

to the lack of small-scale disturbances, not enough light can reach the ground to enable the 

growth of understory, especially in spruce forests (Figure 2a). When the even-aged, commercial 

forests reach a certain rotation age, they are logged by clear-cutting which create large scale 

openings. This management system was established in large parts across Europe, but it turned 

out that even-aged forests in clear-cut systems are vulnerable to soil degradation, an infestation 

of pest insect or natural disturbances such as wind throw. As a result, foresters partly started to 

change management towards selective logging systems which maintained a permanent forest 

cover by removing only single trees in forest stands or by shelterwood cutting. Here, cohorts of 

even-aged trees are replaced by younger evenly aged cohort through repeated cuttings over 

decades (Schall et al. 2018). However, as these systems are based on monocultures, they do not 

differ fundamentally from even-aged clear-cut systems (Jacobson 2001).  

Since the 1950s, alternative silvicultural strategies to the even-aged forest were developed, 

particularly in economically developed countries (Brukas and Weber 2009, Puettmann et al. 

2015). The reasons for this change are manifold such as the public focus on environmental 

protection growing stronger, or the better understanding on the impact of forest management 

on biodiversity (Manolis et al. 2008, Bauhus and Schmerbeck 2010). In addition, alternative 

sources of income from landowners played an important role (Puettmann et al. 2015). In 

Germany, the decline of forests came to public perception when pest insects and windthrow 

damaged large forest areas in the 1980s. As a result, the close to nature forestry, which started 

in the 1950s (Jacobson 2001), increased in popularity and their guideline is integrated into the 

forest programs across Europe today (Pro Silva 2012). This management approach is 

characterized by uneven-aged forest stands with multiple tree species which differ in tree age 
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and size. The applied methods try to sustain a continuous forest cover, avoidance of clear-cuts 

and using harvesting methods which do not harm the soil or stands (Pro Silva 2012). Forest 

regeneration and the transformation of even-aged monocultures to uneven-aged multi-species 

stands was promoted by planting seedlings or young trees under the canopy of the mature trees. 

This type of management resulted in an increased vertical heterogeneity and more complex 

stand structures with old-growth attributes such as deadwood or large veteran trees (Bauhus et 

al. 2009, Puettmann et al. 2015, Messier et al. 2015, Ehbrecht et al. 2017). Today, about 80% 

of oak and beech forests in Germany show two or more vertical layers and large parts of mature 

pine stands consist of regeneration layers of beech and oak trees (Bundeswaldinventur 3, Figure 

2b).  

 

Figure 2. a) Even-aged spruce forests stand with low light availability and plant growth on the 

ground; b) Adult pine trees with regeneration layers of beech. 
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The effect of forest management on biodiversity  

 

Although it is generally thought to be beneficial for biodiversity, little evidence for positive 

effects of uneven-aged forests compared to managed, even-aged forests was found. At smaller 

scales, unmanaged forests, in general, are said to contain more species than managed forests 

(Økland et al. 2003). In a review, Paillet et al. (2010) found a marginally negative effect of 

forest management on total species richness over multiple taxa, with more species in 

unmanaged forests. However, for plants, age-class managed forests harbor more species than 

unmanaged forests (Boch et al. 2013). Allegro and Sciaky (2003) and Fuller et al. (2008) found 

a shift in species communities from forest specialists to habitat generalists, but no negative 

effects of forest management on ground beetles richness when comparing poplar stands and 

natural woods in Italy, or comparing coniferous and broadleaved forests in the UK.  

But overall, the effects of forest management on biodiversity are still under debate (Siitonen 

2001) and different arthropod groups respond differently to forest management (Maleque et al. 

2009). Low intensity, selective logging has little effects on ground-dwelling arthropods, but 

negative effects arise with increased management intensities (Oliver et al. 2000). Besides, the 

effects of tree harvesting can have time-delayed effects and e.g. ground-beetle species start 

disappearing two years after logging (Pohl et al. 2007). 

Clear-cutting is known to be a very destructive management strategy since whole forest patches 

are removed (Punttila et al. 1991, Niemela 1997). It results in habitat loss of i.e. arboreal species 

(MacKay et al., 1991) and ground-dwelling species (Kaila et al. 1997, Andersson et al. 2012) 

due to drastically changed habitat conditions. Other management strategies which are less 

extensive, like selective logging or retention logging, are better for biodiversity conservation 

(Fedrowitz et al. 2014). 

The main effects of forest management are via the change of forest structures and thus, different 

habitat heterogeneities and stand structural complexities. Analyzing this, various studies found 

a positive relationship between structural complexities and biodiversity (Tews et al. 2004, 

Hiroaki T. Ishii et al. 2004, Jäkel and Roth 2004). Forest structures shape biodiversity and even 

small-scale variations like leave sizes (Neuvonen and Niemelä 1981) lead to different shaped 

species communities. Halaj et al. (2000) manipulated the habitat complexity of Douglas-fir 

stands by removing needles and thinning branch axes and found an increased spider species 

richness and differently shaped communities in more complex habitats. In addition, these 

manipulations affected ground-dwelling, but not airborne arthropods (Halaj et al. 2000). Thus, 
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different groups or taxa react differently to changes in forest structures, and the response of a 

single group can even vary between the different forest strata (Leidinger et al. 2019).  

Currently, forests are managed to maintain a continuous canopy cover which includes, that trees 

are harvested before their half-life to reduce the risk of tree loss due to natural disturbances or 

fungal infestation (Knoke 2003). Overall, these production forests are low in structural diversity 

and thus, exhibit a lack of important resources for many species such as old trees, early 

successional stages and, especially deadwood, whose development is suppressed and which is 

regularly removed (Bauhus et al. 2009, Moning and Müller 2009, Meyer and Schmidt 2011, 

Larrieu et al. 2018).  

Deadwood is a crucial component of forest ecosystems. Many forest arthropod species depend 

on deadwood (Lonsdale et al. 2008, Rondeux and Sanchez 2010), such as 56% of all forest 

Coleoptera in Germany (Köhler 2000). Thus, deadwood volume is widely used as an indicator 

of forest biodiversity (Lassauce et al. 2011) and an indicator for sustainable forest management 

(MCPFE 2003). Besides saproxylic arthropods (species which are directly or indirectly 

dependent on deadwood) also other organisms benefit of deadwood addition such as non-

saproxylic epigeal arthropods (Seibold et al. 2016a), and small mammals (Fauteux et al. 2012). 

Besides the amounts of deadwood, also the diameter of dead trees is relevant and shapes species 

communities (Gossner et al. 2013). 

Several studies have found, that biodiversity of saproxylic arthropods is higher in forests with 

less dense canopies where more light reaches the ground (Müller et al. 2010, 2015, Lachat et 

al. 2012, Horak et al. 2014, Seibold et al. 2016a). Seibold et al. (2016b) compared species 

communities on different amounts of deadwood between sunny and shady forest plots and 

concluded that habitat heterogeneity and canopy openness seem to be the major drivers of 

saproxylic beetle diversity in temperate forests. The light intensity in a forest stand has also 

been shown to be an important factor structuring Heteroptera communities (Gossner 2009), 

ground beetles (Humphrey et al. 1999) and to support plant diversity (Boch et al. 2013, Gao et 

al. 2014). This plant diversity enhances the vegetational structural complexity, which shapes 

vertebrate (Demarais et al. 2017) and invertebrate diversity (Jäkel and Roth 2004). 

As mentioned above, current management strategies comprise the admixture of broad-leafed 

tree species in coniferous forest stands. But this strategy must be considered with caution. On 

the one hand, mixed tree stands harbor more species than pure coniferous stands (Jäkel and 

Roth 2004).On the other hand, thermophilic organisms like arthropods can face a decline as this 

succession results in higher canopy densities and thus less light availability (Horak et al. 2014). 

Recently, Schall et al. (2018) also showed that the current management strategies which result 
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in multi-layered forests harbor less diverse communities than several single-species age-class 

forests and concludes that the heterogeneity between forest stands is more important than 

heterogeneity within a forest stand (Schall et al. 2018). 

 

The importance of functional (trait) diversity in biodiversity research 

 

Multiple recent studies found a dramatic human-induced decline in arthropod biomass and 

arthropod diversity (Dirzo et al. 2014, Hallmann et al. 2017, Leather 2018). But what are the 

effects on an ecosystem if certain species get lost? 

Species richness was the dominant measurement for biodiversity for centuries (Gaston 2000), 

but species do not equally contribute to all processes in an ecosystem (ecosystem functioning) 

(Diaz and Cabido 2001) which is why biodiversity research must go beyond the concept of 

species richness. 

“Species are different, but they are not equally different” (Lefcheck et al. 2015). Thus, even 

within a species group, some species can vary significantly in morphology of life-history, while 

others show only minor differences. A common way to assess the dissimilarity between species 

is by collecting information or measuring their functional traits. These characteristics are 

relevant to define how species interact with the environment and with other species (Diaz and 

Cabido 2001) or after the definition of Tilman (2001) “those components of biodiversity that 

influence how an ecosystem operates or functions”. The variation of functional traits across 

organisms defines the functional diversity of a species community or a whole ecosystem. Thus, 

the more different species are in a community, the higher is its functional diversity. But 

functional diversity is not necessarily highly correlated with species richness, since 

communities can consist largely of generalists (low diversity) or can consist of species of which 

each is specialized in a different niche (high diversity). Hence, communities even with a 

relatively low number of species, can have a very high functional diversity (Andersen 2008, 

Stuart-Smith et al. 2013). In such functionally diverse but species-poor communities, the loss 

of a species with certain functional traits has more severe effects than in communities where 

multiple species have similar functional traits (strong niche overlap) or fulfill similar ecosystem 

functions. Those species-rich communities often have a high functional redundancy which 

buffers the loss of a species within a functional group without a loss of ecosystem functions. 

In recent years, many comprehensive studies analyzed the effect of land-use intensification on 

species communities. Gossner et al. (2016) studied more than 4000 species belonging to 12 

trophic groups and found that species communities are getting more similar with increasing 
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land use. Thus, rare species with certain traits get lost and opportunists and generalists remain. 

These findings go in line with the study of Soliveres et al. (2016) who stated that locally rare 

species contribute significantly to grassland multifunctionality, and thus the preservation of 

multiple ecosystem functions and services (Hector and Bagchi 2007, Isbell et al. 2011). Gámez-

Virués et al. (2015) found that grassland management filters species traits if it leads to a change 

in landscape heterogeneity. Especially feeding specialists require higher degrees of 

heterogeneity or different land cover types than generalists. As a result, they suggest that a 

grasslands can be managed also at higher intensities, if less managed grasslands are near 

(Gámez-Virués et al. 2015). Overall, across taxa, land-use intensification leads to a loss of rare 

(Simons et al. 2015) or specialized species (Winfree et al. 2011), but the effects can differ 

between taxonomic groups (Simons et al. 2017).  

To increase the understanding how land-use intensification or changes in management affect 

species, more studies are needed which analyze changes in trait variation and community 

composition between different land-use types or management intensities. Birkhofer et al. 

(2015a) for example found that spiders are sensitive to grassland-management intensity. They 

showed that at high mowing intensities, rare species and at high grazing intensities, large 

species get lost. In addition, frequent cutting changes ground beetle communities as it led to a 

higher abundance of predaceous and omnivorous but a lower abundance of herbivorous species 

(Birkhofer et al. 2015a). Mangels et al. (2017) found that land-use intensification significantly 

reduced abundance and species richness as well as diversity of moths, an important pollinator 

and herbivore group in grasslands. With high mowing and fertilization intensities, rare species 

were replaced by highly reproductive habitat generalists. They conclude that the loss of plant 

trait diversity leads to a loss of herbivore diversity (Mangels et al. 2017), a finding which is 

supported by Gossner et al. (2014). 

