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ABSTRACT. It is shown that there does not exist a projective triply-even binary code of length 59. This
settles the last open length for projective triply-even binary codes, which therefore exist precisely for the
lengths 15, 16, 30, 31, 32, 45–51, and ≥ 60.
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1. INTRODUCTION

Doubly-even binary codes have been the subject of extensive research for decades. For recent applica-
tions and enumeration results we refer, e.g., to [1]. A substantial study has also been done for triply-even
binary codes; see [2]. These two classes are special cases of so-called ∆-divisible codes, i.e., q-ary linear
codes C with all (Hamming) weights divisible by an integer ∆ > 1; see, e.g., [3].

Assuming that C has length n, dimension k and no all-zero coordinate, the columns of a k × n
generator matrix of C span n (not necessarily distinct) one-dimensional subspaces of Fk

q that can be
viewed as points in the associated projective geometry, see e.g. [4] or [5, Chapter 17]. The codewords
correspond to the hyperplanes of the geometry, and the weight of a codeword is the number or points
outside of the corresponding hyperplane. This geometric setting provides a basis-free approach to linear
codes (for details see the end of Section 2). The ∆-divisibility of the linear code C translates into the
following property of the associated multiset P of points in Fk

q . For each hyperplane H of Fk
q we have

#(P ∩H) ≡ #P (mod ∆). In this case, we will say that the multiset P is ∆-divisible, too.
For a general linear code C, the number of non-zero columns of a generator matrix of C is called the

effective length of C. If the effective length equals the length, C is said to be of full length. The code C is
called projective if it is full-length and any pair of columns of a generator matrix is linearly independent,
i.e., if the associated multiset P of points is actually a set.

Recently, ∆-divisible codes have been applied for obtaining upper bounds on the size of partial t-
spreads in Fk

q , i.e., sets of t-dimensional subspaces in Fk
q with pairwise trivial intersection, see e.g. [6, 7].

Due to the intersection property, every point of Fk
q is covered by at most one element of a given partial t-

spread. Calling every non-covered point a hole, the set of holes of a partial t-spread is qt−1-divisible; see,
e.g., [6, Theorem 8], where also a generalization to so-called vector space partitions is considered.1 So,
from the non-existence of qt−1-divisible sets of suitable size n (or equivalently, projective qt−1-divisible
codes of effective length n), one can conclude the non-existence of partial t-spreads in Fk

q of a certain
cardinality. Indeed, all currently known upper bounds on the size of a partial t-spread can be obtained
from such non-existence results for divisible codes; see, e.g., [6, 7].

Thus from an application point of view qr-divisible codes over Fq , where r is a positive integer (or,
more generally, a positive rational number such that qr is an integer2) are of considerable interest. If G1

is a generator matrix of a ∆-divisible [n1, k1]q code and G2 is a generator matrix of another ∆-divisible

1In a special case, the divisibility of the set of holes was already used in [8] to determine an upper bound for the maximum
cardinality of a partial t-spread.

2cf. the beginning of Section 2
1
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[n2, k2]q code, then
(
G1 0
0 G2

)
is the generator matrix of a ∆-divisible [n1 + n2, k1 + k2]q code. Since

the set of all points of a k-dimensional subspace of Fv
q is a qk−1-divisible point set in Fv

q (where v ≥ k

can be any integer) and gcd(
(
qk − 1

)
/(q − 1),

(
qk+1 − 1

)
/(q − 1)) = 1, for each prime power q and

each r ∈ Q>0 such that qr ∈ N, the set Fq(r) of positive integers that do not occur as the cardinality of a
qr-divisible (multi-)set or effective length of a (projective) qr-divisible code is actually a finite set (using
a Frobenius Coin problem type argument for the proof). For multisets of points, i.e., not necessarily
projective linear codes, the question is completely resolved: In [9, Theorem 4] for all integers r and all
prime powers q the set Fq(r) has been determined. For sets of points or projective qr-divisible codes the
question is more complicated. A partial answer is given in [6, Theorem 13]:

Fact 1.
(i) 21-divisible sets over F2 of cardinality n exist for all n ≥ 3 and do not exist for n ∈ {1, 2}.

(ii) 22-divisible sets over F2 of cardinality n exist for n ∈ {7, 8} and all n ≥ 14, and do not exist in all
other cases.

