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Summary

Summary

Stable water isotopes have significantly contributed to the reconstruction of climate history
qualitatively and quantitatively during the last decades. The hydrogen isotopic composi-
tion (δ 2H) of terrestrial leaf wax-derived n-alkanes is used as source water δ 2H recorder,
and is often interpreted as δ 2Hprecipitation. However, δ 2Hn-alkane is not only influenced by
δ 2Hprecipitation changes, but also by the incorporation of the leaf water enrichment signal
caused by evapotranspiration. Therefore, single n-alkane δ 2H-based climate proxies are
often interpreted only quantitatively. Oxygen isotopic composition (δ 18O) of hemicellulose-
derived sugars can be interpreted comparable to the δ 2H of n-alkanes. By combining
δ 2Hn-alkane with δ 18Osugar results, potentially a powerful tool is available for disentangling
between source water and evapotranspirative enrichment changes. Such a coupled
δ 2Hn-alkane-δ 18Osugar approach was shown to derive quantitative hydroclimate records, i.e.
past δ 2Hsource-water, δ 18Osource-water and relative air humidity (RHair) values, respectively. In
previous studies, this coupling was therefore introduced as paleohygrometer approach in
analogy to the often used paleothermometer approaches in Quaternary research. Within
this PhD thesis I aim at contributing to the validation and the broader application of the
coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer approach, because a detailed validation
and particularly the application to lake sediments is still missing.

The first two studies are therefore addressing the validation of the coupled δ 2Hn-alkane-
δ 18Osugar (paleohygrometer) approach. Firstly, leaf sample material from a climate cham-
ber experiment conducted with three different plant species was analyzed. The climate
chamber experiment showed that leaf δ 2Hn-alkane and δ 18Osugar are well correlated with
δ 2Hleaf-water, δ 18Oleaf-water (r2 = 0.45 and 0.85, respectively, p < 0.001, n = 24). RHair was
robustly reconstructed based on a simplified Craig-Gordon model. The second validation
approach is a European topsoil transect study. It revealed that the coupled δ 2Hn-alkane-
δ 18Osugar approach allows the reconstruction of δ 2Hsource-water, δ 18Osource-water and mean
RH during day-time and vegetation period (RHMDV). However, systematic offsets between
biomarker-based (reconstructed) δ 2Hsource-water, δ 18Osource-water and RHMDV values and a
clear larger range compared to δ 2Hprecipitation, δ 18Oprecipitation and climate station RHMDV,
respectively, were observed.

The application of the coupled δ 2Hn-alkane-δ 18Osugar approach to the terrestrial climate
archive Maundi (Mt. Kilimanjaro, Tanzania) was successful, allowing the reconstruction of
δ 2Hsource-water, δ 18Osource-water and day-time RH (RHD) throughout the last ~100 ka for East
African region. The observed strong positive relationship between the biomarker-based
δ 2Hsource-water, δ 18Osource-water and deuterium-excess of leaf water values indicates that an
amount effect in precipitation isotope composition seems not to be present on long time
scales.

In order to provide the backbone for applying the coupled δ 2Hn-alkane-δ 18Osugar approach, a
source identification study of terrestrial versus aquatic sugar biomarkers in lake sediments
was conducted. For Late Glacial-Early Holocene sediments of Lake Gemündener Maar
(Western Eifel region, Germany), the results show that arabinose is primarily of terrestrial
origin while fucose and xylose stem predominantly from aquatic sources. This allows for
using δ 18Oarabinose and terrestrial δ 2Hn-alkane results from Lake Gemündener Maar sedi-
ments in a coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer approach in order to derive a
day-time vegetation period RH (RHdv) record. The results challenge the paradigmatic view
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Summary

that the Younger Dryas is characterized by dry climatic conditions. They rather suggest
that a relatively wet phase at the beginning of the Younger Dryas prevailed, which is fol-
lowed by a more drier ending of the Younger Dryas. Also, large RHdv changes during the
Early Holocene were obvious which are more pronounced than the variations during the
Allerød-Younger Dryas transition phase.

Finally, I aimed to apply the coupled δ 2Hn-alkane-δ 18Osugar approach also to the Late Glacial-
Early Holocene sediments of Lake Bergsee (Southern Black Forest, Germany) in order to
validate or falsify the findings from Lake Gemündener Maar. However, the source iden-
tification strongly suggest that the sugar biomarkers in that lake are primarily of aquatic
origin. Hence, a coupling of terrestrial δ 2Hn-alkane with δ 18Osugar records was not feasi-
ble. At the same time, the coupling of aquatic δ 2Hn-alkane with δ 18Osugar records was not
possible either, because n-C23 could not be considered as robust aquatic biomarker.

Overall, the findings of the studies I conducted for this thesis highlight the large poten-
tial to derive quantitative hydroclimate information from the coupled δ 2Hn-alkane-δ 18Osugar
(paleohygrometer) approach. At the same time, the reconstruction of δ 2Hleaf-water from
δ 2Hn-alkane turned out to be a major uncertainty, representing the limitation regarding the
reconstruction of rather small variability of δ 2Hsource-water, δ 18Osource-water and RH. Further-
more, a clear differentiation between terrestrial or aquatic origins of the n-alkane and sugar
biomarkers seems to be of fundamental importance for a successful application of the cou-
pled δ 2Hn-alkane-δ 18Osugar approach to lacustrine archives.
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Zusammenfassung

Zusammenfassung

Die Analyse der stabilen Wasserisotope hat in den letzten Dekaden maßgeblich dazu
beigetragen die Klimageschichte qualitativ wie auch quantitativ zu erfassen. Zur Rekon-
struktion der Isotopenzusammensetzung des Wasserstoffs (δ 2H) des Wassers, welches
Pflanzen aufnehmen, wird oftmals die δ 2H von n-Alkan Biomarkern aus Blattwachsen
herangezogen. Diese wird wiederum als δ 2H des Niederschlags interpretiert. Allerdings
werden die δ 2Hn-Alkan Werte nicht nur durch Veränderungen in den δ 2HNiederschlag Werten
beeinflusst, sondern beinhalten auch ein Anreicherungssignal, welches bei der Evapotran-
spiration von Blattwasser auftritt. Daher können Klimaproxies, die allein auf δ 2Hn-Alkan
Ergebnissen basieren, oft nur qualitativ interpretiert werden. Die Interpretation der Iso-
topenzusammensetzung des Sauerstoffs (δ 18O) von Hemizellulose-bürtigen Zuckern ist
vergleichbar mit der Interpretation der δ 2H von n-Alkanen. Die Kopplung von Beiden
erweist sich als sehr hilfreich um zwischen den Veränderungen im Wasser, welches die
Pflanzen aufnehmen und Änderungen in der Evapotranspiration von Blattwasser zu unter-
scheiden. Solch ein gekoppelter Ansatz kann daher dazu beitragen die hydroklimatischen
Bedingungen in der Vergangenheit auch quantitativ zu erfassen. Dazu werden δ 2HWasser
und δ 18OWasser Werte und relative Luftfeuchtigkeiten (RH) rekonstruiert. In vorangegan-
gen Arbeiten wurde diese Kopplung als Paleohygrometer Ansatz eingeführt, in Analogie
zu den in der Quartärforschung oft verwendeten Paleothermometer Ansätzen. In dieser
Arbeit will Ich einen Beitrag zur Validierung und der breiteren Anwendung des gekoppelten
δ 2Hn-Alkan-δ 18OZucker Ansatzes leisten, da eine detaillierte Validierung und insbesondere
eine Anwendung auf Seesedimente bislang nicht erfolgt sind.

Die ersten beiden Studien befassen sich mit der Validierung des Ansatzes. Hierfür kon-
nte zum einen auf Blattmaterial eines Klimakammerexperimentes mit drei verschiedenen
Pflanzenarten zurückgegriffen werden. Das Klimakammerexperiment zeigt, dass die
δ 2Hn-Alkan und δ 18OZucker Werte gut mit den δ 2HBlattwasser bzw. δ 18OBlattwasser Werten
korreliert sind (r2 = 0.45 und 0.85, p < 0.001, n = 24). Zudem konnten die RH Bedin-
gungen der Klimakammern mit Hilfe eines simplen Craig-Gordon Modell robust rekonstru-
iert werden. Als zweiter Validierungsansatz wurden δ 2Hn-Alkan und δ 18OZucker in Ober-
bodenproben eines europäischen Transektes analysiert. δ 2HWasser und δ 18OWasser sowie
RH Werte konnten hiermit rekonstruiert werden. Die RH Werte sind hierbei repräsen-
tativ für die gemittelten Bedingungen während des Tages und der Vegetationsperiode
(RHMDV). Jedoch gibt es eine systematische Abweichung zwischen den rekonstruierten
δ 2HWasser, δ 18OWasser und RHMDV Werten sowie eine größere Streuung im Vergleich zu
δ 2HNiederschlag, δ 18ONiederschlag und RHMDV Werten der Klimastationen.

Die Anwendung des gekoppelten δ 2Hn-Alkan-δ 18OZucker Ansatzes auf das terrestrisches Kli-
maarchiv Maundi (Mt. Kilimanjaro, Tansania) erlaubte die Rekonstruktion von
δ 2HWasser und δ 18OWasser und Tageszeit RH (RHD) während der letzten ~100 ka für die Re-
gion Ostafrikas. Es besteht ein starker positiver Zusammenhang zwischen den Biomarker-
basierten δ 2HWasser, δ 18OWasser Werten und dem Deuterium-Exzess des Blattwassers.
Dies deutet darauf hin, dass der Niederschlagsmengen-Effekt auf die Niederschlagsiso-
topie für längere Zeitskalen keinen Einfluss hat.

Um eine solide Basis für die Anwendung des gekoppelten δ 2Hn-Alkan-δ 18OZucker Ansatzes
auf Seesedimente zu schaffen, wurde zunächst untersucht, wie zwischen dem terrestrisch-
en und aquatischen Beitrag von sedimentären Zuckerbiomarkern unterschieden werden
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kann. Für die Spätglazialen-Frühholozänen Sedimente des Gemündener Maars (West-
eifel, Deutschland) konnte gezeigt werden, dass Arabinose hauptsächlich terrestrischen
Ursprungs ist, während Fucose und Xylose maßgeblich auf aquatischen Eintrag zurück-
zuführen sind. Basierend auf terrestrischen δ 2Hn-Alkan und δ 18OArabinose Ergebnissen,
kann damit der gekoppelte δ 2Hn-Alkan-δ 18OZucker paleohygrometer Ansatzes etabliert wer-
den. Die hiermit rekonstruierten RH Werte, welche die RH Bedingungen während der
Vegetations- und Tageszeit widerspiegeln (RHdv), stellen die paradigmatische Vorstellung
einer trockenen Jüngeren Dryas in Frage. Die Ergebnisse deuten eher darauf hin, dass
die Jüngere Dryas relativ feucht begonnen hat und sich erst zum Ende dieser Periode ein
trockeneres Klima einstellt hat. Zudem wird offensichtlich, dass die Schwankungen in RHdv
im Frühholozän im Vergleich zur Übergangsphase zwischen Allerød und Jüngeren Dryas
deutlich höher sind.

Zuletzt sollte der gekoppelte δ 2Hn-Alkan-δ 18OZucker Ansatz auf die Sedimente des Bergsees
(Südschwarzwald, Deutschland) übertragen werden. Jedoch zeigte sich, dass die Zucker-
biomarker im Bergsee maßgeblich aquatischen Ursprungs sind, was eine Kopplung von
terrestrischen δ 2Hn-Alkan mit δ 18OZucker Ergebnissen verhindert. Zudem war auch keine
Kopplung von aquatischen δ 2Hn-Alkan mit δ 18OZucker Ergebnissen möglich, da n-C23 nicht
als robuster aquatischer Biomarker herangezogen werden kann.

Die Ergebnisse der einzelnen Studien dieser Arbeit zeigen das große Potential des gekop-
pelten δ 2Hn-Alkan mit δ 18OZucker Ansatzes zur Ableitung von quantitativen hydroklimatis-
chen Informationen. Es wird jedoch auch offensichtlich, dass insbesondere die Rekon-
struktion von δ 2HBlattwasser basierend auf δ 2Hn-Alkan Werten fehlerbehaftet sein kann, was
die Rekonstruktion von kleinen Schwankungen in δ 2HWasser, δ 18OWasser und RH limitiert.
Zudem ist eine deutliche Unterscheidung zwischen terrestrischen und aquatischen Ur-
sprungs der n-Alkan- und Zuckerbiomarker eine Grundbedingung für die erfolgreiche An-
wendung des gekoppelten δ 2Hn-Alkan-δ 18OZucker Ansatzes auf Seesedimentarchive.
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Extended Summary

1 Introduction

The history of human evolution, and especially its cultural history, has always been strongly
linked to climate variability (e.g. Behrensmeyer, 2006; Trauth et al., 2007; Sirocko, 2012).
This explains why much scientific effort is spent for a better understanding of modern cli-
mate systems and climate changes of the past. Stable isotopes have contributed sig-
nificantly during the last decades to reconstructing qualitatively and quantitatively climate
history. For example, the stable oxygen isotopic composition (δ 18O) of deep-sea records
serves as proxy for global ice volume and δ 18O, as well as the hydrogen isotope compo-
sition (δ 2H), of ice cores from Antarctica and Greenland are used as proxy for global tem-
perature history (Shackleton, 1987; Petit et al., 1999; Johnsen et al., 2001). With regard to
terrestrial climate archives, deriving quantitative paleoclimate information, like relative hu-
midity (RH) and isotope composition of precipitation (δ 2Hprecipitation, δ 18Oprecipitation), from
biomarker-isotope proxy data could overcome typical limitations of so far applied qualita-
tive interpretation approaches (Feng et al., 2007). Eley and Hren (2018) presented leaf
wax-derived n-alkane chain-length pattern to derive past vapor pressure deficit changes.
Furthermore, Gázquez et al. (2018) showed that triplicate oxygen stable isotope measure-
ments of gypsum can be used for RHair reconstructions. Triplicate oxygen isotope com-
position was also measured in phytoliths in order to derive RH information for a climate
chamber and a topsoil transect study (Alexandre et al., 2018). Rach et al. (2017) used
the differences in the hydrogen isotope composition of terrestrial and aquatic n-alkanes to
calculate a RHair record from the Alleød-Younger Dryas-Early Holocene transition, which
were so far only qualitatively interpreted (Rach et al., 2014).

Limitations of single isotope approaches
The hydrogen isotopic composition of terrestrial leaf wax-derived lipid biomarkers (such
as long-chain n-alkanes and n-alkanoic acids) are used as source water hydrogen isotope
composition recorders, and are therefore often interpreted as δ 2Hprecipitation records (e.g.
Jacob et al., 2007; Seki et al., 2011; Rach et al., 2014; Muschitiello et al., 2015). Leaf wax
δ 2H extracted from lacustrine surface sediments (Sauer et al., 2001; Huang et al., 2004;
Sachse et al., 2004; Mügler et al., 2008; Rao et al., 2014) and from surface soils (Hou et al.,
2008; Rao et al., 2009), also display high correlation with δ 2Hprecipitation. As lipid biomarkers
are biosynthesized in the leaves of the plants, this correlation is based on a strong leaf wa-
ter to precipitation (~plant source water) relationship which occurs when leaf water enrich-
ment is of minor relevance (Sachse et al., 2012). Long-term δ 2Hprecipitation, δ 18Oprecipitation
variations show distinct correlation to local air temperature changes in temperate regions
(e.g. Stumpp et al., 2014). In tropical regions the precipitation amount seems to play an
important role (Dansgaard, 1964; Rozanski et al., 1993), at least on a seasonal time-scale
(Rozanski et al., 1996). Araguás-Araguás et al. (2000) point out that effects associated with
the moisture source (e.g. the transport history of the moisture or the temperature at the
moisture source area) have to be taken into account when δ 2Hprecipitation, δ 18Oprecipitation
variations are interpreted. Thus, leaf wax δ 2H records in high latitudes were interpreted in
terms of a temperature and moisture source proxy (Rach et al., 2014), while in low latitudes
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(e.g. in South-East Africa) the interpretation follows the notion of the precipitation amount
versus δ 2Hprecipitation, δ 18Oprecipitation (Schefuß et al., 2011). However, when leaf water en-
richment caused by evapotranspiration occurs, it is reflected in the leaf wax δ 2H signatures
(e.g. Kahmen et al., 2013a) which is the reason single leaf wax δ 2H-based climate proxies
are often interpreted only quantitatively. For a decade, also compound-specific δ 18O anal-
ysis of neutral sugar biomarkers are used in climate studies (Zech and Glaser, 2009; Zech
et al., 2013; Zech et al., 2014a). Accordingly δ 18Osugar can be interpreted comparable to
the leaf wax δ 2H. If the sugars can be associated with hemicellulose structures of higher
vascular plants, they likely reflect the source water signal (i.e. precipitation) modified by
evapotranspirative enrichment of leaf water (Tuthorn et al., 2014; Zech et al., 2014b).

Potential of the coupled δ 2Hn-alkane-δ 18Osugar approach
Leaf water enrichment is strongly driven by the RHair in the surrounding of the leaves (as re-
viewed e.g. by Cernusak et al., 2016), which provides large potential to derive quantitative
RH values from biomarker-isotopes such as leaf waxes and sugars. Indeed, a coupled ap-
proach using cellulose δ 2H and δ 18O values was developed to derive RH values (Voelker
et al., 2014). This concept was also applied to sub-fossil wood samples to derive RH
changes throughout the Last Glacial Maximum-Early Holocene transition. A conceptual ap-
proach of coupling δ 2Hn-alkane with δ 18Osugar results in order to reconstruct δ 2Hprecipitation,
δ 18Oprecipitation, as well as the RHair, was recently validated via an Argentinian topsoil cli-
mate transect study (Tuthorn et al., 2015). This so-called paleohygrometer approach has
the potential to disentangle the source water signal from the modifications caused by leaf
water enrichment, overcoming the limitations of single biomarker-isotope approaches (for
further details see section 3 and Figure 1). Zech et al. (2013) for the first time introduced
this concept to derive RHair and δ 2Hprecipitation, δ 18Oprecipitation records for the last 220 ka
from a permafrost paleosol sequence in North-East Siberia. Using n-alkane and sugar
biomarkers to gain respective δ 2H and δ 18O results has advantages compared to using
cellulose for compound specific δ 2H and δ 18O measurements (e.g. Mayr, 2002). Namely,
the new approach overcomes challenges associated with (i) the interpretation of cellulose
δ 2H results as derived from measurable nitro cellulose derivatives (e.g. Sternberg, 1988)
and (ii) the complexity of the extraction, purification and δ 18O measurements (Mayr, 2002;
Saurer and Siegwolf, 2004; Wissel et al., 2008). One essential requirement for a suc-
cessful application of the coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer approach is the
biomarker source determination. When n-alkane and sugar biomarkers extracted from lake
sediments originate mainly from aquatic sources no quantitative RH reconstructions can be
derived (Hepp et al., 2015). Still, disentangling between the lake source water isotope sig-
nal (δ 2Hprecipitation, δ 18Oprecipitation) and alternations caused by lake water enrichment, both
incorporated into the biomarkers, was possible. Overall, the lake water enrichment has to
be interpreted in terms of evaporation versus precipitation amount changes (Hepp et al.,
2015).
Given the above outlined limitations of single isotope approaches and the potential of the
coupled δ 2Hn-alkane-δ 18Osugar approach, the following research objectives were addressed
within this PhD thesis:

• Validating the coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer approach using i) leaf
sample material from a climate chamber experiment conducted with three different
plant species (Mayr, 2002) and ii) topsoil samples along an European climate transect
from Southern Sweden to Southern Germany (Schäfer et al., 2016).
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• Application of the coupled δ 2Hn-alkane-δ 18Osugar approach to a terrestrial climate
archive, namely the loess-like paleosol sequence Maundi from the Southern slopes
of Mt. Kilimanjaro. This archive offered the potential to establish a first ~100 ka RH
record for East Africa.

• Source identification of terrestrial versus aquatic sugar biomarkers in a lacustrine
study. This forms the basis for the interpretation of δ 18Osugar records established
from lake sediments.

• Application of the coupled δ 2Hn-alkane-δ 18Osugar approach to two lake sedimentary
archives from the West Eifel maar lake region (Lake Gemündener Maar) and the
Southern Black Forest region (Lake Bergsee) in order to derive quantitative hydrocli-
mate information from the Late Glacial-Early Holocene transition.

2 Compound-specific isotope analyses of biomarkers

The ’online’ coupling of gas chromatographs via combustion or pyrolysis reactors to iso-
tope ratio mass spectrometers (GC-C,Py-IRMS) developed around 30 years ago (Glaser,
2005; Amelung et al., 2009) augmented compound-specific isotope analyses of biomark-
ers. While δ 13Csugar (e.g Gross and Glaser, 2004) or δ 13Cn-alkane and δ 2Hn-alkane (e.g. Ses-
sions et al., 1999; Zech and Glaser, 2008) biomarker analyses are nowadays well estab-
lished in numerous scientific communities ranging from soil and plant science over climate
research to forensics (Sachse et al., 2012; Diefendorf and Freimuth, 2016; Tipple et al.,
2016; Jansen and Wiesenberg, 2017; Pedentchouk and Zhou, 2018), compound-specific
δ 18O analyses of biomarkers have been realized and published by only three scientific
working groups worldwide, hitherto.

2.1 Lipid biomarker and compound-specific δ 2Hn-alkane analyses

In order to obtain total lipid extracts from the leaf (manuscript 1), soil (manuscript 2), loess-
like paleosol (manuscript 3) and lake sediment samples (manuscripts 5 and 6) three differ-
ent extraction procedures were performed, i.e. accelerated solvent extraction (manuscript
3; e.g. Zech and Glaser, 2008), microwave extraction (manuscripts 1, 2 and 5; e.g. Veggi
et al., 2013) and soxhlet extraction (manuscript 6; e.g. Bourbonniere et al., 1997). Solid
phase chromatography via silica gel columns (aminopropyl-silica-gel (Supelco, 45 µm)
filled pipettes) are used to separate the total lipid extract into a nonpolar fraction (incl.
n-alkanes), a more polar fraction (incl. alcohols) and an acid fraction (incl. n-alkanoic
acids). Therefore, the columns were flushed with organic solvents of increasing polarity,
i.e. n-hexane, dichloromethan:methanol in a ratio of 1:1 and acetic acid:diethyl ether in
a ratio of 1:19 (Hou et al., 2008; Schäfer et al., 2016) to extract the trapped fractions. If
necessary (manuscripts 1, 2 and 5), the nonpolar fraction was cleaned over silver-nitrate
coated silica gel columns and zeolith columns (Geokleen) in order to obtain a clean n-
alkane fraction. Quantification of the n-alkanes was performed on GC to mass spectrom-
eter couplings (manuscripts 1 and 5) and GCs equipped with a flame ionization detector
(manuscripts 2, 3 and 6). Compound-specific n-alkane δ 2H analyses were performed using
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a gas chromatography-isotope ratio mass spectrometry technique consisting of GC online
connected via 2H-pyrolysis reactor to an IRMS. The reactor temperature is thereby set to
1000°C (GC5 pyrolysis, combustion interface equipped with a CR (ChromeHD) reactor;
manuscripts 1 and 5), 1420°C (in a GC-IRMS coupling of a TRACE GC Ultra and a Delta
V Plus IRMS (Thermo Fisher Scientific, Bremen, Germany); manuscript 2), 1445°C (in a
GC-IRMS system equipped with a HP 6890 GC and a DeltaPLUSXL IRMS; manuscript 3)
and 1425°C (for an empty ceramic tube 2H-pyrolysis reactor in the GC IsoLink interface
(Thermo Fisher Scientific, Bremen, Germany); manuscript 6). Co-analysing n-alkane stan-
dard mixtures with known isotope composition (supplied by A. Schimmelmann, University
of Indiana) was used for calibration of the lipid δ 2H results and checking the precision of
the GC-IRMS system. Latter was also ensured by measuring the H+

3 factor routinely, which
stayed constant during the measurement periods.

2.2 Sugar biomarker and compound-specific δ 18Osugar analyses

Monosaccharide sugar biomarkers were extracted hydrolytically using 4M trifluoric acid for
4 h at 105°C from all samples, according to standard procedures (Guggenberger et al.,
1994; Amelung et al., 1996). Afterwards, the extracts were cleaned and purified over glass
fibre filters followed by XAD-7 (removal of humic-like compounds) and DOWEX 50WX8
(removal of cations) columns. After freezing and freeze-drying the samples, methylboronic
acid derivatization was conducted (Knapp, 1979) in order to make the monosaccharides
arabinose, fucose, xylose and rhamnose GC-amenable (Gross and Glaser, 2004), allow-
ing for the compound-specific δ 18O analyses (Zech and Glaser, 2009). Compound-specific
δ 18Osugar analyses were performed on a GC-IRMS system that was coupled online via an
18O-pyrolysis reactor, which was set to 1280°C (Zech and Glaser, 2009). The co-analysis
of external sugar standards containing arabinose, fucose, xylose and rhamnose in differ-
ent concentrations and of known isotope compositions ensured the ’Principle of Identical
Treatment’ standard for stable isotope analysis (according to Werner and Brand, 2001),
and allowed furthermore the correction for possibly occurring amount effects (according to
Zech and Glaser, 2009).

The compound-specific isotope results are expressed in the common delta notation (δ
= (Rsample – Rstandard) / Rstandard, where R = 18O/16O or 2H/1H), relative to the Vienna
Standard Mean Ocean Water standard (VSMOW; Coplen, 2011).

3 Principle of the coupled δ 2Hn-alkane-δ 18Osugar paleohygro-
meter approach

3.1 Biomarker-based leaf water reconstructions

The fundamental assumption of the coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer ap-
proach is that biomarker isotope signatures reflect primarily the leaf water isotope compo-
sition (Figure 1). Hence, when applying biosynthetic fractionation factors leaf water can
be reconstructed. Fractionation factors can be derived from the literature. Most likely, ap-
propriate factors are -160h for 2H of n-alkanes (ε2

bio; Sessions et al., 1999; Sachse et al.,
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2012) and +27h for 18O in sugars (ε18
bio Sternberg et al., 1986; Yakir and DeNiro, 1990;

Schmidt et al., 2001; Cernusak et al., 2003):

δH2
leaf-water = (δ 2Hn-alkane − ε

2
bio)/(1+ ε

2
bio/1000) (1)

δ
18Oleaf-water = (δ 18Osugar − ε

18
bio)/(1+ ε

18
bio/1000) (2)

The n-alkane and sugar biomarkers can be related to the epicuticular leaf wax layers (Eglin-
ton and Hamilton, 1967) and to the (leaf) hemicellulose structures of higher vascular plants
(e.g. Jia et al., 2008; Zech et al., 2012; Hepp et al., 2016, and references therein), respec-
tively. A large overview of plant cell wall structure and chemical composition is e.g. given
in Caffall and Mohnen (2009). The biomarkers thus incorporate the isotope signal of the
(leaf) water in which they are biosynthesized. Accordingly the leaf wax n-alkanes and leaf
(hemi-)celluloses primarily reflect bulk leaf water during the photosynthetic active period
(e.g. Barbour and Farquhar, 2000; Roden et al., 2000; Schmidt et al., 2003; Cernusak et
al., 2005; Sachse et al., 2012; Kahmen et al., 2013a).

3.1.1 Excursus: Uncertainties of the δ 2Hn-alkane to δ 2Hleaf-water relationship

The main uncertainty for n-alkane-based leaf water reconstructions is most likely associ-
ated with the rather variable δ 2Hn-alkane to δ 2Hleaf-water relationship, which results in a large
range of ε2

bio (also called εn-alkane/leaf-water), as presented in the literature (e.g Feakins and
Sessions, 2010; Tipple et al., 2015; Feakins et al., 2016; Freimuth et al., 2017). Based on
the therein published εn-alkane/leaf-waterdata of the n-alkanes C29 and C31, a large variation
of approximately 174h (ranging from -66 to -240h) with a median close to -155h can be
derived. Furthermore, the timing of leaf wax synthesis could contribute to the wide range
of observed εn-alkane/leaf-water values. If leaf wax synthesis occurs mainly during leaf flush
(Tipple et al., 2013; Gamarra and Kahmen, 2017), the n-alkanes incorporate the source
(leaf) water signal during that period (Sachse et al., 2010) and can therefore not be well
correlated to the leaf water signals during the whole growing season. For long-chain leaf
lipids (from C27 to C31), a complete recycling could occur after 71 to 128 days as derived
from a labeling experiment of the grass species Phleum pratense conducted by Gao et
al. (2012). In addition, the influence of storage carbohydrates on the isotope signature of
the n-alkanes biosynthesized during leaf flush might be increased (Newberry et al., 2015).
However, there is also evidence that n-alkanes reflect more or less continuously the climate
conditions during the whole vegetation period (e.g. Newberry et al., 2015; Pedentchouk and
Zhou, 2018, and references therein). The n-alkanes of grass species tend to reflect only
partially the leaf water signal (Kahmen et al., 2013a; Gamarra et al., 2016). They are con-
sidered to be mainly influenced by the source water of the plants (McInerney et al., 2011)
due to their leaf growth at the intercalary meristem located at the base of the leaves. Fi-
nally, species-specific differences in ε2

bio have to be taken into account (see reviews from
Schmidt et al. (2003), Sachse et al. (2012), and Pedentchouk and Zhou (2018), and ref-
erence therein), exemplary highlighted by stomatal density effects (Lee et al., 2016) and
the carbon as well as the energy metabolism of plants (Cormier et al., 2018; Tipple and
Ehleringer, 2018) on ε2

bio.
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Figure 1: δ 2H versus δ 18O diagram illustrating (i) δ 2Hn-alkane versus δ 18Osugar (marked with a cross),
(ii) the reconstructed leaf water isotope composition by applying biosynthetic fractionation factors
(Sessions et al., 1999; Sachse et al., 2012; Schmidt et al., 2001; Cernusak et al., 2003); marked
with an open circle), (iii) the possibility to reconstruct source water isotope composition, which
could serve as a proxy for precipitation isotope composition, using the intersect between the local
evaporation line (LEL) and the global or local meteoric water line (GMWL or LMWL; marked with a
filled circle), and finally (iv) the effect of low and high leaf water evapotranspirative enrichment along
the LEL on the deuterium-excess (d) of leaf water (which is the parallel distance to the GMWL or
LMWL, marked with d letters), possibly serving as quantitative RH proxy (Zech et al., 2013; Tuthorn
et al., 2015).
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3.1.2 Excursus: Uncertainties of the δ 18Osugar to δ 18Oleaf-water relationship

Uncertainties for reconstructing δ 18Oleaf-water based on (leaf) hemicellulose sugar δ 18O are
mostly based on cellulose studies. Overall, the influence of (unenriched) source water,
which is commonly less enriched than the leaf water, cannot be ruled out. This holds true
for dicotyledon plants (e.g. reviews from Barbour, 2007; Sternberg et al., 2006), mono-
cotyledon (grass) species (Helliker and Ehleringer, 2002; Liu et al., 2016; Liu et al., 2017;
Lehmann et al., 2017), and surely for stem cellulose (e.g Roden et al., 2000), but also for
leaf cellulose (Wang et al., 1998; Barbour and Farquhar, 2000; Cernusak et al., 2005; Song
et al., 2014; Cheesman and Cernusak, 2017; Munksgaard et al., 2017). However, large
ranges of the so called damping factor are reported for empirical data (Wang et al., 1998)
but also with regard to the theory (Song et al., 2014). The theoretical approach for δ 18O
in (hemi-)cellulose is based on the premise that sucrose exported from photosynthesizing
leaves is +27h more positive compared to leaf water (Cernusak et al., 2003), which is
interpreted as sucrose being in full isotopic equilibrium with the synthesis water. Latter is
drawn from the comparison to the equilibrium fractionation effect of the reversible hydration
reaction of acetone, which contains only one exchangeable oxygen, with water, resulting
in an enrichment of +28, +28 and +26h at 15, 25 and 35°C, respectively (Sternberg and
DeNiro, 1983).

Also the cellulose biosynthesis is associated with an enrichment of around +27h com-
pared to the synthesis water as shown in growth experiments (Sternberg et al., 1986; Yakir
and DeNiro, 1990), which is again generally explained via the isotope exchange between
the carbonyl oxygen and water (Schmidt et al., 2001). This means that the isotope signal
of the leaf water incorporated by the transport sugar sucrose can potentially be dampened
by oxygen exchange with local synthesis water during autotrophic, in terms of synthesized
from photosynthesis products (sensu Terwilliger et al., 2002), (hemi-)cellulose biosynthesis
in any sink tissue. This can be described by the equation of Barbour and Farquhar (2000):
δ 18O(hemi-)cellulose = δ 18Osource-water + (δ 18Oleaf-water- δ 18Osource-water) · (1 - pex · px ) + ε18

bio.
Herein, px is the proportion of unenriched source water contribution to the local synthe-
sis water and pex is the proportion of exchangeable oxygen during cellulose synthesis, in
multiplication called damping factor.

The exchange is caused by hydration reactions that affect one oxygen when sucrose is
cleaved into glucose phosphate, via the reversible conversion to fructose 6-phosphate and
fructose 1,6-biphosphate (Waterhouse et al., 2013). A portion of fructose 1,6-biphosphate
undergoes a futile cycling through triose phosphates, which allows further three oxygen
positions to exchange (Barbour and Farquhar, 2000; Barbour, 2007; Sternberg, 2009; Wa-
terhouse et al., 2013). However the transfer of the cellulose directly to hemicellulose δ 18O
has to be questioned. Pentoses, like the hemicellulose-derived arabinose and xylose, are
biosynthesized via decarboxylation of the carbon at position six (C6) from glucose (Alter-
matt and Neish, 1956; Harper and Bar-Peled, 2002; Burget et al., 2003). Waterhouse et al.
(2013) suggested that the oxygens at this glucose C6 position are most strongly affected by
the exchange with local water medium (as indicated by 80% exchange during heterotrophic
cellulose synthesis).

Thus, most likely at least δ 18O of hemicellulose-derived pentoses are less effected by
potential unenriched source water exchange processes. Still, for stem hemicelluloses from
dicotyledonous plants, which grew under controlled climate conditions, a damping factor of
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50 to 81% was observed (as highlighted by Sternberg, 2014, based on the data published
by Zech et al., 2014b). From the presented theory it is also evident, that biosynthetic
fractionation (ε18

bio, and also called εsugar/leaf-water) effects the δ 18Osugar signature. Indeed,
the temperature dependency of ε18

bio is still under debate (Sternberg and Ellsworth, 2011;
Sternberg, 2014 versus Zech et al., 2014c). So far there is evidence that the δ 18O signature
of storage substances like starch, which indeed contribute to leaf cellulose synthesis (e.g.
Terwilliger et al., 2001, sensu Terwilliger et al., 2002), can also be described via an +27h
enriched compared to the synthesis water (as e.g. summarized and suggest by Sternberg
(2009). However, the question how strong the δ 18O imprint of such storage substances is
related to δ 18Oleaf-water is even more important, which cannot be answered here (see e.g.
Sternberg et al., 2006; Lehmann et al., 2017, for more details). Sucrose synthesis gradients
within a leaf, as well as leaf water inhomogeneity, could lead to weakening the δ 18Oleaf-water
to δ 18Osugar relationship, highlighted by a recent study by Lehmann et al. (2017) showing
that the bulk leaf water is not always a good substitute of cellulose synthesis water in leaves.
Finally, such leaf water inhomogeneities tend to increase under decreasing RH conditions,
and vice versa (Santrucek et al., 2007), affecting not only the δ 18Oleaf-water to δ 18Osugar
correlation but also the δ 2Hleaf-water to δ 2Hn-alkane relation.

3.2 Leaf water enrichment theory

The second basic assumption of the paleohygrometer approach concerns leaf water en-
richment. Leaf water is commonly enriched compared to the source water utilized by the
plants during day time (e.g. the review of Cernusak et al., 2016). This is caused by the
evaporation process while the plants transpire water through the stomata (Figure 1). As the
leaf water reservoir close to the stomata (at the site where the evaporation takes place) is
rather small, it can be assumed that the steady-state conditions occur rather rapidly (Allison
et al., 1985; Walker and Brunel, 1990; Bariac et al., 1994; Gat et al., 2007). With the iso-
tope composition of the transpired water being equal to the source water of the plants, the
leaf water enrichment can be described via a Craig-Gordon model, given here in δ terms
(Equation 3; Flanagan et al., 1991; Roden and Ehleringer, 1999; Barbour et al., 2004):

δe ≈ δs + ε
∗+ εk +(δa −δs − εk) · ea/ei. (3)

Here, δe, δs and δa are the isotope compositions of evaporative site leaf water, source
water and atmospheric water vapor, respectively. The equilibrium enrichment (expressed
as (1-1/αL/V) · 10−3, where αL/V is the equilibrium fractionation factor between liquid water
and water vapour) is included as ε∗ in h. The kinetic fractionation parameters, describing
the water vapor diffusion through the stomata and the boundary air layer is expressed
as εk in h. Finally, ea/ei is the ratio of atmospheric vapor pressure to intracellular vapor
pressure, hence a leaf RH realisation. As the εk values are unknown for paleo applications,
due to their dependency on stomatal and boundary layer resistances to the water (vapor)
flux (Farquhar et al., 1989), it seems to be appropriate to use more general defined kinetic
enrichment parameters (Ck) instead (Craig and Gordon, 1965; Gat and Bowser, 1991).
Assuming that leaf temperature is equal to air temperature, the ea/ei ratio can be replaced
by the air RH. If finally an isotope equilibrium between the source water of the plants and the
local atmospheric water vapour is hypothesised, then the term δa – δs can be approximated
with -ε∗, thus Equation 3 will be simplified to:

δ e ≈ δ s +(ε∗+Ck) · (1−RH) (4)
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3.3 Reconstruction of plant source water δ 2H, δ 18O and RHair

With the above-presented leaf water enrichment model at hand, both the isotopic composi-
tion of plant source water and RH can be reconstructed. Plant source water can be directly
linked to soil water and shallow groundwater, which in turn reflect mean annual precipi-
tation (e.g. Herrmann et al., 1987). The isotope composition of global precipitation plots
typically along the global meteoric water line (GMWL, with the equation δ 2Hprecipitation = 8
·δ 18Oprecipitation + 10; Dansgaard, 1964) and the isotope composition of local precipitation
plots along a local meteoric water line (LMWL, with various equations depending on the
locality). These observations can be used for inferring information about the source water
of the plants (Figure 1). Plant source water isotope composition can thereby be calculated
as the intersect between the local evaporation line, on which the leaf water plots, and the
GMWL (Zech et al., 2013) or LMWL. With regard to Equation 4, the slope of the LEL (SLEL)
can be derived from Equation 5

SLEL = (δ 2
e −δ

2
s )/(δ

18
e −δ

18
s )≈ (ε∗2 +C2

k)/(ε
∗
18 +C18

k ). (5)

The equilibrium fractionation parameters (ε∗2 and ε∗18) can be calculated according to tem-
perature dependent empirical equations from Horita and Wesolowski (1994). The kinetic
fractionation factors (C2

k and C18
k ) can be derived from Merlivat (1978), who reported max-

imum values of the molecular water diffusion through a stagnant boundary layer, which
seems to be appropriate for leaves. It should be noted that εk values for broad-leaf trees
and shrubs are well in range with the used Ck values (as derived from the supplementary
data of Cernusak et al. (2016). Calculated LEL slopes (Equation 5), only depending on
the temperature via the equilibrium fractionation parameters, are well in range with slopes
observed in the field and in the laboratory experiments (Zech et al., 2013; Tuthorn et al.,
2015 versus Allison et al., 1985; Walker and Brunel, 1990; Bariac et al., 1994; Gat et al.,
2007; Tipple et al., 2013). Using the deuterium-excess (d) definition of either the GMWL (d
= δ 2H – 8 · δ 18O; Dansgaard, 1964) or the LMWL (d = δ 2H – slope of LMWL · δ 18O), the
leaf water enrichment model can be described for hydrogen as well as oxygen in a single
equation, which can be rearranged in order to calculate RH values (Zech et al., 2013):

RH ≈ 1− (de −ds)/(ε
∗
2 −SGMWL,LMWL · ε∗18 +C2

k −SGMWL,LMWL ·C18
k ). (6)

Here, de and ds are the deuterium-excess of evaporative site leaf water and source water,
respectively, and slopes of the GMWL or LMWL are given as SGMWL,LMWL. When ds values
are achievable from the GMWL or LMWL, then a powerful tool is given for deriving past
RH changes via de (Zech et al., 2013; Tuthorn et al., 2015), under the assumption that
de can be derived from the biomarker-based δ 2Hleaf-water, δ 18Oleaf-water reconstructions
(Equation 1 and Equation 2). Equation 6 requires strictly seen de values as input, while
the biomarker-based leaf water results rather in a deuterium-excess of (bulk) leaf water
(dl). The dl values are most likely less enriched than the deuterium-excess at the evapo-
rative site (de). It should be noted that differences between de and dl are far below typi-
cal analytic errors associated with compound-specific δ 2Hn-alkane and δ 18Osugar analysis,
as derived form de and dl assessment using the complete data sets from Australia (Kah-
men et al., 2013b) and Hawaii (Kahmen et al., 2011a), as presented in the supplementary
data of Cernusak et al. (2016). The d values were here calculated via a local deuterium-
excess formulation using the presented δ 2H and δ 18O of xylem water. Thus a correction
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of biomarker-derived dl values in order to achieve de as input for Equation 6 seems to
be unnecessary. The here presented approach allows reconstructing RH (particularly of
day-time and vegetation time, see Tuthorn et al. (2015) and δ 2Hprecipitation, δ 18Oprecipitation
(particularly of weighted mean annual precipitation).

4 Results & Discussion

4.1 Climate chamber validation study 1 (manuscript 1)

The overall aim of this study was to validate the coupled δ 2Hn-alkane-δ 18Osugar paleohy-
grometer approach by using leaf material from plants grown under controlled climate con-
ditions. A climate chamber experiment, conducted by co-author Christoph Mayr at the
Helmholtz Zentrum München during winter 2000/2001 (Mayr, 2002), was used to inves-
tigate leaf samples for their δ 2Hn-alkane and δ 18Osugar values. The three different plant
species used in the experiment (Eucalyptus globulus, Vicia faba var. minor and Brassica
oleracea var. medullosa) were grown under seven air temperature (Tair) and RHair condi-
tions (14, 18, 24 and 30°C; 21, 24, 32, 48, 49, 50 and 68%) for 56 days. After this period,
the plants were harvested and analyzed for δ 2Hleaf-water, δ 18Oleaf-water. For more details
about the experimental set-up and plant related results see Mayr (2002). The analyzed
alkanes n-C29 and n-C31 can be associated with the epicuticular leaf wax layers of the
plants (Eglinton and Hamilton, 1967), while the extracted monosaccharides arabinose and
xylose originate form the hemicellulose structure of the plant leaf cells (Caffall and Mohnen,
2009). The n-C29 and n-C31 δ 2H results were combined as weighted mean to δ 2Hn-alkane
values and the arabinose and xylose δ 18O values were used to calculate weighted mean
δ 18Osugar results (Figure 2).

Both biomarker isotope values are highly significantly correlated with the respective leaf
water isotope values (δ 2Hn-alkane versus δ 2Hleaf-water and δ 18Osugar versus δ 18Oleaf-water:
r2 = 0.45 and 0.85, p < 0.001, n = 24). The mean fractionation factors derived from the
difference between the biomarkers and the leaf water were -156h (within a range from
-192 to -133%) for εn-alkane/leaf-water and +27.3h for εsugar/leaf-water (within a range from 23.0
to 32.3%), which are well in agreement with the literature (Sessions et al., 1999; Kahmen
et al., 2011b; Sachse et al., 2012; Sternberg et al., 1986; Yakir and DeNiro, 1990; Schmidt
et al., 2001; Cernusak et al., 2003).

In order to evaluate if the principle assumption of the coupled δ 2Hn-alkane-δ 18Osugar paleo-
hygrometer approach is valid (as outlined in detail in section 3), the measured δ 2Hleaf-water
and δ 18Oleaf-water results were used as input variables for calculating RHair via Equation 6
(Figure 3A). The de values were derived from the equation de = δH2

leaf-water – 8 · δ 18Oleaf-water
(according to the equation of Dansgaard (1964) and the GMWL was used as baseline, re-
vealing a d of 10 (used for ds) and a slope of 8 (Craig, 1961). Modeled RHair values fit
very well with the measured RHair values along the 1:1 line (Figure 3A; R2 = 0.84, RSME
= 6.04%). When biomarker-based δ 2Hleaf-water, δ 18Oleaf-water values are used (calculated
via Equation 1 and Equation 2) for RHair modeling, the RHair predictions are getting worse,
but are still significant (Figure 3B, modified from Hepp et al., 2019c). The weaker R2 when
biomarker-based δ 2Hleaf-water, δ 18Oleaf-water values are used in comparison to measured
values points to one main uncertainty of the coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer
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Hepp et al., 2019c). A) Leaf, xylem and soil water isotope composition (all from Mayr, 2002), along
with respective δ 2Hn-alkane (n-C29 and n-C31) and δ 18Osugar (arabinose and xylose) values. B) Air
temperature and relative humidity conditions of the climate chambers (Mayr, 2002).
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approach, which is related to the limitations associated with the biomarker-based leaf water
reconstruction (see paragraph above). This is understandable when considering the large
ranges of the observed εn-alkane/leaf-water and εsugar/leaf-water values as well as the fairly well
δ 2Hn-alkane to δ 2Hleaf-water relationship. Still, the high potential of the coupled δ 2Hn-alkane-
δ 18Osugar paleohygrometer approach is highlighted by robust RH reconstructions, consid-
ering an R2 of 0.54 for the biomarker-based versus measured RHair relationship and an
RSME of 10.14% (Figure 3B).
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Figure 3: Scatterplots of leaf water- (A) and biomarker-based (B) relative air humidity values (RHair)
versus measured RHair values (modified from Hepp et al., 2019c). Black line = 1:1 line; R2 =
coefficient of correlation along the 1:1 line; RMSE = root mean square error in % RHair.

4.2 European climate transect validation study 2 (manuscript 2)

The European topsoil climate transect, established by Imke Kathrin Schäfer and co-authors,
allows evaluating the coupled δ 2Hn-alkane-δ 18Osugar approach under field conditions. For
establishing the transect reaching from Southern Sweden to South Germany, topsoil sam-
ples (0-5 cm of the Ah horizons) at 16 locations were taken in November 2012. Further-
more, three different vegetation types, i.e. coniferous forest, deciduous forest and grass-
land were differentiated, which leads in summary to 29 sampling points. Climate variables
were derived from the close-by climate station data (climate data were retrieved from the
respective German, Danish and Swedish weather observation institutions (DWD, DMI and
SMHI); Frich et al., 1997; Laursen et al., 1999; Cappelen, 2002; DWD Climate Data Cen-
ter, 2018b; DWD Climate Data Center, 2018a; Swedish Meteorological and Hydrological
Institute, 2018). From this database, climate variability along the transect regarding long-
term mean annual temperatures (TMA) and RH (RHMA), long-term means for the vegetation
period (April to October; TMV, RHMV) and finally long-term mean for the day-time (from 7
a.m. to 7 p.m.) and vegetation period (TMDV, RHMDV), were obtained. In addition, long-
term mean annual precipitation amount (PMA) was calculated. For two Danish sites long-
term means of TMDV were not available (the TMV were used instead). Along the transect,
TMA range from 5.3 to 10.6°C and mean annual precipitation (PMA) ranges from 554 to
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1769 mm, which is quite comparable to a published Argentinian transect which was used
for validating the coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer approach (Tuthorn et al.,
2015). However, the (weighted) mean annual isotopic composition of precipitation shows
smaller variations along the European transect compared to the Argentinian transect. For
the Swedish and Danish sites of the European transect, δ 2Hprecipitation data was gathered
from the The Online Isotopes in Precipitation Calculator (called δ 2HOIPC, δ 18OOIPC; Bowen
and Revenaugh, 2003; IAEA/WMO, 2015; Bowen, 2018). For the German sites, a regional
precipitation δ 2H and δ 18O regionalisation was realized by using long-term data available
from 34 German GNIP stations, 4 Austrian ANIP stations (Reutte, Scharnitz, Salzburg,
Kufstein) and from Groningen GNIP station, (Stumpp et al., 2014; Geldern et al., 2014;
IAEA/WMO, 2018; Umweltbundesamt GmbH, 2018), referred to as δ 2HGIPR, δ 18OGIPR, for
more details see manuscript 2. δ 2HGIPR,OIPC and δ 18OGIPR,OIPC varies between -52 and
-79h (= 27h range) and between -7.4 and -10.9h (= 3.5h range), respectively. Along
the Argentinian transect, the δ 2HOIPC and δ 18OOIPC ranges from -29 to -87h (= 58h
range) and from -5.0 to -11.7h (= 6.7h range), which is approximately double as large
(Tuthorn et al., 2014; Tuthorn et al., 2015). Similar findings are reported for the mean
annual RH gradient, which is 25% regarding RHMA along the Argentinian sites (Tuthorn
et al., 2015), whereas along the European transect study only a 12% variation can be ob-
served. Therefore, the European topsoil transect can also be seen as a sensitivity test
for the coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer approach. In summary, 25 samples
could be used for coupling of δ 2Hn-alkane with δ 18Osugar results, which yielded in biomarker-
based δ 2Hsource-water, δ 18Osource-water (~precipitation) and RHMDV values. For δ 2Hn-alkane
the mean of δ 2H of n-C27, n-C29 and n-C31 was used, while for δ 18Osugar, arabinose and
xylose δ 18O results were combined as weighted means.

The apparent isotope fractionation, calculated as εn-alkane/precipitaion = (δ 2Hn-alkane –
δ 2HGIPR,OIPC)/(1 + δ 2HGIPR,OIPC/1000) and εsugar/precipitaion = (δ 18Osugar – δ 18OGIPR,OIPC)/(1
+ δ 18OGIPR,OIPC/1000), is lower for sugars and more negative for n-alkanes from grassland
compared to the forest sites. This means that εn-alkane/precipitaion and εsugar/precipitaion from
the grassland sites is closer to the expected ε2

bio and ε18
bio values of -160h (Sessions et al.,

1999; Sachse et al., 2012) and +27h (Sternberg et al., 1986; Yakir and DeNiro, 1990;
Schmidt et al., 2001; Cernusak et al., 2003). This finding is well in agreement with recent
studies showing that n-alkanes and cellulose extracted from grass leaves are less sensitive
leaf water recorders (McInerney et al., 2011; Kahmen et al., 2013a; Gamarra et al., 2016;
Helliker and Ehleringer, 2002). Hence, grass biomarkers reflect the more negative source
water signal (~precipitation) rather than the leaf water, which is influenced by evapotran-
spirative enrichment. Most likely the basal growth form of grass species via an intercalary
meristem can explain this effect. Indeed, water sampled from the leaf growth and differen-
tiation zone is close to the source water of grasses (Liu et al., 2017).

The biomarker-based δ 2Hsource-water, δ 18Osource-water values plot reasonable well close to
the 1:1 lines with δ 2HGIPR,OIPC and δ 18OGIPR,OIPC but show a much larger range (93 and
12h for δ 2Hsource-water and δ 18Osource-water, respectively; Figure 4A and B). The same holds
true for the comparison of biomarker-based with climate station RHMVD. While RHMVD de-
rived from the climate stations show a variation of 17%, the biomarker-based RHMVD show
a total range of 40% (Figure 4C). The larger range in the reconstructions could be caused
by uncertainties associated with the δ 2Hleaf-water reconstruction based on n-alkane δ 2H and
a constant ε2

bio factor (see also section 3.1.1). Also the usage of the same LEL slope for
the coniferous sites as for deciduous tree and grass sites could lead to the observed large
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ranges in the reconstructions. Moreover, systematic offsets between the reconstructed
δ 2Hsource-water, δ 18Osource-water and RHMDV values compared to the GIPR, OIPC precipita-
tion values and the climate station-derived RHMDV are obvious (median ∆ δ 2H ≈ -21h,
∆δ 18O ≈ -2.9h and ∆RHMDV ≈ -17.1%). With regard to reconstructed δ 2Hsource-water,
δ 18Osource-water this could be caused by the usage of a too steep LEL slope for the conifer-
ous sites. Furthermore, the consideration of the loss of evaporative leaf water enrichment
would diminish the negative offset of the grass sites. The study shows therefore the limita-
tions of reconstructing medium variations in precipitation δ 2H, δ 18O and RHMDV by using
the coupled δ 2Hn-alkane-δ 18Osugar approach.
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Figure 4: Scatterplots comprising reconstructed source water δ 2H versus δ 2HGIPR,OIPC (A), recon-
structed source water δ 18O versus δ 18OGIPR,OIPC (B) and reconstructed RHMDV based on the cou-
pled δ 2Hn-alkane-δ 18Osugar approach versus climate station RHMDV values (C). Abbreviations: con =
coniferous forest sites; dec = deciduous forest sites; grass = grassland sites, modified from Hepp
et al. (2019b).