Thus, species communities change under management intensification. Thereby, specialists can 

be replaced by generalists, which results in a loss of (functional) diversity, although species 

richness does not decrease. Hence, to understand how management affects species 

communities, it is necessary to go beyond the species richness approach and to include the 

functional trait diversity of a community. But the use of traits requires a certain knowledge of 

the species, time and effort. Therefore, the best choice is to use a taxon, which species are well 

known, which plays a key role in its habitat and is known to be sensitive to management 

intensification, such as ants (Formicidae).  
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Ants – ecosystem engineers and a key taxon in terrestrial ecosystems 

 

Ants (Hymenoptera, Formicidae) encompass the dominant fraction of animal biomass (Wilson 

and Hölldobler 2005). They are one of the most abundant arthropod groups in terrestrial 

ecosystems and can, therefore, be regarded as a keystone taxon. They occur on every continent 

except Antarctica and currently, about 15000 species are described (Bolton et al. 2007). Overall, 

ant species richness declines with increasing latitudes and altitudes and is highest in tropical 

regions with more than 4100 species in the Neotropical region, 2900 species in the Indo-

Australian Region or 2800 species in the Afrotropical Region. In the temperate region, ant 

species richness is lower, with fewer than 500 species in the USA or Europe (Folgarait 1998). 

Ants are one of the most influential organisms in terrestrial ecosystems for many reasons. As 

ecosystem engineers, ants fulfill numerous ecosystem functions, which are mostly related to 

food consumption (Blüthgen and Feldhaar 2010). Ants are generalized scavengers (Hölldobler 

and Wilson 1990) and among the leading arthropod predators in most ecosystems (Way and 

Khoo 1992, Floren et al. 2002, Dejean et al. 2007). They affect the abundance and species 

composition of other organisms and can even shape the overall arthropod biodiversity of 

habitats by interference or intraguild predation (Laakso and Setälä 2000, Hawes et al. 2002). 

Simultaneously, they are prey for invertebrates (Gotelli 1996, Gastreich 1999) and vertebrates 

(Reiss 2001). Ants alter plant communities (and therewith the whole ecosystem) as they provide 

seed dispersal (Howe and Smallwood 1982, Boulay et al. 2007, Lengyel et al. 2009), and seed 

consumption (Dauber et al. 2006b, Parr and Gibb 2010, Blüthgen and Feldhaar 2010). They 

protect plants from herbivores (Heil and McKey 2003, Styrsky and Eubanks 2007, Rosumek et 

al. 2009) but also live in trophobiosis with herbivorous insects which they protect against 

predators and parasitoids (Buckley 1987, Styrsky and Eubanks 2007). 

Most ground-dwelling ant species are “soil engineers” which affect the soil structure, mix and 

aerate soils through their tunneling (Folgarait 1998, Frouz and Jilková 2008, Ehrle et al. 2017). 

Ants modify the microbial community in the soil and add nutrients by importing resources into 

their nests (Folgarait 1998, Dauber and Wolters 2005, Frouz and Jilková 2008, Boots et al. 

2012). Therewith, they directly or indirectly affect the availability of resources to other species 

(Folgarait 1998). These improvements of soil conditions even support greater plant diversity 

(Del Toro et al. 2012, Nemec 2014) and arbuscular mycorrhizal fungi (Dauber et al. 2008) and 

have the potential to even alter grassland productivity (Dean et al. 1997). Especially ant nest-

mounts have improved drainage, less plant cover and changed alkalinity (King 1977). 

Therewith, nest mounts can be small islands for some plant species, which would otherwise be 
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outcompeted by fast-growing plant species (Dean et al. 1997). Besides plants, ant-mounts are 

habitats for other taxa like threatened Maculinea butterfly (Thomas et al. 2009) or a variety of 

microorganisms (Boulton and Amberman 2006). 

 

Ants response to disturbance and management strategies 

 

Ants are undoubtful a crucial part in most terrestrial ecosystems and are endorsed as biological 

indicators to estimate effects of land management, land use and success of restoration schemes 

(reviews Andersen and Majer (2004), Underwood and Fisher (2006), Crist (2009), Philpott et 

al. (2010)). Numerous studies tested the efficacy of ants as biological indicators across the 

world in warmer regions like Australia (Andersen et al. 2002, Andersen and Majer 2004), dry 

grassland in Argentina (Bestelmeyer and Wiens 2001a) or tropical forests (Roth et al. 1994, 

Perfecto and Snelling 1995, Perfecto et al. 1997), but in parts also in north-temperate cold 

biomes (Ellison 2012). For temperate regions, such insights are largely lacking. There is an 

extensive literature on responses of ant communities to different types of disturbance like 

agriculture, agroforestry, mining, fire, habitat fragmentation or ecosystem restoration which 

would go beyond the scope of this thesis and which was recently reviewed and partly listed by 

Andersen (2019). Here, most studies show a negative impact of human-made disturbance on 

ant species diversity across ecosystems. Although studies on restoration show how species 

communities or whole ecosystems recover from disturbances or human management, they do 

not show how communities respond to different management strategies.  

Studies which analyzed the effects of management on ants mainly focused on grazing and 

logging as main management techniques in grassland and forest ecosystems (Underwood and 

Fisher 2006), although other management techniques are widespread. 

Common techniques in current grassland management are grazing, mowing, and 

fertilization. The effect of grazing on ants has been shown to be highly variable and can differ 

between grassland types (Bestelmeyer and Wiens 2001b). In semi-arid rangelands with short 

histories of controlled grazing, such as in America and Australia, grazing by livestock can 

reduce ant species richness (Bestelmeyer and Wiens 1996, Andersen and Sparling 1997, 

Whitford et al. 1999, Woinarski et al. 2002, Boulton et al. 2005), has little effect (Whitford et 

al. 1999, Bestelmeyer and Wiens 2001b, Ehrle et al. 2017), or can even increase species richness 

(Bromham et al. 1999). Especially the intensity of grazing, and thus the type and the number of 

livestock can be decisive for the effect. While Majer and Beeston (1996) found more species in 

heavily grazed than in less grazed rangeland, Abensperg-Traun et al. (1996) found fewer ant 
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species in highly disturbed Australian sites and suggested grazing and trampling to be the main 

factors of this reduction. The effects on ants can differ between the type of grazers. Sheep, for 

example, can have positive effects on ant abundance and biomass (Hutchinson and King 1980) 

while e.g. Beever and Herrick (2006) found more ant mounts in sites without grazing horses. 

In temperate grassland with long grazing history, the effect on ants is not sufficiently studied, 

but tends to be rather weak (Pihlgren et al. 2010).  

Besides, it is poorly understood whether grazing has direct, indirect of even both effects on 

ants. Direct effects can be disturbance or even destruction of nesting sites by trampling of 

livestock, whereby the disturbance intensity will be highly dependent on the grazing intensity 

and livestock type. Indirect effects can be the increased structural heterogeneity due to 

selectively removed plant biomass and spotty fertilization by feces, plant species richness and 

the reduced plant ground cover (Calcaterra et al. 2010, Pihlgren et al. 2010, van Klink et al. 

2015). While grazing of grasslands is very common (and relatively well-studied) across the 

globe (Hoffmann 2010), fertilization and mowing as management strategies are rather restricted 

to temperate grasslands.  

The direct effects of fertilization might be the disturbance of nesting sites by heavy machinery, 

which may be needed to disperse fertilizer. But since this disturbance lasts just a short period 

and is rather spotty, the main effect of fertilization will be indirect. Pihlgren et al. (2010) found 

fewer ant species in fertilized than in non-fertilized meadows and attributed it to the enhanced 

growth of taller plant species. Those plant species reduce sun exposure and soil temperature, 

which can limit the occurrence of open-habitat specialized ant species.  

In contrast to the trampling of livestock and the trajectories of heavy machinery, mowing affects 

the entire grassland patch. When grassland is mowed only a few centimetres above the soil 

surface nest mounds of ants may be mechanically destroyed which can result in a significant 

loss of brood and workers. Possible indirect effects of mowing on ant communities are the 

alteration of available food sources. Thus, mowing reduces the availability of resources 

associated with plant parts that are cut, such as floral and extrafloral nectar and the abundance 

of trophobionts associated with upper parts of the plants, such as aphids. When other arthropods 

are reduced in abundance due to mowing ants might be affected negatively as potential prey 

items may be lacking (Zechmeister et al. 2003, Socher et al. 2012). But studies on mowing 

effects on ants are rare and, to my knowledge, elucidate only the effects of low-intensity 

mowing. Pech et al. (2015) found a shift of species compositions with slightly more species in 

plots mown once or twice per year compared to unmown plots and Noordijk et al. (2010) found 

an increase of arthropod diversity (including ants) along a gradient from unmown to mowing 
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twice a year. Other studies have focused on the time of mowing (Grill et al. 2008, Korösi et al. 

2014) rather than on mowing intensity. E.g. Dahms, Wellstein, Wolters, & Dauber, (2005) 

found no effect of low-intensity mowing (once or twice per year) compared to other low-

intensity management types (mown pastures, cattle pastures, and silage meadow). Although 

many studies already investigated the effects of mowing, fertilization, and grazing, it is still 

unclear how species communities change with increasing land-use intensity, how each 

management types affect ants, and which species are particularly vulnerable. Hence, several 

fundamental knowledge gaps still need to be filled. Therefore, in my first manuscript, I 

analysed the direct and indirect effects of the three main management components on temperate 

ant communities and investigated how ants react to land-use intensification. 

Overall, it has been shown that ants are sensitive to various types of forest management 

and disturbance (Greenslade and Greenslade 1977, Majer 1983, Vasconcelos 1999, Oliver et 

al. 2000, Watt et al. 2002, Maeto and Sato 2004, Palladini et al. 2007, Yoshimura 2009, Philpott 

et al. 2010, Ewers et al. 2015). Forest management or, in particular, logging can range from 

low-intensity selective logging up to clear-cutting (high intensity). The effects on ants are 

therefore dependent on the logging intensity. Research on selective logging has so far been 

done mainly in tropical rainforests, where only weak effects on ant diversity were found 

(Vasconcelos et al. 2000, Kalif et al. 2001). Although the tropics are very species-rich with 

numerous specialized and therefore assumingly more sensitive species (Luke et al. 2014), the 

response to forest management is rather low (Lawton et al. 1998). Studies on the effects of 

clear-cutting on ants are mainly done in boreal or temperate forests, where clear-cutting is a 

widespread management technique. The effects of clear-cutting are variable and hard to 

generalize. Overall, it can increase ant abundance and diversity, if it reduces canopy cover and 

creates clearings which create habitats for “open-country” species (Punttila et al. 1994, Palladini 

et al. 2007, Babik et al. 2013, Véle et al. 2016, Tausan et al. 2017). Species which react more 

sensitively to forest management are wood ants (genus Formica). Clear-cutting or 

fragmentation causes population declines and a high nest-abandonment rate (Sorvari and 

Hakkarainen 2005, 2007), that leads to a more aggressive behavior between nests (Sorvari and 

Hakkarainen 2004), to changes in population structures (Punttila 1996) and lower variation in 

body size due to limit food availability (Herbers 1980, Deslippe and Savolainen 1995, Sorvari 

and Hakkarainen 2009).  