(iii) 23-divisible sets over F2 of cardinality n exist for

n ∈ {15, 16, 30, 31, 32, 45, 46, 47, 48, 49, 50, 51},
for all n ≥ 60, and possibly for n = 59; in all other cases they do not exist.

In Part (iii) the existence question for a binary projective 23-divisible code of length 59 remains unde-
cided. The aim of this paper is to complete the characterization with the following theorem:

Theorem 2. There is no projective triply-even binary linear code of length 59.

Let us remark that the distinction between the existence of a projective/non-projective qr-divisible
code of a certain length matters indeed, e.g., for the determination of upper bounds on the maximum
possible cardinality of partial t-spreads. As an example, in [6, Theorem 13] (cf. also [7]) it is shown that
no projective 23-divisible code of length 52 exists, while there are non-projective examples with these
parameters. From this non-existence result for projective qr-divisible codes we can conclude that there
can be at most 132 solids in F11

2 with pairwise trivial intersection, which is the sharpest currently known
upper bound. With a corresponding lower bound of 129, this is the smallest open case for the maximum
cardinality of partial t-spreads over F2.

The remaining part of the paper is structured as follows. In Section 2 we state the necessary preliminar-
ies from coding theory, before proving the non-existence of a binary projective 23-divisible code of length
n = 59 in Section 3. In Section 4 we derive a corollary which excludes the existence of vector space
partitions of certain types. We close the paper with a discussion of some open problems in Section 5.

2. PRELIMINARIES

A linear code C over Fq is called qr-divisible for some r ∈ Q>0 such that qr ∈ N3, if the weight
of each codeword is divisible by qr. Given our assumption that C is projective, the length equals the
effective length, i.e., there are no zero-columns in the generator matrix of C, and C corresponds to a set
of n points spanning Fk

q . We denote the number of codewords of weight i in C by ai and the number of
codewords of weight i in the dual code C⊥ by a⊥i . The well-known MacWilliams identities, see e.g. [11],
relate the numbers ai and a⊥i as follows. For all i ∈ {0, . . . , n} we have

n∑
j=0

Ki(j)aj = (#C)a⊥i for i ∈ {0, . . . , n},

3More precisely, this conditions says that qr should be an integral power of the field characteristic p. In [10, Theorem 1] it
has been shown that ∆-divisible codes with ∆ relatively prime to p correspond to repetitions of smaller codes. Thus, it suffices to
consider the so-called modular case ∆ = pl for integers l > 0.
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where

Ki(j) = Kn,q
i (j) =

n∑
s=0

(−1)s(q − 1)i−s
(
n− j
i− s

)(
j

s

)
is the i-th Krawtchouk polynomial of order n. Obviously, we have

∑n
i=0 ai = #C, which is in fact the

first (i = 0) MacWilliams equation. The polynomial w(C) =
n∑

i=0

aix
i is called the weight enumerator of

C.
For a given [n, k]q code C and a codeword c ∈ C of weight w the residual code Cc arises from C by

restricting all codewords to those coordinates where c has a zero entry. Thus, Cc is an [n−w,≤ k − 1]q
code. If C is projective, then obviously also Cc is projective. Moreover, if C is qr-divisible, then Cc is
qr−1-divisible; see, e.g., [6, Lemma 7].

It is well-known (see, e.g., [4]) that the relationC → C, associating with a full-length linear [n, k] code
C over Fq the n-multiset C of points in the projective geometry PG(Fk

q ) defined by the columns of any
generator matrix, induces a one-to-one correspondence between classes of (semi-)linearly equivalent full-
length linear codes and classes of (semi-)linearly equivalent spanning multisets of points. The importance
of the correspondence lies in the fact that it relates coding-theoretic properties of C to geometric or
combinatorial properties of C via

w(aG) = n−#{1 ≤ j ≤ n;a · gj = 0} = n−#(C ∩ a⊥), (1)

where w denotes the Hamming weight, G = (g1| . . . |gn) ∈ Fk×n
q a generating matrix of C, a · b =

a1b1 + · · · + akbk, and a⊥ is the hyperplane in PG(Fk
q ) with equation a1x1 + · · · + akxk = 0.4 In

the usual coding theory setting, the Hamming weight depends on the chosen basis, as the standard basis
vectors are exactly the vectors of Hamming weight 1. In contrast to that, the geometric setting provides a
basis-free approach to linear codes.