4.3 Application of the coupled δ 2Hn-alkane-δ 18Osugar approach to the
terrestrial sedimentary archive of Maundi (manuscript 3)

A first application of the coupled δ 2Hn-alkane-δ 18Osugar approach within this PhD project
was realized on a loess-like paleosol sequence from the Southern slopes of Mt. Kiliman-
jaro called Maundi ( 2780 m a.s.l.; 3°10’27.5”S, 37°31’05.8”E). The age-depth model sug-
gests that the Maundi record covers approximately the last 100 ka. The sequence was
analyzed for δ 18Hsugars and δ 2Hmethoxyl, δ 2Hfatty-acids (n-alkanoic acids) and δ 2Hn-alkanes in
order to establish a multi-proxy stable isotope record for the Late Quaternary in equatorial
East Africa (Figure 5). Pollen results for the same sequence were previously presented
by Schüler et al. (2012). The coupled δ 2Hn-alkanes-δ 18Osugars paleohygrometer approach
was used to reconstruct mean RH values during day-time (RHD) and source water isotope
composition (δ 2Hsource-water, δ 18Osource-water). The δ 2Hfatty-acids and δ 2Hn-alkanes records of
Maundi were compared to the δ 2Hleaf-wax records of Lake Challa, Lake Tanganyika and
Lake Malawi (Tierney et al., 2008; Tierney et al., 2011; Konecky et al., 2011). They all
reveal the same trends, i.e. more negative values during the African Humid Period. At the
same time, differences regarding the distinct patterns, amplitude and timing of events are
also observed (Figure 5).
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A straightforward interpretation of these climate proxies is complicated by the numerous
possibly influencing factors on sedimentary fatty acids and n-alkanes in East Africa (i.e.
moisture source and transport history, precipitation amount and evapotranspirative enrich-
ment). Therefore, the coupled δ 2Hn-alkanes-δ 18Osugars paleohygrometer approach was used
to derive quantitative paleoclimate information, potentially overcoming these limitation. Re-
constructed RHD values for Maundi range from 29 to 81% (Figure 6). The most pronounced
minimum during ~70 to 60 ka is with dating uncertainties corresponding to a pronounced
famous drought period leading to low lake levels of Lake Malawi (’megadroughts’ according
to Scholz et al. (2007) and Lake Challa (Moernaut et al., 2010). The two minima during the
Last Glacial Maximum also coincide with low lake levels of Lake Tanganyika (Gasse et al.,
1989; McGlue et al., 2007), Lake Viktoria (Talbot and Livingstone, 1989) and Lake Challa
(Verschuren et al., 2009; Moernaut et al., 2010). The shift towards more humid conditions
during the Late Glacial seen in the Maundi RHD record reflects the beginning of the African
Humid Period, as suggested by raising equatorial East African lake levels (Gasse, 2000;
Junginger et al., 2014), and enhanced rainfall derived from model results (Otto-Bliesner
et al., 2014).
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Figure 5: Maundi multi-proxy (biomarker) isotope records (δ 18Osugars, δ 2Hn-alkanes, δ 2Hfatty-acids,
δ 2Hmethoxyl) along with Lake Challa (Tierney et al., 2011), Lake Tanganyika (Tierney et al., 2008)
and Lake Malawi (Konecky et al., 2011) leaf wax δ 2H records (as presented in Hepp et al., 2017).
LGM = Last Glacial Maximum, YD = Younger Dryas, AHP = African Humid Period.

Overall the Maundi RHD record is in agreement with the climate reconstruction based on
the Maundi pollen results (Schüler et al., 2012). In addition to the regional moisture avail-
ability, a local effect is suggested to influence the Maundi RHD values. This local effect
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concerns the intensification of the trade wind inversion, which affects the diurnal atmo-
spheric circulation on the Southern slopes of Mt. Kilimanjaro (Pepin et al., 2010). This can
help to explain why the Maundi RHD record does not show noticeably humid conditions
during the Early Holocene, while high lake levels during the Early Holocene document the
African Humid Period until ~5 ka as a period with moisture availability in East African region
after the interruption caused by the Younger Dryas (Junginger et al., 2014).
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Figure 6: Maundi deuterium-excess of leaf water and reconstructed RH during day-time (RHD)
records, along with selected pollen results from the Maundi loess-like paleosol sequence (Schüler
et al., 2012), as modified from Hepp et al. (2017). LGM = Last Glacial Maximum, YD = Younger
Dryas, AHP = African Humid Period.

Finally, the highly significant correlation between reconstructed deuterium-excess of leaf
water and δ 2Hsource-water, δ 18Osource-water (Figure 7) reveals that a long-term amount effect
cannot explain the pattern of the Maundi δ 2Hsource-water, δ 18Osource-water records. In mod-
ern precipitation, δ 2H and δ 18O for East African regions on a seasonal timescale can be
described (Rozanski et al., 1996). However, no clear relationship between δ 2Hprecipitation,
δ 18Oprecipitation and precipitation amount is observed on longer (at least inter-annual) time
scales (Rozanski et al., 1996; Sundqvist et al., 2013). Most likely effects on local and re-
gional moisture recycling, and therefore the expansion, shrinking (or complete collapse) of
montane rainforest on the Southeastern slopes of Mt. Kilimanjaro and changes in regional
vegetation cover have to be taken into account for understanding Maundi δ 2Hsource-water,
δ 18Osource-water variations.
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Figure 7: Scatterplot of reconstructed Maundi δ 18Osource-water versus deuterium-excess of leaf water,
revealing a positive correlation with an r2 of 0.6 (using the data as presented in Tab. 1 of Hepp et al.,
2017).

4.4 Source identification of terrestrial versus aquatic sugars in lacus-
trine systems (manuscript 4)

For a successful application of the coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer approach
to lacustrine archives, the identification of the sedimentary organic matter source, and more
specifically the identification of the source of specific biomarkers is essential. With regard
to n-alkane biomarkers, source identification is mainly based on chain-lengths. Long-chain
lipids (n-alkanes, n-alkanols and n-alkanoic acids) are usually interpreted as derived from
terrestrial plants because they occur abundantly in epicuticular leaf waxes of higher vas-
cular plants (Eglinton and Hamilton, 1967). By contrast, mid- and short chain lipids are
usually associated with submerged aquatic macrophytes (Ficken et al., 2000) or algae.
Yet, this source assignment is increasingly challenged (e.g. Hepp et al., 2015; Aichner et
al., 2018) and needs careful consideration in every case study. For the sugar biomarkers
arabinose, fucose and xylose, a lacustrine sedimentary source identification is presented
in this manuscript for the first time.

Sugar biomarkers were extracted from different terrestrial and aquatic plants as well as
from various algae species. While vascular plants are characterized by high amounts of
arabinose and xylose, algae yielded higher concentrations of fucose (both based on rel-
ative sugar biomarker abundances; Figure 8A). In combination with data compiled from
the literature this suggests that the ratio of fuc/(ara + xyl) can serve as an additional proxy
for differentiating between aquatic versus terrestrial lacustrine sedimentary organic matter
input. When additionally taking into account relative sugar biomarker abundances from
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soils and sediments (Figure 8B), the ratio of (fuc + xyl)/ara seems to be a helpful proxy for
distinguishing aquatic versus terrestrial input in lacustrine archives, too.

Overall, this compilation suggests that sugar biomarkers can serve as valuable comple-
mentary proxy for sedimentary source identification and that fucose and xylose can often
be related to aquatic sources, whereas arabinose can often be attributed to terrestrial ori-
gin. The latter likely holds true for the Lake Gemündener Maar sediments (Figure 8B).
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Figure 8: Ternary diagrams illustrating the relative abundances of arabinose, fucose and xylose for
the analyzed samples presented in manuscript 4 (Hepp et al., 2016) (A), as well as for soil and
sediment data compiled from the literature, i.e. alpine soils (Prietzel et al., 2013), topsoil samples
(Bock et al., 2007), loess/paleosol samples (Zech et al., 2013) and lacustrine sediments (Zech et
al., 2014a) (B). Figure modified from Hepp et al. (2016).

4.5 Application of the coupled δ 2Hn-alkane-δ 18Osugar paleohygrometer
approach to the Gemündener Maar sedimentary record
(manuscript 5)

The above-presented source identification study of terrestrial versus aquatic sugars in la-
custrine systems (manuscript 4) provides the basis for applying the coupled δ 2Hn-alkane-
δ 18Osugar paleohygrometer approach to the Late Glacial-Early Holocene Lake Gemün-
dener Maar sediment archive. The Lake is located in the Western Eifel region
(50°10’39.853"N, 6°50’12.912"E; 407 m a.s.l.), Germany, within the ancient volcanic field
(Sirocko et al., 2013). The weighted mean δ 2H of the alkanes n-C27 and n-C29 as well as
δ 18Oarabinose are used to derive RH day-time and vegetation period (RHdv), because they
are considered to record the past δ 2Hleaf-water and δ 18Oleaf-water.

Interestingly, the results suggest that the Younger Dryas was not uniformly dry but two-
phased with regard to RH. The first phase is characterised by RHdv values similar to the
Allerød level; only the end of the Younger Dryas is characterised by drier climatic condi-
tions (Figure 9). This contradicts earlier results suggesting (i) continuously dry conditions
throughout the Younger Dryas (Rach et al., 2014) and (ii) a two-phasing with a dry and
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cold first period that is followed by increasing wetness and higher temperatures during
the second Younger Dryas phase (Brauer et al., 1999). Moreover, the Lake Gemündener
Maar RH record reveals quite high variability during the Early Holocene, compared to the
Younger Dryas and the Allerød sections. So far, it is uncertain how strong the solar activity
influenced this unexpected finding in Late Glacial-Early Holocene RH history over Central
Europe.
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Figure 9: A) Lake Gemüdener Maar relative humidity record during day-time and vegetation period
(RHdv) along with B) the IntCal 13 14C production rate (Muscheler et al., 2014), which can be
interpreted as solar activity proxy (Stuiver and Braziunas, 1988). Bold line in RHdv plot = 3 point
running mean; Error bars and shaded area represents uncertainties associated with δ 2Hn-alkane and
δ 18Osugar measurements. AL = Allerød, LST = Laacher See Tephra, YD = Younger Dryas, PB =
Preboreal, BO = Boreal. Figure modified from Hepp et al. (2019a).

4.6 Application of the coupled δ 2Hn-alkane-δ 18Osugar approach to the
Lake Bergsee sedimentary record (manuscript 6)

The second application of the coupled δ 2Hn-alkane-δ 18Osugar approach to a lake sedimen-
tary archive was conducted on samples from Lake Bergsee, Southern Black Forest, Ger-
many (7°56’11”E, 47°34’20”N; 382 m a.s.l.; Becker et al., 2006). The investigated core
section covers, like the Lake Gemündener Maar study, the Late Glacial to Early Holocene
transition, i.e. a time span between 16,000 to 10,750 a cal BP. As highlighted by Hepp et al.
(2015) (section 4.4 and manuscript 4) and Hepp et al. (2019a) (section 4.5 and manuscript
5), the biomarker source identification is essential for interpreting the compound-specific
isotope results. For the biomarker source identification, n-alkane and sugar biomarker pat-
tern were analyzed in detail and, for potentially coupling δ 2Hn-alkane with δ 18Osugar results,
alkanes with the chain length n-C23, n-C25, n-C27, n-C29 and n-C31 as well as the sugars
arabinose, fucose and xylose were analyzed for their δ 2H and δ 18O isotope signatures,
respectively.

19



Extended Summary

LST

PB

YD

AL

OD
BL
OLD

MD

PG

-240 -220 -200 -180 -160 -140 -120 -100
δ2Hn-alkane

15800

15500

15200

14900

14600

14300

14000

13700

13400

13100

12800

12500

12200

11900

11600

11300

11000

10700

ag
e 

(a
 c

al
 B

P)

n-C23

n-C25

n-C27

n-C29

n-C31

10 20 30 40
δ18Osugar

ara
fuc
xyl

A) B)

δ2H source water
positivenegative

2H leaf/lake water enrichment
low high

aquatic n-C23 contribution
low high

δ18O source water
positivenegative

18O lake water enrichment
low high

Figure 10: A) δ 2Hn-alkane records (n-C23, n-C25, n-C27, n-C29 and n-C31) and B) δ 18Osugar records
(arabinose, fucose, xylose) of Lake Bergsee. Background colors show time periods (according to
Litt et al., 2001): PB = Preboreal, YD = Younger Dryas, AL = Allerød, OD = Older Dryas, BL =
Bølling, OLD = Oldest Dryas, MD = Meiendorf, PG = Pleniglacial. LST = Laacher See Tephra.

An unambiguous bulk source determination turned out to be not possible for Lake Bergsee
based on the bulk results. Regarding the n-alkane biomarkers, however, it can be assumed
that the long-chain homologues (n-C27, n-C29 and n-C31) originate from terrestrial sources
(Eglinton and Hamilton, 1967), i.e. from leaf waxes of higher terrestrial plants grown in the
Lake Bergsee catchment. The short-chain compound (n-C23) reflect most likely a mixture
between the input from submerged aquatic organisms (e.g. Ficken et al., 2000) and from
terrestrial plants, as shown also by Aichner et al. (2018) for a lacustrine record from Poland.
Sedimentary sugars are interpreted to be primarily aquatic-derived, based on the sugar
ratios developed from manuscript 4 (Figure 8). Accordingly, δ 18Osugar (arabinose, xylose
and fucose) are presumably good δ 18Olake-water recorders, while δ 2Hn-alkane values from
long-chain n-alkane (n-C27, n-C29 and n-C31) should reflect paleo δ 2Hleaf-water.

The origin of the n-alkane and sugar biomarkers becomes also obvious when describing
the biomarker-based isotope records (Figure 10). When the n-C29 and n-C31 alkanes orig-
inate from grasses (e.g. Poaceae) and n-C27 from trees (e.g. Betula), in average +17h
more positive n-C27 δ 2H values can be explained with the fact that n-alkanes from grasses
are typically less sensitive leaf water enrichment recorders (McInerney et al., 2011; Kah-
men et al., 2013a). The n-C25 δ 2H record seems to be a mixture between tree (Betula)
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and grass (Poaceae) input, because the values are close to n-C27 during the Pleniglacial,
Meiendorf and the Preboreal, while during Oldest Dryas, Bølling, Older Dryas, Allerød and
Younger Dryas the n-C25 δ 2H record resemble the n-C29, n-C31 ones. For long-chain n-
alkanes, often an ε2

bio factor of -160h is assumed, based on findings from Sachse et al.
(2006) and Sessions et al. (1999). For n-C23 δ 2H data from Potamogeton and surface
sediments, however, a smaller fractionation factor during biosynthesis of -82 to -88h is
suggested (Aichner et al., 2010). Offsets between Lake Bergsee n-C23 δ 2H and n-C27,
n-C29, n-C31 δ 2H records could therefore result from variable aquatic contribution of n-C23.
The main influencing factors on n-alkane δ 2H are highlighted in Figure 10A.
The Lake Bergsee δ 18Osugar records can be interpreted in terms of reflecting changes in (i)
δ 18O of source water (~local precipitation) and (ii) 18O lake water enrichment (as illustrated
in Figure 10B). This can explain why the δ 18Osugar record of Lake Bergsee reveals opposite
trends and a much higher amplitude compared to precipitation records based on carbonate
δ 18O (Mayer and Schwark, 1999; Wurth et al., 2004). Focusing on the Younger Dryas-
Preboreal transition, a shift of ~5h is obvious in δ 18Osugar record, based on average values
for both periods. This is well in agreement with a reconstructed δ 18Olake-water shift of around
6h from Lake Gosciaz (Rozanski et al., 2010).
Due to the mixed origin of n-C23 in Lake Bergsee sediments (= mixture between aquatic
and terrestrial sources) a coupling between δ 2Hn-alkane (n-C23) and δ 18Osugar according
to Hepp et al. (2015) was not possible. The large potential of the coupled δ 2Hn-alkane-
δ 18Osugar approach for disentangling lake or leaf water enrichments from source water
changes could therefore not be utilized in this study. Moreover, our results are in line with
other publications emphasising that caution has to be taken when applying the classical
n-alkane chain-length interpretation to lacustrine archives (Hepp et al., 2015; Duan et al.,
2016; Liu and Liu, 2016; Rao et al., 2016).

5 Conclusions

The following conclusions can be drawn from the results and discussions presented in this
thesis dealing with the coupled δ 2Hn-alkane-δ 18Osugar approach:

• The analysis of the leaf material from the climate chamber experiment shows that
δ 2Hn-alkane-δ 18Osugar are well correlated with δ 2Hleaf-water, δ 18Oleaf-water (r2 = 0.45
and 0.85, respectively, p < 0.001, n = 24). Moreover, RHair can be robustly re-
constructed based on measured δ 2Hleaf-water, δ 18Oleaf-water values as well as on
δ 2Hn-alkane, δ 18Osugar-derived leaf water isotope composition by using a simplified
Craig-Gordon model. This highlights the large potential of the coupled δ 2Hn-alkane-
δ 18Osugar paleohygrometer approach. From the topsoil transect study, it can be
concluded that such an δ 2Hn-alkane-δ 18Osugar approach allows the reconstruction of
δ 2Hsource-water, δ 18Osource-water and RHMDV values. However, also systematical off-
sets between biomarker-based (reconstructed) δ 2Hsource-water, δ 18Osource-water and
RHMDV values compared to precipitation δ 2HGIPR,OIPC, δ 18OGIPR,OIPC and climate
station RHMDV values, respectively, are observed. Thus, both studies imply that the
uncertainty of reconstructing δ 2Hleaf-water based on δ 2Hn-alkane values (which is also
present in data compiled from literature, see section 3.1.1) represents one clear lim-
itation of the coupled δ 2Hn-alkane-δ 18Osugar approach regarding the reconstruction of
rather small variability in δ 2Hsource-water, δ 18Osource-water and RH records.
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• The application of the coupled δ 2Hn-alkane-δ 18Osugar approach to the terrestrial cli-
mate archive Maundi was still successful in terms of establishing δ 2Hsource-water,
δ 18Osource-water and RHD records for the last ~100 ka for the East African region.
The results indicate that leaf water enrichment can mask changes in precipitation
isotope composition, both incorporated in δ 2Hn-alkane and δ 18Osugar. The coupled
δ 2Hn-alkane-δ 18Osugar approach is shown to have the potential to disentangle be-
tween those signals. A strong relationship between biomarker-based δ 2Hsource-water,
δ 18Osource-water and RHD furthermore points against the presence of an amount effect
on δ 2Hprecipitation and δ 18Oprecipitation isotope composition on long-time scales.

• The source identification study of terrestrial versus aquatic sugar biomarkers in lake
sediments shows in general that the relative abundances of arabinose, fucose and
xylose can be used to distinguish between algae and terrestrial plant sources. Arabi-
nose from Late Glacial-Early Holocene Lake Gemündener Maar sediments is primar-
ily of terrestrial origin, whereas fucose and xylose stem predominately from aquatic
sources.

• The δ 18Oarabinose and terrestrial δ 2Hn-alkane (n-C27, n-C29) results derived from Lake
Gemündener Maar sediments were used in a coupled δ 2Hn-alkane-δ 18Osugar paleohy-
grometer approach. The established RHdv record challenges that the Younger Dryas
was characterized by overall dry climatic conditions. There was rather a relatively
wet phase at the beginning of the Younger Dryas, which is followed by a drier late
Younger Dryas. Furthermore, large RHdv changes during the Early Holocene are
observed, which are even more pronounced than the variations during the Allerød-
Younger Dryas transition. Unlike the Lake Gemündener Maar study, the coupled
δ 2Hn-alkane-δ 18Osugar approach could not be applied to Lake Bergsee Late Glacial-
Early Holocene sediments. While the long-chain n-alkanes can be attributed to ter-
restrial sources and the sugars to primarily aquatic sources, n-C23 is most likely a
mixture of both origins. A clear differentiation between terrestrial or aquatic origins of
the n-alkane and sugar biomarkers seems to be fundamental for a successful appli-
cation of the coupled δ 2Hn-alkane-δ 18Osugar approach to lacustrine archives.
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 32 

Abstract 33 

The hydrogen isotopic composition of leaf wax-derived biomarkers, e.g. long chain n-alkanes (δ2Hn-34 

alkane), is widely applied in paleoclimatology research. However, a direct reconstruction of the isotopic 35 

composition of paleoprecipitation based on δ2Hn-alkane alone can be challenging due to the overprint of 36 

the source water isotopic signal by leaf-water enrichment. The coupling of δ2Hn-alkane with δ18O of 37 

hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this effect and additionally 38 

allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained 39 

from leaves of the plant species Eucalyptus globulus, Vicia faba var. minor and Brassica oleracea var. 40 

medullosa, which were grown under controlled conditions. We addressed the questions (i) do δ2Hn-41 

alkane and δ18Osugar values allow precise reconstructions of leaf water isotope composition, (ii) how 42 

accurately does the reconstructed leaf-water-isotope composition enables relative humidity (RH) 43 

reconstruction in which the plants grew, and (iii) does the coupling of δ2Hn-alkane and δ18Osugar enable a 44 

robust source water calculation?  45 

For all investigated species, the alkane n-C29 was most abundant and therefore used for compound-46 

specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated 47 

robustly. With regard to hemicellulose-derived monosaccharides, arabinose and xylose were most 48 

abundant and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. 49 

Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf-water and δ18Oleaf-water, 50 

respectively (r2 = 0.45 and 0.85, respectively; p < 0.001, n = 24). Mean fractionation factors between 51 

biomarkers and leaf water were found to be -156‰ (ranging from -133 to -192‰) for εn-alkane/leaf-water 52 

and +27.3‰ (ranging from +23.0 to 32.3‰) for εsugar/leaf-water, respectively. Using rearranged Craig-53 

Gordon equations with either Tair or Tleaf and measured δ2Hleaf-water or δ18Oleaf-water as input variables, we 54 

furthermore modeled climate chamber RHair and RHleaf values. Modelled RHair values, from the more 55 

simplified Craig-Gordon model, turned out to be most accurate and correlate highly significantly with 56 

measured RHair values (R2 = 0.84, p < 0.001; RMSE = 6%). When combining δ2Hleaf-water and δ18Oleaf-water 57 

values that are calculated from the alkane and sugar biomarkers instead of actually measured δ2Hleaf-58 

water and δ18Oleaf-water as input variables, the correlation of modelled RHair values with measured RHair 59 

values is getting worse, but is still highly significant with R2 = 0.54, p < 0.001; RMSE = 10%. This 60 

highlights the potential of the coupled δ2Hn-alkane-δ18Osugar paleohygrometer approach for suitable 61 

relative humidity reconstructions. Finally, the reconstructed source water isotope composition (δ2Hs 62 

and δ18Os) as calculated from the coupled approach matches the source water in the climate chamber 63 

experiment (δ2Htank-water and δ18Otank-water).   64 
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1 Introduction 65 

Leaf-wax-derived biomarkers, such as long chain n-alkanes, and their stable hydrogen isotopic 66 

composition (δ2Hn-alkane) are widely applied in paleoclimatology research. Sedimentary δ2Hn-alkane values 67 

correlate with δ2H of precipitation (Huang et al., 2004; Mügler et al., 2008; Sachse et al., 2004; Sauer 68 

et al., 2001), confirming the high potential of δ2Hn-alkane to establish δ2H records of past precipitation 69 

(Hou et al., 2008; Rao et al., 2009; Sachse et al., 2012). However, the alteration of the isotopic signal 70 

as a result of the often unknown amount of leaf water enrichment caused by evapotranspiration can 71 

be several tens of per mil. This poses a challenge for accurate data interpretation (e.g. Zech et al., 72 

2015), especially in respect of single proxy (δ2Hn-alkane)-based climate records. Apart from studies of 73 

sedimentary cellulose (Heyng et al., 2014; Wissel et al., 2008), the oxygen stable isotope composition 74 

of sugar biomarkers (δ18Osugar) emerged as complementary paleoclimate proxy during the last decade 75 

(Hepp et al., 2015, 2017, Zech et al., 2013a, 2014a). The interpretation of the δ18Osugar values is 76 

comparable to those of δ2Hn-alkane. When sugars originate primarily from leaf biomass of higher 77 

terrestrial plants, they reflect the plant source water (which is often directly linked to the local 78 

precipitation) modified by evapotranspirative enrichment of the leaf water (Tuthorn et al., 2014; Zech 79 

et al., 2014a). The coupling of δ2Hn-alkane with δ18Osugar values allows quantification of leaf-water isotopic 80 

enrichment and relative air humidity (Zech et al., 2013a). This approach was validated by Tuthorn et 81 

al. (2015) by applying it to topsoil samples along a climate transect in Argentina. Accordingly, the 82 

biomarker-derived relative air humidity values correlate significantly with actual air relative humidity 83 

from the respective study sites, highlighting the potential of the δ2Hn-alkane-δ18Osugar paleohygrometer 84 

approach. 85 

The coupled approach is based on the observation that the isotope signature of precipitation 86 

(δ2Hprecpitation and δ18Oprecpitation) typically plots on or adjacent to the global meteoric water line (GMWL), 87 

in a δ2H-δ18O diagram. The GMWL is characterized by the equation δ2Hprecpitation = 8 ∙ δ18Oprecpitation + 10 88 

(Dansgaard, 1964). In most cases, the local precipitation can be directly linked to the source water of 89 

plants, which is indeed soil water and eventually shallow groundwater. The isotopic composition of 90 

xylem water of plants readily reflects these sources (e.g. Dawson, 1993). However, leaf-derived 91 

biomarkers reflect the leaf water isotope composition, which is, unlike xylem water, prone to 92 

evapotranspiration (e.g. Barbour and Farquhar, 2000; Helliker and Ehleringer, 2002; Cernusak et al., 93 

2003; Barbour et al., 2004; Cernusak et al., 2005; Feakins and Sessions, 2010; Kahmen et al., 2011; 94 

Sachse et al., 2012; Kahmen, Schefuß, et al., 2013; Tipple et al., 2013; Lehmann et al., 2017; Liu et al., 95 

2017). During daytime, the leaf water is typically enriched in the heavy isotope compared to the source 96 

water because of the evapotranspirative enrichment through the stomata. Thereby, lighter water 97 

isotopes evaporate preferentially, which results in a deuterium-excess in the remaining water 98 

compared to the precipitation water (d = δ2H - 8 ∙ δ18O; according to Dansgaard, 1964). The degree of 99 

evapotranspirative enrichment is mainly controlled by the relative air humidity in the direct 100 

surrounding of the plant leaves (e.g. Cernusak et al., 2016). Although the biomarkers reflect the 101 

isotopic composition of leaf water, there is still a modification by the so-called biosynthetic 102 

fractionation during the biosynthesis, leading to an offset between leaf water and biomarker isotope 103 

composition. In case the biosynthetic fractionation is known and constant, there is a great potential 104 

that relative humidity can be derived from coupling δ2Hn-alkane and δ18Osugar values. 105 

The overall aim of this study is to evaluate the δ2Hn-alkane-δ18Osugar paleohygrometer approach by 106 

applying it to plant leaf material from three different plants grown in a climate chamber experiment 107 

under well controlled conditions. More specifically, we address the following questions: 108 

(i) which homologue and specific monosaccharide can be used to gain δ2Hn-alkane and δ18Osugar 109 

results for the climate chamber plants leaf material, respectively, 110 
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(ii) how precisely do δ2Hn-alkane and δ18Osugar values allow reconstructing δ2H and δ18O of leaf 111 

water, respectively, 112 

(iii) how accurately does the leaf-water-isotope composition reflect the relative humidity 113 

conditions,  114 

(iv) and does the coupling of δ2Hn-alkane and δ18Osugar enable a robust source water calculation  115 

and how reliable are relative humidity reconstructions? 116 

 117 

2 Material and Methods 118 

2.1 Climate chamber experiment 119 

A phytotron experiment was conducted at the Helmholtz Zentrum München in Neuherberg during 120 

winter 2000/2001 (Mayr, 2002). Three different dicotyledon plant species (Eucalyptus globulus, Vicia 121 

faba var. minor and Brassica oleracea var. medullosa) were grown in eight chambers for 56 days under 122 

seven distinct climatic conditions (same conditions in chambers 4 and 8). Air temperature (Tair) were 123 

set to 14, 18, 24 and 30°C and and relative humidity (RHair) to around 20, 30, 50, and 70% between 11 124 

a.m. and 4 p.m. (Fig. 1B). During the rest of the day typical natural diurnal variations were aimed for 125 

(details in Mayr, 2002). Furthermore, uniform irrigation conditions were guaranteed via an automatic 126 

irrigation system, which was controlled by tensiometers installed in 9 cm substrate depth. The tank 127 

water used for irrigation was sampled periodically (intervals of one to three days) over the whole 128 

experiment and revealed only minor variability in its isotope composition (δ18Otank-water = -10.7 ± 0.3‰ 129 

standard deviation (σ); δ2Htank-water = -7 ± 1‰ σ). Once a week, soil water (via ceramic cups in 13 cm soil 130 

depth) and atmospheric water vapor (via dry ice condensation traps) was sampled (δ2Hsoil-water, δ18Osoil-131 

water and δ2Hatmospheric-water-vapor, δ18Oatmospheric-water-vapor). Additionally, leaf temperatures (Tleaf) were 132 

derived from gas exchange measurements, at least once a week (Mayr, 2002). 133 

In order to analyze stable hydrogen and oxygen isotopic composition of leaf (δ2Hleaf-water, δ18Oleaf-water) 134 

and stem water, the plants were harvested at the end of the experiment. The vacuum distillation 135 

method was used for the extraction of the plant water. It should be noted that stem water is a mixture 136 

between phloem and xylem water, while the latter should reflect the isotopic composition of the soil 137 

water. For simplification, stem water is referred to as xylem water in the following (δ2Hxylem-water, 138 

δ18Oxylem-water). 139 

For more details about the experiment, the reader is  referred to the original publication (Mayr, 2002). 140 

 141 

2.2 Leaf biomarker extraction and compound-specific stable isotope analysis 142 

A total of 24 leaf samples were prepared according to Schäfer et al. (2016) for compound specific δ2H 143 

measurements of n-alkanes, at the Institute of Geography, Group of Biogeochemistry and 144 

Paleoclimate, University of Bern. Microwave extraction with 15 ml dichloromethane (DCM)/methanol 145 

(MeOH) 9:1 (v:v) at 100°C for 1 h was conducted. The resulting total lipid extract was purified and 146 

separated using aminopropyl-silica-gel (Supelco, 45 μm) pipette columns. The hydrocarbon fraction 147 

(containing n-alkanes) was eluted with n-hexane and cleaned via silver nitrate-coated silica gel pipettes 148 

(Supelco, 60-200 mesh) and zeolite (Geokleen Ltd.) columns. The δ2H measurements of the highest 149 

concentrated n-alkanes (n-C29 and n-C31) were performed on a GC-2H-pyrolysis-IRMS system, equipped 150 

with an Agilent 7890A gas chromatograph (GC) and IsoPrime 100 isotope-ratio-mass spectrometer 151 

(IRMS) coupled with a GC5 pyrolysis/combustion interface operating in pyrolysis modus with a Cr 152 

(ChromeHD) reactor at 1000°C. The compound-specific δ2H values were calibrated against a standard 153 

alkane mix (n-C27, n-C29, n-C33) with known isotope composition (A. Schimmelmann, University of 154 

Indiana), measured twice every six sample injections. Standard deviation of the triplicate 155 
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measurements were typically ≤ 5‰. The H3+ factor stayed constant during the course of the 156 

measurements.  157 

 158 

Additionally, the leaf samples were dried and finely ground in preparation for δ18O analysis of 159 

hemicellulose-derived sugars (modified from Zech and Glaser, 2009) at the Institute of Agronomy and 160 

Nutritional Sciences, Soil Biogeochemistry, Martin-Luther-University Halle-Wittenberg. The 161 

hemicellulose sugars were hydrolytically extracted for 4 h at 105°C using 4M trifluoroacetic acid 162 

(Amelung et al., 1996) and purified via XAD-7 and Dowex 50WX8 columns. Prior to the methylboronic-163 

acid (MBA) derivatization (4 mg of MBA in 400 µl dry pyridine for 1 h at 60°C), the cleaned sugars were 164 

frozen and freeze-dried overnight (Knapp, 1979). Compound-specific δ18O measurements were 165 

performed on a Trace GC 2000 coupled to a Delta V Advantage IRMS via an 18O-pyrolysis reactor (GC 166 

IsoLink) and a ConFlo IV interface (all devices from Thermo Fisher Scientific, Bremen, Germany). The 167 

sample batches were measured along with embedded co-derivatized standard batches, which 168 

contained arabinose, fucose, xylose, and rhamnose in different concentrations of known δ18O value. 169 

The δ18O values of the standard sugars were determined via temperature conversion/elemental 170 

analysis-IRMS coupling at the Institute of Plant Sciences, ETH Zurich, Switzerland (Zech and Glaser, 171 

2009). This procedure allows corrections for possible amount dependencies (Zech and Glaser, 2009) 172 

and ensures the “Principle of Identical Treatment” (Werner and Brand, 2001). Standard deviations for 173 

the triplicate measurements were 0.9‰ and 2.2‰ (average over all investigated samples) for 174 

arabinose and xylose, respectively. We focus on arabinose and xylose in this study because they were 175 

(i) the dominant peaks in all chromatograms, and (ii) previously found to strongly predominate over 176 

fucose (and rhamnose) in terrestrial plants, soils (Hepp et al., 2016). 177 

 178 

All δ values are expressed in per mil as isotope ratios (R = 18O/16O or 2H/1H) relative to the Vienna 179 

Standard Mean Ocean Water (VSMOW) standard in the common delta notation 180 

(δ = Rsample- Rstandard Rstandard⁄ ; e.g. Coplen, 2011). 181 

 182 

2.3 Framework for coupling δ2Hn-alkane with δ18Osugar results 183 

2.3.1 Deuterium-excess of leaf water and relative humidity 184 

The coupled approach is based on the observation that isotope composition of global precipitation 185 

plots typically close to the GMWL (δ2Hprecpitation = 8 ∙ δ18Oprecipitation + 10; Dansgaard, 1964; Fig. 2). The 186 

soil water and shallow groundwater, which acts as source water for plants, can often directly be related 187 

to the local precipitation. However, especially during daytime leaf water is typically enriched compared 188 

to the precipitation due to evapotranspiration through the stomata, therefore plotting right of the 189 

GMWL (Fig. 2; e.g. Allison et al., 1985; Bariac et al., 1994; Walker and Brunel, 1990). The leaf water 190 

reservoir at the evaporative sites is frequently assumed to be in isotope steady-state (Allison et al., 191 

1985; Bariac et al., 1994; Gat et al., 2007; Walker and Brunel, 1990), meaning that the isotope 192 

composition of the transpired water vapor is in isotopic equilibrium with the source water utilized by 193 

the plants during the transpiration process. The Craig-Gordon model (e.g. Flanagan et al., 1991; Roden 194 

and Ehleringer, 1999) approximates the isotope processes in leaf water in δ terms (e.g. Barbour et al., 195 

2004):  196 

δe ≈ δs + ε∗ + εk + (δa - δs - εk) 
ea

ei
, (Equation 1) 

where δe, δs and δa are the hydrogen and oxygen isotopic compositions of leaf water at the evaporative 197 

sites, source water and atmospheric water vapor, respectively. The equilibrium enrichment (ε*) is 198 

expressed as (1-1/αL/V) ∙ 103, where αL/V is the equilibrium fractionation between liquid and vapor in 199 
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per mil. The kinetic fractionation parameter (εk) describes the water vapor diffusion from intracellular 200 

air space through the stomata and the boundary layer into to the atmosphere, and ea/ei is the ratio of 201 

the atmospheric to intracellular vapor pressure.  202 

 203 

In a δ2H-δ18O diagram, the isotope composition of the leaf water as well as the source water can be 204 

described as deuterium-excess (d) values by using the equation of Dansgaard (1964), with d = δ2H - 8 ∙ 205 

δ18O. This allows rewriting the Eq. 1, in which hydrogen and oxygen isotopes have to be handled in 206 

separate equations, in one equation:  207 

de ≈ ds + (ε2
* - 8 ∙ ε18

*  ) + (Ck
2 - 8 ∙ Ck

18) + [da - ds - (Ck
2 - 8 ∙ Ck

18)] ∙
ea

ei
, (Equation 2) 

where de, ds and da are the deuterium excess values of leaf water at the evaporative sites, source water 208 

and atmospheric water vapor, respectively. The kinetic fractionation parameter (εk) is typically related 209 

to stomatal and boundary layer resistances to water flux (Farquhar et al., 1989). We used the kinetic 210 

enrichment factor (Ck) instead of εk to be close to paleo studies were direct measurements of such a 211 

plant physiological parameter are not available. The kinetic enrichment factor is derived from a more 212 

generalized form of the Craig-Gordon model for describing the kinetic isotope enrichment for 2H and 213 
18O (Ck

2 and Ck
18, respectively) (Craig and Gordon, 1965; Gat and Bowser, 1991). If the plant source 214 

water and the local atmospheric water vapor are in isotope equilibrium, the term δa - δs in Eq. 1 can 215 

be approximated by -ε*. Thus, Eq. 2 can be reduced to:  216 

de ≈ ds + (ε2
* - 8 ∙ ε18

*  + Ck
2 - 8 ∙ Ck

18) ∙ (1 - 
ea

ei
).    (Equation 3) 

The actual atmospheric vapor pressure (ea) and the leaf vapor pressure (ei) in kPa can be derived from 217 

Eqs. 4 and 5 by using Tair and Tleaf, respectively:  218 

ea = 0.61365 ∙ e[17.502 ∙ Tair / (Tair + 240.97)] ∙ RHair  (Equation 4) 

ei = 0.61365 ∙ e[17.502 ∙ Tair/leaf / (Tair/leaf + 240.97)],    (Equation 5) 

where ea/ei is the relative humidity calculated with the saturation vapor pressure when the leaf 219 

temperature is used in the denominator rather than the air temperature (Eq. 5), ranging between 0 220 

and 1. In order to increase the comparability to RHair, the ea/ei ratio calculated with Tleaf in Eq. 5 can be 221 

converted into RHleaf by multiplication with 100. When Tair is used in Eq. 5, ea/ei represents RHair (also 222 

ranging between 0 and 1, representing 0 to 100% relative humidity when multiplying with 100). It 223 

should be noted that the differences between measured RHleaf and Tleaf with the respective air 224 

parameters (RH, Tair) are not very pronounced in most cases (Mayr, 2002; Kahmen et al., 2011b), 225 

revealing rather the same trends and magnitude (Fig. 1B). 226 

With Eqs. 2 and 3, two equations are given to derive relative humidity values by rearranging them, 227 

resulting in RHair and RHleaf, respectively, by using either Tair or Tleaf for ε* (Eqs. 6 and 7): 228 

RHleaf/air ≈ 
de - d

s
 - (ε2

* - 8 ∙ ε18
*  ) - (Ck

2 - 8 ∙ Ck
18)

da - ds - (Ck
2 - 8 ∙ Ck

18)
, (Equation 6) 

RHleaf/air ≈ 1 - 
de - d

s

(ε2
* - 8 ∙ ε18

*  + Ck
2 - 8 ∙ Ck

18)
.            (Equation 7) 

Equilibrium fractionation parameters (ε2
* and ε18

* ) are derived from empirical equations of Horita and 229 

Wesolowski (1994) by using either the climate chamber Tair or Tleaf values. The kinetic fractionation 230 

parameters (Ck
2 and Ck

18) for 2H and 18O, respectively, are set to 25.1 and 28.5‰ according to Merlivat 231 

(1978), who reported maximum values during the molecular diffusion process of water through a 232 

stagnant boundary layer. It should be noted that εk values of broadleaf trees and shrubs over broad 233 
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climatic conditions are well in the range with used Ck
2 and Ck

18 values, revealing 23.9 ± 0.9 and 26.7‰ 234 

± 1.0 for εk
2 and εk

18, respectively (derived from supplementary data of Cernusak et al., 2016).  235 

If δ2Hleaf-water and δ18Oleaf-water can be reconstructed from the measured δ values of n-alkanes and sugars 236 

biomarkers, this framework provides a powerful tool to establish relative humidity records from 237 

sedimentary archives (Hepp et al., 2017; Zech et al., 2013a). To reconstruct the isotope composition of 238 

leaf water it is assumed that fractionation factors of −160‰ for 2H of alkanes n-C29 and n-C31 (ε2
bio; 239 

Sachse et al., 2012; Sessions et al., 1999), and +27‰ for 18O of the hemicellulose-derived sugars 240 

arabinose and xylose (ε18
bio; Cernusak et al., 2003; Schmidt et al., 2001; Sternberg et al., 1986; Yakir 241 

and DeNiro, 1990) can be applied:  242 

 243 

2.3.2 Isotope composition of plant source water 244 

In a δ2H-δ18O diagram, the hydrogen and oxygen isotope composition of the plant source water (δ2Hs 245 

and δ18Os, respectively) can be assessed via the slope of the individual leaf water evapotranspiration 246 

lines (LEL´s; Craig and Gordon, 1965; Gat and Bowser, 1991). Depending on the degree of 247 

simplification, the LEL slope (SLEL) can be derived from Eq. 10 (consistent to Eq. 2) and Eq. 11 (consistent 248 

to Eq. 3): 249 

SLEL ≈ 
 ε2

* + Ck
2+ (δa

2- δs
2 - Ck

2) ∙ 
ea
ei

ε18
*  + Ck

18+ (δa
18- δs

18 - Ck
18) ∙ 

ea
ei

 ,  (Equation 10) 

SLEL ≈ 
 ε2

* + Ck
2 ∙ (1 - 

ea
ei

)

ε18
*  + Ck

18∙ (1-
ea
ei

)
 ≈ 

ε2
* + Ck

2

ε18
*  + Ck

18 ,  (Equation 11) 

where all parameters are defined as in section 2.3.1. The δ2Hs and δ18Os values can then be calculated 250 

for each leaf water data point via the intersect between the individual LEL´s with the GMWL. The model 251 

results (from Eqs. 10 and 11) can be furthermore compared to the slope calculated by Eq. 12, using the 252 

measured δ2Hleaf-water, δ18Oleaf-water and δ2Htank-water, δ18Otank-water values (Craig and Gordon, 1965; Gat and 253 

Bowser, 1991). 254 

SLEL = 
 δ2Hleaf-water - δ2Htank-water

δ18Oleaf-water - δ18Otank-water
 (Equation 12) 

 255 

2.4 Modeling and isotope fractionation calculations 256 

Relative humidity (Eq. 6), deuterium-excess values of leaf water (de, Eq. 2) and SLEL values (Eq. 10) were 257 

modeled leading to less simplified results, because the measured δa values are used explicitly. 258 

Equations 7, 3 and 11 were therefore used to obtain RH, de and SLEL results, representing a more 259 

simplified model approach because δa - δs are approximated by -ε*. This model procedure allows 260 

furthermore the comparison of scenarios based on air or leaf temperature (Tair or Tleaf).  In Eqs. 6 and 261 

7, the reconstructed (biomarker-based) deuterium-excessleaf-water was used as additional input, as 262 

gained from Eqs. 8 and 9. The modeled LEL slopes (Eqs. 10 and 11) were used to derive source water 263 

isotope composition (δ2Hs, δ18Os). In all equations presented in section 2.3 to gain the model results 264 

(Eqs. 2 to 8), δ2Hatmospheric-water-voupor, δ18Oatmospheric-water-voupor and δ2Htank-water, δ18Otank-water were used for δa 265 

and δs (therefore also for da and ds). All other input parameters were set as described in section 2.3. In 266 

order to provide an 1 σ range bracketing the modeled results (de, RHair, RHleaf, SLEL, δ2Hs, δ18Os), the 267 

alkane-based δ2Hleaf-water = (δ2Hn-alkane – ε2
bio)/(1 + ε2

bio/1000) (Equation 8) 

sugar-based δ18Oleaf-water = (δ18Osugar – ε18
bio)/(1 + ε18

bio/1000). (Equation 9) 
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calculations were also run with values generated by subtracting/adding the individual σ to the average. 268 

This procedure was also used to derive measured deuterium-excessleaf-water and SLEL uncertainties. 269 

Model quality was overall assessed by calculating the coefficient of determination [R2 = 1 - 270 

∑ (modeled - measured)2  ∑(measured - measured mean)2⁄ ] and the root mean square error 271 

[RMSE = √(
1

n
∙ ∑(modeled - measured)2)]. The R2 is not equal to the r2, which provides here the 272 

fraction of variance explained by a linear regression between a dependent (y) and an explanatory 273 

variable [r2 = 1 - ∑(y - fitted y)2 ∑(y - mean y)2⁄ ] (R Core Team, 2015).  274 

 275 

The fractionation between the measured leaf biomarkers and leaf water can be described by the 276 

following equations (Eq. 10 and 11; e.g. Coplen, 2011):  277 

εn-alkane/leaf-water = (δ2Hn-alkane - δ2Hleaf-water) / (1 + δ2Hleaf-water/1000) (Equation 13) 

εsugar/leaf-water = (δ18Osugar + δ18Oleaf-water) / (1 + δ18Oleaf-water/1000). (Equation 14) 

For Eqs. 8 and 9 (biomarker-based leaf water reconstruction) as well as for Eqs. 13 and 14, the 1 σ 278 

range were calculated by subtracting/adding the individual σ, analogous to the modeling results.  279 

 280 

All calculations and statistical analysis were realized in R (version 3.2.2; R Core Team, 2015).  281 

 282 

3 Results and Discussion 283 

3.1 Compound-specific isotope results of leaf wax-derived n-alkanes and hemicellulose-284 

derived sugars 285 

All investigated leaf material showed a dominance of C29 n-alkanes. The dominance of n-C29 in Brassica 286 

oleracea and Eucalyptus globulus was also reported by Ali et al. (2005) and Herbin and Robins (1968). 287 

Vicia faba leaf samples additionally revealed a high abundance of C31 n-alkanes. This agrees with results 288 

from Maffei (1996) and enables a robust determination of compound-specific δ2H values for C29 and 289 

C31. The δ2Hn-alkane values of Vicia faba are therefore calculated as weighted mean.  290 

The top of Fig. 1A illustrates the δ2Hn-alkane results along with isotopic data for leaf, xylem and soil water 291 

(the latter were originally published in Mayr 2002). In addition the climate chamber conditions (RHair, 292 

RHleaf, Tair and Tleaf) are displayed (all from Mayr, 2002; Fig. 1B). For more details about the (plant) water 293 

isotope results, climate chamber conditions as well as not shown plant physiological properties the 294 

reader is referred to Mayr (2002). The δ2Hn-alkane values range from -213 to -144‰ over all plant species. 295 

As revealed by overlapping notches in the respective boxplots, no statistically significant differences in 296 

the median values between the three plant species can be described (Fig. S1A; McGill et al., 1978). Fig. 297 

1A moreover shows that δ2Hn-alkane values range largest for Eucalyptus globulus compared to the other 298 

two plants. However, the low number of samples per plant species prohibits a robust interpretation. 299 

 300 

(Fig. 1) 301 

 302 

The investigated leaf samples yielded substantially higher amounts of arabinose and xylose compared 303 

to fucose and rhamnose. This is in agreement with sugar patterns reported for higher plants (D’Souza 304 

et al., 2005; Hepp et al., 2016; Jia et al., 2008; Prietzel et al., 2013; Zech et al., 2012, 2014a) and 305 

hampers a robust data evaluation of fucose and rhamnose. The δ18O values of the investigated 306 

pentoses arabinose and xylose range from 30 to 47‰ and 30 to 50‰, respectively, and are shown 307 
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along with isotopic data for leaf, xylem and soil water (Mayr 2002) in the bottom of Fig. 1A. No 308 

considerable difference in the δ18O values of arabinose and xylose can be seen in the δ18O pentose 309 

data. This is in line with findings from Zech and Glaser (2009), Zech et al. (2012), Zech et al. (2013b) 310 

and Zech et al. (2014b) but contradicting with slightly more positive δ18Oarabinose values compared to 311 

δ18Oxylose values reported by Zech et al. (2013a) and Tuthorn et al. (2014). Overall, the two sugars 312 

display very similar results (Fig. 1; r2 = 0.7, p < 0.001, n = 24). The δ18O values of arabinose and xylose 313 

can therefore be combined as a weighted mean (as δ18Osugar values) for further data interpretation. 314 

The δ18Osugar values are not significantly different between the three investigated plant species. 315 

 316 

The compound-specific isotope results of leaf hemicellulose-derived sugars and leaf wax-derived n-317 

alkanes can be compared with leaf, xylem, soil and tank water (compare Fig. 1A and Fig. 2). This 318 

comparison reveals that soil and xylem water plot close to the tank water, whereas leaf water shows 319 

a clear evapotranspirative enrichment. This enrichment strongly differs between the climate 320 

chambers, depending mainly on T and RH conditions. The biomarker results furthermore follow the 321 

leaf water with a certain offset (εbio).  322 

(Fig. 2) 323 

 324 

3.2 Do n-alkane and sugar biomarkers reflect the isotope composition of leaf water? 325 

The δ2Hn-alkane dataset reveals a significant correlation with δ2Hleaf-water of 0.45 (r2) using all plant species 326 

with p < 0.001 (Fig. 3A). A slope of 1.1 and an intercept of -152‰ furthermore characterize the 327 

relationship. It seems that each plant type shows a different δ2Hn-alkane to δ2Hleaf-water relation, with the 328 

highest slope for Vicia faba and the lowest for Brassica oleracea. However, we argue that the number 329 

of replicates for each plant species is simply too low to interpret this finding robustly. A highly 330 

significant correlation is also observed for the correlation between δ18Osugar and δ18Oleaf-water (r2 = 0.84, 331 

p < 0.001; Fig. 3B). The regression reveals a slope of 0.74 and an intercept of 30.7‰.   332 

 333 

(Fig. 3) 334 

 335 

Since it is well known that measured leaf water is not always equal to the specific water pool in which 336 

the n-alkanes are biosynthesized (e.g. Tipple et al., 2015), the correlation reveals a rather low r2 (Fig. 337 

3A). Furthermore, NADPH is acting also as hydrogen source during n-alkane biosynthesis, which is 338 

clearly more negative than the biosynthetic water pool (Schmidt et al., 2003), further contributing to 339 

a weakening of the δ2Hn-alkane to δ2Hleaf-water relationship. The correlation between the deuterium 340 

contents of leaf wax n-alkanes and leaf water presented here is still well in range with the literature. 341 

Feakins and Sessions (2010) presented n-alkane (C29 and C31) and leaf water δ2H data from typical plant 342 

species (excluding grasses) along a southern California aridity gradient, revealing that only δ2H of n-C29 343 

is significantly correlated with leaf water (r2 = 0.24, p < 0.1, n = 16; based on the associated 344 

supplementary data). Another field dataset from the temperate forest at Brown’s Lake Bog, Ohio, USA 345 

revealed significant correlations between δ2H of n-C29 and n-C31 with leaf water of the species Prunus 346 

serotina, Acer saccharinum, Quercus rubra, Quercus alba, and Ulmus americana (r2 = 0.49, p < 0.001, 347 

n = 38; r2 = 0.59, p < 0.001, n = 29; as derived form the supplement material of Freimuth et al., 2017). 348 

Data from a controlled climate chamber experiment using two tree species show a highly significant 349 

relationship between leaf wax n-alkanes δ2H and leaf water (with C31 of Betula occidentalis and C29 of 350 

Populus fremontii; r2 = 0.96, p < 0.001, n = 24; derived from supplementary data of Tipple et al., 2015). 351 

It is conformed that leaf wax n-alkanes of dicotyledonous plants largely incorporate the leaf water 352 
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isotope signal, while in monocotyledonous plants (e.g. grasses) the n-alkanes are more strongly 353 

affected by the source water due to the leaf growth at the intercalary meristem (Kahmen et al., 2013).  354 

The observed slope of the δ18Osugar to δ18Oleaf-water relationship (Fig. 3B) could serve as indicator for a 355 

leaf water (enrichment) signal transfer damping of approximately 26%. The theory behind the signal 356 

damping is adopted from the cellulose research (e.g. Barbour and Farquhar, 2000). Barbour and 357 

Farquhar (2000) related the extent of the signal damping to the proportion of unenriched source 358 

water, which contribute to the local synthesis water pool and to the proportion of exchangeable 359 

oxygen during cellulose synthesis. Here calculated damping factor would be well in the range of values 360 

reported for cellulose synthesis in Gossypium hirsutum leaves (between 35 and 38%; Barbour and 361 