As described above in detail, different forest management results in varying forest structures 

and complexities to which taxa respond differently. Thus, what can be expected for ants? 
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Only about 10% of the epigaic Central-European ant species nest occasionally in deadwood, 

and only 4% depend on deadwood as a nesting substrate (Seifert 2017). Therefore, the amount 

of deadwood might be less important for ants than for other taxa, unless they benefit from higher 

prey diversity (bottom-up effects). More important for ants might be the tree species or tree 

species diversity of which the forest consists, as tree species, differ in available potential niches 

and result in different microclimates. Seifert (2017) e.g. found more species in oak and pine 

forests than in beech or spruce dominated forests.  

Management techniques such as clear-cutting, shelterwood systems or selective logging highly 

influence the canopy openness of forests. This has been shown to be important for ants, as 

studies found in woodland in Australia (Lassau and Hochuli 2004), in temperate conifer 

mountain forests (Arnan et al. 2009), and along an elevational gradient in a mountain region in 

South Africa (Munyai and Foord 2012), and southern France (Blatrix et al. 2016). Studies which 

were implemented in the temperate zone found more species in open habitats than in closed 

forests (Dolek et al. 2009, Graham et al. 2009, Bernadou et al. 2013, Del Toro 2013) which is 

rather not surprising since a high percentage of temperate ant species occur primarily in open 

habitats like grasslands (Seifert 2018, Del Toro et al 2013). A reduced canopy cover usually 

results in a warmer forest climate and a higher ground temperature. Ants are thermophiles and 

in temperate forests, warmer sites harbor more species than colder sites (Sanders et al. 2007). 

Thus, the temperature might be a good predictor for species richness (Del Toro 2013, Seifert 

2017). But how are temperate ant communities affected by forest management and is it possible 

to assign changes to certain changes in forest structures or environmental conditions? In my 

second manuscript, I therefore explored the direct and indirect effects of forest management 

on the taxonomic and functional diversity of ant communities in 150 temperate forest stands in 

three regions in Germany. 

 

Morphological traits – a predictor for ant disturbance response? 

 

Forest management and land use also affect the functional diversity of ant communities (even 

without noticeable changes in species richness). Functional diversity of communities’ change 

if species with certain traits get lost or are replaced by other species with traits that are less 

affected by for example disturbance or changes in vegetation (Del Toro et al. 2013). Examples 

for such changes can be found in Punttila et al. (1994) where forest management weakened the 

dominance of Formica aquilonia, a suppressor of other species, which was beneficial for the 

less dominant F. sanguinea. Another example are the findings of Arnan et al. (2012), who 
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showed that dominance hierarchies of Mediterranean ant communities are dependent on traits 

like thermal or moisture tolerance and dominant species are replaced by species which are e.g. 

adapted to lower temperatures. 

To calculate functional diversity, a certain knowledge of the species is required, either about 

their lifestyle (life-history traits) or about their morphology (morphological traits). Although 

ants have been studied for decades to centuries, especially in the tropics, a high percentage of 

species are still undescribed (Folgarait 1998). To cope with this lack of knowledge, ants are 

often categorized in functional groups which are based on taxonomic relatedness, dominance 

hierarchies or habitat preferences (Andersen 1995). The occurrence or abundance of these 

functional groups is often the common “measurement” for ant functional diversity (e.g. Lassau 

& Hochuli 2004; Arnan, Cerdá & Retana 2012; Bernadou et al. 2013). Going beyond this 

“functional group approach” and combining morphological and functional traits enables a more 

detailed understandings of communities (Arnan et al. 2014, 2017, Silva and Brandão 2014) 

Overall, trait-based approaches to understand species responses to their environment can 

substantially increase our understanding of ecological communities. Since as already stated, 

many ant species are still undescribed or weakly studied. Instead of species identities, it may 

be more useful to find general rules that can be assigned to species with certain functional traits 

rather than to specific species (McGill et al. 2006, Paine et al. 2015). Hence, an approach to 

investigate species communities is to analyze morphological traits (Bihn et al. 2010, Gibb and 

Parr 2013, Silva and Brandão 2014, Yates et al. 2014, Gibb et al. 2015) or easily measurable 

traits such as stable isotope signatures (Feldhaar et al. 2010, Pfeiffer et al. 2014) 

Morphological traits of single species and trait compositions of species communities are for 

example often analyzed along environmental gradients (Arnan et al. 2014), between spatial 

scales (Yates et al. 2014) or differently structured habitats (Gibb and Parr 2010). For the latter, 

for instance, different habitat structures and complexities (e.g. desert vs. rainforest, shrubland 

vs. forests) can result in differently shaped species communities (Farji-Brener et al. 2004, 

Lassau and Hochuli 2004, Sarty et al. 2006, Schofield et al. 2016). Different habitat structures 

provide e.g. different food sources or nesting opportunities but also different microclimates and 

overall surface complexities. Radnan et al. (2018) found that ant body size declined with 

increasing surface complexity and suggested that larger ants are discouraged from foraging in 

complex habitats since smaller species can find food sources faster (exploitation competition). 

Generally, the effect of habitat complexity on the morphology of ant communities is well 

studies. For example, ant leg length decreases with habitat complexity (Parr et al. 2003, Farji-

Brener et al. 2004, Sarty et al. 2006, Gibb and Parr 2010, 2013, Wiescher et al. 2012). Some 
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studies found that larger body size can be beneficial in simpler habitats (Farji-Brener et al. 2004, 

Sarty et al. 2006), but the correlations of body size and habitat complexity are not consistent 

between continents (Gibb and Parr 2013). Nevertheless, findings of Gibb & Parr (2013) provide 

the support that habitat complexity filters species composition through their morphological 

traits.  

Therefore, the question arises if a certain knowledge of a species, like its morphology, is enough 

to predict how it will respond to changes in habitat structures. Such knowledge could help to 

make precise and species-specific estimations of how habitat disturbances or management 

intensification affects species communities. In my third manuscript, I made a first attempt to 

answer this important but very extensive question. Based on the findings of Radnan et al. 

(2018), Farji-Brener et al. (2004), Sarty et al. (2006) and Kaspari and Weiser (1999), larger ant 

species should move faster in open, less structured habitats, while smaller species should be 

advantaged in more complex habitats, since their shorter legs enable movement through gaps 

between obstacles. Encouraged by the recent findings of Yanoviak et al. (2017), who found 

decreasing running speed of arboreal ants with increasing roughness of plant surfaces, I 

investigated the running speed of differently sized ants (body size and leg length) along a 

surface rugosity gradient which represents different habitat structures.  

If habitat complexity filters species through their morphological traits, I predicted that larger 

species were fast on smooth surfaces but lost speed with increasing complexity, smaller species 

were less affected and most important, similarly sized species respond similarly to changes in 

surface complexity. 
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Manuscripts of the thesis and overview of the main results 
 

Manuscript 1: 

 

Heuss, L., Grevé, M.E., Schäfer, D., Busch, V. & Feldhaar, H. (2019) Direct and indirect 

effects of land‐use intensification on ant communities in temperate grasslands. Ecology and 

Evolution, 9:4013–4024. 

 

In this manuscript, it was our aim to disentangle the direct and indirect effects of land-use 

intensification and its three main components, grazing, fertilization, and mowing, on ant species 

richness in 110 temperate grasslands in three regions in Germany. We found that a high land-

use intensity had a significant negative effect on ant species richness, compared over all regions. 

Among the different land-use strategies, mowing had the strongest negative effect, followed by 

heavy grazing. Fertilization had no significant effect.  

Ant species richness was directly negatively affected by a high mowing intensity and a high 

grazing intensity, as well as soil moisture. Besides, high mowing and grazing intensities resulted 

in a reduced plant species richness but a higher plant height. In contrast to grazing with cattle, 

grazing by sheep had significant positive effects on ant species richness. 

We tested whether the ant community composition changes along a land-use intensity gradient 

and investigated which morphological and life-history (functional) traits are affected in 

communities when certain species disappear. We found that land-use intensity strongly 

impacted the occurrences of the different species. Very common species showed high 

tolerances to land-use intensification while the rarest species occurred mostly in low-intensity 

managed plots. Morphological trait spaces were not affected by land-use intensification, but at 

high management intensities, where species with rare life-history traits (like multiple nests in 

one colony) get lost. In addition, especially aboveground-nesting species were highly sensitive 

towards mowing.  
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Manuscript 2: 

 

Grevé, M.E., Hager, J., Weisser, W.W., Schall, P., Gossner, M.M. & Feldhaar, H. (2018) Effect 

of forest management on temperate ant communities. Ecosphere, 9:e02303. 

 

In this manuscript, we investigated ant communities in 150 German temperate forest stands 

with different forests management regimes and investigated 1) whether forest management 

affects the abundance, species richness, functional diversity, and composition of ant 

communities and 2) if these changes are mediated by a change in the environmental conditions, 

such as structural heterogeneity, microclimate and food supply. We found that ant species 

richness differed between forest types. Low species richness was found in spruce and beech 

forests and high species richness in oak and pine forests. Species richness was positively 

affected by pine as dominant tree species. Ant abundance was directly and negatively affected 

by spruce as dominant tree species.  

The main indirect effects of forest management on ant abundance was a high temperature 

amplitude, and thus warmer forest climate, via a reduced canopy cover in oak and pine stands.  

Functional diversity could only be calculated for one of the three regions since the other two 

harbored a very low mean number of species. We could not find any direct or indirect effects 

of forest management on the functional diversity based on morphological traits. Based on life-

history traits, functional diversity was the highest in open forests with a low structural 

complexity, which were dominated by pine trees. 
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Manuscript 3: 

 

Grevé, M.E., Bláha, S., Teuber, J., Rothmaier, M. & Feldhaar, H. (2019) The effect of ground 

surface rugosity on ant running speed is species-specific rather than size dependent. Insectes 

Sociaux 33:355–364  

 

In this manuscript, we asked the question whether morphological traits can be used to predict 

how a species is affected by increasing surface rugosity in differently complex habitats, or in a 

broader view tested the suitability of morphological traits as functional traits. Therefore, we 

measured intra- and interspecific variation in running speed of seven differently sized non-

arboreal ant species along an increasing surface rugosity gradient.  

We found that an increasing surface rugosity led to a decrease of running speed in all tested 

species but the response to increasing surface rugosity was idiosyncratic and highly species-

specific. Running speed did not consistently rise with extending body size and leg length. In 

addition, similar sized species differed greatly in their response to changing surface rugosities. 

Thus, leg length was not a good predictor for running speed, which hampers precise predictions 

on how species might respond to changing habitats, based on morphological traits exclusively. 
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Discussion 

 

Central European temperate grasslands and forests are managed since millennia. With 

increasing human population size and a simultaneously increasing knowledge on the impact of 

management, management strategies have changed in recent years. These changes create new 

knowledge gaps, such as how certain species groups can be specifically supported and require 

additional research.  

The impact of increasing land-use intensity on temperate grasslands communities was already 

investigated for plants and several arthropod groups (Socher et al. 2012, Simons et al. 2014, 

2016, Gossner et al. 2016, Simons and Weisser 2017). Overall, land-use intensification 

threatens biodiversity and causes multitrophic homogenizations (Gossner et al. 2016). 

Unfortunately, ants as a key taxon in grasslands were not included in these studies. Thus, the 

question remained how increasing land-use intensity and the single land-use practices grazing, 

fertilization and mowing affect temperate ant communities. 