3. PROOF OF THE MAIN THEOREM

In this section, we prove Theorem 2. For this purpose, let C be a projective 8-divisible binary code
of length 59 and minimum possible dimension k. We are going to restrict the weight frequencies ai in a
series of lemmas, until we finally get a contradiction.

Lemma 3. a48 = a56 = 0.

Proof. The residual code of C with respect to a codeword of weight w is a projective 4-divisible code of
length 59−w. By Fact 1(ii), there is no such code of lengths 3 or 11. So the weights w = 48 and w = 56
are not possible. �

Hence the only possible weights are 0, 8, 16, 24, 32 and 40. The first four MacWilliams identities give


1 1 1 1 1 1
59 43 27 11 −5 −21

1711 895 335 31 −17 191
32509 11997 2493 −99 125 −931



a0
a8
a16
a24
a32
a40



= #C ·


a⊥0
a⊥1
a⊥2
a⊥3

 .

4In the non-projective case, C ∩ a⊥ must be interpreted as the multiset containing the points of a⊥ with their C-multiplicities.
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Of course, a0 = a⊥0 = 1. Since C is projective, we have a⊥1 = a⊥2 = 0.
Multiplying the matrix of coefficients with the inverse of the rightmost 4× 4 submatrix yields

a16 = −10− 4a8 −
45

212
#C +

1

212
a⊥3 #C,

a24 = 20 + 6a8 +
1447

212
#C − 3

212
a⊥3 #C,

a32 = −15− 4a8 +
2617

212
#C +

3

212
a⊥3 #C,

a40 = 4 + a8 +
77

212
#C − 1

212
a⊥3 #C.

Lemma 4. k ≥ 10.

Proof. 0 ≤ a16 + a40 = −6 − 3a8 + 1
128#C ≤ −6 + 1

128#C. Thus 2k = #C ≥ 6 · 128 = 768.
Therefore k ≥ 10. �

Lemma 5. k = 10.

Proof. Let V = Fk
2 and C the set of 59 points in PG(V ) corresponding to the linear code C.

Let Q be a point in PG(V ) not contained in C. We consider the projection of C modulo Q, that is the
multiset image of C under the map V → V/Q, v 7→ (v +Q)/Q. The resulting multiset C′ consists of 59

points in PG(V/Q) ∼= PG
(
Fk−1
2

)
and arises by identifying points of C on the same line through Q. The

corresponding linear code C ′ is a subcode of C of effective length 59 and dimension k − 1. Therefore,
C ′ is 23-divisible, and the assumed minimality of k implies that C ′ is not projective. Equivalently, there
is a secant through Q, that is a line whose remaining two points are contained in C.

So each of the 2k − 60 points of PG(V ) not contained in C lies on a secant. Since C admits at most(
#C
2

)
=
(
59
2

)
= 1711 secants, covering at most 1711 different points not in C, we get 2k − 60 ≤ 1711

and therefore k ≤ 10. Hence k = 10 by Lemma 4. �

Lemma 6. a8 = 0 and a16 + a40 = 2.

Proof. Plugging #C = 210 from Lemma 5 into a16 + a40 = −6 − 3a8 + 1
128#C (proof of Lemma 4)

yields a16 + a40 = 2− 3a8. As this expression cannot be negative, a8 = 0 and a16 + a40 = 2. �

Lemma 7. a16 = 0.

Proof. Assume that a16 6= 0. Then by Lemma 6, either (a16, a40) = (1, 1) or (a16, a40) = (2, 0). Let
c be a codeword of weight 16 and π : C → F16

2 the restriction of C to supp(c), i.e., to the 16 non-zero
positions of c. Then C ′ = π(C) is a binary linear code of effective length 16. By the 23-divisibility of C
and the fact thatC ′ contains the all-1-word, we see thatC ′ is 22-divisible. Therefore,C ′ is self-orthogonal
of length 16, implying that dim(C ′) ≤ 16

2 = 8.
Assume that there exists a codeword x ∈ ker(π) \ {0}. Then the supports of x and c are disjoint, so

w(x+c) = w(x) + 16. In the case (a16, a40) = (2, 0) we have w(x+c) ≤ 32, so w(x) ≤ 16 and hence
x is uniquely determined as the other word of weight 16. In the case (a16, a40) = (1, 1), w(x) ≥ 24
(since the only word of weight 16 is c). Hence w(x) = 24 and w(x + c) = 40. So x + c is the unique
codeword of weight 40, and x is uniquely determined as (x + c) + c.