Farquhar, 2000), for Eucalyptus globulus leaf samples (38%; Cernusak et al., 2005) and for five C3 and 362 

C4 grasses (25%; Helliker and Ehleringer, 2002). Recently Cheesman and Cernusak (2017) provided 363 

damping factors for leaf cellulose synthesis based on plant data grown under same conditions at 364 

Jerusalem Botanical Gardens published by Wang et al. (1998), ranging between 4 and 100% with a 365 

mean of 49%, revealing large variations among and between ecological groups (namely conifers, 366 

deciduous, evergreen and shrubs). A large range of damping factors associated with leaf cellulose was 367 

also reported by Song et al. (2014) for Ricinus communis grown under controlled conditions. A common 368 

disadvantage of the above-mentioned studies is the absence of direct measurements of the proportion 369 

of depleted source water contribution to the local synthesis water (as noticed by Liu et al., 2017), which 370 

largely contribute to the extent of the damping factor (Barbour and Farquhar, 2000). However, when 371 

transferring cellulose results to pentoses, such as hemicellulose-derived arabinose and xylose, it should 372 

be noted that they are biosynthesized via decarboxylation of the carbon at position six (C6) from 373 

glucose (Altermatt and Neish, 1956; Burget et al., 2003; Harper and Bar-Peled, 2002). Waterhouse et 374 

al. (2013) showed that the oxygen atoms at C6 position in glucose moieties, used for heterotrophic 375 

cellulose synthesis, are strongly affected by the exchange with local water (up to 80%). Based on these 376 

findings, it can be suggested that the influence of the non-enriched source water during the synthesis 377 

of leaf hemicelluloses is rather small. 378 

 379 

3.3 Fractionation factors between biomarkers and leaf water 380 

In order to explore possible species-specific effects on the fractionation between the biomarkers and 381 

the leaf water, boxplots of the individual plant species of εn-alkane/leaf-water and εsugar/leaf-water values are 382 

shown in Fig. 4. Median εn-alkane/leaf-water values are -155‰ for Brassica oleracea, -164‰ for Eucalyptus 383 

globulus and -149‰ for Vicia faba (Fig. 4A), with an overall mean value of -156‰ (ranging from -133 384 

to -192‰). Median εsugar/leaf-water values of +27.0‰ for Brassica oleracea, +26.6‰ for Eucalyptus 385 

globulus, +26.8‰ for Vicia faba are shown in Fig. 4B. The overall εsugar/leaf-water average value of the 386 

three investigated species is +27.3‰ (ranging from +23.0 to +32.3‰). In both plots, no difference 387 

between the individual species seems to be observable. 388 

 389 

(Fig. 4) 390 

  391 

The boxplots of εn-alkane/leaf-water reveal that the median of the three investigated plant species can be 392 

statistically not distinguished, due to overlapping notches (Fig. 4A). It should be noted that due to the 393 

low sample number from each species, the 95% confidence interval is larger than the interquartile 394 

range in some cases. However, it seems that at least small species-specific differences cannot be ruled 395 

out. Our εn-alkane/leaf-water values resemble well the data from a laboratory study (Kahmen et al., 2011), 396 

reporting a median value of -162‰ for n-C25, n-C27 and n-C29 of Populus trichocarpa. Furthermore, they 397 

are well comparable to climate chamber data of Betula occidentalis (n-C31) and Populus fremontii (n-398 
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C29) from Tipple et al. (2015), reporting a median εn-alkane/leaf-water value of -155‰. In addition, field 399 

experiments reveal similar median values of -151‰ (for n-C29) and -142‰ (for n-C31) from typical plant 400 

species (excluding grasses) from southern California (Feakins and Sessions, 2010) and -144‰ (for n-401 

C29, of the species Prunus serotina, Acer saccharinum, Quercus rubra, Quercus alba and Ulmus 402 

americana) from the temperate forest at Brown’s Lake Bog, Ohio, USA. The large range in εxylem-water/leaf-403 

water values from our study (-192 to -133‰) is also obvious in the respective laboratory and field studies 404 

(-198 to -115‰, derived from n-C29 and n-C31 data from Feakins and Sessions, 2010; Kahmen et al., 405 

2011a; Tipple et al., 2015; Freimuth et al., 2017). This could point to a specific water pool being used 406 

rather than bulk leaf water during biosynthesis (Sachse et al., 2012; Schmidt et al., 2003). In more 407 

detail, alkane synthesis takes place by modifying/expanding fatty acids in the cytosol, while fatty acids 408 

are synthesized in the chloroplasts (Schmidt et al., 2003). Thus, the cytosol as well as chloroplast water 409 

is one hydrogen source. However hydrogen can additionally be added to the alkanes and fatty acids 410 

by NADPH which originates from different sources (photosynthesis and pentose phosphate cycle, 411 

Schmidt et al., 2003). It is therefore challenging to measure directly the water pool in which the alkanes 412 

are biosynthesized (Tipple et al., 2015). Moreover, biosynthetic and metabolic pathways in general 413 

(Kahmen et al., 2013; Sessions et al., 1999; Zhang et al., 2009), the carbon and energy metabolism of 414 

plants more specifically (Cormier et al., 2018) and the number of carbon atoms of the n-alkane chains 415 

(Zhou et al., 2010) may have an influence on the fractionation. Our εn-alkane/leaf-water values correlate with 416 

Tair (Fig. S2A), whereas the correlation with RHair (Fig. S2B) is not significant. This could point to a 417 

relationship between εxylem-water/leaf-water and plant physiological processes (affecting various plants 418 

differently). 419 

The εsugar/leaf-water values (Fig. 4B) do not correlate significantly with Tair, but significantly with RHair (Fig. 420 

S2C and D). A temperature dependence of the εsugar/leaf-water is not supported by this experiment, in 421 

contrast to results from Sternberg and Ellsworth (2011), where a temperature effect on oxygen 422 

fractionation during heterotrophic cellulose biosynthesis is observed. The here observed fractionation 423 

between hemicellulose-derived sugars and leaf water, with regard to εsugar/leaf-water values, is well in 424 

range with values reported for sucrose (exported from photosynthesizing leaves) and leaf water, which 425 

was shown to be +27‰ (Cernusak et al., 2003). Also the cellulose biosynthesis is associated with an 426 

enrichment of around +27‰ compared to the synthesis water as shown in growth experiments 427 

(Sternberg et al., 1986; Yakir and DeNiro, 1990). The relatively uniform fractionation is explained via 428 

the isotope exchange between the carbonyl oxygens of the organic molecules and the surrounding 429 

water (cf. Schmidt et al., 2001). This equilibrium fractionation effect was indeed described earlier by 430 

the reversible hydration reaction of acetone in water by Sternberg and DeNiro (1983) to be +28, +28 431 

and +26‰ at 15, 25 and 35°C, respectively. However, the observed range of approximately 9‰ (Fig. 432 

4B) could indicate that partially more than the oxygen equilibrium fractionation between organic 433 

molecules and medium water have to be considered. Presumably, isotopic as well as sucrose synthesis 434 

gradients within the leaf have to be taken into account when interpreting leaf sugar oxygen isotopic 435 

compositions and their correlation to leaf water (Lehmann et al., 2017). Lehmann et al. (2017) reported 436 

on a fractionation between sucrose and leaf water of +33.1‰. Based on this they proposed a 437 

conceptual scheme how such gradients can lead to discrepancies between the isotopic composition of 438 

the bulk leaf water and the synthesis water, while the latter is incorporated into the carbohydrates, 439 

and thus fractionation determination based on bulk leaf water can exceed the common average of 440 

+27‰.  Also Mayr et al. (2015) found a fractionation between aquatic cellulose δ18O and lake water 441 

larger than this value of around +29‰. 442 

 443 

3.4 Strong control of relative humidity over deuterium-excess of leaf water 444 
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The correlations between leaf water-based and measured RHair or RHleaf as well as modeled de and 445 

measured deuterium-excessleaf-water are illustrated in Fig. 5A, B, D and E. Furthermore, modeled LEL 446 

slopes are compared to measured LEL slopes in Fig. 5C and F. In red, the results of the less simplified 447 

models are displayed (Eqs. 6, 2 and 10), in black the results of the more simplified models are shown 448 

(Eqs. 7, 3 and 11).   449 

 450 

(Fig. 5) 451 

 452 

Evidence for the strong control of relative humidity on deuterium-excess of leaf water comes from 453 

multivariate regression analysis between the measured deuterium-excessleaf-water values versus RHair, 454 

RHleaf and Tair, Tleaf. The results reveal that the deuterium-excessleaf-water significantly correlates with RHair 455 

of the climate chambers (p < 0.001), with an r2 of 0.92. When RHleaf and Tleaf values are used, the r2 is 456 

0.84 and deuterium-excessleaf-water correlates significantly with RHleaf (p < 0.001). The strong control of 457 

relative humidity on deuterium-excess of leaf water is furthermore supported by the significant 458 

correlations between calculated versus measured RHair values (Fig. 5A), regardless of whether the Eq. 459 

6 or 7 were used (representing a lower and higher degree of simplification). This is in line with the 460 

strong correlation between modeled de based on Tair and measured deuterium-excessleaf-water values 461 

(Fig. 5B). When modeled RHleaf values are compared to the measured ones, the correlation is less 462 

strong compared to RHair (Fig. 5D vs. 5A), represented by lower R2 and higher RMSE values. Clearly 463 

more data points are lying above the 1:1 line with regard to RHleaf, compared to RHair. On the same 464 

basis, the Tleaf-based de shows a weaker correlation to the measured values than the Tair-based de (Fig. 465 

5E vs. 5B). The generally better model performance when Tair is used (in contrast to Tleaf) could point 466 

to the fact that Tleaf does not well represent the actual conditions in the leaves. For the correlation 467 

between modeled and measured RHleaf this means that the measured RHleaf values do not reflect the 468 

real conditions because measured RHleaf is calculated via ei/ea *100 with Tleaf as input for the ea equation 469 

(see section 2.3). In fact, the RH model results do not differ from each other and can be well compared 470 

to the measured RHair, while the measured RHleaf values reveal an average offset of approximately 9% 471 

with regard to the median values (Figure S3A). This can be explained by the small difference in ε* 472 

calculated either with Tleaf or Tair. Moreover, when Tleaf values are used to model de, the match to Tair-473 

based de and measured deuterium-excessleaf -water values is weaker (Fig. 5B vs. E; Fig. S3B). This offset is 474 

caused by higher Tleaf values (compared to Tair; Fig. 1), which are leading to more negative modeled de 475 

values.  476 

Overall, the modeled de values show a high agreement with measured deuterium-excess of leaf water 477 

despite without being too positive, which can be expected from the literature. This is because bulk leaf 478 

is less enriched than the leaf water at the evaporative sites, which is however, the output of the Craig-479 

Gordon-based leaf water enrichment model (e.g. Allison et al., 1985; Barbour et al., 2004; Cernusak et 480 

al., 2016; section 2.3). Especially under low relative humidity conditions, the discrepancy between 481 

Craig-Gordon model results and the measured values is shown to be more pronounced, associated 482 

with higher transpiration fluxes and higher isotope heterogeneity within the leaf water due to a non-483 

uniform closure of the stomata (Flanagan et al., 1991; Santrucek et al., 2007). An overestimation of the 484 

Craig-Gordon models can hardly be observed here (Fig. 5B and 5E). However, based on the accepted 485 

leaf water enrichment theory (e.g. Cernusak et al., 2016), higher transpiration rates (e.g. under low 486 

humidity conditions) should still lead to a larger discrepancy between Craig-Gordon modelled and 487 

measured leaf water, because the back diffusion of enriched leaf water from the evaporative sites 488 

should get lower the higher the transpiration flux is. Why there is no difference between modeled and 489 
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measured deuterium-excess of leaf water in here presented climate chamber experiment is not 490 

comprehensible. 491 

The simplified model variants show generally a better correspondence between calculated and 492 

measured deuterium-excess of leaf water, based on R2 and RMSE, than the less simplified models. This 493 

does not seem to be related to the slope of the LEL because it can only be linked to the measured 494 

values based on the less simplified models (Fig. 5C and 5F). The simplified air and leaf temperature 495 

based slopes average at 2.7 and 2.6, respectively, with a common range between 2.5 and 2.8. The 496 

average is well in agreement with the mean measured SLEL of 2.9. In addition, a regression through the 497 

tank water and all leaf water points reveals a slope of 2.7 (± 0.02, based on subtracting/adding the 498 

individual σ; r2 = 0.98, n = 48, p < 0.001). This could be the reason why the more simplified models are 499 

still more accurate, despite the less simplified models do not reflect well the range of the measured 500 

SLEL, which vary between 2.4 and 3.8. Much better matches are found for the less simplified LEL slopes 501 

(Tair based: 2.6 and 3.8, Tleaf based: 2.5 and 3.5; Fig. 5C and 5F). Indeed the measured as well as the 502 

calculated SLEL depend on the ea/ei ratio (hence RHleaf and RHair regarding Tleaf or Tair is used for 503 

calculations, respectively) and on δa - δs, in line with the theory and literature (see section 2.3; e.g. 504 

Allison et al., 1985). The higher accuracy of the simpler models would therefore imply that the SLEL 505 

depend only on equilibrium and kinetic fractionation parameters for both isotopes, which would valid 506 

for isotope equilibrium conditions between the tank water (the water source of the plants) and the 507 

atmospheric water vapor, allowing the usage of the unambiguous approximation δa - δs = -ε*. Indeed, 508 

close-to equilibrium conditions between the tank water and the atmospheric water vapor are observed 509 

for the climate chambers 4 to 6 and 8, while the others are characterized by a slight disequilibrium 510 

conditions. However, the degree of uncertainty seems to be higher when using da values, by the 511 

probably inadequate representation of the measured δ2Hatmospheric-water-vapor and δ18Oatmospheric-water-vapor 512 

with the actual conditions influencing the plants in the climate chamber, leading to a generally better 513 

performance of the more simplified model variants. 514 

 515 

3.5 Coupling δ2Hn-alkane and δ18Osugar – Potential and limitations  516 

One of the advantages of the proposed coupled δ2Hn-alkane-δ18Osugar approach is a more robust 517 

reconstruction of the isotope composition of the source water, which can often be directly linked to 518 

the local precipitation signal (Hepp et al., 2015, 2017; Tuthorn et al., 2015; Zech et al., 2013a). 519 

Therefore, Fig. 6 shows boxplots for measured leaf water, biomarker-based (reconstructed) leaf water, 520 

measured source water (tank water; see section 2.1), biomarker-based source water (using 521 

reconstructed leaf water as origin for the LEL´s) and leaf-water-based source water values (using 522 

measured leaf water as origin for the LEL´s). Source water isotope compositions were calculated via 523 

the slopes of the LEL´s and the GMWL. The numbers (1-4) mark the available scenarios for source water 524 

reconstruction (see section 2.4): 1) SLEL calculated with the more simplified Eq. 11 with Tair, 2) as 1 but 525 

with Tleaf, 3) SLEL calculated with Eq. 10 with Tair, 4) as 3 but with Tleaf. Fig. 6 clearly shows that the n-526 

alkane and sugar biomarkers reflect leaf water rather than tank water used for irrigation. For δ2H, 527 

neither the range nor the median of the δ2Hleaf-water are well captured by the alkane-based leaf water 528 

values. However, the overlapping notches do not support a statistical difference in the median values 529 

(Fig. 6A). The medians are still on average 13‰ more positive than the measured δ2Htank-water. A higher 530 

agreement between measured and modeled values is observed from leaf water-based δ2Hs compared 531 

to δ2Htank-water. The average offset is reduced to 2‰ and the range is reduced by approximately 70‰, 532 

compared to the biomarker-based reconstruction. Besides the more simplified leaf water-based δ2Hs 533 

using Tleaf for calculating ε* (scenario 2 in Fig. 6A), no statistical significant difference can be seen 534 

between the leaf water-based δ2Hs and the δ2Htank-water, with regard to the overlapping notches.  535 
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 536 

(Fig. 6) 537 

 538 

For δ18O, the sugar-based leaf water values are in agreement with the measured ones with regard to 539 

the median values, as supported by the largely overlapping notches (Fig. 6B). The range of the 540 

reconstructed leaf water is in the order of 6‰ smaller than for the measured δ18Oleaf-water dataset. All 541 

reconstructed δ18Os values, regardless whether they are biomarker- or leaf water-based, are 542 

comparable to the measured δ18Otank-water. While the biomarker-based datasets depict an average 543 

offset of 2‰, the leaf water-based values only differ by 0.3‰ from the tank water δ18O values, 544 

referring to the medians. As for δ2H, the same leaf water-based δ18Os scenario (more simplified leaf 545 

water-based model using Tleaf for calculating ε*, scenario 2 in Fig. 6B) do not show overlapping notches 546 

with δ18Otank-water, while the other leaf water-based source water reconstructions do. In addition, the 547 

range in the leaf water-based δ18Osource-water values is considerable smaller than for the biomarker-based 548 

once (9‰ reduction). The overall larger range in modeled δ2Hs and δ18Os compared to measured 549 

δ2Htank-water and δ18Otank-water can related to uncertainties in SLEL modeling (see equations in section 550 

2.3.2). Bariac et al. (1994) mentioned that they found no agreement between the intersect of modeled 551 

LEL´s with the GMWL and the plant source water. Allison et al. (1985) explained such results with 552 

changing environmental conditions, leading to various LEL´s with a locus line not necessarily passing 553 

the δ2Hs and δ18Os data point, in a system that approaches rapidly new steady-state conditions. 554 

 555 

Finally, the alkane and sugar-based leaf water values were used to reconstruct RHair and RHleaf. While 556 

the measured RHair is well captured by the biomarker-based air relative humidity values (R2 = 0.54 and 557 

0.48 for the more and less simplified models, respectively, Fig. 7A), the correlations are weak between 558 

the reconstructed leaf relative humidity values and the measured RHleaf (R2 = 0.09 and -0.04 for the 559 

more and less simplified models, respectively, Fig. 7B). The measured RHair is reconstructed most 560 

accurate by the biomarker-based air relative humidity values (Fig. 7A). As for leaf water-based RH 561 

reconstructions, a difference between biomarker-based RHair and RHleaf is observed (compare Fig. 7B 562 

with 7A). This can be explained by the small difference between Tleaf and Tair, used for ε* calculations 563 

in the respective equations. The better performance of the more simplified models compared to the 564 

less simplified ones, in general, and the fact that Tair seems to be the better model input compared to 565 

Tleaf, more specifically, can be explained as for the leaf water-based application (see section 3.3). The 566 

Tleaf as well as the measured δ2Hatmospheric-water-vapor and δ18Oatmospheric-water-vapor values seem to be less 567 

representative for the conditions affecting the climate chamber plant leaves.  568 

 569 

(Fig. 7) 570 

 571 

Overall, a lower coefficient of determination of the biomarker-based model results compared to the 572 

leaf water-based reconstructions (compare Fig. 5A and D with Fig. 7A and B) is observed. This can be 573 

attributed to the uncertainties in leaf water reconstructed using δ2Hn-alkane and δ18Osugar datasets as 574 

discussed in section 3.2. The limitations regarding deuterium arose from the rather weak relationship 575 

between the δ2H of the n-alkanes and the leaf water, probably linked with the large range in the 576 

fractionation between n-alkanes and leaf water (ε2
n-alkane/leaf-water). The applied equation to 577 

reconstructed δ2Hleaf-water by using δ2Hn-alkane and a constant biosynthetic fractionation of -160‰ (Eq. 578 

13) was considered to be suitable (Sachse et al., 2012; Sessions et al., 1999), but introduce also some 579 

uncertainty for the final relative humidity reconstruction. With regard to oxygen, the relatively large 580 

variations in εsugar/leaf-water of 9‰ have to be considered (Fig. 4B), because in the δ18Oleaf-water 581 
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reconstructions a fixed value of +27‰ is used (Eq. 14). Such a uniform biosynthetic fractionation is an 582 

approximation which may not always be fulfilled, as shown in the literature (e.g. Sternberg and 583 

Ellsworth, 2011; Lehmann et al., 2017). Especially the underestimation of the biomarker-based RHair 584 

values under the 68% relative humidity conditions, as well as the large range in reconstructed RHair 585 

values for the 48, 49, 50% RHair chambers can be attributed to the leaf water reconstruction 586 

uncertainties. It should be mentioned that using Eqs. 8 and 9 to calculate leaf water isotope 587 

composition based on the biomarkers via a biosynthetic fractionation values implies that the 588 

fractionation process in principle can be treated as single process with a unique source. While this 589 

approximation can be questioned (see discussion in section 3.2), the overall approximation between 590 

biomarker-based and measured RHair highlights the potential of the approach (Hepp et al., 2017; 591 

Tuthorn et al., 2015; Zech et al., 2013a), also for future paleo-applications. 592 

 593 

4 Conclusions 594 

The climate chamber results and discussion suggest that leaf wax-derived n-alkane and hemicellulose-595 

derived sugar biomarkers are valuable δ2Hleaf-water and δ18Oleaf-water recorders, respectively. The coupling 596 

of δ2Hn-alkane and δ18Osugar results allows moreover a robust RHair reconstruction of the chambers in 597 

which the plants were grown, by using simplified Craig-Gordon equations. With regard to the research 598 

questions, we summarize as follows:  599 

 600 

(i) Alkanes with the chain-length n-C29 were found to be suitable abundant for compound-601 

specific δ2H measurements in the leaf samples from all investigated species (Eucalyptus 602 

globulus, Vicia faba var. minor and Brassica oleracea var. medullosa). For Vicia faba, 603 

additionally n-C31 could be evaluated robustly. δ18Osugar values could be obtained for the 604 

hemicellulose-derived monosaccharides arabinose and xylose. 605 

(ii) Both the δ2Hn-alkane and δ18Osugar values yielded highly significant correlations with δ2Hleaf-606 

water and δ18Oleaf-water(r2 = 0.45 and 0.85, respectively; p < 0.001, n = 24). Mean fractionation 607 

factors between biomarkers and leaf water were found to be -156‰ (ranging from -133 608 

to - 192‰) for εn-alkane/leaf-water and +27.3‰ (ranging from +23.0 to +32.3‰) for εsugar/leaf-water.  609 

(iii) Using measured leaf water isotope composition (δ2Hleaf-water and δ18Oleaf-water) in a less (Eq. 610 

6) and a more simplified rearranged Craig-Gordon model (Eq. 7), RHair and RHleaf can be 611 

derived, by using either Tair or Tleaf. Most accurately, the RHair values via Eq. 7 can be 612 

reconstructed, with a calculated R2 of 0.84 (p < 0.001) between measured and modeled 613 

RHair and a RMSE of 6%. RHleaf reconstructions seemed less robust.  614 

(iv) Reconstructed source water isotope composition (δ2Hs, δ18Os) are in range with the 615 

measured tank water (δ2Htank-water, δ18Otank-water). However, modeled δ2Hs and δ18Os show a 616 

clear large range compared to δ2Htank-water and δ18Otank-water. The uncertainties for source 617 

water determination are thus considerably higher compared to the relative humidity 618 

reconstructions. Still, the coupled δ2H-δ18O approach enables a back calculation of the 619 

plant source water. Uncertainties, with regard to relative humidity reconstructions via 620 

biomarker-based leaf water isotope composition, arose from leaf water reconstructions 621 

and model uncertainties, as shown in conclusions ii) and iii). Overall, the biomarker-based 622 

and measured RHair correlation with a R2 of 0.54 (p < 0.001) and a RMSE of 10% highlights 623 

the great potential of the coupled δ2Hn-alkane-δ18Osugar paleohygrometer approach for 624 

reliable relative humidity reconstructions.  625 

 626 

https://doi.org/10.5194/bg-2019-427
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.

A. Manuscript 1: Hepp et al. (2019c)

61



16 
 

Acknowledgements 627 

We would like to thank M. Bliedtner and J. Zech (both University of Bern) for help during lipid 628 

biomarker and δ2Hn-alkane analysis. We thank M. Benesch (Martin-Luther-University Halle-Wittenberg) 629 

and M. Schaarschmidt (University of Bayreuth) for laboratory assistance during sugar biomarker and 630 

δ18Osugar analysis. The research was partly funded by the Swiss National Science Foundation (PP00P2 631 

150590). We also acknowledge N. Orlowski (University of Freiburg), M. M. Lehmann (Swiss Federal 632 

Institute WSL, Birmensdorf) and L. Wüthrich (University of Bern) for helpful discussions. Involvement 633 

of K. Rozanski was supported by AGH UST statutory task No. 11.11.220.01/1 within subsidy of the 634 

Ministry of Science and Higher Education. J. Hepp greatly acknowledges the support given by the 635 

German Federal Environmental Foundation. The experiment carried out by C. Mayr was gratefully 636 

supported by the HGF-project “Natural climate variations from 10,000 years to the present” (project 637 

no. 01SF9813). The experiments were possible due to the assistance of J.B. Winkler, H. Lowag, D. 638 

Strube, A. Kruse, D. Arthofer, H. Seidlitz, D. Schneider, H. D. Payer, and other members of the Helmholtz 639 

Zentrum München. 640 

 641 

 642 

Author contributions 643 

J. Hepp and M. Zech wrote the paper; C. Mayr was responsible for the climate chamber experiment 644 

together with W. Stichler and provided the leaf samples and the data; M. Zech and R. Zech were 645 

responsible for compound-specific isotope analysis on the biomarkers; J. Hepp, M. Tuthorn and I. K. 646 

Schäfer did laboratory work and data evaluation of the biomarker compound-specific isotope analysis; 647 

B. Glaser, D. Juchelka, K. Rozanski and all co-authors contributed to the discussion and commented on 648 

the manuscript.  649 

https://doi.org/10.5194/bg-2019-427
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.

A. Manuscript 1: Hepp et al. (2019c)

62



17 
 

References 650 

Ali, H. a. M., Mayes, R. W., Hector, B. L., Verma,  a. K. and Ørskov, E. R.: The possible use of n-alkanes, 651 
long-chain fatty alcohols and long-chain fatty acids as markers in studies of the botanical 652 
composition of the diet of free-ranging herbivores, The Journal of Agricultural Science, 143(1), 653 
85–95, doi:10.1017/S0021859605004958, 2005. 654 

Allison, G. B., Gat, J. R. and Leaney, F. W. J.: The relationship between deuterium and oxygen-18 delta 655 
values in leaf water, Chemical Geology, 58, 145–156, 1985. 656 

Altermatt, H. A. and Neish, A. C.: The biosynthesis of cell wall carbohydrates: III. Further studies on 657 
formation of cellulose and xylan from labeled monosaccharides in wheat plants, Canadian 658 
Journal of Biochemistry and Physiology, 34(3), 405–413, doi:10.1139/o56-042, 1956. 659 

Amelung, W., Cheshire, M. V. and Guggenberger, G.: Determination of neutral and acidic sugars in soil 660 
by capillary gas-liquid chromatography after trifluoroacetic acid hydrolysis, Soil Biology and 661 
Biochemistry, 28(12), 1631–1639, 1996. 662 

Barbour, M. M. and Farquhar, G. D.: Relative humidity-and ABA-induced variation in carbon and oxygen 663 
isotope ratios of cotton leaves, Plant, Cell & Environment, 23(5), 473–485, 2000. 664 

Barbour, M. M., Roden, J. S., Farquhar, G. D. and Ehleringer, J. R.: Expressing leaf water and cellulose 665 
oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect, 666 
Oecologia, 138(3), 426–435, doi:10.1007/s00442-003-1449-3, 2004. 667 

Bariac, T., Gonzalez-Dunia, J., Katerji, N., Béthenod, O., Bertolini, J. M. and Mariotti, A.: Spatial variation 668 
of the isotopic composition of water (18O, 2H) in the soil-plant-atmosphere system, 2. 669 
Assessment under field conditions, Chemical Geology, 115, 317–333, 1994. 670 

Burget, E. G., Verma, R., Mølhøj, M. and Reiter, W.-D.: The Biosynthesis of L-Arabinose in Plants: 671 
Molecular Cloning and Characterization of a Golgi-Localized UDP-D-Xylose 4-Epimerase Encoded 672 
by the MUR4 Gene of Arabidopsis, Plant Cell, 15(February), 523–531, 673 
doi:10.1105/tpc.008425.response, 2003. 674 

Cernusak, L. A., Wong, S. C. and Farquhar, G. D.: Oxygen isotope composition of phloem sap in relation 675 
to leaf water in Ricinus communis, Functional Plant Biology, 30(10), 1059–1070, 2003. 676 

Cernusak, L. A., Farquhar, G. D. and Pate, J. S.: Environmental and physiological controls over oxygen 677 
and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus, Tree Physiology, 678 
25(2), 129–146, doi:10.1093/treephys/25.2.129, 2005. 679 

Cernusak, L. A., Barbour, M. M., Arndt, S. K., Cheesman, A. W., English, N. B., Feild, T. S., Helliker, B. R., 680 
Holloway-Phillips, M. M., Holtum, J. A. M., Kahmen, A., Mcinerney, F. A., Munksgaard, N. C., 681 
Simonin, K. A., Song, X., Stuart-Williams, H., West, J. B. and Farquhar, G. D.: Stable isotopes in 682 
leaf water of terrestrial plants, Plant Cell and Environment, 39(5), 1087–1102, 683 
doi:10.1111/pce.12703, 2016. 684 

Cheesman, A. W. and Cernusak, L. A.: Infidelity in the outback: Climate signal recorded in Δ18O of leaf 685 
but not branch cellulose of eucalypts across an Australian aridity gradient, Tree Physiology, 686 
37(5), 554–564, doi:10.1093/treephys/tpw121, 2017. 687 

Coplen, T. B.: Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio 688 
measurement results, Rapid Communications in Mass Spectrometry, 25(17), 2538–2560, 689 
doi:10.1002/rcm.5129, 2011. 690 

Cormier, M.-A., Werner, R. A., Sauer, P. E., Gröcke, D. R., M.C., L., Wieloch, T., Schleucher, J. and 691 
Kahmen, A.: 2H fractiontions during the biosynthesis of carbohydrates and lipids imprint a 692 
metabolic signal on the δ2H values of plant organic compounds, New Phytologist, 218(2), 479–693 
491, doi:10.1111/nph.15016, 2018. 694 

Craig, H. and Gordon, L. I.: Deuterium and oxygen-18 variations in the ocean and the marine 695 
atmosphere, in Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and 696 
Palaeotemperatures, edited by E. Tongiorgi, pp. 9–130, Lischi and Figli, Pisa., 1965. 697 

D’Souza, F., Garg, A. and Bhosle, N. B.: Seasonal variation in the chemical composition and 698 
carbohydrate signature compounds of biofilm, Aquatic Microbial Ecology, 41(2), 199–207, 699 
doi:10.3354/ame041199, 2005. 700 

Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16(4), 436–468, doi:10.1111/j.2153-701 

https://doi.org/10.5194/bg-2019-427
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.

A. Manuscript 1: Hepp et al. (2019c)

63



18 
 

3490.1964.tb00181.x, 1964. 702 
Dawson, T. E.: Hydraulic lift and water use by plants: implications for water balance, performance and 703 

plant-plant interactions, Oecologia, 95(4), 565–574, 1993. 704 
Farquhar, G. D., Hubick, K. T., Condon, A. G. and Richards, R. A.: Carbon Isotope Fractionation and Plant 705 

Water-Use Efficiency, in Stable Isotopes in Ecological Research. Ecological Studies (Analysis and 706 
Synthesis), vol. 68, edited by P. W. Rundel, J. R. Ehleringer, and K. A. Nagy, pp. 21–40, Springer-707 
Verlag, New York., 1989. 708 

Feakins, S. J. and Sessions, A. L.: Controls on the D/H ratios of plant leaf waxes in an arid ecosystem, 709 
Geochimica et Cosmochimica Acta, 74(7), 2128–2141, 710 
doi:http://dx.doi.org/10.1016/j.gca.2010.01.016, 2010. 711 

Flanagan, L. B., Comstock, J. P. and Ehleringer, J. R.: Comparison of Modeled and Observed 712 
Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf 713 
Water in Phaseolus vulgaris L., Plant Physiology, (96), 588–596, 1991. 714 

Freimuth, E. J., Diefendorf, A. F. and Lowell, T. V.: Hydrogen isotopes of n-alkanes and n-alkanoic acids 715 
as tracers of precipitation in a temperate forest and implications for paleorecords, Geochimica 716 
et Cosmochimica Acta, 206, 166–183, doi:10.1016/j.gca.2017.02.027, 2017. 717 

Gat, J. R. and Bowser, C. J.: The heavy isotope enrichment of water in coupled evaporative systems, in 718 
Stable Isotope Geochemistry: A Tribute to Samuel Epstein, vol. 3, edited by H. P. Tayler, J. R. 719 
O’Neil, and I. R. Kaplan, pp. 159–168, The Geochemical Society, Lancester., 1991. 720 

Gat, J. R., Yakir, D., Goodfriend, G., Fritz, P., Trimborn, P., Lipp, J., Gev, I., Adar, E. and Waisel, Y.: Stable 721 
isotope composition of water in desert plants, Plant and Soil, 298(1--2), 31–45, 722 
doi:10.1007/s11104-007-9321-6, 2007. 723 

Harper, A. D. and Bar-Peled, M.: Biosynthesis of UDP-Xylose. Cloning and Characterization of a Novel 724 
Arabidopsis Gene Family, UXS, Encoding Soluble and Putative Membrane-Bound UDP-725 
Glucuronic Acid Decarboxylase Isoforms, Gene, 130(December), 2188–2198, 726 
doi:10.1104/pp.009654.2188, 2002. 727 

Helliker, B. R. and Ehleringer, J. R.: Differential 18O enrichment of leaf cellulose in C3 versus C4 grasses, 728 
Functional Plant Biology, 29, 435–442, 2002. 729 

Hepp, J., Tuthorn, M., Zech, R., Mügler, I., Schlütz, F., Zech, W. and Zech, M.: Reconstructing lake 730 
evaporation history and the isotopic composition of precipitation by a coupled δ18O–δ2H 731 
biomarker approach, Journal of Hydrology, 529, 622–631, 2015. 732 

Hepp, J., Rabus, M., Anhäuser, T., Bromm, T., Laforsch, C., Sirocko, F., Glaser, B. and Zech, M.: A sugar 733 
biomarker proxy for assessing terrestrial versus aquatic sedimentary input, Organic 734 
Geochemistry, 98, 98–104, doi:10.1016/j.orggeochem.2016.05.012, 2016. 735 

Hepp, J., Zech, R., Rozanski, K., Tuthorn, M., Glaser, B., Greule, M., Keppler, F., Huang, Y., Zech, W. and 736 
Zech, M.: Late Quaternary relative humidity changes from Mt. Kilimanjaro, based on a coupled 737 
2H-18O biomarker paleohygrometer approach, Quaternary International, 438, 116–130, 738 
doi:10.1016/j.quaint.2017.03.059, 2017. 739 

Herbin, G. A. and Robins, P. A.: Studies on plant cuticular waxes-II. Alkanes from members of the genus 740 
Agave (Agavaceae), the genera Kalanchoe, Echeveria, Crassula and Sedum (Crassulaceae) and 741 
the genus Eucalyptus (Myrtaceae) with an examination of Hutchinson, Phytochemistry, 7(1951), 742 
257–268, 1968. 743 

Heyng, A., Mayr, C., Lücke, A., Wissel, H. and Striewski, B.: Late Holocene hydrologic changes in 744 
northern New Zealand inferred from stable isotope values of aquatic cellulose in sediments from 745 
Lake Pupuke, Journal of Paleolimnology, 51(4), 485–497, doi:10.1007/s10933-014-9769-3, 2014. 746 

Horita, J. and Wesolowski, D. J.: Liquid-vapor fractionation of oxygen and hydrogen isotopes of water 747 
from the freezing to the critical temperature, Geochimica et Cosmochimica Acta, 58(16), 3425–748 
3437, doi:http://dx.doi.org/10.1016/0016-7037(94)90096-5, 1994. 749 

Hou, J., D’Andrea, W. J. and Huang, Y.: Can sedimentary leaf waxes record D/H ratios of continental 750 
precipitation? Field, model, and experimental assessments, Geochimica et Cosmochimica Acta, 751 
72, 3503–3517, doi:10.1016/j.gca.2008.04.030, 2008. 752 

Huang, Y., Shuman, B., Wang, Y. and Iii, T. W.: Hydrogen isotope ratios of individual lipids in lake 753 
sediments as novel tracers of climatic and environmental change: a surface sediment test, 754 

https://doi.org/10.5194/bg-2019-427
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.

A. Manuscript 1: Hepp et al. (2019c)

64



19 
 

Journal of Paleolimnology, 31, 363–375, 2004. 755 
Jia, G., Dungait, J. A. J., Bingham, E. M., Valiranta, M., Korhola, A. and Evershed, R. P.: Neutral 756 

monosaccharides as biomarker proxies for bog-forming plants for application to 757 
palaeovegetation reconstruction in ombrotrophic peat deposits, Organic Geochemistry, 39(12), 758 
1790–1799, doi:10.1016/j.orggeochem.2008.07.002, 2008. 759 

Kahmen, A., Sachse, D., Arndt, S. K., Tu, K. P., Farrington, H., Vitousek, P. M. and Dawson, T. E.: Cellulose 760 
δ18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants, Proceedings of 761 
the National Academy of Sciences of the United States of America, 108(5), 1981–1986, 762 
doi:10.1073/pnas.1018906108, 2011a. 763 

Kahmen, A., Dawson, T. E., Vieth, A. and Sachse, D.: Leaf wax n-alkane δD values are determined early 764 
in the ontogeny of Populus trichocarpa leaves when grown under controlled environmental 765 
conditions, Plant, Cell and Environment, 34(10), 1639–1651, doi:10.1111/j.1365-766 
3040.2011.02360.x, 2011b. 767 

Kahmen, A., Schefuß, E. and Sachse, D.: Leaf water deuterium enrichment shapes leaf wax n-alkane δD 768 
values of angiosperm plants I: Experimental evidence and mechanistic insights, Geochimica et 769 
Cosmochimica Acta, 111, 39–49, 2013. 770 

Knapp, D. R.: Handbook of Analytical Derivatization Reactions, John Wiley & Sons, New York, 771 
Chichester, Brisbane, Toronto, Singapore., 1979. 772 

Lehmann, M. M., Gamarra, B., Kahmen, A., Siegwolf, R. T. W. and Saurer, M.: Oxygen isotope 773 
fractionations across individual leaf carbohydrates in grass and tree species, Plant Cell and 774 
Environment, 40(8), 1658–1670, doi:10.1111/pce.12974, 2017. 775 

Liu, H. T., Schäufele, R., Gong, X. Y. and Schnyder, H.: The δ18O and δ2H of water in the leaf growth-776 
and-differentiation zone of grasses is close to source water in both humid and dry atmospheres, 777 
New Phytologist, 214(4), 1423–1431, doi:10.1111/nph.14549, 2017. 778 

Maffei, M.: Chemotaxonomic significance of leaf wax n-alkanes in the umbelliferae, cruciferae and 779 
leguminosae (subf. Papilionoideae), Biochemical Systematics and Ecology, 24(6), 531–545, 780 
doi:10.1016/0305-1978(96)00037-3, 1996. 781 

Mayr, C.: Möglichkeiten der Klimarekonstruktion im Holozän mit δ13C- und δ2H-Werten von Baum-782 
Jahrringen auf der Basis von Klimakammerversuchen und Rezentstudien, PhD thesis, Ludwig-783 
Maximilians-Universität München. GSF-Bericht 14/02, 152 pp., 2002. 784 

Mayr, C., Laprida, C., Lücke, A., Martín, R. S., Massaferro, J., Ramón-Mercau, J. and Wissel, H.: Oxygen 785 
isotope ratios of chironomids, aquatic macrophytes and ostracods for lake-water isotopic 786 
reconstructions - Results of a calibration study in Patagonia, Journal of Hydrology, 529(P2), 600–787 
607, doi:10.1016/j.jhydrol.2014.11.001, 2015. 788 

McGill, R., Tukey, J. W. and Larsen, W. A.: Variations of Box Plots, The American Statisticans, 32(1), 12–789 
16, 1978. 790 

Merlivat, L.: Molecular diffusivities of H2
16O, HD16O, and H2

18O in gases, The Journal of Chemical 791 
Physics, 69(6), 2864–2871, doi:http://dx.doi.org/10.1063/1.436884, 1978. 792 

Mügler, I., Sachse, D., Werner, M., Xu, B., Wu, G., Yao, T. and Gleixner, G.: Effect of lake evaporation 793 
on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar 794 
(Germany), Organic Geochemistry, 39(6), 711–729, 2008. 795 

Prietzel, J., Dechamps, N. and Spielvogel, S.: Analysis of non-cellulosic polysaccharides helps to reveal 796 
the history of thick organic surface layers on calcareous Alpine soils, Plant and Soil, 365(1–2), 797 
93–114, doi:10.1007/s11104-012-1340-2, 2013. 798 

R Core Team: R: A Language and Environment for Statistical Computing, [online] Available from: 799 
https://www.r-project.org/, 2015. 800 

Rao, Z., Zhu, Z., Jia, G., Henderson, A. C. G., Xue, Q. and Wang, S.: Compound specific δD values of long 801 
chain n-alkanes derived from terrestrial higher plants are indicative of the δD of meteoric 802 
waters: Evidence from surface soils in eastern China, Organic Geochemistry, 40(8), 922–930, 803 
doi:http://dx.doi.org/10.1016/j.orggeochem.2009.04.011, 2009. 804 

Roden, J. S. and Ehleringer, J. R.: Observations of Hydrogen and Oxygen Isotopes in Leaf Water Confirm 805 
the Craig-Gordon Model under Wide-Ranging Environmental Conditions, Plant Physiology, 806 
120(August), 1165–1173, 1999. 807 

https://doi.org/10.5194/bg-2019-427
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.

A. Manuscript 1: Hepp et al. (2019c)

65



20 
 

Sachse, D., Radke, J. and Gleixner, G.: Hydrogen isotope ratios of recent lacustrine sedimentary n-808 
alkanes record modern climate variability, Geochimica et Cosmochimica Acta, 68(23), 4877–809 
4889, doi:http://dx.doi.org/10.1016/j.gca.2004.06.004, 2004. 810 

Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman, K. H., Magill, 811 
C. R., McInerney, F. A., van der Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, H.-812 
L., Sessions, A. L., White, J. W. C. and West, J. B.: Molecular Paleohydrology: Interpreting the 813 
Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms, Annual 814 
Reviews, 40, 221–249, doi:10.1146/annurev-earth-042711-105535, 2012. 815 

Santrucek, J., Kveton, J., Setlik, J. and Bulickova, L.: Spatial Variation of Deuterium Enrichment in Bulk 816 
Water of Snowgum Leaves, Plant Physiology, 143(1), 88–97, doi:10.1104/pp.106.089284, 2007. 817 

Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. and Sessions, A. L.: Compound-specific D/H 818 
ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions, 819 
Geochimica et Cosmochimica Acta, 65(2), 213–222, doi:http://dx.doi.org/10.1016/S0016-820 
7037(00)00520-2, 2001. 821 

Schäfer, I. K., Lanny, V., Franke, J., Eglinton, T. I., Zech, M., Vysloužilová, B. and Zech, R.: Leaf waxes in 822 
litter and topsoils along a European transect, SOIL, 2, 551–564, doi:10.5194/soil-2-551-2016, 823 
2016. 824 

Schmidt, H.-L., Werner, R. A. and Roßmann, A.: 18O Pattern and biosynthesis of natural plant products, 825 
Phytochemistry, 58(1), 9–32, doi:http://dx.doi.org/10.1016/S0031-9422(01)00017-6, 2001. 826 

Schmidt, H.-L., Werner, R. A. and Eisenreich, W.: Systematics of 2H patterns in natural compounds and 827 
its importance for the elucidation of biosynthetic pathways, Phytochemistry Reviews, 2(1–2), 828 
61–85, doi:10.1023/B:PHYT.0000004185.92648.ae, 2003. 829 

Sessions, A. L., Burgoyne, T. W., Schimmelmann, A. and Hayes, J. M.: Fractionation of hydrogen 830 
isotopes in lipid biosynthesis, Organic Geochemistry, 30, 1193–1200, 1999. 831 

Song, X., Farquhar, G. D., Gessler, A. and Barbour, M. M.: Turnover time of the non-structural 832 
carbohydrate pool influences δ18O of leaf cellulose, Plant Cell and Environment, 37(11), 2500–833 
2507, doi:10.1111/pce.12309, 2014. 834 

Sternberg, L. and Ellsworth, P. F. V.: Divergent Biochemical Fractionation, Not Convergent 835 
Temperature, Explains Cellulose Oxygen Isotope Enrichment across Latitudes, PLoS ONE, 6(11), 836 
e28040, doi:10.1371/journal.pone.0028040, 2011. 837 

Sternberg, L. da S. L. O. and DeNiro, M. J. D.: Biogeochemical implications of the isotopic equilibrium 838 
fractionation factor between the oxygen atoms of acetone and water, Geochimica et 839 
Cosmochimica Acta, 47(12), 2271–2274, doi:10.1016/0016-7037(83)90049-2, 1983. 840 

Sternberg, L. S. L., DeNiro, M. J. and Savidge, R. A.: Oxygen Isotope Exchange between Metabolites and 841 
Water during Biochemical Reactions Leading to Cellulose Synthesis, Plant Physiology, 82, 423–842 
427, 1986. 843 

Tipple, B. J., Berke, M. A., Doman, C. E., Khachaturyan, S. and Ehleringer, J. R.: Leaf-wax n-alkanes 844 
record the plant-water environment at leaf flush, Proceedings of the National Academy of 845 
Sciences, 110(7), 2659–2664, doi:10.1073/pnas.1213875110, 2013. 846 

Tipple, B. J., Berke, M. A., Hambach, B., Roden, J. S. and Ehleringer, J. R.: Predicting leaf wax n-alkane 847 
2H/1H ratios: Controlled water source and humidity experiments with hydroponically grown 848 
trees confirm predictions of Craig-Gordon model, Plant, Cell and Environment, 38(6), 1035–849 
1047, doi:10.1111/pce.12457, 2015. 850 

Tuthorn, M., Zech, M., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle, H. F., Wilcke, W. and Glaser, 851 
B.: Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and 852 
sediments as paleoclimate proxy II: Insight from a climate transect study, Geochimica et 853 
Cosmochimica Acta, 126, 624–634, doi:http://dx.doi.org/10.1016/j.gca.2013.11.002, 2014. 854 

Tuthorn, M., Zech, R., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle, H. F., Eglinton, T., Rozanski, 855 
K. and Zech, M.: Coupling δ2H and δ18O biomarker results yields information on relative humidity 856 
and isotopic composition of precipitation - a climate transect validation study, Biogeosciences, 857 
12, 3913–3924, doi:10.5194/bg-12-3913-2015, 2015. 858 

Walker, C. D. and Brunel, J.-P.: Examining Evapotranspiration in a Semi-Arid Region using Stable 859 
Isotopes of Hydrogen and Oxygen, Journal of Hydrology, 118, 55–75, 1990. 860 

https://doi.org/10.5194/bg-2019-427
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.

A. Manuscript 1: Hepp et al. (2019c)

66



21 
 

Wang, X.-F., Yakir, D. and Avisha, M.: Non-climatic variations in the oxygen isotopic composition of 861 
plants, Global Change Biology, 4, 835–849, 1998. 862 

Waterhouse, J. S., Cheng, S., Juchelka, D., Loader, N. J., McCarroll, D., Switsur, V. R. and Gautam, L.: 863 
Position-specific measurement of oxygen isotope ratios in cellulose: Isotopic exchange during 864 
heterotrophic cellulose synthesis, Geochimica et Cosmochimica Acta, 112(0), 178–191, 865 
doi:http://dx.doi.org/10.1016/j.gca.2013.02.021, 2013. 866 

Werner, R. A. and Brand, W. A.: Referencing strategies and techniques in stable isotope ratio analysis, 867 
Rapid Communications in Mass Spectrometry, 15(7), 501–519, doi:10.1002/rcm.258, 2001. 868 

Wissel, H., Mayr, C. and Lücke, A.: A new approach for the isolation of cellulose from aquatic plant 869 
tissue and freshwater sediments for stable isotope analysis, Organic Geochemistry, 39(11), 870 
1545–1561, doi:http://dx.doi.org/10.1016/j.orggeochem.2008.07.014, 2008. 871 

Yakir, D. and DeNiro, M. J.: Oxygen and Hydrogen Isotope Fractionation during Cellulose Metabolism 872 
in Lemna gibba L., Plant Ecology, 93, 325–332, 1990. 873 

Zech, M. and Glaser, B.: Compound-specific δ18O analyses of neutral sugars in soils using gas 874 
chromatography-pyrolysis-isotope ratio mass spectrometry: problems, possible solutions and a 875 
first application, Rapid Communications in Mass Spectrometry, 23, 3522–3532, 876 
doi:10.1002/rcm, 2009. 877 

Zech, M., Werner, R. A., Juchelka, D., Kalbitz, K., Buggle, B. and Glaser, B.: Absence of oxygen isotope 878 
fractionation/exchange of (hemi-) cellulose derived sugars during litter decomposition, Organic 879 
Geochemistry, 42(12), 1470–1475, doi:http://dx.doi.org/10.1016/j.orggeochem.2011.06.006, 880 
2012. 881 

Zech, M., Tuthorn, M., Detsch, F., Rozanski, K., Zech, R., Zöller, L., Zech, W. and Glaser, B.: A 220 ka 882 
terrestrial δ18O and deuterium excess biomarker record from an eolian permafrost paleosol 883 
sequence, NE-Siberia, Chemical Geology, 360–361, 220–230, 884 
doi:http://dx.doi.org/10.1016/j.chemgeo.2013.10.023, 2013a. 885 

Zech, M., Tuthorn, M., Glaser, B., Amelung, W., Huwe, B., Zech, W., Zöller, L. and Löffler, J.: Natural 886 
abundance of δ18O of sugar biomarkers in topsoils along a climate transect over the Central 887 
Scandinavian Mountains, Norway, Journal of Plant Nutrition and Soil Science, 176(1), 12–15, 888 
doi:10.1002/jpln.201200365, 2013b. 889 

Zech, M., Mayr, C., Tuthorn, M., Leiber-Sauheitl, K. and Glaser, B.: Oxygen isotope ratios (18O/16O) of 890 
hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: 891 
Insight from a climate chamber experiment, Geochimica et Cosmochimica Acta, 126(0), 614–892 
623, doi:http://dx.doi.org/10.1016/j.gca.2013.10.048, 2014a. 893 

Zech, M., Mayr, C., Tuthorn, M., Leiber-Sauheitl, K. and Glaser, B.: Reply to the comment of Sternberg 894 
on “Zech et al. (2014) Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers 895 
in plants, soils and sediments as paleoclimate proxy I: Insight from a climate chamber 896 
experiment. GCA, Geochimica et Cosmochimica Acta, 141(0), 680–682, 897 
doi:10.1016/j.gca.2014.04.051, 2014b. 898 

Zech, M., Zech, R., Rozanski, K., Gleixner, G. and Zech, W.: Do n-alkane biomarkers in soils/sediments 899 
reflect the δ2H isotopic composition of precipitation? A case study from Mt . Kilimanjaro and 900 
implications for paleoaltimetry and paleoclimate research, Isotopes in Environmental and 901 
Health Studies, 51(4), 508–524, doi:10.1080/10256016.2015.1058790, 2015. 902 

Zhang, X., Gillespie, A. L. and Sessions, A. L.: Large D/H variations in bacterial lipids reflect central 903 
metabolic pathways, PNAS, 106(31), 12580–12586, 2009. 904 

Zhou, Y., Grice, K., Stuart-Williams, H., Farquhar, G. D., Hocart, C. H., Lu, H. and Liu, W.: Biosynthetic 905 
origin of the saw-toothed profile in δ13C and δ2H of n-alkanes and systematic isotopic differences 906 
between n-, iso- and anteiso-alkanes in leaf waxes of land plants, Phytochemistry, 71(4), 388–907 
403, doi:10.1016/j.phytochem.2009.11.009, 2010.  908 

https://doi.org/10.5194/bg-2019-427
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.