This knowledge gap could be closed in Heuss and Grevé et al. (2019). Land-use intensification 

reduces ant species richness and diversity. Mowing was the most harmful practice, especially 

for aboveground-nesting ant species. In addition, high mowing intensities, combined with 

fertilization reduced the number of plant species and the shrub cover while simultaneously 

resulted in increased vegetation height. Hence, high mowing intensities have comprehensive 

effects on grasslands and reduce ant species richness and grassland structural diversity (Heuss 

and Grevé et al. 2019). Mowing has an immense negative impact on temperate ant communities 

(Heuss and Grevé et al. 2019), but assumingly, the effects are inconsistent among regions. 

Mowing affects aboveground-nesting species more than soil-nesting species (Heuss and Grevé 

et al. 2019). These aboveground nests serve as heat collectors for optimal larval development 

(Penick and Tschinkel 2008). In warmer climatic regions in which ant species do not build 

aboveground nests, mowing can be less detrimental.  

Therewith ants respond similarly to multiple other groups such as plants, herbivores, secondary 

and tertiary consumers, and as such, all parts of the trophic pyramid of the grassland ecosystem 

(Gossner et al. 2016). To my knowledge, Heuss and Grevé et al. (2019) is the first study which 

covers a large gradient of land-use intensities in grasslands and which disentangles the effect 

of each management practices separately. 

The effects of grazing for example are dependent on its intensity and can have both, positive 

and negative impacts on temperate ants (Heuss and Grevé et al. 2019). This fits the findings of 

several other studies across the world (positive: Majer and Beeston (1996); Bromham et al. 
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(1999); Bestelmeyer and Wiens (2001a); negative: Bestelmeyer and Wiens (1996); Andersen 

and Sparling (1997); Whitford et al. (1999); Woinarski et al. (2002); Boulton et al. (2005), or 

no effect: Arcoverde et al. (2017)).  

More important than grazing itself are the resulting changes in the grassland structure. In a 

study on the effect of grazing on the structure and composition of ants between savanna and 

grasslands in subtropical Argentina, Calcaterra et al. (2010) found no direct effect of grazing 

on ants but the richness of ant species and functional groups was higher in the structurally more 

complex savannas. They also found that livestock grazing simplified vegetation structure by 

reducing overall plant height in both habitats. However, the grass cover variation did not explain 

the differences in overall species richness (see also Vasconcelos et al. (2008)), but the species 

group of hot-climate specialists gained distinctly. These species prefer open environments with 

sparse vegetation coverage as can be found in grazed sites (Andersen 1995). In grassland or 

savanna plots with a higher vegetation cover, hot-climate specialists are replaced by more shade 

tolerant, opportunistic species (Calcaterra et al. 2010). Such effects of grassland structures on 

species compositions can be found outside of the subtropical zone as well. In the semiarid 

Mediterranean region, hot-climate specialists are the dominant group in open habitats with low 

vegetation cover only and are otherwise replaced by opportunists and generalistic Myrmicinae 

in sites with higher plant densities (Reyes-López et al. 2003, Arnan et al. 2007).  

Species belonging to the hot-climate specialists normally do not occur in the temperate region, 

but here, open habitats play an important role for other species as well. In Belgium, Dekoninck 

et al. (2007) showed that rare xerophilic ant species, preferring warm and dry habitats, occur in 

high numbers in calcareous grasslands, where vegetation is usually short. They assume that in 

grassland with the encroachment of tall grasses, the rare xerophilic ant species will be replaced 

by mesophilic, rather common species. Such xerophilic species belong largely to the genus 

Formica such as F. clara, F. pratensis, F. rufibarbis but also Lasius alienus. They will be 

superseded by less thermophilic ant species from woodlands and closed grassland vegetations 

like several Myrmica species (Dekoninck et al. 2007). This corresponds with the findings of 

Heuss and Grevé et al. (2019) in which thermophilic to xerophilic species occur in plots with 

low management intensities (mostly pastures with low vegetation height), while more shade-

tolerant species were found in more intensively managed grassland plots (meadows, dominated 

by tall, fast-growing grass species).  

But “grasslands” with limited plant cover are not necessarily the most ant species-rich grassland 

type. Indeed, the structural heterogeneity of grasslands is an important driver of ant species 

diversity. This heterogeneity can be due to a high plant species richness or due to e.g. shrub 
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encroachment which will attract additional woody species as it was found across the world in 

Slovakia (Wiezik et al. 2013), Spain (Azcárate and Peco 2012), Ohio (Campbell and Crist 

2017), and Australia (New 2000). But especially shrub encroachment should be limited since 

otherwise open-habitat grassland species will get lost (Dahms et al. 2010) (Figure 3c). 

 

Figure 3. a) and b) Examples for extensively managed meadows with a high flower and ant 

diversity. c) Example for an abandoned meadow with early stages of shrub encroachment. 
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Now, that the effects of land use on ants are known, the question arises if current grassland 

conservation strategies are suitable to protect ant diversity. In Heuss and Grevé et al. (2019), 

we highly recommend reducing grassland management intensity, especially the number of 

mowing events per year. In addition, the transformation from pastures to high production 

meadows should be stopped. To preserve grassland biodiversity but also to maintain the 

productivity of grasslands, current grassland conservation strategies in Germany comprise a 

mosaic of grasslands which vary in management type and intensities within a landscape. This 

approach is supported by numerous scientific studies such as Kruess and Tscharntke (2002), 

Samways (2005), Cizek et al. (2012), Gámez-Virués et al. (2015), as well as Simons and 

Weisser (2017), who investigated how landscapes can be managed to maintain or increase 

productivity and protection of arthropods at the same time, using data from more than 1000 

grassland arthropod species but unfortunately, does not include ants. Most arthropod species 

are highly mobile and find refuges in extensively used plots within this mosaic. But ants are 

quasi-sessile organisms, once the colony is established. Hence, their colony relocation into less 

intensively used plots is very unlikely. Furthermore, such a mosaic of different management 

types might not increase overall ant species richness at the landscape scale (Dauber and Wolters 

2004). Grassland plots are often managed in a rotation system. The management intensity of so 

far extensively used plots will be increased, while management on so far high-intensity plots 

will be reduced. Being unable to move elsewhere quickly, ant species richness will therefore 

decrease in the newly intensively used plots. Dauber et al. (2006a) showed that the highest ant 

diversity occurs in plots with continuous, low-intensity land use. In contrast to plants, for which 

extensively used plots serve as seed banks (Kiehl et al. 2010), the recolonization of ants in 

former intensively used plots might be slow and highly variable (Dauber and Wolters 2005). 

Another currently used management strategy to protect arthropod diversity is mowing only 

parts of the grasslands and leave the rest undisturbed at first. However, this strategy does not 

protect ants. 

A habitat type in which grassland management intensification should be particularly avoided is 

the ecotone of grasslands and forests. These ecotones are species-rich since they share ant 

communities from both biomes (Seifert 2017, 2018). Besides, the occurrence of grassland 

species can strongly influence forest communities. Wood ants (Formica) are one of the most 

influential groups in temperate forests (Frouz et al. 1997, Laakso and Setälä 2000, Domisch et 

al. 2008). However, they are more common at forest/grassland ecotones than in dense forests 

(Seifert 2018), since wood ants require and parasitize Serviformica nests which prefer 

grasslands. But especially Serviformica species are highly sensitive to grassland management 
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and do not occur at high mowing intensities (Heuss and Grevé et al. 2019). Thus, grassland 

management can have a high impact on grassland and forest ant communities. 

Forest management can positively affect temperate ant diversity (species richness and 

functional diversity) if it results in a reduced canopy cover and a lower structural complexity, 

e.g. through tree harvesting. Especially the selection of shade-intolerant tree species, which 

creates warm stand conditions, such as pines and oaks, leads to more diverse ant communities 

(Grevé et al. 2018). Interestingly, the forest types which reflect natural forests in Central 

Europe, uneven-aged and unmanaged beech forests, harbor significantly fewer species than 

managed forests (Grevé et al. 2018). These findings stand partly in contrast to the insights in 

Maeto and Sato (2004) and Yoshimura (2009), who found no differences in ant species richness 

between unmanaged forests and managed forests in temperate Japan. But the species 

compositions were differently structured, and the unmanaged forests were dominated by 

woodland specialists. While managed forests harbored mostly open-habitat specialists or 

habitat generalists (Maeto and Sato 2004, Yoshimura 2009).  

Similar to Grevé et al. (2018), Guzmán-Mendoza and Castaño Meneses (2016), investigated 

ant communities in unmanaged forests, managed forests, and reforested forests in temperate 

Mexico. They found the highest species richness in the highly disturbed reforested forests and 

an overall high species turnover (few shared species) between the forest types. Hence, forest 

management in the temperate region strongly affects ant communities, leads to an increased 

species richness or at least to changes in species compositions.  

A very important aspect or driver of these variations between ant communities is the change of 

the forest microclimate. Warmer forest climates increase the larval development of ants 

(Kipyatkov and Lopatina 2015) which may result in faster colony growth, especially in 

temperate and boreal regions.  



32 

 

 

Figure 4: Examples for a mixed coniferous-deciduous forest with a low canopy coverage and a 

high ant diversity. All pictures were made within a 500m x 500m area. After only 20 minutes 

of hand sampling, I could find 11 different ant species: Lasius playthorax, Lasius brunneus, 

Formica polyctena, F. fusca, F. cunicularia, Camponotus ligniperda, Myrmica ruginodis, M. 

lobicornis, Tetramorium cf. caespitum, Temnothorax unifasciatus and T. nylanderi. 
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A warmer microclimate via a reduced canopy cover has positive effects on ants in the European 

boreal (Punttila et al. 1994, Palladini et al. 2007) and temperate region (Dolek et al. 2009, 

Tausan et al. 2017, Grevé et al. 2018) (Figure 4). In the temperate part of the United States, 

studies investigated forests and adjacent open habitats and could highlight how important a high 

canopy openness and the consequently increased temperature can be for ant communities. 

Del Toro et al. (2013) found a five times lower species richness in dark (hemlock-white) pine 

forest stands compared to open habitats. Forests with less dense canopies and open habitats 

were similarly diverse. Lessard et al. (2009) studied ant communities in oak forests in the 

southern Appalachians and stated a positive relation of species richness and within-site 

variation in ground temperature. Such a variation in ground temperature is assumingly a result 

of different canopy covers (Grevé et al. 2018). In addition, higher ground temperatures reduce 

soil moisture, which is beneficial for ground-dwelling ants as well (Seifert 2017). 

Since forest management has positive effects on ants in cold and temperate regions if it results 

in a warmer forest climate, the question arises how ants respond to forest management in 

warmer regions. Surprisingly, the results of Azcárate et al. (2013) from Central Spain suggest 

similar patterns as found in colder regions. They analyzed the effects of forest paths in oak 

forests (Quercus pyrenaica) and coniferous forests (dominated by Pinus sylvestris) and found 

distinctively more species on the drove road than in the closed forests. The forest paths had a 

higher plant diversity than forests and were a habitat for more specialized ant species, such as 

granivores, scavengers and hot-climate and open-habitat specialists. Ant species occurring in 

the forests were mainly opportunists and generalists (Azcárate et al. 2013). In the subtropical 

woodland around Sydney, Australia, Lassau and Hochuli (2004) draw the same picture and 

showed that ant species richness was negatively associated with canopy cover. 

Compared to the temperate zone, tropical rainforests are a hotspot of ant diversity and harbor 

numerous specialized species. Besides the immense loss of species and habitats due to extensive 

deforestation and transformation to arable land, outside protected areas, most tropical forests 

are exploited or managed by selective logging. Thereby, only trees of commercial value are 

harvested, and the forest is then left to regenerate. Overall, this sustainable use is less 

detrimental to the forest ecosystem and a meta-analysis of Putz et al. (2012) revealed that “85–

100% of species of mammals, birds, invertebrates, and plants remain after logging” (Putz et al. 