Therefore in both cases dim ker(π) ≤ 1. The application of the rank-nullity theorem to π then gives
dimC = dim ker(π) + dim im(π) ≤ 1 + 8 = 9, a contradiction. �

Lemma 8. The code C does not exist.

Proof. By Lemma 6 and 7, a40 = 2.5 Let c be a codeword of weight 40. We consider the restriction
π : C → F19

2 to the 0-coordinates of c. The image D = π(C) is the residual code Cc, which is a binary

5In fact, at this point the weight enumerator of C is uniquely determined: a8 = a16 = 0 yields a⊥3 = 85 and w(C) =

1 + 318x24 + 703x32 + 2x40; cf. the proof of Lemma 4.
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projective 22-divisible code of length 19. The kernel D′ = kerπ consists of all codewords of C whose
support is contained in supp(c).

The first 5 MacWilliams equations for the residual code D are
1 1 1 1 1
19 11 3 −5 −13
171 51 −5 3 75
969 121 −23 25 −247
3876 116 4 −44 484



b0
b4
b8
b12
b16

 = #D ·


b⊥0
b⊥1
b⊥2
b⊥3
b⊥4

 .

Using b0 = b⊥0 = 1 and b⊥1 = b⊥2 = 0, the first 4 equations lead to
b4
b8
b12
b16

 =
#D

29


15 + b⊥3

291− 3b⊥3
205 + 3b⊥3

1− b⊥3

+


−4
6
−4
1

 .

Plugging these expressions into the fifth MacWilliams identity leads to

b⊥4 = −11− b⊥3 +
212

#D
.

Hence 0 ≤ b⊥4 ≤ −11 + 212

#D , i.e., #D ≤ 212

11 < 29. Therefore, dim(D) ≤ 8.
The code D′ contains c. For x ∈ D′, w(c + x) = 40 − w(x). So D′ cannot contain codewords of

weights 8 or 16 (as a8 = a16 = 0), nor of weight 24 or 32 (as c + x would then have weight 16, resp.,
8). Therefore, D′ = {0, c} and dim(D′) = 1. Application of the rank-nullity theorem to π then yields
dim(C) = dim(D′) + dim(D) ≤ 1 + 8 = 9, the final contradiction. �

4. APPLICATION TO VECTOR SPACE PARTITIONS

Let V be a finite vector space over Fq . A set P of non-zero subspaces of V is called a vector space
partition of V if every non-zero vector of V is contained in exactly one element of P . In other words,
the elements of P form a partition of the point set of PG(V ). Denoting the number of elements of
dimension i in P by di, the type of P is given by the sequence (d1, d2, d3, . . .), or “multiplicatively” as
(1d12d23d3 . . .) with factors having di = 0 omitted.

Corollary 9. Let V be a finite vector space over F2. There is no vector space partition of V of type (di)
with d1 = 59 and d2 = d3 = 0.

Proof. Assume that P is a vector space partition of the given type. By [6, Theorem 8], the 59 subspaces
of dimension 1 form an 8-divisible set of points in PG(V ). This set corresponds to a projective 8-divisible
binary code of length 59, which does not exist by Theorem 2. �

Example 10. The smallest nontrivial cases excluded by Corollary 9 are vector space partitions of F10
2 of

type (15945654) and of type (159425519).

5. CONCLUSION AND OPEN PROBLEMS

Using purely theoretical methods we were able to exclude the existence of a projective 23-divisible
binary code of length 59. This completes the characterization of the possible lengths of projective 23-
divisible binary codes, which play some role in applications.

It would be desirable to have generalizations of the completed characterization in Fact 1 to other
parameters. To this end, we state the list of lengths of projective 24-divisible binary codes for which the
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existence question is undecided, at least according to our knowledge:

{130, 163, 164, 165, 185, 215, 216, 232, 233,

244, 245, 246, 247, 274, 275, 277, 278, 306, 309}.
For q = 3 the smallest open case is that of a projective 32-divisible ternary code of length 70. The
complete list of undecided lengths is

{70, 77, 99, 100, 101, 102, 113, 114, 115, 128}.
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