A. Manuscript 1: Hepp et al. (2019c)

67



22 
 

Figure captions 909 

Fig. 1: A: Plant water (leaf water, xylem water and soil water) isotope compositions (in green, orange 910 

and brown, respectively) and the isotope composition of the investigated leaf biomarkers (leaf wax n-911 

alkanes n-C29 and n-C31 as open diamonds and triangles, respectively; hemicellulose-derived sugars: 912 

arabinose and xylose as open squares and circles, respectively) for the three plants Eucalyptus 913 

globulus, Vicia faba and Brassica oleracea grown in the climate chambers. B: Associated climate 914 

chamber conditions (leaf temperature and relative humidity in green and air temperature and relative 915 

humidity in red). Error bars represent analytical standard deviation of the respective measurements 916 

(see section 2.2 and Mayr, 2002). 917 

 918 

Fig. 2:  δ2H-δ18O diagram illustrating the isotope composition of the biomarkers, comprising δ2H values 919 

of the leaf wax n-alkanes (C29 for Eucalyptus globulus and Brassica oleracea; weighted mean of C29 and 920 

C31 for Vicia faba) and δ18O values of the hemicellulose-derived sugars arabinose and xylose (black 921 

crosses) and the measured isotope compositions of leaf water (green squares), xylem water (orange 922 

squares), soil water (brown squares), atmospheric water vapor (red squares) and the tank water used 923 

for irrigation (blue triangle), which plot very close to the global meteoric water line. 924 

 925 

Fig. 3: Scatterplots depicting the relationships between the compound-specific biomarker isotope 926 

composition and the respective leaf water values (A: δ2Hn-alkane vs. δ2Hleaf-water; B: δ18Osugar vs. δ18Oleaf-927 

water). Brassica oleracea, Eucalyptus globulus and Vicia faba samples are shown in purple, orange and 928 

black, respectively. Error bars of the δ values represent standard deviation of repeated measurements 929 

(see section 2.2 and Mayr, 2002).  930 

 931 

Fig. 4: Boxplots comprising the plant-specific fractionation between the biomarkers and the leaf water 932 

(A: εn-alkane/leaf-water according Eq. 8; B: εsugar/leaf-water according to Eq. 9). Brassica oleracera, Eucalyptus 933 

globulus and Vicia faba samples are shown in purple, orange and black, respectively. Boxplots show 934 

median (thick black line), interquartile range (IQR) with upper (75%) and lower (25%) quartiles, lower 935 

and upper whiskers, which are restricted to 1.5 ∙ IQR. Outside the 1.5 ∙ IQR space, the data points are 936 

marked with a dot. The notches are extend to ± 1.58 ∙IQR √n⁄ , by convention and give a 95% 937 

confidence interval for the difference of two medians (McGill et al., 1978). 938 

 939 

Fig. 5: Scatterplots illustrating the correlation between leaf water-based and measured air/leaf relative 940 

humidity [modeled vs. measured RHair (A) and RHleaf (B)], modeled vs. measured leaf water deuterium-941 

excess [Tair−based (B) and Tleaf-based (E) de vs. deuterium-excessleaf-water] and modeled vs. measured LEL 942 

slopes [Tair-based (C) and Tleaf-based (F) vs. measured slopes]. In red, the results of the less simplified 943 

models are displayed (Eq. 2 for de, Eq. 6 for RH and Eq. 10 for SLEL) and in black the results of the more 944 

simplified models are shown (Eq. 3 and de, Eq. 7 for RH and Eq. 11 for SLEL). Black lines indicate the 1:1 945 

relationship. R2 and RMSE are calculated as described in section 2.4, while the RMSE values have the 946 

dimensions of the respective variables. Error bars for the measured RH values represent analytical 947 

standard deviations (see Mayr, 2002). For the uncertainties of the calculated and modeled variables 948 

see section 2.4.  949 

 950 

Fig. 6: Boxplots showing the measured leaf water in comparison to the biomarker-based leaf water 951 

(according Eqs. 8 and 9), tank water, source water calculated with biomarker-based leaf water values 952 

and source water based on measured leaf water. Source water isotope compositions were calculated 953 

via the slopes of the LEL´s (either with biomarker-based or measured leaf water values) and the GMWL. 954 
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The numbers (1-4) mark the available scenarios for source water reconstruction (see section 2.4): 1 = 955 

SLEL calculated according more simplified Eq. 11 with Tair, 2 = as 1 but with Tleaf, 3 = SLEL calculated 956 

according less simplified Eq. 10 with Tair, 4 = as 3 but with Tleaf. Boxplots show median (thick black line), 957 

interquartile range (IQR) with upper (75%) and lower (25%) quartiles, lower and upper whiskers, which 958 

are restricted to 1.5 ∙ IQR. Outside the 1.5 ∙ IQR space, the data points are marked with a dot. The 959 

notches are extend to ± 1.58 ∙IQR √n⁄ , by convention and give a 95% confidence interval for the 960 

difference of two medians (McGill et al., 1978).  961 

 962 

Fig. 7: Scatterplots depicting the relationship between biomarker-based (modeled) and measured 963 

air/leaf relative humidity [RHair (A) and RHleaf (B)]. Black lines indicate the 1:1 relationship. R2 and RMSE 964 

was calculated as described in section 2.4, while the RMSE values have the dimensions of the 965 

respective variables. Error bars for the measured values represent analytical standard deviations (see 966 

Mayr, 2002). For uncertainty calculation of the modeled properties, see section 2.4. In addition, the 967 

leaf water-based air/leaf relative humidity results (from Fig. 5A and D) are shown in light colors for 968 

comparison.  969 

 970 

Fig. S1: Boxplots comprising the plant-specific δ2Hn-alkane (A) and δ18Osugar values (B). Brassica oleracera, 971 

Eucalyptus globulus and Vicia faba samples are shown in purple, orange and black, respectively. 972 

Boxplots show median (thick black line), interquartile range (IQR) with upper (75%) and lower (25%) 973 

quartiles, lower and upper whiskers, which are restricted to 1.5 ∙ IQR. Outside the 1.5 ∙ IQR space, the 974 

data points are marked with a dot. The notches are extend to ± 1.58 ∙IQR √n⁄ , by convention and give 975 

a 95% confidence interval for the difference of two medians (McGill et al., 1978). 976 

 977 

Fig. S2: Scatterplots of the fractionation between the biomarkers and leaf water vs. air temperature, 978 

air relative humidity (A and B: εn-alkane/leaf-water according Eq. 13; C and D εsugar/leaf-water according Eq. 14). 979 

Brassica oleracera, Eucalyptus globulus and Vicia faba samples are shown in purple, orange and black, 980 

respectively. Error bars for the measured values represent analytical standard deviations of repeated 981 

measurements (see section 2.2 and Mayr, 2002). For uncertainty calculation of the ε values, see section 982 

2.4.  983 

 984 

Fig. S3: Boxplots comprising measured and modeled RH (A) and deuterium-excess values (B). The 985 

numbers (1-2) mark the two available models for RHleaf/air and de reconstruction (see section 2.4): 1 = 986 

more simplified models (Eq. 3 for de and Eq. 7 for RH), 2 = less simplified models (Eq. 2 for de and Eq. 6 987 

for RH). Boxplots show median (thick black line), interquartile range (IQR) with upper (75%) and lower 988 

(25%) quartiles, lower and upper whiskers, which are restricted to 1.5 ∙ IQR. Outside the 1.5 ∙ IQR space, 989 

the data points are marked with a dot. The notches are extend to ± 1.58 ∙IQR √n⁄ , by convention and 990 

give a 95% confidence interval for the difference of two medians (McGill et al., 1978).  991 
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Abstract 23 

Molecular fossils, like bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs), and 24 

the stable isotopic composition of biomarkers, such as δ2H of leaf wax-derived n-alkanes (δ2Hn-25 

alkane) or δ18O of hemicellulose-derived sugars (δ18Osugar) are increasingly used for the 26 

reconstruction of past climate and environmental conditions. Plant-derived δ2Hn-alkane and 27 

δ18Osugar values record the isotopic composition of plant source water (δ2H/δ18Osource-water), 28 

which usually reflects mean annual precipitation (δ2H/δ18Oprecipiation), modulated by 29 

evapotranspirative leaf water enrichment and biosynthetic fractionation. Accuracy and 30 

precision of respective proxies should be ideally evaluated at a regional scale. For this study, 31 

we analysed topsoils below coniferous and deciduous forests, as well as grassland soils along a 32 

Central European transect in order to investigate the variability and robustness of various 33 

proxies, and to identify effects related to vegetation. Soil pH-values derived from brGDGTs 34 

correlate reasonably well with measured soil pH-values, but systematically overestimate them 35 

(∆pH = 0.6 ±0.6). The branched vs. isoprenoid tetraether index (BIT) can give some indication 36 

whether the pH reconstruction is reliable. Temperatures derived from brGDGTs overestimate 37 

mean annual air temperatures slightly (∆TMA = 0.5°C ±2.4). Apparent isotopic fractionation (εn-38 

alkane/precipitation and εsugar/precipitation) is lower for grassland sites than for forest sites due to “signal 39 

damping”, i.e. grass biomarkers do not record the full evapotranspirative leaf water enrichment. 40 

Coupling δ2Hn-alkane with δ18Osugar allows to reconstruct the stable isotopic composition of the 41 

source water more accurately than without the coupled approach (∆δ2H = ~-21‰ ±22 and 42 

∆δ18O = ~-2.9‰ ±2.8). Similarly, relative humidity during daytime and vegetation period 43 

(RHMDV) can be reconstructed using the coupled isotope approach (ΔRHMDV = ~-17 ±12). 44 

Especially for coniferous sites, reconstructed RHMDV values as well as source water isotope 45 

composition underestimate the measured values. This can be likely explained by understory 46 

grass vegetation at the coniferous sites contributing significantly to the n-alkane pool but only 47 

marginally to the sugar pool in the topsoil. The large uncertainty likely reflect the fact that 48 

biosynthetic fractionation is not constant, as well as microclimate variability. Overall, GDGTs 49 

and the coupled δ2Hn-alkane-δ
18Osugar approach have great potential for more quantitative 50 

paleoclimate reconstructions.   51 
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1 Introduction 52 

Information about the variability and consequences of past climate changes is a prerequisite for 53 

precise predictions regarding the present climate change. Molecular fossils, so called 54 

biomarkers, climate proxies have great potential to enhance our understanding about variations 55 

of past climate and environmental changes. Lipid biomarkers in particular, are increasingly 56 

used for paleoclimate and environmental reconstructions (e.g. Brincat et al., 2000; Eglinton and 57 

Eglinton, 2008; Rach et al., 2014; Romero-Viana et al., 2012; Schreuder et al., 2016). However 58 

strengths and limitations of respective proxies need known (Dang et al., 2016). For this, 59 

calibrations using modern reference samples are essential.   60 

Terrestrial branched glycerol dialkyl glycerol tetraethers (brGDGTs) that are synthesized in the 61 

cell membranes of anaerobe heterotrophic soil bacteria (Oppermann et al., 2010; Weijers et al., 62 

2010) have great potential for the reconstruction of past environmental conditions (e.g. Coffinet 63 

et al., 2017; Schreuder et al., 2016; Zech et al., 2012), although some uncertainties exist. 64 

Calibration studies suggest that the relative abundance of the individual brGDGTs varies with 65 

mean annual air temperature (TMA) and soil pH (Peterse et al., 2012; Weijers et al., 2007), at 66 

least across large, global climate gradients or along pronounced altitudinal gradients (Wang et 67 

al., 2017). However, in arid regions the production of brGDGT is limited, while isoprenoidal 68 

GDGTs (iGDGTs) produced by archaea provide the dominant part of the overall soil GDGT 69 

pool (Anderson et al., 2014; Dang et al., 2016; Dirghangi et al., 2013; Wang et al., 2013; Xie 70 

et al., 2012). The ratio of brGDGTs vs. isoprenoid GDGTs (BIT) can be used as indication 71 

whether a reconstruction of TMA and pH will be reliable. Moreover, Mueller-Niggemann et al. 72 

(2016) revealed an influence of the vegetation cover on the brGDGT producing soil microbes. 73 

From field experiments, it is known, that vegetation type and mulching practice strongly effect 74 

soil temperature and moisture (Awe et al., 2015; Liu et al., 2014). Thus, multiple factors can be 75 

expected to influence soil microbial communities and GDGT production. So far, little is known 76 

about the variability of GDGT proxies on a regional scale, and a calibration study with small 77 

climate gradient but with different vegetation types might be useful.  78 

Compound specific stable hydrogen isotopes of leaf wax biomarkers, such as long chain n-79 

alkanes (δ2Hn-alkanes) record the isotopic signal of precipitation and therefore past climate and 80 

environmental conditions (Sachse et al., 2004, 2006). However, various influencing factors are 81 

known all along the way from the moisture source to leaf waxes (Pedentchouk and Zhou, 2018 82 

and Sachse et al., 2012 for review). One is the evapotranspiration of leaf water (Feakins and 83 

Sessions, 2010; Kahmen et al., 2013; Zech et al., 2015), which is strongly driven by relative air 84 

humidity (RH; e.g. Cernusak et al., 2016 for review). In addition, a strong precipitation signal 85 

is known to be incorporated into long chain leaf waxes (Hou et al., 2008; Rao et al., 2009; 86 

Sachse et al., 2004). In paleoclimate studies, it is often not feasible to disentangle between the 87 

evapotranspirative enrichment from the precipitation signal. Zech et al. (2013) proposed to 88 

couple δ2Hn-alkane results with oxygen stable isotopes of hemicellulose-derived sugars (δ18Osugar). 89 

Assuming constant biosynthetic fractionation factors (εbio) for the different compound classes 90 

(n-alkanes and hemicellulose sugars), the coupling enables the reconstruction of the isotopic 91 

composition of leaf water, RH and δ2H/δ18O of plant source water (≈ δ2H/δ18O of precipitation; 92 

Tuthorn et al., 2015). So far, a detailed evaluation of this approach on the European scale, as 93 

well as concerning possible effects related to vegetation changes is missing.  94 
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We analysed topsoil samples under coniferous, deciduous and grassland vegetation along a 95 

Central European transect in order to estimate the variability of the biomarker proxies. More 96 

specifically, we aim to test whether: 97 

(i) the vegetation type has an influence on the brGDGT proxies, the δ2Hn-alkane and the δ
18Osugar 98 

stable isotopic composition, as well as on reconstructed δ2H/δ18Osource-water and RH. 99 

(ii) the published brGDGT proxies used for reconstructing mean annual temperature and soil 100 

pH are sensitive enough to reflect the medium changes in temperature and soil pH along our 101 

transect. 102 

(iii) the coupled δ2Hn-alkane-δ
18Osugar approach faithfully reflects δ2H/δ18O of precipitation and 103 

RH along the transect. 104 

 105 

2 Material and methods 106 

2.1 Geographical setting and sampling 107 

In November 2012, we collected topsoil samples (0-5 cm depth) at 16 locations along a transect 108 

from Southern Germany to Southern Sweden (Fig. 1A) and distinguished between sites with 109 

coniferous forest (con, n = 9), deciduous forest (dec, n = 14) and grassland (grass, n = 6) 110 

vegetation cover (for more details see Schäfer et al. (2016) and Tab. S1). 111 

 112 

2.2 Database of instrumental climate variables and isotope composition of precipitation  113 

Climate data was derived from close-by weather observation stations operating by the regional 114 

institutions (Deutscher Wetterdienst (DWD) for Germany, Danmarks Meteorologiske Institut 115 

(DMI) for Denmark and the Sveriges Meteorologiska och Hydrologiska Institute (SMHI) for 116 

Sweden). The DWD provides hourly data for each station (DWD Climate Data Center, 2018b), 117 

enabling not only the calculation of TMA, but also of the mean annual relative air humidity 118 

(RHMA), mean temperature and relative air humidity during the vegetation period (T/RHMV), 119 

and of daytime temperature and relative humidity averages over the vegetation period 120 

(T/RHMDV). In addition, annual precipitation observations were used to derive the mean annual 121 

precipitation amount (PMA; DWD Climate Data Center, 2018b). From the DMI, the respective 122 

climate variables were derived from published technical reports (Cappelen, 2002; Frich et al., 123 

1997; Laursen et al., 1999). The SMHI provides open data from which we derived the climate 124 

variables for the Swedish sites (Swedish Meteorological and Hydrological Institute, 2018). For 125 

more details about the climate database used for calculations and comparisons, the reader is 126 

referred to Tab. S2.   127 

For comprising German precipitation δ2H/δ18O along the transect, we realized a regionalisation 128 

(called δ2H/δ18OGIPR) using online available data from 34 German GNIP stations, 4 Austrian 129 

ANIP stations and the Groningen GNIP station (van Geldern et al., 2014; IAEA/WMO, 2018; 130 

Stumpp et al., 2014; Umweltbundesamt GmbH, 2018), following the approach of Schlotter 131 

(2007). However, instead of the multivariate regression procedure applied by Schlotter (2007), 132 

we used a random forest approach (Hothorn et al., 2006; Strobl et al., 2007, 2008) to describe 133 

the relationship of squared latitude, latitude, longitude and altitude vs. long term weighted 134 

means of precipitation δ2H/δ18O, and realized the prediction for the study sites. For the Danish 135 
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and Swedish sites, such a procedure was not possible. Hence, the annual precipitation δ2H/δ18O 136 

values were derived from the Online Isotopes in Precipitation Calculator (OIPC, version 3.1), 137 

therefore called δ2H/δ18OOIPC (Bowen, 2018; Bowen and Revenaugh, 2003; IAEA/WMO, 138 

2015). The finally used δ2H/δ18OGIPR/OIPC data are given in Tab. S1.  139 

The TMA along the transect ranges from 5.3 to 10.6°C, and PMA ranges from 554 to 1769 mm 140 

(Fig. 1B). Precipitation δ2H/δ18O shows moderate changes along the transect, δ2HGIPR/OIPC 141 

varies between -52 and -79‰, and δ18OGIPR/OIPC ranges from -7.4 to -10.9‰ (Fig. 1C). 142 

Correlations between δ18OGIPR/OIPC and PMA, altitude of the locations, TMA are given in the 143 

supplementary material (Fig. S1 to S3), along with a δ2HGIPR/OIPC vs. δ18OGIPR/OIPC scatter plot 144 

(Fig. S4). 145 

 146 
Fig. 1. (A) Sample locations (red dots, map source: US National Park Service), (B) variations 147 

of mean annual air temperature (TMA) and mean annual precipitation (PMA) derived from close-148 

by climate station data, and (C) hydrogen and oxygen stable isotope composition of 149 

precipitation (δ2HGIPR/OIPC and δ18OGIPR/OIPC, respectively) as derived for the sampled transect 150 

locations (see section 2.2 GIPR δ2H/δ18O generation procedure). The reader is referred to 151 

section 2.2 (and Tab. S1 and S2) for database and reference information of data plotted in (B) 152 

and (C).  153 

 154 

2.3 Soil extractions and analysis 155 

2.3.1 GDGTs and pH 156 

A detailed description of sample preparation for lipid analysis can be found in Schäfer et al. 157 

(2016). Briefly, 1–6 g freeze-dried and grounded soil sample was microwave extracted with 15 158 
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ml dichloromethane (DCM)/methanol (MeOH) 9:1 (v:v) at 100°C for 1 h. Extracts were 159 

separated over aminopropyl silica gel (Supelco, 45 μm) pipette columns. The nonpolar fraction 160 

(including n-alkanes) was eluted with hexane and further purified over AgNO3 coated silica 161 

pipette columns (Supelco, 60-200 mesh) and zeolite (Geokleen Ltd.). The GDGT-containing 162 

fraction was eluted with DCM:MeOH 1:1 (v:v), re-dissolved in hexane/isopropanol (IPA) 99:1 163 

(v:v) and transferred over 0.45 μm PTFE filters into 300 μl inserts. For quantification, a known 164 

amount of a C46 diol standard was added after transfer. The samples were analysed at ETH 165 

Zurich using an Agilent 1260 Infinity series HPLC–atmospheric chemical pressure ionization 166 

mass spectrometer (HPLC–APCI-MS) equipped with a Grace Prevail Cyano column (150 mm 167 

× 2.1 mm; 3 μm). The GDGTs were eluted isocratically with 90% A and 10% B for 5 min and 168 

then with a linear gradient to 18% B for 34 min at 0.2 ml min−1, where A=hexane and 169 

B=hexane/isopropanol (9:1, v:v). Injection volume was 10 μl and single ion monitoring of 170 

[M+H]+ was used to detect GDGTs. 171 

The pH of the samples was measured in the laboratory of the Soil Biogeochemistry group, 172 

Institute of Agronomy and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 173 

in a 1:3 soil:water (w/v) mixture. 174 

 175 

2.3.2 δ2Hn-alkane  176 

The hydrogen isotopic composition of the highest concentrated n-alkanes (n-C25, n-C27, n-C29, 177 

n-C31, and n-C33) was determined using a TRACE GC Ultra Gas Chromatography connected to 178 

a Delta V Plus Isotope Ratio Mass Spectrometer via a 2H pyrolysis reactor (GC-2H-Py-IRMS; 179 

Thermo Scientific, Bremen, Germany) at the ETH Zurich. The compound-specific 2H/1H ratios 180 

were calibrated against an external standard with C15 – C35 homologues. External standard 181 

mixtures (A4 mix from A. Schimmelmann, University of Indiana) were run between the 182 

samples for multipoint linear normalization. The H+
3 factor was determined on each 183 

measurement day and was constant throughout the periods of the sample batches. Samples were 184 

analysed in duplicates, and results typically agreed within 4% (average difference = 1.4%). All 185 

δ2H values are expressed relative to the Vienna Standard Mean Ocean Water (V-SMOW).  186 

  187 

2.3.3 δ18Osugar 188 

Hemicellulose sugars were extracted and purified using a slightly modified standard procedure 189 

(Amelung et al., 1996; Guggenberger et al., 1994; Zech and Glaser, 2009). Briefly, myoinositol 190 

was added to the samples prior to extraction as first internal standard. The sugars were released 191 

hydrolytically using 4M trifluoroacetic acid for 4 h at 105°C, cleaned over glass fiber filters and 192 

further purified using XAD and Dowex columns. Before derivatization with methylboronic acid 193 

(Knapp, 1979), the samples were frozen, freeze-dried, and 3-O-methylglucose in dry pyridine 194 

was added as second internal standard. Compound-specific hemicellulose sugar 18O 195 

measurements were performed in the laboratory of the Soil Biogeochemistry group, Institute of 196 

Agronomy and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, using GC-197 
18O-Py-IRMS (all devices from Thermo Fisher Scientific, Bremen, Germany). Standard 198 

deviations of the triplicate measurements were 1.4‰ (over 29 investigated samples) for 199 

arabinose and xylose, respectively. We focus on these two hemicellulose-derived neutral sugars 200 
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arabinose and xylose as they strongly predominate over fucose in terrestrial plants, soils and 201 

sediments (Hepp et al., 2016 and references therein). Rhamnose concentrations were too low to 202 

obtain reliable δ18O results. All δ18O values are expressed relative to the Vienna Standard Mean 203 

Ocean Water (V-SMOW).  204 

 205 

2.4 Theory and Calculations 206 

2.4.1 Calculations used for the GDGT-based reconstructions 207 

The branched and isoprenoid tetraether (BIT) index is calculated according to Hopmans et al. 208 

(2004), for structures see Fig. S5:   209 

BIT=
Ia+IIa+IIIa

Ia+IIa+IIIa+crenarchaeol
. (1) 210 

The cyclopentane moiety number of brGDGTs correlates negatively with soil pH (Weijers et 211 

al., 2007), which led to the development of the cyclization of branched tetraethers (CBT) ratio. 212 

CBT and the CBT based pH (pHCBT) were calculated according to Peterse et al. (2012): 213 

CBT = - log
Ib+IIb

Ia+IIa
, (2) 214 

pHCBT = 7.9 - 1.97 × CBT. (3) 215 

The number of methyl groups in brGDGTs correlates negatively with TMA and soil pH (Peterse 216 

et al., 2012; Weijers et al., 2007). Thus, the ratio of the methylation of branched tetraethers 217 

(MBT) ratio and the CBT ratio can be used to reconstruct TMA. We use the equation given by 218 

Peterse et al. (2012): 219 

MBT’ = 
Ia+Ib+Ic

Ia+Ib+Ic+IIa+IIb+IIc+IIIa
, (4) 220 

TMA = 0.81 - 5.67 × CBT + 31.0 × MBT'. (5) 221 

 222 

2.4.2 Calculations and concepts used for the coupled δ2H-δ18O approach  223 

The apparent fractionation is calculated according to Cernusak et al. (2016): 224 

εn-alkane/precipitation= (
δ2Hn-alkane-δ2HGIPR/OIPC

1+δ2HGIPR/OIPC/1000
), (6) 225 

εsugar/precipitation = (
δ18Osugar-δ18OGIPR/OIPC

1+δ18OGIPR/OIPC/1000
). (7) 226 

The isotopic composition of leaf water (δ2H/δ18Oleaf water) can be calculated using εbio for δ2Hn-227 

alkane (-160‰, Sachse et al., 2012; Sessions et al., 1999) and δ18Osugar (+27‰, Cernusak et al., 228 

2003; Schmidt et al., 2001):  229 

δ2Hleaf water= (
1000+δ2Hn-alkane

1000+εbio (n-alkane)
) × 103 -1000, (8) 230 

δ18Oleaf water= (
1000+δ18Osugar

1000+εbio (sugar)
) × 103-1000. (9) 231 

Zech et al. (2013) introduced the conceptual model for the coupled δ2Hn-alkane-δ
18Osugar approach 232 

in detail. Briefly, the coupled approach is based on the following assumptions (illustrated in 233 

Fig. 8): (i) The isotopic composition of precipitation, which is set to be equal to the plant source 234 

water, typically plots along the global meteoric water line (GMWL; δ2H = 8 × δ18O + 10) in a 235 
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δ18O vs. δ2H space (Craig, 1961); (ii) Source water uptake by plants does not lead to any 236 

fractionation (e.g. Dawson et al., 2002), and significant evaporation of soil water can be 237 

excluded; (iii) Evapotranspiration leads to enrichment of the remaining leaf water along the 238 

local evaporation line (LEL; Allison et al., 1985; Bariac et al., 1994; Walker and Brunel, 1990), 239 

compared to the source water taken up by the plant; (iv) The biosynthetic fractionation is 240 

assumed to be constant. In addition, isotopic equilibrium between plant source water (~ 241 

weighted mean annual precipitation) and the local atmospheric water vapour is assumed. 242 

Further assumption concerns the isotope steady-state in the evaporating leaf water reservoir. 243 

The coupled approach allows for reconstructing the isotopic composition of plant source water 244 

(δ2H/δ18Osource-water) from the reconstructed leaf water, by calculating the intercepts of the LELs 245 

with the GMWL (Zech et al., 2013). The slope of the LEL (SLEL) can be assessed by the 246 

following equation (Gat, 1971): 247 

SLEL= 
ε2

*+Ck
2

ε18
* + Ck

18, (10) 248 

where ε* are equilibrium isotope fractionation factors and Ck are kinetic fractionation factors. 249 

The latter equals to 25.1‰ and 28.5‰, for Ck
2
 and Ck

18
, respectively (Merlivat, 1978). The 250 

equilibrium fractionation factors can be derived from empirical equations (Horita and 251 

Wesolowski, 1994) by using TMDV values. For two Danish sites TMDV are not available, instead 252 

TMV is used here (section 2.2 and Tab. S2).   253 

In a δ18O-δ2H diagram, the distance of the leaf water from the GMWL define the deuterium-254 

excess of leaf water (dleaf-water = δ2Hleaf-water - 8 × δ18Oleaf-water, according Dansgaard, (1964); Fig. 255 

8). To convert dleaf-water into mean RH during daytime and vegetation period (RHMDV), a 256 

simplified Craig-Gordon model can be applied (Zech et al., 2013): 257 

RH=1-
∆d

ε2
*-8×ε18

* +Ck
2
-8× Ck

18, (11) 258 

where Δd is the difference in dleaf-water and the deuterium-excess of source water (dsource-water). 259 

 260 

2.5 Statistics 261 

In the statistical analysis we checked sample distributions for normality (Shapiro and Wilk, 262 

1965) and for equal variance (Levene, 1960). If normality and equal variances are given, we 263 

perform an Analysis of Variance (ANOVA). If that is not the case, we conduct the non-264 

parametric Kruskal-Wallis Test. ANOVA or Kruskal-Wallis are used to find significant 265 

differences (a=0.05) between the vegetation types (deciduous, conifer and grass). 266 

In order to describe the relation along a 1:1 line, the coefficient of correlation (R2) was 267 

calculated as R2 = 1 - ∑ (modeled - measured)2  ∑(measured - measured mean)2⁄ . The small 268 

r2 is taken as coefficient of correlation of a linear regression between a dependent (y) and 269 

explanatory variable(s). The root mean square error (RMSE) of the relationships was calculated 270 

as RMSE = √(
1

n
∙ ∑(modeled - measured)2). All data plotting and statistical analysis was 271 

realized in R (version 3.2.2; R Core Team, 2015). 272 

 273 
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3 Results and Discussion 274 

3.1 GDGT concentrations 275 

GDGT Ia has the highest concentration under all vegetation types, followed by GDGT IIa and 276 

GDGT IIIa (Fig. 2). GDGT Ib, IIb and Ic occur in minor, GDGT IIc and IIIb only in trace 277 

amounts. GDGT IIIc was below the detection limit in most of the samples (Tab. S3). Although 278 

other studies document an influence of the vegetation cover on soil temperature and soil water 279 

content, which control the microbial community composition in soils (Awe et al., 2015; Liu et 280 

al., 2014; Mueller-Niggemann et al., 2016), we find no statistically different pattern of the 281 

individual brGDGTs. 282 

 283 

Fig. 2. Mean concentrations of individual brGDGTs as percentage of all brGDGTs for the three 284 

investigated types. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest 285 

sites (n=14); grass = grassland sites (n=6).  286 

Total concentrations of brGDGTs range from 0.32 to 9.17 µg/g dry weight and tend to be 287 

highest for the coniferous samples and lowest for the grasses (Fig. 3A, Tab. S3). Bulk brGDGT 288 

concentrations lie within ranges of other studies examining soils of mid latitude regions (Huguet 289 

et al., 2010b, 2010a; Weijers et al., 2011). Similar concentrations in coniferous and deciduous 290 

samples imply that brGDGT production does not strongly vary in soils below different forest 291 

types. The grass samples show lower brGDGT concentrations compared to the forest samples, 292 

but this is probably mainly due to ploughing of the grass sites and hence admixing of mineral 293 

subsoil material. Anyhow, the differences in brGDGT concentrations are not significant (p-294 

value = 0.06).  295 

 296 

3.2 BIT index 297 

Most of the samples have a BIT index higher than 0.9 (Fig 3B and Tab. S3). The BIT-values 298 

are typical for soils in humid and temperate climate regions (Weijers et al., 2006). However, 299 

outliers exist. The most likely source of iGDGTs in soils are Thaumarchaeota, i.e. aerobe 300 

ammonia oxidizing archaea producing Crenarchaeol and its regioisomer (Schouten et al., 2013 301 

and references therein), precipitation amounts drop below 700-800 mm (Dang et al., 2016; 302 

Dirghangi et al., 2013). The PMA data of our sampling sites mostly show precipitation > 550 303 

mm (Fig. 1B), but one has to be aware that this data is based on the climate station nearest to 304 

the respective sampling locations and microclimate effects, such as sunlight exposure, canopy 305 
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cover or exposition might have a pronounced influence on the brGDGT vs. iGDGT distribution. 306 

Mueller-Niggemann et al. (2016) found higher BIT indices in upland soils compared to paddy 307 

soils and stated that the management type also influences BIT values in soils. Along our 308 

transect, grass sites tend to have slightly lower BIT-values than forest sites, probably due to the 309 

absence of a litter layer and hence, no isolation mechanism preventing evaporation of soil water. 310 

Anyhow, differences between vegetation types are not significant (p-value = 0.32). 311 

 312 

Fig. 3. (A) Total concentrations of brGDGTs in µg g-1 dry weight, as well as (B) BIT, (C) CBT 313 

and (D) MBT’. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites 314 

(n=14); grass = grassland sites (n=6).  Box plots show median (red line), interquartile range 315 

(IQR) with upper (75%) and lower (25%) quartiles, lowest whisker still within 1.5IQR of lower 316 

quartile, and highest whisker still within 1.5IQR of upper quartile, dots mark outliers.  317 

 318 

3.3 CBT-derived pH 319 

The CBT ratio shows a pronounced variation independent of vegetation type with values 320 

between 0.03 and 2.16 (Fig 3C). The coniferous samples tend to be highest, but the differences 321 

between vegetation types are not significant (p-value = 0.48). The CBT index can be related to 322 

pH in acidic and/or humid soils (e.g. Dirghangi et al., 2013; Mueller-Niggemann et al., 2016; 323 

Peterse et al., 2012; Weijers et al., 2007) but might be an indicator of soil water content and 324 

hence, precipitation in more arid and alkaline soils (e.g. Dang et al., 2016). There is a 325 

pronounced correlation between CBT and soil pH (Fig. 4), which is in good agreement with 326 

other studies from mid latitude regions where precipitation is relatively high (Anderson et al., 327 

2014 and references therein). Moreover, the CBT to pH relationship in terms of slope and 328 

intersect in our dataset (CBT = -0.47 × pH + 3.5, r2 = 0.7, p-value < 0.0001, n = 29) is well 329 

comparable to the correlation described for the global calibration dataset of Peterse et al. (2012) 330 

(CBT = -0.36 × pH + 3.1, r2 = 0.7, p-value < 0.0001, n = 176).  331 

However, there are some outliers in the CBT-pH correlation, which need a further examination 332 

(see locations grass L04, dec L10 and dec L12 as marked in Figs. 4 and 5). The outliers show 333 

lower BIT indices (< 0.85, Tab. S3). Even though the data from the nearest climate station 334 

suggest no abnormal PMA. Local effects such as differences in the amount of sunlight exposure, 335 

nutrient availability for brGDGT producing organisms or, most likely soil water content might 336 

influence the brGDGT production at these locations (Anderson et al., 2014; Dang et al., 2016). 337 

A lower BIT index as well as a lower CBT occur when soil water content decreases (Dang et 338 

al., 2016; Sun et al., 2016) or when aeration is high and less anoxic microhabitats for GDGT 339 

producing microbes exist (e.g. Dirghangi et al., 2013). 340 
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 341 

Fig. 4. CBT to pH relationship in our dataset in comparison to the global calibration dataset 342 

from Peterse et al. (2012) (CBT = -0.36 × pH + 3.1, r2 = 0.7, p-value < 0.0001, n = 176, black 343 

line). Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=14); 344 

grass = grassland sites (n=6). 345 

 346 

As the CBT and pH are similarly correlated in our dataset and the global dataset of Peterse et 347 

al. (2012), the CBT-derived pH correlated well with the actual pH (Fig. 5A; R2 = 0.3). 348 

Expressed as ΔpH (CBT-derived pH - measured pH), there is a tendency that the GDGTs result 349 

in an overestimation of the real pH for the forest sites (Fig. B). Yet a Kruskal-Wallis test shows 350 

no statistically significant difference between the vegetation types, with a p-value of 0.13. The 351 

overall ∆pH of 0.6 ±0.6 shows that the reconstruction of soil pH using brGDGTs works well 352 

along this transect. 353 

 354 
Fig. 5. (A) Correlation between measured pH and reconstructed soil pH (pHCBT) from our 355 

transect data in comparison to the global calibration dataset from Peterse et al. (2012) (R2 = 0.7, 356 

RMSE = 0.75, n = 176). Black line indicates the 1:1 relationship. (B) Boxplots of ∆pH (refers 357 

to pHCBT-pH). Box plots show median (red line), interquartile range (IQR) with upper (75%) 358 
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and lower (25%) quartiles, lowest whisker still within 1.5IQR of lower quartile, and highest 359 

whisker still within 1.5IQR of upper quartile, dots mark outliers. Abbreviations: con = 360 

coniferous forest sites (n=9); dec = deciduous forest sites (n=14); grass = grassland sites (n=6). 361 

 362 

3.4 MBT’-CBT-derived TMA reconstructions 363 

The MBT’ shows high variability with values ranging from 0.17 to 0.67 no statistical 364 

differences between vegetation types (p-value = 0.54; Fig. 3D, Tab. S3). When comparing 365 

reconstructed (MBT’-CBT-derived) TMA with climate station TMA, the data plot close to the 1:1 366 

line, and fit well into the global dataset of Peterse et al. (2012) (Fig. 7A). The ∆TMA reveal an 367 

overall offset of 0.5°C ±2.4 and there is no statistically difference between vegetation types 368 

(Fig. 7B). The standard deviation in ∆TMA of ±2.4 is well in line with the RMSE of 5.0 for the 369 

global calibration dataset (Peterse et al., 2012). 370 

 371 
Fig. 6. (A) Correlation between climate station TMA and reconstructed (MBT’-CBT-derived) 372 

TMA. For comparison, the global calibration dataset from Peterse et al. (2012) is shown. The 373 

black line indicates the 1:1 relationship. (B) Boxplots of ∆TMA (refers to reconstructed TMA-374 

TMA from climate stations) in the different vegetation types from our transect study. Box plots 375 

show median (red line), interquartile range (IQR) with upper (75%) and lower (25%) quartiles, 376 

lowest whisker still within 1.5IQR of lower quartile, and highest whisker still within 1.5IQR of 377 

upper quartile, dots mark outliers. Abbreviations: con = coniferous forest sites (n=9); dec = 378 

deciduous forest sites (n=14); grass = grassland sites (n=6). 379 

 380 

3.5 Apparent fractionation of δ2H and δ18O in the different vegetation types 381 

The δ2H values could be obtained for n-alkanes C27, C29 and C31 in all samples and additionally 382 

at two locations for n-C25 and n-C33 at six other locations. The δ2Hn-alkane values, calculated as 383 

mean of n-C25 to n-C31 δ
2H, ranges from -156 to -216‰. Pooled standard deviations show an 384 

overall average of 3.6‰. The δ18Osugar values, calculated as the area weighted means for 385 

arabinose and xylose, ranges from 27.7 to 39.4‰. The average weighted mean standard 386 

deviation is 1.4‰. The compound-specific isotope data is summarized along with the 387 

calculations in Tab. S4.  388 
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Apparent fractionation (εn-alkane/precipitation) is on the order of -120 to -150‰, i.e. a bit less than 389 

the biosynthetic fraction of -160‰. This implies that evapotranspirative enrichment is ~ 10 to 390 

40‰ (Fig. 7A). εn-alkane/precipitation is lower for grass sites compared to the forest sites. Differences 391 

are significant between deciduous and grass sites (p-value = 0.005). This finding supports the 392 

results of other studies (Kahmen et al., 2013; Liu and Yang, 2008; McInerney et al., 2011), and 393 

can be named “signal damping”. Grasses do not only incorporate the evaporatively-enriched 394 

leaf water only but also unenriched leaf water in the growth and differentiation zone of grasses 395 

(Gamarra et al., 2016; Liu et al., 2017).  396 

The grass-derived hemicellulose sugar biomarkers do not fully record the evapotranspirative 397 

enrichment of the leaf water, either, as indicated by lower apparent fractionation (εsugar/precipitation) 398 

in Fig. 7B. The differences are significant between forest and grass sites (p-value < 0.005). This 399 

is in agreement with a study on cellulose extracted from grass blades (Helliker and Ehleringer, 400 

2002), and again, the “signal damping” can be explained with incorporation of enriched leaf 401 

water and non-enriched stem water.  402 

Based on the comparison of evapotranspirative enrichment between forest and grass sites, the 403 

“signal damping” can be quantified to be ~ 31% for the hemicellulose sugars, and ~ 49% for 404 

the n-alkanes. This is in agreement with other studies that reported a loss of 22% of the leaf 405 

water enrichment for hemicellulose sugars (Helliker and Ehleringer, 2002) and 39 to 62% loss 406 

of the leaf water enrichment for n-alkanes (Gamarra et al., 2016).  407 

 408 

Fig. 7. Apparent fractionation (A) εn-alkane/precipitation and (B) εsugar/precipitation. Biosynthetic 409 

fractionation factors according to section 2.4.2. Box plots show median (red line), interquartile 410 

range (IQR) with upper (75%) and lower (25%) quartiles, lowest whisker still within 1.5IQR 411 

of lower quartile, and highest whisker still within 1.5IQR of upper quartile, dots mark outliers. 412 

Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11 and 14 413 

for n-alkanes and sugars, respectively); grass = grassland sites (n=4 and 6 for n-alkanes and 414 

sugars, respectively). The figure conceptually illustrates the effect of biosynthetic fractionation 415 

and evapotranspirative enrichment as well as “signal damping”.  416 

 417 

3.6 δ2H/δ18Osource-water reconstructions  418 

The δ2H versus δ18O diagram shown in Fig. 8 graphically illustrates the reconstruction of 419 

δ2H/δ18Oleaf-water (colored dots) from δ2Hn-alkane/δ
18Osugar (crosses), as well as the reconstruction 420 
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of δ2H/δ18Osource-water (black dots). For reconstructing δ2H/δ18Osource-water, LELs with an average 421 

slope of 2.8 ±0.1 (Eq. 10) can be generated through every leaf water point and the intercepts of 422 

these LELs with the GMWL. 423 

 424 
Fig. 8. δ2H vs. δ18O diagram illustrating δ2Hn-alkane and δ18Osugar, reconstructed δ2H/δ18Oleaf-water 425 

(according Eqs. 8 and 9) and reconstructed δ2H/δ18Osource-water in comparison to GIPR/OIPC-426 

based δ2H/δ18Oprecipitation. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous 427 

forest sites (n=11); grass = grassland sites (n=4). 428 

 429 

The reconstructed δ2H/δ18Osource-water results can be compared with the δ2H/δ18OGIPR/OIPC data 430 

(Fig. 9). This comparison reveals that the coupled δ2Hn-alkane-δ
18Osugar approach yields more 431 

accurate δ2H/δ18Osource-water results than hitherto applied δ2Hn-alkane single isotope approaches. 432 

However, the range of the reconstructed δ2H/δ18Osource-water values is clearly larger than in 433 

δ2H/δ18OGIPR/OIPC values. δ2H is systematically underestimated by ~ 21‰ ±22 (Fig. 9B) and 434 

δ18O by ~ 2.9‰ ±2.8 (Fig. 9D). The type of vegetation seems to be not particularly relevant (p-435 

value = 0.18 for ∆δ2H and p-value = 0.34 for ∆δ18O). Nevertheless, the systematic offsets tend 436 

to be lowest for the decidous sites (∆δ2H/∆δ18O is closer to zero with ~-5‰ ±15 and ~-1.1‰ 437 

±2.1), followed by grass sites (~-14‰ ±20 and ~-2.1‰ ±2.6). In comparison, the coniferous 438 

sites show the largest offsets (~-23‰ ±26 for ∆δ2H ~-3.0‰ ±3.3 for ∆δ18O). Differences are, 439 

however, not statistically significant. The systematic offset and the large variability might have 440 
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more specific reasons, and we suggest that this is related to the type of vegetation. Deciduous 441 

trees produce lots of leaf waxes and sugars (e.g. Prietzel et al., 2013; Zech et al., 2012a), and 442 

all biomarkers reflect and record the evapotranspirative enrichment of the leaf water (e.g. 443 

Cernusak et al., 2016; Tuthorn et al., 2014). The coupled approach and the leaf water 444 

reconstruction based on the n-alkane and sugar biomarkers thus works well. However, 445 

coniferous trees produce quite low amounts of n-alkanes (Diefendorf and Freimuth, 2016; Zech 446 

et al., 2012a), while sugar concentrations are as high as in other vascular plants (e.g. Hepp et 447 

al., 2016; Prietzel et al., 2013). For the coniferous soil samples this means that the n-alkanes 448 

stem most likely from the understory whereas the sugars originate from grasses and coniferous 449 

needles. When the understory is dominated by grass species then the n-alkane biomarkers do 450 

not record the full leaf water enrichment signal, whereas the sugars from the needles do. The 451 

reconstructed leaf water for the coniferous sites is therefore too negative concerning δ2H, and 452 

reconstructed δ2H/δ18Osource-water values thus also become too negative (Fig. 8). Concerning the 453 

grass sites the following explanation can be found. Correcting for “signal damping” makes the 454 

reconstructed leaf water points more positive and shifts them in Fig. 8 up and right. As the 455 

“signal damping” is stronger for δ2H than for δ18O the corrected leaf water points are now above 456 

the uncorrected ones. The corrected leaf water points leads to more positive reconstructed 457 

δ2H/δ18Osource-water values for the grass sites.  458 

Vegetation type specific rooting depths could partly cause the overall high variability in 459 

reconstructed δ2H/δ18Osource-water. Deep rooting species most likely use the water from deeper 460 

soil horizons and/or shallow ground water, which is equal to the (weighted) mean annual 461 

precipitation (e.g. Herrmann et al., 1987). Shallow rooting plants take up water from upper soil 462 

horizons, which is influenced by seasonal variations in δ2H/δ18Oprecipiation and by soil water 463 

enrichment (Dubbert et al., 2013). Thus, the overall assumption that the source water of the 464 

plants reflects the local (weighted) mean precipitation might be not fully valid for all sites. 465 

Moreover, a partly contribution of root-derived rather than leaf-derived sugar biomarkers in our 466 

topsoil samples is very likely. This does, by contrast, not apply for n-alkanes, which are hardly 467 

produced in roots (Zech et al., 2012b and the discussion). 468 
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 469 
Fig. 9. Correlation of reconstructed δ2H/δ18Osource-water vs. precipitation δ2H/δ18OGIPR/OIPC (A and 470 

C). Black lines indicate 1:1 relationship. Differences between reconstructed source water and 471 

precipitation (∆δ2H/δ18O = δ2H/δ18Osource-water - δ2H/δ18OGIPR/OIPC) for the three different 472 

vegetation types (B and D). Box plots show median (red line), interquartile range (IQR) with 473 

upper (75%) and lower (25%) quartiles, lowest whisker still within 1.5IQR of lower quartile, 474 

and highest whisker still within 1.5IQR of upper quartile. Abbreviations: con = coniferous 475 

forest sites (n=9); dec = deciduous forest sites (n=11); grass = grassland sites (n=4). 476 

Moreover, the high variability within the vegetation types could be caused by variability in εbio 477 

of 2H in n-alkanes, as well as 18O in sugars. There is an ongoing discussion about the correct 478 

εbio for 18O in hemicellulose sugars (Sternberg, 2014 vs. Zech et al., 2014), and εbio is probably 479 

not constant over all vegetation types. This translates into errors concerning leaf water 480 

reconstruction and thus for reconstructing δ2H/δ18Osource-water values (Eq. 9 and Fig. 8). 481 

Likewise, the εbio values reported in the literature for 2H of n-alkanes can be off from -160‰ 482 

by tens of permille (Feakins and Sessions, 2010; Tipple et al., 2015; Feakins et al., 2016; 483 

Freimuth et al., 2017). The degree to which hydrogen originates from NADPH rather than leaf 484 

water is important, because NADPH is more negative (Schmidt et al., 2003). The wide range 485 

in biosynthetic 2H fractionation factors is therefore also related to the carbon and energy 486 

metabolism state of plants (Cormier et al., 2018). 487 
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3.7 RH reconstruction  488 

Reconstructed RHMDV ranges from 34 to 74%, while RHMDV from climate station data range 489 

from 61 to 78% (Fig. 10A). Biomarker-based values thus systematically underestimate the 490 

station data (ΔRHMDV = -17% ±12; Fig. 10B). Yet the offsets are much less for deciduous tree 491 

and grass sites (ΔRHMDV = -10% ±12 and -7% ±9, respectively). The offsets for the coniferous 492 

sites are -30% ±11, and significantly larger than for the deciduous and grass sites (p-values < 493 

0.05).  494 

Too low reconstructed RHMDV values for the coniferous sites make sense in view of the 495 

previously discussed option that soils contain n-alkanes from the understory (which is 496 

dominated by grass species), while sugars stem from needles and grasses. As explained earlier 497 

already, the “signal damping” leads to too negative reconstructed δ2Hleaf-water (whereas δ18O is 498 

affected less by the “signal damping”), and too negative δ2Hleaf-water translates into 499 

overestimated d-excess and underestimated RH values. In Fig. 8, a correction for this require 500 

moving the coniferous leaf water data points upwards towards more positive δ2H values, thus 501 

the distance between the leaf water and the source water is reduced. 502 

The underestimation of RH for the deciduous and grass sites could be partly associated with the 503 

use of the GMWL as baseline for the coupled δ2Hn-alkane-δ
18Osugar approach. The deuterium-504 

excess of the LMWLs is generally lower than the +10‰ of the GMWL, while the slopes of the 505 

LMWLs are well comparable to the GMWL (Stumpp et al., 2014). In addition, if soil water 506 

evaporation occurred before water uptake by the plants, this would lead to an underestimation 507 

of biomarker-based RHMDV values. It can be furthermore assumed that plant metabolism is 508 

highest during times with direct sunshine and high irradiation, i.e. during noon at sunny days. 509 

The relevant RH could therefore be lower than the climate station-derived RHMDV. Indeed, 510 

already climate station RHMDV is considerable lower than RHMA and RHMV (Tab. S1). 511 

 512 

Fig. 10. (A) Comparison of reconstructed (biomarker-based) RHMDV values and climate station 513 

RHMDV data. The black line indicates the 1:1 relationship. (B) Differences between 514 

reconstructed and climate station RHMDV values (∆RHMDV = reconstructed – climate station 515 

RHMDV) for the three different vegetation types along the transect. Abbreviations: con = 516 

coniferous forest sites (n=9); dec = deciduous forest sites (n=11); grass = grassland sites (n=4). 517 

https://doi.org/10.5194/bg-2019-197
Preprint. Discussion started: 29 May 2019
c© Author(s) 2019. CC BY 4.0 License.