2012). 

Vasconcelos et al. (2000) compared ground-living ants between undisturbed forests and forests 

which were selectively logged at different years in Amazonia. They found no significant 

differences in ant species richness between the treatments. However, compared to undisturbed 
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forests, the managed forests showed a reduced canopy cover and different ant species 

compositions. Thus, rainforest management via selective logging has only minor effects on 

ground-living ants, if it does not lead to large scale disturbances and a high tree diversity 

remains (Leal et al. 2012). Furthermore, ant communities are able to recover and with 

increasing time after disturbance, species communities in disturbed and undisturbed forests 

become more similar (Ryder Wilkie et al. 2009, Bihn et al. 2010). But the effects of selective 

logging can differ between ground-living and arboreal ants. For the latter, logging can lead to 

a complete habitat loss which results in a lower number of arboreal species in secondary 

compared to primary rainforests (Klimes et al. 2012). 

Another type of forest management is rainforest reforestation which has been shown to be very 

supportive for ant conservation. In Cameroon rainforests, Watt et al. (2002) found that even 

reforestation with a single tree species can recover large parts of the former ant diversity. If 

forests are reforested from pastures, ant communities are first intermediate between pastures 

and rainforests but become more similar to rainforest communities when the canopy cover 

increases (Piper et al. 2009, Lawes et al. 2017). Overall, ant communities in tropical forests 

respond to alterations of canopy cover with changes in community composition. But as opposed 

to colder regions, species diversity does not increase with canopy openness and species like 

specialized predators or tropical-climate specialists are replaced by more disturbance-tolerant 

species (Lawes et al. 2017). Nevertheless, tropical rainforest ant communities, similar to ants 

in colder bioregions are influenced by temperature (Mezger and Pfeiffer 2010, McGlynn et al. 

2010, Dáttilo and Dyer 2014). Dröse et al. (2019) studied the drivers of ant communities in 

forest-grassland ecotones in South Brazil. Similar to forests and grasslands in colder regions, 

they found more ants in forests with higher temperatures at the forest ground and a low 

vegetation height in the grasslands (Dröse et al. 2019). 

Summarized, an open canopy cover is a significant driver of ant diversity, particularly in less 

tropical regions. Keeping this in mind, current management strategies of forests in Central 

Europe must be reconsidered. The recommendation for forest managers in Grevé et al. (2018) 

to include more open and warmer stages in their management strategies to promote ants 

contradicts with current management strategies. These comprise the admixture of deciduous 

tree species in coniferous forest stands which increases structural complexity and add a second 

canopy layer. This second layer reduces the amount light reaching the ground and therewith 

result in colder ground temperatures. Thus, the management strategies of the last decades did 

not support ant diversity. However, facing climate change, forest management in Central 

Europe will undergo extensive restructuring. Future management strategies which are 
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discussed, include an enhancement of tree species richness, the reduction of forest 

monocultures, and the promotion of light-demanding, or non-native tree species (Brang et al. 

2014). Especially the promotion of light-demanding tree species can increase ant diversity in 

terms of species richness and even functional diversity (Grevé et al. 2018). 

Functional diversity can among others, be based on morphological or life-history traits, or a 

combination of both. To understand how the diversity of an ecosystem, habitat, or population 

changes e.g. under management, it is very useful to include measurements of functional 

diversity in the analyses. 

But functional diversity can only be calculated if communities consist of a sufficient number of 

species. However, especially in poor habitats, like spruce monocultures, ant communities often 

consist of a low number of species (Seifert 2017, Grevé et al. 2018) and measurements of 

functional diversity are difficult or even impossible. In Grevé et al. (2018) it was possible to 

use morphological traits to reveal regional differences between communities such as larger 

bodies or longer legs in formicine dominated communities, compared to mixed family 

communities. But the functional diversity, based on morphological traits, was not variable 

enough to find management related effects on the communities (Grevé et al. 2018). The cause 

for this lack of effects was the high morphological similarity between the occurring species.  

If communities are diverse enough like in tropical or arid regions, the use of morphological 

traits can result in great insights like that ant species communities are shaped by habitat 

structures (Farji-Brener et al. 2004, Sarty et al. 2006, Wiescher et al. 2012, Gibb et al. 2015, 

Radnan et al. 2018). For example Gibb and Parr (2010) investigated the foraging efficiency of 

ant communities across the globe and found clusters of smaller species in complex habitats and 

a broad spread of body sizes in open habitats in South Africa (30 species). However, in Sweden 

(8 species) the body sizes were more evenly distributed since the species communities were 

similar in complex and open habitats (Gibb and Parr 2010). Thus, in less diverse communities, 

morphological trait variation can be too low to detect such variation (Grevé et al. 2018, Heuss 

and Grevé et al. 2019). 

Another problem using morphological traits are my findings in Grevé et al. (2019), that the 

response of species to changes in e.g. habitat structure can be highly species-specific and not 

generalizable (Grevé et al. 2019). This hampers precise predictions on how species might 

respond to changing habitats, based on morphological traits only, since even similarly sized 

species can respond idiosyncratically if they have different habitat preferences or vary in other 

life-history traits (Grevé et al. 2019).  
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A great example for the comparison for a low morphological but high life-history trait diversity 

is the genus Myrmica. Most of the 20 species occurring in Germany have very similar shapes 

and the morphological distinction between species is often based on subtle differences in the 

shape of the scape or the petiole (Seifert 2018). Nevertheless, the species show high life-history 

variability. Within closely related species of for example the Myrmica scabrinodis species-

group, species can vary distinctly in their temperature preference and therefore habitat 

preference (from cold to warm and wet to dry: M. scabrinodis, M. sabuleti, M. specioides) and 

differ e.g. in colony size, number of queens and competitive strength (Radchenko and Elmes 

2010).  

If an ant community is changing and one of these species is replaced by another, the life-history 

based functional diversity would change, while the morphological trait-based functional 

diversity would remain similar. Hence, investigating species-poor communities or communities 

which are consisting of many morphological similar species, a life-history approach to calculate 

functional diversity is more promising than a morphological trait approach (Grevé et al. 2018; 

Heuss and Grevé et al. 2019). But the usage of life-history traits requires a comprehensive 

knowledge of the studied species, which is often not available. To handle this problem, ants are 

commonly assigned to functional groups (Andersen 1997) and the diversity of the community 

is measured as the number of occurring functional groups and the number of species within 

each group (Bernadou et al. 2013, Del Toro et al. 2015). But this functional group approach is 

not useful for analyses of ants in Central Europe since the majority of the common species 

belong to the three largest genera, Lasius, Formica (incl. Serviformica) and Myrmica (Seifert 

2018). Assigned to functional groups, Lasius and Formica (real wood ants) belong to the cold-

climate specialists, Serviformica to the opportunists, and Myrmica belongs to the generalized 

Myrmicinae (Andersen 1997). Most other species are rare or only locally abundant (Seifert 

2007). Especially cryptic species, like Ponera, are very rare or completely missing. Species 

with unique traits such as specialized predators do not occur, to my knowledge. Fortunately, 

the ant species in Europe are well studied and a variety of life-history traits can be found in the 

literature for many species (Arnan et al. 2017, Seifert 2017, 2018). Using a combination of 

taxonomic diversity (number of species) and functional diversity, based on life-history traits, 

we could show that grassland and forest management alter temperate ant communities (Grevé 

et al. 2018; Heuss and Grevé et al. 2019). Management in both biomes lead to changes in 

community compositions.  

In the grassland, management intensification led to a loss of species richness and functional 

diversity. Low-intensity managed grasslands with low vegetation harbor species with a variety 
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of (unique) life-history traits. They can be habitats for rare Tapinoma species, which belong to 

the subfamily Dolichoderine and which are highly dominant and abundant in warmer 

bioregions. They have a polygynous (multiple queens per nest) colony structure, forage 

preferably in the herb layer and are nectarivores (Seifert 2018). Another species which occurs 

only in dry, open habitats is Lasius alienus, which is a sister species of L. niger and does not 

differ much from L. niger but is less aggressive and is an important host for several butterfly 

species. Low-intensity managed grasslands harbor also species such as the aggressive, 

dominant, social-parasite species Formica sanguinea and their Serviformica hosts (Seifert 

2018). In grasslands with at least some woody plants, F. pratensis can be found. This large 

species belongs to the wood ants, has a highly variable colony structure (monogynous or 

polygynous, single or grouped nests) and can build large aboveground nests with high 

population sizes (Seifert 2018). In Germany F. pratensis is highly threatened and protected by 

law. With their aboveground nests, they occur mainly in unmown grasslands (Heuss and Grevé 

et al. 2019). 

However, a moderate land use which results in less dry grasslands via higher plant height can 

create suitable habitats for mesothermic ant species. Such a species is Lasius flavus, which are 

subterranean foragers, and alters grasslands via their aboveground nests and the movement of 

soil (Ehrle et al. 2017). However, with an increasing number of cuts per year, L. flavus stops 

occurring (Heuss and Grevé et al. 2019).  

At high-intensity managed plots, formicine species which build huge colonies with multiple 

queens or aboveground nests are missing and only Lasius niger remains. This species is highly 

adaptive to most environments, strictly monogynous in older colonies, very aggressive and 

feeds on any available food source (Seifert 2018). Despite building partly aboveground nests, 

L. niger occurs in high densities so that mowing has weaker effects on them compared to more 

sensitive species. Myrmica species are less sensitive. While some species have narrow 

temperature and moisture preferences (see above), the three most common species M. rubra, 

M. scabrinodis and M. ruginodis show low sensitivities (Heuss and Grevé et al. 2019) and occur 

even in shady forests (Grevé et al. 2018). In forests, management intensification can have the 

opposite effect compared to grasslands. It can increase functional diversity, when it results in a 

lower canopy cover and a warmer forest climate (Grevé et al. 2018). Forests with low canopy 

cover are suitable habitats, especially for formicine species (Figure 4) which show high 

variation in life-history traits such as colony size, number of nests, number of queens, diet and 

behavioral dominance.  
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Ants are one of the most influential organisms in terrestrial ecosystems. As ecosystem and soil 

engineers, ants alter both, grasslands and forests and influence plant and animal communities. 

Therewith, ants are a great model organism to analyze a variety of ecological key questions, 

such as how communities are affected by management and how they respond to changes. 

Overall, I could contribute significantly to the understanding of how ants react to current 

management practices in temperate grasslands and forests and could highlight the need for 

functional diversity analyses in biodiversity research. In addition, I strongly recommend the 

usage of life-history traits over morphological traits in the analyses in communities which show 

high morphological similarities (Grevé et al. 2018; Heuss and Grevé et al. 2019). Beside low 

variation, morphological traits may yield misleading results since similar shaped species can 

act idiosyncratic and highly species-specific (Grevé et al. 2019). 
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Detailed description of the three study areas 

The biosphere reserve Schwäbische Alb is located in the low mountain ranges of south-

west Germany (48°43’N 9°37’E; 6-7 °C mean annual temperature, 700-1000 mm mean annual 

rainfall, elevation of 460-860 m a.s.l., and a spatial extent of 420 km2). The national park of 

Hainch-Dün and its surrounding areas is located in central Germany (51°20’N 124 10°41’E, 

6.5-8°C, 500-800 mm, 285–550 m a.s.l., 1300 km2). The biosphere reserve Schorfheide-Chorin 

is situated in the lowlands of north-eastern Germany in a young glacial landscape with many 

wetlands (53°02’N 13°83’E, 8-8.5 °C, 500-600 mm, 3-140 m a.s.l., 1300 km2). The study areas 

have a latitudinal distance of around 600 km between Alb and Schorfheide 

 

Detailed description of pitfall trap sampling 

Three pitfalls were placed on each side of the plot at 12.5 m, 25 m, and 37.5 m from the 

corner. As pitfalls, plastic cups (Ø = 70 mm) were placed in the soil with the opening at surface 

level and filled with a solution of water, salt, and soap (200 g salt, 1 ml soap per liter water). 

Pitfalls were collected on the third day after installation. 

 

Detailed description of baiting 

Four bait stations were placed on each side at 7,5 m, 17,5 m, 32,5 m and 42,5 m from the 

corners. As baiting station we used petri dishes (Ø = 90 mm) with a round filter paper and 

placed five baits made from an artificial diet (based on whey protein, caseinate, egg powder, 

sucrose, agar, and water, Table S1) on each filter paper that contained different protein to 

carbohydrate ratios (1:1, 1:2.5, 1:5, 1:7.5 and 1:10; protein:carbohydrate) to attract all ants 

feeding on different food sources. Baits were comprised of whey and casein protein as protein 

source and sucrose and carbohydrate source dissolved in water and gelled with agar to produce 

homogenous cubes of approximately 1 cm3. We counted all ants at these baiting stations 30 

minutes and 60 minutes after placing them in the field.  
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Table S1. Artificial diet used for bait stations 

Propor-

tion P:C 

Whey 

protein (g) 

Caseinat (g) Egg  

powder (g) 

Succrose 

(g) 

Vitamines 

(g) 

Benzoat 

(g) 

Agar (g) Water (ml) 

1:1 33.5 30.52 11 60.0 2 1 8 600 

1:2.5 17.82 16.24 11 85.71 2 1 8 600 

1:5 9.11 8.3 11 100.0 2 1 8 600 

1:7.5 5.52 5.03 11 105.88 2 1 8 600 

1:10 3.57 3.25 11 109.09 2 1 8 600 

 

 

 

Detailed description of SEMs 

To analyze all direct and indirect effects of land-use components and environmental 

variables, which were found to be affecting ant species richness, we used structural equation 

modeling. First for all sampled plots (n=96) and second for only grazed plots (n=61) to analyze 

the effects of different livestock types separately. The region was used as random effect. The 

structure of each linear model within the SEM is: LME (response variable ~ all possible 

predictor variables added up by +, region as random effect) 

  

Structure of the first SEM over all 96 plots: 

SEM1= (  

lme (Number of ant species ~ Mowing intensity + Fertilisation intensity + Grazing 

intensity + Soil moisture + Number of vascular plants + Mean vegetation height (cm) + 

Cover of litter (%) + Cover of shrubs (%), random = ~ 1 | Region), 

lme (Number of vascular plants ~ Mowing intensity + Fertilisation intensity + Grazing 

intensity + Soil moisture + Cover of litter (%) + Cover of shrubs (%), random = ~ 1 | 

Region), 

lme (Mean vegetation height (cm) ~ Mowing intensity + Fertilisation intensity + 

Grazing intensity + Soil moisture + Number of vascular plants + Cover of litter (%) + 

Cover of shrubs (%), random = ~ 1 | Region), 
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lme (Cover of litter (%) ~ Mowing intensity + Fertilisation intensity + Grazing intensity 

+ Soil moisture + Number of vascular plants + Mean vegetation height (cm) +  Cover 

of shrubs (%), random = ~ 1 | Region),   

lme (Soil moisture ~ Mowing intensity + Fertilisation intensity + Grazing intensity 

+Number of vascular plants + Mean vegetation height (cm)+ Cover of litter (%)+ Cover 

of shrubs (%), random = ~ 1 | Region), 

lme (Cover of shrubs (%) ~ Mowing intensity + Fertilisation intensity + Grazing 

intensity + Soil moisture, random = ~ 1 | Region)) 

 

 Structure of the second SEM including only pasture- and mown pasture-plots. 

SEM2 = ( 

lme (Number of ant species ~ Soil moisture + Livestock type + Mowing intensity + 

Fertilisation intensity + Cover of shrubs (%) + Grazing intensity + pH, random = ~ 1 | 

Region), 

lme (Soil moisture ~ Livestock type + Mowing intensity + Fertilisation intensity + Cover 

of shrubs (%)+ Grazing intensity, random = ~ 1 | Region), 

lme (Cover of shrubs (%)~ Soil moisture + Livestock type + Mowing intensity + 

Fertilisation intensity + Grazing intensity, random = ~ 1 | Region)) 
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Table S2. Ant species found in Alb, Hanich and Schorfheide with the trait values used for the calculation 
of FDLH. Trait information marked with * are taken from Seifert (2007, 2017) and marked with + are 
taken from Arnan et al. (2017). Abbreviations: strata forage, vertical strata where species is most likely 
to be found foraging (calculation and trait data see Table S3); zoopha, assumed percentage animal diet 
of total food intake; nectar, assumed percentage of nectar diet of total food intake; tropho, assumed 
percentage trophobiosis based diet of total food intake; plant, assumed percentage plant based diet of 
total food intake; WL = Weber’s length; CS =colony size ln transformed; Dom = behavioral dominance, 
nQ = number of queens per nest, nN = number of nests per colony; CFT= colony foundation type. Data 
type and additional information on the traits are provided in Table S3. 

Species Zoopha* Nectar* Tropho* Plant 
part* 

WL Dom+* CS+* nQ+* nN+* CFT+* Strata forage* 

Campanotus 
ligniperda 

0.27 0.05 0.63 0.05 3.83 1 7.82 0.5 0 1 1.99 

Formica clara 0.6 0.05 0.29 0.06 2.26 1 8.52 0 0 1 0.93 

Formica 
cunicularia 

0.58 0.05 0.32 0.05 1.92 0 7.24 0 0.5 1 1.05 

Formica fusca 0.5 0.1 0.35 0.05 1.95 0 9.1 1 1 1 1.08 

Formica 
pratensis 

0.14 0.02 0.55 0.02 2.71 1 11 1 1 0 0.97 

Formica 
rufibarbis 

0.59 0.05 0.31 0.05 2.27 0 6.91 0 0 1 1.04 

Formica 
sanguinea 

0.48 0.02 0.48 0.02 2.61 1 9.21 0.5 0 0.5 1.24 

Lasius alienus 0.39 0.18 0.37 0.06 1.15 1 9.47 0 0 1 0.76 

Lasius 
emarginatus 

0.45 0.05 0.44 0.06 1.32 1 9.21 0 0 1 1.49 

Lasius flavus 0.2 0 0.8 0 1.32 0 9.21 0.5 0 1 -2.08 

Lasius myops 0.2 0 0.8 0 0.85 0 8.52 0 0 1 -2.08 

Lasius niger 0.34 0.05 0.56 0.05 1.23 1 9.21 0 0 1 1.05 

Lasius 
paralienus 

0.39 0.19 0.36 0.06 1.11 1 9.21 0 0 1 0.76 

Lasius 
psammophilus 

0.35 0.14 0.5 0.01 1.0 0 10.43 0 1 1 0.53 

Lasius 
umbratus 

0.2 0 0.8 0 1.32 0 8.01 0.5 0 0 -2.08 

Myrmecina 
graminicola 

0.99 0 0 0.01 0.95 0 4.61 0.5 0 0 -1.36 

Myrmica 
curvithorax 

0.56 0.04 0.35 0.05 1.45 1 6.68 0 0 1 0.12 

Myrmica 
gallienii 

0.6 0.06 0.32 0.02 1.61 1 6.72 1 0 1 0.27 

Myrmica 
lobicornis 

0.72 0.04 0.2 0.04 1.53 0 5.63 0.5 0 0.5 -0.26 

Myrmica lonae 0.54 0.04 0.35 0.07 1.51 0 8.01 1 0 0.5 0.42 

Myrmica rubra 0.48 0.05 0.37 0.1 1.51 0 8.01 1 1 0.5 0.66 

Myrmica 
ruginodis 

0.53 0.02 0.3 0.15 1.69 0 7.6 0.5 0 0.5 0.77 

Myrmica 
rugulosa 

0.64 0.08 0.25 0.03 1.45 0 7.6 1 1 0.5 0.13 

Myrmica 
sabuleti 

0.51 0.07 0.37 0.05 1.46 0 8.01 1 0 0.5 0.54 

Myrmica 
scabrinodis 

0.51 0.06 0.4 0.03 1.43 0 7.31 0.5 0 0.5 0.34 
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Myrmica 
schenki 

0.58 0.1 0.27 0.05 1.57 0 5.87 0.5 0 0.5 0.29 

Myrmica 
specioides 

0.51 0.05 0.41 0.03 1.37 0 7.31 1 0 0.5 0.22 

Tapinoma 
erraticum 

0.6 0.13 0.2 0.07 0.96 1 8.16 1 1 0 0.95 

Tapinoma 
subboreale 

0.6 0.13 0.2 0.07 0.88 0 NA 1 1 0 0.95 

Temnothorax 
unifasciatum 

0.8 0.15 0.05 0 0.72 0 5.78 0 0 1 0.8 

Tetramorium 
caespitum 

0.26 0.04 0.35 0.35 0.94 1 9.21 0 0 1 -0.73 

 

 

 

Table S3. Description of the different traits for the calculation of the life history trait analyses 

Trait Data type States 

CS Continuous Mean colony size (log transformed) 

WL Continuous Mean Weber´s length of worker (mm) 

Zoo, Nectar, 
Troph, and Plant 

 

Continuous 

 

 

Assumed relative percentage of animal-, nectar-, 
trophobiosis- or plant-based diet. All summed to 100 %. 
Values are partly assumed by Seifert (2017), but also 
based on very detailed food analyses* 

Dom Binary (0) Subordinate; (1) Dominant 

nQ Ordinal (0) Monogyny; (0.5) Monogyny or polygyny; (1) 
Polygyny 

nN Ordinal (0) Monodomy; (0.5) Monodomy or polydomy; (1) 
Polydomy 

CFT Ordinal (0) Dependent colony founding; (0.5) Dependent and 
independent colony founding; (1) Independent colony 
founding 

Strata.forage Continuous Positive values for higher probability of species found 
foraging above ground, negative values for foraging 
under the surface.  

 

Arnan, X., Cerdá, X., & Retana, J. (2017). Relationships among taxonomic, functional, and 

phylogenetic ant diversity across the biogeographic regions of Europe. Ecography, 40(3), 448–457. 

https://doi.org/10.1111/ecog.01938 

Seifert, B. (2017). The ecology of Central European non-arboreal ants – 37 years of a broad-spectrum 

analysis under permanent taxonomic control. Soil Organisms, 89(April), 1–67. 
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Table S4. Foraging strata calculated as the sum of the probability of worker to forage in 
different vertical strata, where the value for each strata is multiplied by a specific factor, based 
on predictions of Seifert (2017). Deep soil - foraging in deeper soil at depths of at least 10 cm; 
top soil - foraging in top soil including the root layer of herbs in depths < 10 cm; moss litter- 
foraging in the moss and litter layer; free surf = foraging on free, above-ground surfaces except 
of those on herbs, shrubs and trees; herb = foraging in the herb layer; shrub tree =foraging on 
shrubs and trees, higher than 2 meters. 