B. Manuscript 2: Hepp et al. (2019b)

95



18 

 

The uncertainty of reconstructed RHMDV values are large for all three investigated vegetation 518 

types, and again these uncertainties are probably also related to εbio, which is most likely not 519 

constant as assumed for our calculations. Moreover, microclimate variability is underestimated 520 

in our approach. As mentioned in sections 2.4.2 and 3.6, in the coupled approach not only the 521 

source water of the plants is equated with (weighted) mean annual precipitation, but also an 522 

isotopic equilibrium between the source water and the (local) atmospheric water vapour is 523 

assumed. However, in areas with distinct seasonality this might be not fully valid. To account 524 

for this lack of equilibrium between precipitation and local atmospheric water vapour, apparent 525 

ε values can be calculated with data from Jacob and Sonntag, (1991). As shown by Hepp et al. 526 

(2018) those values can be used to achieve alternative RH reconstructions based on the coupled 527 

δ2Hn-alkane-δ
18Osugar approach. Such calculated RHMDV values are on average 1.5% more 528 

negative than the original values. However, this difference in RH is far below the analytical 529 

uncertainties of the compound-specific biomarker isotope analysis. 530 

Finally, the integration time of the investigated topsoils has to be discussed. Unfortunately, no 531 
14C dates are available for the soil samples. However, most likely the organic matter has been 532 

built up over a longer timescale than the available climate data, which is used for comparison. 533 

In combination with vegetation changes/management changes throughout that period, this 534 

could surely lead to a less tight relationship of the reconstructions compared to the climate 535 

station data. Root input of arabinose and xylose seems to be of minor relevance in our topsoil 536 

samples. Otherwise, the reconstructed δ18Osugar values would be too negative resulting in 537 

RHMDV overestimations, which is not observed. 538 

 539 

4 Conclusions  540 

We were able to show that 541 

(i) the vegetation type does not significantly influence the brGDGT concentrations and 542 

proxies, yet the coniferous sites tend to have higher brGDGT concentrations, BIT 543 

indices and CBT/MBT’ ratios, while grass sites tend to be lowest. 544 

(ii) CBT faithfully records soil pH with a median ∆pH of 0.6 ±0.6, The CBT 545 

overestimates the real pH particularly at the forest sites.   546 

(iii) CBT-MBT’-derived TMA reflect the climate station-derived TMA values with a 547 

median ∆TMA of 0.5°C ±2.4, but again slightly too high reconstruction for the forest 548 

sites were observed. 549 

(iv) differences in the apparent fractionation between the investigated vegetation types 550 

are caused by “signal damping”, i.e. the grasses do not see and record the full 551 

evaporative enrichment of leaf water. 552 

(v) the reconstructed δ2H/δ18Osource-water reflects the δ2H/δ18OGIPR/OIPC with a systematic 553 

offset for δ2H of ~-21‰ ±22 and for δ18O of ~-2.9‰ ±2.8 (based on overall medians 554 

of ∆δ2H/δ18O). This is caused by too negative reconstructions for coniferous and 555 

grass sites. For coniferous sites, this can be explained with n-alkanes originating 556 

from understory grasses, and for the grass sites the “signal damping” more effect 557 

δ2H than δ18O. This leads to too negative reconstructed δ2Hleaf-water values and thus 558 

to too negative δ2H/δ18Osource-water reconstruction.  559 
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(vi) reconstructed (biomarker-based) RHMDV values tend to underestimate climate 560 

station-derived RHMDV values (ΔRHMDV = ~ -17% ±12). For coniferous sites the 561 

underestimations are strongest, which can be explained with understory grasses 562 

being the main source of n-alkanes for the investigated soils under coniferous 563 

forests. 564 

Overall, our study highlights the great potential of GDGTs and the coupled δ2Hn-alkane-δ
18Osugar 565 

approach for more quantitative paleoclimate reconstructions. Taking into account effects of 566 

different vegetation types improves correlations and reconstructions. This holds particularly 567 

true for the coupled δ2Hn-alkane-δ
18Osugar approach, which is affected by “signal damping” of the 568 

grass vegetation. Assuming constant biosynthetic fractionation is likely a considerable source 569 

of uncertainty. Climate chamber experiments would be very useful to further evaluate and refine 570 

the coupled δ2Hn-alkane-δ
18Osugar approach, because uncertainties related to microclimate 571 

variability can be reduced. Field experiments like ours suffer from the fact that biomarker pools 572 

in the sampled topsoils may have been affected by past vegetation and climate changes.  573 
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Supplementary figures 1 

 2 

 3 

 4 

Fig. S1. Comparison between δ18OGIPR/OIPC values vs. PMA for the three different vegetation 5 

types along the transect. All data points are marked with the location names. Abbreviations: 6 

con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11); grass = grassland sites 7 

(n=4). 8 

9 
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 10 

Fig. S2. Comparison between δ18OGIPR/OIPC values vs. location altitudes for the three different 11 

vegetation types along the transect. The red line represents the regression line throughout all 12 

German sites. All data points are marked with the location names. Swedish and Danish sites are 13 

boarded in black. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest 14 

sites (n=11); grass = grassland sites (n=4). 15 

Fig. S3. Comparison between δ18OGIPR/OIPC values vs. TMA for the three different vegetation 16 

types along the transect. The red line represents the regression line throughout all sites. 17 

Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11); grass = 18 

grassland sites (n=4). 19 
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Fig. S4. δ2HGIPR/OIPC vs. δ18OGIPR/OIPC diagram along the transect. The black line represents the 20 

global meteoric water line (GMWL; δ2H = 8 × δ18O +10; Dansgaard, 1964). 21 

 22 

Based on the values quoted in the Tabs. S1 and S2, 18O is plotted as functions of the reported 23 

environmental parameters (climate station PMA, location altitude and TMA; Figs. S1 to S3). 24 

It is worth to note that the five points representing Danish and Swedish sites (L12 to L16) form 25 

a separate group in Figs. S2 and S3, with clear more negative 18O values. All other 26 

(continental) sites show a regular altitude effect (decreasing 18O values with increasing 27 

altitude; red trend in Fig. S3). All Danish and Swedish isotope signatures of precipitation are 28 

shifted from the trend line by ca 2 to 2.5‰ towards more negative 18O values. One would 29 

rather expect more enriched values due to relative proximity to the sea. It should be noted that 30 

those values were derived from OIPC, while the 18O data for the German sites is derived from 31 

GNIP/ANIP data (see section 2.2 for more details). 32 

The precipitation 18O shows the expected relationship with TMA (Fig. S4). The slope of this 33 

relationship (ca. 0.54‰/°C) is in the range of the slope of -T spatial relationship observed at 34 

mid latitudes of the northern hemisphere (e.g. Rozanski et al., 1993). 35 

It is apparent from the above Fig. S5 that the data points plot along the GMWL. Only more 36 

positive 18O values cluster below the line, indicating most probably some evaporation 37 
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enrichment effects (partial evaporation of raindrops and/or evaporation effects in the rain 38 

gauges). 39 

 40 

Fig. S5. Structures of brGDGTs and Crenarchaeol mentioned. 41 

 42 
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a b s t r a c t

Our understanding of African paleoclimate/hydrological history is mainly based on lake level and lake
sediment studies. It improved during the last decade thanks to emerging stable isotope techniques such
as compound-specific deuterium analysis of sedimentary leaf wax biomarkers (d2Hleaf-wax). Here we
present the results from a multi-proxy biomarker study carried out on a ~100 ka loess-like paleosol
sequence preserved in the Maundi crater at ~2780 m a.s.l. on the southeastern slopes of Mt. Kilimanjaro
in equatorial East Africa.

The Maundi stable isotope records established for hemicellulose-derived sugars, lignin- and pectin-
derived methoxyl groups, leaf wax-derived fatty acid and n-alkane biomarkers (d18Osugars, d2Hmethoxyl

groups, d2Hfatty-acids and d2Hn-alkanes, respectively) reveal similar patterns, but also some distinct differences
are obvious. The periods from ~70 to 60 ka, the Last Glacial Maximum (LGM) and the Younger Dryas (YD)
are characterized by more positive d values, whereas during the Holocene, and around 30, 39, and 56 ka
BP more negative d values are determined. The application of a ‘coupled d2Hn-alkane-d18Osugar paleo-
hygrometer’ approach allows us to derive information about Late Quaternary changes of air relative
humidity at the Maundi study site. Reconstructed changes of mean day-time relative humidity (RHD) are
in good agreement with pollen results from the study area. Apart from the overall regional moisture
availability, the intensification versus weakening of the trade wind inversion, which affects the diurnal
montane atmospheric circulation on the slopes of Mt. Kilimanjaro, is suggested as a local factor which
may contribute to the observed variability of RHD at Maundi study site.

The combined usage of d2Hn-alkanes and d18Osugars allowed us to reconstruct d2H/d18O of source water
utilized by plants in the study area, which is directly linked to local precipitation. The results of this
reconstruction caution against a straightforward interpretation of d2Hleaf-wax and d18Osugars records as
proxies for isotopic composition of local precipitation because variable and primarily RH-dependent
isotopic evaporative enrichment of leaf water can mask changes of d2Hprec/d18Oprec in the past. The
biomarker-based d2H/d18Osource-water records derived for the Maundi site revealed a discernible link with
the reconstructed RHD record; lower RHD values were generally observed during periods characterized
by more negative d2H/d18Osource-water values, indicating a reverse relationship with the expected pre-
cipitation amount. This indicates that the empirical relationship between amount of rainfall and its
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isotopic composition, observed nowadays on monthly timescale in the East African region, might not be
valid on millennial time scale.

© 2017 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

East Africa and its Late Quaternary climate and vegetation his-
tory has received much attention during the last decades. Evidence
for dramatic environmental and hydrological changes come from
various types of archives, such as ice cores (Thompson et al., 2002)
and glacial deposits (Mark and Osmaston, 2008; Shanahan and
Zreda, 2000), lake sediments (e.g. Berke et al., 2012; Cockerton
et al., 2015; Gasse, 2000; Gasse et al., 2008; Scholz et al., 2007;
Street-Perrott et al., 2004; Trauth et al., 2003; Verschuren et al.,
2009) and marine sediments (e.g. Schefuß et al., 2011; Tierney and
deMenocal, 2013). The equatorial and northern East Africa, as well
as the east Saharan region, experienced multiple lake level high-
stands and humid conditions, especially during the Early Holo-
cene (African Humid Period - AHP). The East African monsoon is
responsible for rainy periods in East Africa and is controlled by low-
latitude insolation changes occurring on orbital timescales. How-
ever, the forcing of the East African monsoon on millennial time-
scales is still a matter of debate. Evidence for precession forcing,
including half-precession effects, have been presented in numerous
studies (e.g. Trauth et al., 2003; Verschuren et al., 2009). However,
many influencing factors and controlling mechanisms on East Af-
rican paleoclimate are not yet fully understood. This concerns the
teleconnection with high-latitude boundary conditions, for
instance during the Younger Dryas period, the possible influence of
the Indian Ocean Dipole (IOD) and the El Ni~no Southern Oscillation
(ENSO) phenomena, and the possible influence of a migrating
Congo air boundary (Abram et al., 2007; Casta~neda et al., 2007;
Konecky et al., 2011; Schefuß et al., 2011; Stager et al., 2011;
Tierney et al., 2008, 2011). The multitude of possible controls of
East African climate in the past stimulate the ongoing research
efforts addressing exact timing, abruptness and spatial/temporal
variability of East African monsoon precipitation.

During the last decade, the hydrogen isotopic composition of
sedimentary leaf waxes (d2Hleaf-wax) became a widely used proxy
that was also explored in East African paleoclimate/hydrological
archives. There are two major assumptions underlying most in-
terpretations of d2Hleaf-wax records originating from this region.
First, d2H values of leaf waxes extracted from lake sediments reflect
the isotopic composition of paleoprecipitation (d2Hprec) (e.g.
Konecky et al., 2011; Tierney et al., 2010, 2011). Second, d2Hleaf-wax
records retrieved from sedimentary archives can be interpreted in
terms of an ‘amount effect’, as inferred from modern precipitation
in the tropics (e.g. Schefuß et al., 2005, 2011; Tierney et al., 2008;
Tierney and deMenocal, 2013).

However, the first assumption may not be as robust as previ-
ously thought. For instance, the 2H content of leaf wax-derived n-
alkane biomarkers, studied in a modern topsoil climate transect
along the southern slopes of Mt. Kilimanjaro, does not follow the
expected ‘altitude effect’ for d2H of local precipitation (Zech et al.,
2015). The n-alkanes were rather found to reflect the isotopic
composition of leaf water (d2Hleaf-water), as it was previously sug-
gested by Kahmen et al. (2013). Given that 2H-enrichment of leaf
water strongly depends on relative air humidity (Farquhar et al.,
2007; Flanagan et al., 1991; Roden et al., 2000), large changes of
this parameter may thus mask climatically-driven fluctuations of
d2Hprec.

The second assumption is based on the observation that for

present-day climate monthly means of d2Hprec (d18Oprec) values in
the tropics are inversely correlated with the precipitation amount
collected at a given site (e.g. Rozanski et al., 1993). This is also true
for East Africa (Rozanski et al., 1996). However, on an inter-annual
basis, which is the relevant timescale for (paleo-)climatic consid-
erations, such correlation is very poor or not-existent, at least for
the East African region (Rozanski et al., 1996), and validation of a
long-term ‘amount effect’ is in fact lacking for this area. Alterna-
tively, Konecky et al. (2011) suggested that moisture source and
transport history dominated the d2Hleaf-wax record at Lake Malawi,
whereas rainfall amount played a secondary role.

In order to overcome ambiguities associated with the in-
terpretations of d2Hleaf-wax records, Zech et al. (2013) suggested a
coupled d2Hn-alkane-d18Osugar biomarker approach, where d18Osugar
is determined by compound-specific d18O-analyses of the
hemicellulose-derived sugar biomarkers, such as arabinose, fucose,
xylose and rhamnose (Zech and Glaser, 2009). This coupled
approach opens up new possibilities: (i) in combination with
known biosynthetic fractionation factors (εbio) it enables the
reconstruction of the isotopic composition of leaf water [d2Hleaf-

water ¼ d2Hleaf-wax - εbio (n-alkanes); d18Oleaf-water ¼ d18Osugars - εbio
(sugars)]. (ii) The evapotranspirative 2H and 18O enrichment of leaf
water e characterized by the deuterium-excess of leaf water e can
be used to quantify relative humidity of the local atmosphere for
the periods when stomata are open and the transpiration process is
in operation. Relative air humidity appears to be a decisive factor
controlling the extent of this isotope enrichment. Finally, (iii) the
intersect of the local leaf water evaporation line (LLEL) with the
local meteoric water line (LMWL) can be used to reconstruct d2H/
d18O source water values more robustly than previously done,
based on d2Hleaf-wax records alone. Recently, Tuthorn et al. (2015)
validated this coupled d2H-d18O biomarker approach by applying
it to an Argentinean climate topsoil transect. Their findings
corroborate that the ‘coupled d2Hn-alkane-d18Osugar paleohygr-
ometer’ is a promising proxy for reconstructing day-time relative
humidity of local atmosphere (RHD).

The aim of this study was (i) to establish a multi-proxy stable
isotope biomarker record spanning the last ~ 100 ka by investi-
gating a loess-like paleosol sequence from the Maundi crater sit-
uated on the southeastern slopes of Mt. Kilimanjaro, equatorial East
Africa, (ii) to compare the Maundi d2Hn-alkane record with the d2H
records of fatty acids and lignin-/pectin-derived methoxyl groups
(d2Hfatty-acid and d2Hmethoxyl, respectively) as well as with published
d2H biomarker records from East African lakes, (iii) to reconstruct
the past history of the RHD at the Maundi study site using the
‘coupled d2Hn-alkane-d18Osugar paleohygrometer’, and (iv) to recon-
struct and interpret the d2H/d18Osource water record for the Maundi
loess-like paleosol sequence in terms of paleoclimate.

2. Materials and methods

2.1. Study area e the Maundi crater

A detailed description of the study area, as well as an age-depth
model of the Maundi loess-like paleosol sequence, were previously
presented by Schüler et al. (2012). In brief, Maundi is an ancient
volcanic crater of ~60 m diameter and 20e30 m depth that is
located on the southeastern slopes of Mt. Kilimanjaro at ~2780 m
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a.s.l. (Fig. 1; 3�10027.500S, 37�31005.800E). The surrounding vegetation
represents the transition from closed forest (upper montane forest)
to open Erica bush (subalpine heathland) (Fig. 1b). The bottom of
the crater is occupied by a seasonal swamp, which only holds
standing water during the rainy season (Schüler et al., 2012). There
are two rainy seasons in the area caused by the seasonal migration
of the ITCZ (Fig. 1a); the long rainy season fromMarch to May with
subsequently prevailing southeasterly trade winds and the short
rainy season from November to December with subsequently pre-
vailing northeasterly trade winds. Apart from seasonal climate
variability, pronounced diurnal atmospheric circulation changes
are observed along the slopes of Mt. Kilimanjaro (Appelhans et al.,
2015; Duane et al., 2008; Pepin et al., 2010). Strong upslope mois-
ture transport occurs during the day, whereas downslope transport
and drying occurs at night. The study site is located above the RH
maxima of the montane zone, as depicted by Fig. 1c. Mean annual
precipitation at Maundi is ~1800 mm and mean annual tempera-
ture is about 9 �C (Hemp, 2006b). Mean day-time temperature from
a close-by meteorological field station is slightly higher at ~14 �C
(cf. Appelhans et al., 2015).

During the Late Quaternary, the Maundi crater served as trap for
aeolian and colluvial sediments. In July 2007, samples were taken
from a 240 cm deep soil pit and additionally from further down to
646 cm depth using a piston corer. While Schüler et al. (2012)
established their age-depth model by adapting a linear trend line
through all 11 available calibrated AMS radiocarbon ages, we chose

a linear interpolation between each individual 14C data for the
upper 3 m of the sequence and a linear extrapolation for the lower
part of the sequence (Fig. 2). The extrapolation suggests that the
lowermost part of the core at 6.46m depthmay be as old as ~100 ka
BP. Pollen, total organic carbon (TOC) and glycerol dialkyl glycerol
tetraether (GDGT) biomarker results were published previously by
Schüler et al. (2012) and Zech et al. (2012). The position of sugar,
methoxyl and leaf wax (fatty acids and n-alkanes) samples are
shown in Fig. 2.

2.2. Biomarker and compound-specific d18O/d2H analyses

A total of 38 samples were prepared for d18O analyses of
hemicellulose-derived sugar biomarkers according to Zech and
Glaser (2009) at the Department of Soil Physics and the Chair of
Geomorphology at the University of Bayreuth. In brief, the hemi-
celluloses were hydrolytically extracted with 4 M trifluoroacetic
acid (TFA) (Amelung et al., 1996); the extracted sugars were cleaned
using XAD-7 and Dowex 50WX8 columns; the purified sugars were
freeze-dried and afterwards derivatized by adding methylboronic
acid (MBA; 4mg in 400 ml pyridine) and heating for 1 h at 60 �C. The
compound-specific d18O measurements were performed at the
Institute of Agronomy and Nutritional Sciences, Soil Biogeochem-
istry, Martin-Luther University Halle-Wittenberg, using a Trace GC
2000 gas chromatograph (GC; Thermo Fisher Scientific, Bremen,
Germany) coupled to a Delta V Advantage isotope ratio mass

Fig. 1. a) Overview map of Africa depicting the study area Mt. Kilimanjaro, Tanzania. The black star shows the location of Maundi crater. Blue stars indicate locations of Lake Malawi,
Lake Tanganyika, and Lake Challa. The dashed lines represent approximate positions of the ITCZ during August and January, respectively. b) North-south profile of the western slope
of Mt. Kilimanjaro, showing the three volcanic cones Shira, Kibo and Mawenzi as well as the main altitudinal zones, vegetation types and the Maundi crater. 1: colline (savanna)
zone; 2: submontane zone with Croton-Calodendrum forest; a: coffee-banana plantations in the submontane zone on the southern slope; b: submontane gorge forests on the
southern slope; 3: lower montane zone with Cassipourea forests on the northern slope and Agauria-Syzygium-Ocotea forests on the southern slope; 4: middle montane zone with
Cassipourea forests on the northern slope and Ocotea forests on the southern slope; 5: upper montane zone with Juniperus forests on the northern slope and Podocarpus-Ocotea
forests on the southern slope; 6: subalpine zone with Juniperus forests on the northern slope and Podocarpus forests on the southern slope; 7: subalpine zone with heathlands (Erica
bush); 8: lower alpine zone with Helichrysum cushion vegetation; 9: upper alpine and nival zone, mainly bare of vegetation (modified according to Hemp, 2006a). c) Relative
humidity map illustrating the characteristic altitudinal hillside RH gradients and the RH maxima in the montane zone (red double arrow) (Appelhans et al., 2015; modified).
Subfigures a) and b) reprinted and modified according to Schüler et al. (2012). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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spectrometer (IRMS; Thermo Fisher Scientific, Bremen, Germany)
via an 18O-pyrolysis reactor and a GC/TC III interface (Thermo Fisher
Scientific, Bremen, Germany). While arabinose, fucose and xylose
yielded peak areas that were high enough for robust peak in-
tegrations in the chromatograms, rhamnose was excluded from
further data evaluation due to too low peak areas. Mean standard
errors for triplicate measurements of all 38 samples are 0.90‰,
1.46‰ and 0.97‰ for arabinose, fucose and xylose, respectively. The
three sugars yielded very similar results with correlation co-
efficients ranging from 0.6 to 0.8 (p < 0.001; n ¼ 38). In the
following, we use the weighted mean d18O values of arabinose,
fucose and xylose and refer to as d18Osugars, relative to Vienna

Standard Mean Ocean Water (VSMOW).
Laboratory work for the leaf wax analyses on 74 samples and

compound-specific d2H measurements followed standard proced-
ures at the Department of Geological Sciences, Brown University. In
brief, free lipids were extracted using accelerated solvent extraction
(Dionex ASE 200) with dichloromethane (DCM) and methanol
(MeOH, 9:1). Lipids were separated over pipette columns filled
with aminopropyl silica gel (Supelco, 45 mm). n-Alkanes were
eluted with hexane, polar lipids with DCM and MeOH (1:1), and
fatty acids with acetic acid in diethyl ether (1:19). The fatty acids
were methylated using 5% acetyl chloride in methanol of a known
isotopic composition, yielding the corresponding fatty acid methyl

Fig. 2. Left: Stratigraphy of the Maundi loess-like paleosol sequence (modified according to Zech et al., 2012). (f)Ah: (fossil) dark soil horizons; Bv: weathered, brown soil horizons;
Bhv: weathered, dark brown soil horizons; assumed tephra layers: yellowish smeary sandy silt (presumably strongly weathered tephra layers); and position of sugar (blue dots),
methoxyl (black dots) and leaf wax (fatty acids as green dots and n-alkanes as magenta dots) samples. Middle: Total organic carbon (TOC) depth profile. Right: Revised age-depth
model (black line) based on 11 calibrated AMS radiocarbon data (modified according to Schüler et al., 2012). Red squares display the calibrated 14C data with associated mea-
surement uncertainties and uncertainty band (thin red lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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esters (FAMEs). These were recovered by liquid-liquid extraction
using hexane and further purified over silica columns. Quantifica-
tion of the leaf wax-derived long-chain n-alkanes and n-fatty acids
was done on a HP 6890 GC coupled to a flame ionization detector
(Agilent, Santa Clara, CA, USA). Compound-specific d2H measure-
ments of the n-alkanes n-C29 and n-C31 and the n-fatty acids n-C26
and n-C28 (dominant peaks/compounds and considered to derive
from terrestrial higher plants) were performed on a GC-Pyrolysis-
IRMS system consisting of HP 6890 GC coupled to a DeltaPLUSXL
(Thermo-Quest Finnigan, Bremen, Germany). Mean standard errors
for triplicate measurements of all 74 n-alkane samples were 0.9‰
and 1.1‰ for n-C29 and n-C31, respectively, and 0.9‰, each, for the
fatty acids n-C26 and n-C28 measured in triplicate for 45 samples.
During the course of the measurements the H3

þ factor stayed con-
stant. The d2H results of the n-alkanes n-C29 and n-C31 correlate
with R ¼ 0.6 (p < 0.001); their weighted mean values are reported
in the following as d2Hn-alkanes, relative to VSMOW. The d2H results
of the fatty acids n-C26 and n-C28 correlate with R¼ 0.8 (p < 0.001);
their mean values are reported as d2Hfatty-acids, corrected for the
methyl group added during methylation and also relative to
VSMOW.

Although methoxyl groups are not specific compounds sensu
stricto, they originate mostly from lignin and/or pectin. Given that
their d2H values (d2Hmethoxyl) were found to reflect d2Hprec, d2Hme-

thoxyl was recently suggested as a paleoclimate proxy (Anh€auser
et al., 2014; Keppler et al., 2007). The respective analysis was
described previously by Greule et al. (2008). In brief, methoxyl
groups are converted to gaseous methyl iodide (CH3I) by the
addition of hydroiodic acid (HI) and heating of the samples to
130 �C for 30 min. The d2Hmethoxyl measurements for the Maundi
samples were performed using an HP 6890N GC (Agilent, Santa
Clara, CA, USA) equipped with an A200S auto-sampler (CTC Ana-
lytics, Zwingen, Switzerland), coupled to a DeltaPLUSXL IRMS
(Thermo-Quest Finnigan, Bremen, Germany) via a pyrolysis reactor
and a GC Combustion III interface (Thermo-Quest Finnigan, Bre-
men, Germany).

3. The coupled d2H-d18O biomarker paleohygrometer and
reconstruction of d18O and d2H of source water

The coupled d2Hn-alkane-d18Osugar approach was previously
described in detail by Zech et al. (2013) and Tuthorn et al. (2015).
Leaf water undergoes evaporation through stomata openings. This
process is associated with equilibrium and kinetic isotope effects,
which causes isotopic enrichment of leaf water (Dongmann et al.,
1974). Due to its small dimensions, the leaf water reservoir at
evaporation sites quickly reaches isotope steady-state in which the
isotopic composition of water vapor leaving the leaf surface is
identical to the isotopic composition of the ‘source’ water pumped
by plants from the ground in the course of the transpiration process
(Flanagan et al., 1991; Roden and Ehleringer, 1999). In most cases
the water used up by plants is directly linked through soil water
and shallow groundwater to the local precipitation.

If the isotope steady-state of the leaf water reservoir is assumed,
its 2H and 18O isotope composition can be then calculated using a
‘terminal lake analogue’ (cf. Zech et al., 2013 adopted from Gat and
Bowser, 1991):

dleaf�waterydsource�water þ ð1� hNÞε* þ Dε (1)

where dleaf-water and dsource-water is the isotopic composition of leaf
water and source (transpired) water, respectively, expressed in (‰),
hN is the relative humidity of the local atmosphere, normalized to
the leaf water temperature; ε* ¼ (1e1/aL/V)103 is the equilibrium
isotope enrichment where aL/V stands for equilibrium isotope

fractionation between the liquid and gaseous phase (‰), and Dε is
the kinetic isotope enrichment [D18

ε ¼ Ck
18(1 e hN); D2

ε ¼ Ck
2(1 e

hN)] where Ck
18, Ck2 stand for kinetic enrichment parameters, for 18O

and 2H, respectively.
When d2Hleaf-water and d18Oleaf-water values are known, the d-

excess parameter for the leaf water reservoir (dleaf-water) undergoing
evaporation, defined as d ¼ d2H e 8 $ d18O, can be calculated using
Eq. (1):

dleaf�water ¼ dsource�water þ ð1� hNÞ
�
ε
*
2 � 8$ε*18 þ C2

k � 8$C18
k

�

(2)

where dsource-water is the d-excess of the source water. It is apparent
from Eq. (2) that the d-excess of leaf water is primarily controlled
by the relative humidity of the local atmosphere when stomata are
open and the transpiration process is in operation.

If the d-excess of leaf water is quantified through d2H and d18O
measurements of relevant biomarkers and the d-excess of source
water is known or can be assumed, the relative humidity of the
local atmosphere can be estimated from Eq. (2):

hN ¼ 1� Dd
ε
*
2 � 8$ε*18 þ C2

k � 8$C18
k

(3)

where Dd ¼ dleaf-water e dsource-water stands for the difference of the
d-excess values of the leaf water and the source water. Although
kinetic enrichment parameters, Ck, can vary widely depending on
the aerodynamic conditions characterizing a given evaporation
process, maximum values of those parameters (25.1‰ and 28.5‰
for Ck2 and Ck

18, respectively; Merlivat, 1978) seem to be most suit-
able for leaf water evaporation (see Zech et al. (2013) for further
discussion). Equilibrium isotope enrichments, ε2* and ε18*, as a
function of temperature can be calculated using empirical equa-
tions (Horita and Wesolowski, 1994; Majoube, 1971). It is to be
noted here that evaporation of leaf water takes place when stomata
are open i.e. during photosynthetic activity of a plant. While the
biomarkers are synthesized during day-time in C3 plants, which are
of relevance here, the relative humidity defined by Eq. (3) (hN) is in
fact a proxy for day-time relative humidity (RHD) of the local at-
mosphere seen by transpiring plants.

Equation (3) provides a useful tool to establish relative humidity
records from sedimentary archives provided that: (i) 2H and 18O
isotope composition of leaf water reservoir can be reconstructed
using the measured d values of n-alkanes and sugars and respective
biosynthetic fractionation factors (εbio), and (ii) the d-excess of local
source water (precipitation) can be evaluated. As far as point (i) is
considered, we are aware that the biosynthetic fractionation factors
for biosynthesis of n-alkanes and sugars in plants are strictly
speaking not constant, however, we consider the respective εbio
values not to be substantially variable (Sternberg, 2014 vs. Zech
et al., 2014a). We therefore apply an εbio value of �160‰ for
reconstructing d2Hleaf-water frommeasured d2H of n-alkanes (Sachse
et al., 2006; Sessions et al., 1999) and an εbio value of þ27‰ for
reconstructing d18Oleaf-water from measured d18O of sugars
(Cernusak et al., 2003; Gessler et al., 2009; Schmidt et al., 2001;
Sternberg et al., 1986; Yakir and DeNiro, 1990). Note that inter-
species variation in the fractionation between leaf water and leaf
wax d2H (Kahmen et al., 2013), as well as other potentially bio-
logical processes related to their life forms can influence the
hydrogen isotope composition of plant leaf water (Shu et al., 2008),
besides leaf water enrichment. This represents further potentially
uncertainty sources when using leaf wax d2H to reconstruct leaf
water d2H (and therefore ultimately the d2H of source water, see
below).
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The reconstruction of the isotopic composition of leaf water and
the day-time relative humidity values using Equations (1)e(3) are
also based on the assumption that sugars and n-alkanes derive their
18O and 2H isotope composition from leaf water at the evaporation
sites. This is where carbohydrate metabolism and gas exchange
take place (e.g. Roden and Ehleringer, 1999; Sachse et al., 2012).
Although the leaf water reservoir is isotopically not-uniform
(Flanagan et al., 1991; Roden and Ehleringer, 1999; Santrucek
et al., 2007), we assume that measured d18Osugars and d2Hn-alkanes
values are essentially controlled by d18O and d2H of leaf water at the
sites where it undergoes evaporation and that are described by the
‘terminal lake’ approach applied here. The standard uncertainty of
the reconstructed RHD values [Eq. (3)], derived from the uncer-
tainty propagation law and the analytical uncertainties of the
measured d2Hn-alkanes and d18Osugars, varies between 3 and 20%
(Table 1). This uncertainty does not include uncertainties associ-
ated with the adopted values of the biosynthetic fractionation
factors, and the uncertainties associated with the simplifying as-
sumptions discussed above.

If not measured, the isotopic composition of the source water
can be evaluated when the slope of the local leaf water evaporation
line (LLEL) is known and the local meteoric water line is defined by
direct measurements or can be assumed. The slope of LLEL can be
obtained from Eq. (1):

Sleaf�water ¼
d2LW � d2SW

d18LW � d18SW
¼ ð1� hNÞε*2 þ Dε2

ð1� hNÞε*18 þ Dε18
¼ ε

*
2 þ C2

k

ε
*
18 þ C18

k

(4)

It is worth mentioning here that, with the simplifying assump-
tions underlying Eqs. (1) and (4), i.e. full isotope steady-state of the
leaf water reservoir undergoing evaporation and isotopic equilib-
rium at ground-level temperature between sourcewater utilized by
plants and the local atmospheric water vapor, the slope of LLEL
depends only on equilibrium and kinetic fractionation for both
isotopes. Slight temperature dependence of the slope is hidden in
the temperature dependence of the equilibrium fractionation fac-
tors for 2H and 18O. Assuming present day-time mean surface air
temperature for the elevation of Maundi site (þ14 �C, cf. Appelhans
et al., 2015), the slope of LLEL calculated using Eq. (4) is equal to
2.83. Lowering this temperature by 5 �C, to account for a possible
drop of surface air temperature during the glacial period (Sacred
Lake, Mt. Kenya: Loomis et al., 2012; Lake Malawi: Woltering et al.,
2011; Congo Basin: Weijers et al., 2007; Lake Tanganyika: Tierney
et al., 2008; Burundi highlands: Bonnefille et al., 1992), increases
the slope derived from Eq. (4) to 2.94. Low LLELs slopes (~2.5 or
even lower) were measured in some field studies, too (e.g. Allison
et al., 1985; Flanagan et al., 1991). To account for possible un-
certainties we therefore generated d2H/d18Osource water records for

Table 1
Weighted mean d2H values of leaf wax-derived n-alkanes (n-C29 and n-C31) and weighted mean d18O values of hemicellulose-derived sugars (arabinose, fucose, and xylose).
The reported uncertainties represent the weighted mean standard uncertainties. Also calculated/reconstructed d2H/d18Oleaf-water, deuterium-excessleaf-water, mean day-time
relative humidities (RHD), and d2H/d18Osource-water values are displayed. The reported uncertainties of deuterium-excessleaf-water and RHD represent expanded uncertainties
calculated using the uncertainty propagation law.

Measured Calculated/Reconstructed

Depth
[cm]

Age
[ka BP]

d2Hn-alkanes

[‰]
d18Osugars

[‰]
d2Hleaf-water

[‰]
d18Oleaf-water

[‰]
deuterium-excessleaf-water

[‰]
RHD

[%]
d2Hsource-water

[‰]
d18Osource-water

[‰]

6.5 0.7 �157.3 ± 1.0 36.4 ± 0.9 3.2 9.1 �70.0 ± 7.0 58 ± 7 �41.0 �7.0
12.5 1.4 �159.3 ± 1.7 34.2 ± 1.0 0.9 7.0 �55.0 ± 8.0 65 ± 8 �35.8 �6.3
25.0 3.5 �159.3 ± 1.1 34.0 ± 0.9 0.8 6.8 �54.0 ± 7.0 66 ± 7 �35.2 �6.3
35.0 6.1 �161.0 ± 1.7 32.6 ± 1.2 �1.1 5.5 �45.0 ± 9.0 70 ± 9 �32.4 �5.9
47.5 7.2 �170.7 ± 0.9 33.6 ± 1.6 �12.7 6.5 �64.0 ± 13.0 60 ± 13 �54.2 �8.6
60.0 8.1 �165.6 ± 1.0 35.1 ± 1.1 �6.7 7.9 �70.0 ± 9.0 58 ± 9 �51.0 �8.2
73.5 8.9 �166.6 ± 1.3 36.7 ± 1.2 �7.9 9.4 �83.0 ± 9.0 51 ± 9 �59.2 �9.2
82.0 9.7 �158.5 ± 1.2 35.7 ± 0.8 1.8 8.5 �66.0 ± 6.0 60 ± 6 �40.5 �6.9
91.0 10.8 �155.8 ± 0.7 41.3 ± 1.3 5.0 13.9 �106.0 ± 11.0 40 ± 11 �58.3 �9.1
98.5 11.6 �156.0 ± 1.3 38.2 ± 1.6 4.7 10.9 �82.0 ± 13.0 51 ± 13 �46.2 �7.6
107.0 12.6 �153.1 ± 1.2 38.3 ± 0.5 8.2 11.0 �80.0 ± 5.0 53 ± 5 �41.3 �7.0
117.0 13.8 �149.6 ± 0.6 36.9 ± 1.1 12.4 9.6 �64.0 ± 9.0 60 ± 9 �29.1 �5.5
126.0 14.8 �158.0 ± 1.5 38.0 ± 0.4 2.4 10.7 �84.0 ± 3.0 51 ± 3 �49.1 �8.0
135.0 15.9 �152.4 ± 1.4 37.5 ± 0.5 9.0 10.2 �73.0 ± 4.0 56 ± 4 �37.0 �6.5
150.0 17.7 �148.2 ± 0.5 42.0 ± 0.4 14.0 14.6 �103.0 ± 4.0 41 ± 4 �47.7 �7.8
157.5 18.6 �147.6 ± 1.1 41.0 ± 0.4 14.8 13.6 �94.0 ± 4.0 46 ± 4 �42.1 �7.1
165.0 19.4 �151.6 ± 0.7 37.8 ± 0.9 10.0 10.5 �74.0 ± 7.0 55 ± 7 �36.7 �6.4
175.0 20.3 �154.5 ± 1.3 41.3 ± 0.5 6.5 13.9 �105.0 ± 5.0 40 ± 5 �56.1 �8.9
185.0 21.2 �154.0 ± 0.1 42.0 ± 1.1 7.2 14.6 �110.0 ± 9.0 38 ± 9 �58.1 �9.1
225.0 29.4 �154.7 ± 0.4 32.9 ± 1.2 6.4 5.8 �40.0 ± 10.0 73 ± 10 �22.3 �4.6
247.5 33.6 �153.1 ± 1.7 40.9 ± 1.5 8.2 13.5 �100.0 ± 12.0 43 ± 12 �52.0 �8.3
280.0 38.6 �155.0 ± 1.9 34.1 ± 0.7 5.9 6.9 �49.0 ± 6.0 68 ± 6 �27.7 �5.3
310.0 43.5 �159.1 ± 1.7 37.7 ± 0.6 1.0 10.4 �83.0 ± 5.0 51 ± 5 �49.9 �8.1
361.0 52.1 �147.3 ± 1.2 35.2 ± 1.8 15.1 8.0 �49.0 ± 14.0 68 ± 14 �18.3 �4.1
381.0 55.5 �146.9 ± 2.1 31.9 ± 0.7 15.5 4.8 �23.0 ± 6.0 81 ± 6 �4.2 �2.4
418.0 61.8 �138.3 ± 1.8 36.5 ± 0.7 25.8 9.2 �48.0 ± 6.0 69 ± 6 �7.1 �2.7
428.0 63.5 �133.8 ± 1.3 46.7 ± 1.7 31.1 19.2 �122.0 ± 14.0 31 ± 14 �40.7 �6.9
435.5 64.8 �141.7 ± 0.9 37.2 ± 1.0 21.8 10.0 �58.0 ± 8.0 64 ± 8 �16.3 �3.9
443.0 66.0 �137.4 ± 1.7 46.8 ± 2.4 26.9 19.3 �127.0 ± 19.0 29 ± 19 �47.5 �7.8
453.0 67.7 �144.2 ± 1.0 33.3 ± 1.3 18.8 6.1 �30.0 ± 10.0 77 ± 10 �4.9 �2.5
463.0 69.4 �142.0 ± 1.0 40.4 ± 0.7 21.5 13.1 �83.0 ± 5.0 51 ± 5 �29.8 �5.6
482.0 72.6 �154.5 ± 1.4 39.1 ± 1.1 6.6 11.8 �88.0 ± 9.0 49 ± 9 �47.0 �7.7
503.0 76.2 �148.7 ± 0.4 35.0 ± 0.7 13.4 7.8 �49.0 ± 5.0 68 ± 5 �19.9 �4.3
533.0 81.3 �151.8 ± 0.4 37.9 ± 0.5 9.7 10.6 �75.0 ± 4.0 55 ± 4 �37.4 �6.5
558.0 85.5 �156.3 ± 0.5 36.2 ± 1.2 4.4 8.9 �67.0 ± 10.0 59 ± 10 �38.4 �6.6
588.0 90.6 �158.2 ± 0.5 36.2 ± 0.6 2.1 9.0 �70.0 ± 5.0 58 ± 5 �42.1 �7.1
625.0 96.9 �153.0 ± 0.5 35.6 ± 1.6 8.4 8.4 �59.0 ± 13.0 63 ± 13 �30.1 �5.6
638.5 99.2 �154.3 ± 0.8 37.6 ± 1.4 6.7 10.4 �76.0 ± 12.0 55 ± 11 �40.9 �7.0
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the Maundi site using three different LLEL slopes: 2.50, 2.75 and
3.00.

The local meteoric water line (LMWL) derived for precipitation
collected on the southern slopes of Mt. Kilimanjaro is d2H ¼ 8.0 $

d18O þ 14.8 (Zech et al., 2015). The intersection of LLEL drawn
through the data point representing present-day leaf water at
Maundi site (reconstructed using the uppermost sample from
6.5 cm depth; Fig. 2; Table 1), with the LMWL noted above, should
provide a good estimation of modern source water at the site.
Analogous procedures can be repeated for all reconstructed leaf
water data points shown in Fig. 3, leading to a reconstruction of
local d2H/d18O source water values for the entire time span covered
by the investigated loess-like paleosol sequence. This in turn can be
linked to temporal variations of d2H and d18O of local precipitation
at the study area.

It should be noted that the slope and intercept (d-excess) of
LMWL for Maundi site most likely have not been constant during
the time period covered by the investigated loess-like paleosol
sequence. This potentially affects both our reconstructed RHD
values and d2H/d18Osource-water records for the Maundi site. How-
ever, the variability of d-excess of precipitation recorded in
Greenland and Antarctic ice cores during the last 100 ka was not
larger than ±4‰ (Masson-Delmotte et al., 2005; Stenni et al., 2010).
This is much smaller compared to the standard uncertainty of the
reconstructed d-excess values of leaf water. The latter was calcu-
lated using the analytical uncertainties of the measured d18Osugar
and d2Hn-alkane, plugged into the uncertainty propagation law. The
calculated uncertainties of the d-excess values of leaf water were in
the range from 3.4‰ to 19.5‰ (Table 1).

2H and 18O isotope composition of the global ocean fluctuated
during the Quaternary, responding to climatically-controlled net
transfer of water between the global ocean and the cryosphere.
During glacial periods, with the global cryosphere at its maximum,
the ocean became isotopically enriched. The maximum extent of

this isotope enrichment was evaluated to be around one per mil for
18O (Schrag et al., 1996, 2002). Since the zero point of the d scale
used for measurements of the isotopic composition of water is
defined by the VSMOW standard, which is close to present-day
mean isotope composition of the global ocean, appropriate
correction is needed when isotopic composition of precipitation
(dprec) for the glacial period is reconstructed and comparedwith the
present-day dprec values. We applied the correction procedure ac-
cording to Stenni et al. (2010) which assumes that local factors can
be ignored and the d-excess of seawater is set to zero during
transitions from glacial to interglacial conditions. The seawater
d18O record from Bintanja et al. (2005) was used. This record rep-
resents the benthic stack from Lisiecki and Raymo (2005), compiled
from 57 globally distributed marine sediment cores, corrected for
deep water temperature changes.

4. Results and discussion

4.1. The Maundi multi-proxy stable isotope records (d18Osugars,
d2Hmethoxyl, d

2Hfatty-acids, d
2Hn-alkanes)

The stable isotope records plotted on a time axis are illustrated
in Fig. 4. The d18Osugars values show great variability during the last
100 ka BP ranging fromþ31.9 toþ46.8‰ (Fig. 4; Table 1). While the
Holocene is characterized by a d18Osugars minimum (þ32.6
to þ36.7‰), the Younger Dryas (YD) and the Last Glacial Maximum
(LGM, from 17.5 to 26.5 ka BP, according to Schüler et al., 2012; Clark
et al., 2009; respectively) show distinct d18Osugars maxima
(YD: þ38.2e41.3‰; LGM: þ37.8e42.0‰). The pre-LGM portion of
the record reveals a pronounced d18Osugars minimum around 30, 38
and 56 ka BP (þ32.9‰, þ34.1‰ and þ31.9‰) and a pronounced
d18Osugars maximum around 34 ka BP (40.9‰). The most positive
d18Osugars values occur between 60 and 70 ka BP (peaks
with þ46.7‰ and þ46.8‰).

The d2Hmethoxyl record (Fig. 4), ranging from �160.6 to �74.3‰
(excluding the uppermost data point), has the most positive values
between 60 and 73 ka BP (�106.9 to �74.3‰). Although much less
pronounced, the YD and the LGM are also characterized by elevated
d2Hmethoxyl values (YD: �120.1 to �116.1‰; LGM: �115.5
to�108.4‰). d2Hmethoxyl shows onlyminor variability between 17.5
and 40 ka and a pronounced negative shift for the youngest part of
the sequence comprising the modern topsoil (�224‰; cf. Fig. 4). In
contrast to the older sections of the core, the bulk of the topsoil
consists mainly of organic matter (TOC > 30%, whereas most other
section show TOC between 5 and 10%; cf. Fig. 2) and potentially
includes a large fraction of methoxyl groups e.g. from wood lignin
(with more negative d2Hmethoxyl values). Under tropical conditions
these components might be readily available for decomposition by
wood rooting fungi. However, the reasons for the observed large
shift of the d2Hmethoxyl of the topsoil and the higher range shown in
the Maundi d2Hmethoxyl values (~80‰; cf. Fig. 4) compared to the
d2Hfatty-acid and d2Hn-alkane records (~40‰) are currently unclear. In
contrast to leaf waxes, which are known to record only a fraction of
the leaf water evapotranspirative enrichment (cf. Section 4.3;
Gamarra et al., 2016), a higher sensitivity of the methoxyl groups
could possibly explain the larger variability.

The d2Hfatty-acid values range from �161.3 to �126.1‰ (Fig. 4)
resembling well the variability of d2Hn-alkane values ranging
from �170.7 to �133.9‰ (Fig. 4; Table 1). There is a good overall
agreement between the n-alkanes and the fatty acids (R ¼ 0.7;
p < 0.001). Both records reveal pronounced d2H minima during the
early Holocene, slight maxima during the YD and the LGM, little
variability during the pre-LGM period and, like the d18Osugar and the
d2Hmethoxyl records, more positive values between 60 and 70 ka BP.

The uppermost sample of the Maundi loess-like paleosol

Fig. 3. d2H versus d18O diagram illustrating the coupled d2Hn-alkane-d18Osugar approach
to reconstruct mean day-time relative humidity values and isotopic composition of
plant source water. Data points are plotted for measured d2Hn-alkane/d18Osugar values
(crosses), for reconstructed d2H/d18Oleaf water values (open circles) and for recon-
structed d2H/d18Osource water/prec values (filled circles). Accordingly, (i) d2H/d18Oleaf-water

is calculated from the n-alkane and sugar biomarkers using biosynthetic fractionation
factors, (ii) the distance of leaf water to the local meteoric water line (LMWL) e

expressed as deuterium-excess e is used to calculate day-time air relative humidity
(RHD), and (iii) d2H/d18Osource-water is calculated as intersect of the local leaf water
evaporation lines (LLEL) with the LMWL (modified according to Zech et al., 2013).
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sequence, reflecting the modern topsoil, yielded d2Hfatty-acid and
d2Hn-alkane values of �151‰ and �156‰, respectively (Fig. 4). For
comparison, Peterse et al. (2009) reported on d2Hleaf-wax values
of �133‰ for topsoils at this altitude on the southern slopes of Mt.
Kilimanjaro and Zech et al. (2015) reported on d2Hn-alkanes values
of ~ �140‰ for topsoils from the same transect and altitude. Given
their similarity, the Maundi d2Hfatty-acid and d2Hn-alkane records can
both be interpreted as reflecting Maundi d2Hleaf-wax record.

4.2. Comparison of the Maundi d2Hleaf-wax records with other
equatorial East African d2Hleaf-wax records

Compared to other equatorial East African d2Hleaf-wax records,
theMaundi record is characterized by overall more negative d2Hleaf-

wax values (Fig. 4). The mean d2Hfatty-acid and d2Hn-alkane values for
Maundi are �145‰ and �153‰, respectively, whereas mean
d2Hleaf-wax values for Lake Challa (Tierney et al., 2011), Lake Tan-
ganyika (Tierney et al., 2008) and Lake Malawi (Konecky et al.,
2011) are �105‰, �104‰ and �108‰, respectively. This can be
attributed to differences in elevation of those sites: Maundi is
located at 2780 m a.s.l., whereas Lake Challa, Lake Tanganyika and
Lake Malawi are located at 880 m a.s.l., 773 m a.s.l. and 474 m a.s.l.,

respectively. This corresponds to a total difference of ~47‰ for
~2100m, and thus to a d2Hleaf-wax lapse rate of�22.4‰ km�1, which
is in good agreement with reported d2Hprec lapse rates ranging from
~ -10-40‰ km�1 according to Aragu�as-Aragu�as et al. (2000). ForMt.
Cameroon and Mt. Kilimanjaro, Gonfiantini et al. (2001) and Zech
et al. (2015) found d2Hprec lapse rates of �14.1‰ km�1 (entire
altitude span of ca. 4000 m) and �14.9‰ km�1 (above ca. 2000 m
a.s.l.), respectively.

Apart from this overall offset, which is well understood, the
Maundi d2Hleaf-wax record has one striking feature in commonwith
Lake Challa and Lake Tanganyika d2Hleaf-wax records, namely a
pronounced d2Hleaf-wax minimum during the early Holocene as part
of the AHP.While this also occurs further north at the Horn of Africa
(Tierney and deMenocal, 2013), it is much less pronounced in Lake
Malawi and even reversed further south in the catchment of the
Zambezi River (Schefuß et al., 2011). This discrepancy dividing
central tropical from southern tropical East Africa, has been
referred to as the ‘meteorological equator’ or the ‘climate hinge
zone’ (e.g. Gasse, 2000; Gasse et al., 2008; Konecky et al., 2011, and
references therein), which is represented by a lateral boundary
broadly between the Lakes Tanganyika and Malawi. This zone
separates the northern equatorial region and the proposed anti-

Fig. 4. The stable isotope records of Maundi comprising d18Osugars, d2Hmethoxyl, d2Hfatty-acids and d2Hn-alkanes results and comparison with other equatorial East African d2Hleaf-wax

records. 1) from Tierney et al. (2011), 2) from Tierney et al. (2008), 3) from Konecky et al. (2011). Running means are applied to the original data (7-point, 3-point and 5-point
averaging for Lake Challa, Lake Tanganyika and Lake Malawi, respectively) in order to enhance the comparability to the Maundi record. The blue bar highlights the time period
of the African Humid Period (AHP, from 5 to 15 ka BP; Junginger et al., 2014), the yellow bars highlight the time periods of the Last Glacial Maximum (LGM, from 17.5 to 26.5 ka BP;
according to Clark et al., 2009; Schüler et al., 2012) and the Younger Dryas (YD, from 10.3 to 12.9 ka BP). According to Rasmussen et al. (2014) the YD is defined from 11.7 to 12.9 ka
b2k in the Greenland ice cores. However, we suggest that considering the age uncertainties of the Maundi paleosol sequence and possible atmospheric and/or oceanic tele-
connective time lags, the Maundi d18Osugar maximum (10.8 ka cal BP according to the age-depth model) very likely corresponds with the YD. We therefore chose a wider age range of
10.3e12.9 ka BP for defining and depicting the YD in Figs. 4e6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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phase changes in the south, both insolation-driven paleo-
precipitation regimes (e.g. Patridge et al., 1997; Barker et al., 2002).
Higher amplitude in the Lake Tanganyika d2Hleaf-wax variability
since ~10 ka BP compared to those of Lake Challa andMaundimight
indicate a feedbackmechanism associatedwith a variable Lake Kivu
(1460 m a.s.l.) discharge (Cohen et al., 1997; Felton et al., 2007).
Accordingly, higher precipitation amounts might result in more
terrestrial organic material formed at higher elevations being
transported from the Lake Kivu catchment via the Ruzizi River into
Lake Tanganyika, thus leading tomore negative d2Hleaf-wax values in
the sediments of this lake. However, it is challenging to derive more
detailed paleoclimate implications from the Maundi d2Hleaf-wax
records alone due to the large number of processes influencing
them: e.g. moisture transport history (Konecky et al., 2011; Tierney
et al., 2011), precipitation amount (Schefuß et al., 2011, 2005;
Tierney et al., 2008; Tierney and deMenocal, 2013) and leaf water
enrichment caused by evapotranspiration (Kahmen et al., 2013;
Tierney et al., 2010). Therefore, the coupled d2Hn-alkane-d18Osugar

approach seems to be a valuable tool for (i) quantifying this leaf
water enrichment effect and (ii) getting the relative day-time hu-
midity and the isotopic composition of plant source water as new
paleoclimate proxies.

4.3. Day-time relative humidity history at Maundi

The reconstructed d-excess values of leaf water for the Maundi
profile range from �127 to �23‰ (Table 1), with the lowest value
recorded at ca. 66 ka and the highest at ca. 55 ka. Changes of RHD

mirror the changes of the d-excessleaf-water. The biomarker-based
day-time relative humidity record [RHD; derived from Eq. (3)]
from the Maundi paleosol sequence reveals large variability for the
last ~100 ka BP. RHD ranges from 29% to 81% (Fig. 5). The modern
topsoil sample (6.5 cm depth) yields an RHD value of 58% (±3.7%;
Table 1). For comparison, Pepin et al. (2010) reported for this
elevation on the southern slopes of Mt. Kilimanjaro, a higher mean
annual free-air relative humidity of approximately 65%. The
measured ground-level mean annual relative humidity values are
reported to be much higher, between 88% and 96% (Duane et al.,
2008; Appelhans et al., 2015; cf. Fig. 1c). This apparent discrep-
ancy is addressed below.

The proposed coupled ‘d2Hn-alkane-d18Osugar paleohygrometer’ is
prone to uncertainties resulting from analytical uncertainties of
d2Hn-alkane and d18Osugar measurements (Fig. 4) and the un-
certainties of d2Hn-alkane and d18Osugar biosynthetic fractionation
factors. Although we consider the temperature dependence of the
biosynthetic fractionation factors to be negligible (Zech et al.,
2014a), it is very likely that an εbio value of þ27‰ for reconstruct-
ing d18Oleaf-water from arabinose and xylose underestimates the true
εbio value (cf. Zech et al., 2014b, and discussion therein). A slightly
higher εbio value ofþ29‰would increase the reconstructed RHD for
the uppermost sample of Maundi from 58% to 66%. Similarly, an
increase of εbio for deuterium by 10‰ (from �160‰ to �170‰)
would lead to a corresponding increase of RHD by 6%. Therefore, the
reconstructed RHD values should be considered as minimum esti-
mates based on these considerations.

On the other hand, it might be worth trying to account for

Fig. 5. Reconstructed day-time relative humidity record (RHD) for the Maundi paleosol sequence. Error bars indicate expanded uncertainties derived from the uncertainty
propagation law. Also pollen records for Maundi site are shown (Schüler et al., 2012).
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variable contributions of grass-derived biomarkers, because it is
reported that grass-derived n-alkane and sugar biomarkers are not
(fully) sensitive for recording the evapotranspirative enrichment
signal of leaf water (Helliker and Ehleringer, 2002; McInerney et al.,
2011). This effect can be presumably explained with the grass leaf
growth from a basal intercalary meristem, where leaf water
enrichment is diluted by non-enriched stem water. Based on find-
ings of Helliker and Ehleringer (2002) we assumed that 35% of the
leaf water enrichment is lost during hemicellulose sugar biosyn-
thesis; and based on findings of Gamarra et al. (2016) and Kahmen
et al. (2013) we assumed that 50% of the leaf water enrichment is
lost/not seen during n-alkane biosynthesis of leaves. Assuming
furthermore that the Poaceae pollen concentration (Fig. 5) corre-
sponds to the Poaceae biomarker contribution (which is surely not
correct but may serve as rough approximation and is without
alternative at the current state of knowledge), an isotope mass
balance calculation can be applied. The thus “corrected” RHD record
(albeit underlying many assumptions and uncertainties) yields on
average 6.9% lower RHD values (Fig. 5, grey dotted line, maximum
offset 17.2% around 85 ka BP) than the uncorrected RHD record.
Nevertheless, these consideration and results overall corroborate
the robustness of our paleohygrometer approach and even amplify
most of the uncorrected RHD variability (Fig. 5).