Species Strata.forage 

deep soil 
(multiplied 
by -3) 

top soil 
(multiplied 
by -2) 

moss litter 
(multiplied 
by -1) 

free surf 
(multiplied 
by 1) 

herb 
(multiplied 
by 2) 

shrub tree 
(multiplied 
by 3) 

Campanotus ligniperda 1.99 0.03 0.06 0.01 0.21 0.07 0.62 

Formica clara 0.93 0.01 0.09 0.03 0.6 0.24 0.03 

Formica cunicularia 1.05 0.01 0.11 0.02 0.45 0.36 0.05 

Formica fusca 1.08 0.01 0.14 0.05 0.33 0.3 0.17 

Formica pratensis 0.97 0.01 0.15 0.03 0.45 0.2 0.16 

Formica rufibarbis 1.04 0.01 0.1 0.02 0.5 0.32 0.05 

Formica sanguinea 1.24 0.01 0.1 0.02 0.53 0.09 0.26 

Lasius alienus 0.76 0.03 0.22 0.04 0.31 0.18 0.22 

Lasius emarginatus 1.49 0.01 0.07 0.03 0.4 0.18 0.31 

Lasius flavus -2.08 0.16 0.78 0.05 0.01 0 0 

Lasius myops -2.08 0.16 0.78 0.05 0.01 0 0 

Lasius niger 1.05 0.02 0.16 0.04 0.34 0.19 0.25 

Lasius paralienus 0.76 0.03 0.22 0.04 0.31 0.18 0.22 

Lasius psammophilus 0.53 0.04 0.29 0.04 0.21 0.2 0.22 

Lasius umbratus -2.08 0.16 0.78 0.05 0.01 0 0 
Myrmecina 
graminicola -1.36 0.05 0.36 0.54 0.05 0 0 

Myrmica curvithorax 0.12 0.02 0.25 0.1 0.48 0.15 0 

Myrmica gallienii 0.27 0.01 0.18 0.23 0.32 0.21 0.05 

Myrmica lobicornis -0.26 0.02 0.15 0.39 0.39 0.05 0 

Myrmica lonae 0.42 0.02 0.1 0.26 0.37 0.18 0.07 

Myrmica rubra 0.66 0.02 0.15 0.19 0.26 0.19 0.19 

Myrmica ruginodis 0.77 0.01 0.15 0.18 0.26 0.18 0.22 

Myrmica rugulosa 0.13 0.02 0.17 0.19 0.52 0.1 0 

Myrmica sabuleti 0.54 0.02 0.1 0.21 0.4 0.2 0.07 

Myrmica scabrinodis 0.34 0.02 0.18 0.15 0.42 0.2 0.03 

Myrmica schencki 0.29 0.02 0.15 0.2 0.41 0.22 0 

Myrmica specioides 0.22 0.02 0.18 0.18 0.42 0.2 0 

Tapinoma erraticum 0.95 0 0.09 0.1 0.4 0.4 0.01 

Tapinoma subboreale 0.95 0 0.09 0.1 0.4 0.4 0.01 
Temnothorax 
unifasciatum 0.8 0 0.06 0.24 0.24 0.46 0 

Tetramorium caespitum -0.73 0.17 0.34 0.03 0.43 0.03 0 
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Table S5. Path coefficients (and standard error (SE)) of all unidirectional relationships among variables 
of both piecewise SEM, shown in Fig. 2a and 2b. Significance: p< 0.05: *; p< 0.01: ** p< 0.001: *** 

First SEM over all 96 plots: 
Response Predictor Coefficient SE P-value Significance 
Number of ant species Mowing intensity -0.52 0.12 < 0.001 *** 
 Soil moisture -0.28 0.08 0.002 ** 
 Grazing intensity -0.25 0.10 0.012 * 
 Vegetation height -0.18 0.11 0.088  
 Cover litter 0.14 0.11 0.208  
 Cover shrubs 0.08 0.08 0.349  
 Plant species richness 0.10 0.11 0.390  
 Fertilization intensity -0.06 0.10 0.514  
Plant species richness Cover shrubs 0.28 0.07 < 0.001 *** 
 Fertilization intensity -0.24 0.09 0.009 ** 
 Mowing intensity -0.28 0.11 0.013 * 
 Soil moisture -0.17 0.08 0.031 * 
 Grazing intensity -0.17 0.09 0.063  
 Cover litter -0.03 0.10 0.736  
Vegetation height Plant species richness -0.28 0.11 0.012 * 
 Soil moisture -0.19 0.08 0.026 * 
 Mowing intensity 0.26 0.12 0.031 * 
 Cover litter 0.17 0.11 0.118  
 Cover shrubs -0.08 0.08 0.322  
 Grazing intensity 0.06 0.10 0.543  
 Fertilization intensity 0.00 0.10 0.994  
Cover litter Soil moisture 0.19 0.08 0.021 * 
 Vegetation height 0.16 0.10 0.117  
 Fertilization intensity -0.14 0.09 0.128  
 Grazing intensity -0.14 0.09 0.141  
 Mowing intensity 0.14 0.12 0.222  
 Cover shrubs 0.04 0.08 0.628  
 Plant species richness 0.01 0.11 0.900  
Soil Moisture Plant species richness -0.36 0.14 0.011 * 
 Cover litter 0.31 0.13 0.023 * 
 Vegetation height -0.28 0.13 0.035 * 
 Fertilization intensity -0.17 0.12 0.165  
 Grazing intensity -0.16 0.12 0.201  
 Cover shrubs 0.05 0.11 0.635  
 Mowing intensity 0.07 0.15 0.664  
Cover shrubs Mowing intensity -0.40 0.15 0.007 ** 
 Grazing intensity -0.27 0.12 0.036 * 
 Soil moisture 0.02 0.11 0.818  
 Fertilization intensity 0.02 0.12 0.882  

Second SEM including only pasture- and mown plots: 
Number of ant species Sheep 1.11 0.25 < 0.001 *** 
 Soil moisture -0.32 0.11 0.004 ** 
 Mowing intensity -0.23 0.14 0.111  
 Cover shrubs 0.11 0.09 0.243  
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 Fertilization intensity -0.10 0.12 0.372  
 Grazing intensity -0.09 0.11 0.427  
 Cattle and horses -0.03 0.58 0.961  
Soil Moisture Mowing intensity 0.49 0.17 0.006 ** 
 Fertilization intensity -0.35 0.14 0.019 * 
 Cattle and horses 1.62 0.71 0.027 * 
 Sheep 0.65 0.31 0.042 * 
 Cover shrubs 0.08 0.12 0.536  
 Grazing intensity -0.01 0.15 0.969  
Cover shrubs Sheep 0.38 0.32 0.245  
 Mowing intensity -0.22 0.19 0.249  
 Grazing intensity -0.17 0.16 0.304  
 Soil moisture 0.10 0.15 0.502  
 Cattle and horses -0.08 0.80 0.924  
 Fertilization intensity 0.00 0.17 0.985  

 

 

 

Fig. S1. Number of collected ant species along the land-use gradient for each of the three study 

regions.The black lines represent the exponential function of a GLM for species number and 

increasing land-use intensity. The grey areas represent the 95 % confidence intervals. 
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Fig. S2. Effects of mowing (a), grazing (b) and fertilization (c) intensity on number of ant 

species, grey for Alb, blue for Hainich and red for Schorfheide. The black line represents the 
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exponential function of a GLM for species number and the land-use type. The grey areas 

represent the 95 % confidence intervals. 

 

 

Fig. S3. The number of ant nests (in total 503 nests on 62 plots) in dependence of land-use 

intensity between the different regions over all plots (n= 110), The black line represents the 

exponential function of a GLM for number of ant nests and increasing land-use intensity. The 

grey area represents the 95 % confidence interval. 
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Fig. S4. Boxplot showing the occurrence of visually detected ant nests per species in the three regions 

along the number of cuts per year, alphabetically ordered. Black dots represent outliers. 

 

  



65 

 

Manuscript 2: 

 

Authors: Michael E. Grevé, Jörg Hager, Wolfgang W. Weisser, Peter Schall, Martin M. 
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Table S1. List of ant species found in each region including the number of plots where they 
occurred and their abundance as the number of times (month x trap) a species was caught in 
pitfalls. 

Region Species No plots Abundance 

Alb Camponotus herculeanus 2 3 

 Camponotus ligniperdus 1 1 

 Formica (Serviformica) fusca 5 7 

 Formica polyctena * 1 1 

 Formica pratensis 5 6 

 Formica rufa * 1 1 

 Formica (Raptiformica) sanguinea 4 4 

 Lasius niger 3 3 

 Lasius platythorax 10 16 

 Lasius psammophilus 1 1 

 Leptothorax acervorum 2 2 

 Myrmica rubra 7 20 

 Myrmica ruginodis 40 172 

 Temnothorax nylanderi 1 1 

Hainich Formica (Serviformica) fusca 1 2 

 Formica polyctena 1 4 

 Formica (Raptiformica) sanguinea 1 1 

 Lasius platythorax 7 14 

 Myrmica rubra 2 2 

 Myrmica ruginodis 27 86 

 Myrmica specioides 1 1 

Schorfheide Camponotus fallax 1 1 

 Dolichoderus quadripunctatus 1 1 

 Formica (Coptoformica) foreli 1 1 

 Formica (Serviformica) fusca 21 45 

 Formica polyctena * 36 140 

 Formica rufa * 25 66 

 Formica (Raptiformica) sanguinea 3 4 

 Lasius alienus 3 3 

 Lasius (Dendrolasius) fuliginosus 12 21 

 Lasius niger 1 1 

 Lasius platythorax 31 136 

 Lasius psammophilus 10 13 
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Table S1. Continuation 

Region Species No plots Abundance 

Schorfheide Lasius (Chthonolasius) umbratus 1 1 

 Leptothorax acervorum 3 4 

 Myrmica lobicornis 10 20 

 Myrmica rubra 31 87 

 Myrmica ruginodis 48 341 

 Myrmica sabuleti 5 8 

 Myrmica scabrinodis 10 26 

 Polyergus rufescens 1 1 

 Stenamma debile 37 115 

 Temnothorax crassispinus 46 178 

 Tetramorium caespitum 3 3 

* Species can produce fertile hybrids. Percentage of assumed hybrids was < 10 % 
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Table S2. Ant species found at the Schorfheide with the trait values used for the calculation of FDLH. Trait 
information marked with # are taken from Seifert (2007, 2017) and marked with + are taken from Arnan et al. 
(2017). Abbreviations: CS, colony size; WL, Weber´s length; Zoo, assumed percentage animal diet of total food 
intake; Nectar, assumed percentage of nectar diet of total food intake; Troph, assumed percentage trophobiosis 
based diet of total food intake; Plant, assumed percentage plant based diet of total food intake; Dom, behavioral 
dominance, nQ, number of queens per nest, nN, number of nests per colony; CFT, colony foundation type. Data 
type and additional information on the traits are provided in Table S3. 

Species #CS WL #Zoo #Nectar #Troph #Plant +#Dom +#nQ +#nN +#CFT 

Camponotus fallax 5.70 2.42 0.58 0.13 0.21 0.08 0 0 0 1 
Formica (Serviformica) 
fusca 7.31 1.96 0.5 0.1 0.35 0.05 0 1 1 1 

Formica polyctena 12.20 2.40 0.3 0.03 0.65 0.02 1 1 1 0 

Formica rufa 11.00 2.54 0.3 0.03 0.65 0.02 1 1 1 0 
Formica (Raptiformica) 
sanguinea * 8.52 2.57 0.48 0.02 0.48 0.02 1 0.5 0 0.5 
Formica (Coptoformica) 
foreli * 10.13 1.63 0.4 0.02 0.56 0.02 1 1 1 1 
Lasius (Dendrolasius) 
fuliginosus 10.31 1.51 0.25 0.07 0.64 0.04 1 0 0 0 

Lasius niger 8.52 1.37 0.34 0.05 0.56 0.05 1 0 0 1 

Lasius platythorax 8.52 1.22 0.34 0.05 0.56 0.05 1 0 0 1 
Lasius (Chthonolasius) 
umbratus 9.21 1.33 0.2 0 0.8 0 1 0.5 0 0 

Lasius alienus 8.52 1.06 0.39 0.18 0.37 0.06 1 0 0 1 

Lasius psammophilus 8.52 1.17 0.35 0.14 0.5 0.01 0 0 1 1 

Polyergus rufescens * 7.31 2.41 0.5 0.1 0.35 0.05 1 0 0 0 

Leptothorax acervorum 5.19 1.02 0.87 0.02 0.07 0.04 0 1 0 0 

Myrmica lobicornis 5.63 1.40 0.72 0.004 0.2 0.04 0 0.5 0 0.5 

Myrmica rubra 7.38 1.47 0.48 0.05 0.37 0.1 0 1 1 0.5 

Myrmica ruginodis 6.68 1.57 0.53 0.02 0.3 0.15 0 0.5 0 0.5 

Myrmica sabuleti 6.48 1.43 0.51 0.07 0.37 0.05 0 1 0 0.5 

Myrmica scabrinodis 6.40 1.41 0.51 0.06 0.4 0.03 0 0.5 0 0.5 

Stenamma debile 4.03 0.99 0.95 0 0.02 0.03 0 1 1 0 

Temnothorax crassispinus 4.38 0.77 0.95 0.02 0.03 0 0 0 0 0.5 

Tetramorium caespitum 9.62 1.03 0.26 0.04 0.35 0.35 1 0 0 1 
Dolichoderus 
quadripunctatus 5.70 1.1 0.61 0.13 0.13 0.13 0 0 1 0 
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Table S3. Description of the different traits for the calculation of the FDLH 

Trait Data type States 

CS Continuous Mean colony size (log transformed) 

WL Continuous Mean Weber´s length of worker (mm) 

Zoo, Nectar, Troph, 
and Plant 

 

Continuous 

 

 

Assumed relative percentage of animal-, nectar-, trophobiosis- or 
plant-based diet. All summed to 100 %. Values are partly assumed 
by Seifert (2017), but also based on very detailed food analyses* 

Dom Binary (0) Subordinate; (1) Dominant 

nQ Ordinal (0) Monogyny; (0.5) Monogyny or polygyny; (1) Polygyny 

nN Ordinal (0) Monodomy; (0.5) Monodomy or polydomy; (1) Polydomy 

CFT Ordinal (0) Dependent colony founding; (0.5) Dependent and independent 
colony founding; (1) Independent colony founding 

* detailed analyses are published in e.g. Wellenstein (1952, Adlung (1966) for Formica rufa, Horstmann (1970) 
for F. polyctena. 
 

LITERATURE CITED 

Adlung, K. (1966) A critical evaluation of the European research on use of red wood ants 
(Formica rufa group) for the protection of forests against harmful insects. Zeitschrift für 
angewandte Entomologie 57:167–189. 

Horstmann, K. (1970) Investigation on the food consumption of red wood ants (Formica 
polyctena Foerster) in an oak forest. Oecologia 5:138–157. 

Wellenstein, G. (1952) Zur Ernährungsbiologie der Roten Waldameise. (Formica rufa L.). 
Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz 59:430–
451. 

Seifert, B. (2007) Die Ameisen Mittel- und Nordeuropas. Lutra Verlag-u. 
Vertriebsgesellschaft, Boxberg OT Klitten/Tauer, Germany 

Seifert, B. (2017) The ecology of Central European non-arboreal ants – 37 years of a broad-
spectrum analysis under permanent taxonomic control. Soil Organisms, 89:1–67. 
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Table S4. Number of ant species found in the different management types and the number of 
plots where the particular number of ant species was found for each management type and 
region (based on n = 150 plots). 

Management type Number ant species per plot Alb Hainich Schorfheide 

Beech even-aged 0 5 7 - 

 1 13 8 - 

 2 7 2 - 

 3 5 2 - 

 4 - 4 2 

 5 2 - 5 

 7 1 - 4 

 8 - - 1 

 10 - - 1 

Beech uneven-aged 0 - 6 - 

 1 - 6 - 

 2 - 1 - 

Beech unmanaged 0 - 10 - 

 1 2 3 1 

 2 1 - 1 

 3 2 - 1 

 5 - - 2 

 6 - - 1 

 7 - - 1 

Oak even-aged 3 - - 1 

 5 - - 3 

 6 - - 1 

 8 - - 2 

Pine even-aged 6 - - 2 

 7 - - 1 

 8 - - 1 

 9 - - 4 

 10 - - 2 

 11 - - 2 

 12 - - 1 

 13 - - 1 
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 14 - - 1 

Pine-beech even-aged 4 - - 1 

 5 - - 2 

 6 - - 1 

 7 - - 1 

 8 - - 2 

Spruce even-aged 0 2 - - 

 1 8 1 - 

 2 - 3 - 

 3 2 - - 
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Table S5. Result of the multi model averaging approach for FDM. The relative importance values of each 
predictor variable are calculated as the sum of AICc weights over all models with ΔAICc< 2 in which the 
variable appears and the number of models which contained the precise variable is stated. 

Variable Importance (%) N containing models 

Leaf litter thickness 92 19 

Deadwood volume 75 16 

Dominant tree species 40 8 

Tree species diversity 39 7 

Arthropod biomass 30 7 

Arthropod species richness 28 6 

Tree species richness 24 5 

Stand purity 8 2 

Percentage harvested tree volume (Iharv) 7 2 

Canopy cover 3 1 

Temperature amplitude 3 1 

 

 

Table S6. Result of the multi model averaging approach for ant species richness with region as fixed factor. The 
relative importance values of each predictor variable are calculated as the sum of AICc weights over all models 
with ΔAICc< 2 in which the variable appears and the number of models which contained the precise variable is 
stated. 

Variable Importance (%) N containing models 

Canopy cover  100 12 

Arthropod biomass  100 12 

Arthropod species richness 100 12 

Dominant tree species 100 12 

Region 100 12 

Temperature amplitude 100 12 

Tree species richness 100 12 

Stand age 78 9 

Stand purity 66 8 

Percentage harvested tree volume (Iharv) 65 7 

Stand structural complexity 46 5 

Soil moisture 19 3 

Tree species diversity 15 2 
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Table S7. Path coefficients of the significant unidirectional relationships among variables of Fig. S3. Due to the high 
complexity of Fig S3, the path coefficients are not included in the figure like it was done in Fig 2, 3 and Fig S5. 

Predictor Response Coefficient SE P-value  

Ant abundance Ant species richness 1.05 9.36e-02 >0.001 *** 

Pine Ant species richness 1.34 4.16e-01 0.002 ** 

Tree species richness Ant species richness 0.15 5.19e-02 0.006 ** 

Arthropod species richness Ant abundance 0.02 4.36e-03 >0.001 *** 

Spruce Ant abundance -1.09 3.42e-01 0.002 ** 

Hainich (region) Ant abundance -0.94 3.13e-01 0.003 ** 

Temperature amplitude Ant abundance 0.01 4.39e-03 0.013 * 

Arthropod biomass Ant abundance -0.05 2.32e-02 0.038 * 

Hainich (region) Arthropod species richness 22.74 6.12e+00 >0.001 *** 

Schorfheide (region) Arthropod species richness 49.72 1.57e+01 0.002 ** 

Stand structural complexity Arthropod species richness 5.65 1.94e+00 0.004 ** 

Arthropod biomass Arthropod species richness 1.31 4.62e-01 0.005 ** 

Pine Arthropod species richness 22.03 7.99e+00 0.007 ** 

Temperature amplitude Arthropod species richness 0.21 8.82e-02 0.019 * 

Canopy cover Arthropod species richness -24.48 1.09e+01 0.027 * 

Tree age Arthropod species richness -0.09 4.43e-02 0.043 * 

Hainich (region) Arthropod biomass -6.74 1.02e+00 >0.001 *** 

Tree species richness Arthropod biomass -0.47 1.94e-01 0.017 * 

Oak Arthropod biomass -4.20 1.76e+00 0.019 * 

Canopy cover Temperature amplitude -46.14 1.02e+01 >0.001 *** 

Tree age Temperature amplitude -0.11 4.34e-02 0.009 ** 

Leaf litter thickness Temperature amplitude 5.17 2.02e+00 0.012 * 

Oak Temperature amplitude -20.78 9.02e+00 0.023 * 

Schorfheide (region) Temperature amplitude -29.32 1.42e+01 0.041 * 

Hainich (region) Soil moisture -7.73 1.38e+00 >0.001 *** 

Schorfheide (region) Soil moisture -22.95 4.46e+00 >0.001 *** 

Pine Soil moisture -5.11 2.33e+00 0.03 * 

Spruce Canopy cover -0.28 5.60e-02 >0.001 *** 

Schorfheide (region) Canopy cover -0.17 5.49e-02 0.002 ** 

Pine Canopy cover -0.19 6.29e-02 0.003 ** 

Tree species richness Canopy cover 0.03 9.14e-03 0.003 ** 

Stand purity Canopy cover -0.12 4.25e-02 0.005 ** 

Oak Canopy cover -0.20 8.26e-02 0.019 * 

Schorfheide (region) Leaf litter thickness 6.28 4.01e-01 >0.001 *** 

Pine Leaf litter thickness 1.90 3.11e-01 >0.001 *** 

Canopy cover Leaf litter thickness 1.75 4.12e-01 >0.001 *** 

Hainich (region) Leaf litter thickness -0.69 2.20e-01 0.002 ** 

Tree age Leaf litter thickness 0.00 1.83e-03 0.031 * 
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Fig. S1. Proportion of harvested tree volume (Iharv) between the different regions. 

 

 

Fig. S2. Proportion of harvested tree volume (Iharv) between the different management types 

(based on n = 150 plots) 
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Fig. S3. Final piecewise structural equation model (based on n = 141 plots) exploring the direct 

and indirect effects of forest management on ant species richness with the region as fixed factor 

in the global model. Boxes represent measured variables. Arrows represent significant (p < 

0.05), unidirectional relationships among variables. Black are positive and red are negative 

relationships. Dashed arrows are used to reduce the overlay. We report the path coefficients as 

standardized effect sizes in Table S7 to enhance the comprehensibility. R² values for component 

models are given in the boxes of their response variables.  
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Fig. S4. Final piecewise structural equation model (based on n = 44 plots) exploring the direct 

and indirect effects of forest management on FDM at the Schorfheide. Boxes represent measured 

variables. Arrows represent significant (p < 0.05), unidirectional relationships among variables. 

Black are positive and red are negative relationships.  

 

 

Fig. S5. Percentage of canopy cover of the different management types (based on n = 150 plots) 

assessed by airborne LiDAR in summer 2008 and 2009 during leaf-on condition. 
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Appendix 

 

Fig. S1 The different surfaces used in this study under 20x magnification. The grain sizes are 

stated above each picture. 

 

 

 

Fig. S2 Design of the arenas used in the experiments  
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Fig. S3 The number of strides per species made to walk the measured five centimeters over the 

different surfaces. A stride was defined as the setting down of a foot to the setting down of the 

same foot. 
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Fig. S4 Comparison of the number of strides of the different Camponotus castes of both species 

made to walk the measured five centimetres over the six different surfaces. A stride was defined 

as the setting down of a foot to the setting down of the same foot. Due to color variation of the 

`1-2 mm´ sand, it was not possible to count the exact number of strides, as the contours of the 

legs became fuzzy. 
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