Furthermore, as discussed above, the proposed paleohygr-
ometer is a proxy for mean day-time values of air relative humidity,
i.e. when stomata are open, the transpiration process is at its
maximum and biomarker synthesis takes place (e.g. Tuthorn et al.,
2015). The relative humidity of air on the slopes of Mt Kilimanjaro
exhibits strong altitudinal gradients with the maximum coinciding
well with the altitudinal precipitation maximum (Fig. 1c). Also, it is
subject to pronounced seasonal as well as diurnal variability
(Appelhans et al., 2015; Duane et al., 2008; Pepin et al., 2010).While
the seasonal variability of relative humidity is controlled by the
migration of the ITCZ, the strong diurnal variability of this param-
eter at Maundi site is caused by specific circulation patterns of the
local atmosphere, with upslope moisture transport during the day
and downslope transport and drying at night (see Fig. 11 in Pepin
et al., 2010). We suggest that the Maundi RHD record depicted in
Fig. 5 reflects the long-term variability of mean day-time values of
air relative humidity.

Finally, the apparent offset between the reconstructed RHD
values and the ground-level instrumental data, seen at Maundi site,
may largely stem from the fact that when biomarkers are bio-
synthesized predominantly within the canopy (Zech et al., 2015)
they will record canopy-level rather than ground-level relative
humidity values. As demonstrated by Graham et al. (2014) the
differences in morning-time (9 a.m.e12 p.m.) relative humidity
recorded in tropical forest at ground-level (0e5 m), and at canopy-
level (>5 m), may easily reach 20%. This would imply grasses to
record the higher ground-level relative humidity as opposed to
trees, which incorporate the lower canopy-level relative humidity
values. This effect points in the same direction as the correction
made above (due to relatively insensitive grasses concerning
recording leaf water evapotranspirative enrichment). Considering
high uncertainties associated to this correction, a further adjust-
ment seems not to be needed or is already covered.

The most outstanding feature of the lower part of the Maundi
RHD record shown in Fig. 5 is the reduction of this parameter during
the period from ca. 70 to 60 ka BP. This extreme drought period is
corroborated by the absence of pollen, which is interpreted in
terms of poor pollen preservation due to dry conditions (Schüler
et al., 2012). Within dating uncertainties, this pronounced
drought period might correspond to low stands of Lake Malawi
(Scholz et al., 2007) and Lake Challa (Moernaut et al., 2010).

Although the resolution of Maundi RHD record is relatively low

from 60 to 25 ka BP, the recorded variability of this parameter is
also corroborated by the Maundi pollen results (Fig. 5). The two
pronounced RHD maxima around ~55 and during the pre-LGM
around ~30 ka BP coincide with Poaceae minima, whereas humid-
indicating taxa of the Erica belt, the Afromontane forest and fern
and fungi spores reveal maxima. By contrast, the onset of the LGM
is characterized by a marked decline of the latter taxa and a marked
increase of the Poaceae taxa, in line with RHD minima; a first one
from ~22 to 20 ka BP and a second one around ~17.5 ka BP (Fig. 5).
The first minimum coincides with a lake level drop of Lake Tan-
ganyika of 300 m at around 21 ka BP (Gasse et al., 1989) or at
least ~ 260 m during the LGM (32-14 ka BP; McGlue et al., 2007),
while Lake Victoria was nearly desiccated at that time (Talbot and
Livingstone, 1989). Within dating uncertainties of the investi-
gated loess-like paleosol sequence, the second arid spell is consis-
tent with one of the most extreme lake-level low stands reported
for Lake Challa, dated to ~17.0e16.4/16.9e16.3 ka BP (Moernaut
et al., 2010; Verschuren et al., 2009).

A late glacial shift to more humid conditions is evident both in
the reconstructed Maundi RHD record and the pollen spectra. This
shift is in agreement with the onset of the AHP and equatorial East
African lake transgressions (Gasse, 2000; Junginger et al., 2014; and
references therein) as well as rainfall modeling results (Otto-
Bliesner et al., 2014). A pronounced arid spell during the YD is
only visible in the RHD record, not in pollen, which partly suffers
frompollen preservation in the upper part of the investigated loess-
like paleosol sequence. Such pronounced arid climatic conditions
during the YD seem to have been a widespread phenomenon in
East Africa (Gasse et al., 2008) and were for instance reported for
the close-by sedimentary record of Lake Challa (Tierney et al., 2011;
Verschuren et al., 2009).

The reconstructed RHD values increase during the Holocene and
reach a maximum during the middle Holocene. This is in accord
with pollen results showing a Poaceaemaximum and still moderate
abundance of Erica and Afromontane forest taxa during the early
Holocene. Only during the middle and the late Holocene, when the
AHP ended, the RHD record stays still high and the Afromontane
forest, fern and fungi taxa reach their maximum indicating very
humid conditions. The same Holocene climate history is recorded
in theWeruWeru pollen study site, located in the montane forest at
an elevation of 2650 m on the southern slopes of Mt. Kilimanjaro.
According to Schüler (2013), drought tolerant Cassipourea forests
prevailed here during the early Holocene. Over the course of the
Holocene montane forest taxa typical for the wetter southern
slopes, which also form the forests today, became more abundant
(Schüler, 2013). Lake levels in equatorial East African, reached their
maximum during the early Holocene and dropped over the course
of the Holocene (Gasse, 2000; Junginger et al., 2014; and references
therein). This apparent discrepancy is addressed in Section 4.5.

The uppermost sample, representing the modern topsoil, sug-
gests again more arid climatic condition (Fig. 5). This is well in
agreement with climate and environmental observations indi-
cating considerably decreasing amounts of precipitation and rela-
tive humidity on Mt. Kilimanjaro during the last century (Hemp,
2005; M€olg et al., 2009).

4.4. Reconstructed d2H/d18Osource-water and its paleoclimate
implications

Apart from reconstructing mean day-time relative humidity, the
coupled d2Hn-alkane-d18Osugar approach allows also the assessment
of d2H and d18O values of water used up by plants being the source
of biomarkers analysed in this study (cf. Fig. 3). In order to address
potential uncertainty of the reconstructed d2H/d18Osource-water
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values associated with the slope of the local leaf water evaporation
line (LLEL), we used three different values of this slope: 2.50, 2.75
and 3.00. The values of d2H/d18Osource-water reported in Table 1 were
derived with the slope of LLEL equal to 2.75. The reconstructed
Maundi d2H/d18Osource-water records are shown in Fig. 6. For com-
parison, the figure depicts also the RHD record and the d2H/d18Oleaf-

water record.
The modern topsoil sample of Maundi yields d2Hsource-water and

d18Osource-water values of �41‰ and �7‰, respectively using a LLEL
slope of 2.75 (Fig. 6; Table 1). A direct comparisonwith present-day
isotope precipitation signal at this site cannot be made due to the
lack of data. Modern d2H/d18Oprec values recorded on south-
western slopes of Mt. Kilimanjaro at the elevation of 2800 m
a.s.l., approximately 30 km to the west of Maundi, are significantly
less negative: ~ �22‰ and ~ �5‰, respectively (Zech et al., 2015).
This apparent offset may stem from local differences in altitude
gradient of d2H/d18Oprec, induced by differences in atmospheric
circulation and/or local moisture recycling (cf. discussion in Section
4.3). It is worth noting that the vertical extent of the montane
rainforest belt on the south-eastern slopes of Mt. Kilimanjaro is

significantly smaller than that observed at southern and south-
western slopes (Hemp and Beck, 2001), which may result in a
lower degree of moisture recycling and a higher d2H/d18Oprec alti-
tude gradient at the Maundi location.

It is also apparent from Fig. 6 that the reconstructed Maundi
d2H/d18Osource-water records do not closely resemble the corre-
sponding d2H/d18Oleaf-water records (and thus the biomarker re-
cords). The entire d18Osource-water record has a weak negative
correlationwith d18Osugars (R¼�0.26; p¼ 0.001); the correlation is
positive for d2Hsource-water and d2Hn-alkanes, yet the coefficient of
correlation is also quite low (R¼ 0.26; p < 0.001). This suggests that
changes in d18Osugar and d2Hleaf-wax records are to some extent
decoupled from changes in d2H/d18Oprec at least in those cases
where paleohumidity, and thus the isotopic enrichment of leaf
water, is highly variable.

4.5. Controls on paleohumidity and d2H/d18O of paleoprecipitation
on the southeastern slopes of Mt. Kilimanjaro

The Maundi paleohumidity record shows some broad

Fig. 6. Climatic records reconstructed for Maundi site. Left: Mean day-time relative air humidity (RHD). Error bars indicate expanded uncertainties derived from the uncertainty
propagation law. The grey dotted line depicts a “corrected” RHD record, that accounts for vegetation changes (contribution of grass-derived n-alkane and sugar biomarkers, see text
Section 4.3 for details). Middle: Record of d18Osource-water reconstructed using local leaf water evaporation line slope (LLEL) of 2.75 (blue and black error bars represent the confidence
interval calculated using LLEL slopes of 2.50 and 3.00, respectively) and d18O values of leaf water. The d18Osource-water curve corrected for ice-volume effect is also shown (in grey).
d18Oleaf-water is shown in green. Right: Record of d2Hsource-water reconstructed for a LLEL slope of 2.75 (blue and black error bars represent LLEL slopes of 2.50 and 3.00, respectively),
corrected for ice-volume effect. d2Hleaf-water is shown in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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similarities to previously published regional paleoprecipitation
records (East African lake-level history and local pollen records; cf.
Section 4.3). This suggests that one important factor for Maundi
RHD record is the overall regional moisture availability that is
associated with the precipitation provided by the East African
monsoon system. However, as mentioned above, discrepancies
appear betweenMaundi RHD record and the lake stand record. Lake
level high-stands during the early Holocene are followed by lake
level regressions during the late Holocene, whereas Maundi RHD
values reach their maximum only in the middle Holocene, in line
with the pollen records from the same site (Schüler et al., 2012) and
the WeruWeru study site at 2650 m a.s.l. (Schüler, 2013). This
apparent discrepancy can be reconciled by taking into account local
factors. M€olg et al. (2009) speculated that the altitudinal belt of
maximum precipitation, which is located at present at about
~2200m a.s.l. on the southern slopes ofMt. Kilimanjaro, might have
migrated vertically in the past. We propose that this belt, and thus
also the belt of maximum RHD, migrated uphill along the slopes of
Mt. Kilimanjaro in direction to the Maundi study site at ~2780 m
a.s.l. over the course of the Holocene. The vertical migration of the
belt could be controlled by increasing moisture availability and also
by variable inversione a concept described by Augstein et al. (1974)
as ‘trade wind inversion’ for the Atlantic Ocean. During the early
Holocene, the trade wind inversion of the southeast trades was
presumably strongly developed due to the 30�N summer insolation
maximum and thus enhanced latent heat transfer into the higher
atmospheric layers in the northern African tropics. As a conse-
quence of thewell-developed tradewind inversion during the early
Holocene, the diurnal thermal circulation on Mt. Kilimanjaro, and
thus also the cloud formation in the subalpine zone where the
Maundi study site is located, was suppressed (cf. Fig. 11 in Pepin
et al., 2010). However, the shifts in the Maundi RHD record does
not follow the maxima in equatorial or the Northern Hemisphere
summer insolation. The prominent drought period (ca. 70-60 ka BP,
Fig. 5) cannot be explained via orbital forcing either and its cause
remains unclear.

Concerning the factors controlling variability of d2H/d18O of
paleoprecipitation, a straightforward application of the ‘amount
effect’, as we know it from modern precipitation, may not be
applicable for the Maundi precipitation record. Apart from the fact
that a long-term/interannual isotope ‘amount effect’ in tropical
precipitation is by no means clear from the instrumental data
(Rozanski et al., 1996), an apparent positive correlation of RHD re-
cord with d2H/d18Osource-water is visible in the presented data (Fig. 6,
R ¼ 0.60; p < 0.001). This effect could be generated by the local
vegetation, particularly the montane rainforest. The isotopic
composition of transpiredmoisture is similar to that of plant source
water under steady-state conditions (e.g. Bariac et al., 1991;
Flanagan et al., 1991), thus being isotopically much heavier that
the vapor of marine origin. Along the southern slopes of Mt. Kili-
manjaro, d2Hprec has a local maximum in the montane rainforest at
about 2000e2200 m a.s.l. (Zech et al., 2015). This maximum can be
interpreted in terms of an increasing proportion of transpired, i.e.
isotopically enriched moisture. At Mt. Kilimanjaro, the montane
rainforest is an important atmospheric moisture source under
present climatic conditions (Pepin et al., 2010), and we suggest it
contributed also in the past to the precipitation at Maundi site, with
the importance varying in accordance with the fluctuation of its
size and vertical extent. This could explain that maxima of the
reconstructed RHD record generally coincide with an increase in
Afromontane pollen taxa and more isotopically enriched source
water (precipitation). During arid periods the Afromontane forest
belt descended and/or diminished, which resulted in more isoto-
pically depleted precipitation at the Maundi site. A rough

assessment based on modern d2Hprec transect presented in Fig. 3b
of Zech et al. (2015) shows that this local effect could be in the order
of 20‰ and 2.5‰ for d2Hprec and d18Oprec, respectively.

Apart from the local effect associated with montane rainforest,
changes in the isotopic composition of precipitation at Maundi site
could be also influenced by regional effects associated with the
regional biosphere as an important factor controlling moisture
recycling over the East African continent. Dry conditions at the
vicinity of Maundi site, as well as further south and southeast of Mt.
Kilimanjaro, towards the coast of the Indian Ocean, most probably
resulted in scarce vegetation and consequently a reduced source of
isotopically heavy water vapor for the regional atmosphere. This
would mean that even reduced precipitation during dry periods
might lead to higher effective rainout of moist air masses of marine
origin and the resulting depletion of heavy isotope content in
precipitation falling on the southern and eastern slopes of Mt.
Kilimanjaro. The importance of the biosphere-modulated recycling
of water for continental water balance is clearly seen in present-day
Europe. The gradient of d2H/d18Oprec across the European continent
during summer is nowadays significantly weaker than it would be
without the transpiration flux operated on continental scale
(Rozanski et al., 1982). Similar modulation of the extent of conti-
nental effect in d2H/d18Oprec, in response to varying biospheric
feedback, can be expected along the passage of East African
monsoon all the way to the Maundi site.

5. Conclusions

The Maundi loess-like paleosol sequence provides a valuable
paleoclimate/environmental archive roughly comprising the last
100 ka. We summarize our results as follows:

� The records of d18Osugars, d2Hmethoxyl, d2Hfatty-acids and d2Hn-alkanes
reveal similar patterns. The periods from ~70 to 60 ka, the LGM
and YD are characterized by relatively positive d values, whereas
during the Holocene relatively negative d values occurred. The
important differences comprise higher variability of the
d18Osugar record, timing of the Holocene minima, and larger
fluctuations in d2Hmethoxyl values, as well as a shift to very
negative values in the modern topsoil.

� Comparison of the Maundi d2Hleaf-wax record with other avail-
able equatorial East African d2Hleaf-wax records (Lake Challa, Lake
Tanganyika) shows that they all reveal distinct d2Hleaf-wax
minima within the AHP, but the pattern, timing and amplitude
are somewhat different. The most striking difference among
them is a clear regional ‘altitude effect’ resulting in the Maundi
d2Hleaf-wax record being shifted to more negative d values with
respect to those recorded in lake sediments.

� The various influences on d2Hleaf-wax records from East Africa
(e.g. moisture transport history, precipitation amount, evapo-
transpirative enrichment) challenge a straightforward inter-
pretation in terms of paleoclimate. We suggest that the coupled
d2Hn-alkane-d18Osugar approach could provide more robust prox-
ies, namely the day-time relative humidity (RHD) and the iso-
topic composition of plant sourcewater (d2H/d18Osource-water), by
accounting for the leaf water enrichment.

� The reconstructed day-time relative humidity record forMaundi
site is generally in agreement with the Maundi pollen results
(Schüler et al., 2012), suggesting arid climatic conditions from
~70 to 60 ka, during the LGM and the YD, whereas the pre-LGM,
the Late Glacial and the middle and late Holocene were char-
acterized by more humid climatic conditions. Apart from the
overall regional moisture availability, we suggest that the
intensification/weakening of the trade wind inversion, which
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affects the diurnal montane atmospheric circulation on the
slopes of Mt. Kilimanjaro, is a local process, whichmay influence
changes of relative humidity recorded at the Maundi study site.

� The results of the coupled d2Hn-alkane-d18Osugar approach pre-
sented here caution against directly interpreting d2Hleaf-wax (as
well as d18Osugar) records as proxies of d2Hprec (d18Oprec).
Changes in relative humidity and the resulting variations in
isotopic evapotranspirative enrichment of leaf water (Fig. 6) can
mask changes of d2Hprec (d18Oprec).

� Strong positive correlation between RHD and d2H/d18Osource-wa-

ter, observed at the Maundi site on millennial time scale (Fig. 6),
suggests that a straightforward application of the ‘amount ef-
fect’, as we know it from modern precipitation, cannot explain
the reconstructed isotopic composition of local precipitation.
Effects associated with the impact of local and regional
biosphere on the isotopic composition of atmospheric moisture
and precipitation need to be called on to understand d2H/
d18Osource-water records on millennial time scale. They involve
expansion/shrinking or complete disappearance of montane
rainforest on the southeastern slopes of Mt. Kilimanjaro as well
as expansion/shrinking of regional vegetation cover in response
to climatic changes in the region.

Clearly, further work is needed to improve our understanding of
isotope biomarkers records preserved in continental archive. This is
particularly true for the East African region.
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a b s t r a c t

One of the most important and at the same time most challenging issues in paleolimnological research is
the differentiation between terrestrial and aquatic sedimentary organic matter (OM). We therefore inves-
tigated the relative abundance of the sugars fucose (fuc), arabinose (ara) and xylose (xyl) from various
terrestrial and aquatic plants, as well as from algal samples. Algae were characterized by a higher abun-
dance of fucose than vascular plants. Our results and a compilation of data from the literature suggest
that fuc/(ara + xyl) and (fuc + xyl)/ara ratios may serve as complementary proxies in paleolimnological
studies for distinguishing between terrestrial and aquatic sedimentary OM.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Lake sediments are valuable, often continuous and potentially
high resolution, archives for studying past environmental and cli-
mate changes. This is highlighted by methods developed during
the last few decades based on compound specific 18O and 2H
results from hemicellulose/polysaccharide derived sugars and from
leaf wax/aquatic plant derived n-alkanes, respectively (e.g. Rach
et al., 2014; Zech et al., 2014b). Thereby, often one of the most cru-
cial questions and challenges (Meyers and Ishiwatari, 1993) is to
identify whether the origin of the sedimentary organic matter
(OM) is allochthonous (terrestrial) or autochthonous (aquatic).
The issue is typically addressed by way of different approaches
and proxies in paleolimnological studies.

For instance, the C/N ratio of sedimentary total OM is frequently
used to distinguish between algal and land derived material. This

proxy is based on the notion that land plants generally showmark-
edly higher C/N values than lacustrine plants (Meyers and
Ishiwatari, 1993). Further differentiation between input of C3 vs.
C4 land plants is possible on the basis of the stable carbon isotopic
composition (d13C; Meyers, 1994; Meyers and Lallier-Vergès,
1999). However, both d13C and C/N values of terrestrial OM are
affected by mineralization and degradation, resulting in more pos-
itive d13C values and lower C/N ratio (e.g. Zech et al., 2007). The lat-
ter could lead to a misinterpretation of soil OM transported by soil
erosion into lacustrine systems as being aquatic-derived sedimen-
tary OM. Similarly, other studies have demonstrated that the
hydrogen index and oxygen index (HI, OI; derived from Rock-
Eval analysis) may provide valuable information about the origin
of sedimentary OM (Talbot and Livingstone, 1989; Meyers and
Lallier-Vergès, 1999; Mügler et al., 2010). However, the indices
are strongly affected by oxidation of the sedimentary OM and in
addition strongly depend on the quality of terrestrial OM (waxy
OM vs. cellulose rich OM; Lüniger and Schwark, 2002). Additional
information and clarification about terrestrial vs. aquatic OM origin
may be provided by lipid biomarkers. This is realized mainly by

http://dx.doi.org/10.1016/j.orggeochem.2016.05.012
0146-6380/� 2016 Elsevier Ltd. All rights reserved.
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Table 1
Samples and concentrations of fucose (fuc), arabinose (ara) and xylose (xyl), sum of sugars (ara + fuc + xyl) and fuc/(ara + xyl) ratio. Median values of each group are given in the respective group row.

Sample Name Study site/origin Fucose Arabinose Xylose Sum of sugars
(ara + fuc + xyl)

Fuc/(ara + xyl)

(mg/g sample) (mg/g sample) (mg/g sample) (mg/g sample)

Terrestrial plants 0.54 26.20 21.75 50.42 0.01
BS_Acer Maple Lake Bichlersee 1.58 31.85 43.73 77.17 0.02
BS_Buche Beech Lake Bichlersee 0.00 32.93 66.98 99.91 0.00
BS_Fichte Spurce Lake Bichlersee 0.41 30.77 21.75 52.93 0.01
BS_Gras1 Grass unspec. Lake Bichlersee 0.00 268.45 512.35 780.81 0.00
BS_Gras2 Grass unspec. Lake Bichlersee 0.00 31.80 105.99 137.79 0.00
BS_Tanne Pine Lake Bichlersee 0.59 34.59 19.71 54.90 0.01
GM6 Leaves sample (under water) Lake Gemündener Maar 1.58 55.40 62.01 119.00 0.01
GM8 Leaves sample (shore area) Lake Gemündener Maar 0.47 22.13 27.82 50.42 0.01
B1 Blackberry Lake Holzmaar 0.54 10.49 10.68 21.71 0.02
B2 Blackberry Lake Holzmaar 0.38 10.28 12.77 23.42 0.01
B3 Blackberry Lake Holzmaar 1.02 20.43 26.05 47.50 0.02
B7 Blackberry Lake Holzmaar 0.17 9.57 19.20 28.95 0.00
B8 Blackberry Lake Holzmaar 0.64 12.07 14.47 27.18 0.02
HG1 Rose hip Lake Holzmaar 0.90 15.23 7.90 24.02 0.03
HG2 Rose hip Lake Holzmaar 0.87 26.20 19.99 47.06 0.01

Emergent plants 0.00 54.33 98.35 144.73 0.00
BS1 Reed Lake Bichlersee 0.00 179.24 608.63 787.87 0.00
BS4 Juncus Lake Bichlersee 0.00 39.16 88.34 127.51 0.00
BS5 Carex roots Lake Bichlersee 0.00 55.07 72.45 127.52 0.00
BS6 Carex leafs Lake Bichlersee 0.00 22.10 31.94 54.04 0.00
BS9 Emergent plant unspec. Lake Bichlersee 1.02 22.77 12.12 35.91 0.03
GM2 Cane green Lake Gemündener Maar 0.00 232.45 452.81 685.25 0.00
GM3 Cane dead Lake Gemündener Maar 0.00 192.54 445.21 637.75 0.00
GM4 Iris pseudacorus green Lake Gemündener Maar 0.00 17.35 37.50 54.84 0.00
GM5 Iris pseudacorus death Lake Gemündener Maar 0.00 57.25 136.54 193.79 0.00
HM_S1 Reed Lake Holzmaar 0.00 20.81 38.56 59.37 0.00
HM_S2 Reed Lake Holzmaar 0.00 23.70 57.70 81.40 0.00
HM_S3 Reed Lake Holzmaar 0.00 53.58 108.36 161.94 0.00
P3 Reed Pond near Rosenheim 0.00 108.91 390.74 499.66 0.00
P5 Carex Pond near Rosenheim 0.00 98.59 195.72 294.31 0.00

Mosses 0.54 17.66 18.45 36.65 0.02
BS7 Moss unspec. Lake Bichlersee 0.28 18.45 20.48 39.21 0.01
P2 Moss unspec. Pond near Rosenheim 0.81 16.86 16.41 34.08 0.02

Submerged aquatic plants 0.65 12.10 12.47 25.31 0.02
BS10 Water lily Lake Bichlersee 0.46 15.79 43.00 59.25 0.01
BS11 Submerse plant unspec. Lake Bichlersee 1.66 11.11 10.17 22.95 0.08
GM1 Submerse plant unspec. Lake Gemündener Maar 0.42 27.09 33.92 61.43 0.01
GM7 Water lily Lake Gemündener Maar 0.46 11.93 62.04 74.43 0.01
HF1 Submerse plant unspec. Lake Hofstätter See 0.11 24.92 29.62 54.66 0.00
AL1 Stoneworts Lake Holzmaar 0.84 12.27 6.55 19.65 0.03
AL2 Stoneworts Lake Holzmaar 1.73 14.33 11.62 27.68 0.05
AL3 Stoneworts Lake Holzmaar 1.08 9.09 4.48 14.65 0.06
PP2 Submerse root felt Lake Panch Pokhari 0.89 8.54 13.32 22.75 0.04
P4 Elodea unspec. Pond near Rosenheim 0.18 9.79 7.87 17.85 0.01

Algae 7.50 16.01 16.20 34.50 0.34
BS2 Algae Lake Bichlersee 7.50 17.91 4.15 29.56 0.34
BS3 Algae Lake Bichlersee 11.74 12.86 9.90 34.50 0.52
BS8 Algae Lake Bichlersee 1.80 16.01 16.20 34.01 0.06
PP1 Algae crust Lake Panch Pokhari 3.24 12.09 20.59 35.91 0.10
P1 Algae Pond near Rosenheim 50.77 32.02 52.73 135.53 0.60

(continued on next page)
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investigating the chain length of n-alkanes, n-alkanoic acids and n-
alkanols (Rieley et al., 1991; Bourbonniere and Meyers, 1996;
Ficken et al., 1998, 2000). Furthermore, particularly in the case of
marine environments, the branched vs. isoprenoid tetraether
(BIT) index (Hopmans et al., 2004) has become a frequently used
tool for assessing fluvial terrestrial OM input (Schouten et al.,
2013). High BIT values (>0.8) are commonly interpreted to reflect
strong soil OM input, whereas low values are interpreted to reflect
a weaker soil OM imprint. However, it is increasingly reported that
soils and eolian sediments, especially under dry climatic condi-
tions, can have very low BIT values (Dirghangi et al., 2013; Zech
et al., 2013b). Thus, low BIT values originating from terrestrial soils
may be misinterpreted in terms of aquatic/marine origin. This
short introduction and overview reveals that every terrestrial vs.
aquatic proxy approach has advantages, but also disadvantages
and limitations. Therefore, it seems advisable to address the ques-
tion of terrestrial vs. aquatic sedimentary OM with multi-proxy
approaches.

In previous studies we found that the hemicellulose-derived
neutral sugars arabinose (ara) and xylose (xyl) strongly predomi-
nate over fucose (fuc) in terrestrial soils and sediments (e.g. Zech
et al., 2013a). By contrast, we found fuc to occur in similar abun-
dance to ara and xyl in lacustrine sediments (Zech et al., 2014b;
Hepp et al., 2015). We have therefore investigated and reviewed
here neutral sugar patterns of various terrestrial and aquatic
plants, including mosses as well as algal species. We aimed to
answer the question whether the sugar biomarker patterns and
particularly sugar biomarker ratios, such as for instance fuc/(ara
+ xyl), may serve as proxies for terrestrial vs. aquatic origin of sed-
imentary OM input.

2. Material and methods

2.1. Sample description

The terrestrial and aquatic plant and algal samples were col-
lected from different sites/lakes. These are (Table 1) Lake
Bichlersee in the Valley Inn [47�40033.5800N; 12�7019.5000E; 961 m
above sea level (a.s.l.)] Lake Hofstätter See about 9 km northeast
of Rosenheim (47�5404.8200N; 12�10026.9400E; 483 m a.s.l.), a pond
near Rosenheim (47�51036.2600N; 12�8035.5800E; 470 m a.s.l.), Lake
Gemündener Maar and Lake Holzmaar in the Western Eifel
(50�10039.8500N; 6�50012.9100E; 406 m a.s.l. and 50�703.1000N;
6�52042.3100E; 430 m a.s.l., respectively) and Lake Panch Pokhari
in the Helambu Himal, Nepal (28�2030.9000N; 85�4304.0100E;
4050 m a.s.l.).

Additionally, eleven common freshwater green algae and dia-
toms were cultivated and harvested in the laboratory of the Chair
of Animal Ecology I, University of Bayreuth. All were obtained from
the SAG Culture Collection of Algae at Göttingen University. The
green algae Nannochloropsis limnetica (SAG 18.99), Pediastrum bor-
yanum (SAG 85.81) were cultivated on Basal Medium, Botryococcus
braunii (SAG 807-1) was cultured on MiEB12 Medium, and Acu-
todesmus obliquus (SAG 276-3a) was cultivated on Z-Medium at a
concentration of �0.25. The diatoms Gomphonema parvulum (SAG
1032-1), Navicula pelliculosa (SAG 1050-3), Nitzschia palea (SAG
1052-3a), Pinnularia spec. (SAG 2386), Skeletonema subsalsum
(SAG 8.94) and Stephano discusminutulus (SAG 49.91) were culti-
vated on bacillariophycean medium, as was Fragilaria crotonensis
(SAG 28.96) but with an added vitamin mix. For detailed informa-
tion on the culture media, see the list of culture media of the SAG
(http://www.uni-goettingen.de/en/list-of-media-and-recipes/
186449.html). After harvesting, the algae were freeze dried (Christ
BETA-RVC & ALPHA 2–4; Martin Christ Gefriertrocknungsanlagen
GmbH, Osterode am Harz, Germany) and stored dry until analysis.Ta
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2.2. Sugar biomarker analysis

Analysis were carried out according to Zech and Glaser
(2009). This method allows sugar quantification and simultane-
ously d18O analysis of the sugars. In brief, myoinositol was
added first as internal standard. Then, the sugars were released
hydrolytically from the samples using 4 M trifluoroacetic acid
(TFA) for 4 h at 105 �C as described by Amelung et al. (1996).
The extracted sugars were cleaned over glass fiber filters and
purified using XAD and Dowex columns. After freezing and
freeze-drying, derivatization was carried out with methylboronic
acid (MBA; Knapp, 1979). Prior to derivatization, 3-O-
methylglucose in dry pyridine was added to the samples as a
second internal standard. Measurements of the individual sugars
were performed at the Institute of Agronomy and Nutritional
Sciences, Soil Biogeochemistry,
Martin-Luther University Halle-Wittenberg using gas chromato
graphy–pyrolysis–isotope ratio mass spectrometry (GC–Py–
IRMS) with a Trace GC 2000 gas chromatograph (Thermo Fisher
Scientific, Bremen, Germany) coupled to a Delta V Advantage
isotope ratio mass spectrometer (Thermo Fisher Scientific, Bre-
men, Germany) via an 18O-pyrolysis reactor and a GC/TC III
interface (Thermo Fisher Scientific, Bremen, Germany). The
monosaccharides were quantified using the myoinositol and 3-
O-methylglucose internal standards.

3. Results

The relative abundances of ara, fuc and xyl in the samples are
illustrated in a ternary diagram (Fig. 1a). The terrestrial and aquatic
plants, including mosses, plotted close to the ara axis, whereas the
algae and diatom samples plotted farther from the ara axis. This
reveals that algae contain a higher relative amount of fuc than
the vascular plants and mosses. According to Table 1, the algae
here were characterized by fuc/(ara + xyl) ratio values >0.10
(except for samples Ped and BS8), whereas the vascular plant
and moss samples were characterized by fuc/(ara + xyl) values
<0.08. This finding suggests that the fuc/(ara + xyl) ratio may serve
as a proxy for algal vs. vascular plant/moss origin of sedimentary
OM.

The total sugar concentration (sum of ara, xyl and fuc) for the
samples ranged (Table 1) from 2.26 mg/g sample (Ped, i.e. P. borya-
num cultivated in the laboratory) to 787.87 mg/g sample (BS1, i.e.
reed from Lake Bichlersee). Median total sugar concentration for
grouped samples increased in the order green algae (laboratory)
< diatoms (laboratory) < submerged aquatic plants < algae (lakes)
< mosses < terrestrial plants < emergent plants (Fig. 2a).

4. Discussion

Our finding that ara and xyl predominate strongly over fuc in
vascular plants and mosses confirms data (Fig. 1b) from D’Souza
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Fig. 1. Ternary diagrams depicting the relative abundance of arabinose, xylose and fucose. (a) Results from this study; (b) results of compiled terrestrial plant data from Jia
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et al. (2005), Jia et al. (2008), Zech et al. (2012, 2014a) and Prietzel
et al. (2013). Similarly, most of the published sugar biomarker data
for algae (except for two macroalgae), as well as zooplankton
(Fig. 1c), show higher relative amounts of fuc (Handa and
Mizuno, 1973; Hecky et al., 1973; Hicks et al., 1994; Biersmith
and Benner, 1998; D’Souza et al., 2005).

While the above compilation corroborates the proposed fuc/
(ara + xyl) proxy, it may still be necessary to consider degradation

effects when interpreting sedimentary sugar biomarker results.
After deposition in soils and sediments, plant- and algal-derived
sugars are partly mineralized. At the same time, soil microorgan-
isms biosynthesize sugars. Both processes may lead to post-
depositional alteration of the sugar biomarker patterns of soils
and sediments (Oades, 1984; Glaser et al., 2000; Ogier et al.,
2001). Fig. 1d shows soil and sediment data available from the lit-
erature (Bock et al., 2007; Prietzel et al., 2013; Zech et al., 2013a,
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Zech et al. (2012, 2014a) and Prietzel et al., 2013); (c) results from compiled aquatic organism data from Hecky et al. (1973) and Hicks et al. (1994).
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2014b) and our own unpublished data from the Lake Gemündener
Maar. The Lake Panch Pokhari sugar pattern agrees well with the
pattern reported by Ogier et al. (2001), measured on a sediment
core from the eutrophic Lake Aydat. Accordingly, although the pre-
dominance of ara and xyl over fuc originating from plant material
still exists in soils, it is slightly extenuated. These shifts could be
partly explained by findings from Basler et al. (2015) indicating
that ara is much more affected by microbial production than xyl.
On the other hand, soil microorganisms seem to produce notable
amounts of fuc (cf. review from Gunina and Kuzyakov, 2015). Nev-
ertheless, the ternary diagram in Fig. 1d depicts that the soils can
still be distinguished from lacustrine sediments on the basis of
the sugar biomarker patterns.

It is noteworthy that the sediment samples from Gemündener
Maar plot between the sediment samples from Lake Panch
Pokhari and the soil samples. Both lakes are characterized by very
small catchments (Sirocko et al., 2013; Zech et al., 2014b). How-
ever, while Lake Panch Pokhari is in a high alpine and sparsely
vegetated environment and its sediment is very rich in diatoms
(Krstić et al., 2012), the catchment of Gemündener Maar is den-
sely vegetated with broadleaf trees. Hence, leaf litter input into
Gemündener Maar presumably clearly dominates autochthonous
OM production and explains the strong terrestrial signal for this
dataset.

Our own dataset, the terrestrial plant data, as well as algae and
zooplankton data from the literature (Fig. 1a–c), suggest that the
ratio fuc/(ara + xyl) is a valuable proxy for algal OM [fuc/(ara
+ xyl) > 0.10] vs. vascular plant/moss OM [fuc/(ara + xyl) 6 0.10].
Additionally, the compiled soil and sediment data (Fig. 1d) indicate
that the ratio (fuc + xyl)/ara can help distinguish between terres-
trial and aquatic sedimentary OM input. In the case of Lake
Gemündener Maar, it can be concluded that fuc and xyl are primar-
ily of aquatic origin, whereas ara is primarily of terrestrial origin.
Moreover, the developed sugar biomarker ratios can help answer
the question whether the sedimentary biomarkers are of auto-
chthonous or allochthonous origin, when interpreted with com-
pound specific d18O results.

The sugar concentration values for our own data set (Fig. 2a) are
well within the range reported (Fig. 2b and c). The low sugar con-
centrations of lab-grown green algae and diatoms might be partly
an underestimation of natural conditions. Bigogno et al. (2002) and
Krienitz and Wirth (2006) found that harvesting algae in the log
phase of growth, as well as specific cultural conditions, can also
negatively influence algal fatty acid production. Despite limitations
in the presented sugar biomarker proxies, such as different sugar
concentrations characterizing different sugar sources (algal vs. ter-
restrial), a multi-proxy biomarker approach (suggested by e.g.
Bechtel and Schubert (2009) for lake particulate organic matter)
including our sugar biomarkers would provide more details on
sedimentary OM sources.

5. Conclusions

The results show that the relative abundance of fucose vs. ara-
binose and xylose [fuc/(ara + xyl)] is much higher in algae and zoo-
plankton than in vascular plants and mosses. In the course of
mineralization and/or degradation by soil microorganisms, the ini-
tial sugar patterns of plants may be altered. Nevertheless, the com-
pilation of literature data suggests that lacustrine sediments and
terrestrial soils can be readily distinguished using a ternary dia-
gram with the relative abundances of fucose, arabinose and xylose.
Accordingly, increased abundance of arabinose in lake sediments
indicates an input of terrestrial plant material, whereas fucose
and xylose are primarily of aquatic origin. We therefore, in addition
to the fuc/(ara + xyl) ratio, propose the sugar biomarker ratio

(fuc + xyl)/ara as a proxy for aquatic vs. terrestrial origin of sedi-
mentary OM in paleolimnological studies. Ideally, both sugar ratio
proxies should be used within multi-proxy approaches.
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Abstract. Causes of the Late Glacial to Early Holocene tran-
sition phase and particularly the Younger Dryas period, i.e.
the major last cold spell in central Europe during the Late
Glacial, are considered to be keys for understanding rapid
natural climate change in the past. The sediments from maar
lakes in the Eifel, Germany, have turned out to be valuable
archives for recording such paleoenvironmental changes.

For this study, we investigated a Late Glacial to Early
Holocene sediment core that was retrieved from the Gemün-
dener Maar in the Western Eifel, Germany. We analysed the
hydrogen (δ2H) and oxygen (δ18O) stable isotope compo-
sition of leaf-wax-derived lipid biomarkers (n-alkanes C27
and C29) and a hemicellulose-derived sugar biomarker (ara-
binose), respectively. Both δ2Hn-alkane and δ18Osugar are sug-
gested to reflect mainly leaf water of vegetation growing
in the catchment of the Gemündener Maar. Leaf water re-

flects δ2H and δ18O of precipitation (primarily temperature-
dependent) modified by evapotranspirative enrichment of
leaf water due to transpiration. Based on the notion that the
evapotranspirative enrichment depends primarily on relative
humidity (RH), we apply a previously introduced “coupled
δ2Hn-alkane–δ18Osugar paleohygrometer approach” to recon-
struct the deuterium excess of leaf water and in turn Late
Glacial–Early Holocene RH changes from our Gemündener
Maar record.

Our results do not provide evidence for overall markedly
dry climatic conditions having prevailed during the Younger
Dryas. Rather, a two-phasing of the Younger Dryas is sup-
ported, with moderate wet conditions at the Allerød level
during the first half and drier conditions during the second
half of the Younger Dryas. Moreover, our results suggest that
the amplitude of RH changes during the Early Holocene was
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more pronounced than during the Younger Dryas. This in-
cluded the occurrence of a “Preboreal Humid Phase”. One
possible explanation for this unexpected finding could be that
solar activity is a hitherto underestimated driver of central
European RH changes in the past.

1 Introduction

In order to evaluate the relevance of man-made climate
change in the future, it is of great importance to study and
understand large and rapid climate fluctuations in the past.
Many studies have focused on the Late Glacial to Early
Holocene transition phase, a period with various expres-
sions in temperature, atmospheric circulation and hydrol-
ogy worldwide (Alley, 2000; Brauer et al., 2008; Denton et
al., 2010; Partin et al., 2015; Wagner et al., 1999). Expla-
nation for the Younger Dryas (YD) period, i.e. the major
last cold spell in central Europe during the Late Glacial just
before the onset of the Holocene warm period (Denton et
al., 2010; Heiri et al., 2014; Isarin and Bohncke, 1999), has
long been considered crucial for understanding rapid natu-
ral climate change in the past (Alley, 2000). The sediments
from maar lakes in the Eifel, Germany, have turned out to
be valuable archives for paleoenvironmental reconstruction
by providing high-resolution palynological, sedimentologi-
cal and geochemical records for climate, vegetation and land-
scape history (Brauer et al., 2008; Brunck et al., 2015; Litt
et al., 2003; Litt and Stebich, 1999; Sirocko et al., 2013;
Zolitschka, 1998).

Lacustrine sedimentary lipid biomarkers such as n-
alkanes, originating either from leaf waxes of higher terres-
trial plants (Eglinton and Hamilton, 1967) or from aquatic
organisms (Volkman et al., 1998), and especially their hy-
drogen isotope composition (δ2Hleaf-wax/n-alkane), are widely
accepted as paleoclimate proxies (Huang et al., 2004; Mügler
et al., 2008; Sachse et al., 2004, 2012; Sauer et al., 2001). It
has been demonstrated that δ2Hleaf-wax/n-alkane is well corre-
lated with the hydrogen isotope composition of precipitation
(δ2Hprec) (e.g. Hou et al., 2008; Rao et al., 2009). Similar
to the well-known ice-core and speleothem records (Alley,
2000; Luetscher et al., 2015; Rasmussen et al., 2014), la-
custrine δ2Hleaf-wax/n-alkane records are therefore increasingly
used to reconstruct δ2H of past precipitation and thus for de-
riving paleoclimatic information (cf. Araguás-Araguás et al.,
2000; Dansgaard, 1964; Rozanski et al., 1993). However, the
alteration of δ2Hprec either through evapotranspirative 2H en-
richment of leaf or lake water can challenge a robust δ2Hprec
reconstruction (e.g. Mügler et al., 2008; Zech et al., 2015).
Apart from δ2Hn-alkane, the oxygen isotope composition of
hemicellulose- or polysaccharide-derived sugars (δ18Osugar)
was established as a tool in paleoclimate research during re-
cent years (Zech et al., 2011, 2013a, 2014a). Analogous to
δ2Hn-alkane, δ18Osugar is affected by the isotope composition
of source water, which is closely related to the local precipi-

tation (δ18Oprec) as well as by evapotranspirative 18O enrich-
ment (Tuthorn et al., 2014; Zech et al., 2013b, 2014b). More-
over, it was suggested that the coupling of δ2H and δ18O re-
sults can help to disentangle δ2H/δ18Oprec changes and vari-
able 2H/18Oleaf/lake-water enrichment (Henderson et al., 2010;
Hepp et al., 2015, 2017; Tuthorn et al., 2015; Voelker et
al., 2014, 2015; Zech et al., 2013a). For instance, Voelker
et al. (2014) presented a framework for using δ2H and δ18O
of tree-ring cellulose in order to infer relative air humidity
(RH). Tuthorn et al. (2015) validated a previously suggested
“coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach”.
Accordingly, the application of that approach to an Argen-
tinian topsoil transect yielded a highly significant correla-
tion of actual and biomarker-based reconstructed RH val-
ues (R = 0.79, p < 0.001, n= 20). Both approaches were
successfully applied to loess–paleosol sequences (Hepp et
al., 2017; Zech et al., 2013a) and subfossil wood (Voelker
et al., 2015). By contrast, the application of the coupled
δ2Hn-alkane–δ18Osugar paleohygrometer approach to a lacus-
trine archive is still missing.

Within this study, we aimed at applying the coupled
δ2Hn-alkane–δ18Osugar paleohygrometer approach to the Late
Glacial–Early Holocene sediment cores of the Gemündener
Maar. More specifically, we addressed the following objec-
tives: (i) source identification of the sedimentary organic
matter and the investigated n-alkanes and sugars (aquatic vs.
terrestrial), (ii) reconstructing leaf water isotope composition
based on compound-specific δ2H and δ18O values of the n-
alkane and sugar biomarkers, (iii) reconstructing RH changes
using the coupled δ2Hn-alkane–δ18Osugar paleohygrometer ap-
proach, and (iv) inferring implications for central European
paleoclimate history from the established Gemündener Maar
RH record.

2 Material and methods

2.1 The Gemündener Maar and sampling

The Gemündener Maar is located in the Eifel volcanic
fields in western Germany at an altitude of 407 m a.s.l.
(50◦10′39.853′′ N, 6◦50′12.912′′ E; Fig. 1a and b; Sirocko et
al., 2013). The maar was formed during a phreatomagmatic
explosion within the local Devonian siltstone (greywacke)
around 20–25 ka (Büchel, 1993). The lake is 39 m deep at
its maximum and has a diameter of roughly 300 m. Due to
its formation conditions the lake is almost circular with a
lake surface area of 75 000 m2 and is surrounded by a small
catchment (Fig. 1b), with an area of 430 000 m2 (Scharf and
Menn, 1992). The lake is fed by precipitation and groundwa-
ter (no surface inflow and outflow present). The sediments
are, accordingly, not affected by fluvial sediment input. The
catchment area is furthermore steep and densely vegetated
with broadleaved trees (Fig. 1c). The investigated samples
were taken from the 8 m Gemündener Maar core (GM1),
which was taken at approximately 20 m water depth near the
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centre of the maar (Fig. 1b) with a Livingston piston corer
(UWITEC, Mondsee, Austria). The GM1 core was retrieved
from a terrace on the steep slope of the maar exactly in a fan
of an underwater erosion gully structure. The core is part of
the Eifel Laminated Sediment Archive Project of the Insti-
tute for Geoscience at Johannes Gutenberg University Mainz
(Sirocko et al., 2013, 2016).

2.2 Bulk analysis and pollen analysis

Bulk analyses were carried out on 112 samples, covering a
section of 606 to 727 cm depth of the Gemündener Maar
GM1 core. Total carbon (TC) and nitrogen (N), bulk carbon
isotope composition (δ13CTC), and nitrogen isotope com-
position (δ15N) were determined at the Institute of Agron-
omy and Nutritional Sciences, Soil Biogeochemistry, Mar-
tin Luther University Halle-Wittenberg, using EuroVector
EA 3000 elemental analyser (Hekatech, Wegberg, Germany)
coupled via a Conflo III Interface to a Delta V Advantage
isotope ratio mass spectrometer (IRMS; both from Thermo
Fisher Scientific, Bremen, Germany). Additionally, total or-
ganic carbon (TOC) and bulk δ13C of the total organic car-
bon (δ13CTOC) were assessed after removal of carbonate with
32 % hydrochloric acid (HCl) fumigation followed by a neu-
tralisation step with moist sodium hydroxide, both for 24 h
under 60 ◦C and vacuum conditions. This allows calculating
TOC/N atomic ratios. Laboratory standards from the Inter-
national Atomic Energy Agency (IAEA) as well as from the
United States Geological Survey (USGS) with known total
carbon, nitrogen, 13C and 15N contents (IAEA N2, IAEA
CH6, IAEA NO3, IAEA CH7, IAEA 305A, USGS 41) were
used for calibration. The 13C and 15N contents are expressed
in the common δ notation as relative to an international stan-
dard (δ13C: Vienna Pee Dee Belemnite, VPDB; δ15N: atmo-
spheric N2, air).

For pollen analysis, 16 samples were investigated cover-
ing the relevant depth section. Each sample covered a depth
range of 1 cm. Preparation was conducted by Frank Dreher
according to standard procedures at the laboratory of the
Group of Climate and Sediments, Institute of Geosciences,
Johannes Gutenberg University of Mainz, using potassium
hydroxide, HCl and hydrofluoric acid (Sirocko et al., 2016).
Afterwards, acetic acid and a mixture of acetic anhydride and
sulfuric acid (9 : 1) were used for acetolysis. The samples
were then centrifuged at 3000 to 3500 rpm for 5 min and then
sieved over a 200 and a 10 µm sieve. Afterwards, the samples
were fixed with anhydrous glycerol for reliable identification,
and a maximum magnification of 600 was used for counting
the remains. Pollen results are reported in relative percent-
ages (%).

Figure 1. (a) Location of the Gemündener Maar in the Eifel
region in Germany (generated using OpenStreetMap home-
page, ©OpenStreetMap contributors, https://www.openstreetmap.
org, last access: 15 August 2016). (b) Digital terrain model and
drainage system of the immediate surroundings of the Gemündener
Maar, with maar borders according to Büchel (1994) representing
the size of the crater. In addition, the core position is displayed
(GM1; 50◦10′39.853′′ N, 6◦50′12.912′′ E) along with the short core
named GMf (not part of this study) marked as ELSA drill sites.
Both cores are part of the Eifel Laminated Sediment Archive Project
(ELSA project). (c) Photo of Gemündener Maar showing the steep
and densely forested catchment (by Michael Zech, reproduced with
his permission).
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2.3 Age control

The investigated sediments are partially laminated. The first
tie point to establish a chronology for the Gemündener Maar
core is a radiocarbon-dated piece of charcoal in 727 cm core
depth, which dates to 13 800± 110 a cal BP (Fig. 2d). This
age is derived from a 14C age of 11 950± 65 a BP as part of
the Supplement of Sirocko et al. (2013), calibrated using Cal-
Pal software (Weninger and Jöris, 2008) calculated with the
IntCal13 calibration curve (Reimer et al., 2013). The uncer-
tainty of the calibrated 14C age represents the 68 % probabil-
ity range. The second tie point is the clearly visible Laacher
See Tephra between 673 and 680 cm core depth (Fig. 2a and
d). The latter can be used as chronological marker due to the
varve-counted age of 12 880 a BP in the adjacent Meerfelder
Maar (Brauer et al., 1999). The onset of the Younger Dryas
period was set to 12 680 a BP (varve-counted in Meerfelder
Maar sediments; Brauer et al., 1999; Litt et al., 2009) iden-
tified at a depth of 670 cm in the GM1 core due to a clear
colour change (Fig. 2a and d). The onset of the Preboreal
(Holocene) was found to date to 11 590 a BP in Meerfelder
Maar by varve counting (Litt et al., 2009). This was used to
wiggle-match the distinct changes in the pollen spectra (de-
creasing Poaceae, peaking Artemisia, increasing Pinus and
Betula; Fig. 2b and c), the clear rise in TOC (Fig. 3a) and
the colour change (Fig. 2a), which were identified at 643 cm
depth (Fig. 2d). The Late Glacial to Preboreal (Holocene)
transition is commonly well recorded in maar sediments from
the Eifel region, i.e. clear changes in deposition as well as
pollen pattern (Brauer et al., 1999; Litt et al., 2001, 2003; Litt
and Stebich, 1999), dated to 11 600 a BP, e.g. in Holzmaar, by
a combination of varve counting and 14C dating (Zolitschka,
1998). The last time marker used to constrain the age model
is the middle of the sharp increase in Corylus (hazel) pollen
at 622 cm depth (Fig. 2b, c and d). We used this sharp in-
crease as a marker for the Preboreal to Boreal transition,
which is varve-counted by Litt et al. (2009) to 10 740 a BP in
the Meerfelder Maar sediments. The offset of 60 years to the
varve-counted Holzmaar record of Zolitschka (1998), as it is
presented by Litt et al. (2009), is within the uncertainty of
placing the onset of the Preboreal in the Gemündener Maar
Corylus curve.

The investigated core section from 607 to 694 cm depth
therefore covers the time between ∼ 13 150 and 10 140 a BP,
i.e. the Allerød, the Younger Dryas, the Preboreal, and the be-
ginning of the Boreal, with regard to the biomarkers (Fig. 2a
and d). Assuming constant sedimentation rates between the
markers, an average resolution of 51 a cm−1 can be calcu-
lated; the minimum and maximum resolution are 19 and
124 a cm−1, respectively. The part above the Laacher See
Tephra reveals a lower mean resolution (55 a cm−1) than the
section below (30 a cm−1).

2.4 Biomarker and compound-specific isotope analysis

For δ2H analyses of n-alkanes as well as δ18O analyses of
sugars, 59 samples were prepared from 607 to 694 cm depth
of the Gemündener Maar GM1 core, in order to cover the
core section with already high TOC content and the Late
Glacial to Holocene transition (Figs. 2 and 3a). n-Alkanes
were extracted from 1 to 6 g freeze-dried and ground sam-
ples by microwave extraction at 100 ◦C for 1 h, using 15 mL
of solvent (dichloromethane and methanol, at a ratio of 9 : 1).
The resultant total lipid extracts were separated over amino-
propyl silica gel (Supelco 45 µm) filled pipette columns.
Non-polar compounds (including n-alkanes) were eluted
with n-hexane. The fraction was spiked with a known amount
of 5α-androstanone, used as an internal standard. Identifi-
cation and quantification was carried out on an Agilent MS
5975 (EI) interfaced with an Agilent 7890 GC equipped with
a 30 m fused silica capillary column (HP5-MS 0.25 mm i.d.,
0.25 µm film thickness) and a split–splitless injector oper-
ating in splitless mode at 320 ◦C. Carrier gas was helium
and the temperature program was 1 min at 50 ◦C, from 50
to 200 ◦C at 30 ◦C min−1, from 200 to 320 ◦C at 7 ◦C min−1,
and 5 min at 320 ◦C. Data recording comprised the total ion
count (scan mode from m/z 40 to 600) and single-ion mon-
itoring (m/z 57, 71, 85 and 99). Concentrations were calcu-
lated relative to the internal standard and to an external stan-
dard (n-C21 to n-C40 alkane mixture, Supelco), injected in
different concentrations (40, 4, 1, 0.4 ng µL−1).

Prior to compound-specific isotope analyses, the n-alkanes
were further purified. The non-polar fractions were passed
over a pipette column filled with activated AgNO3 impreg-
nated silica gel and a pipette column filled with zeolite
(Geokleen). After drying, the zeolite was removed using hy-
drofluoric acid and the n-alkanes were recovered by liquid–
liquid extraction with hexane. The purified n-alkane frac-
tions were measured for their compound-specific stable hy-
drogen isotope composition (δ2H). The measurements were
performed at the Institute of Geography, University of Bern
on an IsoPrime 100 IRMS, coupled to an Agilent 7890A
GC via a GC5 pyrolysis or combustion interface operat-
ing in pyrolysis modus with a Cr (ChromeHD) reactor at
1000 ◦C. Samples were injected with a split–splitless injec-
tor. The GC was equipped with 30 m fused silica column
(HP5-MS, 0.32 mm inner diameter, 0.25 µm film thickness).
The precision was checked by co-analysing a standard alkane
mixture (n-C27, n-C29, n-C33) with known isotope composi-
tion (Arndt Schimmelmann, University of Indiana), injected
twice every six runs. The samples were analysed in three rep-
etitions (except from the samples in 622 and 672 cm depth),
and the analytical precision was generally better than 5 ‰.
The stable hydrogen isotope compositions are given in the
δ notation (δ2Hn-alkane) versus Vienna Standard Mean Ocean
Water (VSMOW). The H+3 -correction factor was checked ev-
ery 2 days and stayed stable over the course of measurements
at 3.14. The δ2Hn-alkane values refer to the area-weighted
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Figure 2. (a) Photo of the investigated GM1 core section, with regard to the biomarkers (607 to 694 cm depth), displaying the position of the
Laacher See Tephra (LST), varve-counted to 12 880 a BP in the adjacent Meerfelder Maar (cf. Brauer et al., 1999). (b) Defined pollen zones
according to Brauer et al. (1999) and Litt et al. (2009). (c) Pollen profiles of pollen groups, which were used for defining the pollen zones.
Pollen analysis was carried out by Frank Dreher (Johannes Gutenberg University of Mainz). (d) Age–depth model of the full investigated
GM1 section (606 to 727 cm depth) consisting of a 14C-dated piece of charcoal, the LST and the onsets of the Younger Dryas, Preboreal
and Boreal (Holocene). Additionally, the biomarker sampling points are displayed (black points). The error bars of the 14C age and the LST
represent the uncertainty of the calibration (68 % probability range) and the error during of the varve counting (±40 a; Brauer et al., 1999),
respectively.

Figure 3. (a) Depth profiles of total organic carbon (TOC), (b) total nitrogen (N), (c) bulk stable nitrogen isotope composition (δ15N),
(d) stable carbon isotope composition of total carbon (TC) and TOC (δ13CTC, δ13CTOC) and (e) carbon to nitrogen atomic ratio (TOC/N).
The vertical line in (e) indicates a TOC/N atomic ratio threshold of 10 (Meyers, 2003). AL: Allerød; YD: Younger Dryas; PB: Preboreal;
BO: Boreal.
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718 J. Hepp et al.: How dry was the Younger Dryas?

mean of the δ2H values of n-alkanes with 27 and 29 carbon
atoms (n-C27, n-C29) because of their relatively high abun-
dance in the samples (Fig. 4a).

The sample preparation for δ18O analyses of
hemicellulose- or polysaccharide-derived sugars fol-
lowed standard procedures at the Institute of Agronomy and
Nutritional Sciences, Soil Biogeochemistry, Martin Luther
University Halle-Wittenberg, according to the method
of Zech and Glaser (2009). The monosaccharide sugars
were hydrolytically extracted from samples containing
approximately 10 mg total organic carbon with 10 mL of
4 M trifluoroacetic acid at 105 ◦C for 4 h, applying the
method described by Amelung et al. (1996). After filtration
over glass fibre filters, the extracted sugars were cleaned
using XAD-7 (to remove humic-like substances) and
Dowex 50WX8 columns (to remove interfering cations).
Afterwards, the purified samples were freeze-dried and
derivatised by adding methylboronic acid (4 mg in 400 µL
pyridine) for 1 h at 60 ◦C.

The compound-specific δ18O measurements were per-
formed using a Trace GC 2000 coupled to a Delta V Ad-
vantage IRMS via an 18O-pyrolysis reactor (GC IsoLink)
and a ConFlo IV interface (all devices from Thermo Fisher
Scientific, Bremen, Germany). Each sample was measured
in threefold repetition, embedded in-between co-derivatised
sugar standards at various concentrations and known δ18O
values. The δ18O values of the samples are expressed in δ no-
tation (δ18Osugar) versus VSMOW. The measured δ18Osugar
values were corrected for drift, amount and area depen-
dency and also for the hydrolytically introduced oxygen
atoms that form carbonyl groups with the C1 atoms of the
sugar molecules (Zech and Glaser, 2009). Mean standard er-
rors for the triplicate measurements of all 59 samples are
0.6 ‰, 0.7 ‰ and 0.7 ‰ for arabinose, fucose and xylose,
respectively. The δ18Osugar values refer to the δ18O values of
the monosaccharides arabinose, fucose and xylose (Fig. 4b).
Rhamnose areas, or concentrations, were too low for reliable
isotope measurements in most samples.

2.5 Conceptual framework of the coupled
δ2Hn-alkane–δ18Osugar paleohygrometer approach

The coupled δ2Hn-alkane–δ18Osugar paleohygrometer ap-
proach was described in detail by Tuthorn et al. (2015) and
Zech et al. (2013a). The most fundamental assumption of the
approach is that the isotope composition of leaf water can be
reconstructed by applying biosynthetic fractionation factors
on the measured δ2Hn-alkane and δ18Osugar values (Fig. 5).
The concept is furthermore based on the observation that the
isotope composition of global precipitation plots typically
close to the global meteoric water line (GMWL; δ2Hprec =

8 · δ18Oprec+10; Dansgaard, 1964). In Germany, a local me-
teoric water line (LMWLGermany) slightly deviating from
GMWL was described by Stumpp et al. (2014) (δ2Hprec =

7.72±0.13·δ18Oprec+4.90±0.01; Fig. 5), which we used as

the baseline for our calculations. The quite similar LMWLs
for Trier (δ2Hprec = 7.81±0.08 ·δ18Oprec+5.06±0.60) and
Koblenz (δ2Hprec = 7.80± 0.07 · δ18Oprec+ 2.68± 0.53) as
well as the GMWL are additionally displayed in Fig. 5 for
comparison. The local precipitation is the source for soil wa-
ter and shallow groundwater, which in turn acts as source
water for plants. During daytime, however, leaf water is typi-
cally 2H- and 18O-enriched compared to the source water due
to evapotranspiration through the stomata (Fig. 5; Allison et
al., 1985; Bariac et al., 1994; Walker and Brunel, 1990). The
leaf water reservoir at the evaporative sites quickly achieves
steady-state conditions (Allison et al., 1985; Bariac et al.,
1994; Gat et al., 2007; Walker and Brunel, 1990). Thus, the
isotope composition of the transpired water vapour is equal
to the isotope composition of the source water utilised by the
plants during the transpiration process. The evaporative en-
richment of leaf water under steady-state conditions can be
described via a Craig–Gordon model (e.g. Flanagan et al.,
1991; Roden and Ehleringer, 1999) by the following expres-
sion (e.g. Barbour et al., 2004):

δe ≈ δs+ ε
∗
+ εk+ (δa− δs− εk)

ea

ei
, (1)

where δe, δs and δa are the hydrogen and oxygen isotope
compositions of leaf water at the evaporative sites, in source
water and in atmospheric water vapour, respectively; ε∗ is
the equilibrium enrichment expressed as (1− 1/αL/V)× 103

where αL/V is the equilibrium fractionation between liquid
and vapour in ‰; and εk is the kinetic fractionation parame-
ters for water vapour diffusion from intracellular air space
through the stomata and the boundary layer, both for 2H
and 18O, respectively; and ea/ei is the ratio of atmospheric
vapour pressure to intracellular vapour pressure. When leaf
temperature is equal to air temperature, the ea/ei ratio rep-
resents the RH of the local atmosphere. If the plant source
water and the local atmospheric water vapour are in isotopic
equilibrium, the term δa−δs can approximated by−ε∗. Thus,
Eq. (1) can be reduced to

δe ≈ δs+
(
ε∗+ εk

)
(1−RH) . (2)

The kinetic fractionation parameters (εk) are typically re-
lated to stomatal and boundary layer resistances with respect
to water flux (Farquhar et al., 1989). Since direct measure-
ments of those plant physiological parameters can be hardly
assessed in a paleo application, we used the kinetic enrich-
ment parametersCk instead, derived from a more generalised
form of the Craig–Gordon model, for describing the kinetic
isotope enrichment for 2H and 18O, which leads to Eq. (3)
(Craig and Gordon, 1965; Gat and Bowser, 1991):

δe ≈ δs+
(
ε∗+Ck

)
(1−RH) . (3)

In a δ2H–δ18O diagram, the hydrogen and oxygen isotope
composition of leaf and source water can be described as
a local deuterium (d) excess= δ2H− 7.72 · δ18O (Stumpp
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Figure 4. (a) Depth profiles of compound-specific stable hydrogen isotope composition of the individual alkanes n-C27 and n-C29 and
the weighted mean (δ2Hn-alkane). (b) Compound-specific stable oxygen composition of the individual sugars arabinose, xylose and fucose
(δ18Osugar). Error bars show analytical standard errors; bold lines show three-point moving averages. (c) Depth profile of Poaceae pollen.
Additionally, the resampled data points (black points) used for the grass correction procedures (Eqs. 10 and 11) are displayed. In addition,
the GM1 core picture with the age markers used is displayed. AL: Allerød; LST: Laacher See Tephra; YD: Younger Dryas; PB: Preboreal;
BO: Boreal.

et al., 2014) in one equation by using the slope of the
LMWLGermany (Eq. 4). This approach is comparable to the
d excess definition from Dansgaard (1964), who used the
equation d = δ2H−8 · δ18O for a measure of the parallel de-
viation between a given point in the δ2H–δ18O diagram from
the GMWL.

de ≈ ds+
(
ε∗2 − 7.72 · ε∗18+C

2
k − 7.72 ·C18

k

)
(1−RH) , (4)

where de and ds are the d excess values of the leaf water at
the evaporative sites and the source water, respectively, and
the equilibrium (ε∗2 and ε∗18) and kinetic enrichment param-
eters (C2

k and C18
k ) are expressed for both isotopes. From

Eqs. (1) to (4) the primary control of RH on the isotope
composition of the leaf water is demonstrated when stom-
ata are open through transpiration. If de can be derived from
compound-specific δ2H and δ18O measurements of the n-
alkane and sugar biomarkers, which derive δ2He and δ18Oe
values for the purpose of calculating de values via the equa-

tion de = δ
2He− 7.72 · δ18Oe, the ds can also be approxi-

mated from the d excess of the LMWLGermany (= 4.9). Ac-
cordingly, Eq. (4) can be rearranged in order to calculate the
RH of the local atmosphere normalised to leaf temperature
as given by Eq. (5) (Hepp et al., 2017; Tuthorn et al., 2015;
Zech et al., 2013a):

RH≈ 1−
1d(

ε∗2 − 7.72 · ε∗18+C
2
k − 7.72 ·C18

k
) , (5)

where 1d is the distance between de and ds, calculated
as 1d = de− ds. Equilibrium fractionation parameters (ε∗2
and ε∗18) are derived from empirical equations of Horita and
Wesolowski (1994), with mean daytime growth-period tem-
perature of 14.8 ◦C (from 06:00 to 19:00 CET and April to
October, derived from the Nürburg-Barweiler station, ap-
prox. 25 km northeast of Gemündener Maar; hourly data
from 1995 to 2015 from Deutscher Wetterdienst, 2016).
Equilibrium fractionation factors equal 83.8 ‰ and 10.15 ‰
for 2H and 18O, respectively. The kinetic fractionation pa-
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rameters (C2
k and C18

k ) for 2H and 18O are set to 25.1 ‰ and
28.5 ‰, respectively, according to Merlivat (1978), who re-
ported maximum values during the molecular diffusion pro-
cess of water through a stagnant boundary layer. The assump-
tion that maximum kinetic fractionation occurs seems to be
most suitable for sedimentological application where a signal
averaging over decades can be assumed (see above and dis-
cussion in Zech et al., 2013a). It should also be noted that εk
values of broadleaf trees and shrubs over broad climatic con-
ditions are well within the range of the C2

k and C18
k values

used, revealing 23.9 ‰ (±0.9) and 26.7 ‰ (±1.0) for δ2H
and δ18O, respectively (derived from the Supplement of Cer-
nusak et al., 2016).

The numerator of Eq. (5) describes the parallel distance
between the d excesses of LMWL and leaf water at the evap-
orative sites, which is converted into RH values, while the
denominator is a combination of the slopes of LMWL and
the local evaporation line (LEL). This means in turn that the
quantification with Eq. (5) is done by obtaining the distance
between the source water points, calculated via the intersects
between the individual LELs and the LMWLGermany, and the
leaf water points. The underlying slope of those LELs can
be derived from Eq. (6) via the Craig–Gordon model using
the same assumptions as outlined above in a rearranged form
(Eq. 6; Zech et al., 2013a). When using the fractionation pa-
rameters from above, the slope of the LEL is constant over
time, independent of RH and equal to ∼ 2.8 (Eq. 6). This
agrees well with field and laboratory studies (Allison et al.,
1985; Bariac et al., 1994; Gat et al., 2007; Tipple et al., 2013;
Walker and Brunel, 1990).

SLEL =
δ2

e − δ
2
s

δ18
e − δ

18
s
≈

ε∗2 +C
2
k

ε∗18+C
18
k

(6)

In order to provide an uncertainty interval in terms of
measurement precision covering the Gemündener Maar RH
record, we calculated an error propagation for de values ac-
cording to Eq. (7), by using the analytical standard errors
(SEs). Maximum and minimum values were then applied to
Eq. (5) resulting in a lower and upper RH limit (blue-shaded
area in Fig. 7a).

SEde =

√(
SEδ2Hn-alkane

)2
+ 7.72 ·

(
SEδ18Osugar

)2 (7)

3 Results and discussion

3.1 Source identification of bulk organic matter and of
the investigated n-alkane and sugar biomarkers

For basic sedimentological characterisation, TOC, N, δ15N,
δ13CTC and δ13CTOC values as well as the TOC/N atomic
ratios (Fig. 3a to e) are displayed from 605 to 727 cm depth.
TOC values range from 0.6 % to 19.7 %. N ranges from
0.1 % to 1.4 % and correlates highly significantly with TOC
(r = 0.99, p < 0.001, n= 110). Higher TOC contents during

the Allerød, Preboreal and Boreal likely reflect warmer con-
ditions being favourable for terrestrial and aquatic biomass
production, whereas lower TOC values during the Younger
Dryas likely reflect less favourable conditions for biomass
production and possibly increasing minerogenic sedimen-
tation. Interestingly, the Late Glacial–Early Holocene TOC
patterns seem not to be the same for all maar lakes, because
the Meerfelder Maar shows a clear TOC two-phasing dur-
ing the Younger Dryas (Brauer et al., 1999) and the Holz-
maar is lacking an Allerød TOC maximum (Lücke et al.,
2003). The δ15N values of the Gemündener Maar record
range from 0 ‰ to 5 ‰, showing the maximum and min-
imum within the Allerød period. δ13CTC and δ13CTOC re-
veal values between −31 ‰ and −17 ‰ and −36 ‰ and
−24 ‰, respectively. While δ13CTC shows maximum values
at 703 cm depth, δ13CTOC is decreasing continuously from
the beginning to the end of the Allerød, followed by increas-
ing values during the Younger Dryas and the Preboreal and
Boreal, interrupted by a short decrease around the begin-
ning of the Holocene. δ13CTC clearly shows the presence of
carbonate between 690 and 727 cm depth with less negative
δ13CTC values compared to δ13CTOC values. TOC/N atomic
ratios range from 6 to 19 with the end of the Allerød reveal-
ing increasing ratios, while the late Younger Dryas shows
slightly decreasing ratios and the Preboreal is marked by the
highest ratios.

The source of organic matter in lacustrine sediments of
small lakes, as one of the most crucial questions and chal-
lenges when interpreting organic proxies from lacustrine
sedimentary records (Meyers and Ishiwatari, 1993), can ei-
ther be autochthonous (aquatic origin) or allochthonous (ter-
restrial origin). The TOC/N ratio and δ13C values are the
most common proxies for sedimentary source determina-
tion. While non-vascular aquatic organisms often reveal C/N
atomic ratios between 4 and 10 (due to low amounts of cellu-
lose and lignin), vascular plants commonly show C/N atomic
ratios of 20 and higher (Meyers and Ishiwatari, 1993). Ac-
cording to Meyers (2003), a TOC/N atomic ratio of 10 is
often used as threshold for identifying aquatic versus ter-
restrial input (Fig. 3e). Accordingly, the input from terres-
trial organic matter increased during the Allerød, decreased
slightly during the Younger Dryas and was highest during the
Holocene. The Gemündener Maar δ13CTOC values (Fig. 3d)
are well within the range of C3 land plants and lacustrine
algae (Meyers and Lallier-Vergés, 1999); evidence for the
occurrence of C4 land plants is missing. Overall, no clear
additional information about the sedimentary organic mat-
ter origin of the Gemündener Maar sediments can be in-
ferred neither from δ13CTOC alone (cf. Lücke et al., 2003) nor
by combining δ13CTOC with TOC/N ratios (cf. Meyers and
Lallier-Vergés, 1999). When considering that both δ13CTOC
and TOC/N values of terrestrial organic matter are addition-
ally affected by mineralisation and degradation, resulting in
more positive δ13CTOC values and lower TOC/N ratios (e.g.
Zech et al., 2007), a straightforward interpretation of those
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Figure 5. Conceptual framework of the coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach displayed as δ18O–δ2H diagram show-
ing the measured n-alkanes (weighted mean of n-C27 and n-C29) and sugar (arabinose) biomarkers (black crosses), the reconstructed leaf
water (open circles), the global meteoric water line (GMWL, green line), and the local meteoric water lines of Germany (LWMLGermany,
black line), Trier (LWMLTrier, yellow line) and Koblenz (LWMLKoblenz, blue line). The black arrows indicate natural processes of evap-
otranspirative enrichment of leaf water along local evaporation lines (LELs), biosynthetic fractionation during biomarker synthesis and the
temperature effect on the source water isotope composition (∼ precipitation). Grey lines indicate the parallel distance between the individual
reconstructed evaporative site leaf water points and the LMWLGermany, expressed as d = δ2H− 7.72 · δ18O. The difference between the d
excesses of the leaf water and source water can serve as proxy for mean daytime vegetation period relative humidity (RHdv; red double
arrow).

proxies seems to be challenging. Similarly, δ15N has been
investigated as proxy for sedimentary organic matter origin
(Meyers and Ishiwatari, 1993; Meyers and Lallier-Vergés,
1999; Wolfe et al., 1999). However, numerous processes that
may have an influence, like nitrogen uptake by plants, var-
ious nitrogen sources, discrimination during denitrification
and diagenesis, complicate the use of δ15N as a direct source
determination proxy.

Despite the uncertainties presented above, concerning the
origin of bulk sedimentary organic matter in the Gemündener
Maar, the origin of the sedimentary biomarkers, namely n-
alkanes and sugars, needs to be addressed. This is crucial
because aquatic biomarkers incorporate the isotope composi-
tion of lake water, whereas terrestrial biomarkers incorporate
the isotope composition of leaf water (Huang et al., 2004;
Kahmen et al., 2013; Mügler et al., 2008; Sachse et al., 2004,
2012; Sauer et al., 2001; Tuthorn et al., 2014; Zech et al.,

2013b, 2014b). With regard to the n-alkane biomarkers, high
amounts of the chain lengths n-C27 and n-C29 are charac-
teristic of the Gemündener Maar sediments. Such patterns
are typical of epicuticular leaf wax layers of higher terres-
trial plants (e.g. Eglinton and Hamilton, 1967). With regard
to the sugar biomarkers, they were previously studied in de-
tail by Hepp et al. (2016). According to the authors’ own
results and a compilation from the literature (including, e.g.,
Jia et al., 2008; Prietzel et al., 2013; Zech et al., 2012, 2014b),
relatively high amounts of arabinose are a good indicator of
a primarily terrestrial origin (higher vascular plants) of the
sugars. This interpretation is in agreement with the Gemün-
dener Maar being a small lake with densely forested steep
crater walls (Fig. 1c). We therefore conclude and suggest
that arabinose as well as n-C27 and n-C29 in our Gemün-
dener Maar record are primarily of terrestrial rather than
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aquatic origin and thus reflect δ2H/δ18Oleaf-water rather than
δ2H/δ18Olake-water.

3.2 Reconstructing leaf water isotope composition
based on δ2Hn-alkane and δ18Osugar

The δ2H depth profiles reveal variations of −222 ‰ to
−134 ‰ and −220 ‰ to −147 ‰ for n-C27 and n-C29,
respectively (Fig. 4a). Their δ2H patterns correlate highly
significantly with each other (r = 0.7, p < 0.001, n= 59).
Weighted mean δ2H values were calculated using the rel-
ative amounts of n-C27 and n-C29. The Younger Dryas is
characterised by the most negative δ2H values (mean of
−193 ‰), whereas the Allerød, the Preboreal and the Bo-
real yielded less negative values (−182 ‰, −178 ‰ and
−171 ‰, respectively). Still, the Holocene part also reveals
two pronounced δ2H minima. Overall, our Gemündener
Maar δ2Hn-alkane resembles very well the δ2H n-C29 record
of Rach et al. (2014) for Meerfelder Maar close by.

The δ18O values for arabinose, xylose and fucose range
from 28 ‰ to 41 ‰, 26 ‰ to 45 ‰ and 27 ‰ to 46 ‰, re-
spectively (Fig. 4b). They reveal similar trends overall (arabi-
nose vs. xylose: r = 0.7, p < 0.001, n= 59; arabinose vs. fu-
cose: r = 0.8, p < 0.001, n= 59; xylose vs. fucose: r = 0.8,
p < 0.001, n= 59). All sugar records show a clear shift to
more positive values at the Younger Dryas–Holocene tran-
sition. While xylose and fucose exhibit a change of ∼ 8 ‰
and 7 ‰, arabinose δ18O values show a less pronounced
shift of ∼ 3 ‰ (changes are based on the mean δ18O val-
ues for the Younger Dryas compared to the Preboreal/Boreal
period). Xylose is however slightly more negative through-
out the Allerød and Younger Dryas compared to arabinose
and fucose. Consistently less pronounced changes can be ob-
served for the Allerød–Younger Dryas transition of 1.9 ‰,
1.7 ‰ and 0.9 ‰ for xylose, fucose and arabinose, respec-
tively (based on the mean δ18O values for the Allerød com-
pared to the Younger Dryas). A distinct minimum during the
early Preboreal (633 cm depth) characterises all three δ18O
sugar records.

The isotope compositions of leaf wax n-alkanes and
leaf (hemi-)celluloses from higher plants are known to be
strongly related to the water in which they are biosynthe-
sised. They basically reflect the isotope composition of leaf
water during photosynthetic activity (Barbour and Farquhar,
2000; Cernusak et al., 2005; Kahmen et al., 2013; Sachse
et al., 2012). Hence, the isotope signature of the paleo leaf
water, δ18Ol and δ2Hl, respectively, can be reconstructed by
using biosynthetic fractionation factors (Fig. 5; Eqs. 8 and
9). For this purpose, fractionation factors of −160 ‰ for the
n-alkanes n-C27 and n-C29 (ε2

bio; Sachse et al., 2012; Ses-
sions et al., 1999) and +27 ‰ for the hemicellulose sugar
arabinose (ε18

bio; Cernusak et al., 2003; Schmidt et al., 2001;
Sternberg et al., 1986; Yakir and DeNiro, 1990) seem to be
appropriate (Eqs. 8 and 9).

δ18Ol = (δ18Oarabinose− ε
18
bio)/(1+ ε18

bio/1000) (8)

δ2Hl = (δ2Hn-alkane− ε
2
bio)/(1+ ε2

bio/1000) (9)

From the study of tree rings, it is known that stem cellu-
lose does not show the full leaf water 18O enrichment signal.
Barbour and Farquhar (2000) related this signal dampening
to the proportion of unenriched source water contributing to
the local synthesis water (px) and to the proportion of ex-
changeable oxygen during cellulose synthesis (pex). The lat-
ter is often assumed to be rather constant around 0.40, as
estimated from leaf and wood cellulose of Eucalyptus globu-
lus and values compiled from the literature (Cernusak et al.,
2005), meaning that around 40 % of the oxygens in the stem
cellulose exchanged. Already Helliker and Ehleringer (2002)
compared the signal transfer from leaf water to the cellulose
of tree stems with the signal transfer occurring in grasses.
And Liu et al. (2016) reported signal dampening in the range
between 34 % and 53 % for the C4 grass Cleistogenes squar-
rosa.

Figure 4c illustrates that Poaceae pollen concentrations
ranged between 11 % and 33 % during the Allerød and the
Younger Dryas in the Gemündener Maar record. Hence, a
correction for the 18O signal dampening may be required in
order to take these vegetation changes into consideration. A
respective correction procedure based on mass balance con-
siderations is given in Eq. (10) in order to adjust δ18Ol to
δ18Ol

#:

δ18Ol
#
=

{(
δ18Ol− δ

18Os

)/[
fnon-grasses+ (1− 0.4)

− fnon-grasses · (1− 0.4)
]}
+ δ18Os. (10)

The correction presented in Eq. (10) is based on assump-
tions that 40 % (0.4) of the leaf water enrichment is lost dur-
ing hemicellulose biosynthesis of grass leaves, which is well
within the range of values presented in the literature for cel-
lulose synthesis in tree rings and grasses (Cernusak et al.,
2005; Liu et al., 2016). Furthermore, the Poaceae pollen con-
centration in percentage is used to calculate the fraction of
non-grassy pollen (fnon-grasses = (100−Poaceae)/100) cor-
responding to the non-grassy biomarker contribution, which
may serve as a rough approximation. For a paleo applica-
tion, δ18Os remains a priori unknown. Therefore, the inter-
cept between the individual LELs (Eq. 6) and the LMWL
of Germany were used to generate δ18Os values. Note that
the signal dampening effect described here for cellulose syn-
thesis is likely not fully applicable to our approach using
the sugar biomarker arabinose. In fact, pentoses like arabi-
nose are biosynthesised via decarboxylation of the carbon at
position six (C6) from glucose (Altermatt and Neish, 1956;
Burget et al., 2003; Harper and Bar-Peled, 2002). Water-
house et al. (2013) showed that the oxygens at C6 position
in glucose moieties are most strongly affected by the ex-
change with a local water medium of 80 %, as indicated by
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heterotrophic cellulose synthesis. Thus, arabinose has lost a
strongly exchanged (dampened) oxygen and the remaining
pentose shows less 18O signal dampening.

With regard to the ε2
bio value of −160 ‰, this biosynthetic

fractionation factor is confirmed by climate chamber studies
of dicotyledonous plants (Kahmen et al., 2011, 2013; Tipple
et al., 2015). However, the latter studies also reveal a range
of ∼ 35 ‰, interpreted as species-specific effects during n-
alkane biosynthesis. The difference between dicotyledonous
and monocotyledonous C3 plants is much more pronounced
the regarding the degree to which the leaf water isotope en-
richment is transferred into leaf n-alkanes (Gamarra et al.,
2016; Kahmen et al., 2013). While dicotyledonous plants
show signal transfer rates of 96 % on average (Kahmen et
al., 2013), a larger range of between 38 % and 61 % is found
for monocotyledonous plants (Gamarra et al., 2016). The lat-
ter implies that 39 % to 62 % of the 2H leaf water enrichment
is not recorded by the n-alkanes of grasses. Hence, like for
δ18O, a correction may be requested to account for grass-
derived n-alkanes:

δ2Hl
#
=

{(
δ2Hl− δ

2Hs

)/[
fnon-grasses+ (1− 0.5)

− fnon-grasses · (1− 0.5)
]}
+ δ2Hs, (11)

where δ2Hl
∗ are the grass-corrected δ2Hl values. The δ2Hs

values and the non-grassy pollen fraction are defined as in
Eq. (10). The mass balance correction presented in Eq. (11)
is based on assumptions that only 50 % of the leaf water en-
richment is incorporated by the n-alkanes during biosynthe-
sis in grass leaves.

In summary, the discussion outlined above allows recon-
structing δ2H/δ18Oleaf-water (and thus RH results with Eq. 5)
for four scenarios (see also Table 1): (i) without signal damp-
ening, (ii) with grass-corrected δ2H values, (iii) with grass-
corrected δ18O values, and (iv) with grass-corrected δ2H and
δ18O values.

3.3 Reconstructing relative humidity based on the
coupled δ2Hn-alkane–δ18Osugar paleohygrometer
approach

The biomarker-based leaf water values (δl = δ
2Hl, δ18Ol via

Eqs. 8 and 9) result in d excess values of leaf water (dl)
ranging between −125 ‰ and −30 ‰ (Figs. 5 and 6a). This
is well within the range that can be expected. For instance,
Voelker et al. (2014) reported “deuterium deviations” (cal-
culated as d excess of leaf water minus 10 ‰) ranging from
0 ‰ to −200 ‰. And Mayr (2002) conducted climate cham-
ber experiments with Vicia, Brassica and Eucalyptus during
his dissertation and measured δ2H and δ18O of leaf water
(δ18Oleaf-water and δ18Osugars are published in Zech et al.,
2014b). Accordingly, d excess of leaf water ranged from
−38 ‰ to −171 ‰ and correlates highly significantly with
RH (ranging from 21 % to 68 %).

Using the Gemündener Maar dl values as input for Eq. (5),
RH values during daytime and vegetation period (RHdv) can
be calculated (scenario 1 in Table 1). Reconstructed RHdv
values range from 32 % to 82 % (Fig. 6b). The error bars
covering the Gemündener Maar RHdv record, calculated us-
ing pooled de standard errors ranging from 3.2 ‰ to 44.4 ‰
according Eq. (7), result in an RH uncertainty range of 1.7 %
to 23.4 %. The RHdv record shows quite large variability
with no clear trend during the Allerød and the first half of
the Younger Dryas. The late Younger Dryas and the early
and the middle Preboreal are characterised by lower RH
values. By contrast, the middle Preboreal reveals the most
pronounced RH maximum. The mean reconstructed RHdv
value is 53 % (mean RHdv upper limit= 45 %; mean RHdv
lower limit= 62 %; see Sect. 2.5). For comparison, the mod-
ern RHdv value (06:00 to 19:00 CET from April to October)
from the adjacent meteorological station Nürburg-Barweiler
(approx. 25 km northeast of Gemündener Maar (GM); hourly
data from 1995 to 2015 from Deutscher Wetterdienst, 2016)
is 67 % (Fig. 6b). In addition, the range of the reconstructed
RHdv values of 50 % agrees well with the modern RHdv vari-
ability of 45 %, within a range of 48 % to 93 % (definition and
meteorological station details as above). As proposed, in the
previous chapter, three correction scenarios can be applied
when reconstructing dl and RHdv values in order to account
for 2H and 18O signal dampening occurring in grasses.

Accordingly, the full correction for grass-derived alkane
and sugar biomarkers (scenario 4 in Table 1) results in
0.0 % to 6.3 % (mean 1.8 %) lower RHdv values (RHdv

#∗

in Fig. 6b). This corresponds to dl decreases of 0.0 ‰ to
−12.0 ‰ (dl

#∗ in Fig. 6a). Such small changes are still far be-
low the pooled analytical standard errors. When only correct-
ing for the 18O signal dampening (scenario 3 in Table 1), dl
values decrease by 0.0 ‰ to −22.7 ‰, corresponding to RH
decreases of 0.0 % to −12.0 % (dl

# and RHdv
# in Fig. 6a and

b, respectively). By contrast, when only correcting for the 2H
signal dampening (scenario 2 in Table 1), this leads to 0.0 ‰
to 10.6 ‰ more positive and 0.0 % to 5.6 % higher RHdv val-
ues (dl

∗ and RHdv
∗ in Fig. 6a and b). Overall, these results

suggest that the reconstructed RHdv values are not strongly
affected by 2H and 18O signal dampening of grasses.

We are aware that microclimatic conditions with higher
RH values often develop in lower canopy levels of forests
(Graham et al., 2014; Parker, 1995). This may result in
RH overestimations when applying the coupled δ2Hn-alkane–
δ18Osugar paleohygrometer approach. However, most leaf
biomass is produced at higher canopy levels, which are ex-
posed to sunlight and free-air RH values. This is in agree-
ment with a study of Zech et al. (2015), who investigated
n-alkanes in soils of the tropical montane rainforest of Mt
Kilimanjaro. There, n-alkanes reflect δ2Hleaf-water as calcu-
lated from free-air RH rather than as calculated from nearly
saturated ground-level RH.

A basic assumption of our coupled δ2Hn-alkane–δ18Osugar
paleohygrometer approach is isotopic equilibrium between
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Table 1. Scenarios 1–4 used for reconstructing deuterium (d) excess of leaf water and corresponding RHdv values in order to assess/estimate
the effect of variable grass contributions on the reconstructed Gemündener Maar RH record (see also Fig. 6).

Scenario Leaf water reconstructed Equations used for leaf Resulting d excess Relative air humidity
from n-alkane or sugar water reconstruction of leaf water as during daytime and
biomarkers input for Eq. (5) vegetation period

according Eq. (5)

1 δ2Hl/δ
18Ol (8) and (9) dl RHdv

2 δ2Hl
∗/δ18Ol (8) and (9)+ (11) dl

∗ RHdv
∗

3 δ2Hl/δ
18Ol

# (8)+ (10) and (9) dl
# RHdv

#

4 δ2Hl
∗/δ18Ol

# (8)+ (10) and (9)+ (11) dl
#∗ RHdv

#∗

Figure 6. (a) Deuterium (d) excess depth profiles of reconstructed leaf water: dl (black line): no correction for grasses; dl
∗ (light blue line):

δ2H corrected for grasses; dl
# (light red line): δ18O corrected for grasses; dl

#∗ (light green line): δ2H and δ18O corrected for grasses. The
error bars of dl values are calculated according to Eq. (7). (b) Reconstructed RHdv records. Modern RH variability during daytime and
vegetation period (RHdv) is displayed as a box plot derived from the adjacent meteorological station Nürburg-Barweiler, using monthly
means from April to October between 06:00 and 19:00 CET (based on hourly data from 1995 to 2015; Deutscher Wetterdienst, 2016). The
numbers within the box plot represent the maximum, median and minimum values. (c) Depth profile of Poaceae pollen. Additionally, the
resampled data points (black points) are displayed. The GM1 core picture with the used age markers are displayed on the left. AL: Allerød;
LST: Laacher See Tephra; YD: Younger Dryas; PB: Preboreal; BO: Boreal.

plant source water and water vapour. In order to test the
robustness of this assumption and respective effects on re-
constructed RH values, we used data of Jacob and Son-
ntag (1991), who measured the isotope composition of pre-
cipitation and of atmospheric water vapour in Heidelberg,
Germany, during the period 1981 to 1989. The mean dif-
ference between the annual weighted means of precipitation
(≈ plant source water) and the water vapour averaged over
the vegetation period (April–October) was therefore calcu-
lated. Such derived apparent fractionation (εap) amounts to
18.3 ‰ and 1.57 ‰ on average for 2H and 18O, respectively.
We used this εap in Eq. (1) instead of the difference δa− δs

and recalculated the RH values. This recalculation leads to
an average RH change of only −1.7 % (±0.9), which is far
below the analytical errors of the d excess of leaf water.

Finally, the stability of the d excess and slope of the
LMWLGermany through the past needs to be discussed. Ac-
cording to Stumpp et al. (2014), the long-term d excess of
precipitation from 28 sites in Germany does not show pro-
nounced relationships to local climate conditions of the site.
All reported values are close to 10 ‰, which indicates that
Atlantic air masses are the main moisture source for Ger-
many (e.g. Rozanski et al., 1993). In addition, the d ex-
cess of precipitation from the stations Trier and Koblenz,
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Figure 7. (a) Reconstructed Gemündener Maar (GM) RHdv record. The bold line shows the three-point moving average. Error bars and
the blue-shaded area indicate analytical uncertainties calculated according to error propagation (Eq. 7). (b) IntCal13 14C production rate,
Greenland ice-core (GRIP, GISP2) 10Be flux record (both from Muscheler et al., 2014) and South Iceland Rise planktic Mg/Ca-derived
water temperatures from RAPiD-12-1K (squares; 10 000 to 11 800 a BP) and RAPiD-15-4P (circles; 10 900 to 13 200 a BP). RAPiD-12-1K
and RAPiD-15-4P G. bulloides and G. inflata data from Thornalley et al. (2009) and Thornalley et al. (2010), respectively. RAPiD-15-4P
N. pachyderma data from Thornalley et al. (2011). Note that each record is plotted on its own timescale (for planktonic Mg/Ca data, see
Thornalley et al., 2009, 2010; for 10Be data on GICC05, see Rasmussen et al., 2006; for 14C data on IntCal13 calibration curve, see Reimer
et al., 2013; for RHdv data on GM age–depth model, see Fig. 2d). AL: Allerød, LST: Laacher See Tephra, YD: Younger Dryas, PB: Preboreal
and BO: Boreal.

which are close to the Gemündener Maar, reveal rather small
variability on a monthly, annual and long-term basis. For
Trier monthly averaged d excess values (March to October)
range from 5.3 ‰ to 8.7 ‰. Annually weighted mean d ex-
cess values range from 1.9 ‰ to 10.6 ‰, and the long-term
weighted mean is 6.7 ‰ (±2.2); for Koblenz the d excess
values range between 2.1 ‰ and 6.4 ‰ and 1.4 ‰ and 8.7 ‰,
and the long-term weighted mean is 4.1 ‰ (±1.8) (derived
from IAEA/WMO, 2018). Finally, d excess variability in
Greenland and Antarctic ice cores does not exceed 4 ‰ over
the timescale relevant here (Masson-Delmotte et al., 2005;
Stenni et al., 2010). In addition, paleowater samples from Eu-
rope suggest that the d excess of precipitation was rather con-
stant throughout the past 35 000 years, which implies that the
principle atmospheric circulation patterns over the European
continent did not change substantially (Rozanski, 1985). In
summary, the variations in the slope of the LMWL of Ger-
many are assumed to be rather small over longer timescales.

The detailed discussions in the above three sections
address numerous uncertainties when using the coupled
δ2Hn-alkane–δ18Osugar paleohygrometer approach. Conclu-
sively, the reconstructed RHdv history of the Gemündener
Maar seems, however, robust enough to infer reliable pale-
oclimatic or hydrologic conclusions.

3.4 How dry was the Younger Dryas in western Europe?

While it is well known that the Younger Dryas was a cold
spell occurring in the Northern Hemisphere during the Late
Glacial (Denton et al., 2010; Heiri et al., 2014; Isarin and
Bohncke, 1999), there is much less clear evidence concern-
ing moisture supply or availability and RH changes during
the Younger Dryas. The Gemündener Maar RHdv record sug-
gests quite some variability but on average moderate RHdv
conditions of ∼ 56 % during the end of the Allerød and the
first half of the Younger Dryas. This is within the range of
modern RHdv values (Fig. 6b). In the second half of the
Younger Dryas, a clear RHdv decrease of ∼ 11 % occurred
(Fig. 7a). Such a two phasing of the Younger Dryas has
been suggested previously based on multiproxy climate data
for western Europe (Isarin et al., 1998). In more detail, Is-
arin et al. (1998) reported a cold and humid first phase be-
ing followed by drier and warmer conditions. It is more-
over speculated that a shift in the mean sea-ice margin dur-
ing winter in the North Atlantic Ocean slightly to the north
could have caused this two phasing. Reduced cyclonic activ-
ity and precipitation thereby primarily affected western Eu-
rope because this region was situated at the southern mar-
gin of the main storm tracks during the first Younger Dryas
period (Isarin et al., 1998). The authors also presented evi-
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dence for the strengthening of the westerly winds in west-
ern Europe as consequence of northward-shifted North At-
lantic Ocean sea-ice margin during the late Younger Dryas
period. This contradicts, however, with the interpretation of
the Meerfelder Maar sedimentary record. Here, the thicker
varves during the early Younger Dryas (between 12 680 and
12 240 varve a BP) are used along with geochemical results
as indicator of stronger winter winds (Brauer et al., 2008).
In line with this, Brauer et al. (1999) interpreted high bio-
genic opal contents and Pediastrum remains concentrations
during the early Younger Dryas as enhanced aquatic pro-
ductivity due to an increased nutrient supply caused by soil
erosion and the reworking of littoral sediments. The varve
formation throughout the second Younger Dryas period (be-
tween 12 240 and 11 590 varve a BP) is interpreted to be
mainly controlled by snowmelt-driven surface runoff (Brauer
et al., 1999). Moreover, the authors speculate if during that
time the Meerbach began to drain into the Meerfelder Maar,
which could be possibly linked to enhanced precipitation
amounts. In summary, the interpretations derived from the
Younger Dryas sediments of the Meerfelder Maar by Brauer
et al. (2008, 1999) seem neither to be in accordance with the
results of Isarin et al. (1998) nor with the established RHdv
record of the Gemündener Maar (Fig. 7a).

Recently, Rach et al. (2017) reconstructed RH changes
and generally dry Younger Dryas climatic conditions by in-
vestigating δ2H of terrestrially versus aquatically derived n-
alkanes (published in Rach et al., 2014) from the Meerfelder
Maar archive. At the current state of research, it can only
be speculated about the reasons for this discrepancy, with
our Gemündener Maar RH record not corroborating an over-
all dry Younger Dryas. While the uncertainties of the cou-
pled δ2Hn-alkane–δ18Osugar paleohygrometer approach were
discussed in detail in the previous sections, in our opinion the
most important uncertainties affecting the dual-biomarker
approach of Rach et al. (2014, 2017) are the following. First,
lake water is assumed to reflect δ2H of precipitation. Indeed,
Holzmaar, which seems to be comparable to the Meerfelder
Maar at least for the drainage conditions via one creek, shows
a difference of 7.4 ‰ in δ2H between inflow and lake water
(Sachse et al., 2004). This lake water enrichment is likely
to have been variable in the past, especially when includ-
ing the speculation concerning the drainage of the Meerbach
during the Younger Dryas (Brauer et al., 1999). Second, n-
C23 is interpreted to be of aquatic origin (from Potamogeton)
and used for reconstructing δ2Hlake-water. However, there is
increasing evidence that n-C23 is also of terrestrial origin
(Rao et al., 2014). For instance, Aichner et al. (2018) have
recently shown for a lake in Poland that n-C23 shows a vari-
able mixture of aquatic and terrestrial origin in those Late
Glacial and Early Holocene sediments. And birch as a pi-
oneering and one of the dominant tree species during Late
Glacial reforestation of central Europe is known to produce
considerable amounts of mid-chain n-alkanes (Tarasov et al.,
2013). Although they are not included in the latter publica-

tion, n-C23 concentrations of Betula exilis and Betula pen-
dula reached 653 and even 2323 µg g−1 in that study. This is
highly relevant, because the biosynthetic fractionation factor
of aquatic n-alkanes is much smaller than the one of terres-
trial n-alkanes. Minor changes in the contribution of terres-
trial vs. aquatic n-alkanes will thus have a considerable im-
pact on the reconstructed δ2H n-C23 record and in turn on
reconstructed RH values when applying the dual-biomarker
approach. Finally, it may worth acknowledging that Sachse
et al. (2004) found no significant correlation for δ2H of n-
C23 and lake water and precipitation along a European lake
surface transect.

Also recently and also applying the dual-biomarker ap-
proach, Muschitiello et al. (2015) studied Younger Dryas
lake sediments from Hässeldala Port in southern Sweden.
Here, the authors used δ2H of n-C21 as a proxy for lake
water and summer precipitation. The calculated difference
between terrestrial and aquatic n-alkane δ2H values sug-
gests more humid conditions at the beginning of the Younger
Dryas followed by a more or less steady trend towards drier
conditions, peaking around 11 700 a BP (Muschitiello et al.,
2015). Within age uncertainties, this would be in line with
the Gemündener Maar RHdv minimum between ∼ 11 700
and 11 900 a BP. Last but not least, Gázquez et al. (2018)
analysed triple oxygen and hydrogen isotopes of gypsum in
the southern Pyrenees and thus reconstructed RH changes.
Again, more humid conditions are reported for the beginning
of the Younger Dryas.

In search of possible drivers or mechanisms for the ob-
served Gemündener Maar RHdv record, we came across the
14C production and 10Be flux rates (Fig. 7b), derived from
IntCal13 and the Greenland ice cores (GRIP, GISP2), re-
spectively (Muscheler et al., 2014). These records are com-
monly interpreted in terms of solar activity (and thus insola-
tion) changes (Stuiver and Braziunas, 1988; Vonmoos et al.,
2006) and reveal striking similarities with our Gemündener
Maar RHdv record. For instance, all three records reveal quite
high centennial-scale variability during the Allerød and the
first half of the Younger Dryas. Generally low RHdv values
during the second half of the Younger Dryas and the Early
Preboreal coincide with high solar activity, whereas the pro-
nounced RHdv maximum from 11 260 to 11 050 a BP coin-
cides within age uncertainties with a pronounced solar ac-
tivity minimum (Fig. 7). We dub this wet period the “Pre-
boreal Humid Phase”, which should not be confused with
the Preboreal Oscillation (Björck et al., 1997). The Prebo-
real Oscillation is a short cold event recorded in Greenland
ice cores ∼ 11 400 ka (Rasmussen et al., 2007) and led to
more arid conditions at least in the Netherlands according
to palynological results (Bos et al., 2007; van der Plicht et
al., 2004). These pollen records also show the existence of
a pronounced humid phase thereafter, thus corroborating the
Preboreal Humid Phase. Widespread glacial advances in the
Alps are also attributed to the Preboreal Oscillation (Moran
et al., 2017). However, given the dating uncertainties they
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may actually rather reflect increased precipitation during the
Preboreal Humid Phase.

It should be emphasised, that the described similarities be-
tween the Gemündener Maar RHdv record and the solar ac-
tivity records do not allow an a priori causality interpretation.
It is widely accepted that the Younger Dryas and the Prebo-
real Oscillation are related to freshwater forcing in the North
Atlantic (e.g. Fisher et al., 2002; Murton et al., 2010; Muschi-
tiello et al., 2015). However, the causes and mechanisms re-
sponsible for climate and environmental changes during the
rest of the Holocene remain vague, and more research includ-
ing paleoclimate modelling is clearly needed and encouraged
to investigate the possible influence of solar activity (Renssen
et al., 2007; Rind, 2002). We propose that both the North At-
lantic Ocean temperature and solar activity (the latter trigger-
ing solar insolation) were the two main drivers for the RHdv
variability in central Europe. A key example might be the
Preboreal Humid Phase. It can be expected that the North
Atlantic Ocean, the main moisture source for central Europe,
already had considerably higher temperatures during the Pre-
boreal Humid Phase compared to the Younger Dryas, as indi-
cated by a consistent∼ 2 ◦C increase in Mg/Ca temperatures
derived from planktonic foraminifera (Globorotalia inflata,
Globorotalia bulloides and Neogloboquadrina pachyderma)
in a marine sediment core south of Iceland (Fig. 7b, Thornal-
ley et al., 2009, 2010, 2011). This led to an enhanced mois-
ture content of the atmosphere. When these wet air masses
were transported onto continental Europe, where low so-
lar insolation inhibited warming up and drying of these air
masses, pronounced humid climate conditions were estab-
lished.

4 Conclusions

Referring to the underlying research questions and based on
the presented results and the outlined discussion (including
the cited literature), the following conclusions have to be
drawn.

The terrestrial vs. aquatic origin of bulk sedimentary or-
ganic matter cannot be determined unambiguously for the
Gemündener Maar. This is caused by the bulk proxies
(TOC/N, δ13C and δ15N) not being straightforwardly inter-
pretable. By contrast, the alkane biomarkers with the chain-
length n-C27 and n-C29 and the sugar biomarker arabinose
can be most likely associated with the epicuticular leaf wax
layers and the hemicellulose structures of higher terrestrial
plants, respectively. Therefore, they are interpreted as origi-
nating primarily from leaf material of the Gemündener Maar
catchment.
δ2H/δ18Oleaf-water could be reconstructed from

δ2Hn-alkane (n-C27 and n-C29) and δ18Osugar (arabinose) by
applying biosynthetic fractionation factors. We acknowl-
edge that the assumption of constant fractionation factors
introduces uncertainty as highlighted by the broad literature

discussion. A correction for the signal dampening of leaf
water 2H/18O enrichment occurring in grasses is possible
but seems negligible in the case of the Gemündener Maar
record.

The detailed discussion of possible uncertainties of the
applied coupled δ2Hn-alkane–δ18Osugar paleohygrometer ap-
proach suggests that robust RH reconstructions are possible
for the Gemündener Maar record. The reconstructed RH val-
ues refer to daytime and vegetation period (RHdv).

The established Gemündener Maar RHdv record supports
a two phasing of the Younger Dryas with moderate wet con-
ditions at Allerød level during the first half and drier con-
ditions during the second half of the Younger Dryas. Over-
all, dry climatic conditions characterising the Younger Dryas
could not be corroborated. Unexpectedly, the amplitude of
RHdv changes during the Early Holocene was more pro-
nounced than during the Younger Dryas and includes a pro-
nounced Preboreal Humid Phase occurring from∼ 11 260 to
11 050 a BP. We propose North Atlantic Ocean temperature
and solar activity (and thus insolation) as the main drivers for
Late Glacial–Early Holocene RH changes in central Europe
and encourage respective paleoclimate modelling studies in
order to validate or falsify our proposition.
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Depth Age δ
2
Hleaf-water δ

18
Oleaf-water δ

2
Hsource-water δ

18
Osource-water

[cm] [a BP] [‰] [‰] [‰] [‰]

607.5 10139 -163.7 ± 3.3 36.1 ± 0.9 -4.4 8.9 -73 ± 25 59 ± 13 -49 -7

608.5 10180 -156.8 ± 2.7 36.6 ± 1.2 3.9 9.3 -68 ± 21 61 ± 11 -38 -6

609.5 10222 -159.0 ± 0.5 37.8 ± 0.7 1.2 10.5 -80 ± 4 55 ± 2 -48 -7

611.5 10305 -205.3 ± 1.8 30.7 ± 0.5 -53.9 3.6 -81 ± 14 54 ± 7 -104 -14

612.5 10346 -205.4 ± 1.9 36.4 ± 0.1 -54.1 9.2 -125 ± 15 32 ± 8 -129 -17

615.5 10470 -146.0 ± 1.4 38.8 ± 0.3 16.6 11.5 -72 ± 11 59 ± 6 -28 -4

617.5 10553 -170.9 ± 0.9 38.2 ± 0.9 -13.0 10.9 -97 ± 7 46 ± 4 -72 -10

619.5 10636 -159.2 ± 1.2 37.3 ± 0.2 0.9 10.0 -77 ± 9 57 ± 5 -46 -7

620.5 10678 -173.7 ± 1.4 40.6 ± 0.5 -16.3 13.2 -118 ± 11 35 ± 6 -87 -12

622.5 10761 -200.1 ± 0.0 35.3 ± 0.2 -47.7 8.1 -110 ± 0 39 ± 0 -114 -15

623.5 10802 -194.9 ± 2.1 37.9 ± 1.0 -41.5 10.7 -124 ± 16 32 ± 9 -115 -16

624.5 10844 -202.8 ± 1.7 36.8 ± 0.4 -50.9 9.5 -125 ± 13 32 ± 7 -125 -17

625.5 10885 -166.8 ± 1.8 37.1 ± 0.4 -8.0 9.8 -84 ± 14 53 ± 7 -59 -8

626.5 10927 -174.6 ± 2.4 37.4 ± 0.5 -17.4 10.1 -96 ± 19 47 ± 10 -75 -10

627.5 10968 -179.2 ± 2.2 36.7 ± 1.0 -22.9 9.5 -96 ± 17 47 ± 9 -81 -11

628.5 11010 -171.6 ± 0.6 36.6 ± 1.0 -13.8 9.4 -86 ± 5 52 ± 2 -66 -9

629.5 11051 -170.4 ± 0.2 32.4 ± 2.7 -12.4 5.3 -53 ± 3 69 ± 2 -46 -7

630.5 11092 -173.0 ± 1.3 32.5 ± 0.6 -15.4 5.3 -57 ± 10 68 ± 5 -51 -7

631.5 11134 -170.2 ± 1.1 34.1 ± 0.4 -12.1 6.9 -65 ± 9 63 ± 5 -52 -7

632.5 11175 -169.0 ± 2.7 34.1 ± 0.2 -10.7 6.9 -64 ± 21 64 ± 11 -50 -7

633.5 11217 -174.8 ± 2.2 28.6 ± 0.6 -17.7 1.6 -30 ± 17 82 ± 9 -38 -6

634.5 11258 -169.2 ± 0.8 34.2 ± 0.6 -11.0 7.0 -65 ± 6 63 ± 3 -51 -7

635.5 11300 -189.2 ± 2.5 36.3 ± 1.6 -34.8 9.1 -105 ± 19 42 ± 10 -98 -13

636.5 11341 -177.5 ± 2.0 35.6 ± 0.4 -20.9 8.4 -86 ± 15 52 ± 8 -73 -10

637.5 11383 -170.1 ± 3.9 38.0 ± 1.5 -12.0 10.7 -95 ± 30 47 ± 16 -69 -10

639.5 11466 -172.5 ± 1.9 40.1 ± 1.4 -14.8 12.8 -113 ± 15 38 ± 8 -83 -11

640.5 11507 -165.1 ± 4.2 36.6 ± 0.3 -6.0 9.3 -78 ± 32 56 ± 17 -54 -8

641.5 11549 -181.7 ± 1.2 33.1 ± 0.7 -25.8 5.9 -72 ± 9 60 ± 5 -70 -10

643.5 11630 -202.3 ± 2.0 32.1 ± 0.2 -50.4 4.9 -88 ± 15 51 ± 8 -104 -14

644.5 11669 -181.1 ± 1.6 34.4 ± 0.3 -25.1 7.2 -81 ± 12 55 ± 6 -74 -10

645.5 11709 -199.1 ± 0.9 33.4 ± 0.4 -46.6 6.2 -94 ± 7 48 ± 4 -104 -14

647.5 11788 -200.4 ± 3.3 35.7 ± 0.5 -48.1 8.5 -114 ± 25 37 ± 13 -116 -16

648.5 11828 -193.5 ± 0.8 34.2 ± 0.2 -39.9 7.0 -94 ± 6 48 ± 3 -97 -13

649.5 11867 -212.3 ± 2.6 34.6 ± 0.3 -62.3 7.4 -119 ± 20 35 ± 10 -134 -18

651.5 11947 -186.7 ± 1.8 33.0 ± 0.2 -31.8 5.8 -77 ± 14 57 ± 7 -79 -11

652.5 11986 -188.8 ± 1.3 30.9 ± 0.4 -34.3 3.8 -64 ± 10 64 ± 5 -74 -10

653.5 12026 -186.3 ± 1.4 32.5 ± 0.5 -31.3 5.4 -73 ± 11 59 ± 6 -76 -10

656.5 12145 -196.4 ± 0.6 33.8 ± 0.7 -43.4 6.6 -95 ± 5 48 ± 2 -101 -14

657.5 12185 -167.2 ± 5.8 34.3 ± 0.4 -8.6 7.1 -63 ± 44 64 ± 23 -48 -7

659.5 12264 -201.2 ± 0.6 32.7 ± 0.7 -49.0 5.5 -92 ± 5 49 ± 3 -105 -14

660.5 12303 -191.6 ± 1.1 28.1 ± 0.8 -37.6 1.0 -46 ± 8 73 ± 4 -67 -9

661.5 12343 -210.7 ± 1.9 32.0 ± 0.7 -60.4 4.8 -98 ± 15 46 ± 8 -119 -16

663.5 12422 -197.5 ± 0.7 33.0 ± 0.5 -44.6 5.9 -90 ± 6 50 ± 3 -99 -13

664.5 12462 -189.2 ± 4.9 34.1 ± 0.7 -34.8 6.9 -88 ± 38 51 ± 20 -88 -12

665.5 12502 -171.2 ± 4.6 33.2 ± 0.1 -13.3 6.0 -60 ± 35 66 ± 19 -50 -7

667.5 12581 -185.8 ± 1.1 34.9 ± 0.4 -30.8 7.7 -90 ± 9 50 ± 5 -85 -12

668.5 12621 -216.0 ± 2.9 33.6 ± 0.1 -66.6 6.4 -116 ± 22 36 ± 12 -136 -18

669.5 12660 -173.6 ± 1.4 30.7 ± 0.0 -16.2 3.6 -44 ± 11 74 ± 6 -44 -6

671.5 12766 -172.7 ± 1.5 33.1 ± 0.4 -15.1 6.0 -61 ± 11 65 ± 6 -53 -8

672.5 12823 -192.5 ± 0.0 32.5 ± 0.8 -38.7 5.3 -80 ± 1 55 ± 0 -87 -12

673.5 LST n.d. ± n.d. n.d. ± n.d. n.d. n.d. n.d. ± n.d. n.d. ± n.d. n.d. n.d.

679.5 LST n.d. ± n.d. n.d. ± n.d. n.d. n.d. n.d. ± n.d. n.d. ± n.d. n.d. n.d.

681.5 12919 -176.8 ± 1.8 35.7 ± 0.4 -20.0 8.5 -85 ± 14 52 ± 8 -72 -10

682.5 12938 -175.0 ± 2.3 33.4 ± 0.4 -17.8 6.2 -66 ± 17 63 ± 9 -59 -8

683.5 12957 -177.0 ± 2.4 34.8 ± 1.1 -20.2 7.6 -79 ± 18 56 ± 10 -68 -9

685.5 12996 -179.6 ± 1.5 35.4 ± 0.1 -23.3 8.2 -86 ± 12 52 ± 6 -76 -10

687.5 13035 -221.3 ± 2.3 33.2 ± 0.3 -73.0 6.0 -120 ± 18 34 ± 9 -144 -19

688.5 13054 -184.3 ± 2.3 35.0 ± 0.5 -28.9 7.8 -89 ± 18 50 ± 9 -83 -11

689.5 13074 -177.1 ± 3.4 29.5 ± 0.6 -20.3 2.4 -39 ± 26 77 ± 14 -46 -7

692.5 13132 -182.3 ± 2.4 34.5 ± 0.6 -26.6 7.3 -83 ± 19 54 ± 10 -77 -11

693.5 13151 -169.0 ± 3.0 35.9 ± 0.1 -10.7 8.6 -77 ± 23 57 ± 12 -58 -8

n.d. = not determined; LST = Laacher See Tephra

Tab. S1: Weighted mean δ
2
H values of leaf wax-derived n -alkanes (n -C27 and n -C29) and δ

18
O values of hemicellulose-derived sugar (arabinose).

The reported standard errors represent the analytical uncertainties. Also calculated/reconstructed δ
2
H/δ

18
Oleaf-water, d-excess of leaf water, mean

daytime vegetation period relative humidities (RHdv), and δ
2
H/δ

18
Osource-water values are displayed. The reported uncertainties of d-excess and RH

represent expanded uncertainties calculated using the uncertainty propagation law. 

Calculated/Reconstructed

δ
2
Hn -alkane δ

18
Osugar d-excess of leaf water RHdv

[‰] [‰] [‰] [%]

Measured
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 22 

Abstract 23 

During the last decade, compound-specific δ2H analyses of leaf wax-derived n-alkane biomarkers became 24 

a popular tool in paleoclimate and particularly paleolimnological research. More recently, additionally 25 

compound-specific δ18O analyses of plant-derived sugar biomarkers emerged as paleoclimate proxy. By 26 

applying both tools to the Late Glacial to Early Holocene sedimentary archive of Lake Bergsee, Black Forest, 27 

Germany, we aimed at contributing to the paleoclimate reconstruction of Central Europe. 28 

A prerequisite for the interpretation of δ2H and δ18O records obtained from sedimentary biomarkers is the 29 

knowledge about the primarily terrestrial or aquatic origin of the investigated biomarkers. The long-chain 30 

n-alkanes of Lake Bergsee reflect the vegetation history as derived from pollen results and can be 31 

attributed with reasonable certainty to terrestrial sources/plants. Similarly, the high relative abundance 32 

of fucose stongly suggests a primarily aquatic origin of the sugar biomarkers. By contrast, the origin of the 33 

mid-chain n-alkane n-C23 is prone to large uncertainty because it can be produced in high amounts by both 34 

terrestrial plants such as birch and aquatic organisms. Moreover, a straightforward interpretation of the 35 

terrestrial δ2Hn-alkane and the aquatic δ18Osugar records of Lake Bergsee is challenging due to unknow degrees 36 

of evapo(transpi)rative enrichment of leaf and lake water, respectively. 37 

Finally, we tested the applicability of the recently proposed ‘dual-biomarker approach’ and the ‘coupled 38 

δ2Hn-alkane - δ18Osugar approach’ as possible tools for reconstructing relative humidity and lake water 39 

evaporation. Our discussion concering possible uncertainties advices, however, caution. In the case of Lake 40 

Bergsee, we refrain from applying the 'dual-biomarker approach' because (i) lake water enrichment cannot 41 

be excluded but is rather very likely, (ii) n-C23 is no robust aquatic biomarker and (iii) the ε2
bio value of 42 

aquatic n-alkanes is an issue of major uncertainty. Minor changes in the contribution of aquatic versus 43 

terrestrial n-C23 are likely to have a significant influence on the δ2H record of n-C23. We also refrain from 44 

applying the 'coupled δ2Hn-alkane - δ18Osugar approach', because neither a reliable pure terrestrial nor a 45 

reliable pure aquatic δ2H and δ18O coupling is possible based on the source identification results for Lake 46 

Bergsee. 47 

  48 
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1 Introduction 49 

The analyses of lipid biomarkers became a popular tool in paleoenvironmental and -climate research (e.g. 50 

Sachse et al. 2012; Diefendorf and Freimuth 2016). In paleolimnological studies, for instance, the hydrogen 51 

isotopic composition from aquatic-derived lipids (aquatic δ2H from short- and mid-chain n-alkanes and n-52 

alkanoic acids) from lacustrine sedimentary archives are used for reconstructing the hydrogen isotope 53 

composition of lake water (δ2Hlake-water) and consequently precipitation (e.g. Jacob et al. 2007; Seki et al. 54 

2011; Rach et al. 2014; Muschitiello et al. 2015). Due to lake evaporation, lake water can become 55 

isotopically enriched, thus weakening the direct link to the precipitation signal (Hou et al. 2008; Hepp et 56 

al. 2015). Alternatively, leaf wax-derived lipid biomarkers (e.g. long-chain n-alkanes and n-alkanoic) are 57 

extracted from lacustrine sediments and measured in order to obtain terrestrial compound-specific δ2H 58 

values (e.g. Sachse et al. 2006; Rao et al. 2014). Those values in turn reflect the isotope composition of leaf 59 

water from higher terrestrial plants grown in the catchment, which can be related to precipitation 60 

modified by leaf water 2H enrichment caused by evapotranspiration (Kahmen et al. 2013; Zech et al. 2015). 61 

The extent of leaf and lake water evapo(transpi)rative enrichment is mainly driven by relative humidity 62 

normalized to leaf temperature (as e.g. reviewed by Cernusak et al. 2016) and inflow (input) to evaporation 63 

ratio as well as relative humidity normalized to lake temperature (e.g. review by Gibson et al. 2016). When 64 

leaf/lake water enrichment cannot be ruled out, the interpretation of δ2Hn-alkane-based climate proxies have 65 

to remain often qualitativ. Comparable to the δ2Hn-alkane, compound-specific oxygen stable isotope (δ18O) 66 

analysis of individual sugar biomarkers offer insight into the isotopic composition of precipitation (Zech 67 

and Glaser 2009; Zech et al. 2014b). When the sugars originate from aquatic sources, they reflect lake 68 

water and can thus be interpreted either in terms of reflecting δ18O of past precipitation or as 69 

precipitation/evaporation proxy due to lake water evaporative 18O enrichment (Hepp et al. 2015). When 70 

sugars originate primarily from terrestrial sources, they reflect precipitation modified by 71 

evapotranspirative enrichment of leaf water (Tuthorn et al. 2014; Zech et al. 2014a). The recently proposed 72 

coupling of δ2Hn-alkane results with δ18Osugar results (Zech et al. 2013; Tuthorn et al. 2015; Hepp et al. 2017) 73 

as well as the ’dual-biomarker approach’ (using the difference between terrestrial and aquatic n-alkane 74 

δ2H values; Rach et al. 2017) have the potential to overcome the above mentioned limitation/uncertainty 75 

caused by unknown evapo(transpi)rative enrichment using single δ2Hn-alkane and δ18Osugar records. 76 

Moreover, such coupled approaches allow relative humidity reconstructions and may thus contribute to 77 

respective quantitative paleoclimate research (Eley and Hren 2018; Gázquez et al. 2018). 78 

With our study we aimed at contributing to the Late Glacial – Early Holocene paleoclimate reconstruction 79 

of Central Europe by investigating the sedimentary archive of Lake Bergsee in the Black Forest, Germany. 80 
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More specifically, we present (i) sedimentary bulk (total organic carbon/nitrogen, δ13C and δ15N) and 81 

biomarker (n-alkanes and sugars) proxies and discuss their potential/limitations for source identification, 82 

(ii) δ2Hn-alkane and δ18Osugar records and discuss their potential/limitations for reconstructing paleoclimatic 83 

conditions and (iii) discuss the potential/limitations of applying the above introduced ‘dual-biomarker 84 

approach’ and ‘coupled δ2Hn-alkane - δ18Osugar approach’ to our Lake Bergsee record. 85 

 86 

2 Material & Methods 87 

2.1 Lake Bergsee 88 

Lake Bergsee (7°56’11’’E, 47°34’20’’N) is situated at 382 m a.s.l. on the foothill of the southern Black 89 

Forest, Baden Würrtemberg, Germany (Becker et al. 2006), around 2 km north of Bad Säckingen (Fig. 1A). 90 

The modern lake is maximum 335 m long and 250 m wide, representing the small lake surface area with 91 

maximum water depth of 13 m. The natural catchment area is rather small with 0.162 km2, restricted to 92 

the surrounded slopes which are densly coverd by forest vegetation. The lake has no natural inflow and is 93 

only fed by precipitation and groundwater. The creek Seebächle is the natural outlet of the lake. Since 94 

1802/1803 the water level of Lake Bergsee is controlled via a connection to the close-by creek 95 

Schöpfenbach, which enlarged the catchment area by 10 km2 (Becker et al. 2006). The lake is located in a 96 

basin formed by the Riss glacier, embeded in the crystalline basement of mainly pre-Hercynian gneisses 97 

(Becker and Angelstein 2004; Becker et al. 2006). Detailed pollen profiles of Lake Bergsee sediments are 98 

published by Becker et al. (2006), up to the maximum depth of 20.7 m (covering approximately the last 99 

30,000 a). Additionally, the authors show chironomid assemblages and geochemical results. Duprat-Oualid 100 

et al. (2017) interpreted pollen results from a master core section between 1571 and 2850 cm 101 

(corresponding to an age interval between 14,700 and 45,000 a cal BP) based on a most recent twin coring 102 

campaign in November 2013. Pollen analysis, however, was already performed until a master core depth 103 

of 1350 cm. 104 
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 105 

Fig. 1: A) Maps depicting the Lake Bergsee location in Europe and in the Southern Black Forest Region. 106 

Blue shaded areas show the glacier extend during the Last Glacial Maximum. Furthermore, the actual 107 

bathymetric map of Lake Bergsee is shown, highlighting the coring position with a red dot. B) Lake Bergsee 108 

Late Glacial/Holocene age-depth model, comprising the 14C dates obtained by Duprat-Oualid et al. (2017), 109 

shown in blue, the Laacher See Tephra is marked with a light blue cross and the orange areas mark 5 newly 110 

added 14C ages obtained from microfossils found during the core sampling campaign for this study, see 111 

Tab. 1.  112 

 113 

Mean annual precipitation over the Lake Bergsee is 1159 mm. Typically, the January is the coldest month 114 

within the year, revealing a mean air temperature of 0.9°C. July is in average the warmest month with 115 

19.2°C. Data are means of the measuring period between 1981 to 2010 from the agrometeorological 116 

station Bad Säckingen at 339 m a.s.l. (Deutscher Wetterdienst).  117 

2.2 Core details, sampling strategy and age-depth model 118 

In the course of the project “Last Glacial Termination in Europe” two cores were retrieved (BER 13-01 & 119 

BER 13-02), close to the Livingston piston core BL2 of Becker et al. (2006), as overlapping twin cores 120 

(Duprat-Oualid et al. 2017). Coring was carried out with a Livingston piston corer (UWITEC, Mondsee, 121 

Austria) from a floating platform. The master core with 2850 cm length was established using magnetic 122 
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susceptibility measurements and high-resolution core imaging (Duprat-Oualid et al. 2017). The most 123 

recent cored Lake Bergsee sediments covers approximately the last 45,000 a, as derived from the age-124 

depth model (Duprat-Oualid et al. 2017).  125 

The samples investigated in this study originate from a 1.50 m long part of BER 13-01 representing a master 126 

core section between 1455 and 1605 cm depth. Samples were taken in 1 cm resolution. After sampling, 127 

the sediments were dried at 40°C and homogenized (grinded) before further analysis. All laboratory work 128 

and measurements were done at the Martin-Luther-University Halle-Wittenberg, Institute of Agronomy 129 

and Nutritional Sciences, Group of Soil Biogeochemistry.  130 

For detailed information about the age-depth model the reader is refered to Duprat-Oualid et al. (2017). 131 

Within this study the age-depth model was refined by 14C analysis of 5 macrofossils found during core 132 

sampling (Tab. 1). Radiocarbon analysis and calibration was carried out in the Laboratory for the Analysis 133 

of Radiocarbon at the University of Bern, using accelerator mass spectrometry. In summary, the 134 

investigated core section is based on 5 14C marcofossil dates and 2 of wood/needle and wood material in 135 

1461.7 and 1563 cm composite depth (Duprat-Oualid et al. 2017), and represents the Late Glacial to Early 136 

Holocene transition (16,000 to 10,750 a cal BP; Fig. 1B).  137 

Tab. 1: New microfossil radiocarbon data obtained from Lake Bergsee sediment core BER 13-01.138 

 139 

 140 

2.3 Bulk sedimentary analysis 141 

An EuroVector EA 3000 elemental analyzer (Hekatech, Wegberg, Germany) coupled via a Conflo III 142 

Interface to a Delta V Advantage isotope ratio mass spectrometer (IRMS; both from Thermo Fisher 143 

Scientific, Bremen, Germany) was used for the analysis of total carbon (TC), total nitrogen (TN), carbon 144 

isotope composition (δ13CTC) and nitrogen isotope composition (δ15N). For calibration, standard materials 145 
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from the International Atomic Energy Agency (IAEA) and United States Geological Survey (USGS) with 146 

known total carbon, nitrogen, 13C and 15N contents were used (IAEA N2, IAEA CH6, IAEA NO3, IAEA CH7, 147 

IAEA 305A, USGS 41). The isotope compositions are expressed relative to an international standard in the 148 

common δ-notation (e.g. Coplen, 2011; 13C: Vienna Pee Dee Belemnite, VPDB; 15N: atmospheric N2, Air). 149 

 150 

2.4 Biomarker and compound-specific isotope analysis 151 

Free lipids were extracted 24 h using a soxhlet system (Behr Labor-Technik, R 106 S), constantly rinsed by 152 

solvent (dichloromethane:methanol in a ratio of 9:1). After evaporation of the solvent by a rotary 153 

evaporator, the total lipid extract was dissolved again and transferred to a pipette column filled with 154 

aminopropyl silica gel (Supelco, 45 μm). Three different solvents of increasing polarity (n-hexane; 155 

dichloromethane:methanol in a ratio of 1:1; diethyl ether + acetic acid in a ratio of 1:19) were used to 156 

successively elute the fractions (nonpolar fraction, including n-alkanes; more polar fraction, including e.g. 157 

alcohols; acids) from the pipette column. Quantification of n-alkanes was performed on a GC-2010 series 158 

gas chromatograph equipped with a flame ionization detector (GC-FID; Shimadzu, Kyoto, Japan). A C7 -C40 159 

saturated n-alkane standard mixture (Supelco 49452-U) in three different concentrations (10, 50 and 100 160 

µg/ml) was co-analyzed in each batch several times, and used as quantification standards via linear 161 

calibration. The compound-specific δ2Hn-alkane  analysis was realized on a Trace GC 2000 coupled to a Delta 162 

V Advantage IRMS via a 2H-pyrolysis reactor (GC IsoLink) and a ConFlo IV interface (all devices from Thermo 163 

Fisher Scientific, Bremen, Germany). The reactor temperature was set to 1425°C. Samples were injected 164 

with a split/splitless injector, operating in splitless mode. The precision was checked by a standard alkane 165 

mixture (n-C27, n-C29, n-C33) with known isotope composition (A. Schimmelmann, University of Indiana), co-166 

injected in three different concentrations after nine sample runs. The samples were analyzed in three- to 167 

ninefold repetition and only δ2H results for analytical uncertainty (standard deviation) better than 10‰ 168 

are shown, because a higher uncertainty is typically indicative for low concentrations (= measurement 169 

areas) and/or not baseline separated peaks. The H3
+-correction factor was checked at least before and 170 

after a sample batch and stayed stable throughout the measurement period. The stable hydrogen isotope 171 

compositions are given in the δ-notation versus Vienna Standard Mean Ocean Water (VSMOW).  172 

The sugar biomarker extraction followed the procedure described by Zech and Glaser (2009). Briefly, from 173 

the grinded samples the monosaccharides were released hydrolytically using 4 M trifluoroacetic acid at 174 

105°C for 4 h (Amelung et al., 1996). The solution was cleaned over glass fibre filters, XAD-7 columns and 175 

finally over DOWEX 50WX8 columns. After freeze-drying, the samples were split for (i) methyloxime-176 
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trimethylsilyl-derivatisation method (Andrews 1989), which enables the quantification of a large range of 177 

sugars, and (ii) methylboronic acid (MBA) derivatization procedure for 1 h at 60°C (Knapp 1979), which 178 

ensures that the investigated arabinose (ara), xylose (xyl), fucose (fuc) and rhamnose (rham) yield only one 179 

peak in the δ18O chromatograms (Gross and Glaser 2004). Quantification of the monosaccharides ara, fuc, 180 

galactose (gal), glucose (glu), mannose (man), rham, ribose (rib) and xyl were realized on a GC-FID 181 

(Shimadzu, Kyoto, Japan). Compound-specific δ18Osugar measurements were performed with the MBA 182 

derivatized samples on a Trace GC 2000 coupled to a Delta V Advantage IRMS via an 18O-pyrolysis reactor 183 

(GC IsoLink) and a ConFlo IV interface (all devices from Thermo Fisher Scientific, Bremen, Germany). The 184 

samples were measured in threefold repetition. Co-derivatized sugar standard batches are measured in-185 

between, containing ara, fuc, xyl, and rham in various concentrations of known δ18O value (Zech and Glaser 186 

2009). The δ18O values of the samples were drift- and amount-corrected  and a correction for the 187 

hydrolytically introduced oxygen atoms on the carbonyl group at the C1 position of the sugar molecules 188 

was applied (Zech and Glaser 2009). Standard uncertainties (deviations) for at least triplicate sample 189 

measurements (excepted of 11 samples from which only duplicate measurements are available) are on 190 

average 1.4, 1.4, 1.6‰ for ara (n = 130), fuc (n = 126) and xyl (n = 124), respectively. Sugars revealing δ18O 191 

standard deviations higher than 6‰ were omitted from further interpretation, because sugar 192 

concentration (= measurement area) was typically too low for robust evaluation (especially for most of the 193 

rham peaks), which were finally excluded from further data evaluation. The δ18O values of the 194 

monosaccharides are expressed in common δ-notation versus the VSMOW. 195 

  196 

3 Results & Discussion 197 

3.1 Source identification of bulk sedimentary organic matter 198 

The TC contents of the investigated Lake Bergsee sediment section range between 4 and 28% (Fig. 2A). 199 

The TN record highly resembles the TC depth variations (r2 = 0.92, p < 0.001, n = 149) and is therefore not 200 

displayed in Fig. 2. In order to infer information about the source of the sedimentary organic matter, 201 

proxies derived from bulk analysis can potentially be used, i.e. TC to TN ratio (TC/TN), δ13CTC and δ15N (Fig. 202 

2B to D). The TC/TN ratio range between 7 and 16, with a slightly increasing trend from the top to the 203 

bottom of the section (Fig. 2B). Using a threshold of > 12 as indicator for terrestrial input (Prahl et al. 1980), 204 

no distinctive source can be identified since the bulk sedimentary TC/TN ratios plot all close to 12. 205 

Moreover, the TC/TN proxy should not be over-interpreted, because mineralization and degradation are 206 

well known to results in very low TC/TN values of terrestrial soils, too (Zech et al. 2007). Lake Bergsee 207 

δ13CTC ranges from -30 to -13‰ (Fig. 2C). More positive values than -24‰ in the lower part of the core 208 
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cannot be explained with terrestrial C3 plants as only sedimentary carbon source. Given that a C4 plant 209 

contribution can be excluded (Duprat-Oualid et al. 2017), this points either to allochthonous (aeolian) or 210 

autochthonous anorganic carbonate, or to autochthonous organic (aquatic) matter contributing to TC. The 211 

δ15N values range between -1 and 4‰, with a minium during the Allerød period (Fig. 2D). Albeit this 212 

minimum, which covers a composite depth of 1505 to 1535 cm, does not perfectly match the Bølling (BL) 213 

and Allerød (AL) TC maximum, it could be interpreted to reflect increased biomass production including 214 

N-fixation, be it aquatic or terrestrial. Moreover, numerous further factors such as e.g. denitrification and 215 

mineralisation can influence both terrestrial and lacustrine sedimentary δ15N values (Meyers and 216 

Ishiwatari 1993; Zech et al. 2011a).  Hence, a robust source idendification based on δ15N values seems to 217 

be challenging. Conclusively, a straightforward source identification of the bulk organic matter is not 218 

achievable for Lake Bergsee based on the here presented bulk proxies (Fig. 2A to D).  219 

 220 

Fig. 2: Depth functions of Lake Bergsee. A) TC, B) TC/TN, C) δ13C, D) δ15N, E) total n-alkane concentration, 221 

F) Paq (according to Ficken et al. 2000), G) n-alkane ratio (n-C31+n-C33)/(n-C27+n-C29), H) total sugar 222 

concentration, and I) tree and shrub vs. herb and grass pollen ratio (green = sum of broadleaf trees and 223 

shrubs vs. herbs and grasses, orange = sum of broadleaf and coniferous trees and shrubs vs. herbs and 224 

grasses, orange minus green = coniferous proportion). Pollen results were taken from Duprat-Oualid et al. 225 

(2017). Background colors show time periods (according to Litt et al. 2001): PB = Preboreal, YD = Younger 226 
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Dryas, AL = Allerød, OD = Older Dryas, BL = Bølling, OLD = Oldest Dryas, MD = Meiendorf, PG = Pleniglacial. 227 

LST = Laacher See Tephra. 228 

 229 

3.2 Source identification of n-alkane and sugar biomarkers 230 

The total n-alkane concentrations shown in Fig. 2E range between 4 and 175 µg/g and generally reflect the 231 

TC depth profile. In order to assess aquatic vs. terrestrial n-alkane input Paq values were calculated 232 

according to Ficken et al. (2000): Paq = (n-C23 + n-C25)/(n-C23 + n-C25 + n-C29 + n-C31). The Paq index was 233 

established to distinguish between submerged and floating vs. emergent and terrestrial plant n-alkane 234 

input. The Lake Bergsee Paq record shows values ranging from 0.1 to 0.6 (Fig. 4F). Below 1550 cm depth, 235 

Paq values < 0.4 suggest a predominant input of n-alkanes that derived from emergent plants. One might 236 

be tempted to interpret the Paq values of > 0.4 above 1550 cm depth in terms of a predominant input of 237 

aquatic-derived n-alkanes. This is based on the finding that higher terrestrial plants produce long-chain n-238 

alkanes in order to build up the epicuticular wax layer (Eglinton and Hamilton 1967). By contrast, short-239 

chain n-alkanes are often associated with algae (Gelpi et al. 1970) and mid-chain n-alkanes are often 240 

assumed to originate from submerged macrophytes (Ficken et al. 2000). However, note that Aichner et al. 241 

(2018) recently stressed that Paq is no robust proxy for aquatic influx in lake sediments from North Poland. 242 

Rather, the sedimentary mid-chain n-alkanes n-C23 and n-C25 originate either from a mixture of aquatic and 243 

terrestrial sources (during Allerød and the Younger Dryas onset) or are predominantly of terrestrial origin 244 

(during Younger Dryas and Early Holocene). Given that e.g. Betula as one of the main pioneering species 245 

during Late Glacial reforestation at Lake Bergsee (Duprat-Oualid et al. 2017) is well known to produce quite 246 

considerable amounts of n-C23 and n-C25 (Tarasov et al. 2013; van den Bos et al. 2018), we recommend 247 

caution when interpreting Paq values from sedimentary archives. In the case of Lake Bergsee, we consider 248 

the respective interpretation to be not robust. Moreover, litter degradation by soil microorganisms is 249 

reported to cause changes of both mid-chain and long-chain n-alkanes patterns (Tu et al. 2011; Zech et al. 250 

2011b). Hence, soil erosion from the catchment should be considered when interpreting Paq values, too.  251 

Long-chain n-alkanes are furthermore used in chemotaxonomic studies in order to distinguish between 252 

different vegetation types. This is based on the observation that in grass and herbaceous plant material 253 

the n-C31 and n-C33 homologues are often dominating, whereas trees and shrubs often show higher relative 254 

concentrations of n-C27 and n-C29 (Maffei 1996; Zech et al. 2009). We used here the ratio (n-C31+n-C33)/(n-255 

C27+n-C29), which range between 0.2 and 1.5 (Fig. 2G). This approach is comparable to the one of Schwark 256 

et al. (2002), who used the n-C27, n-C29 and n-C31 alkane distribution and pollen to reconstruct the Late 257 

F. Manuscript 6: Hepp et al.

182



11 
 

Glacial reforestation around Lake Steißlingen. While (n-C31+n-C33)/(n-C27+n-C29) values > 1 can be 258 

interpreted in terms of enhanced input of grass-derived leaf material (below 1570 cm depth), values < 1 259 

suggest increased input of tree- and shrub-derived litter (above 1570 cm depth). The respective 260 

interpretation is overall in agreement with the pollen record of Lake Bergsee (Fig. 2I; Duprat-Oualid et al. 261 

2017) and corroborates that the investigated long-chain n-alkanes are primarily of terrestrial origin. Yet, 262 

there seems to be a time lag between the (n-C31+n-C33)/(n-C27+n-C29) ratio and the pollen record. The n-263 

alkane ratio declines most pronouncedly already during the Meiendorf Interstadial, whereas the tree and 264 

shrub pollen increase starts at the end of Meiendorf (compare Fig. 2G vs. I). Possibly, this minor 265 

discrepancy can be explained with shrub pollination rate having started with a delay compared to shrub 266 

spreading. 267 

Total sugar concentrations for Lake Bergsee range between 4 and 57 mg/g (Fig. 2H) and reveal a highly 268 

significant correlation with TC (r2 = 0.88, p < 0.001, n = 128). Recently, an approach was proposed for 269 

distinguishing between aquatic versus terrestrial sedimentary input based on the relative abundances of 270 

the sugar biomarkers ara, fuc and xyl (Hepp et al. 2016). Accordingly, fuc/(ara+xyl) ratios ranging between 271 

0.4 and 4.8 for the Lake Bergsee record are clearly indicative for a primarily aquatic origin of the sugars. 272 

Fig. 3 furthermore illustrates this interpretation in a ternary diagram where the relative abundances of 273 

ara, fuc and xyl for Lake Bergsee are compared with soil and sediment data from the literature according 274 

Hepp et al. (2016). 275 
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 276 

Fig. 3: Ternary diagram from Hepp et al. (2016) depicting the relative abundances of ara, xyl and fuc for 277 

Lake Bergsee sediment samples (this study) and comparative soil and sediment data compiled from the 278 

literature (Bock et al. 2007; Prietzel et al. 2013; Zech et al. 2013, 2014b; Hepp et al. 2018). 279 

 280 

Summing up this subchapter, the long-chain n-alkanes n-C27, n-C29 and n-C31 of the Lake Bergsee record 281 

are mainly of terrestrial origin, the sugar biomarkers ara, fuc and xyl are primarily of aquatic origin, and 282 

the mid-chain n-alkanes n-C23 and n-C25 in all likelihood represent a mixture of aquatic and terrestrial 283 

sources.  284 

 285 

3.3 Lake Bergsee δ2Hn-alkane record and its paleoclimatic interpretation 286 

The δ2H values of the investigated n-alkanes range between -215 to -173‰, -217 to -174‰, -222 to -287 

138‰, -214 to -157‰ and -214 to -114‰ for n-C31, n-C29, n-C27, n-C25 and n-C23, respectively (Fig. 4A). The 288 

n-C29 and n-C31 records show very similar δ2H values. By contrast, n-C27  yielded on average throughout the 289 
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record by +17‰ more positive δ2H values. This could be explained with the different taxonomic origin of 290 

the alkane homologues. Leaf wax-derived long-chain n-alkanes are biosynthesized in the leaves of higher 291 

terrestrial plants, thus using mainly leaf water as hydrogen source, as e.g. reviewed by Sachse et al. (2012). 292 

Therefore, not only the plant source water is imprinted in terrestrial δ2Hn-alkane, moreover the leaf water 293 

evaporative enrichment plays an important role (Kahmen et al. 2013). As outlined above, grasses (e.g. 294 

Poaceae) are often characterized by highest relative abundances of n-C31. At the same time, grass-derived 295 

n-alkanes (Fig. 2G) are known to be less sensitive recorders of leaf water enrichment compared to n-296 

alkanes from other higher terrestrial plants (McInerney et al. 2011; Kahmen et al. 2013). The δ2H offset 297 

between n-C31 and n-C27 is indeed largest during the Oldest Dryas and the early Older Dryas, when Betula, 298 

which is known to produce high amounts of n-C27 (e.g. Tarasov et al. 2013) shows the highest pollen 299 

concentration (compare Fig. 4A and B) and Poaceae pollen concentration is decreasing (Duprat-Oualid et 300 

al. 2017).  301 

 302 

Fig. 4: A) δ2Hn-alkane records (n-C23, n-C25, n-C27, n-C29 and n-C31), B) Betula pollen record (Duprat-Oualid et 303 

al. 2017) and C) δ18Osugar records (ara, fuc, xyl) of Lake Bergsee. Background colors show time periods 304 
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according to Litt et al. (2001): PB = Preboreal, YD = Younger Dryas, AL = Allerød, OD = Older Dryas, BL = 305 

Bølling, OLD = Oldest Dryas, MD = Meiendorf, PG = Pleniglacial. LST = Laacher See Tephra.  306 

 307 

As outlined in section 3.2, n-C23 in our Lake Bergsee record is most likely a mixture of terrestrial and aquatic 308 

sources. The proposed partly aquatic origin of n-C23 can help explaining the often more positive δ2H values 309 

of n-C23 compared to the primarily terrestrial long-chain n-alkanes (Fig. 4A). While for long-chain n-alkanes 310 

an biosynthetic fractionation factor (ε2
bio) of -160‰ can be assumed (Sessions et al. 1999; Sachse et al. 311 

2006), data from Potamogeton and surface sediments suggest an ε2
bio fractionation factor of -82 to -88‰ 312 

for n-C23 (Aichner et al. 2010). Accordingly, more positive δ2H values of n-C23 during the Pleniglacial, 313 

Meiendorf and Preboreal of Lake Bergsee suggest a partly aquatic origin of n-C23, whereas the absence of 314 

an offset between δ2H of n-C23 and the long-chain n-alkanes during the Bølling, Older Dryas, Allerød and 315 

Younger Dryas points to a primarily terrestrial origin of n-C23. Therefore, the direct link between δ2H values 316 

of n-C23 and δ2Hlake-water (Aichner et al. 2010; Sachse et al. 2012) cannot be applied here.  317 

In Fig. 5 the n-C23 δ2H record of Lake Bergsee is shown along with the n-C23 δ2H record from Lake 318 

Meerfelder Maar (Rach et al. 2014) for comparison. Within age uncertainties, the n-C23 δ2H record of Lake 319 

Bergsee resembles well the record from Lake Meerfelder Maar (Fig. 5A vs. B), which spans the time period 320 

from 11,000 to 13,100 a varve BP (Rach et al. 2014). The n-C23 δ2H record from Lake Meerfelder Maar is 321 

interpreted to reflect lake water and thus local precipitation. The lower δ2H values of n-C23 during the 322 

Younger Dryas are therefore associated with lower regional air temperatures and by changes in δ2H of the 323 

moisture source associated with the freshwater input to the North Atlantic Ocean as well as with changes 324 

in moisture source temperature and transport history (Rach et al. 2014). Importantly, for Lake Meefelder 325 

Maar the authors assumed the lake water enrichment was of minor importance. For Lake Bergsee, 326 

however, lake water enrichment during drier periods is very likely, because the lake is characterized by 327 

the absence of an inflowing creek (section 2.1). Fig. 5 also compares the n-C29 δ2H record of Lake Bergsee 328 

with the n-C29 δ2H record from Lake Meerfelder Maar (Fig. 5C vs. D). Also these both records resemble 329 

each other fairly well, except for larger fluctuations occurring in the Lake Meerfelder Maar record during 330 

the Preboreal. 331 

Summing up, the above outlined discussion reveals that the δ2Hn-alkane record of Lake Bergsee cannot be 332 

interpreted in a straightforward way. As illustrated in Fig. 4A, the main influencing factors which are 333 

difficult to be disentangled and which cause δ2H variations are: (i) δ2H source water (≈ local precipitation) 334 
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changes, (ii) variable 2H leaf/lake water enrichment, and (iii) variable contributions of aquatic versus 335 

terrestrial n-C23. 336 

 337 

Fig. 5: Comparison between A) the n-C23 δ2H record of Lake Bergsee and B) the n-C23 δ2H record from Lake 338 

Meerfelder Maar (Rach et al. 2014) and comparison between C) the n-C29 δ2H record of Lake Bergsee and 339 

D) the n-C29 δ2H record from Lake Meerfelder Maar (Rach et al. 2014). Background colors show time 340 

periods according to Litt et al.( 2001): PB = Preboreal, YD = Younger Dryas, AL = Allerød, OD = Older Dryas, 341 

BL = Bølling, OLD = Oldest Dryas, MD = Meiendorf, PG = Pleniglacial. LST = Laacher See Tephra. 342 

 343 

3.4 Lake Bergsee δ18Osugar record and its paleoclimatic interpretation 344 

The δ18O values of ara, fuc and xyl range from +14.4 to +37.6‰, +14.3 to +39.1‰ and +9.6 to +40.9‰, 345 

respectively, and resemble each other well (Fig. 4C). All three sugars are primarily of aquatic origin (see 346 

discussion in section 3.2). Hence, the δ18Osugar record of Lake Bergsee can be interpreted in terms of 347 

reflecting changes in (i) δ18O source water (≈ local precipitation) and (ii) 18O lake water enrichment (as 348 

illustrated in Fig. 4C).  349 

The lake water enrichment can be directly linked to relative humidity when the lake input to evaporation 350 

ratio can be robustly defined (e.g. as terminal lake situation, input = evaporation; Gat 1971). This holds, 351 

F. Manuscript 6: Hepp et al.

187



16 
 

however, not valid for Lake Bergsee, due to the absence of a natural inflowing creek (see section 2.1). 352 

Therefore, changes in the precipitation amount have to be taken into account, too (see section 3.2; Gibson 353 

et al. 2016). Given that the δ18O variability of precipitation (≈ source water) was unlikely larger than 8‰ 354 

during the Late Glacial-Holocene transition (von Grafenstein et al. 1998; Mayer and Schwark 1999), most 355 

of the variability of the δ18Osugar record of Lake Bergsee can be attributed to variable lake water enrichment. 356 

In order to highlight this, the δ18Osugar record of Lake Bergsee (calculated as weighted mean), is shown in 357 

Fig. 6 in comparison to the δ18Ocarbonate record from Lake Steißlingen (Mayer and Schwark 1999) and the 358 

stalagmite δ18Ocarbonate record from Hölloch Cave (Wurth et al. 2004). Those carbonate δ18O records are 359 

interpreted to reflect the local precipitation history. Lake Steißlingen is primarily fed by ground water via 360 

submerged springs (Eusterhues et al. 2002) and the carbonate δ18O values thus reflect mainly 361 

precipitation. It is obvious that the δ18Osugar of Lake Bergsee shows opposite trends and a much higher 362 

amplitude than the precipitation records (Fig. 8). The Younger Dryas-Preboreal transition reveals a shift of 363 

around 5‰ towards more positive δ18Osugar values (Fig. 9A). This is in well in agreement with a 364 

reconstructed δ18Olake-water shift of around 6‰ from Lake Gosciaz in Central Poland as inferred from the 365 

sedimentary cellulose (Rozanski et al. 2010). 366 
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 367 

Fig. 6: Comparison between A) δ18Osugar record from Lake Bergsee and δ18Ocarbonate records from B) Lake 368 

Steißlingen (Mayer and Schwark 1999) and C) Hölloch cave stalagmite (Wurth et al. 2004). The δ18O scale 369 

C is doubled compared to A and B due to a better visibility of the trends.  370 

 371 

3.5 ‘Dual-biomarker approach’ based on terrestrial versus aquatic δ2Hn-alkane records – potential 372 

and limitations 373 

The dual-biomarker approach was introduced by Rach et al. (2014, 2017) and uses the difference between 374 

terrestrial versus aquatic δ2Hn-alkane values (εterrestrial-aquatic). The basic assumption is that the long-chain n-375 

alkanes such as n-C29 are of terrestrial origin and reflect δ2H of leaf water (precipitation altered by leaf 376 

water 2H enrichment), whereas n-C23 is of aquatic origin and reflects δ2H of lake water that is not 2H-377 

enriched by evaporation (and thus reflects δ2H of precipitation). When soil and lake water enrichment are 378 

negligible, such εterrestrial-aquatic values can be transferred into quantitative relative humidity values (Rach et 379 

al. 2017). Given that neither soil nor lake water 2H enrichment can be excluded for every study site, this 380 

represents one potential uncertainty of the dual-biomarker approach (Fig. 7). Especially lake water 381 

enrichment cannot be ruled out under dry and/or warm climatic conditions (see  Fig. 8 in Hou et al. 2008). 382 

When lake water is/was affected by 2H enrichment in the past, the εterrestrial-aquatic values are no longer a 383 
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robust proxy for leaf water evapotranspirative enrichment. Another uncertainty concerns the hydrogen 384 

fractionation during n-alkane biosynthesis (ε2
bio) (Fig. 7). There is increasing evidence that this fractionation 385 

is not constant between different species/organisms (e.g. review from Pedentchouk and Zhou, 2018). This 386 

holds especially true for aquatic ε2
bio values. While Muschitiello et al. (2015) and Rach et al. (2014) assume 387 

that aquatic ε2
bio is smaller than terrestrial ε2

bio, Sachse et al. (2006), Jacob et al. (2007) and Seki et al. 388 

(2011) set aquatic ε2
bio equal to terrestrial ε2

bio and Hou et al. (2008) show a case in which aquatic ε2
bio is 389 

larger than terrestrial ε2
bio. Please note, that Jacob et al. (2007) called their difference between the 390 

terrestrial δ2Hn-alkane (C31) and aquatic δ2Hn-alkanoic (C16) acid αTA/wat. They furthermore only mention the 391 

fractionation factor between δ2Hn-alkanoic (C16) and source (lake) water to be -170‰. However, the ε2
bio 392 

between terrestrial δ2Hn-alkane and δ2Hleaf-water can be assumed to be close to that value, which is only slightly 393 

larger than the commonly assumed -160% for terrestrial n-alkanes (see section 3.3; Sessions et al. 1999; 394 

Freimuth et al. 2017). Finally, the paradigmatic source identification of the n-alkanes (long-chain n-alkanes 395 

originate from terrestrial plants whereas mid-chain n-alkanes such as n-C23 originate from aquatic 396 

organisms) may not always hold true (see sections 3.2 and 3.3). As mentioned above, also Aichner et al. 397 

(2018) recently emphasized that n-C23 in a lacustrine sedimentary record from Poland is either completely 398 

or at least partly of terrestrial origin. Given the above-discussed uncertainties, particularly including our 399 

interpretation that n-C23 in Lake Bergsee is a mixture of aquatic and terrestrial sources, we consider the 400 

dual-biomarker approach to be not robustly applicable to our δ2Hn-alkane record and refrain from a 401 

respective application. 402 
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 403 

Fig. 7: Schematic diagram illustrating the ‘dual-biomarker approach’ for interpreting the difference 404 

between terrestrial versus aquatic δ2Hn-alkane results, adopted from Sachse et al. (2006) and Rach et al. 405 

(2017). Uncertainties of the approach are marked with question marks and addressed in more detail in the 406 

text: 1 = it is assumed that 2Hsoil water reflects 2Hprecipitation, 2 = it is assumed that lake water 2H enrichment 407 

did not occur, 3 = robust knowledge concerning aquatic ε2
bio values is actually lacking, 4 = mid-chain n-408 

alkanes (C23) are no exclusive aquatic biomarkers. 409 

 410 

3.6 ‘Coupled δ2Hn-alkane - δ18Osugar approach’ – potential and limitations 411 

A fundamental issue for this approach is again the question whether the investigated sedimentary 412 

biomarkers are primarily of autochthonous or of allochthonous origin. The concept for coupling δ2Hn-alkane 413 

with δ18Osugar results (Fig. 8) was originally developed for terrestrial biomarkers (Zech et al. 2013) but was 414 

adopted later on also for aquatic biomarkers (Hepp et al. 2015).  415 

When applying the coupled δ2Hn-alkane-δ18Osugar approach the following assumptions have to be made: (i) 416 

lake/leaf water δ2H/δ18O values can be reconstructed from δ2Hn-alkane and δ18Osugar values by applying 417 

constant biosynthetic fractionation factors. (ii) Lake/leaf water evapo(transpi)rative enrichment occur 418 
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along a local evaporation line, and the slope for such a line can be derived from a simplified Craig-Gordon 419 

model. (iii) The δ2H/δ18O values of plant/lake source water reflect precipitation, which typically plots along 420 

a well-defined meteoric water line. The intersect between the local evaporation line throughout an 421 

individual leaf/lake water point and the meteoric water thus allow the reconstruction of δ2H/δ18Osource water 422 

(≈ δ2H/δ18Oprecipitation). As such, the coupled δ2H-δ18O approach is a promising tool to disentangle between 423 

the leaf/lake water evapo(transpi)rative enrichment and the precipitation signal incorporated in the 424 

biomarkers.  425 

In the case of terrestrial biomarkers, the reconstructed δ2H/δ18Oleaf-water can be used for calculating 426 

deuterium-excess of leaf water. These deuterium-excess values can be converted into quantitative relative 427 

humidity values. When aquatic biomarkers are used to reconstruct δ2H/δ18Olake-water, those values allow 428 

reconstructing the deuterium-excess of lake water. Those values can be used as lake water 429 

evaporation/desiccation proxy. It should be noted that the deuterium-excess calculations follow the 430 

formulation introduced by Dansgaard (1964). The coupled δ2Hn-alkane-δ18Osugar approach was successfully 431 

applied to terrestrial sedimentary archives in order to derive relative humidity history (Zech et al. 2013; 432 

Hepp et al. 2017). It was furthermore validated using a climate transect study by Tuthorn et al. (2015), 433 

who called the δ2Hn-alkane-δ18Osugar coupling a ‘paleohygrometer approach’. At the same time, Hepp et al. 434 

(2015) realized the adoption of the coupled approach to a lacustrine sedimentary archive. Based on 435 

aquatic biomarkers the authors reconstructed lake water evaporation history along with δ2H/δ18Oprecipiation.  436 

Apart from these potentials, the coupled δ2Hn-alkane-δ18Osugar approach has also limitations/uncertainties 437 

(Fig. 8): (i) A clear source identification of the biomarkers is needed. (ii) The ε2
bio and the oxygen 438 

fractionation during sugar biosynthesis (ε18
bio) are assumed to be robust and constant. For a robust 439 

deuterium-excess of leaf water interpretation also the soil water enrichment has to be ruled out. 440 

Moreover, the slope of the local evaporation line has to be approximated. While for leaf water this seems 441 

to be a minor issue due to rather small variations (Allison et al. 1985; Walker and Brunel 1990; Bariac et 442 

al. 1994; Mayr 2002), the lake water local evaporation line seem to be much more variable (Gibson et al. 443 

2008). This was taken into consideration by Hepp et al. (2015) by making reconstructions with different 444 

slopes. 445 

In the case of Lake Bergsee, we refrain from applying the coupled δ2H-δ18O approach primarily because 446 

we have neither (i) a reliable pure aquatic coupled δ2H and δ18O record (ii) nor a reliable pure terrestrial 447 

δ2H and δ18O record. 448 
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 449 

Fig. 8: Schematic diagram illustrating the ‘coupled δ2Hn-alkane-δ18Osugar approach’ for A) interpreting 450 

terrestrial- or B) aquatic-derived n-alkane and sugar biomarkers (adopted from Zech et al. 2013 and Hepp 451 

et al. 2015). Uncertainties of this approach are marked with question marks and addressed in more detail 452 

in the text: 1 = robust knowledge about aquatic versus terrestrial source, 2 = robust knowledge concerning 453 

aquatic or terrestrial ε2
bio and ε18

bio values, 3 = while the slope of the local evaporation line is quite robust 454 

for leaf water evapotranspirative enrichment, the slope is less robust for evaporative enrichment of lake 455 

water. 456 

 457 

4 Conclusions 458 

Our results and discussion on the Late Glacial to Early Holocene sedimentary record from Lake Bergsee 459 

allow the following conclusions: 460 

 A straightforward source identification of the bulk organic matter is not achievable based on the 461 

bulk proxies TC/TN, δ13CTC and δ15N. 462 

 While the long-chain n-alkanes are primarily of terrestrial origin and reflect the vegetation history 463 

as derived from pollen results, we suggest caution against the paradigmatic interpretation of the 464 

mid-chain n-alkane n-C23 in terms of aquatic origin and the Paq proxy. 465 

 The abundant occurrence of fuc suggests that the sedimentary sugar biomarkers are primarily of 466 

aquatic origin. 467 

 A straightforward paleoclimatic interpretation of the Lake Bergsee δ2Hn-alkane and δ18Osugar records 468 

in terms of reflecting a paleoprecipitation signal is hindered by unknown and likely variably 469 

degrees of leaf and lake water enrichment, respectively. 470 
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During the last years, two concepts were developed in order to disentangle the precipitation from the 471 

evaporation signal and to reconstruct relative humidity: the ‘dual-biomarker approach’ by Rach et al. 472 

(2014) and the ‘coupled δ2Hn-alkane-δ18Osugar approach’ by Zech et al. (2013) and Hepp et al. (2015). Despite 473 

the great potential of both approaches, we advise caution not to over-interpret sedimentary δ2Hn-alkane and 474 

δ18Osugar records. Fundamental assumptions underlying the two approaches may not be robust in every 475 

case study. This concerns primarily: 476 

 Lake water enrichment, which is assumed to be negligible in the dual-biomarker approach. 477 

 Source identification of the biomarkers: In the case of Lake Bergsee, n-C23 is in all likelihood a 478 

mixture of aquatic and terrestrial sources and thus does not reflect δ2H of lake water. 479 

 Biosynthetic fractionation factors: there seems to be a large offset between terrestrial versus 480 

aquatic ε2
bio values (around -160 versus around -85‰). Hence, minor changes in the contribution 481 

of terrestrial versus aquatic n-alkanes are likely to have a large impact on the δ2H record of n-C23. 482 

These state-of-the-art uncertainties clearly limit the robustness of both approaches and hindered their 483 

application to the Lake Bergsee δ2Hn-alkane and δ18Osugar records. 484 

 485 
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